

Learning Python

Fifth Edition

Mark Lutz

Learning Python

by Mark Lutz

Copyright © 2013 Mark Lutz. All rights reserved.

Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Editor: Rachel Roumeliotis

		Production Editor: Chris Hearse

		Copyeditor: Rachel Monaghan

		Proofreader: Julie Van Keuren

		Indexer: Lucie Haskins

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Rebecca Demarest

		June 2013: Fifth Edition

Revision History for the Fifth Edition

			2018-06-01: Twenty-first Release

		2018-10-12: Twenty-second Release

		2019-03-22: Twenty-third Release

		2019-11-22: Twenty-fourth Release

		2020-06-05: Twenty-fifth Release

		2020-12-18: Twenty-sixth Release

		2021-07-02: Twenty-seventh Release

		2022-07-15: Twenty-eighth Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449355739 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Python, the cover image of a wood rat, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-449-35573-9

[MBP]

Dedication

To Vera.

You are my life.

Preface
If you’re standing in a bookstore looking for the short story on this
 book, try this:
	Python is a powerful multiparadigm computer
 programming language, optimized for programmer productivity, code
 readability, and software quality.

	This book provides a comprehensive and
 in-depth introduction to the Python language itself. Its goal is to help
 you master Python fundamentals before moving on to apply them in your
 work. Like all its prior editions, this book is designed to serve as a
 single, all-inclusive learning resource for all Python newcomers,
 whether they will be using Python 2.X, Python 3.X, or both.

	This edition has been brought up to date with
 Python releases 3.3 and 2.7, and has been expanded substantially to
 reflect current practice in the Python world.

This preface describes this book’s goals, scope,
 and structure in more detail. It’s optional reading, but is designed to
 provide some orientation before you get started with the book at
 large.
This Book’s “Ecosystem”
Python is a popular open source programming language used for both
 standalone programs and scripting applications in a wide variety of
 domains. It is free, portable, powerful, and is both relatively easy and
 remarkably fun to use. Programmers from every corner of the software
 industry have found Python’s focus on developer productivity and software
 quality to be a strategic advantage in projects both large and
 small.
Whether you are new to programming or are a professional developer,
 this book is designed to bring you up to speed on the Python language in
 ways that more limited approaches cannot. After reading this book, you
 should know enough about Python to apply it in whatever application
 domains you choose to explore.
By design, this book is a tutorial that emphasizes the
 core Python language itself, rather than specific
 applications of it. As such, this book is intended to serve as the first
 in a two-volume set:
	Learning
 Python, this book, teaches Python itself, focusing on language
 fundamentals that span domains.

	Programming
 Python, among others, moves on to show what you can do with
 Python after you’ve learned it.

This division of labor is deliberate. While application goals can
 vary per reader, the need for useful language fundamentals coverage does
 not. Applications-focused books such as Programming
 Python pick up where this book leaves off, using realistically
 scaled examples to explore Python’s role in common domains such as the
 Web, GUIs, systems, databases, and text. In addition, the book Python Pocket
 Reference provides reference materials not included here, and it
 is designed to supplement this book.
Because of this book’s focus on foundations, though, it is able to
 present Python language fundamentals with more depth than many programmers
 see when first learning the language. Its bottom-up approach and
 self-contained didactic examples are designed to teach readers the entire
 language one step at a time.
The core language skills you’ll gain in the process will apply to
 every Python software system you’ll encounter—be it today’s popular tools
 such as Django, NumPy, and App Engine, or others that may be a part of
 both Python’s future and your programming career.
Because it’s based upon a three-day Python training class with
 quizzes and exercises throughout, this book also serves as a self-paced
 introduction to the language. Although its format lacks the live
 interaction of a class, it compensates in the extra depth and flexibility
 that only a book can provide. Though there are many ways to use this book,
 linear readers will find it roughly equivalent to a semester-long Python
 class.

About This Fifth Edition
The prior fourth edition of this book published
 in 2009 covered Python versions 2.6 and 3.0.1 It addressed the many and sometimes incompatible changes
 introduced in the Python 3.X line in general. It also introduced a new OOP
 tutorial, and new chapters on advanced topics such as Unicode text,
 decorators, and metaclasses, derived from both the live classes I teach
 and evolution in Python “best practice.”
This fifth edition completed in 2013 is a
 revision of the prior, updated to cover both Python 3.3 and
 2.7, the current latest releases in the 3.X and 2.X lines. It
 incorporates all language changes introduced in each line since the prior
 edition was published, and has been polished throughout to update and
 sharpen its presentation. Specifically:
	Python 2.X coverage here has been updated
 to include features such as dictionary and set comprehensions that
 were formerly for 3.X only, but have been back-ported for use in
 2.7.

	Python 3.X coverage has been augmented for
 new yield and raise syntax; the __pycache__ bytecode model; 3.3 namespace
 packages; PyDoc’s all-browser mode; Unicode literal and storage
 changes; and the new Windows launcher shipped with 3.3.

	Assorted new or expanded coverage for JSON,
 timeit, PyPy, os.popen, generators, recursion, weak
 references, __mro__, __iter__, super, __slots__, metaclasses, descriptors,
 random, Sphinx, and more has been
 added, along with a general increase in 2.X compatibility in both
 examples and narrative.

This edition also adds a new conclusion as
 Chapter 41 (on Python’s evolution), two new
 appendixes (on recent Python changes and the new
 Windows launcher), and one new chapter (on
 benchmarking: an expanded version of the former code timing example). See
 Appendix C for a concise summary of
 Python changes between the prior edition and this
 one, as well as links to their coverage in the book. This appendix also
 summarizes initial differences between 2.X and 3.X in general that were
 first addressed in the prior edition, though some, such as new-style
 classes, span versions and simply become mandated in 3.X (more on what the
 X’s mean in a moment).
Per the last bullet in the preceding list, this edition has also
 experienced some growth because it gives fuller coverage to more
 advanced language features—which many of us have
 tried very hard to ignore as optional for the last decade, but which have
 now grown more common in Python code. As we’ll see, these tools make
 Python more powerful, but also raise the bar for newcomers, and may shift
 Python’s scope and definition. Because you might encounter any of these,
 this book covers them head-on, instead of pretending they do not
 exist.
Despite the updates, this edition retains most of the structure and
 content of the prior edition, and is still designed to be a comprehensive
 learning resource for both the 2.X and 3.X Python lines. While it is
 primarily focused on users of Python 3.3 and 2.7—the latest in the 3.X
 line and the likely last in the 2.X line—its historical perspective also
 makes it relevant to older Pythons that still see
 regular use today.
Though it’s impossible to predict the future, this book stresses
 fundamentals that have been valid for nearly two decades, and will likely
 apply to future Pythons too. As usual, I’ll be
 posting Python updates that impact this book at the book’s website
 described ahead. The “What’s New” documents in Python’s manuals set can
 also serve to fill in the gaps as Python surely evolves after this book is
 published.

The Python 2.X and 3.X Lines
Because it bears heavily on this book’s content, I need to say a few more
 words about the Python 2.X/3.X story up front. When the fourth
 edition of this book was written in 2009, Python had just
 become available in two flavors:
	Version 3.0 was the first in the line of an emerging and
 incompatible mutation of the language known generically as
 3.X.

	Version 2.6 retained backward compatibility with the vast body
 of existing Python code, and was the latest in the line known
 collectively as 2.X.

While 3.X was largely the same language, it ran almost no code
 written for prior releases. It:
	Imposed a Unicode model with broad consequences for strings,
 files, and libraries

	Elevated iterators and generators to a more pervasive role, as
 part of fuller functional paradigm

	Mandated new-style classes, which merge with types, but grow
 more powerful and complex

	Changed many fundamental tools and libraries, and replaced or
 removed others entirely

The mutation of print from
 statement to function alone, aesthetically sound as it may be, broke
 nearly every Python program ever written. And strategic potential aside,
 3.X’s mandatory Unicode and class models and ubiquitous generators made
 for a different programming experience.
Although many viewed Python 3.X as both an improvement and the
 future of Python, Python 2.X was still very widely used and was to be
 supported in parallel with Python 3.X for years to come. The majority of
 Python code in use was 2.X, and migration to 3.X seemed to be shaping up
 to be a slow process.
The 2.X/3.X Story Today
As this fifth edition is being written in
 2013, Python has moved on to versions 3.3 and 2.7, but this 2.X/3.X
 story is still largely unchanged. In fact, Python
 is now a dual-version world, with many users running
 both 2.X and 3.X according to their software goals
 and dependencies. And for many newcomers, the choice between 2.X and 3.X
 remains one of existing software versus the language’s cutting edge.
 Although many major Python packages have been ported to 3.X, many others
 are still 2.X-only today.
To some observers, Python 3.X is now seen as a
 sandbox for exploring new ideas, while 2.X is
 viewed as the tried-and-true Python, which doesn’t
 have all of 3.X’s features but is still more pervasive. Others still see
 Python 3.X as the future, a view that seems supported by current core
 developer plans: Python 2.7 will continue to be supported but is to be
 the last 2.X, while 3.3 is the latest in the 3.X line’s continuing
 evolution. On the other hand, initiatives such as
 PyPy—today a still 2.X-only implementation of
 Python that offers stunning performance improvements—represent a 2.X
 future, if not an outright faction.
All opinions aside, almost five years after its release, 3.X has
 yet to supersede 2.X, or even match its user base. As one metric, 2.X is
 still downloaded more often than 3.X for Windows at python.org today,
 despite the fact that this measure would be naturally skewed to
 new users and the most recent
 release. Such statistics are prone to change, of course, but after five
 years are indicative of 3.X uptake nonetheless. The existing 2.X
 software base still trumps 3.X’s language extensions for many. Moreover,
 being last in the 2.X line makes 2.7 a sort of de facto
 standard, immune to the constant pace of change in the 3.X
 line—a positive to those who seek a stable base, and a negative to those
 who seek growth and ongoing relevance.
Personally, I think today’s Python world is large enough to
 accommodate both 3.X and 2.X; they seem to satisfy
 different goals and appeal to different camps, and there is precedence
 for this in other language families (C and C++, for example, have a
 longstanding coexistence, though they may differ more than Python 2.X
 and 3.X). Moreover, because they are so similar, the skills gained by
 learning either Python line transfer almost entirely to the other,
 especially if you’re aided by dual-version resources like this book. In
 fact, as long as you understand how they diverge, it’s often possible to
 write code that runs on both.
At the same time, this split presents a substantial
 dilemma for both programmers and book authors,
 which shows no signs of abating. While it would be easier for a book to
 pretend that Python 2.X never existed and cover 3.X only, this would not
 address the needs of the large Python user base that exists today. A
 vast amount of existing code was written for Python 2.X, and it won’t be
 going away anytime soon. And while some newcomers to the language can
 and should focus on Python 3.X, anyone who must use code written in the
 past needs to keep one foot in the Python 2.X world today. Since it may
 still be years before many third-party libraries and extensions are
 ported to Python 3.X, this fork might not be entirely temporary.

Coverage for Both 3.X and 2.X
To address this dichotomy and to meet the needs of all potential
 readers, this book has been updated to cover both
 Python 3.3 and Python 2.7, and should apply to later releases in both
 the 3.X and 2.X lines. It’s intended for programmers using Python 2.X,
 programmers using Python 3.X, and programmers stuck somewhere between
 the two.
That is, you can use this book to learn
 either Python line. Although 3.X is often
 emphasized, 2.X differences and tools are also noted along the way for
 programmers using older code. While the two versions are largely
 similar, they diverge in some important ways, and I’ll point these out
 as they crop up.
For instance, I’ll use 3.X print calls in most examples, but will also
 describe the 2.X print statement so
 you can make sense of earlier code, and will often use portable printing
 techniques that run on both lines. I’ll also freely introduce new
 features, such as the nonlocal
 statement in 3.X and the string format method available as of 2.6 and 3.0, and
 will point out when such extensions are not present in older
 Pythons.
By proxy, this edition addresses other Python version 2.X and 3.X
 releases as well, though some older version 2.X code may not be able to
 run all the examples here. Although class decorators are available as of
 both Python 2.6 and 3.0, for example, you cannot use them in an older
 Python 2.X that did not yet have this feature. Again, see the change
 tables in Appendix C for summaries
 of recent 2.X and 3.X changes.

Which Python Should I Use?
Version choice may be mandated by your organization, but if you’re
 new to Python and learning on your own, you may be wondering which
 version to install. The answer here depends on your goals. Here are a
 few suggestions on the choice.
	When to choose 3.X: new features, evolution
	If you are learning Python for the first time and don’t need
 to use any existing 2.X code, I encourage you to begin with Python
 3.X. It cleans up some longstanding warts in the language and
 trims some dated cruft, while retaining all the original core
 ideas and adding some nice new tools. For example, 3.X’s seamless
 Unicode model and broader use of generators and functional
 techniques are seen by many users as assets. Many popular Python
 libraries and tools are already available for Python 3.X, or will
 be by the time you read these words, especially given the
 continual improvements in the 3.X line. All new language evolution
 occurs in 3.X only, which adds features and keeps Python relevant,
 but also makes language definition a constantly moving target—a
 tradeoff inherent on the leading edge.

	When to choose 2.X: existing code, stability
	If you’ll be using a system based on Python 2.X, the 3.X
 line may not be an option for you today. However, you’ll find that
 this book addresses your concerns, too, and will help if you
 migrate to 3.X in the future. You’ll also find that you’re in
 large company. Every group I taught in 2012 was using 2.X only,
 and I still regularly see useful Python software in 2.X-only form.
 Moreover, unlike 3.X, 2.X is no longer being changed—which is
 either an asset or liability, depending on whom you ask. There’s
 nothing wrong with using and writing 2.X code, but you may wish to
 keep tabs on 3.X and its ongoing evolution as you do. Python’s
 future remains to be written, and is largely up to its users,
 including you.

	When to choose both: version-neutral code
	Probably the best news here is that Python’s fundamentals
 are the same in both its lines—2.X and 3.X differ in ways that
 many users will find minor, and this book is designed to help you
 learn both. In fact, as long as you understand their differences,
 it’s often straightforward to write version-neutral code that runs
 on both Pythons, as we regularly will in this book. See Appendix C for pointers on 2.X/3.X
 migration and tips on writing code for both Python lines and
 audiences.

Regardless of which version or versions you choose to focus on
 first, your skills will transfer directly to wherever your Python work
 leads you.
Note
About the Xs: Throughout this book, “3.X”
 and “2.X” are used to refer collectively to all releases in these two
 lines. For instance, 3.X includes 3.0 through
 3.3, and future 3.X releases; 2.X means all from
 2.0 through 2.7 (and presumably no others). More specific releases are
 mentioned when a topic applies to it only (e.g., 2.7’s set literals
 and 3.3’s launcher and namespace packages). This notation may
 occasionally be too broad—some features labeled 2.X here may not be
 present in early 2.X releases rarely used today—but it accommodates a
 2.X line that has already spanned 13 years. The 3.X label is more
 easily and accurately applied to this younger five-year-old
 line.

This Book’s Prerequisites and Effort
It’s impossible to give absolute prerequisites for this book,
 because its utility and value can depend as much on reader motivation as
 on reader background. Both true beginners and crusty programming veterans
 have used this book successfully in the past. If you are motivated to
 learn Python, and willing to invest the time and focus it requires, this
 text will probably work for you.
Just how much time is required to learn Python? Although this will
 vary per learner, this book tends to work best when
 read. Some readers may use this book as an on-demand
 reference resource, but most people seeking Python mastery should expect
 to spend at least weeks and probably
 months going through the material here, depending on
 how closely they follow along with its examples. As mentioned, it’s
 roughly equivalent to a full-semester course on the Python language
 itself.
That’s the estimate for learning just Python itself and the software
 skills required to use it well. Though this book may suffice for basic
 scripting goals, readers hoping to pursue software development at large as
 a career should expect to devote additional time after this book to
 large-scale project experience, and possibly to follow-up texts such as
 Programming
 Python.2
That may not be welcome news to people looking for instant
 proficiency, but programming is not a trivial skill (despite what you may
 have heard!). Today’s Python, and software in general, are both
 challenging and rewarding enough to merit the effort implied by
 comprehensive books such as this. Here are a few pointers on using this
 book for readers on both sides of the experience spectrum:
	To experienced programmers
	You have an initial advantage and can move quickly through
 some earlier chapters; but you shouldn’t skip the core ideas, and
 may need to work at letting go of some baggage. In general terms,
 exposure to any programming or scripting before this book might be
 helpful because of the analogies it may provide. On the other hand,
 I’ve also found that prior programming experience can be a handicap
 due to expectations rooted in other languages (it’s far too easy to
 spot the Java or C++ programmers in classes by the first Python code
 they write!). Using Python well requires adopting its mindset. By
 focusing on key core concepts, this book is designed to help you
 learn to code Python in Python.

	To true beginners
	You can learn Python here too, as well as programming itself;
 but you may need to work a bit harder, and may wish to supplement
 this text with gentler introductions. If you don’t consider yourself
 a programmer already, you will probably find this book useful too,
 but you’ll want to be sure to proceed slowly and work through the
 examples and exercises along the way. Also keep in mind that this
 book will spend more time teaching Python itself than programming
 basics. If you find yourself lost here, I encourage you to explore
 an introduction to programming in general before tackling this book.
 Python’s website has links to many helpful resources for
 beginners.

Formally, this book is designed to serve as a first Python
 text for newcomers of all kinds. It may not be an ideal
 resource for someone who has never touched a computer before (for
 instance, we’re not going to spend any time exploring what a computer is),
 but I haven’t made many assumptions about your programming background or
 education.
On the other hand, I won’t insult readers by assuming they are
 “dummies,” either, whatever that means—it’s easy to do useful things in
 Python, and this book will show you how. The text occasionally contrasts
 Python with languages such as C, C++, Java, and others, but you can safely
 ignore these comparisons if you haven’t used such languages in the
 past.

This Book’s Structure
To help orient you, this section provides a quick rundown of the
 content and goals of the major parts of this book. If you’re anxious to
 get to it, you should feel free to skip this section (or browse the table
 of contents instead). To some readers, though, a book this large probably
 merits a brief roadmap up front.
By design, each part covers a major functional
 area of the language, and each part is composed of
 chapters focusing on a specific topic or aspect of
 the part’s area. In addition, each chapter ends with
 quizzes and their answers, and each part ends with
 larger exercises, whose solutions show up in Appendix D.
Note
Practice matters: I strongly recommend that
 readers work through the quizzes and exercises in this book, and work
 along with its examples in general if you can. In programming, there’s
 no substitute for practicing what you’ve read. Whether you do it with
 this book or a project of your own, actual coding is crucial if you want
 the ideas presented here to stick.

Overall, this book’s presentation is bottom-up
 because Python is too. The examples and topics grow more challenging as we
 move along. For instance, Python’s classes are largely just packages of
 functions that process built-in types. Once you’ve mastered built-in types
 and functions, classes become a relatively minor intellectual leap.
 Because each part builds on those preceding it this way, most readers will
 find a linear reading makes the most sense. Here’s a
 preview of the book’s main parts you’ll find along the way:
	Part I
	We begin with a general overview of Python that answers
 commonly asked initial questions—why people use the language, what
 it’s useful for, and so on. The first chapter introduces the major
 ideas underlying the technology to give you some background context.
 The rest of this part moves on to explore the ways that both Python
 and programmers run programs. The main goal here is to give you just
 enough information to be able to follow along with later examples
 and exercises.

	Part II
	Next, we begin our tour of the Python language, studying
 Python’s major built-in object types and what you can do with them
 in depth: numbers, lists, dictionaries, and so on. You can get a lot
 done with these tools alone, and they are at the heart of every
 Python script. This is the most substantial part of the book because
 we lay groundwork here for later chapters. We’ll also explore
 dynamic typing and its references—keys to using Python well—in this
 part.

	Part III
	The next part moves on to introduce Python’s
 statements—the code you type to create and
 process objects in Python. It also presents Python’s general syntax
 model. Although this part focuses on syntax, it also introduces some
 related tools (such as the PyDoc system), takes a first look at
 iteration concepts, and explores coding alternatives.

	Part IV
	This part begins our look at Python’s higher-level program
 structure tools. Functions turn out to be a
 simple way to package code for reuse and avoid code redundancy. In
 this part, we will explore Python’s scoping rules, argument-passing
 techniques, the sometimes-notorious lambda, and more. We’ll also
 revisit iterators from a functional programming perspective,
 introduce user-defined generators, and learn how to time Python code
 to measure performance here.

	Part V
	Python modules let you organize
 statements and functions into larger components, and this part
 illustrates how to create, use, and reload modules. We’ll also look
 at some more advanced topics here, such as module packages, module
 reloading, package-relative imports, 3.3’s new namespace packages,
 and the __name__ variable.

	Part VI
	Here, we explore Python’s object-oriented programming tool,
 the class—an optional but powerful way to
 structure code for customization and reuse, which almost naturally
 minimizes redundancy. As you’ll see, classes mostly reuse ideas we
 will have covered by this point in the book, and OOP in Python is
 mostly about looking up names in linked objects with a special first
 argument in functions. As you’ll also see, OOP is optional in
 Python, but most find Python’s OOP to be much simpler than others,
 and it can shave development time substantially, especially for
 long-term strategic project development.

	Part VII
	We conclude the language fundamentals coverage in this text
 with a look at Python’s exception handling model and statements,
 plus a brief overview of development tools that will become more
 useful when you start writing larger programs (debugging and testing
 tools, for instance). Although exceptions are a fairly lightweight
 tool, this part appears after the discussion of classes because
 user-defined exceptions should now all be classes. We also cover
 some more advanced topics, such as context managers, here.

	Part VIII
	In the final part, we explore some advanced topics: Unicode
 and byte strings, managed attribute tools like properties and
 descriptors, function and class decorators, and metaclasses. These
 chapters are all optional reading, because not all programmers need
 to understand the subjects they address. On the other hand, readers
 who must process internationalized text or binary data, or are
 responsible for developing APIs for other programmers to use, should
 find something of interest in this part. The examples here are also
 larger than most of those in this book, and can serve as self-study
 material.

	Part IX
	The book wraps up with a set of four appendixes that give
 platform-specific tips for installing and using Python on various
 computers; present the new Windows launcher that ships with Python
 3.3; summarize changes in Python addressed by recent editions and
 give links to their coverage here; and provide solutions to the
 end-of-part exercises. Solutions to end-of-chapter quizzes appear in
 the chapters themselves.

See the table of contents for a finer-grained look at this book’s
 components.

What This Book Is Not
Given its relatively large audience over the years, some have
 inevitably expected this book to serve a role outside its scope. So now
 that I’ve told you what this book is, I also want to be clear on what it
 isn’t:
	This book is a tutorial, not a
 reference.

	This book covers the language itself, not
 applications, standard libraries, or third-party tools.

	This book is a comprehensive look at a substantial topic,
 not a watered-down overview.

Because these points are key to this book’s content, I want to say a
 few more words about them up front.
It’s Not a Reference or a Guide to Specific Applications
This book is a language tutorial, not a
 reference, and not an applications book. This is by design:
 today’s Python—with its built-in types, generators,
 closures, comprehensions, Unicode, decorators, and blend of procedural,
 object-oriented, and functional programming paradigms—makes the core
 language a substantial topic all by itself, and a prerequisite to all
 your future Python work, in whatever domains you pursue. When you are
 ready for other resources, though, here are a few suggestions and
 reminders:
	Reference resources
	As implied by the preceding structural description, you can
 use the index and table of contents to hunt for details, but there
 are no reference appendixes in this book. If you are looking for
 Python reference resources (and most readers probably will be very
 soon in their Python careers), I suggest the previously mentioned
 book that I also wrote as a companion to this one—Python Pocket
 Reference—as well as other reference books you’ll find
 with a quick search, and the standard Python reference manuals
 maintained at http://www.python.org. The latter of these are
 free, always up to date, and available both on the Web and on your
 computer after a Windows install.

	Applications and libraries
	As also discussed earlier, this book is not a guide to
 specific applications such as the Web, GUIs,
 or systems programming. By proxy, this includes the libraries and
 tools used in applications work; although some standard
 libraries and tools are introduced here—including
 timeit, shelve, pickle, struct, json, pdb, os, urllib, re, xml, random, PyDoc and
 IDLE—they are not officially in this book’s
 primary scope. If you’re looking for more coverage on such topics
 and are already proficient with Python, I recommend the follow-up
 book Programming
 Python, among others. That book assumes this one as its
 prerequisite, though, so be sure you have a firm grasp of the core
 language first. Especially in an engineering domain like software,
 one must walk before one runs.

It’s Not the Short Story for People in a Hurry
As you can tell from its size, this book also doesn’t skimp on the
 details: it presents the full Python language, not
 a brief look at a simplified subset. Along the way it also covers
 software principles that are essential to writing
 good Python code. As mentioned, this is a multiple-week or -month book,
 designed to impart the skill level you’d acquire from a full-term class
 on Python.
This is also deliberate. Many of this book’s readers don’t need to
 acquire full-scale software development skills, of course, and some can
 absorb Python in a piecemeal fashion. At the same time, because
 any part of the language may be used in code you
 will encounter, no part is truly optional for most programmers.
 Moreover, even casual scripters and hobbyists need to know basic
 principles of software development in order to code well, and even to
 use precoded tools properly.
This book aims to address both of these needs—language
 and principles—in enough depth to be useful. In the end,
 though, you’ll find that Python’s more advanced tools, such as its
 object-oriented and functional programming support, are relatively easy
 to learn once you’ve mastered their prerequisites—and you will, if you
 work through this book one chapter at a time.

It’s as Linear as Python Allows
Speaking of reading order, this edition also
 tries hard to minimize forward references, but
 Python 3.X’s changes make this impossible in some cases (in fact, 3.X
 sometimes seems to assume you already know Python while you’re learning
 it!). As a handful of representative examples:
	Printing, sorts, the string format method, and some dict calls rely on function
 keyword arguments.

	Dictionary key lists and tests, and the list calls used around many tools, imply
 iteration concepts.

	Using exec to run code now
 assumes knowledge of file objects and
 interfaces.

	Coding new exceptions requires
 classes and OOP fundamentals.

	And so on—even basic inheritance broaches
 advanced topics such as metaclasses and
 descriptors.

Python is still best learned as a progression from simple to
 advanced, and a linear reading here still makes the
 most sense. Still, some topics may require nonlinear jumps and random
 lookups. To minimize these, this book will point out forward
 dependencies when they occur, and will ease their impacts as much as
 possible.
Note
But if your time is tight: Though depth is
 crucial to mastering Python, some readers may have limited time. If
 you are interested in starting out with a quick Python
 tour, I suggest Chapter 1,
 Chapter 4, Chapter 10, and Chapter 28 (and perhaps 26)—a short survey
 that will hopefully pique your interest in the more complete story
 told in the rest of the book, and which most readers will need in
 today’s Python software world. In general, this book is intentionally
 layered this way to make its material easier to
 absorb—with introductions followed by details, so you can start with
 overviews, and dig deeper over time. You don’t need to read this book
 all at once, but its gradual approach is designed to help you tackle
 its material eventually.

This Book’s Programs
In general, this book has always strived to be agnostic about both
 Python versions and platforms. It’s designed to be useful to all Python
 users. Nevertheless, because Python changes over time and platforms tend
 to differ in pragmatic ways, I need to describe the specific systems
 you’ll see in action in most examples here.
Python Versions
This fifth edition of this book, and all the program examples in
 it, are based on Python versions 3.3 and 2.7. In
 addition, many of its examples run under prior 3.X and 2.X releases, and
 notes about the history of language changes in earlier versions are
 mixed in along the way for users of older Pythons.
Because this text focuses on the core language, however, you can
 be fairly sure that most of what it has to say won’t change very much in
 future releases of Python, as noted earlier. Most
 of this book applies to earlier Python versions,
 too, except when it does not; naturally, if you try using extensions
 added after a release you’re using, all bets are off. As a rule of
 thumb, the latest Python is the best Python if you are able to
 upgrade.
Because this book focuses on the core language, most of it also
 applies to both Jython and
 IronPython, the Java- and .NET-based Python
 language implementations, as well as other Python implementations such
 as Stackless and PyPy
 (described in Chapter 2). Such
 alternatives differ mostly in usage details, not language.

Platforms
The examples in this book were run on a Windows 7 and
 8 ultrabook,3 though Python’s portability makes this mostly a moot
 point, especially in this fundamentals-focused book. You’ll notice a few
 Windows-isms—including command-line prompts, a handful of screenshots,
 install pointers, and an appendix on the new Windows launcher in 3.3—but
 this reflects the fact that most Python newcomers will probably get
 started on this platform, and these can be safely ignored by users of
 other operating systems.
I also give a few launching details for other platforms like
 Linux, such as “#!” line use, but as we’ll see in Chapter 3 and Appendix B, the 3.3 Windows launcher
 makes even this a more portable technique.

Fetching This Book’s Code
Source code for the book’s examples, as well as exercise
 solutions, can be fetched as a zip file from the book’s website at the
 following address:
	http://oreil.ly/LearningPython-5E

This site includes both all the code in this book as well as
 package usage instructions, so I’ll defer to it for more details. Of
 course, the examples work best in the context of their appearance in
 this book, and you’ll need some background knowledge on running Python
 programs in general to make use of them. We’ll study startup details in
 Chapter 3, so please stay tuned for
 information on this front.

Using This Book’s Code
The code in my Python books is designed to teach, and I’m glad
 when it assists readers in that capacity. O’Reilly itself has an
 official policy regarding reusing the book’s examples in general, which
 I’ve pasted into the rest of this section for reference:
This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You
 do not need to contact us for permission unless you’re reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require
 permission. Selling or distributing a CD-ROM of examples from O’Reilly
 books does require permission. Answering a
 question by citing this book and quoting example code does not require
 permission. Incorporating a significant amount of example code from
 this book into your product’s documentation does
 require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Learning Python, Fifth Edition, by Mark Lutz.
 Copyright 2013 Mark Lutz, 978-1-4493-5573-9.”
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

Font Conventions
This book’s mechanics will make more sense once you start reading
 it, of course, but as a reference, this book uses the following
 typographical conventions:
	Italic
	Used for email addresses, URLs, filenames, pathnames, and
 emphasizing new terms when they are first introduced

	Constant width
	Used for program code, the contents of files and the output
 from commands, and to designate modules, methods, statements, and
 system commands

	Constant width
 bold
	Used in code sections to show commands or text that would be
 typed by the user, and, occasionally, to highlight portions of
 code

	Constant width italic
	Used for replaceables and some comments in code
 sections

Note
Indicates a tip, suggestion, or general note relating to the
 nearby text.

Warning
Indicates a warning or caution relating to the nearby text.

You’ll also find occasional sidebars (delimited
 by boxes) and footnotes (at page end) throughout,
 which are often optional reading, but provide additional context on the
 topics being presented. The application sidebars, such as “Why You Will Care: Slices”, often give
 example use cases for the subjects being explored.

Book Updates and Resources
Improvements happen (and so do mis^H^H^H typos). Updates, supplements, and
 corrections (a.k.a. errata) for this book will be
 maintained on the Web, and may be suggested at either the publisher’s
 website or by email. Here are the main coordinates:
	Publisher’s site: http://oreil.ly/LearningPython-5E
	This site will maintain this edition’s official list of book
 errata, and chronicle specific patches applied
 to the text in reprints. It’s also the official site for the book’s
 examples as described earlier.

	Author’s site: http://learning-python.com/books/about-lp5e.html
	This site will be used to post more general
 updates related to this text or Python itself—a hedge
 against future changes, which should be considered a sort of virtual
 appendix to this book.

My publisher also has an email address for comments and technical
 questions about this book:
	bookquestions@oreilly.com

For more information about my publisher’s books, conferences,
 Resource Centers, and the O’Reilly Network, see its general
 website:
	http://www.oreilly.com

For more on my books, see my own book support site:
	http://learning-python.com/books

Also be sure to search the Web if any of the preceding links become
 invalid over time; if I could become more clairvoyant, I would, but the
 Web changes faster than published books.

Acknowledgments
As I write this fifth edition of this book in 2013, it’s difficult
 to not be somewhat retrospective. I have now been using and promoting
 Python for 21 years, writing books about it for 18, and teaching live
 classes on it for 16. Despite the passage of time, I’m still regularly
 amazed at how successful Python has been—in ways that most of us could not
 possibly have imagined in the early 1990s. So at the risk of sounding like
 a hopelessly self-absorbed author, I hope you’ll pardon a few closing
 words of history and gratitude here.
The Backstory
My own Python history predates both Python 1.0 and the Web (and
 goes back to a time when an install meant fetching email messages,
 concatenating, decoding, and hoping it all somehow worked). When I first
 discovered Python as a frustrated C++ software developer in 1992, I had
 no idea what an impact it would have on the next two decades of my life.
 Two years after writing the first edition of Programming
 Python in 1995 for Python 1.3, I began traveling around the
 country and world teaching Python to beginners and experts. Since
 finishing the first edition of Learning Python in
 1999, I’ve been an independent Python trainer and writer, thanks in part
 to Python’s phenomenal growth in popularity.
Here’s the damage so far. I’ve now written 13 Python books (5 of
 this, and 4 of two others), which have together sold some 400,000 units
 by my data. I’ve also been teaching Python for over a decade and a half;
 have taught some 260 Python training sessions in the U.S., Europe,
 Canada, and Mexico; and have met roughly 4,000 students along the way.
 Besides propelling me toward frequent flyer utopia, these classes helped
 me refine this text and my other Python books. Teaching honed the books,
 and vice versa, with the net result that my books closely parallel what
 happens in my classes, and can serve as a viable alternative to
 them.
As for Python itself, in recent years it has grown to become one
 of the top 5 to 10 most widely used programming languages in the world
 (depending on which source you cite and when you cite it). Because we’ll
 be exploring Python’s status in the first chapter of this book, I’ll
 defer the rest of this story until then.

Python Thanks
Because teaching teaches teachers to teach, this book owes much to
 my live classes. I’d like to thank all the
 students who have participated in my courses during
 the last 16 years. Along with changes in Python itself, your feedback
 played a major role in shaping this text; there’s nothing quite as
 instructive as watching 4,000 people repeat the same beginner mistakes
 live and in person! This book’s recent editions owe their training-based
 changes primarily to recent classes, though every class held since 1997
 has in some way helped refine this book. I’d like to thank clients who
 hosted classes in Dublin, Mexico City, Barcelona, London, Edmonton, and
 Puerto Rico; such experiences have been one of my career’s most lasting
 rewards.
Because writing teaches writers to write, this book also owes much
 to its audience. I want to thank the countless
 readers who took time to offer suggestions over the
 last 18 years, both online and in person. Your feedback has also been
 vital to this book’s evolution and a substantial factor in its success,
 a benefit that seems inherent in the open source world. Reader comments
 have run the gamut from “You should be banned from writing books” to
 “God bless you for writing this book”; if consensus is possible in such
 matters it probably lies somewhere between these two, though to borrow a
 line from Tolkien: the book is still too short.
I’d also like to express my gratitude to everyone who played a
 part in this book’s production. To all those who
 have helped make this book a solid product over the years—including its
 editors, formatters, marketers, technical reviewers, and more. And to
 O’Reilly for giving me a chance to work on 13 book projects; it’s been
 net fun (and only feels a little like the movie Groundhog
 Day).
Additional thanks is due to the entire Python
 community; like most open source systems, Python is the
 product of many unsung efforts. It’s been my privilege to watch Python
 grow from a new kid on the scripting languages block to a widely used
 tool, deployed in some fashion by almost every organization writing
 software. Technical disagreements aside, that’s been an exciting
 endeavor to be a part of.
I also want to thank my original editor at O’Reilly, the late
 Frank Willison. This book was largely Frank’s idea.
 He had a profound impact on both my career and the success of Python
 when it was new, a legacy that I remember each time I’m tempted to
 misuse the word “only.”

Personal Thanks
Finally, a few more personal notes of thanks. To the late Carl
 Sagan, for inspiring an 18-year-old kid from Wisconsin. To my Mother,
 for courage. To my siblings, for the truths to be found in museum
 peanuts. To the book The Shallows, for a
 much-needed wakeup call.
To my son Michael and daughters Samantha and Roxanne, for who you
 are. I’m not quite sure when you grew up, but I’m proud of how you did,
 and look forward to seeing where life takes you next.
And to my wife Vera, for patience, proofing, Diet Cokes, and
 pretzels. I’m glad I finally found you. I don’t know what the next 50
 years hold, but I do know that I hope to spend all of them holding
 you.

Mark Lutz, Amongst the Larch, Spring 2013

1 And 2007’s short-lived third edition covered Python 2.5, and its
 simpler—and shorter—single-line Python world. See
 http://learning-python.com/books for more on this book’s
 history. Over the years, this book has grown in size and complexity in
 direct proportion to Python’s own growth. Per Appendix C, Python 3.0 alone introduced
 27 additions and 57 changes in the language that found their way into
 this book, and Python 3.3 continues this trend. Today’s Python
 programmer faces two incompatible lines, three major paradigms, a
 plethora of advanced tools, and a blizzard of feature redundancy—most
 of which do not divide neatly between the 2.X and 3.X lines. That’s
 not as daunting as it may sound (many tools are variations on a
 theme), but all are fair game in an inclusive, comprehensive Python
 text.
2 The standard disclaimer: I wrote this and another book mentioned
 earlier, which work together as a set: Learning
 Python for language fundamentals, Programming
 Python for applications basics, and Python Pocket
 Reference as a companion to the other two. All three derive
 from 1995’s original and broad Programming
 Python. I encourage you to explore the many Python books
 available today (I stopped counting at 200 at Amazon.com just now
 because there was no end in sight, and this didn’t include related
 subjects like Django). My own publisher has recently produced
 Python-focused books on instrumentation, data mining, App Engine,
 numeric analysis, natural language processing, MongoDB, AWS, and
 more—specific domains you may wish to explore once you’ve mastered
 Python language fundamentals here. The Python story today is far too
 rich for any one book to address alone.
3 Mostly under Windows 7, but it’s irrelevant to this book. At
 this writing, Python installs on Windows 8 and runs in its desktop
 mode, which is essentially the same as Windows 7 without a Start
 button as I write this (you may need to create shortcuts for former
 Start button menu items). Support for WinRT/Metro “apps” is still
 pending. See Appendix A for
 more details. Frankly, the future of Windows 8 is unclear as I type
 these words, so this book will be as version-neutral as
 possible.

Part I. Getting Started

Chapter 1. A Python Q&A Session
If you’ve bought this book, you may already know what Python is and
 why it’s an important tool to learn. If you don’t, you probably won’t be
 sold on Python until you’ve learned the language by reading the rest of this
 book and have done a project or two. But before we jump into details, this
 first chapter of this book will briefly introduce some of the main reasons
 behind Python’s popularity. To begin sculpting a definition of Python, this
 chapter takes the form of a question-and-answer session, which poses some of
 the most common questions asked by beginners.
Why Do People Use Python?
Because there are many programming languages available today, this is the
 usual first question of newcomers. Given that there are roughly 1 million
 Python users out there at the moment, there really is no way to answer
 this question with complete accuracy; the choice of development tools is
 sometimes based on unique constraints or personal preference.
But after teaching Python to roughly 260 groups and over 4,000
 students during the last 16 years, I have seen some common themes emerge.
 The primary factors cited by Python users seem to be these:
	Software quality
	For many, Python’s focus on readability, coherence, and
 software quality in general sets it apart from other tools in the
 scripting world. Python code is designed to be
 readable, and hence reusable and
 maintainable—much more so than traditional scripting languages. The
 uniformity of Python code makes it easy to understand, even if you
 did not write it. In addition, Python has deep support for more
 advanced software reuse mechanisms, such as
 object-oriented (OO) and functional programming.

	Developer productivity
	Python boosts developer productivity many times beyond
 compiled or statically typed languages such as C, C++, and Java.
 Python code is typically one-third to one-fifth
 the size of equivalent C++ or Java code. That means there is less to
 type, less to debug, and less to maintain after the fact. Python
 programs also run immediately, without the lengthy compile and link
 steps required by some other tools, further boosting programmer
 speed.

	Program portability
	Most Python programs run unchanged on all major
 computer platforms. Porting Python code between Linux and
 Windows, for example, is usually just a matter of copying a script’s
 code between machines. Moreover, Python offers multiple options for
 coding portable graphical user interfaces, database access programs,
 web-based systems, and more. Even operating system interfaces,
 including program launches and directory processing, are as portable
 in Python as they can possibly be.

	Support libraries
	Python comes with a large collection of prebuilt and portable
 functionality, known as the standard library. This
 library supports an array of application-level programming tasks,
 from text pattern matching to network scripting. In addition, Python
 can be extended with both homegrown libraries and a vast collection
 of third-party application support software. Python’s
 third-party domain offers tools for website
 construction, numeric programming, serial port access, game
 development, and much more (see ahead for a sampling). The
 NumPy extension, for instance, has been described as a
 free and more powerful equivalent to the Matlab numeric programming system.

	Component integration
	Python scripts can easily communicate with other parts of an
 application, using a variety of integration mechanisms. Such
 integrations allow Python to be used as a product
 customization and extension tool. Today, Python
 code can invoke C and C++ libraries, can be called from C and C++
 programs, can integrate with Java and .NET components, can
 communicate over frameworks such as COM and Silverlight, can
 interface with devices over serial ports, and can interact over
 networks with interfaces like SOAP, XML-RPC, and CORBA. It is not a
 standalone tool.

	Enjoyment
	Because of Python’s ease of use and built-in toolset, it can
 make the act of programming more pleasure than
 chore. Although this may be an intangible benefit, its
 effect on productivity is an important asset.

Of these factors, the first two (quality and productivity) are
 probably the most compelling benefits to most Python users, and merit a
 fuller description.
Software Quality
By design, Python implements a deliberately simple and readable
 syntax and a highly coherent programming model. As a slogan at a past
 Python conference attests, the net result is that Python seems to “fit
 your brain”—that is, features of the language interact in consistent and
 limited ways and follow naturally from a small set of core concepts.
 This makes the language easier to learn, understand, and remember. In
 practice, Python programmers do not need to constantly refer to manuals
 when reading or writing code; it’s a consistently designed system that
 many find yields surprisingly uniform code.
By philosophy, Python adopts a somewhat minimalist approach. This
 means that although there are usually multiple ways to accomplish a
 coding task, there is usually just one obvious way, a few less obvious
 alternatives, and a small set of coherent interactions everywhere in the
 language. Moreover, Python doesn’t make arbitrary decisions for you;
 when interactions are ambiguous, explicit intervention is preferred over
 “magic.” In the Python way of thinking, explicit is better than
 implicit, and simple is better than complex.1
Beyond such design themes, Python includes tools such as modules
 and OOP that naturally promote code reusability. And because Python is
 focused on quality, so too, naturally, are Python programmers.

Developer Productivity
During the great Internet boom of the mid-to-late 1990s, it was
 difficult to find enough programmers to implement software projects;
 developers were asked to implement systems as fast as the Internet
 evolved. In later eras of layoffs and economic recession, the picture
 shifted. Programming staffs were often asked to accomplish the same
 tasks with even fewer people.
In both of these scenarios, Python has shined as a tool that
 allows programmers to get more done with less effort. It is deliberately
 optimized for speed of development—its simple
 syntax, dynamic typing, lack of compile steps, and built-in toolset
 allow programmers to develop programs in a fraction of the time needed
 when using some other tools. The net effect is that Python typically
 boosts developer productivity many times beyond the levels supported by
 traditional languages. That’s good news in both boom and bust times, and
 everywhere the software industry goes in between.

Is Python a “Scripting Language”?
Python is a general-purpose programming language that is often applied in scripting
 roles. It is commonly defined as an object-oriented scripting
 language—a definition that blends support for OOP with an
 overall orientation toward scripting roles. If pressed for a one-liner,
 I’d say that Python is probably better known as a
 general-purpose programming language that blends procedural,
 functional, and object-oriented paradigms—a statement that
 captures the richness and scope of today’s Python.
Still, the term “scripting” seems to have stuck to Python like glue,
 perhaps as a contrast with larger programming effort required by some
 other tools. For example, people often use the word “script” instead of
 “program” to describe a Python code file. In keeping with this tradition,
 this book uses the terms “script” and “program” interchangeably, with a
 slight preference for “script” to describe a simpler top-level file and
 “program” to refer to a more sophisticated multifile application.
Because the term “scripting language” has so many different meanings
 to different observers, though, some would prefer that it not be applied
 to Python at all. In fact, people tend to make three very different
 associations, some of which are more useful than others, when they hear
 Python labeled as such:
	Shell tools
	Sometimes when people hear Python described as a scripting
 language, they think it means that Python is a tool for coding
 operating-system-oriented scripts. Such programs are often launched
 from console command lines and perform tasks such as processing text
 files and launching other programs.
Python programs can and do serve such roles, but this is just
 one of dozens of common Python application domains. It is not just a
 better shell-script language.

	Control language
	To others, scripting refers to a “glue” layer used to control and
 direct (i.e., script) other application components. Python programs
 are indeed often deployed in the context of larger applications. For
 instance, to test hardware devices, Python programs may call out to
 components that give low-level access to a device. Similarly,
 programs may run bits of Python code at strategic points to support
 end-user product customization without the need to ship and
 recompile the entire system’s source code.
Python’s simplicity makes it a naturally flexible control
 tool. Technically, though, this is also just a common Python role;
 many (perhaps most) Python programmers code standalone scripts
 without ever using or knowing about any integrated components. It is
 not just a control language.

	Ease of use
	Probably the best way to think of the term “scripting
 language” is that it refers to a simple language used for quickly
 coding tasks. This is especially true when the term is applied to
 Python, which allows much faster program development than compiled
 languages like C++. Its rapid development cycle fosters an exploratory,
 incremental mode of programming that has to be experienced to be
 appreciated.
Don’t be fooled, though—Python is not just for simple tasks.
 Rather, it makes tasks simple by its ease of use and flexibility.
 Python has a simple feature set, but it allows programs to scale up
 in sophistication as needed. Because of that, it is commonly used
 for quick tactical tasks and longer-term strategic
 development.

So, is Python a scripting language or not? It depends on whom you
 ask. In general, the term “scripting” is probably best used to describe
 the rapid and flexible mode of development that Python supports, rather
 than a particular application domain.

OK, but What’s the Downside?
After using it for 21 years, writing about it for 18, and teaching it for 16, I’ve found
 that the only significant universal downside to Python is that, as
 currently implemented, its execution speed may not
 always be as fast as that of fully compiled and lower-level languages such
 as C and C++. Though relatively rare today, for some tasks you may still
 occasionally need to get “closer to the iron” by using lower-level
 languages such as these that are more directly mapped to the underlying
 hardware architecture.
We’ll talk about implementation concepts in detail later in this
 book. In short, the standard implementations of Python today compile
 (i.e., translate) source code statements to an intermediate format known
 as byte code and then interpret the byte code. Byte
 code provides portability, as it is a platform-independent format.
 However, because Python is not normally compiled all the way down to
 binary machine code (e.g., instructions for an Intel chip), some programs
 will run more slowly in Python than in a fully compiled language like C.
 The PyPy system discussed in the next
 chapter can achieve a 10X to 100X speedup on some code by compiling
 further as your program runs, but it’s a separate, alternative
 implementation.
Whether you will ever care about the execution
 speed difference depends on what kinds of programs you write. Python has
 been optimized numerous times, and Python code runs fast enough by itself
 in most application domains. Furthermore, whenever you do something “real”
 in a Python script, like processing a file or constructing a graphical
 user interface (GUI), your program will actually run at C speed, since
 such tasks are immediately dispatched to compiled C code inside the Python
 interpreter. More fundamentally, Python’s speed-of-development gain is
 often far more important than any speed-of-execution loss, especially
 given modern computer speeds.
Even at today’s CPU speeds, though, there still are some domains
 that do require optimal execution speeds. Numeric programming and
 animation, for example, often need at least their core number-crunching
 components to run at C speed (or better). If you work in such a domain,
 you can still use Python—simply split off the parts of the application
 that require optimal speed into compiled extensions, and link
 those into your system for use in Python scripts.
We won’t talk about extensions much in this text, but this is really
 just an instance of the Python-as-control-language role we discussed earlier. A
 prime example of this dual language strategy is the NumPy numeric programming extension
 for Python; by combining compiled and optimized numeric extension
 libraries with the Python language, NumPy turns Python into a numeric
 programming tool that is simultaneously efficient and easy to use. When
 needed, such extensions provide a powerful optimization tool.
Other Python Tradeoffs: The Intangible Bits
I mentioned that execution speed is the only major downside to Python.
 That’s indeed the case for most Python users, and especially for
 newcomers. Most people find Python to be easy to learn and fun to use,
 especially when compared with its contemporaries like Java, C#, and C++.
 In the interest of full disclosure, though, I should also note up front
 some more abstract tradeoffs I’ve observed in my two decades in the
 Python world—both as an educator and developer.
As an educator, I’ve sometimes found the
 rate of change in Python and its libraries to be a
 negative, and have on occasion lamented its growth
 over the years. This is partly because trainers and book authors live on
 the front lines of such things—it’s been my job to teach the language
 despite its constant change, a task at times akin to chronicling the
 herding of cats! Still, it’s a broadly shared concern. As we’ll see in
 this book, Python’s original “keep it simple” motif is today often
 subsumed by a trend toward more sophisticated solutions at the expense
 of the learning curve of newcomers. This book’s size is indirect
 evidence of this trend.
On the other hand, by most measures Python is still much simpler
 than its alternatives, and perhaps only as complex as it needs to be
 given the many roles it serves today. Its overall coherence and open
 nature remain compelling features to most. Moreover, not everyone needs
 to stay up to date with the cutting edge—as Python 2.X’s ongoing
 popularity clearly shows.
As a developer, I also at times question the
 tradeoffs inherent in Python’s “batteries included”
 approach to development. Its emphasis on prebuilt tools can
 add dependencies (what if a battery you use is changed, broken, or
 deprecated?), and encourage special-case solutions over general
 principles that may serve users better in the long run (how can you
 evaluate or use a tool well if you don’t understand its purpose?). We’ll
 see examples of both of these concerns in this book.
For typical users, and especially for hobbyists and beginners,
 Python’s toolset approach is a major asset. But you shouldn’t be
 surprised when you outgrow precoded tools, and can benefit from the
 sorts of skills this book aims to impart. Or, to paraphrase a proverb:
 give people a tool, and they’ll code for a day; teach them how to build
 tools, and they’ll code for a lifetime. This book’s job is more the
 latter than the former.
As mentioned elsewhere in this chapter, both Python and its
 toolbox model are also susceptible to downsides common to open
 source projects in general—the potential triumph of the
 personal preference of the few over common usage of
 the many, and the occasional appearance of anarchy
 and even elitism—though these tend to be most
 grievous on the leading edge of new releases.
We’ll return to some of these tradeoffs at the end of the book,
 after you’ve learned Python well enough to draw your own conclusions. As
 an open source system, what Python “is” is up to its users to define. In
 the end, Python is more popular today than ever, and its growth shows no
 signs of abating. To some, that may be a more telling metric than
 individual opinions, both pro and con.

Who Uses Python Today?
At this writing, the best estimate anyone can seem to make of the size of the
 Python user base is that there are roughly 1 million Python users around
 the world today (plus or minus a few). This estimate is based on various
 statistics, like download rates, web statistics, and developer surveys.
 Because Python is open source, a more exact count is difficult—there are
 no license registrations to tally. Moreover, Python is automatically
 included with Linux distributions, Macintosh computers, and a wide range
 of products and hardware, further clouding the user-base picture.
In general, though, Python enjoys a large user base and a very
 active developer community. It is generally considered to be in
 the top 5 or top 10 most widely used programming
 languages in the world today (its exact ranking varies per source and
 date). Because Python has been around for over two
 decades and has been widely used, it is also very stable and
 robust.
Besides being leveraged by individual users, Python is also being
 applied in real revenue-generating products by real companies. For
 instance, among the generally known Python user base:
	Google makes extensive use of Python in its
 web search systems.

	The popular YouTube video sharing service
 is largely written in Python.

	The Dropbox storage service codes both its
 server and desktop client software primarily in Python.

	The Raspberry Pi single-board computer
 promotes Python as its educational language.

	EVE Online, a massively multiplayer online
 game (MMOG) by CCP Games, uses Python broadly.

	The widespread BitTorrent peer-to-peer file
 sharing system began its life as a Python program.

	Industrial Light & Magic,
 Pixar, and others use Python in the production of
 animated movies.

	ESRI uses Python as an end-user
 customization tool for its popular GIS mapping products.

	Google’s App Engine web development
 framework uses Python as an application language.

	The IronPort email server product uses more
 than 1 million lines of Python code to do its job.

	Maya, a powerful integrated 3D modeling and
 animation system, provides a Python scripting API.

	The NSA uses Python for cryptography and
 intelligence analysis.

	iRobot uses Python to develop commercial
 and military robotic devices.

	The Civilization IV game’s customizable
 scripted events are written entirely in Python.

	The One Laptop Per Child (OLPC) project
 built its user interface and activity model in Python.

	Netflix and Yelp have
 both documented the role of Python in their software
 infrastructures.

	Intel, Cisco,
 Hewlett-Packard, Seagate,
 Qualcomm, and IBM use Python
 for hardware testing.

	JPMorgan Chase, UBS,
 Getco, and Citadel apply
 Python to financial market forecasting.

	NASA, Los Alamos,
 Fermilab, JPL, and others
 use Python for scientific programming tasks.

And so on—though this list is representative, a full accounting is
 beyond this book’s scope, and is almost guaranteed to change over time.
 For an up-to-date sampling of additional Python users, applications, and
 software, try the following pages currently at Python’s site and
 Wikipedia, as well as a search in your favorite web browser:
	Success stories: http://www.python.org/about/success

	Application domains: http://www.python.org/about/apps

	User quotes: http://www.python.org/about/quotes

	Wikipedia page: http://en.wikipedia.org/wiki/List_of_Python_software

Probably the only common thread among the companies using Python
 today is that Python is used all over the map, in terms of application
 domains. Its general-purpose nature makes it applicable to almost all
 fields, not just one. In fact, it’s safe to say that virtually every
 substantial organization writing software is using Python, whether for
 short-term tactical tasks, such as testing and administration, or for
 long-term strategic product development. Python has proven to work well in
 both modes.

What Can I Do with Python?
In addition to being a well-designed programming language, Python is useful
 for accomplishing real-world tasks—the sorts of things developers do day
 in and day out. It’s commonly used in a variety of domains, as a tool for
 scripting other components and implementing standalone programs. In fact,
 as a general-purpose language, Python’s roles are virtually unlimited: you
 can use it for everything from website development and gaming to robotics
 and spacecraft control.
However, the most common Python roles currently seem to fall into a
 few broad categories. The next few sections describe some of Python’s most
 common applications today, as well as tools used in each domain. We won’t be able to explore the
 tools mentioned here in any depth—if you are interested in any of these
 topics, see the Python website or other resources for more details.
Systems Programming
Python’s built-in interfaces to operating-system services make it ideal for
 writing portable, maintainable system-administration tools and utilities
 (sometimes called shell tools). Python programs
 can search files and directory trees, launch other programs, do parallel
 processing with processes and threads, and so on.
Python’s standard library comes with POSIX bindings and support
 for all the usual OS tools: environment variables, files, sockets,
 pipes, processes, multiple threads, regular expression pattern matching,
 command-line arguments, standard stream interfaces, shell-command
 launchers, filename expansion, zip file utilities, XML and JSON parsers,
 CSV file handlers, and more. In addition, the bulk of Python’s system
 interfaces are designed to be portable; for example, a script that
 copies directory trees typically runs unchanged on all major Python
 platforms. The Stackless Python implementation,
 described in Chapter 2 and used by
 EVE Online, also offers advanced solutions to
 multiprocessing requirements.

GUIs
Python’s simplicity and rapid turnaround also make it a good match for graphical
 user interface programming on the desktop. Python comes with a standard
 object-oriented interface to the Tk GUI API called tkinter
 (Tkinter in 2.X) that allows Python programs to
 implement portable GUIs with a native look and feel. Python/tkinter GUIs
 run unchanged on Microsoft Windows, X Windows (on Unix and Linux), and the
 Mac OS (both Classic and OS X). A free extension package, PMW, adds advanced
 widgets to the tkinter toolkit. In addition, the wxPython GUI API, based on a C++
 library, offers an alternative toolkit for constructing portable GUIs in
 Python.
Higher-level toolkits such as Dabo are built
 on top of base APIs such as wxPython and tkinter. With the proper
 library, you can also use GUI support in other toolkits in Python, such
 as Qt with PyQt, GTK with
 PyGTK, MFC with PyWin32, .NET
 with IronPython, and Swing with Jython (the Java
 version of Python, described in Chapter 2) or JPype. For applications that
 run in web browsers or have simple interface requirements, both Jython
 and Python web frameworks and server-side CGI scripts, described in the
 next section, provide additional user interface options.

Internet Scripting
Python comes with standard Internet modules that allow Python programs to
 perform a wide variety of networking tasks, in client and server modes.
 Scripts can communicate over sockets; extract form information sent to
 server-side CGI scripts; transfer files by FTP; parse and generate XML
 and JSON documents; send, receive, compose, and parse email; fetch web
 pages by URLs; parse the HTML of fetched web pages; communicate over
 XML-RPC, SOAP, and Telnet; and more. Python’s libraries make these tasks
 remarkably simple.
In addition, a large collection of third-party tools are available
 on the Web for doing Internet programming in Python. For instance, the
 HTMLGen system generates HTML files from Python
 class-based descriptions, the mod_python package runs Python
 efficiently within the Apache web server and supports server-side
 templating with its Python Server Pages, and the Jython system provides
 for seamless Python/Java integration and supports coding of server-side
 applets that run on clients.
In addition, full-blown web development framework packages for
 Python, such as Django,
 TurboGears, web2py,
 Pylons, Zope, and
 WebWare, support quick construction of
 full-featured and production-quality websites with Python. Many of these
 include features such as object-relational mappers, a
 Model/View/Controller architecture, server-side scripting and
 templating, and AJAX support, to provide complete and enterprise-level
 web development solutions.
More recently, Python has expanded into rich Internet applications (RIAs), with tools such as
 Silverlight in IronPython, and
 pyjs (a.k.a. pyjamas) and its
 Python-to-JavaScript compiler, AJAX framework, and widget set. Python
 also has moved into cloud computing, with App
 Engine, and others described in the database section ahead.
 Where the Web leads, Python quickly follows.

Component Integration
We discussed the component integration role earlier when describing Python
 as a control language. Python’s ability to be extended by and embedded
 in C and C++ systems makes it useful as a flexible glue language for
 scripting the behavior of other systems and components. For instance,
 integrating a C library into Python enables Python to test and launch
 the library’s components, and embedding Python in a product enables
 onsite customizations to be coded without having to recompile the entire
 product (or ship its source code at all).
Tools such as the SWIG and
 SIP code generators can automate much of the work
 needed to link compiled components into Python for use in scripts, and
 the Cython system allows coders to mix Python and
 C-like code. Larger frameworks, such as Python’s
 COM support on Windows, the Jython
 Java-based implementation, and the IronPython
 .NET-based implementation provide alternative ways to script components.
 On Windows, for example, Python scripts can use frameworks to script
 Word and Excel, access Silverlight, and much
 more.

Database Programming
For traditional database demands, there are Python interfaces to all
 commonly used relational database systems—Sybase, Oracle, Informix,
 ODBC, MySQL, PostgreSQL, SQLite, and more. The Python world has also
 defined a portable database API for accessing SQL
 database systems from Python scripts, which looks the same on a variety
 of underlying database systems. For instance, because the vendor
 interfaces implement the portable API, a script written to work with the
 free MySQL system will work largely unchanged on other systems (such as
 Oracle); all you generally have to do is replace the underlying vendor
 interface. The in-process SQLite embedded SQL
 database engine is a standard part of Python itself since 2.5,
 supporting both prototyping and basic program storage needs.
In the non-SQL department, Python’s standard pickle module
 provides a simple object persistence system—it allows programs to easily
 save and restore entire Python objects to files and file-like objects.
 On the Web, you’ll also find third-party open source systems named
 ZODB and Durus that provide
 complete object-oriented database systems for Python scripts; others,
 such as SQLObject and
 SQLAlchemy, that implement object relational mappers (ORMs), which graft Python’s
 class model onto relational tables; and PyMongo, an
 interface to MongoDB, a high-performance, non-SQL,
 open source JSON-style document database, which
 stores data in structures very similar to Python’s own lists and
 dictionaries, and whose text may be parsed and created with Python’s own
 standard library json
 module.
Still other systems offer more specialized ways to store data,
 including the datastore in Google’s App Engine,
 which models data with Python classes and provides extensive
 scalability, as well as additional emerging cloud storage options such
 as Azure, PiCloud,
 OpenStack, and
 Stackato.

Rapid Prototyping
To Python programs, components written in Python and C look the same. Because
 of this, it’s possible to prototype systems in Python initially, and
 then move selected components to a compiled language such as C or C++
 for delivery. Unlike some prototyping tools, Python doesn’t require a
 complete rewrite once the prototype has solidified. Parts of the system
 that don’t require the efficiency of a language such as C++ can remain
 coded in Python for ease of maintenance and use.

Numeric and Scientific Programming
Python is also heavily used in numeric programming—a domain that would not traditionally
 have been considered to be in the scope of scripting languages, but has
 grown to become one of Python’s most compelling use cases. Prominent
 here, the NumPy high-performance numeric
 programming extension for Python mentioned earlier includes such
 advanced tools as an array object, interfaces to standard mathematical
 libraries, and much more. By integrating Python with numeric routines
 coded in a compiled language for speed, NumPy turns Python into a
 sophisticated yet easy-to-use numeric programming tool that can often
 replace existing code written in traditional compiled languages such as
 FORTRAN or C++.
Additional numeric tools for Python support animation, 3D
 visualization, parallel processing, and so on. The popular SciPy and
 ScientificPython extensions, for example, provide
 additional libraries of scientific programming tools and use NumPy as a
 core component. The PyPy implementation of Python
 (discussed in Chapter 2) has also
 gained traction in the numeric domain, in part because heavily
 algorithmic code of the sort that’s common in this domain can run
 dramatically faster in PyPy—often 10X to 100X quicker.

And More: Gaming, Images, Data Mining, Robots, Excel...
Python is commonly applied in more domains than can be covered
 here. For example, you’ll find tools that allow you to use Python to
 do:
	Game programming and multimedia with
 pygame, cgkit,
 pyglet, PySoy,
 Panda3D, and others

	Serial port communication on Windows, Linux, and more with the
 PySerial extension

	Image processing with PIL and its newer
 Pillow fork, PyOpenGL,
 Blender, Maya, and
 more

	Robot control programming with the PyRo
 toolkit

	Natural language analysis with the NLTK
 package

	Instrumentation on the Raspberry Pi and
 Arduino boards

	Mobile computing with ports of Python to the Google
 Android and Apple iOS
 platforms

	Excel spreadsheet function and macro programming with the
 PyXLL or DataNitro
 add-ins

	Media file content and metadata tag processing with
 PyMedia, ID3,
 PIL/Pillow, and
 more

	Artificial intelligence with the PyBrain
 neural net library and the Milk machine
 learning toolkit

	Expert system programming with PyCLIPS,
 Pyke, Pyrolog, and
 pyDatalog

	Network monitoring with zenoss, written
 in and customized with Python

	Python-scripted design and modeling with
 PythonCAD, PythonOCC,
 FreeCAD, and others

	Document processing and generation with
 ReportLab, Sphinx,
 Cheetah, PyPDF, and so
 on

	Data visualization with Mayavi,
 matplotlib, VTK,
 VPython, and more

	XML parsing with the xml
 library package, the xmlrpclib
 module, and third-party extensions

	JSON and CSV file processing with the json and csv modules

	Data mining with the Orange framework,
 the Pattern bundle,
 Scrapy, and custom code

You can even play solitaire with the PySolFC program. And of
 course, you can always code custom Python scripts in less buzzword-laden
 domains to perform day-to-day system administration, process your email,
 manage your document and media libraries, and so on. You’ll find links
 to the support in many fields at the PyPI website, and via web searches
 (search Google or http://www.python.org for links).
Though of broad practical use, many of these specific domains are
 largely just instances of Python’s component integration role in action
 again. Adding it as a frontend to libraries of components written in a
 compiled language such as C makes Python useful for scripting in a wide
 variety of domains. As a general-purpose language that supports
 integration, Python is widely applicable.

How Is Python Developed and Supported?
As a popular open source system, Python enjoys a large and active development community that
 responds to issues and develops enhancements with a speed that many
 commercial software developers might find remarkable. Python developers
 coordinate work online with a source-control system. Changes are developed
 per a formal protocol, which includes writing a PEP (Python Enhancement Proposal) or
 other document, and extensions to Python’s regression testing system. In
 fact, modifying Python today is roughly as involved as changing commercial
 software—a far cry from Python’s early days, when an email to its creator
 would suffice, but a good thing given its large user base today.
The PSF (Python Software Foundation), a formal nonprofit group, organizes conferences and deals
 with intellectual property issues. Numerous Python conferences are held
 around the world; O’Reilly’s OSCON and the PSF’s
 PyCon are the largest. The former of these addresses
 multiple open source projects, and the latter is a Python-only event that
 has experienced strong growth in recent years. PyCon 2012 and 2013 reached
 2,500 attendees each; in fact, PyCon 2013 had to cap
 its limit at this level after a surprise sell-out in 2012 (and managed to
 grab wide attention on both technical and nontechnical grounds that I
 won’t chronicle here). Earlier years often saw attendance double—from 586
 attendees in 2007 to over 1,000 in 2008, for example—indicative of
 Python’s growth in general, and impressive to those who remember early
 conferences whose attendees could largely be served around a single
 restaurant table.
Open Source Tradeoffs
Having said that, it’s important to note that while Python enjoys a vigorous development
 community, this comes with inherent tradeoffs. Open source software can
 also appear chaotic and even resemble anarchy at
 times, and may not always be as smoothly implemented as the prior
 paragraphs might imply. Some changes may still manage to defy official
 protocols, and as in all human endeavors, mistakes still happen despite
 the process controls (Python 3.2.0, for instance, came with a broken
 console input function on
 Windows).
Moreover, open source projects exchange commercial interests for
 the personal preferences of a current set of
 developers, which may or may not be the same as yours—you are not held
 hostage by a company, but you are at the mercy of those with spare time
 to change the system. The net effect is that open source software
 evolution is often driven by the few, but imposed on the many.
In practice, though, these tradeoffs impact those on the
 “bleeding” edge of new releases much more than those using established
 versions of the system, including prior releases in both Python 3.X and
 2.X. If you kept using classic classes in Python 2.X, for example, you
 were largely immune to the explosion of class
 functionality and change in new-style classes that occurred in the
 early-to-mid 2000s. Though these become mandatory in 3.X (along with
 much more), many 2.X users today still happily skirt the issue.

What Are Python’s Technical Strengths?
Naturally, this is a developer’s question. If you don’t already have a
 programming background, the language in the next few sections may be a bit
 baffling—don’t worry, we’ll explore all of these terms in more detail as
 we proceed through this book. For developers, though, here is a quick
 introduction to some of Python’s top technical features.
It’s Object-Oriented and Functional
Python is an object-oriented language, from the ground up. Its class
 model supports advanced notions such as polymorphism,
 operator overloading, and multiple inheritance; yet, in the context of
 Python’s simple syntax and typing, OOP is remarkably easy to apply. In
 fact, if you don’t understand these terms, you’ll find they are much
 easier to learn with Python than with just about any other OOP language
 available.
Besides serving as a powerful code structuring and reuse device,
 Python’s OOP nature makes it ideal as a scripting tool for other
 object-oriented systems languages. For example, with the appropriate
 glue code, Python programs can subclass (specialize) classes implemented
 in C++, Java, and C#.
Of equal significance, OOP is an option in
 Python; you can go far without having to become an object guru all at
 once. Much like C++, Python supports both procedural and object-oriented
 programming modes. Its object-oriented tools can be applied if and when
 constraints allow. This is especially useful in tactical development
 modes, which preclude design phases.
In addition to its original procedural
 (statement-based) and object-oriented (class-based)
 paradigms, Python in recent years has acquired built-in support for
 functional programming—a set that by most measures
 includes generators, comprehensions, closures, maps, decorators,
 anonymous function lambdas, and first-class function objects. These can
 serve as both complement and alternative to its OOP tools.

It’s Free
Python is completely free to use and distribute. As with other
 open source software, such as Tcl, Perl, Linux, and Apache, you can
 fetch the entire Python system’s source code for free on the Internet.
 There are no restrictions on copying it, embedding it in your systems,
 or shipping it with your products. In fact, you can even sell Python’s
 source code, if you are so inclined.
But don’t get the wrong idea: “free” doesn’t mean “unsupported.”
 On the contrary, the Python online community responds to user queries
 with a speed that most commercial software help desks would do well to
 try to emulate. Moreover, because Python comes with complete source
 code, it empowers developers, leading to the creation of a large team of
 implementation experts. Although studying or changing a programming
 language’s implementation isn’t everyone’s idea of fun, it’s comforting
 to know that you can do so if you need to. You’re not dependent on the
 whims of a commercial vendor, because the ultimate
 documentation—source code—is at your disposal as a
 last resort.
As mentioned earlier, Python development is performed by a
 community that largely coordinates its efforts over the Internet. It
 consists of Python’s original creator—Guido van
 Rossum, the officially anointed Benevolent Dictator for Life (BDFL)
 of Python—plus a supporting cast of thousands. Language changes must
 follow a formal enhancement procedure and be scrutinized by both other
 developers and the BDFL. This tends to make Python more conservative
 with changes than some other languages and systems. While the Python
 3.X/2.X split broke with this tradition soundly and deliberately, it
 still holds generally true within each Python line.

It’s Portable
The standard implementation of Python is written in portable ANSI C,
 and it compiles and runs on virtually every major platform currently in
 use. For example, Python programs run today on everything from PDAs to
 supercomputers. As a partial list, Python is available on:
	Linux and Unix systems

	Microsoft Windows (all modern flavors)

	Mac OS (both OS X and Classic)

	BeOS, OS/2, VMS, and QNX

	Real-time systems such as VxWorks

	Cray supercomputers and IBM mainframes

	PDAs running Palm OS, PocketPC, and Linux

	Cell phones running Symbian OS, and Windows Mobile

	Gaming consoles and iPods

	Tablets and smartphones running Google’s Android and Apple’s
 iOS

	And more

Like the language interpreter itself, the standard library modules
 that ship with Python are implemented to be as portable across platform
 boundaries as possible. Further, Python programs are automatically
 compiled to portable byte code, which runs the same on any platform with
 a compatible version of Python installed (more on this in the next
 chapter).
What that means is that Python programs using the core language
 and standard libraries run the same on Linux, Windows, and most other
 systems with a Python interpreter. Most Python ports also contain
 platform-specific extensions (e.g., COM support on Windows), but the
 core Python language and libraries work the same everywhere. As
 mentioned earlier, Python also includes an interface to the Tk GUI
 toolkit called tkinter (Tkinter in 2.X), which allows Python programs to
 implement full-featured graphical user interfaces that run on all major
 GUI desktop platforms without program changes.

It’s Powerful
From a features perspective, Python is something of a hybrid. Its
 toolset places it between traditional scripting languages (such as Tcl,
 Scheme, and Perl) and systems development languages (such as C, C++, and
 Java). Python provides all the simplicity and ease of use of a scripting
 language, along with more advanced software-engineering tools typically
 found in compiled languages. Unlike some scripting languages, this
 combination makes Python useful for large-scale development projects. As
 a preview, here are some of the main things you’ll find in Python’s
 toolbox:
	Dynamic typing
	Python keeps track of the kinds of objects your program uses when
 it runs; it doesn’t require complicated type and size declarations
 in your code. In fact, as you’ll see in Chapter 6, there is no such thing
 as a type or variable declaration anywhere in Python. Because
 Python code does not constrain data types, it is also usually
 automatically applicable to a whole range of objects.

	Automatic memory management
	Python automatically allocates objects and reclaims (“garbage collects”)
 them when they are no longer used, and most can grow and shrink on
 demand. As you’ll learn, Python keeps track of low-level memory
 details so you don’t have to.

	Programming-in-the-large support
	For building larger systems, Python includes tools such as
 modules, classes, and exceptions. These tools allow you to
 organize systems into components, use OOP to reuse and customize
 code, and handle events and errors gracefully. Python’s functional
 programming tools, described earlier, provide additional ways to
 meet many of the same goals.

	Built-in object types
	Python provides commonly used data structures such as lists,
 dictionaries, and strings as intrinsic parts of the language; as
 you’ll see, they’re both flexible and easy to use. For instance,
 built-in objects can grow and shrink on demand, can be arbitrarily
 nested to represent complex information, and more.

	Built-in tools
	To process all those object types, Python comes with powerful
 and standard operations, including concatenation (joining
 collections), slicing (extracting sections), sorting, mapping, and
 more.

	Library utilities
	For more specific tasks, Python also comes with a large
 collection of precoded library tools that support everything from
 regular expression matching to networking. Once you learn the
 language itself, Python’s library tools are where much of the
 application-level action occurs.

	Third-party utilities
	Because Python is open source, developers are encouraged to
 contribute precoded tools that support tasks beyond those
 supported by its built-ins; on the Web, you’ll find free support
 for COM, imaging, numeric programming, XML, database access, and
 much more.

Despite the array of tools in Python, it retains a remarkably
 simple syntax and design. The result is a powerful programming tool with
 all the usability of a scripting language.

It’s Mixable
Python programs can easily be “glued” to components written in
 other languages in a variety of ways. For example, Python’s C API lets C
 programs call and be called by Python programs flexibly. That means you
 can add functionality to the Python system as needed, and use Python
 programs within other environments or systems.
Mixing Python with libraries coded in languages such as C or C++,
 for instance, makes it an easy-to-use frontend language and
 customization tool. As mentioned earlier, this also makes Python good at
 rapid prototyping—systems may be implemented in Python first, to
 leverage its speed of development, and later moved to C for delivery,
 one piece at a time, according to performance demands.

It’s Relatively Easy to Use
Compared to alternatives like C++, Java, and C#, Python
 programming seems astonishingly simple to most observers. To run a
 Python program, you simply type it and run it. There are no intermediate
 compile and link steps, like there are for languages such as C or C++.
 Python executes programs immediately, which makes for an interactive
 programming experience and rapid turnaround after
 program changes—in many cases, you can witness the effect of a program
 change nearly as fast as you can type it.
Of course, development cycle turnaround is only one aspect of
 Python’s ease of use. It also provides a deliberately simple syntax and
 powerful built-in tools. In fact, some have gone so far as to call
 Python executable pseudocode. Because it eliminates
 much of the complexity in other tools, Python programs are simpler,
 smaller, and more flexible than equivalent programs in other popular
 languages.

It’s Relatively Easy to Learn
This brings us to the point of this book: especially when compared
 to other widely used programming languages, the core Python language is
 remarkably easy to learn. In fact, if you’re an experienced programmer,
 you can expect to be coding small-scale Python programs in a matter of
 days, and may be able to pick up some limited portions of the language
 in just hours—though you shouldn’t expect to become an expert quite that
 fast (despite what you may have heard from marketing
 departments!).
Naturally, mastering any topic as substantial as today’s Python is
 not trivial, and we’ll devote the rest of this book to this task. But
 the true investment required to master Python is worthwhile—in the end,
 you’ll gain programming skills that apply to nearly every computer
 application domain. Moreover, most find Python’s learning curve to be
 much gentler than that of other programming tools.
That’s good news for professional developers seeking to learn the
 language to use on the job, as well as for end users of systems that
 expose a Python layer for customization or control. Today, many systems
 rely on the fact that end users can learn enough Python to tailor their
 Python customization code onsite, with little or no support. Moreover,
 Python has spawned a large group of users who program for fun instead of
 career, and may never need full-scale software development skills.
 Although Python does have advanced programming tools, its core language
 essentials will still seem relatively simple to beginners and gurus
 alike.

It’s Named After Monty Python
OK, this isn’t quite a technical strength, but it does seem to be
 a surprisingly well-kept secret in the Python world that I wish to
 expose up front. Despite all the reptiles on Python books and icons, the
 truth is that Python is named after the British comedy group
 Monty Python—makers of the 1970s BBC comedy series
 Monty Python’s Flying Circus and a handful of later
 full-length films, including Monty Python and the Holy
 Grail, that are still widely popular today. Python’s original
 creator was a fan of Monty Python, as are many software developers
 (indeed, there seems to be a sort of symmetry between the two
 fields...).
This legacy inevitably adds a humorous quality to Python code
 examples. For instance, the traditional “foo” and “bar” for generic
 variable names become “spam” and “eggs” in the Python world. The
 occasional “Brian,” “ni,” and “shrubbery” likewise owe their appearances
 to this namesake. It even impacts the Python community at large: some
 events at Python conferences are regularly billed as “The Spanish
 Inquisition.”
All of this is, of course, very funny if you are familiar with the
 shows, but less so otherwise. You don’t need to be familiar with Monty
 Python’s work to make sense of examples that borrow references from it,
 including many you will see in this book, but at least you now know
 their root. (Hey—I’ve warned you.)

How Does Python Stack Up to Language X?
Finally, to place it in the context of what you may already know, people sometimes
 compare Python to languages such as Perl, Tcl, and Java. This section
 summarizes common consensus in this department.
I want to note up front that I’m not a fan of winning by disparaging
 the competition—it doesn’t work in the long run, and that’s not the goal
 here. Moreover, this is not a zero sum game—most programmers will use many
 languages over their careers. Nevertheless, programming tools present
 choices and tradeoffs that merit consideration. After all, if Python
 didn’t offer something over its alternatives, it would never have been
 used in the first place.
We talked about performance tradeoffs earlier, so here we’ll focus
 on functionality. While other languages are also useful tools to know and
 use, many people find that Python:
	Is more powerful than Tcl. Python’s strong
 support for “programming in the large” makes it applicable to the
 development of larger systems, and its library of application tools is
 broader.

	Is more readable than Perl. Python has a
 clear syntax and a simple, coherent design. This in turn makes Python
 more reusable and maintainable, and helps reduce program bugs.

	Is simpler and easier to use than Java and
 C#. Python is a scripting language, but Java and
 C# both inherit much of the complexity and syntax of larger OOP
 systems languages like C++.

	Is simpler and easier to use than C++.
 Python code is simpler than the equivalent C++ and often one-third to
 one-fifth as large, though as a scripting language, Python sometimes
 serves different roles.

	Is simpler and higher-level than C.
 Python’s detachment from underlying hardware architecture makes code
 less complex, better structured, and more approachable than C, C++’s
 progenitor.

	Is more powerful, general-purpose, and cross-platform than
 Visual Basic. Python is a richer language that is
 used more widely, and its open source nature means it is not
 controlled by a single company.

	Is more readable and general-purpose than
 PHP. Python is used to construct websites too,
 but it is also applied to nearly every other computer domain, from
 robotics to movie animation and gaming.

	Is more powerful and general-purpose than
 JavaScript. Python has a larger toolset, and is
 not as tightly bound to web development. It’s also used for scientific
 modeling, instrumentation, and more.

	Is more readable and established than Ruby.
 Python syntax is less cluttered, especially in nontrivial code, and
 its OOP is fully optional for users and projects to which it may not
 apply.

	Is more mature and broadly focused than
 Lua. Python’s larger feature set and more
 extensive library support give it a wider scope than Lua, an embedded
 “glue” language like Tcl.

	Is less esoteric than Smalltalk,
 Lisp, and Prolog. Python has
 the dynamic flavor of languages like these, but also has a traditional
 syntax accessible to both developers and end users of customizable
 systems.

Especially for programs that do more than scan text files, and that
 might have to be read in the future by others (or by you!), many people
 find that Python fits the bill better than any other scripting or
 programming language available today. Furthermore, unless your application
 requires peak performance, Python is often a viable alternative to systems
 development languages such as C, C++, and Java: Python code can often
 achieve the same goals, but will be much less difficult to write, debug,
 and maintain.
Of course, your author has been a card-carrying Python evangelist
 since 1992, so take these comments as you may (and other languages’
 advocates’ mileage may vary arbitrarily). They do, however, reflect the
 common experience of many developers who have taken time to explore what
 Python has to offer.

Chapter Summary
And that concludes the “hype” portion of this book. In this chapter,
 we’ve explored some of the reasons that people pick Python for their
 programming tasks. We’ve also seen how it is applied and looked at a
 representative sample of who is using it today. My goal is to teach
 Python, though, not to sell it. The best way to judge a language is to see
 it in action, so the rest of this book focuses entirely on the language
 details we’ve glossed over here.
The next two chapters begin our technical introduction to the
 language. In them, we’ll explore ways to run Python programs, peek at
 Python’s byte code execution model, and introduce the basics of module
 files for saving code. The goal will be to give you just enough
 information to run the examples and exercises in the rest of the book. You
 won’t really start programming per se until Chapter 4, but make sure you have a
 handle on the startup details before moving on.

Test Your Knowledge: Quiz
In this edition of the book, we will be closing each chapter with a
 quick open-book quiz about the material presented herein to help you
 review the key concepts. The answers for these quizzes appear immediately
 after the questions, and you are encouraged to read the answers once
 you’ve taken a crack at the questions yourself, as they sometimes give
 useful context.
In addition to these end-of-chapter quizzes, you’ll find lab
 exercises at the end of each part of the book,
 designed to help you start coding Python on your own. For now, here’s your
 first quiz. Good luck, and be sure to refer back to this chapter’s
 material as needed.
	What are the six main reasons that people choose to use
 Python?

	Name four notable companies or organizations using Python
 today.

	Why might you not want to use Python in an
 application?

	What can you do with Python?

	What’s the significance of the Python import this statement?

	Why does “spam” show up in so many Python examples in books and
 on the Web?

	What is your favorite color?

Test Your Knowledge: Answers
How did you do? Here are the answers I came up with, though there
 may be multiple solutions to some quiz questions. Again, even if you’re
 sure of your answer, I encourage you to look at mine for additional
 context. See the chapter’s text for more details if any of these responses
 don’t make sense to you.
	Software quality, developer productivity, program portability,
 support libraries, component integration, and simple enjoyment. Of
 these, the quality and productivity themes seem to be the main reasons
 that people choose to use Python.

	Google, Industrial Light & Magic, CCP Games, Jet Propulsion
 Labs, Maya, ESRI, and many more. Almost every organization doing
 software development uses Python in some fashion, whether for
 long-term strategic product development or for short-term tactical
 tasks such as testing and system administration.

	Python’s main downside is performance: it won’t run as quickly
 as fully compiled languages like C and C++. On the other hand, it’s
 quick enough for most applications, and typical Python code runs at
 close to C speed anyhow because it invokes linked-in C code in the
 interpreter. If speed is critical, compiled extensions are available
 for number-crunching parts of an application.

	You can use Python for nearly anything you can do with a
 computer, from website development and gaming to robotics and
 spacecraft control.

	This was mentioned in a footnote: import this triggers an Easter egg inside
 Python that displays some of the design philosophies underlying the
 language. You’ll learn how to run this statement in the next
 chapter.

	“Spam” is a reference from a famous Monty Python skit in which
 people trying to order food in a cafeteria are drowned out by a chorus
 of Vikings singing about spam. Oh, and it’s also a common variable
 name in Python scripts...

	Blue. No, yellow! (See the prior answer.)

Python Is Engineering, Not Art
When Python first emerged on the software scene in the early
 1990s, it spawned what is now something of a classic conflict between
 its proponents and those of another popular scripting language, Perl.
 Personally, I think the debate is tired and unwarranted today—developers
 are smart enough to draw their own conclusions. Still, this is one of
 the most common topics I’m asked about on the training road, and
 underscores one of the main reasons people choose to use Python; it
 seems fitting to say a few brief words about it here.
The short story is this: you can do everything in Python
 that you can in Perl, but you can read your code after you do
 it. That’s it—their domains largely overlap, but Python is
 more focused on producing readable code. For many, the enhanced
 readability of Python translates to better code reusability and
 maintainability, making Python a better choice for programs that will
 not be written once and thrown away. Perl code is easy to write, but can
 be difficult to read. Given that most software has a lifespan much
 longer than its initial creation, many see Python as the more effective
 tool.
The somewhat longer story reflects the backgrounds of the
 designers of the two languages. Python originated
 with a mathematician by training, who seems to have naturally produced
 an orthogonal language with a high degree of uniformity and coherence.
 Perl was spawned by a linguist, who created a
 programming tool closer to natural language, with its context
 sensitivities and wide variability. As a well-known Perl motto states,
 there’s more than one way to do it. Given this
 mindset, both the Perl language and its user community have historically
 encouraged untethered freedom of expression when writing code. One
 person’s Perl code can be radically different from another’s. In fact,
 writing unique, tricky code is often a source of pride among Perl
 users.
But as anyone who has done any substantial code maintenance should
 be able to attest, freedom of expression is great for art, but
 lousy for engineering. In engineering, we need a minimal
 feature set and predictability. In engineering, freedom of expression
 can lead to maintenance nightmares. As more than one Perl user has
 confided to me, the result of too much freedom is often code that is
 much easier to rewrite from scratch than to modify. This is clearly less
 than ideal.
Consider this: when people create a painting or a sculpture, they
 do so largely for themselves; the prospect of someone else changing
 their work later doesn’t enter into it. This is a critical difference
 between art and engineering. When people write
 software, they are not writing it for themselves.
 In fact, they are not even writing primarily for the computer. Rather,
 good programmers know that code is written for the next human being who
 has to read it in order to maintain or reuse it. If that person cannot
 understand the code, it’s all but useless in a realistic development
 scenario. In other words, programming is not about being clever and
 obscure—it’s about how clearly your program communicates its
 purpose.
This readability focus is where many people find that Python most
 clearly differentiates itself from other scripting languages. Because
 Python’s syntax model almost forces the creation of
 readable code, Python programs lend themselves more directly to the full
 software development cycle. And because Python emphasizes ideas such as
 limited interactions, code uniformity, and feature consistency, it more
 directly fosters code that can be used long after it is first
 written.
In the long run, Python’s focus on code
 quality in itself boosts programmer productivity, as well as
 programmer satisfaction. Python programmers can be wildly creative, too,
 of course, and as we’ll see, the language does offer multiple solutions
 for some tasks—sometimes even more than it should today, an issue we’ll
 confront head-on in this book too. In fact, this sidebar can also be
 read as a cautionary tale: quality turns out to be
 a fragile state, one that depends as much on people
 as on technology. Python has historically encouraged good engineering in
 ways that other scripting languages often did not, but the rest of the
 quality story is up to you.
At least, that’s some of the common consensus among many people
 who have adopted Python. You should judge such claims for yourself, of
 course, by learning what Python has to offer. To help you get started,
 let’s move on to the next chapter.

1 For a more complete look at the Python philosophy, type the
 command import this at any Python
 interactive prompt (you’ll see how in Chapter 3). This invokes an “Easter egg”
 hidden in Python—a collection of design principles underlying Python
 that permeate both the language and its user community. Among them,
 the acronym EIBTI is now fashionable jargon for the “explicit is
 better than implicit” rule. These principles are not religion, but
 are close enough to qualify as a Python motto and creed, which we’ll
 be quoting from often in this book.

Chapter 2. How Python Runs Programs
This chapter and the next take a quick look at program execution—how
 you launch code, and how Python runs it. In this chapter, we’ll study how
 the Python interpreter executes programs in general. Chapter 3 will then show you how to get your own
 programs up and running.
Startup details are inherently platform-specific, and some of the material in
 these two chapters may not apply to the platform you work on, so more
 advanced readers should feel free to skip parts not relevant to their
 intended use. Likewise, readers who have used similar tools in the past and
 prefer to get to the meat of the language quickly may want to file some of
 these chapters away as “for future reference.” For the rest of us, let’s
 take a brief look at the way that Python will run our code, before we learn
 how to write it.
Introducing the Python Interpreter
So far, I’ve mostly been talking about Python as a programming language. But, as currently
 implemented, it’s also a software package called an
 interpreter. An interpreter is a kind of program that
 executes other programs. When you write a Python program, the Python
 interpreter reads your program and carries out the instructions it
 contains. In effect, the interpreter is a layer of software logic between
 your code and the computer hardware on your machine.
When the Python package is installed on your machine, it generates a
 number of components—minimally, an interpreter and a support library.
 Depending on how you use it, the Python interpreter may take the form of
 an executable program, or a set of libraries linked into another program.
 Depending on which flavor of Python you run, the interpreter itself may be
 implemented as a C program, a set of Java classes, or something else.
 Whatever form it takes, the Python code you write must always be run by
 this interpreter. And to enable that, you must install a Python
 interpreter on your computer.
Python installation details vary by platform and are covered in more depth in Appendix A. In short:
	Windows users fetch and run a self-installing executable file that
 puts Python on their machines. Simply double-click and say Yes or Next
 at all prompts.

	Linux and Mac OS X users probably already have a usable Python preinstalled on
 their computers—it’s a standard component on these platforms
 today.

	Some Linux and Mac OS X users (and most Unix users) compile Python from its full source code distribution
 package.

	Linux users can also find RPM files, and Mac OS X users can find
 various Mac-specific installation packages.

	Other platforms have installation techniques relevant to those
 platforms. For instance, Python is available on cell phones, tablets,
 game consoles, and iPods, but installation details vary widely.

Python itself may be fetched from the downloads page on its main
 website, http://www.python.org. It may also be found through various
 other distribution channels. Keep in mind that you should always check to
 see whether Python is already present before installing it. If you’re
 working on Windows 7 and earlier, you’ll usually find Python in the Start
 menu, as captured in Figure 2-1; we’ll discuss the
 menu options shown here in the next chapter. On Unix and Linux, Python
 probably lives in your /usr directory
 tree.
Because installation details are so platform-specific, we’ll
 postpone the rest of this story here. For more details on the installation
 process, consult Appendix A. For
 the purposes of this chapter and the next, I’ll assume that you’ve got
 Python ready to go.

Program Execution
What it means to write and run a Python script depends on whether
 you look at these tasks as a programmer, or as a Python interpreter. Both
 views offer important perspectives on Python programming.
Figure 2-1. When installed on Windows 7 and earlier, this is how Python shows
 up in your Start button menu. This can vary across releases, but IDLE
 starts a development GUI, and Python starts a simple interactive
 session. Also here are the standard manuals and the PyDoc documentation
 engine (Module Docs). See Chapter 3 and
 Appendix A for pointers on
 Windows 8 and other platforms.

The Programmer’s View
In its simplest form, a Python program is just a text file containing
 Python statements. For example, the following file, named script0.py, is one of the simplest Python
 scripts I could dream up, but it passes for a fully functional Python
 program:
print('hello world')
print(2 ** 100)
This file contains two Python print statements, which simply print a string
 (the text in quotes) and a numeric expression result (2 to the power
 100) to the output stream. Don’t worry about the syntax of this code
 yet—for this chapter, we’re interested only in getting it to run. I’ll
 explain the print statement, and why
 you can raise 2 to the power 100 in Python without overflowing, in the
 next parts of this book.
You can create such a file of statements with any text editor you
 like. By convention, Python program files are given names that
 end in .py;
 technically, this naming scheme is required only for files that are
 “imported”—a term clarified in the next chapter—but most Python files
 have .py names for
 consistency.
After you’ve typed these statements into a text file, you must
 tell Python to execute the file—which simply means
 to run all the statements in the file from top to bottom, one after
 another. As you’ll see in the next chapter, you can launch Python
 program files by shell command lines, by clicking their icons, from
 within IDEs, and with other standard techniques. If all goes well, when
 you execute the file, you’ll see the results of the two print statements show up somewhere on your
 computer—by default, usually in the same window you were in when you ran
 the program:
hello world
1267650600228229401496703205376
For example, here’s what happened when I ran this script from a
 Command Prompt window’s command line on a Windows laptop, to make sure
 it didn’t have any silly typos:
C:\code> python script0.py
hello world
1267650600228229401496703205376
See Chapter 3 for the full story on
 this process, especially if you’re new to programming; we’ll get into
 all the gory details of writing and launching programs there. For our
 purposes here, we’ve just run a Python script that prints a string and a
 number. We probably won’t win any programming awards with this code, but
 it’s enough to capture the basics of program execution.

Python’s View
The brief description in the prior section is fairly standard for
 scripting languages, and it’s usually all that most Python programmers
 need to know. You type code into text files, and you run those files
 through the interpreter. Under the hood, though, a bit more happens when
 you tell Python to “go.” Although knowledge of Python internals is not
 strictly required for Python programming, a basic understanding of the
 runtime structure of Python can help you grasp the bigger picture of
 program execution.
When you instruct Python to run your script, there are a few steps
 that Python carries out before your code actually starts crunching away.
 Specifically, it’s first compiled to something called “byte code” and
 then routed to something called a “virtual machine.”
Byte code compilation
Internally, and almost completely hidden from you, when you execute a program
 Python first compiles your source code (the statements in
 your file) into a format known as byte code.
 Compilation is simply a translation step, and byte code is a
 lower-level, platform-independent representation of your source code.
 Roughly, Python translates each of your source statements into a group
 of byte code instructions by decomposing them into individual steps.
 This byte code translation is performed to speed execution—byte code
 can be run much more quickly than the original source code statements
 in your text file.
You’ll notice that the prior paragraph said that this is
 almost completely hidden from you. If the Python
 process has write access on your machine, it will store the byte code
 of your programs in files that end with a .pyc
 extension (“.pyc” means compiled “.py” source). Prior to Python 3.2,
 you will see these files show up on your computer after you’ve run a
 few programs alongside the corresponding source code files—that is, in
 the same directories. For instance, you’ll notice
 a script.pyc after importing a
 script.py.
In 3.2 and later, Python instead saves its .pyc byte code files in a subdirectory named __pycache__ located in the directory where
 your source files reside, and in files whose names identify the Python
 version that created them (e.g., script.cpython-33.pyc). The new __pycache__ subdirectory helps to avoid
 clutter, and the new naming convention for byte code files prevents
 different Python versions installed on the same computer from
 overwriting each other’s saved byte code. We’ll study these byte code
 file models in more detail in Chapter 22, though they are automatic
 and irrelevant to most Python programs, and are free to vary among the
 alternative Python implementations described ahead.
In both models, Python saves byte code like this as a startup
 speed optimization. The next time you run your program, Python will
 load the .pyc files and skip the
 compilation step, as long as you haven’t changed your source code
 since the byte code was last saved, and aren’t running with a
 different Python than the one that created the byte code. It works
 like this:
	Source changes: Python automatically checks the last-modified timestamps of
 source and byte code files to know when it must
 recompile—if you edit and resave your source code, byte code is
 automatically re-created the next time your program is run.

	Python versions: Imports also check to see if the file must be
 recompiled because it was created by a different Python version,
 using either a “magic” version number in the byte code file itself
 in 3.2 and earlier, or the information present in byte code
 filenames in 3.2 and later.

The result is that both source code changes and differing Python
 version numbers will trigger a new byte code file. If Python cannot
 write the byte code files to your machine, your program still
 works—the byte code is generated in memory and simply discarded on
 program exit. However, because .pyc files speed startup time, you’ll want
 to make sure they are written for larger programs. Byte code files are
 also one way to ship Python programs—Python is happy to run a program
 if all it can find are .pyc
 files, even if the original .py
 source files are absent. (See “Frozen Binaries” for
 another shipping option.)
Finally, keep in mind that byte code is saved in files only for
 files that are imported, not for the top-level
 files of a program that are only run as scripts (strictly speaking,
 it’s an import optimization). We’ll explore import basics in Chapter 3, and take a deeper look at imports
 in Part V. Moreover, a given file is
 only imported (and possibly compiled) once per
 program run, and byte code is also never saved for code typed at
 the interactive prompt—a programming
 mode we’ll learn about in Chapter 3.

The Python Virtual Machine (PVM)
Once your program has been compiled to byte code (or the byte code
 has been loaded from existing .pyc files), it is shipped off for
 execution to something generally known as the Python Virtual Machine
 (PVM, for the more acronym-inclined among you). The PVM sounds more
 impressive than it is; really, it’s not a separate program, and it
 need not be installed by itself. In fact, the PVM is just a big code
 loop that iterates through your byte code instructions, one by one, to
 carry out their operations. The PVM is the runtime engine of Python;
 it’s always present as part of the Python system, and it’s the
 component that truly runs your scripts. Technically, it’s just the
 last step of what is called the “Python interpreter.”
Figure 2-2
 illustrates the runtime structure described here. Keep in mind that
 all of this complexity is deliberately hidden from Python programmers.
 Byte code compilation is automatic, and the PVM is just part of the
 Python system that you have installed on your machine. Again,
 programmers simply code and run files of statements, and Python
 handles the logistics of running them.
Figure 2-2. Python’s traditional runtime execution model: source code you
 type is translated to byte code, which is then run by the Python
 Virtual Machine. Your code is automatically compiled, but then it is
 interpreted.

Performance implications
Readers with a background in fully compiled languages such as C and C++
 might notice a few differences in the Python model. For one thing,
 there is usually no build or “make” step in Python work: code runs
 immediately after it is written. For another, Python byte code is not
 binary machine code (e.g., instructions for an Intel or ARM chip).
 Byte code is a Python-specific representation.
This is why some Python code may not run as fast as C or C++
 code, as described in Chapter 1—the PVM
 loop, not the CPU chip, still must interpret the byte code, and byte
 code instructions require more work than CPU instructions. On the
 other hand, unlike in classic interpreters, there is still an internal
 compile step—Python does not need to reanalyze and reparse each source
 statement’s text repeatedly. The net effect is that pure Python code
 runs at speeds somewhere between those of a traditional compiled
 language and a traditional interpreted language. See Chapter 1 for more on Python performance
 tradeoffs.

Development implications
Another ramification of Python’s execution model is that there
 is really no distinction between the development and execution
 environments. That is, the systems that compile and execute your
 source code are really one and the same. This similarity may have a
 bit more significance to readers with a background in traditional
 compiled languages, but in Python, the compiler is always present at
 runtime and is part of the system that runs programs.
This makes for a much more rapid development cycle. There is no need to precompile
 and link before execution may begin; simply type and run the code.
 This also adds a much more dynamic flavor to the language—it is
 possible, and often very convenient, for Python programs to construct
 and execute other Python programs at runtime. The eval and exec built-ins, for instance, accept and run
 strings containing Python program code. This structure is also why
 Python lends itself to product customization—because Python code can
 be changed on the fly, users can modify the Python parts of a system
 onsite without needing to have or compile the entire system’s
 code.
At a more fundamental level, keep in mind that all we really
 have in Python is runtime—there is no initial
 compile-time phase at all, and everything happens as the program is
 running. This even includes operations such as the creation of
 functions and classes and the linkage of modules. Such events occur
 before execution in more static languages, but happen as programs
 execute in Python. As we’ll see, this makes for a much more dynamic
 programming experience than that to which some readers may be
 accustomed.

Execution Model Variations
Now that we’ve studied the internal execution flow described in the
 prior section, I should note that it reflects the standard implementation
 of Python today but is not really a requirement of the Python language
 itself. Because of that, the execution model is prone to changing with
 time. In fact, there are already a few systems that modify the picture in
 Figure 2-2 somewhat. Before
 moving on, let’s briefly explore the most prominent of these
 variations.
Python Implementation Alternatives
Strictly speaking, as this book edition is being written, there
 are at least five implementations of the Python language—CPython,
 Jython, IronPython,
 Stackless, and PyPy. Although
 there is much cross-fertilization of ideas and work between these
 Pythons, each is a separately installed software system, with its own
 developers and user base. Other potential candidates here include
 the Cython and Shed
 Skin systems, but they are discussed later as optimization
 tools because they do not implement the standard Python language (the
 former is a Python/C mix, and the latter is implicitly statically
 typed).
In brief, CPython is the standard implementation, and the system that most
 readers will wish to use (if you’re not sure, this probably includes
 you). This is also the version used in this book, though the core Python
 language presented here is almost entirely the same in the alternatives.
 All the other Python implementations have specific purposes and roles,
 though they can often serve in most of CPython’s capacities too. All
 implement the same Python language but execute programs in different
 ways.
For example, PyPy is a drop-in replacement for CPython, which can run most
 programs much quicker. Similarly, Jython and
 IronPython are completely independent implementations of Python that compile Python
 source for different runtime architectures, to provide direct access to
 Java and .NET components. It is also possible to access Java and .NET
 software from standard CPython programs—JPype and
 Python for .NET systems, for
 instance, allow standard CPython code to call out to Java and .NET
 components. Jython and IronPython offer more complete solutions, by
 providing full implementations of the Python language.
Here’s a quick rundown on the most prominent Python
 implementations available today.
CPython: The standard
The original, and standard, implementation of Python is usually called
 CPython when you want to contrast it with the other options (and just
 plain “Python” otherwise). This name comes from the fact that it is
 coded in portable ANSI C language code. This is the Python that you
 fetch from http://www.python.org, get with the ActivePython and
 Enthought distributions, and have automatically on most Linux and Mac
 OS X machines. If you’ve found a preinstalled version of Python on
 your machine, it’s probably CPython, unless your company or
 organization is using Python in more specialized ways.
Unless you want to script Java or .NET applications with Python
 or find the benefits of Stackless or PyPy compelling, you probably
 want to use the standard CPython system. Because it is the reference
 implementation of the language, it tends to run the fastest, be the
 most complete, and be more up-to-date and robust than the alternative
 systems. Figure 2-2
 reflects CPython’s runtime architecture.

Jython: Python for Java
The Jython system (originally known as JPython) is an alternative
 implementation of the Python language, targeted for integration with
 the Java programming language. Jython consists of Java classes that
 compile Python source code to Java byte code and then route the
 resulting byte code to the Java Virtual Machine (JVM). Programmers
 still code Python statements in .py text files as usual; the Jython system
 essentially just replaces the rightmost two bubbles in Figure 2-2 with Java-based
 equivalents.
Jython’s goal is to allow Python code to script Java
 applications, much as CPython allows Python to script C and C++
 components. Its integration with Java is remarkably seamless. Because
 Python code is translated to Java byte code, it looks and feels like a
 true Java program at runtime. Jython scripts can serve as web applets
 and servlets, build Java-based GUIs, and so on. Moreover, Jython
 includes integration support that allows Python code to import and use
 Java classes as though they were coded in Python, and Java code to run
 Python code as an embedded language. Because Jython is slower and less
 robust than CPython, though, it is usually seen as a tool of interest
 primarily to Java developers looking for a scripting language to serve
 as a frontend to Java code. See Jython’s website http://jython.org for more details.

IronPython: Python for .NET
A third implementation of Python, and newer than both CPython and Jython,
 IronPython is designed to allow Python programs to integrate with
 applications coded to work with Microsoft’s .NET Framework for
 Windows, as well as the Mono open source equivalent for Linux. .NET
 and its C# programming language runtime system are designed to be a
 language-neutral object communication layer, in the spirit of
 Microsoft’s earlier COM model. IronPython allows Python programs to
 act as both client and server components, gain accessibility both to
 and from other .NET languages, and leverage .NET technologies such as
 the Silverlight framework from their Python
 code.
By implementation, IronPython is very much like Jython (and, in
 fact, was developed by the same creator)—it replaces the last two
 bubbles in Figure 2-2
 with equivalents for execution in the .NET environment. Also like
 Jython, IronPython has a special focus—it is primarily of interest to
 developers integrating Python with .NET components. Formerly developed
 by Microsoft and now an open source project, IronPython might also be
 able to take advantage of some important optimization tools for better
 performance. For more details, consult http://ironpython.net and other resources to be had
 with a web search.

Stackless: Python for concurrency
Still other schemes for running Python programs have more focused goals. For
 example, the Stackless Python system is an
 enhanced version and reimplementation of the standard CPython language
 oriented toward concurrency. Because it does not
 save state on the C language call stack, Stackless Python can make
 Python easier to port to small stack architectures, provides efficient
 multiprocessing options, and fosters novel programming structures such
 as coroutines.
Among other things, the microthreads that Stackless
 adds to Python are an efficient and lightweight alternative to
 Python’s standard multitasking tools such as threads and processes,
 and promise better program structure, more readable code, and
 increased programmer productivity. CCP Games, the creator of EVE
 Online, is a well-known Stackless Python user, and a
 compelling Python user success story in general. Try http://stackless.com for more information.

PyPy: Python for speed
The PyPy system is another standard CPython reimplementation, focused on
 performance. It provides a fast Python
 implementation with a JIT (just-in-time)
 compiler, provides tools for a “sandbox” model that can run untrusted
 code in a secure environment, and by default includes support for the
 prior section’s Stackless Python systems and its
 microthreads to support massive concurrency.
PyPy is the successor to the original Psyco
 JIT, described ahead, and subsumes it with a complete Python
 implementation built for speed. A JIT is really just an extension to the PVM—the rightmost
 bubble in Figure 2-2—that translates
 portions of your byte code all the way to binary machine code for
 faster execution. It does this as your program is
 running, not in a prerun compile step, and is
 able to create type-specific machine code for the dynamic Python
 language by keeping track of the data types of
 the objects your program processes. By replacing portions of your byte
 code this way, your program runs faster and faster as it is executing.
 In addition, some Python programs may also take up less memory under
 PyPy.
At this writing, PyPy supports Python 2.7 code (not yet 3.X) and
 runs on Intel x86 (IA-32) and x86_64 platforms (including Windows,
 Linux, and recent Macs), with ARM and PPC support under development.
 It runs most CPython code, though C extension modules must generally
 be recompiled, and PyPy has some minor but subtle language
 differences, including garbage collection semantics that obviate some
 common coding patterns. For instance, its non-reference-count scheme
 means that temporary files may not close and flush output buffers
 immediately, and may require manual close calls in some cases.
In return, your code may run much quicker. PyPy currently claims
 a 5.7X speedup over CPython across a range of
 benchmark programs (per http://speed.pypy.org/). In some
 cases, its ability to take advantage of dynamic optimization
 opportunities can make Python code as quick as C code, and
 occasionally faster. This is especially true for heavily algorithmic
 or numeric programs, which might otherwise be recoded in C.
For instance, in one simple benchmark we’ll see in Chapter 21, PyPy today clocks in at
 10X faster than CPython 2.7, and
 100X faster than CPython 3.X. Though other
 benchmarks will vary, such speedups may be a compelling advantage in
 many domains, perhaps even more so than leading-edge language
 features. Just as important, memory space is also optimized in PyPy—in
 the case of one posted benchmark, requiring 247 MB and completing in
 10.3 seconds, compared to CPython’s 684 MB and 89 seconds.
PyPy’s tool chain is also general enough to support additional
 languages, including Pyrolog, a Prolog
 interpreter written in Python using the PyPy translator. Search for
 PyPy’s website for more. PyPy currently lives at http://pypy.org, though the usual web search may also
 prove fruitful over time. For an overview of its current performance,
 also see http://www.pypy.org/performance.html.
Note
Just after I wrote this, PyPy 2.0 was released in beta form,
 adding support for the ARM processor, and still a Python 2.X-only
 implementation. Per its 2.0 beta release notes:
“PyPy is a very compliant Python interpreter, almost a drop-in
 replacement for CPython 2.7.3. It’s fast due to its integrated
 tracing JIT compiler. This release supports x86 machines running
 Linux 32/64, Mac OS X 64 or Windows 32. It also supports ARM
 machines running Linux.”
The claims seem accurate. Using the timing tools we’ll study
 in Chapter 21, PyPy is often an
 order of magnitude (factor of 10) faster than CPython 2.X and 3.X on
 tests I’ve run, and sometimes even better. This is despite the fact
 that PyPy is a 32-bit build on my Windows test machine, while
 CPython is a faster 64-bit compile.
Naturally the only benchmark that truly matters is your own
 code, and there are cases where CPython wins the race; PyPy’s file
 iterators, for instance, may clock in slower today. Still, given
 PyPy’s focus on performance over language mutation, and especially
 its support for the numeric domain, many today see PyPy as an
 important path for Python. If you write CPU-intensive code, PyPy
 deserves your attention.

Execution Optimization Tools
CPython and most of the alternatives of the prior section all
 implement the Python language in similar ways: by compiling source code
 to byte code and executing the byte code on an appropriate virtual
 machine. Some systems, such as the Cython hybrid, the Shed Skin C++
 translator, and the just-in-time compilers in PyPy and Psyco instead
 attempt to optimize the basic execution model. These systems are not
 required knowledge at this point in your Python career, but a quick look
 at their place in the execution model might help demystify the model in
 general.
Cython: A Python/C hybrid
The Cython system (based on work done by the Pyrex
 project) is a hybrid language that combines Python code with the
 ability to call C functions and use C type declarations for variables,
 parameters, and class attributes. Cython code can be compiled to C
 code that uses the Python/C API, which may then be compiled
 completely. Though not completely compatible with standard Python,
 Cython can be useful both for wrapping external C libraries and for
 coding efficient C extensions for Python. See http://cython.org for current status and
 details.

Shed Skin: A Python-to-C++ translator
Shed Skin is an emerging system that takes a different approach to
 Python program execution—it attempts to translate Python source code
 to C++ code, which your computer’s C++ compiler then compiles to
 machine code. As such, it represents a platform-neutral approach to
 running Python code.
Shed Skin is still being actively developed as I write these
 words. It currently supports Python 2.4 to 2.6 code, and it limits
 Python programs to an implicit statically typed constraint that is
 typical of most programs but is technically not normal Python, so we
 won’t go into further detail here. Initial results, though, show that
 it has the potential to outperform both standard Python and Psyco-like
 extensions in terms of execution speed. Search the Web for details on
 the project’s current status.

Psyco: The original just-in-time compiler
The Psyco system is not another Python implementation, but rather a
 component that extends the byte code execution model to make programs
 run faster. Today, Psyco is something of an
 ex-project: it is still available for separate
 download, but has fallen out of date with Python’s evolution, and is
 no longer actively maintained. Instead, its ideas have been
 incorporated into the more complete PyPy system
 described earlier. Still, the ongoing importance of the ideas Psyco
 explored makes them worth a quick look.
In terms of Figure 2-2, Psyco is an
 enhancement to the PVM that collects and uses type information while
 the program runs to translate portions of the program’s byte code all
 the way down to true binary machine code for faster execution. Psyco
 accomplishes this translation without requiring changes to the code or
 a separate compilation step during development.
Roughly, while your program runs, Psyco collects information
 about the kinds of objects being passed around; that information can
 be used to generate highly efficient machine code tailored for those
 object types. Once generated, the machine code then replaces the
 corresponding part of the original byte code to speed your program’s
 overall execution. The result is that with Psyco, your program becomes
 quicker over time as it runs. In ideal cases, some Python code may
 become as fast as compiled C code under Psyco.
Because this translation from byte code happens at program
 runtime, Psyco is known as a just-in-time compiler. Psyco
 is different from the JIT compilers some readers may have seen for the
 Java language, though. Really, Psyco is a specializing JIT
 compiler—it generates machine code tailored to the data
 types that your program actually uses. For example, if a part of your
 program uses different data types at different times, Psyco may
 generate a different version of machine code to support each different
 type combination.
Psyco was shown to speed some Python code dramatically.
 According to its web page, Psyco provides “2X to 100X speed-ups,
 typically 4X, with an unmodified Python interpreter and unmodified
 source code, just a dynamically loadable C extension module.” Of equal
 significance, the largest speedups are realized for algorithmic code
 written in pure Python—exactly the sort of code you might normally
 migrate to C to optimize. For more on Psyco, search the Web or see its
 successor—the PyPy project described previously.

Frozen Binaries
Sometimes when people ask for a “real” Python compiler, what they’re
 really seeking is simply a way to generate standalone binary executables
 from their Python programs. This is more a packaging and shipping idea
 than an execution-flow concept, but it’s somewhat related. With the help
 of third-party tools that you can fetch off the Web, it is possible to
 turn your Python programs into true executables, known as
 frozen binaries in the Python world. These programs
 can be run without requiring a Python installation.
Frozen binaries bundle together the byte code of your program
 files, along with the PVM (interpreter) and any Python support files
 your program needs, into a single package. There are some variations on
 this theme, but the end result can be a single binary executable program
 (e.g., an .exe file on Windows)
 that can easily be shipped to customers. In Figure 2-2, it is as though the
 two rightmost bubbles—byte code and PVM—are merged into a single
 component: a frozen binary file.
Today, a variety of systems are capable of generating frozen
 binaries, which vary in platforms and features:
 py2exe for Windows only, but with broad Windows support; PyInstaller, which
 is similar to py2exe but also works on Linux and Mac OS X and is capable of generating
 self-installing binaries; py2app for creating Mac OS X applications; freeze, the original;
 and cx_freeze, which offers both Python 3.X and
 cross-platform support. You may have to fetch these tools separately
 from Python itself, but they are freely available.
These tools are also constantly evolving, so consult http://www.python.org
 or your favorite web search engine for more details and status. To give
 you an idea of the scope of these systems, py2exe can freeze standalone
 programs that use the tkinter, PMW, wxPython, and PyGTK GUI libraries;
 programs that use the pygame game programming toolkit;
 win32com client programs; and more.
Frozen binaries are not the same as the output of a true
 compiler—they run byte code through a virtual machine. Hence, apart from
 a possible startup improvement, frozen binaries run at the same speed as
 the original source files. Frozen binaries are also not generally small
 (they contain a PVM), but by current standards they are not unusually
 large either. Because Python is embedded in the frozen binary, though,
 it does not have to be installed on the receiving end to run your
 program. Moreover, because your code is embedded in the frozen binary,
 it is more effectively hidden from recipients.
This single file-packaging scheme is especially appealing to
 developers of commercial software. For instance, a Python-coded user
 interface program based on the tkinter toolkit can be frozen into an
 executable file and shipped as a self-contained program on a CD or on
 the Web. End users do not need to install (or even have to know about)
 Python to run the shipped program.

Future Possibilities?
Finally, note that the runtime execution model sketched here is really an
 artifact of the current implementation of Python, not of the language
 itself. For instance, it’s not impossible that a full, traditional
 compiler for translating Python source code to machine code may appear
 during the shelf life of this book (although the fact that one has not
 in over two decades makes this seem unlikely!).
New byte code formats and implementation variants may also be
 adopted in the future. For instance:
	The ongoing Parrot project aims to
 provide a common byte code format, virtual machine, and optimization
 techniques for a variety of programming languages, including Python.
 Python’s own PVM runs Python code more efficiently than Parrot (as
 famously demonstrated by a pie challenge at a software
 conference—search the Web for details), but it’s unclear how Parrot
 will evolve in relation to Python specifically. See http://parrot.org or the Web at large for
 details.

	The former Unladen Swallow project—an
 open source project developed by Google engineers—sought to make
 standard Python faster by a factor of at least 5, and fast enough to
 replace the C language in many contexts. This was an optimization
 branch of CPython (specifically Python 2.6), intended to be
 compatible yet faster by virtue of adding a JIT to standard Python.
 As I write this in 2012, this project seems to have drawn to a close
 (per its withdrawn Python PEP, it was “going the way of the
 Norwegian Blue”). Still, its lessons gained may be leveraged in
 other forms; search the Web for breaking developments.

Although future implementation schemes may alter the runtime
 structure of Python somewhat, it seems likely that the byte code
 compiler will still be the standard for some time to come. The
 portability and runtime flexibility of byte code are important features
 of many Python systems. Moreover, adding type constraint declarations to
 support static compilation would likely break much of the flexibility,
 conciseness, simplicity, and overall spirit of Python coding. Due to
 Python’s highly dynamic nature, any future implementation will likely
 retain many artifacts of the current PVM.

Chapter Summary
This chapter introduced the execution model of Python—how Python
 runs your programs—and explored some common variations on that model:
 just-in-time compilers and the like. Although you don’t really need to
 come to grips with Python internals to write Python scripts, a passing
 acquaintance with this chapter’s topics will help you truly understand how
 your programs run once you start coding them. In the next chapter, you’ll
 start actually running some code of your own. First, though, here’s the
 usual chapter quiz.

Test Your Knowledge: Quiz
	What is the Python interpreter?

	What is source code?

	What is byte code?

	What is the PVM?

	Name two or more variations on Python’s standard execution
 model.

	How are CPython, Jython, and IronPython different?

	What are Stackless and PyPy?

Test Your Knowledge: Answers
	The Python interpreter is a program that runs the Python
 programs you write.

	Source code is the statements you write for your program—it
 consists of text in text files that normally end with a .py extension.

	Byte code is the lower-level form of your program after Python
 compiles it. Python automatically stores byte code in files with a
 .pyc extension.

	The PVM is the Python Virtual Machine—the runtime engine of
 Python that interprets your compiled byte code.

	Psyco, Shed Skin, and frozen binaries are all variations on the
 execution model. In addition, the alternative implementations of
 Python named in the next two answers modify the model in some fashion
 as well—by replacing byte code and VMs, or by adding tools and
 JITs.

	CPython is the standard implementation of the language. Jython
 and IronPython implement Python programs for use in Java and .NET
 environments, respectively; they are alternative compilers for
 Python.

	Stackless is an enhanced version of Python aimed at concurrency,
 and PyPy is a reimplementation of Python targeted at speed. PyPy is
 also the successor to Psyco, and incorporates the JIT concepts that
 Psyco pioneered.

Chapter 3. How You Run Programs
OK, it’s time to start running some code. Now that you have a handle
 on the program execution model, you’re finally ready to start some real
 Python programming. At this point, I’ll assume that you have Python
 installed on your computer; if you don’t, see the start of the prior chapter
 and Appendix A for installation and
 configuration hints on various platforms. Our goal here is to learn how to
 run Python program code.
There are multiple ways to tell Python to execute the code you type.
 This chapter discusses all the program launching techniques in common use
 today. Along the way, you’ll learn how to both type code
 interactively, and how to save it in
 files to be run as often as you like in a variety of
 ways: with system command lines, icon clicks, module imports, exec calls, menu options in the IDLE GUI, and
 more.
As for the previous chapter, if you have prior programming experience
 and are anxious to start digging into Python itself, you may want to skim
 this chapter and move on to Chapter 4. But don’t skip this chapter’s
 early coverage of preliminaries and conventions, its overview of debugging
 techniques, or its first look at module imports—a topic essential to
 understanding Python’s program architecture, which we won’t revisit until a
 later part. I also encourage you to see the sections on IDLE and other IDEs,
 so you’ll know what tools are available when you start developing more
 sophisticated Python programs.
The Interactive Prompt
This section gets us started with interactive coding basics. Because it’s
 our first look at running code, we also cover some preliminaries here,
 such as setting up a working directory and the system path, so be sure to
 read this section first if you’re relatively new to programming. This
 section also explains some conventions used throughout the book, so most
 readers should probably take at least a quick look here.
Starting an Interactive Session
Perhaps the simplest way to run Python programs is to type them at
 Python’s interactive command line, sometimes called the
 interactive prompt. There are a variety of ways to
 start this command line: in an IDE, from a system console, and so on.
 Assuming the interpreter is installed as an executable program on your
 system, the most platform-neutral way to start an interactive
 interpreter session is usually just to type python at your operating system’s prompt,
 without any arguments. For example:
% python
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z
Typing the word “python” at your system shell prompt like this begins an interactive
 Python session; the “%” character at the start of this listing stands
 for a generic system prompt in this book—it’s not input that you type
 yourself. On Windows, a Ctrl-Z gets you out of this
 session; on Unix, try Ctrl-D instead.
The notion of a system shell prompt is
 generic, but exactly how you access it varies by platform:
	On Windows, you can type python
 in a DOS console window—a program named cmd.exe and usually known as
 Command Prompt. For more details on starting
 this program, see this chapter’s sidebar “Where Is Command Prompt on Windows?”.

	On Mac OS X, you can start a Python interactive interpreter by
 double-clicking on Applications→Utilities→Terminal, and then typing
 python in the window that
 opens up.

	On Linux (and other Unixes), you
 might type this command in a shell or terminal window
 (for instance, in an xterm or console running a
 shell such as ksh or
 csh).

	Other systems may use similar or platform-specific devices. On
 handheld devices, for example, you might click the Python icon in
 the home or application window to launch an interactive
 session.

On most platforms, you can start the interactive prompt in
 additional ways that don’t require typing a command, but they vary per
 platform even more widely:
	On Windows 7 and earlier, besides typing
 python in a shell window, you
 can also begin similar interactive sessions by starting the IDLE GUI
 (discussed later), or by selecting the “Python (command line)” menu
 option from the Start button menu for Python, as shown in Figure 2-1 in Chapter 2. Both spawn a Python
 interactive prompt with the same functionality obtained with a
 “python” command.

	On Windows 8, you don’t have a Start
 button (at least as I write this), but there are other ways to get
 to the tools described in the prior bullet, including tiles, Search,
 File Explorer, and the “All apps” interface on the Start screen. See
 Appendix A for more pointers
 on this platform.

	Other platforms have similar ways to start a Python
 interactive session without typing commands, but they’re too
 specific to get into here; see your system’s documentation for
 details.

Anytime you see the >>>
 prompt, you’re in an interactive Python interpreter session—you can type
 any Python statement or expression here and run it immediately. We will
 in a moment, but first we need to get a few startup details sorted out
 to make sure all readers are set to go.
Where Is Command Prompt on Windows?
So how do you start the command-line interface on Windows? Some Windows readers
 already know, but Unix developers and beginners may not; it’s not as
 prominent as terminal or console windows on Unix systems. Here are
 some pointers on finding your Command Prompt, which vary slightly per
 Windows version.
On Windows 7 and earlier, this is usually
 found in the Accessories section of the Start→All Programs menu, or
 you can run it by typing cmd in
 the Start→Run... dialog box or the Start menu’s search entry field.
 You can drag out a desktop shortcut to get to it quicker if
 desired.
On Windows 8, you can access Command Prompt
 in the menu opened by right-clicking on the preview in the screen’s
 lower-left corner; in the Windows System section of the “All apps”
 display reached by right-clicking your Start screen; or by typing
 cmd or command prompt in the input field of the Search
 charm pulled down from the screen’s upper-right corner. There are
 probably additional routes, and touch screens offer similar access.
 And if you want to forget all that, pin it to your desktop taskbar for
 easy access next time around.
These procedures are prone to vary over time, and possibly even
 per computer and user. I’m trying to avoid making this a book on
 Windows, though, so I’ll cut this topic short here. When in doubt, try
 the system Help interface (whose usage may differ as much as the tools
 it provides help for!).
A note to any Unix users reading this sidebar who may be
 starting to feel like a fish out of water: you may also be interested
 in the Cygwin system, which brings a
 full Unix command prompt to Windows. See Appendix A for more pointers.

The System Path
When we typed python in the
 last section to start an interactive session, we relied on the fact that
 the system located the Python program for us on its program search path.
 Depending on your Python version and platform, if you have not set your
 system’s PATH environment variable to
 include Python’s install directory, you may need to replace the word
 “python” with the full path to the Python executable on your machine. On
 Unix, Linux, and similar, something like /usr/local/bin/python or /usr/bin/python3 will often suffice. On
 Windows, try typing C:\Python33\python (for version 3.3):
c:\code> c:\python33\python
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z
Alternatively, you can run a “cd” change-directory command to go
 to Python’s install directory before typing python—try the cd
 c:\python33 command on Windows, for example:
c:\code> cd c:\python33
c:\Python33> python
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z
But you’ll probably want to set your PATH eventually, so a simple “python”
 suffices. If you don’t know what PATH
 is or how to set it, see Appendix A—it covers environment
 variables like this whose usage varies per platform, as well as Python
 command-line arguments we won’t be using much in this book. The short
 story for Windows users: see the Advanced settings in the System entry
 of your Control Panel. If you’re using Python 3.3 and later, this is now
 automatic on Windows, as the next section explains.

New Windows Options in 3.3: PATH, Launcher
The foregoing section and much of this chapter at large
 describe the generic state of play for all 2.X and 3.X Pythons prior to
 version 3.3. Starting with Python 3.3, the Windows installer has an
 option to automatically add Python 3.3’s directory
 to your system PATH, if
 enabled in the installer’s windows. If you use this option, you won’t
 need to type a directory path or issue a “cd” to run python commands as in the prior section. Be
 sure to select this option during the install if you want it, as it’s
 currently disabled by default.
More dramatically, Python 3.3 for Windows ships with and
 automatically installs the new Windows launcher—a system that
 comes with new executable programs, py with a console and pyw without, that
 are placed in directories on your system path, and so may be run out of
 the box without any PATH
 configurations, change-directory commands, or directory path
 prefixes:
c:\code> py
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

c:\code> py −2
Python 2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMD64)] ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

c:\code> py −3.1
Python 3.1.4 (default, Jun 12 2011, 14:16:16) [MSC v.1500 64 bit (AMD64)] ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z
As shown in the last two commands here, these executables also
 accept Python version numbers on the command line (and in Unix-style
 #! lines at the top of scripts, as
 discussed later), and are associated to open Python files when clicked
 just like the original python
 executable—which is still available and works as before, but is somewhat
 superseded by the launcher’s new programs.
The launcher is a standard part of Python 3.3, and is available
 standalone for use with other versions. We’ll see more on this new
 launcher in this and later chapters, including a brief look at its
 #! line support here. However,
 because it is of interest only to Windows users, and even for this group
 is present only in 3.3 or where installed separately, I’ve collected
 almost all of the details about the launcher in Appendix B.
If you’ll be working on Windows under Python 3.3 or later, I
 suggest taking a brief detour to that appendix now, as it provides an
 alternative, and in some ways better, way to run Python command lines
 and scripts. At a base level, launcher users can type py instead of python in most of the system commands shown
 in this book, and may avoid some configuration steps. Especially on
 computers with multiple Python versions, though, the new launcher gives
 you more explicit control over which Python runs your code.

Where to Run: Code Directories
Now that I’ve started showing you how to run code, I want
 to say a few words up front about where to run
 code. To keep things simple, in this chapter and book at large I’m going
 to be running code from a working directory (a.k.a.
 folder) I’ve created on my Windows computer called
 C:\code—a subdirectory at the top
 of my main drive. That’s where I’ll start most interactive sessions, and
 where I’ll be both saving and running most script files. This also means
 the files that examples will create will mostly show up in this
 directory.
If you’ll be working along, you should probably do something
 similar before we get started. Here are some pointers if you need help
 getting set up with a working directory on your computer:
	On Windows, you can make your working code directory in File Explorer or a
 Command Prompt window. In File Explorer, look for New Folder, see
 the File menu, or try a right-click. In Command Prompt, type and run
 a mkdir command, usually after
 you cd to your desired parent
 directory (e.g., cd c:\ and
 mkdir code). Your working
 directory can be located wherever you like and called whatever you
 wish, and doesn’t have to be C:\code (I chose this name because it’s
 short in prompts). But running out of one directory will help you
 keep track of your work and simplify some tasks. For more Windows
 hints, see this chapter’s sidebar on Command Prompt, as well as
 Appendix A.

	On Unix-based systems (including Mac OS X and
 Linux), your working directory might be in
 /usr/home and be created by a
 mkdir command in a shell window
 or file explorer GUI specific to your platform, but the same
 concepts apply. The Cygwin Unix-like system for Windows is similar
 too, though your directory names may vary (/home and /cygdrive/c are candidates).

You can store your code in Python’s install directory too (e.g.,
 C:\Python33 on Windows) to simplify
 some command lines before setting PATH, but you probably shouldn’t—this is for
 Python itself, and your files may not survive a move or
 uninstall.
Once you’ve made your working directory, always start there to
 work along with the examples in this book. The prompts in this book that
 show the directory that I’m running code in will reflect my Windows
 laptop’s working directory; when you see C:\code> or %, think the location and name of your own
 directory.

What Not to Type: Prompts and Comments
Speaking of prompts, this book sometimes shows system prompts as a generic %, and sometimes in full C:\code> Windows form. The former is meant
 to be platform agnostic (and derives from earlier editions’ use of
 Linux), and the latter is used in Windows-specific contexts. I also add
 a space after system prompts just for readability in this book. When
 used, the % character at the start of
 a system command line stands for the system’s prompt, whatever that may
 be on your machine. For instance, on my machine % stands for C:\code> in Windows Command Prompt, and
 just $ in my Cygwn install.
To beginners: don’t type the % character (or the
 C:\code system prompt it sometimes
 stands for) you see in this book’s interaction listings yourself—this is
 text the system prints. Type just the text after
 these system prompts. Similarly, do not type the >>> and ... characters shown at the start of lines in
 interpreter interaction listings—these are prompts that Python displays
 automatically as visual guides for interactive code entry. Type just the
 text after these Python prompts. For instance, the
 ... prompt is used for continuation
 lines in some shells, but doesn’t appear in IDLE, and shows up in some
 but not all of this book’s listings; don’t type it yourself if it’s
 absent in your interface.
To help you remember this, user inputs are shown in bold in this book, and prompts are not. In
 some systems these prompts may differ (for instance, the
 PyPy performance-focused implementation described
 in Chapter 2 uses four-character
 >>>> and), but the same rules apply. Also keep in
 mind that commands typed after these system and Python prompts are meant
 to be run immediately, and are not generally to be saved in the source
 files we will be creating; we’ll see why this distinction matters
 ahead.
In the same vein, you normally don’t need to type text that starts
 with a # character in
 listings in this book—as you’ll learn, these are
 comments, not executable code. Except when # is used to introduce a directive at the top of a script for Unix or
 the Python 3.3 Windows launcher, you can safely ignore the text that
 follows it (more on Unix and the launcher later in this chapter and in
 Appendix B).
Note
If you’re working along, interactive
 listings will drop most “...” continuation prompts as of Chapter 17 to aid cut-and-paste of larger code such as
 functions and classes from ebooks or other; until then, paste or type
 one line at a time and omit the prompts. At least initially, it’s
 important to type code manually, to get a feel for syntax details and
 errors. Some examples will be listed either by themselves or in named
 files available in the book’s examples package (per the preface), and
 we’ll switch between listing formats often; when in doubt, if you see
 “>>>”, it means the code is being typed interactively.

Running Code Interactively
With those preliminaries out of the way, let’s move on to typing some
 actual code. However it’s started, the Python interactive session begins
 by printing two lines of informational text giving the Python version
 number and a few hints shown earlier (which I’ll omit from most of this
 book’s examples to save space), then prompts for input with >>> when
 it’s waiting for you to type a new Python statement or
 expression.
When working interactively, the results of your code are displayed
 below the >>> input lines
 after you press the Enter key. For instance, here are the results of two
 Python print statements (print is really a function call in Python 3.X, but not in 2.X, so the parentheses
 here are required in 3.X only):
% python
>>> print('Hello world!')
Hello world!
>>> print(2 ** 8)
256
There it is—we’ve just run some Python code (were you expecting
 the Spanish Inquisition?). Don’t worry about the
 details of the print statements shown
 here yet; we’ll start digging into syntax in the next chapter. In short,
 they print a Python string and an integer, as shown by the output lines
 that appear after each >>>
 input line (2 ** 8 means 2 raised to
 the power 8 in Python).
When coding interactively like this, you can type as many Python
 commands as you like; each is run immediately after it’s entered.
 Moreover, because the interactive session automatically prints the
 results of expressions you type, you don’t usually need to say “print”
 explicitly at this prompt (the format of automatic prints can differ slightly, but you don’t yet need to care):
>>> lumberjack = 'okay'
>>> lumberjack
'okay'
>>> 2 ** 8
256
>>> ^Z # Use Ctrl-D (on Unix) or Ctrl-Z (on Windows) to exit
%
Here, the first line saves a value by assigning it to a variable (lumberjack), which is created by the
 assignment; and the last two lines typed are expressions (lumberjack and 2 **
 8), whose results are displayed automatically. Again, to exit
 an interactive session like this and return to your system shell prompt,
 type Ctrl-D on Unix-like machines, and Ctrl-Z on Windows. In the IDLE
 GUI discussed later, either type Ctrl-D or simply close the
 window.
Notice the italicized note about this on the
 right side of this listing (starting with “#” here). I’ll use these
 throughout to add remarks about what is being illustrated, but you don’t
 need to type this text yourself. In fact, just like system and Python
 prompts, you shouldn’t type this when it’s on a system command line; the
 “#” part is taken as a comment by Python but may be an error at a system
 prompt.
Now, we didn’t do much in this session’s code—just typed some
 Python print and assignment
 statements, along with a few expressions, which we’ll study in detail
 later. The main thing to notice is that the interpreter executes the
 code entered on each line immediately, when the Enter key is
 pressed.
For example, when we typed the first print statement at the >>> prompt, the output (a Python
 string) was echoed back right away. There was no need to create a source
 code file, and no need to run the code through a compiler and linker
 first, as you’d normally do when using a language such as C or C++. As
 you’ll see in later chapters, you can also run multiline statements at
 the interactive prompt; such a statement runs immediately after you’ve
 entered all of its lines and pressed Enter twice to add a blank
 line.

Why the Interactive Prompt?
The interactive prompt runs code and echoes results as you go, but
 it doesn’t save your code in a file. Although this means you won’t do
 the bulk of your coding in interactive sessions, the interactive prompt
 turns out to be a great place to both experiment
 with the language and test program files on the
 fly.
Experimenting
Because code is executed immediately, the interactive prompt is a
 perfect place to experiment with the language and will be used often
 in this book to demonstrate smaller examples. In fact, this is the
 first rule of thumb to remember: if you’re ever in doubt about how a
 piece of Python code works, fire up the interactive command line and
 try it out to see what happens.
For instance, suppose you’re reading a Python program’s code and
 you come across an expression like 'Spam!' *
 8 whose meaning you don’t understand. At this point, you can
 spend 10 minutes wading through manuals, books, and the Web to try to
 figure out what the code does, or you can simply run it
 interactively:
% python
>>> 'Spam!' * 8 # Learning by trying
'Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!'
The immediate feedback you receive at the interactive prompt is
 often the quickest way to deduce what a piece of code does. Here, it’s
 clear that it does string repetition: in Python * means multiply for numbers, but repeat for
 strings—it’s like concatenating a string to itself repeatedly (more on
 strings in Chapter 4).
Chances are good that you won’t break anything by experimenting
 this way—at least, not yet. To do real damage, like deleting files and
 running shell commands, you must really try, by importing modules
 explicitly (you also need to know more about Python’s system
 interfaces in general before you will become that dangerous!).
 Straight Python code is almost always safe to run.
For instance, watch what happens when you make a
 mistake at the interactive prompt:
>>> X # Making mistakes
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'X' is not defined
In Python, using a variable before it has been assigned a value
 is always an error—otherwise, if names were filled in with defaults,
 some errors might go undetected. This means you must initialize
 counters to zero before you can add to them, must initialize lists
 before extending them, and so on; you don’t declare variables, but
 they must be assigned before you can fetch their values.
We’ll learn more about that later; the important point here is
 that you don’t crash Python or your computer when you make a mistake
 this way. Instead, you get a meaningful error message pointing out the
 mistake and the line of code that made it, and you can continue on in
 your session or script. In fact, once you get comfortable with Python,
 its error messages may often provide as much debugging support as
 you’ll need (you’ll learn more about debugging options in the sidebar
 “Debugging Python Code”).

Testing
Besides serving as a tool for experimenting while you’re learning the
 language, the interactive interpreter is also an ideal place to test
 code you’ve written in files. You can import your module files
 interactively and run tests on the tools they define by typing calls
 at the interactive prompt on the fly.
For instance, the following tests a function in a precoded
 module that ships with Python in its standard library (it prints the
 name of the directory you’re currently working in, with a doubled-up
 backslash that stands for just one), but you can do the same once you
 start writing module files of your own:
>>> import os
>>> os.getcwd() # Testing on the fly
'c:\\code'
More generally, the interactive prompt is a place to test
 program components, regardless of their source—you can import and test
 functions and classes in your Python files, type calls to linked-in C
 functions, exercise Java classes under Jython, and more. Partly
 because of its interactive nature, Python supports an experimental and
 exploratory programming style you’ll find convenient when getting
 started. Although Python programmers also test with in-file code (and
 we’ll learn ways to make this simple later in the book), for many, the
 interactive prompt is still their first line of testing
 defense.

Usage Notes: The Interactive Prompt
Although the interactive prompt is simple to use, there are a few tips
 that beginners should keep in mind. I’m including lists of common
 mistakes like the following in this chapter for reference, but they
 might also spare you from a few headaches if you read them up
 front:
	Type Python commands only.
 First of all, remember that you can only type Python code at
 Python’s >>> prompt, not system
 commands. There are ways to run system commands from within Python
 code (e.g., with os.system), but
 they are not as direct as simply typing the commands
 themselves.

	print statements are required only in files.
 Because the interactive interpreter automatically prints the
 results of expressions, you do not need to type complete print statements interactively. This is a
 nice feature, but it tends to confuse users when they move on to
 writing code in files: within a code file, you must use print statements to see your output
 because expression results are not automatically echoed. Remember,
 you must say print in files, but
 it’s optional interactively.

	Don’t indent at the interactive prompt
 (yet). When typing Python programs, either interactively
 or into a text file, be sure to start all your unnested statements
 in column 1 (that is, all the way to the left). If you
 don’t, Python may print a “SyntaxError” message, because blank space
 to the left of your code is taken to be indentation that groups
 nested statements. Until Chapter 10, all statements you write
 will be unnested, so this includes everything for now. Remember, a
 leading space generates an error message, so don’t start with a
 space or tab at the interactive prompt unless it’s nested
 code.

	Watch out for prompt changes for
 compound statements. We won’t meet
 compound (multiline) statements until Chapter 4 and not in earnest until Chapter 10, but as a preview, you
 should know that when typing lines 2 and beyond of a compound
 statement interactively, the prompt may change. In the simple shell
 window interface, the interactive prompt changes to ... instead of >>> for lines 2 and beyond; in
 the IDLE GUI interface, lines after the first are instead
 automatically indented.
You’ll see why this matters in Chapter 10. For now, if you happen
 to come across a ... prompt or a
 blank line when entering your code, it probably means that you’ve
 somehow confused interactive Python into thinking you’re typing a
 multiline statement. Try hitting the Enter key or a Ctrl-C
 combination to get back to the main prompt. The >>> and ... prompt strings can also be changed
 (they are available in the built-in module sys), but I’ll assume they have not been
 in the book’s example listings.

	Terminate compound statements at the
 interactive prompt with a blank line. At the interactive
 prompt, inserting a blank line (by hitting the Enter key at the start of a
 line) is necessary to tell interactive Python that you’re done
 typing the multiline statement. That is, you must press Enter twice
 to make a compound statement run. By contrast, blank lines are not
 required in files and are simply ignored if present. If you don’t
 press Enter twice at the end of a compound statement when working
 interactively, you’ll appear to be stuck in a limbo state, because
 the interactive interpreter will do nothing at all—it’s waiting for
 you to press Enter again!

	The interactive prompt runs one
 statement at a time. At the interactive prompt,
 you must run one statement to completion before typing
 another. This is natural for simple statements, because pressing the
 Enter key runs the statement entered. For compound statements,
 though, remember that you must submit a blank line to terminate the
 statement and make it run before you can type the next
 statement.

Entering multiline statements
At the risk of repeating myself, I’ve received multiple emails from readers who’d gotten
 burned by the last two points, so they probably merit emphasis. I’ll
 introduce multiline (a.k.a. compound) statements in the next chapter,
 and we’ll explore their syntax more formally later in this book.
 Because their behavior differs slightly in files and at the
 interactive prompt, though, two cautions are in order here.
First, be sure to terminate multiline compound statements like for
 loops and if tests at the
 interactive prompt with a blank line. In other words, you
 must press the Enter key twice, to terminate the whole
 multiline statement and then make it run. For example (pun not
 intended):
>>> for x in 'spam':
... print(x) # Press Enter twice here to make this loop run
...
You don’t need the blank line after compound statements in a
 script file, though; this is required
 only at the interactive prompt. In a file, blank
 lines are not required and are simply ignored when present; at the
 interactive prompt, they terminate multiline statements. Reminder: the
 ... continuation line prompt in the
 preceding is printed by Python automatically as a visual guide; it may
 not appear in your interface (e.g., IDLE), and is sometimes omitted by
 this book, but do not type it yourself if it’s absent.
Also bear in mind that the interactive prompt runs just
 one statement at a time: you must press Enter
 twice to run a loop or other multiline statement before you can type
 the next statement:
>>> for x in 'spam':
... print(x) # Press Enter twice before a new statement
... print('done')
 File "<stdin>", line 3
 print('done')
 ^
SyntaxError: invalid syntax
This means you can’t cut and paste multiple lines of code into
 the interactive prompt, unless the code includes blank lines after
 each compound statement. Such code is better run in a
 file—which brings us to the next section’s
 topic.

System Command Lines and Files
Although the interactive prompt is great for experimenting and testing,
 it has one big disadvantage: programs you type there go away as soon as
 the Python interpreter executes them. Because the code you type
 interactively is never stored in a file, you can’t run it again without
 retyping it from scratch. Cut-and-paste and command recall can help some
 here, but not much, especially when you start writing larger programs. To
 cut and paste code from an interactive session, you would have to edit out
 Python prompts, program outputs, and so on—not exactly a modern software
 development methodology!
To save programs permanently, you need to write your code in files,
 which are usually known as modules. Modules are simply text
 files containing Python statements. Once they are coded, you can ask the Python
 interpreter to execute the statements in such a file any number of times,
 and in a variety of ways—by system command lines, by file icon clicks, by
 options in the IDLE user interface, and more. Regardless of how it is run,
 Python executes all the code in a module file from top to bottom each time
 you run the file.
Terminology in this domain can vary somewhat. For instance, module
 files are often referred to as programs in Python—that is, a program
 is considered to be a series of precoded statements stored
 in a file for repeated execution. Module files that are run directly are
 also sometimes called scripts—an informal term usually
 meaning a top-level program file. Some reserve the term “module” for a
 file imported from another file, and “script” for the main file of a
 program; we generally will here, too (though you’ll have to stay tuned for
 more on the meaning of “top-level,” imports, and main files later in this
 chapter).
Whatever you call them, the next few sections explore ways to run
 code typed into module files. In this section, you’ll learn how to run
 files in the most basic way: by listing their names in a python command line entered at your computer’s
 system prompt. Though it might seem primitive to some—and can often be
 avoided altogether by using a GUI like IDLE, discussed later—for many
 programmers a system shell command-line window, together with a text
 editor window, constitutes as much of an integrated development
 environment as they will ever need, and provides more direct control over
 programs.
A First Script
Let’s get started. Open your favorite text editor (e.g.,
 vi, Notepad, or the IDLE editor), type the
 following statements into a new text file named script1.py, and save it in your working code
 directory that you set up earlier:
A first Python script
import sys # Load a library module
print(sys.platform)
print(2 ** 100) # Raise 2 to a power
x = 'Spam!'
print(x * 8) # String repetition
This file is our first official Python script (not counting the
 two-liner in Chapter 2). You shouldn’t
 worry too much about this file’s code, but as a brief description, this
 file:
	Imports a Python module (libraries of additional tools), to
 fetch the name of the platform

	Runs three print function
 calls, to display the script’s results

	Uses a variable named x,
 created when it’s assigned, to hold onto a string object

	Applies various object operations that we’ll begin studying in
 the next chapter

The sys.platform here is just a
 string that identifies the kind of computer you’re working on; it lives
 in a standard Python module called sys,
 which you must import to load (again, more on imports later).
For color, I’ve also added some formal Python comments here—the text after
 the # characters. I mentioned these
 earlier, but should be more formal now that they’re showing up in
 scripts. Comments can show up on lines by themselves, or to the right of
 code on a line. The text after a # is
 simply ignored as a human-readable comment and is not considered part of
 the statement’s syntax. If you’re copying this code, you can ignore the
 comments; they are just informative. In this book, we usually use a
 different formatting style to make comments more visually distinctive,
 but they’ll appear as normal text in your code.
Again, don’t focus on the syntax of the code in this file for now;
 we’ll learn about all of it later. The main point to notice is that
 you’ve typed this code into a file, rather than at the interactive
 prompt. In the process, you’ve coded a fully functional Python
 script.
Notice that the module file is called script1.py. As for all top-level files, it
 could also be called simply script,
 but files of code you want to import into a client
 have to end with a .py suffix.
 We’ll study imports later in this chapter. Because you may want to
 import them in the future, it’s a good idea to use .py suffixes for most Python files that you
 code. Also, some text editors detect Python files by their .py suffix; if the suffix is not present, you
 may not get features like syntax colorization and automatic
 indentation.

Running Files with Command Lines
Once you’ve saved this text file, you can ask Python to run it by listing
 its full filename as the first argument to a python command like the following typed at
 the system shell prompt (don’t type this
 at Python’s interactive prompt, and read on to the next paragraph if
 this doesn’t work right away for you):
% python script1.py
win32
1267650600228229401496703205376
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
Again, you can type such a system shell command in whatever your
 system provides for command-line entry—a Windows Command Prompt window,
 an xterm window, or similar. But be sure to run this in the same working
 directory where you’ve saved your script file (“cd” there first if
 needed), and be sure to run this at the system prompt, not Python’s
 “>>>” prompt. Also remember to replace the command’s word
 “python” with a full directory path as we did before if your PATH setting is not configured, though this
 isn’t required for the “py” Windows launcher program, and may not be
 required in 3.3 and later.
Another note to beginners: do not type any of the preceding text
 in the script1.py source file you
 created in the prior section. This text is a system command and program
 output, not program code. The first line here is the shell command used
 to run the source file, and the lines following it are the results
 produced by the source file’s print
 statements. And again, remember that the % stands for the system prompt—don’t type it yourself (not to nag, but it’s
 a remarkably common early mistake).
If all works as planned, this shell command makes Python run the
 code in this file line by line, and you will see the output of the
 script’s three print statements—the
 name of the underlying platform as known to Python, 2 raised to the
 power 100, and the result of the same string repetition expression we
 saw earlier (again, more on the meaning of the last two of these in
 Chapter 4).
If all didn’t work as planned, you’ll get an
 error message—make sure you’ve entered the code in your file exactly as
 shown, and try again. The next section has additional options and
 pointers on this process, and we’ll talk about debugging options in the
 sidebar “Debugging Python Code”, but at this point in
 the book your best bet is probably rote imitation. And if all else
 fails, you might also try running under the IDLE GUI discussed ahead—a
 tool that sugarcoats some launching details, though sometimes at the
 expense of the more explicit control you have when using command
 lines.
You can also fetch the code examples off the Web if copying grows
 too tedious or error-prone, though typing some code initially will help
 you learn to avoid syntax errors. See the preface for details on how to
 obtain the book’s example files.

Command-Line Usage Variations
Because this scheme uses shell command lines to start Python programs,
 all the usual shell syntax applies. For instance, you can route the
 printed output of a Python script to a file to save it for later use or
 inspection by using special shell syntax:
% python script1.py > saveit.txt
In this case, the three output lines shown in the prior run are
 stored in the file saveit.txt
 instead of being printed. This is generally known as stream redirection; it works
 for input and output text and is available on Windows and Unix-like
 systems. This is nice for testing, as you can write programs that watch
 for changes in other programs’ outputs. It also has little to do with
 Python, though (Python simply supports it), so we will skip further
 details on shell redirection syntax here.
If you are working on a Windows platform,
 this example works the same, but the system prompt is
 normally different as described earlier:
C:\code> python script1.py
win32
1267650600228229401496703205376
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
As usual, if you haven’t set your PATH environment variable to include the full directory path to python, be sure to include this in your
 command, or run a change-directory command to go to the path
 first:
C:\code> C:\python33\python script1.py
win32
1267650600228229401496703205376
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
Alternatively, if you’re using the Windows launcher new in Python
 3.3 (described earlier), a py command
 will have the same effect, but does not require a directory path or
 PATH settings, and allows you to
 specify Python version numbers on the command line too:
c:\code> py −3 script1.py
win32
1267650600228229401496703205376
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
On all recent versions of Windows, you can
 also type just the name of your script, and omit
 the name of Python itself. Because newer Windows systems use the Windows
 Registry (a.k.a. filename associations) to find a program with which to
 run a file, you don’t need to name “python” or “py” on the command line
 explicitly to run a .py file. The
 prior command, for example, could be simplified to the following on most
 Windows machines, and will automatically be run by python prior to 3.3, and by py in 3.3 and later—just as though you had
 clicked on the file’s icon in Explorer (more on this option
 ahead):
C:\code> script1.py
Finally, remember to give the full path to your script file if it
 lives in a different directory from the one in which you are working.
 For example, the following system command line, run from D:\other, assumes Python is in your system
 path but runs a file located elsewhere:
C:\code> cd D:\other
D:\other> python c:\code\script1.py
If your PATH doesn’t include
 Python’s directory, you’re not using the Windows launcher’s py program, and neither Python nor your script
 file is in the directory you’re working in, use full paths for
 both:
D:\other> C:\Python33\python c:\code\script1.py

Usage Notes: Command Lines and Files
Running program files from system command lines is a fairly straightforward
 launch option, especially if you are familiar with command lines in
 general from prior work. It’s also perhaps the most portable way to run
 Python programs since nearly every computer has some notion of a command
 line and directory structure. For newcomers, though, here are a few
 pointers about common beginner traps that might help you avoid some
 frustration:
	Beware of automatic extensions on
 Windows and IDLE. If you use the Notepad program to code
 program files on Windows, be careful to pick the type All Files when
 it comes time to save your file, and give the file a
 .py suffix explicitly.
 Otherwise, Notepad will save your file with a .txt extension (e.g., as script1.py.txt), making it difficult to
 use in some schemes; it won’t be importable, for example.
Worse, Windows hides file extensions by default, so unless you
 have changed your view options you may not even notice that you’ve
 coded a text file and not a Python file. The file’s icon may give
 this away—if it doesn’t have a snake of some sort on it, you may
 have trouble. Uncolored code in IDLE and files that open to edit
 instead of run when clicked are other symptoms of this
 problem.
Microsoft Word similarly adds a .doc extension by default; much worse, it
 adds formatting characters that are not legal Python syntax. As a
 rule of thumb, always pick All Files when saving under Windows, or
 use a more programmer-friendly text editor such as IDLE. IDLE does
 not even add a .py suffix automatically—a feature some
 programmers tend to like, but some users do not.

	Use file extensions and directory
 paths at system prompts, but not for imports. Don’t
 forget to type the full name of your file in system command
 lines—that is, use python
 script1.py rather than python
 script1. By contrast, Python’s import statements, which we’ll meet later
 in this chapter, omit both the .py file suffix and the directory path
 (e.g., import script1). This may
 seem trivial, but confusing these two is a common mistake.
At the system prompt, you are in a system shell, not Python,
 so Python’s module file search rules do not apply. Because of that,
 you must include both the .py
 extension and, if necessary, the full directory path leading to the
 file you wish to run. For instance, to run a file that resides in a
 different directory from the one in which you are working, you would
 typically list its full path (e.g., python
 d:\tests\spam.py). Within Python code, however, you can
 just say import spam and rely on
 the Python module search path to locate your file, as described
 later.

	Use print statements
 in files. Yes, we’ve already been over this, but it is
 such a common mistake that it’s worth repeating at least once here.
 Unlike in interactive coding, you generally must use print statements to see output from
 program files. If you don’t see any output, make sure you’ve said
 “print” in your file. print
 statements are not required in an interactive
 session, since Python automatically echoes expression results;
 prints don’t hurt here, but are
 superfluous typing.

Unix-Style Executable Scripts: #!
Our next launching technique is really a specialized form of the prior, which,
 despite this section’s title, can apply to program files run on both Unix
 and Windows today. Since it has its roots on Unix, let’s begin this story
 there.
Unix Script Basics
If you are going to use Python on a Unix, Linux, or Unix-like system, you can
 also turn files of Python code into executable programs, much as you
 would for programs coded in a shell language such as csh or ksh. Such files are usually called
 executable scripts. In simple terms, Unix-style
 executable scripts are just normal text files containing Python
 statements, but with two special properties:
	Their first line is
 special. Scripts usually start with a line that begins
 with the characters #!
 (often called “hash bang” or “shebang”), followed by the path to the
 Python interpreter on your machine.

	They usually have executable
 privileges. Script files are usually marked as executable
 to tell the operating system that they may be run as top-level
 programs. On Unix systems, a command such as chmod +x
 file.py usually does the trick.

Let’s look at an example for Unix-like systems. Use your text
 editor again to create a file of Python code called brian:
#!/usr/local/bin/python
print('The Bright Side ' + 'of Life...') # + means concatenate for strings
The special line at the top of the file tells the system where the
 Python interpreter lives. Technically, the first line is a Python
 comment. As mentioned earlier, all comments in Python programs start
 with a # and span to the end of the
 line; they are a place to insert extra information for human readers of
 your code. But when a comment such as the first line in this file
 appears, it’s special on Unix because the operating system shell uses it
 to find an interpreter for running the program code in the rest of the
 file.
Also, note that this file is called simply brian, without the .py suffix used for the module file earlier.
 Adding a .py to the name wouldn’t
 hurt (and might help you remember that this is a Python program file),
 but because you don’t plan on letting other modules import the code in
 this file, the name of the file is irrelevant. If you give the file
 executable privileges with a chmod +x
 brian shell command, you can run it from the operating system
 shell as though it were a binary program (for the following, either make
 sure ., the current directory, is in
 your system PATH setting, or run this
 with ./brian):
% brian
The Bright Side of Life...

The Unix env Lookup Trick
On some Unix systems, you can avoid hardcoding the path to the Python
 interpreter in your script file by writing the special first-line
 comment like this:
#!/usr/bin/env python
...script goes here...
When coded this way, the env
 program locates the Python interpreter according to your system search path
 settings (in most Unix shells, by looking in all the directories listed
 in your PATH environment
 variable). This scheme can be more portable, as you don’t need to
 hardcode a Python install path in the first line of all your scripts.
 That way, if your scripts ever move to a new machine, or your Python
 ever moves to a new location, you must update just PATH, not all your scripts.
Provided you have access to env
 everywhere, your scripts will run no matter where Python lives on your
 system. In fact, this env form is
 generally recommended today over even something as generic as /usr/bin/python, because some platforms may
 install Python elsewhere. Of course, this assumes that env lives in the same place everywhere (on
 some machines, it may be in /sbin,
 /bin, or elsewhere); if not, all
 portability bets are off!

The Python 3.3 Windows Launcher: #! Comes to Windows
A note for Windows users running Python 3.2 and earlier:
 the method described here is a Unix trick, and it may not work on your
 platform. Not to worry; just use the basic command-line technique
 explored earlier. List the file’s name on an explicit python command line:1
C:\code> python brian
The Bright Side of Life...
In this case, you don’t need the special #! comment at the top (although Python just
 ignores it if it’s present), and the file doesn’t need to be given
 executable privileges. In fact, if you want to run files portably
 between Unix and Microsoft Windows, your life will probably be simpler
 if you always use the basic command-line approach, not Unix-style
 scripts, to launch programs.
If you’re using Python 3.3 or later, though,
 or have its Windows launcher installed separately, it turns out that
 Unix-style #! lines
 do mean something on Windows too. Besides offering
 the py executable described earlier,
 the new Windows launcher mentioned earlier attempts to parse #! lines to determine which Python version to
 launch to run your script’s code. Moreover, it allows you to give the
 version number in full or partial forms, and recognizes most common Unix
 patterns for this line, including the /usr/bin/env form.
The launcher’s #! parsing
 mechanism is applied when you run scripts from command lines with the
 py program, and when you click Python
 file icons (in which case py is run
 implicitly by filename associations). Unlike Unix, you do not need to
 mark files with executable privileges for this to work on Windows,
 because filename associations achieve similar results.
For example, the first of the following is run by Python 3.X and
 the second by 2.X (without an explicit number, the launcher defaults to
 2.X unless you set a PY_PYTHON environment
 variable):
c:\code> type robin3.py
#!/usr/bin/python3
print('Run', 'away!...') # 3.X function

c:\code> py robin3.py # Run file per #! line version
Run away!...

c:\code> type robin2.py
#!python2
print 'Run', 'away more!...' # 2.X statement

c:\code> py robin2.py # Run file per #! line version
Run away more!...
This works in addition to passing versions on command lines—we saw
 this briefly earlier for starting the interactive prompt, but it works
 the same when launching a script file:
c:\code> py −3.1 robin3.py # Run per command-line argument
Run away!...
The net effect is that the launcher allows Python versions to be
 specified on both a per-file and
 per-command basis, by using #! lines and command-line arguments,
 respectively. At least that’s the very short version of the launcher’s
 story. If you’re using Python 3.3 or later on Windows or may in the
 future, I recommend a side trip to the full launcher story in Appendix B if you haven’t made
 one already.

Clicking File Icons
If you’re not a fan of command lines, you can generally avoid them by launching
 Python scripts with file icon clicks, development GUIs, and other schemes
 that vary per platform. Let’s take a quick look at the first of these
 alternatives here.
Icon-Click Basics
Icon clicks are supported on most platforms in one form or another. Here’s
 a rundown of how these might be structured on your computer:
	Windows icon clicks
	On Windows, the Registry makes opening files with icon clicks easy. When
 installed, Python uses Windows filename
 associations to automatically register itself
 to be the program that opens Python program files when they are
 clicked. Because of that, it is possible to launch the Python
 programs you write by simply clicking (or double-clicking) on
 their file icons with your mouse cursor.
Specifically, a clicked file will be run by one of two
 Python programs, depending on its extension and the Python you’re
 running. In Pythons 3.2 and earlier, .py files are run by python.exe with a console (Command
 Prompt) window, and .pyw
 files are run by pythonw.exe
 without a console. Byte code files are also run by these
 programs if clicked. Per Appendix B, in Python 3.3 and
 later (and where it’s installed separately), the new Window’s launchers’s py.exe and pyw.exe programs serve the same roles,
 opening .py and .pyw files, respectively.

	Non-Windows icon clicks
	On non-Windows systems, you will
 probably be able to perform a similar feat, but the icons, file
 explorer navigation schemes, and more may differ slightly. On
 Mac OS X, for instance, you might use PythonLauncher in the MacPython (or Python N.M) folder of your Applications folder to run by clicking
 in Finder.
On some Linux and other Unix systems, you may need to register the .py extension with your file explorer
 GUI, make your script executable using the #! line
 scheme of the preceding section, or associate the file MIME type
 with an application or command by editing files, installing
 programs, or using other tools. See your file explorer’s
 documentation for more details.

In other words, icon clicks generally work as you’d expect for
 your platform, but be sure to see the platform usage documentation
 “Python Setup and Usage” in Python’s standard manual set for more
 details as needed.

Clicking Icons on Windows
To illustrate, let’s keep using the script we wrote earlier, script1.py, repeated here to minimize page
 flipping:
A first Python script
import sys # Load a library module
print(sys.platform)
print(2 ** 100) # Raise 2 to a power
x = 'Spam!'
print(x * 8) # String repetition
As we’ve seen, you can always run this file from a system command
 line:
C:\code> python script1.py
win32
1267650600228229401496703205376
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
However, icon clicks allow you to run the file without any typing
 at all. To do so, you have to find this file’s icon on your computer. On
 Windows 8, you might right-click the screen’s lower-left corner to open
 a File Explorer. On earlier Windows, you can select Computer (or My
 Computer in XP) in your Start button’s menu. There are additional ways
 to open a file explorer; once you do, work your way down on the
 C drive to your working
 directory.
At this point, you should have a file explorer window similar to
 that captured in Figure 3-1 (Windows 8 is
 being used here). Notice how the icons for Python
 files show up:
	Source files have white backgrounds on Windows.

	Byte code files show with black backgrounds.

Figure 3-1. On Windows, Python program files show up as icons in file
 explorer windows and can automatically be run with a double-click of
 the mouse (though you might not see printed output or error messages
 this way).

Per the prior chapter, I created the byte code file in this figure
 by importing in Python 3.1; 3.2 and later instead store byte code files
 in the __pycache__
 subdirectory also shown here, which I created by importing in 3.3 too.
 You will normally want to click (or otherwise run) the white
 source code files in order to pick up your most
 recent changes, not the byte code files—Python won’t check the source
 code file for changes if you launch byte code directly. To launch the
 file here, simply click on the icon for script1.py.

The input Trick on Windows
Unfortunately, on Windows, the result of clicking on a file icon may not be
 incredibly satisfying. In fact, as it is, this example script might
 generate a perplexing “flash” when clicked—not exactly the sort of
 feedback that budding Python programmers usually hope for! This is not a
 bug, but has to do with the way the Windows version of Python handles
 printed output.
By default, Python generates a pop-up black DOS console window
 (Command Prompt) to serve as a clicked file’s input and output. If a
 script just prints and exits, well, it just prints and exits—the console
 window appears, and text is printed there, but the console window closes
 and disappears on program exit. Unless you are very fast, or your
 machine is very slow, you won’t get to see your output at all. Although
 this is normal behavior, it’s probably not what you had in mind.
Luckily, it’s easy to work around this. If you need your script’s
 output to stick around when you launch it with an icon click, simply put
 a call to the built-in input function
 at the very bottom of the script in 3.X (in 2.X use the
 name raw_input instead:
 see the note ahead). For example:
A first Python script
import sys # Load a library module
print(sys.platform)
print(2 ** 100) # Raise 2 to a power
x = 'Spam!'
print(x * 8) # String repetition
input() # <== ADDED
In general, input reads and
 returns the next line of standard input, waiting if there is none yet
 available. The net effect in this context will be to pause the script,
 thereby keeping the output window shown in Figure 3-2 open until you
 press the Enter key.
Figure 3-2. When you click a program’s icon on Windows, you will be able to
 see its printed output if you include an input call at the very end of
 the script. But you only need to do so in this one context!

Now that I’ve shown you this trick, keep in mind that it is
 usually only required for Windows, and then only if your script prints
 text and exits and only if you will launch the script by clicking its
 file icon. You should add this call to the bottom of your top-level
 files if and only if all of these three conditions apply. There is no
 reason to add this call in any other contexts, such as scripts you’ll
 run in command lines or the IDLE GUI (unless you’re unreasonably fond of
 pressing your computer’s Enter key!).2 That may sound obvious, but it’s been another common
 mistake in live classes.
Before we move ahead, note that the input call applied here is the input
 counterpart of using the print
 function (and 2.X statement) for outputs. It is the simplest way to read
 user input, and it is more general than this example implies. For
 instance, input:
	Optionally accepts a string that will be printed as a prompt
 (e.g., input('Press Enter to
 exit'))

	Returns to your script a line of text read as a string (e.g.,
 nextinput = input())

	Supports input stream redirections at the system shell level
 (e.g., python spam.py <
 input.txt), just as the print statement does for output

We’ll use input in more
 advanced ways later in this text; for instance, Chapter 10 will apply it in an
 interactive loop. For now, it will help you see the output of simple
 scripts that you click to launch.
Note
Version skew note: If you are working in
 Python 2.X, use raw_input() instead
 of input() in this code. The former
 was renamed to the latter in Python 3.X. Technically, 2.X has an
 input function too, but it also
 evaluates strings as though they are program code
 typed into a script, and so will not work in this context (an empty
 string is an error). Python 3.X’s input (and 2.X’s raw_input) simply returns the entered text
 as a character string, unevaluated. To simulate 2.X’s input in 3.X, use eval(input()).
Be aware, though, that because this runs the entered text as
 though it were program code, this may have
 security implications that we’ll largely ignore here, except to say
 that you should trust the source of the entered text; if you don’t,
 stick to just plain input in 3.X
 and raw_input in 2.X.

Other Icon-Click Limitations
Even with the prior section’s input trick, clicking file icons is not
 without its perils. You also may not get to see Python error messages.
 If your script generates an error, the error message text is written to the pop-up console window—which then
 immediately disappears! Worse, adding an input call to your file will not help this
 time because your script will likely abort long before it reaches this
 call. In other words, you won’t be able to tell what went wrong.
When we discuss exceptions later in this
 book, you’ll learn that it is possible to write code to intercept,
 process, and recover from errors so that they do not terminate your
 programs. Watch for the discussion of the try statement later in this book for an
 alternative way to keep the console window from closing on errors. We’ll
 also learn how to redirect printed text to files for later inspection
 when we study print operations.
 Barring such support in your code, though, errors and prints disappear
 for clicked programs.
Because of these limitations, it is probably best to view icon
 clicks as a way to launch programs after they have been debugged, or
 have been instrumented to write their output to a file and catch and
 process any important errors. Especially when you’re starting out, I
 recommend using other techniques—such as system command lines and IDLE
 (discussed further in the section “The IDLE User Interface”)—so that you can see generated
 error messages and view your normal output without resorting to extra
 coding.

Module Imports and Reloads
So far, I’ve been talking about “importing modules” without really explaining
 what this term means. We’ll study modules and larger program architecture
 in depth in Part V, but because imports
 are also a way to launch programs, this section will introduce enough
 module basics to get you started.
Import and Reload Basics
In simple terms, every file of Python source code whose name ends in a
 .py extension is a module. No
 special code or syntax is required to make a file a module: any such
 file will do. Other files can access the items a module defines by
 importing that module—import operations essentially
 load another file and grant access to that file’s contents. The contents
 of a module are made available to the outside world through its
 attributes (a term I’ll define in the next section).
This module-based services model turns out to be the core idea
 behind program architecture in
 Python. Larger programs usually take the form of multiple module files,
 which import tools from other module files. One of the modules is
 designated as the main or top-level file, or
 “script”—the file launched to start the entire program, which runs line
 by line as usual. Below this level, it’s all modules importing
 modules.
We’ll delve into such architectural issues in more detail later in
 this book. This chapter is mostly interested in the fact that import
 operations run the code in a file that is being
 loaded as a final step. Because of this, importing a file is yet another
 way to launch it.
For instance, if you start an interactive session (from a system
 command line or otherwise), you can run the script1.py file you created earlier with a
 simple import (be sure to delete the input line you added in the prior section
 first, or you’ll need to press Enter for no reason):
C:\code> C:\python33\python
>>> import script1
win32
1267650600228229401496703205376
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
This works, but only once per session (really,
 process—a program run) by default. After the first
 import, later imports do nothing, even if you change and save the
 module’s source file again in another window:
...Change script1.py in a text edit window to print 2 ** 16...

>>> import script1
>>> import script1
This is by design; imports are too expensive an operation to
 repeat more than once per file, per program run. As you’ll learn in
 Chapter 22, imports must find
 files, compile them to byte code, and run the code.
If you really want to force Python to run the file again in the
 same session without stopping and restarting the session, you need to
 instead call the reload function
 available in the imp standard library
 module (this function is also a simple built-in in Python 2.X, but not
 in 3.X):
>>> from imp import reload # Must load from module in 3.X (only)
>>> reload(script1)
win32
65536
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
<module 'script1' from '.\\script1.py'>
>>>
The from statement here simply
 copies a name out of a module (more on this soon). The reload function itself loads and runs the
 current version of your file’s code, picking up changes if you’ve
 modified and saved it in another window.
This allows you to edit and pick up new code on the fly within the
 current Python interactive session. In this session, for example, the
 second print statement in script1.py was changed in another window to
 print 2 ** 16 between the time of the
 first import and the reload call—hence the different result.
The reload function expects the
 name of an already loaded module object, so you have to have
 successfully imported a module once before you reload it (if the import
 reported an error, you can’t yet reload and must import again). Notice
 that reload also expects parentheses
 around the module object name, whereas import does not. reload is a function that is
 called, and import is a statement.
That’s why you must pass the module name to reload as an argument in parentheses, and
 that’s why you get back an extra output line when reloading—the last
 output line is just the display representation of the reload call’s return value, a Python module
 object. We’ll learn more about using functions in general in Chapter 16; for now, when you hear “function,”
 remember that parentheses are required to run a call.
Note
Version skew note: Python 3.X moved the
 reload built-in function to the
 imp standard library module. It
 still reloads files as before, but you must import it in order to use
 it. In 3.X, run an import imp and
 use imp.reload(M), or run a
 from imp import reload and use
 reload(M), as shown here. We’ll
 discuss import and from statements in the next section, and
 more formally later in this book.
If you are working in Python 2.X, reload is available as a built-in function,
 so no import is required. In Python 2.6 and 2.7, reload is available in
 both forms—built-in and module function—to aid
 the transition to 3.X. In other words, reloading is still available in
 3.X, but an extra line of code is required to fetch the reload call.
The move in 3.X was likely motivated in part by some well-known
 issues involving reload and
 from statements that we’ll
 encounter in the next section. In short, names loaded with a from are not directly updated by a reload, but names accessed with an import statement are. If your names don’t
 seem to change after a reload, try
 using import and
 module.attribute name
 references instead.

The Grander Module Story: Attributes
Imports and reloads provide a natural program launch option because
 import operations execute files as a last step. In the broader scheme of
 things, though, modules serve the role of libraries
 of tools, as you’ll learn in detail in Part V. The basic idea is straightforward,
 though: a module is mostly just a package of variable names, known
 as a namespace, and the names within
 that package are called attributes. An attribute is simply a variable name that is attached to a specific object (like a
 module).
In more concrete terms, importers gain access to all the names
 assigned at the top level of a module’s file. These names are usually
 assigned to tools exported by the module—functions, classes, variables,
 and so on—that are intended to be used in other files and other
 programs. Externally, a module file’s names can be fetched with two
 Python statements, import and
 from, as well as the reload call.
To illustrate, use a text editor to create a one-line Python
 module file called myfile.py in
 your working directory, with the following contents:
title = "The Meaning of Life"
This may be one of the world’s simplest Python modules (it
 contains a single assignment statement), but it’s enough to illustrate
 the point. When this file is imported, its code is run to generate the
 module’s attribute. That is, the assignment statement creates a variable
 and module attribute named title.
You can access this module’s title attribute in other components in two
 different ways. First, you can load the module as a whole with an
 import statement, and then
 qualify the module name with the attribute name to
 fetch it (note that we’re letting the interpreter print automatically
 here):
% python # Start Python
>>> import myfile # Run file; load module as a whole
>>> myfile.title # Use its attribute names: '.' to qualify
'The Meaning of Life'
In general, the dot expression syntax
 object.attribute lets you
 fetch any attribute attached to any object, and is one of the most
 common operations in Python code. Here, we’ve used it to access the
 string variable title inside the
 module myfile—in other words,
 myfile.title.
Alternatively, you can fetch (really, copy) names out of a module
 with from statements:
% python # Start Python
>>> from myfile import title # Run file; copy its names
>>> title # Use name directly: no need to qualify
'The Meaning of Life'
As you’ll see in more detail later, from is just like an import, with an extra assignment to names in
 the importing component. Technically, from copies a module’s
 attributes, such that they become simple
 variables in the recipient—thus, you can simply
 refer to the imported string this time as title (a variable) instead of myfile.title (an attribute
 reference).3
Whether you use import or
 from to invoke an import operation,
 the statements in the module file myfile.py are executed, and the importing
 component (here, the interactive prompt) gains access to names assigned
 at the top level of the file. There’s only one such name in this simple
 example—the variable title, assigned
 to a string—but the concept will be more useful when you start defining
 objects such as functions and classes in your modules: such objects
 become reusable software components that can be
 accessed by name from one or more client modules.
In practice, module files usually define more than one name to be
 used in and outside the files. Here’s an example that defines
 three:
a = 'dead' # Define three attributes
b = 'parrot' # Exported to other files
c = 'sketch'
print(a, b, c) # Also used in this file (in 2.X: print a, b, c)
This file, threenames.py,
 assigns three variables, and so generates three attributes for the
 outside world. It also uses its own three variables in a 3.X print statement, as we see when we run this as
 a top-level file (in Python 2.X print
 differs slightly, so omit its outer parenthesis to match the output here
 exactly; watch for a more complete explanation of this in Chapter 11):
% python threenames.py
dead parrot sketch
All of this file’s code runs as usual the first time it is
 imported elsewhere, by either an import or from. Clients of this file that use import get a module with attributes, while
 clients that use from get copies of
 the file’s names:
% python
>>> import threenames # Grab the whole module: it runs here
dead parrot sketch
>>>
>>> threenames.b, threenames.c # Access its attributes
('parrot', 'sketch')
>>>
>>> from threenames import a, b, c # Copy multiple names out
>>> b, c
('parrot', 'sketch')
The results here are printed in parentheses because they are
 really tuples—a kind of object
 created by the comma in the inputs (and covered in the next part of this
 book)—that you can safely ignore for now.
Once you start coding modules with multiple names like this, the
 built-in dir function starts to come
 in handy—you can use it to fetch a list of all the names available
 inside a module. The following returns a Python list of strings in
 square brackets (we’ll start studying lists in the next chapter):
>>> dir(threenames)
['__builtins__', '__doc__', '__file__', '__name__', '__package__', 'a', 'b', 'c']
The contents of this list have been edited here because they vary
 per Python version. The point to notice here is that when the dir function is called with the name of an
 imported module in parentheses like this, it returns all the attributes
 inside that module. Some of the names it returns are names you get “for
 free”: names with leading and trailing double underscores (__X__) are built-in names that are always
 predefined by Python and have special meaning to the interpreter, but
 they aren’t important at this point in this book. The variables our code
 defined by assignment—a, b, and c—show up last in the dir result.
Modules and namespaces
Module imports are a way to run files of code, but, as we’ll expand on
 later in the book, modules are also the largest program structure in
 Python programs, and one of the first key concepts in the
 language.
As we’ve seen, Python programs are composed of multiple module
 files linked together by import statements, and each module file is a
 package of variables—that is, a namespace. Just as importantly,
 each module is a self-contained namespace: one
 module file cannot see the names defined in another file unless it
 explicitly imports that other file. Because of this, modules serve to
 minimize name collisions in your
 code—because each file is a self-contained namespace, the names in one
 file cannot clash with those in another, even if they are spelled the
 same way.
In fact, as you’ll see, modules are one of a handful of ways
 that Python goes to great lengths to package your variables into compartments to avoid name clashes. We’ll
 discuss modules and other namespace constructs—including local scopes
 defined by classes and functions—further later in the book. For now,
 modules will come in handy as a way to run your code many times
 without having to retype it, and will prevent your file’s names from
 accidentally replacing each other.
Note
import versus from: I should point out
 that the from statement in a
 sense defeats the namespace partitioning purpose of modules—because
 the from copies variables from
 one file to another, it can cause same-named variables in the
 importing file to be overwritten, and won’t warn you if it does.
 This essentially collapses namespaces together, at least in terms of
 the copied variables.
Because of this, some recommend always using import instead of from. I won’t go that far, though; not
 only does from involve less
 typing (an asset at the interactive prompt), but its purported
 problem is relatively rare in practice. Besides, this is something
 you control by listing the variables you want
 in the from; as long as you
 understand that they’ll be assigned to values in the target module,
 this is no more dangerous than coding assignment statements—another
 feature you’ll probably want to use!

Usage Notes: import and reload
For some reason, once people find out about running files using import and reload, many tend to focus on this alone and
 forget about other launch options that always run the current version of
 the code (e.g., icon clicks, IDLE menu options, and system command
 lines). This approach can quickly lead to confusion, though—you need to
 remember when you’ve imported to know if you can reload, you need to
 remember to use parentheses when you call reload (only), and you need to remember to use
 reload in the first place to get the
 current version of your code to run. Moreover, reloads aren’t
 transitive—reloading a module reloads that module only, not any modules
 it may import—so you sometimes have to reload multiple files.
Because of these complications (and others we’ll explore later,
 including the reload/from issue mentioned briefly in a prior note
 in this chapter), it’s generally a good idea to avoid the temptation to
 launch by imports and reloads for now. The IDLE Run→Run Module menu
 option described in the next section, for example, provides a simpler
 and less error-prone way to run your files, and always runs the current
 version of your code. System shell command lines offer similar benefits.
 You don’t need to use reload if you
 use any of these other techniques.
In addition, you may run into trouble if you use modules in
 unusual ways at this point in the book. For instance, if you want to
 import a module file that is stored in a directory other than the one
 you’re working in, you’ll have to skip ahead to Chapter 22 and learn about the
 module search path. For now, if you must import, try to keep all your files in the
 directory you are working in to avoid complications.4
That said, imports and reloads have proven to be a popular testing
 technique in Python classes, and you may prefer using this approach too.
 As usual, though, if you find yourself running into a wall, stop running
 into a wall!

Using exec to Run Module Files
Strictly speaking, there are more ways to run code stored in module files than
 have yet been presented here. For instance, the exec(open('module.py').read()) built-in function
 call is another way to launch files from the interactive prompt without
 having to import and later reload. Each such exec runs the current
 version of the code read from a file, without requiring later reloads
 (script1.py is as we left it after a
 reload in the prior section):
% python
>>> exec(open('script1.py').read())
win32
65536
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!

...Change script1.py in a text edit window to print 2 ** 32...

>>> exec(open('script1.py').read())
win32
4294967296
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
The exec call has an effect
 similar to an import, but it doesn’t actually import the module—by
 default, each time you call exec this
 way it runs the file’s code anew, as though you had pasted it in at the
 place where exec is called. Because of
 that, exec does not require module
 reloads after file changes—it skips the normal module import logic.
On the downside, because it works as if you’ve pasted code into the
 place where it is called, exec, like the
 from statement mentioned earlier, has
 the potential to silently overwrite variables you may currently be using.
 For example, our script1.py assigns
 to a variable named x. If that name is
 also being used in the place where exec
 is called, the name’s value is replaced:
>>> x = 999
>>> exec(open('script1.py').read()) # Code run in this namespace by default
...same output...
>>> x # Its assignments can overwrite names here
'Spam!'
By contrast, the basic import
 statement runs the file only once per process, and it makes the file a
 separate module namespace so that its assignments will not change
 variables in your scope. The price you pay for the namespace partitioning
 of modules is the need to reload after changes.
Note
Version skew note: Python 2.X also includes
 an execfile('module.py') built-in
 function, in addition to allowing the form exec(open('module.py')), which both
 automatically read the file’s content. Both of these are equivalent to
 the exec(open('module.py').read())
 form, which is more complex but runs in both 2.X and 3.X.
Unfortunately, neither of these two simpler 2.X forms is available
 in 3.X, which means you must understand both files and their read
 methods to fully understand this technique today (this seems to be a
 case of aesthetics trouncing practicality in 3.X). In fact, the exec form in 3.X involves so much typing that
 the best advice may simply be not to do it—it’s usually easier to launch
 files by typing system shell command lines or by using the IDLE menu
 options described in the next section.
For more on the file interfaces used by the 3.X exec form, see Chapter 9. For more on
 exec and its cohorts, eval and compile, see Chapter 10 and Chapter 25.

The IDLE User Interface
So far, we’ve seen how to run Python code with the interactive prompt,
 system command lines, Unix-style scripts, icon clicks, module imports, and
 exec calls. If you’re looking for
 something a bit more visual, IDLE provides a
 graphical user interface for doing Python development, and it’s a standard
 and free part of the Python system. IDLE is usually referred to as an integrated development
 environment (IDE), because it binds together various
 development tasks into a single view.5
In short, IDLE is a desktop GUI that lets you edit, run, browse, and
 debug Python programs, all from a single interface. It runs portably on
 most Python platforms, including Microsoft Windows, X Windows (for Linux,
 Unix, and Unix-like platforms), and the Mac OS (both Classic and OS X).
 For many, IDLE represents an easy-to-use alternative to typing command
 lines, a less problem-prone alternative to clicking on icons, and a great
 way for newcomers to get started editing and running code. You’ll
 sacrifice some control in the bargain, but this typically becomes
 important later in your Python career.
IDLE Startup Details
Most readers should be able to use IDLE immediately, as it is a standard
 component on Mac OS X and most Linux installations today, and is
 installed automatically with standard Python on Windows. Because
 platforms specifics vary, though, I need to give a few pointers before
 we open the GUI.
Technically, IDLE is a Python program that uses the standard
 library’s tkinter GUI toolkit (named Tkinter in Python
 2.X) to build its windows. This makes IDLE portable—it works the same on
 all major desktop platforms—but it also means that you’ll need to have
 tkinter support in your Python to use IDLE. This support is standard on
 Windows, Macs, and Linux, but it comes with a few caveats on some
 systems, and startup can vary per platform. Here are a few
 platform-specific tips:
	On Windows 7 and earlier, IDLE is easy to start—it’s always present
 after a Python install, and has an entry in the Start button menu
 for Python in Windows 7 and earlier (see Figure 2-1, shown
 previously). You can also select it by right-clicking on a Python
 program icon, and launch it by clicking on the icon for the files
 idle.pyw or idle.py located in the idlelib subdirectory of Python’s
 Lib directory. In this mode,
 IDLE is a clickable Python script that lives in C:\Python33\Lib\idlelib, C:\Python27\Lib\idlelib, or similar,
 which you can drag out to a shortcut for one-click access if
 desired.

	On Windows 8, look for IDLE in your Start
 tiles, by a search for “idle,” by browsing your “All apps” Start
 screen display, or by using File Explorer to find the idle.py file mentioned earlier. You may
 want a shortcut here, as you have no Start button menu in desktop
 mode (at least today; see Appendix A for more
 pointers).

	On Mac OS X everything required for IDLE is present as standard components in
 your operating system. IDLE should be available to launch in
 Applications under the
 MacPython (or Python N.M) program folder. One note
 here: some OS X versions may require installing updated tkinter
 support due to subtle version dependencies I’ll spare readers from
 here; see python.org’s Download page for details.

	On Linux IDLE is also usually present as a standard component today. It might take
 the form of an idle executable
 or script in your path; type this in a shell to check. On some
 machines, it may require an install (see Appendix A for pointers), and on
 others you may need to launch IDLE’s top-level script from a command
 line or icon click: run the file idle.py located in the idlelib subdirectory of Python’s
 /usr/lib directory (run a
 find for the exact
 location).

Because IDLE is just a Python script on the module search path in
 the standard library, you can also generally run it on any platform and
 from any directory by typing the following in a system command shell
 window (e.g., in a Command Prompt on Windows), though you’ll have to see
 Appendix A for more on Python’s
 –m flag, and Part V for more on the “.” package syntax
 required here (blind trust will suffice at this point in the
 book):
c:\code> python -m idlelib.idle # Run idle.py in a package on module path
For more on install issues and usage notes for Windows and other
 platforms, be sure to see both Appendix A as well as the notes for
 your platform in “Python Setup and Usage” in Python’s standard
 manuals.

IDLE Basic Usage
Let’s jump into an example. Figure 3-3 shows the scene
 after you start IDLE on Windows. The Python shell window that opens
 initially is the main window, which runs an interactive session (notice
 the >>> prompt). This works
 like all interactive sessions—code you type here is run immediately
 after you type it—and serves as a testing and experimenting tool.
Figure 3-3. The main Python shell window of the IDLE development GUI, shown
 here running on Windows. Use the File menu to begin (New Window) or
 change (Open...) a source file; use the text edit window’s Run menu to
 run the code in that window (Run Module).

IDLE uses familiar menus with keyboard shortcuts for most of its
 operations. To make a new script file under IDLE,
 use File→New Window: that is, in the main shell window, select the File
 pull-down menu, and pick New Window (New File as of 3.3.3 and 2.7.6) to
 open a new text edit window where you can type, save, and run your
 file’s code. Use File→Open... instead to open a new text edit window
 displaying an existing file’s code to edit and run.
Although it may not show up fully in this book’s graphics, IDLE
 uses syntax-directed colorization for the code
 typed in both the main window and all text edit windows—keywords are one
 color, literals are another, and so on. This helps give you a better
 picture of the components in your code (and can even help you spot
 mistakes—run-on strings are all one color, for example).
To run a file of code that you are editing in
 IDLE, use Run→Run Module in that file’s text edit window. That is,
 select the file’s text edit window, open that window’s
 Run pull-down menu, and choose the Run
 Module option listed there (or use the equivalent keyboard
 shortcut, given in the menu). Python will let you know that you need to
 save your file first if you’ve changed it since it was opened or last
 saved and forgot to save your changes—a common mistake when you’re
 knee-deep in coding.
When run this way, the output of your script and any error
 messages it may generate show up back in the main interactive window
 (the Python shell window). In Figure 3-3, for example, the
 three lines after the “RESTART” line near the middle of the window
 reflect an execution of our script1.py file opened in a separate edit
 window. The “RESTART” message tells us that the user-code process was
 restarted to run the edited script and serves to separate script output
 (it does not appear if IDLE is started without a user-code
 subprocess—more on this mode in a moment).

IDLE Usability Features
Like most GUIs, the best way to learn IDLE may be to test-drive it for
 yourself, but some key usage points seem to be less than obvious. For
 example, if you want to repeat prior commands in
 IDLE’s main interactive window, you can use the
 Alt-P key combination to scroll backward through
 the command history, and Alt-N to scroll forward
 (on some Macs, try Ctrl-P and Ctrl-N instead). Your prior commands will
 be recalled and displayed, and may be edited and rerun.
You can also recall commands by positioning the
 cursor on them and clicking and pressing Enter to
 insert their text at the input prompt, or using standard cut-and-paste
 operations, though these techniques tend to involve more steps (and can
 sometimes be triggered accidentally). Outside IDLE, you may be able to
 recall commands in an interactive session with the arrow keys on
 Windows.
Besides command history and syntax
 colorization, IDLE has additional usability
 features such as:
	Auto-indent and unindent for Python code
 in the editor (Backspace goes back one level)

	Word auto-completion while typing,
 invoked by a Tab press

	Balloon help pop ups for a function call
 when you type its opening “(”

	Pop-up selection lists of object
 attributes when you type a “.” after an object’s name and
 either pause or press Tab

Some of these may not work on every platform, and some can be
 configured or disabled if you find that their defaults get in the way of
 your personal coding style.

Advanced IDLE Tools
Besides the basic edit and run functions and the prior section’s
 usability tools, IDLE provides more advanced features, including a
 point-and-click program graphical debugger and an
 object browser. The IDLE debugger is enabled via the Debug menu and the object browser via
 the File menu. The browser allows you to both inspect classes and navigate through the module
 search path to files and objects in files; clicking on a file or object
 opens the corresponding source in a text edit window.
You initiate IDLE debugging by selecting the Debug→Debugger menu
 option in the main window and then starting your script by selecting the
 Run→Run Module option in the text edit window; once the debugger is
 enabled, you can set breakpoints in your code that stop its execution by
 right-clicking on lines in the text edit windows, show variable values,
 and so on. You can also watch program execution when debugging—the
 current line of code is noted as you step through your code.
For simpler debugging operations, you can also right-click with
 your mouse on the text of an error message to quickly jump to the line
 of code where the error occurred—a trick that makes it simple and fast
 to repair and run again. In addition, IDLE’s text editor offers a large
 collection of programmer-friendly tools, including advanced text and
 file search operations we won’t cover here. Because IDLE uses intuitive
 GUI interactions, you should experiment with the system live to get a
 feel for its other tools.

Usage Notes: IDLE
IDLE is free, easy to use, portable, and automatically available on most
 platforms. I generally recommend it to Python newcomers because it
 simplifies some startup details and does not assume prior experience
 with system command lines. However, it is somewhat limited compared to
 more advanced commercial IDEs, and may seem heavier than a command line
 to some. To help you avoid some common pitfalls, here is a list of
 issues that IDLE beginners should bear in mind:
	You must add “.py” explicitly when
 saving your files. I mentioned this when talking about
 files in general, but it’s a common IDLE stumbling block, especially
 for Windows users. IDLE does not automatically add a
 .py extension to filenames when
 files are saved. Be careful to type the .py extension yourself when saving a file
 for the first time. If you don’t, while you will be able to run your
 file from IDLE (and system command lines), you will not be able to
 import it either interactively or from other modules.

	Run scripts by selecting Run→Run
 Module in text edit windows, not by interactive imports and
 reloads. Earlier in this chapter, we saw that it’s
 possible to run a file by importing it interactively.
 However, this scheme can grow complex because it requires you to
 manually reload files after changes. By contrast, using the Run→Run
 Module menu option in IDLE always runs the most current version of
 your file, just like running it using a system shell command line.
 IDLE also prompts you to save your file first, if needed (another
 common mistake outside IDLE).

	You need to reload only modules being
 tested interactively. Like system shell command lines,
 IDLE’s Run→Run Module menu option always runs the current version
 of both the top-level file and any modules it imports.
 Because of this, Run→Run Module eliminates common confusions
 surrounding imports. You need to reload only modules that you are
 importing and testing interactively in IDLE. If you choose to use
 the import and reload technique instead of Run→Run Module, remember
 that you can use the Alt-P/Alt-N key combinations to recall prior
 commands.

	You can customize IDLE. To
 change the text fonts and colors in IDLE, select the Configure
 option in the Options menu of any IDLE window. You can also
 customize key combination actions, indentation settings,
 autocompletions, and more; see IDLE’s Help pull-down menu for more
 hints.

	There is currently no clear-screen
 option in IDLE. This seems to be a frequent request
 (perhaps because it’s an option available in similar IDEs), and it
 might be added eventually. Today, though, there is no way to clear
 the interactive window’s text. If you want the window’s text to go
 away, you can either press and hold the Enter key, or type a Python
 loop to print a series of blank lines (nobody really uses the latter
 technique, of course, but it sounds more high-tech than pressing the
 Enter key!).

	tkinter GUI and threaded programs may
 not work well with IDLE. Because IDLE is a Python/tkinter program, it can hang if you
 use it to run certain types of advanced Python/tkinter programs.
 This has become less of an issue in more recent versions of IDLE
 that run user code in one process and the IDLE GUI itself in
 another, but some programs (especially those that use
 multithreading) might still hang the GUI. Even just calling the
 tkinter quit
 function in your code, the normal way to exit a GUI program, may be
 enough to cause your program’s GUI to hang if run in IDLE (destroy may be better here only). Your
 code may not exhibit such problems, but as a rule of thumb, it’s
 always safe to use IDLE to edit GUI programs but launch them using
 other options, such as icon clicks or system command lines. When in
 doubt, if your code fails in IDLE, try it outside the GUI.

	If connection errors arise, try
 starting IDLE in single-process mode. This issue appears
 to have gone away in recent Pythons, but may still impact readers
 using older versions. Because IDLE requires communication between
 its separate user and GUI processes, it can sometimes have trouble
 starting up on certain platforms (notably, it fails to start
 occasionally on some Windows machines, due to firewall software that
 blocks connections). If you run into such connection errors, it’s
 always possible to start IDLE with a system command line that forces
 it to run in single-process mode without a user-code subprocess and
 therefore avoids communication issues: its -n command-line flag forces this mode. On
 Windows, for example, start a Command Prompt window and run the
 system command line idle.py
 -n from within the directory C:\Python33\Lib\idlelib (cd there first if needed). A python -m idlelib.idle –n command works
 from anywhere (see Appendix A
 for –m).

	Beware of some IDLE usability
 features. IDLE does much to make life easier for
 beginners, but some of its tricks won’t apply outside the IDLE GUI.
 For instance, IDLE runs your scripts in its own interactive
 namespace, so variables in your code show up automatically in the
 IDLE interactive session—you don’t always need to run import commands to access names at the top
 level of files you’ve already run. This can be handy, but it can
 also be confusing, because outside the IDLE environment names must
 always be imported from files explicitly to be used.
When you run a file of code, IDLE also automatically changes
 to that file’s directory and adds it to the
 module import search path—a handy feature that allows you to use
 files and import modules there without search path settings, but
 also something that won’t work the same when you run files outside
 IDLE. It’s OK to use such features, but don’t forget that they are
 IDLE behavior, not Python behavior.

Other IDEs
Because IDLE is free, portable, and a standard part of Python, it’s a nice first
 development tool to become familiar with if you want to use an IDE at all.
 Again, I recommend that you use IDLE for this book’s exercises if you’re
 just starting out, unless you are already familiar with and prefer a
 command-line-based development mode. There are, however, a handful of
 alternative IDEs for Python developers, some of which are substantially
 more powerful and robust than IDLE. Apart from IDLE, here are some of
 Python’s most commonly used IDEs:
	Eclipse and PyDev
	Eclipse is an advanced open source IDE GUI. Originally developed as
 a Java IDE, Eclipse also supports Python development when you
 install the PyDev (or a similar) plug-in. Eclipse is a popular and
 powerful option for Python development, and it goes well beyond
 IDLE’s feature set. It includes support for code completion, syntax
 highlighting, syntax analysis, refactoring, debugging, and more. Its
 downsides are that it is a large system to install and may require
 shareware extensions for some features (this may vary over time).
 Still, when you are ready to graduate from IDLE, the Eclipse/PyDev
 combination is worth your attention.

	Komodo
	A full-featured development environment GUI for Python (and other
 languages), Komodo includes standard syntax coloring, text editing,
 debugging, and other features. In addition, Komodo offers many
 advanced features that IDLE does not, including project files,
 source-control integration, and regular-expression debugging. At
 this writing, Komodo is not free, but see the Web for its current
 status—it is available at http://www.activestate.com from
 ActiveState, which also offers the ActivePython distribution package
 mentioned in Appendix A.

	NetBeans IDE for Python
	NetBeans is a powerful open source development environment GUI
 with support for many advanced features for Python developers: code
 completion, automatic indentation and code colorization, editor
 hints, code folding, refactoring, debugging, code coverage and
 testing, projects, and more. It may be used to develop both CPython
 and Jython code. Like Eclipse, NetBeans requires installation steps
 beyond those of the included IDLE GUI, but it is seen by many as
 more than worth the effort. Search the Web for the latest
 information and links.

	PythonWin
	PythonWin is a free Windows-only IDE for Python that ships as part of
 ActiveState’s ActivePython distribution (and may also be fetched
 separately from http://www.python.org resources). It is roughly like
 IDLE, with a handful of useful Windows-specific extensions added;
 for example, PythonWin has support for COM objects. Today, IDLE is
 probably more advanced than PythonWin (for instance, IDLE’s
 dual-process architecture often prevents it from hanging). However,
 PythonWin still offers tools for Windows developers that IDLE does
 not. See http://www.activestate.com for more
 information.

	Wing, Visual Studio, and others
	Other IDEs are popular among Python developers too, including the mostly commercial
 Wing IDE, Microsoft Visual
 Studio via a plug-in, and PyCharm,
 PyScripter, Pyshield, and
 Spyder—but I do not have space to do justice to
 them here, and more will undoubtedly appear over time. In fact,
 almost every programmer-friendly text editor
 has some sort of support for Python development these days, whether
 it be preinstalled or fetched separately. Emacs and Vim, for
 instance, have substantial Python support.
IDE choices are often subjective, so I encourage you to browse
 to find tools that fit your development style and goals. For more
 information, see the resources available at http://www.python.org or
 search the Web for “Python IDE” or similar. A search for “Python
 editors” today leads you to a wiki page that maintains information
 about dozens of IDE and text-editor options for Python programming.

Other Launch Options
At this point, we’ve seen how to run code typed interactively, and how to
 launch code saved in files in a variety of ways—system command lines, icon
 clicks, imports and execs, GUIs like IDLE, and more. That covers most of
 the techniques in common use, and enough to run the code you’ll see in
 this book. There are additional ways to run Python code, though, most of
 which have special or narrow roles. For completeness and reference, the
 next few sections take a quick look at some of these.
Embedding Calls
In some specialized domains, Python code may be run automatically by an enclosing
 system. In such cases, we say that the Python programs are
 embedded in (i.e., run by) another program. The
 Python code itself may be entered into a text file, stored in a
 database, fetched from an HTML page, parsed from an XML document, and so
 on. But from an operational perspective, another system—not you—may tell
 Python to run the code you’ve created.
Such an embedded execution mode is commonly used to support
 end-user customization—a game program, for instance, might allow for
 play modifications by running user-accessible embedded Python code at
 strategic points in time. Users can modify this type of system by
 providing or changing Python code. Because Python code is interpreted,
 there is no need to recompile the entire system to incorporate the
 change (see Chapter 2 for more on how
 Python code is run).
In this mode, the enclosing system that runs your code might be
 written in C, C++, or even Java when the Jython system is used. As an
 example, it’s possible to create and run strings of Python code from a C
 program by calling functions in the Python runtime API (a set of
 services exported by the libraries created when Python is compiled on
 your machine):
#include <Python.h>
...
Py_Initialize(); // This is C, not Python
PyRun_SimpleString("x = 'brave ' + 'sir robin'"); // But it runs Python code
In this C code snippet, a program coded in the C language embeds
 the Python interpreter by linking in its libraries, and passes it a
 Python assignment statement string to run. C programs may also gain
 access to Python modules and objects and process or execute them using
 other Python API tools.
This book isn’t about Python/C integration, but you should be
 aware that, depending on how your organization plans to use Python, you
 may or may not be the one who actually starts the Python programs you
 create. Regardless, you can usually still use the interactive and
 file-based launching techniques described here to test code in isolation
 from those enclosing systems that may eventually use it.6

Frozen Binary Executables
Frozen binary executables, described in Chapter 2, are packages that combine your
 program’s byte code and the Python interpreter into a single executable
 program. This approach enables Python programs to be launched in the
 same ways that you would launch any other executable program (icon
 clicks, command lines, etc.). While this option works well for delivery
 of products, it is not really intended for use during program
 development; you normally freeze just before shipping (after development
 is finished). See the prior chapter for more on this option.

Text Editor Launch Options
As mentioned previously, although they’re not full-blown IDE GUIs, most
 programmer-friendly text editors have support for editing, and possibly
 running, Python programs. Such support may be built in or fetchable on
 the Web. For instance, if you are familiar with the Emacs text editor,
 you can do all your Python editing and launching from inside that text
 editor. See the text editor resources page at http://www.python.org/editors for
 more details, or search the Web for the phrase “Python editors.”

Still Other Launch Options
Depending on your platform, there may be additional ways that you can
 start Python programs. For instance, on some Macintosh systems you may
 be able to drag Python program file icons onto the Python interpreter
 icon to make them execute, and on some Windows systems you can always
 start Python scripts with the Run... option in the Start menu.
 Additionally, the Python standard library has utilities that allow Python programs
 to be started by other Python programs in separate processes (e.g.,
 os.popen, os.system), and Python scripts might also be
 spawned in larger contexts like the Web (for instance, a web page might
 invoke a script on a server); however, these are beyond the scope of the
 present chapter.

Future Possibilities?
This chapter reflects current practice, but much of the material is
 both platform- and time-specific. Indeed, many of the execution and
 launch details presented arose during the shelf life of this book’s
 various editions. As with program execution options, it’s not impossible
 that new program launch options may arise over time.
New operating systems, and new versions of existing systems, may
 also provide execution techniques beyond those outlined here. In
 general, because Python keeps pace with such changes, you should be able
 to launch Python programs in whatever way makes sense for the machines
 you use, both now and in the future—be that by swiping on tablet PCs and
 smartphones, grabbing icons in a virtual reality, or shouting a script’s
 name over your coworkers’ conversations.
Implementation changes may also impact launch schemes somewhat
 (e.g., a full compiler could produce normal executables that are
 launched much like frozen binaries today). If I knew what the future
 truly held, though, I would probably be talking to a stockbroker instead
 of writing these words!

Which Option Should I Use?
With all these options, true beginners might naturally ask: which one is
 best for me? In general, you should give the IDLE interface a try if you
 are just getting started with Python. It provides a user-friendly GUI
 environment and hides some of the underlying configuration details. It
 also comes with a platform-neutral text editor for coding your scripts,
 and it’s a standard and free part of the Python system.
If, on the other hand, you are an experienced programmer, you might
 be more comfortable with simply the text editor of your choice in one
 window, and another window for launching the programs you edit via system
 command lines and icon clicks (in fact, this is how I develop Python
 programs, but I have a Unix-biased distant past). Because the choice of
 development environments is very subjective, I can’t offer much more in
 the way of universal guidelines. In general, whatever environment you like
 to use will be the best for you to use.
Debugging Python Code
Naturally, none of my readers or students ever have bugs in their
 code (insert smiley here), but for less fortunate
 friends of yours who may, here’s a quick review of the strategies
 commonly used by real-world Python programmers to debug code, for you to
 refer to as you start coding in earnest:
	Do nothing. By this, I
 don’t mean that Python programmers don’t debug their code—but when
 you make a mistake in a Python program, you get a very useful and
 readable error message (you’ll get to see some soon, if you haven’t
 already). If you already know Python, and especially for your own
 code, this is often enough—read the error message, and go fix the
 tagged line and file. For many, this is
 debugging in Python. It may not always be ideal for larger systems
 you didn’t write, though.

	Insert print statements. Probably the main way that Python programmers debug their code (and
 the way that I debug Python code) is to insert print statements and run again. Because
 Python runs immediately after changes, this is usually the quickest
 way to get more information than error messages provide. The
 print statements don’t have to be
 sophisticated—a simple “I am here” or display of variable values is
 usually enough to provide the context you need. Just remember to
 delete or comment out (i.e., add a # before) the debugging prints before you ship your code!

	Use IDE GUI debuggers. For
 larger systems you didn’t write, and for beginners who want to trace
 code in more detail, most Python development GUIs have some sort of
 point-and-click debugging support. IDLE has a debugger too, but it
 doesn’t appear to be used very often in practice—perhaps because it
 has no command line, or perhaps because adding print statements is usually quicker than
 setting up a GUI debugging session. To learn more, see IDLE’s Help,
 or simply try it on your own; its basic interface is described in
 the section “Advanced IDLE Tools”. Other IDEs, such
 as Eclipse, NetBeans, Komodo, and Wing IDE, offer advanced
 point-and-click debuggers as well; see their documentation if you
 use them.

	Use the pdb command-line
 debugger. For ultimate control, Python comes with a source code
 debugger named pdb, available as a module in
 Python’s standard library. In pdb, you type commands to step line by
 line, display variables, set and clear breakpoints, continue to a
 breakpoint or error, and so on. You can launch pdb interactively by
 importing it, or as a top-level script. Either way, because you can
 type commands to control the session, it provides a powerful
 debugging tool. pdb also includes a postmortem function (pdb.pm()) that you can run after an
 exception occurs, to get information from the time of the error. See
 the Python library manual and Chapter 36 for more details on pdb, and
 Appendix A for an example of
 running pdb as a script with Python’s –m command argument.

	Use Python’s –i command-line
 argument. Short of adding prints or running under pdb, you can still see
 what went wrong on errors. If you run your script from a command
 line and pass a -i argument
 between python and the name of
 your script (e.g., python –i
 m.py), Python will enter into its interactive
 interpreter mode (the >>> prompt) when your script
 exits, whether it ends successfully or runs into an error. At this
 point, you can print the final values of variables to get more
 details about what happened in your code because they are in the
 top-level namespace. You can also then import and run the pdb
 debugger for even more context; its postmortem mode will let you
 inspect the latest error if your script failed. Appendix A also shows -i in action.

	Other options. For more
 specific debugging requirements, you can find additional tools in
 the open source domain, including support for multithreaded
 programs, embedded code, and process attachment. The
 Winpdb system, for example, is a standalone debugger with advanced
 debugging support and cross-platform GUI and console
 interfaces.

These options will become more important as we start writing
 larger scripts. Probably the best news on the debugging front, though,
 is that errors are detected and reported in Python, rather than passing
 silently or crashing the system altogether. In fact, errors themselves
 are a well-defined mechanism known as exceptions,
 which you can catch and process (more on exceptions in Part VII). Making mistakes is never fun, of
 course, but take it from someone who recalls when debugging meant
 getting out a hex calculator and poring over piles of memory dump
 printouts: Python’s debugging support makes errors much less painful
 than they might otherwise be.

Chapter Summary
In this chapter, we’ve looked at common ways to launch Python
 programs: by running code typed interactively, and by running code stored
 in files with system command lines, file icon clicks, module imports,
 exec calls, and IDE GUIs such as IDLE.
 We’ve covered a lot of pragmatic startup territory here. This chapter’s
 goal was to equip you with enough information to enable you to start
 writing some code, which you’ll do in the next part of the book. There, we
 will start exploring the Python language itself, beginning with its core
 data types—the objects that are the subjects of your
 programs.
First, though, take the usual chapter quiz to exercise what you’ve
 learned here. Because this is the last chapter in this part of the book,
 it’s followed with a set of more complete exercises that test your mastery
 of this entire part’s topics. For help with the latter set of problems, or
 just for a refresher, be sure to turn to Appendix D after you’ve given the
 exercises a try.

Test Your Knowledge: Quiz
	How can you start an interactive interpreter session?

	Where do you type a system command line to launch a script
 file?

	Name four or more ways to run the code saved in a script
 file.

	Name two pitfalls related to clicking file icons on
 Windows.

	Why might you need to reload a module?

	How do you run a script from within IDLE?

	Name two pitfalls related to using IDLE.

	What is a namespace, and how does it relate to module
 files?

Test Your Knowledge: Answers
	You can start an interactive session on Windows 7 and earlier by
 clicking your Start button, picking the All Programs option, clicking
 the Python entry, and selecting the “Python (command line)” menu
 option. You can also achieve the same effect on Windows and other
 platforms by typing python as a
 system command line in your system’s console window (a Command Prompt
 window on Windows). Another alternative is to launch IDLE, as its main
 Python shell window is an interactive session. Depending on your
 platform and Python, if you have not set your system’s PATH variable to find Python, you may need
 to cd to where Python is installed,
 or type its full directory path instead of just python (e.g., C:\Python33\python on Windows, unless
 you’re using the 3.3 launcher).

	You type system command lines in whatever your platform provides
 as a system console: a Command Prompt window on Windows; an xterm or
 terminal window on Unix, Linux, and Mac OS X; and so on. You type this
 at the system’s prompt, not at the Python interactive interpreter’s
 “>>>” prompt—be careful not to confuse these prompts.

	Code in a script (really, module) file can be run with system
 command lines, file icon clicks, imports and reloads, the exec built-in function, and IDE GUI
 selections such as IDLE’s Run→Run Module menu option. On Unix, they
 can also be run as executables with the #! trick, and some platforms support more
 specialized launching techniques (e.g., drag and drop). In addition,
 some text editors have unique ways to run Python code, some Python
 programs are provided as standalone “frozen binary” executables, and
 some systems use Python code in embedded mode, where it is run
 automatically by an enclosing program written in a language like C,
 C++, or Java. The latter technique is usually done to provide a user
 customization layer.

	Scripts that print and then exit cause the output file to
 disappear immediately, before you can view the output (which is why
 the input trick comes in handy);
 error messages generated by your script also appear in an output
 window that closes before you can examine its contents (which is one
 reason that system command lines and IDEs such as IDLE are better for
 most development).

	Python imports (loads) a module only once per process, by
 default, so if you’ve changed its source code and want to run the new
 version without stopping and restarting Python, you’ll have to reload
 it. You must import a module at least once before you can reload it.
 Running files of code from a system shell command line, via an icon
 click, or via an IDE such as IDLE generally makes this a nonissue, as
 those launch schemes usually run the current version of the source
 code file each time.

	Within the text edit window of the file you wish to run, select
 the window’s Run→Run Module menu option. This runs the window’s source
 code as a top-level script file and displays its output back in the
 interactive Python shell window.

	IDLE can still be hung by some types of programs—especially GUI
 programs that perform multithreading (an advanced technique beyond
 this book’s scope). Also, IDLE has some usability features that can
 burn you once you leave the IDLE GUI: a script’s variables are
 automatically imported to the interactive scope in IDLE and working
 directories are changed when you run a file, for instance, but Python
 itself does not take such steps in general.

	A namespace is just a package of variables (i.e., names). It
 takes the form of an object with attributes in Python. Each module
 file is automatically a namespace—that is, a package of variables
 reflecting the assignments made at the top level of the file.
 Namespaces help avoid name collisions in Python programs: because each
 module file is a self-contained namespace, files must explicitly
 import other files in order to use their names.

Test Your Knowledge: Part I Exercises
It’s time to start doing a little coding on your own. This first exercise
 session is fairly simple, but it’s designed to make sure you’re ready to
 work along with the rest of the book, and a few of its questions hint at
 topics to come in later chapters. Be sure to check “Part I, Getting Started” in Appendix D for the answers; the
 exercises and their solutions sometimes contain supplemental information
 not discussed in the main text, so you should take a peek at the solutions
 even if you manage to answer all the questions on your own.
	Interaction. Using a system command line,
 IDLE, or any other method that works on your platform, start the
 Python interactive command line (>>> prompt), and type the
 expression "Hello World!"
 (including the quotes). The string should be echoed back to you. The
 purpose of this exercise is to get your environment configured to run
 Python. In some scenarios, you may need to first run a cd shell command, type the full path to the
 Python executable, or add its path to your PATH environment variable. If desired, you
 can set PATH in your .cshrc or .kshrc file to make Python permanently
 available on Unix systems; on Windows, the environment variable GUI is
 usually what you want for this. See Appendix A for help with environment
 variable settings.

	Programs. With the text editor of your
 choice, write a simple module file containing the single statement
 print('Hello module world!') and
 store it as module1.py. Now, run
 this file by using any launch option you like: running it in IDLE,
 clicking on its file icon, passing it to the Python interpreter on the
 system shell’s command line (e.g., python
 module1.py), built-in exec calls, imports and reloads, and so on.
 In fact, experiment by running your file with as many of the launch
 techniques discussed in this chapter as you can. Which technique seems
 easiest? (There is no right answer to this, of course.)

	Modules. Start the Python interactive
 command line (>>> prompt)
 and import the module you wrote in exercise 2. Try moving the file to
 a different directory and importing it again from its original
 directory (i.e., run Python in the original directory when you
 import). What happens? (Hint: is there still a module1.pyc byte code file in the original
 directory, or something similar in a __pycache__ subdirectory there?)

	Scripts. If your platform supports it, add
 the #! line to the top of your
 module1.py module file, give the
 file executable privileges, and run it directly as an executable. What
 does the first line need to contain? #! usually only has meaning on Unix, Linux,
 and Unix-like platforms such as Mac OS X; if you’re working on
 Windows, instead try running your file by listing just its name in a
 Command Prompt window without the word “python” before it (this works
 on recent versions of Windows), via the Start→Run... dialog box, or
 similar. If you are using Python 3.3 or the Windows launcher that
 installs with it, experiment with changing your script’s #! line to launch different Python versions
 you may have installed on your computer (or equivalently, work through
 the tutorial in Appendix B).

	Errors and debugging. Experiment with
 typing mathematical expressions and assignments at the Python
 interactive command line. Along the way, type the expressions
 2 ** 500 and 1 / 0, and reference an undefined variable
 name as we did early on in this chapter. What happens?
You may not know it yet, but when you make a mistake, you’re
 doing exception processing: a topic we’ll explore in depth in Part VII. As you’ll learn there, you are
 technically triggering what’s known as the default exception
 handler—logic that prints a standard error message. If you
 do not catch an error, the default handler does and prints the
 standard error message in response.
Exceptions are also bound up with the notion of
 debugging in Python. When you’re first starting
 out, Python’s default error messages on exceptions will probably
 provide as much error-handling support as you need—they give the cause
 of the error, as well as showing the lines in your code that were
 active when the error occurred. For more about debugging, see the
 sidebar “Debugging Python Code”.

	Breaks and cycles. At the Python command
 line, type:
L = [1, 2] # Make a 2-item list
L.append(L) # Append L as a single item to itself
L # Print L: a cyclic/circular object
What happens? In all recent versions of Python, you’ll see a
 strange output that we’ll describe in the solutions appendix, and
 which will make more sense when we study references in the next part
 of the book. If you’re using a Python version older than 1.5.1, a
 Ctrl-C key combination will probably help on most platforms. Why do
 you think your version of Python responds the way it does for this
 code?
Warning
If you do have a Python older than Release 1.5.1 (a hopefully
 rare scenario today!), make sure your machine can stop a program
 with a Ctrl-C key combination of some sort before running this test,
 or you may be waiting a long time. 

	Documentation. Spend at least 15 minutes
 browsing the Python library and language manuals before moving on to
 get a feel for the available tools in the standard library and the
 structure of the documentation set. It takes at least this long to
 become familiar with the locations of major topics in the manual set;
 once you’ve done this, it’s easy to find what you need. You can find
 this manual via the Python Start button entry on some Windows, in the
 Python Docs option on the Help pull-down menu in IDLE, or online at
 http://www.python.org/doc. I’ll also have a few more
 words to say about the manuals and other documentation sources
 available (including PyDoc and the help function) in Chapter 15. If you still have time, go
 explore the Python website, as well as its PyPI third-party extension
 repository. Especially check out the Python.org (http://www.python.org) documentation and search pages;
 they can be crucial resources.

1 As we discussed when exploring command lines, all recent
 Windows versions also let you type just the name of a .py file at the system command line—they
 use the Registry to determine that the file should be opened with
 Python (e.g., typing brian.py
 is equivalent to typing python
 brian.py). This command-line mode is similar in spirit
 to the Unix #!, though it is
 system-wide on Windows, not per-file. It also requires an explicit
 .py extension: filename
 associations won’t work without it. Some
 programs may actually interpret and use a first
 #! line on Windows much like on
 Unix (including Python 3.3’s Windows launcher), but the system shell
 on Windows itself simply ignores it.
2 Conversely, it is also possible to completely suppress the
 pop-up console window (a.k.a. Command Prompt) for clicked files on
 Windows when you don’t want to see printed
 text. Files whose names end in a .pyw extension will display only windows
 constructed by your script, not the default console window.
 .pyw files are simply .py source files that have this special
 operational behavior on Windows. They are mostly used for
 Python-coded user interfaces that build windows of their own, often
 in conjunction with various techniques for saving printed output and
 errors to files. As implied earlier, Python achieves this when it is
 installed by associating a special executable (pythonw.exe in 3.2 and earlier and
 pyw.exe as of 3.3) to open
 .pyw files when clicked.
3 Notice that import and
 from both list the name of the
 module file as simply myfile
 without its .py extension
 suffix. As you’ll learn in Part V,
 when Python looks for the actual file, it knows to include the
 suffix in its search procedure. Again, you must include the .py suffix in system shell command lines,
 but not in import
 statements.
4 If you’re too curious to wait, the short story is that Python
 searches for imported modules in every directory listed in sys.path—a Python list of directory name
 strings in the sys module, which
 is initialized from a PYTHONPATH
 environment variable, plus a set of standard directories. If you
 want to import from a directory other than the one you are working
 in, that directory must generally be listed in your PYTHONPATH setting. For more details, see
 Chapter 22 and Appendix A.
5 IDLE is officially a corruption of IDE, but it’s really named in
 honor of Monty Python member Eric Idle. See Chapter 1 if you’re not sure why.
6 See Programming
 Python (O’Reilly) for more details on embedding Python in
 C/C++. The embedding API can call Python functions directly, load
 modules, and more. Also, note that the Jython system allows Java
 programs to invoke Python code using a Java-based API (a Python
 interpreter class).

Part II. Types and Operations

Chapter 4. Introducing Python Object Types
This chapter begins our tour of the Python language. In an informal
 sense, in Python we do things with stuff.1 “Things” take the form of operations like addition and
 concatenation, and “stuff” refers to the objects on which we perform those
 operations. In this part of the book, our focus is on that
 stuff, and the things our programs
 can do with it.
Somewhat more formally, in Python, data takes the form of objects—either built-in objects
 that Python provides, or objects we create using Python classes or external
 language tools such as C extension libraries. Although we’ll firm up this
 definition later, objects are essentially just pieces of memory, with values
 and sets of associated operations. As we’ll see,
 everything is an object in a Python script. Even simple
 numbers qualify, with values (e.g., 99), and supported operations (addition,
 subtraction, and so on).
Because objects are also the most fundamental notion in Python
 programming, we’ll start this chapter with a survey of Python’s built-in
 object types. Later chapters provide a second pass that fills in details
 we’ll gloss over in this survey. Here, our goal is a brief tour to introduce
 the basics.
The Python Conceptual Hierarchy
Before we get to the code, let’s first establish a clear picture of how this chapter
 fits into the overall Python picture. From a more concrete perspective,
 Python programs can be decomposed into modules, statements, expressions,
 and objects, as follows:
	Programs are composed of modules.

	Modules contain statements.

	Statements contain expressions.

	Expressions create and process
 objects.

The discussion of modules in Chapter 3
 introduced the highest level of this hierarchy. This part’s chapters begin
 at the bottom—exploring both built-in objects and the expressions you can
 code to use them.
We’ll move on to study statements in the next part of the book,
 though we will find that they largely exist to manage the objects we’ll
 meet here. Moreover, by the time we reach classes in the OOP part of this
 book, we’ll discover that they allow us to define new object types of our
 own, by both using and emulating the object types we will explore here.
 Because of all this, built-in objects are a mandatory point
 of embarkation for all Python journeys.
Note
Traditional introductions to programming often stress its three
 pillars of sequence (“Do this, then that”),
 selection (“Do this if that is true”), and
 repetition (“Do this many times”). Python has tools
 in all three categories, along with some for
 definition—of functions and classes. These themes
 may help you organize your thinking early on, but they are a bit
 artificial and simplistic. Expressions such as comprehensions, for
 example, are both repetition and selection; some of these terms have
 other meanings in Python; and many later concepts won’t seem to fit this
 mold at all. In Python, the more strongly unifying principle is
 objects, and what we can do with them. To see why,
 read on.

Why Use Built-in Types?
If you’ve used lower-level languages such as C or C++, you
 know that much of your work centers on implementing
 objects—also known as data structures—to
 represent the components in your application’s domain. You need to lay out
 memory structures, manage memory allocation, implement search and access
 routines, and so on. These chores are about as tedious (and error-prone)
 as they sound, and they usually distract from your program’s real
 goals.
In typical Python programs, most of this grunt work goes away.
 Because Python provides powerful object types as an intrinsic part of the
 language, there’s usually no need to code object implementations before
 you start solving problems. In fact, unless you have a need for special
 processing that built-in types don’t provide, you’re almost always better
 off using a built-in object instead of implementing your own. Here are
 some reasons why:
	Built-in objects make programs easy to
 write. For simple tasks, built-in types are often all you
 need to represent the structure of problem domains. Because you get
 powerful tools such as collections (lists) and search tables
 (dictionaries) for free, you can use them immediately. You can get a
 lot of work done with Python’s built-in object types alone.

	Built-in objects are components of
 extensions. For more complex tasks, you may need to provide
 your own objects using Python classes or C language interfaces. But as
 you’ll see in later parts of this book, objects implemented manually
 are often built on top of built-in types such as lists and
 dictionaries. For instance, a stack data structure may be implemented
 as a class that manages or customizes a built-in list.

	Built-in objects are often more
 efficient than custom data structures. Python’s built-in types employ already optimized data structure
 algorithms that are implemented in C for speed. Although you can write
 similar object types on your own, you’ll usually be hard-pressed to
 get the level of performance built-in object types provide.

	Built-in objects are a standard part of
 the language. In some ways, Python borrows both from
 languages that rely on built-in tools (e.g., LISP) and languages that
 rely on the programmer to provide tool implementations or frameworks
 of their own (e.g., C++). Although you can implement unique object
 types in Python, you don’t need to do so just to get started.
 Moreover, because Python’s built-ins are standard, they’re always the
 same; proprietary frameworks, on the other hand, tend to differ from
 site to site.

In other words, not only do built-in object types make programming
 easier, but they’re also more powerful and efficient than most of what can
 be created from scratch. Regardless of whether you implement new object
 types, built-in objects form the core of every Python program.

Python’s Core Data Types
Table 4-1 previews Python’s
 built-in object types and some of the syntax used to code their
 literals—that is, the expressions that generate
 these objects.2 Some of these types will probably seem familiar if you’ve
 used other languages; for instance, numbers and strings represent numeric
 and textual values, respectively, and file objects provide an interface
 for processing real files stored on your computer.
To some readers, though, the object types in Table 4-1 may be more general and powerful
 than what you are accustomed to. For instance, you’ll find that lists and
 dictionaries alone are powerful data representation tools that obviate
 most of the work you do to support collections and searching in
 lower-level languages. In short, lists provide ordered collections of
 other objects, while dictionaries store objects by key; both lists and
 dictionaries may be nested, can grow and shrink on demand, and may contain objects of any
 type.
Table 4-1. Built-in objects preview	Object
 type	Example
 literals/creation
	Numbers
	1234, 3.1415, 3+4j, 0b111, Decimal(), Fraction()

	Strings
	'spam', "Bob's", b'a\x01c', u'sp\xc4m'

	Lists
	[1, [2, 'three'], 4.5], list(range(10))

	Dictionaries
	{'food': 'spam', 'taste': 'yum'},
 dict(hours=10)

	Tuples
	(1, 'spam', 4, 'U'), tuple('spam'), namedtuple

	Files
	open('eggs.txt'), open(r'C:\ham.bin', 'wb')

	Sets
	set('abc'), {'a', 'b', 'c'}

	Other core
 types
	Booleans, types, None

	Program unit types
	Functions, modules, classes
 (Part IV, Part V, Part VI)

	Implementation-related
 types
	Compiled code, stack
 tracebacks (Part IV, Part VII)

Also shown in Table 4-1,
 program units such as functions, modules, and classes—which we’ll meet in later
 parts of this book—are objects in Python too; they are created with
 statements and expressions such as def,
 class, import, and lambda and may be passed around scripts freely,
 stored within other objects, and so on. Python also provides a set of implementation-related types
 such as compiled code objects, which are generally of interest to tool
 builders more than application developers; we’ll explore these in later
 parts too, though in less depth due to their specialized roles.
Despite its title, Table 4-1 isn’t
 really complete, because everything we process in
 Python programs is a kind of object. For instance, when we perform text
 pattern matching in Python, we create pattern objects, and when we perform
 network scripting, we use socket objects. These other kinds of objects are
 generally created by importing and using functions in library modules—for
 example, in the re and
 socket modules for patterns and
 sockets—and have behavior all their own.
We usually call the other object types in Table 4-1 core data
 types, though, because they are effectively built into the Python
 language—that is, there is specific expression syntax for generating most
 of them. For instance, when you run the following code with characters
 surrounded by quotes:
>>> 'spam'
you are, technically speaking, running a literal expression that
 generates and returns a new string object. There is specific
 Python language syntax to make this object. Similarly, an expression
 wrapped in square brackets makes a list, one in curly braces makes
 a dictionary, and so on. Even though, as we’ll see, there are no type
 declarations in Python, the syntax of the expressions you run determines
 the types of objects you create and use. In fact, object-generation
 expressions like those in Table 4-1 are
 generally where types originate in the Python language.
Just as importantly, once you create an object, you bind its
 operation set for all time—you can perform only string operations on a
 string and list operations on a list. In formal terms, this means that
 Python is dynamically typed, a model that
 keeps track of types for you automatically instead of requiring
 declaration code, but it is also strongly typed, a constraint that
 means you can perform on an object only operations that are valid for its
 type.
We’ll study each of the object types in Table 4-1 in detail in upcoming chapters.
 Before digging into the details, though, let’s begin by taking a quick
 look at Python’s core objects in action. The rest of this chapter provides
 a preview of the operations we’ll explore in more depth in the chapters
 that follow. Don’t expect to find the full story here—the goal of this
 chapter is just to whet your appetite and introduce some key ideas. Still,
 the best way to get started is to get started, so let’s jump right into
 some real code.

Numbers
If you’ve done any programming or scripting in the past, some of the object
 types in Table 4-1 will probably seem
 familiar. Even if you haven’t, numbers are fairly straightforward.
 Python’s core objects set includes the usual suspects:
 integers that have no fractional part, floating-point
 numbers that do, and more exotic types—complex
 numbers with imaginary parts, decimals
 with fixed precision, rationals with
 numerator and denominator, and full-featured
 sets. Built-in numbers are enough to represent most numeric quantities—from
 your age to your bank balance—but more types are available as third-party
 add-ons.
Although it offers some fancier options, Python’s basic number types
 are, well, basic. Numbers in Python support the normal mathematical operations. For instance, the plus sign (+) performs
 addition, a star (*) is
 used for multiplication, and two stars (**) are used for exponentiation:
>>> 123 + 222 # Integer addition
345
>>> 1.5 * 4 # Floating-point multiplication
6.0
>>> 2 ** 100 # 2 to the power 100, again
1267650600228229401496703205376
Notice the last result here: Python 3.X’s integer type automatically
 provides extra precision for large numbers like this when needed (in 2.X,
 a separate long integer type handles numbers too large for the normal
 integer type in similar ways). You can, for instance, compute 2 to the
 power 1,000,000 as an integer in Python, but you probably shouldn’t try to
 print the result—with more than 300,000 digits, you may be waiting
 awhile!
>>> len(str(2 ** 1000000)) # How many digits in a really BIG number?
301030
This nested-call form works from inside out—first converting the ** result’s number to a string of digits with
 the built-in str function,
 and then getting the length of the resulting string with len. The end result is the number of digits.
 str and len work on many object types; more on both as
 we move along.
On Pythons prior to 2.7 and 3.1, once you start experimenting with
 floating-point numbers, you’re likely to stumble
 across something that may look a bit odd at first glance:
>>> 3.1415 * 2 # repr: as code (Pythons < 2.7 and 3.1)
6.2830000000000004
>>> print(3.1415 * 2) # str: user-friendly
6.283
The first result isn’t a bug; it’s a display issue. It turns out
 that there are two ways to print every object in Python—with full
 precision (as in the first result shown here), and in a user-friendly form
 (as in the second). Formally, the first form is known as an object’s
 as-code repr, and the second is its
 user-friendly str. In older Pythons,
 the floating-point repr sometimes
 displays more precision than you might expect. The difference can also
 matter when we step up to using classes. For now, if something looks odd,
 try showing it with a print built-in
 function call statement.
Better yet, upgrade to Python 2.7 and the latest 3.X, where
 floating-point numbers display themselves more intelligently, usually with
 fewer extraneous digits—since this book is based on Pythons 2.7 and 3.3,
 this is the display form I’ll be showing throughout this book for
 floating-point numbers:
>>> 3.1415 * 2 # repr: as code (Pythons >= 2.7 and 3.1)
6.283
Besides expressions, there are a handful of useful numeric modules
 that ship with Python—modules are just packages of additional tools that we import to use:
>>> import math
>>> math.pi
3.141592653589793
>>> math.sqrt(85)
9.219544457292887
The math module contains more advanced numeric tools as functions, while
 the random module
 performs random-number generation and random selections (here, from a
 Python list coded in square brackets—an ordered
 collection of other objects to be introduced later in this
 chapter):
>>> import random
>>> random.random()
0.7082048489415967
>>> random.choice([1, 2, 3, 4])
1
Python also includes more exotic numeric objects—such as complex,
 fixed-precision, and rational numbers, as well as sets and Booleans—and
 the third-party open source extension domain has even more (e.g., matrixes
 and vectors, and extended precision numbers). We’ll defer discussion of
 these types until later in this chapter and book.
So far, we’ve been using Python much like a simple calculator; to do
 better justice to its built-in types, let’s move on to explore strings.

Strings
Strings are used to record both textual information (your name, for
 instance) as well as arbitrary collections of bytes (such as an image
 file’s contents). They are our first example of what in Python we call
 a sequence—a positionally ordered
 collection of other objects. Sequences maintain a left-to-right order
 among the items they contain: their items are stored and fetched by their
 relative positions. Strictly speaking, strings are sequences of
 one-character strings; other, more general sequence types include
 lists and tuples, covered
 later.
Sequence Operations
As sequences, strings support operations that assume a positional
 ordering among items. For example, if we have a four-character string
 coded inside quotes (usually of the single variety), we can verify its
 length with the built-in len function
 and fetch its components with indexing expressions:
>>> S = 'Spam' # Make a 4-character string, and assign it to a name
>>> len(S) # Length
4
>>> S[0] # The first item in S, indexing by zero-based position
'S'
>>> S[1] # The second item from the left
'p'
In Python, indexes are coded as offsets from the front, and so
 start from 0: the first item is at index 0, the second is at index 1,
 and so on.
Notice how we assign the string to a variable named S here. We’ll go into detail on how this works
 later (especially in Chapter 6),
 but Python variables never need to be declared ahead of time. A variable
 is created when you assign it a value, may be assigned any type of object, and
 is replaced with its value when it shows up in an expression. It must
 also have been previously assigned by the time you use its value. For
 the purposes of this chapter, it’s enough to know that we need to assign
 an object to a variable in order to save it for later use.
In Python, we can also index backward, from the end—positive
 indexes count from the left, and negative indexes count back from the
 right:
>>> S[-1] # The last item from the end in S
'm'
>>> S[-2] # The second-to-last item from the end
'a'
Formally, a negative index is simply added to the string’s length,
 so the following two operations are equivalent (though the first is
 easier to code and less easy to get wrong):
>>> S[-1] # The last item in S
'm'
>>> S[len(S)-1] # Negative indexing, the hard way
'm'
Notice that we can use an arbitrary expression in the square
 brackets, not just a hardcoded number literal—anywhere that Python
 expects a value, we can use a literal, a variable, or any expression we
 wish. Python’s syntax is completely general this way.
In addition to simple positional indexing, sequences also support
 a more general form of indexing known as slicing, which is a
 way to extract an entire section (slice) in a single step. For
 example:
>>> S # A 4-character string
'Spam'
>>> S[1:3] # Slice of S from offsets 1 through 2 (not 3)
'pa'
Probably the easiest way to think of slices is that they are a way
 to extract an entire column from a string in a
 single step. Their general form, X[I:J], means “give me everything in X from offset I up to but not including offset J.” The result is returned in a new object.
 The second of the preceding operations, for instance, gives us all the
 characters in string S from offsets 1
 through 2 (that is, 1 through 3 – 1) as a new string. The effect is to
 slice or “parse out” the two characters in the middle.
In a slice, the left bound defaults to zero, and the right bound
 defaults to the length of the sequence being sliced. This leads to some
 common usage variations:
>>> S[1:] # Everything past the first (1:len(S))
'pam'
>>> S # S itself hasn't changed
'Spam'
>>> S[0:3] # Everything but the last
'Spa'
>>> S[:3] # Same as S[0:3]
'Spa'
>>> S[:-1] # Everything but the last again, but simpler (0:-1)
'Spa'
>>> S[:] # All of S as a top-level copy (0:len(S))
'Spam'
Note in the second-to-last command how negative offsets can be
 used to give bounds for slices, too, and how the last operation
 effectively copies the entire string. As you’ll learn later, there is no
 reason to copy a string, but this form can be useful for sequences like
 lists.
Finally, as sequences, strings also support
 concatenation with the plus sign (joining two strings into a new string)
 and repetition (making a new string by repeating another):
>>> S
'Spam'
>>> S + 'xyz' # Concatenation
'Spamxyz'
>>> S # S is unchanged
'Spam'
>>> S * 8 # Repetition
'SpamSpamSpamSpamSpamSpamSpamSpam'
Notice that the plus sign (+)
 means different things for different objects: addition for numbers, and
 concatenation for strings. This is a general property of Python that
 we’ll call polymorphism later in the book—in sum, the meaning of an operation
 depends on the objects being operated on. As you’ll see when we study
 dynamic typing, this polymorphism property accounts for much of the
 conciseness and flexibility of Python code. Because types aren’t
 constrained, a Python-coded operation can normally work on many
 different types of objects automatically, as long as they support a
 compatible interface (like the +
 operation here). This turns out to be a huge idea in Python; you’ll
 learn more about it later on our tour.

Immutability
Also notice in the prior examples that we were not changing the original
 string with any of the operations we ran on it. Every string operation
 is defined to produce a new string as its result, because strings are
 immutable in Python—they cannot be changed in place
 after they are created. In other words, you can never overwrite the
 values of immutable objects. For example, you can’t change a string by
 assigning to one of its positions, but you can always build a new one
 and assign it to the same name. Because Python cleans up old objects as
 you go (as you’ll see later), this isn’t as inefficient as it may
 sound:
>>> S
'Spam'

>>> S[0] = 'z' # Immutable objects cannot be changed
...error text omitted...
TypeError: 'str' object does not support item assignment

>>> S = 'z' + S[1:] # But we can run expressions to make new objects
>>> S
'zpam'
Every object in Python is classified as either immutable
 (unchangeable) or not. In terms of the core types,
 numbers, strings, and
 tuples are immutable; lists,
 dictionaries, and sets are
 not—they can be changed in place freely, as can most new objects you’ll
 code with classes. This distinction turns out to be crucial in Python
 work, in ways that we can’t yet fully explore. Among other things,
 immutability can be used to guarantee that an object remains constant
 throughout your program; mutable objects’ values can be changed at any
 time and place (and whether you expect it or not).
Strictly speaking, you can change text-based data in
 place if you either expand it into a
 list of individual characters and join it back
 together with nothing between, or use the newer bytearray type
 available in Pythons 2.6, 3.0, and later:
>>> S = 'shrubbery'
>>> L = list(S) # Expand to a list: [...]
>>> L
['s', 'h', 'r', 'u', 'b', 'b', 'e', 'r', 'y']
>>> L[1] = 'c' # Change it in place
>>> ''.join(L) # Join with empty delimiter
'scrubbery'

>>> B = bytearray(b'spam') # A bytes/list hybrid (ahead)
>>> B.extend(b'eggs') # 'b' needed in 3.X, not 2.X
>>> B # B[i] = ord(x) works here too
bytearray(b'spameggs')
>>> B.decode() # Translate to normal string
'spameggs'
The bytearray supports in-place
 changes for text, but only for text whose characters are all at most
 8-bits wide (e.g., ASCII). All other strings are still
 immutable—bytearray
 is a distinct hybrid of immutable bytes
 strings (whose b'...' syntax is
 required in 3.X and optional in 2.X) and mutable
 lists (coded and displayed in []), and we have to learn more about both
 these and Unicode text to fully grasp this code.

Type-Specific Methods
Every string operation we’ve studied so far is really a sequence operation—that
 is, these operations will work on other sequences in Python as well,
 including lists and tuples. In addition to generic sequence operations,
 though, strings also have operations all their own, available as
 methods—functions that are attached to and act upon
 a specific object, which are triggered with a call expression.
For example, the string find method is
 the basic substring search operation (it returns the offset of the
 passed-in substring, or −1 if it is
 not present), and the string replace
 method performs global searches and replacements; both act on the
 subject that they are attached to and called from:
>>> S = 'Spam'
>>> S.find('pa') # Find the offset of a substring in S
1
>>> S
'Spam'
>>> S.replace('pa', 'XYZ') # Replace occurrences of a string in S with another
'SXYZm'
>>> S
'Spam'
Again, despite the names of these string methods, we are not
 changing the original strings here, but creating new strings as the
 results—because strings are immutable, this is the only way this can
 work. String methods are the first line of text-processing tools in
 Python. Other methods split a string into substrings on a delimiter
 (handy as a simple form of parsing), perform case conversions, test the
 content of the string (digits, letters, and so on), and strip whitespace
 characters off the ends of the string:
>>> line = 'aaa,bbb,ccccc,dd'
>>> line.split(',') # Split on a delimiter into a list of substrings
['aaa', 'bbb', 'ccccc', 'dd']

>>> S = 'spam'
>>> S.upper() # Upper- and lowercase conversions
'SPAM'
>>> S.isalpha() # Content tests: isalpha, isdigit, etc.
True

>>> line = 'aaa,bbb,ccccc,dd\n'
>>> line.rstrip() # Remove whitespace characters on the right side
'aaa,bbb,ccccc,dd'
>>> line.rstrip().split(',') # Combine two operations
['aaa', 'bbb', 'ccccc', 'dd']
Notice the last command here—it strips before it splits because
 Python runs from left to right, making a temporary result along the way.
 Strings also support an advanced substitution operation known as formatting, available as
 both an expression (the original) and a string method call (new as of
 2.6 and 3.0); the second of these allows you to omit relative argument
 value numbers as of 2.7 and 3.1:
>>> '%s, eggs, and %s' % ('spam', 'SPAM!') # Formatting expression (all)
'spam, eggs, and SPAM!'

>>> '{0}, eggs, and {1}'.format('spam', 'SPAM!') # Formatting method (2.6+, 3.0+)
'spam, eggs, and SPAM!'

>>> '{}, eggs, and {}'.format('spam', 'SPAM!') # Numbers optional (2.7+, 3.1+)
'spam, eggs, and SPAM!'
Formatting is rich with features, which we’ll postpone discussing
 until later in this book, and which tend to matter most when you must
 generate numeric reports:
>>> '{:,.2f}'.format(296999.2567) # Separators, decimal digits
'296,999.26'
>>> '%.2f | %+05d' % (3.14159, −42) # Digits, padding, signs
'3.14 | −0042'
One note here: although sequence operations are generic, methods
 are not—although some types share some method names, string method
 operations generally work only on strings, and nothing else. As a rule
 of thumb, Python’s toolset is layered: generic operations that span
 multiple types show up as built-in functions or expressions (e.g.,
 len(X), X[0]), but type-specific operations are
 method calls (e.g., aString.upper()). Finding the tools you need
 among all these categories will become more natural as you use Python
 more, but the next section gives a few tips you can use right
 now.

Getting Help
The methods introduced in the prior section are a representative,
 but small, sample of what is available for string objects. In general,
 this book is not exhaustive in its look at object methods. For more
 details, you can always call the built-in dir function.
 This function lists variables assigned in the caller’s scope when called
 with no argument; more usefully, it returns a list of all the attributes
 available for any object passed to it. Because methods are function
 attributes, they will show up in this list. Assuming S is still the string, here are its attributes
 on Python 3.3 (Python 2.X varies slightly):
>>> dir(S)
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__',
'__getnewargs__', '__gt__', '__hash__', '__init__', '__iter__', '__le__',
'__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count',
'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index',
'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower',
'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust',
'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex',
'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith',
'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']
You probably won’t care about the names with double
 underscores in this list until later in the book, when we
 study operator overloading in classes—they represent the implementation of the string
 object and are available to support customization. The __add__ method of strings, for example, is what really performs concatenation; Python maps the first of the following to
 the second internally, though you shouldn’t usually use the second form
 yourself (it’s less intuitive, and might even run slower):
>>> S + 'NI!'
'spamNI!'
>>> S.__add__('NI!')
'spamNI!'
In general, leading and trailing double underscores is the naming
 pattern Python uses for implementation details. The names without the
 underscores in this list are the callable methods on string
 objects.
The dir function simply gives
 the methods’ names. To ask what they do, you can pass them to the help
 function:
>>> help(S.replace)
Help on built-in function replace:

replace(...)
 S.replace(old, new[, count]) -> str

 Return a copy of S with all occurrences of substring
 old replaced by new. If the optional argument count is
 given, only the first count occurrences are replaced.
help is one of a handful of
 interfaces to a system of code that ships with Python known as PyDoc—a tool for extracting
 documentation from objects. Later in the book, you’ll see that PyDoc can
 also render its reports in HTML format for display on a web
 browser.
You can also ask for help on an entire string
 (e.g., help(S)), but you may get more
 or less help than you want to see—information about every string method
 in older Pythons, and probably no help at all in newer versions because
 strings are treated specially. It’s generally better to ask about a
 specific method.
Both dir and help also accept as arguments either a real
 object (like our string S), or the name of a data
 type (like str, list, and dict). The latter form returns the same list
 for dir but shows full type details
 for help, and allows you to ask about
 a specific method via type name (e.g., help on str.replace).
For more details, you can also consult Python’s standard library
 reference manual or commercially published reference books, but dir and help are the first level of documentation in
 Python.

Other Ways to Code Strings
So far, we’ve looked at the string object’s sequence operations and
 type-specific methods. Python also provides a variety of ways for us to
 code strings, which we’ll explore in greater depth later. For instance,
 special characters can be represented as backslash escape sequences, which Python displays in \xNN hexadecimal escape notation, unless they represent printable
 characters:
>>> S = 'A\nB\tC' # \n is end-of-line, \t is tab
>>> len(S) # Each stands for just one character
5

>>> ord('\n') # \n is one character coded as decimal value 10
10

>>> S = 'A\0B\0C' # \0, a binary zero byte, does not terminate string
>>> len(S)
5
>>> S # Non-printables are displayed as \xNN hex escapes
'A\x00B\x00C'
Python allows strings to be enclosed in single or
 double quote characters—they mean the same thing
 but allow the other type of quote to be embedded without an escape (most
 programmers prefer single quotes). It also allows multiline string
 literals enclosed in triple quotes (single or
 double)—when this form is used, all the lines are concatenated together,
 and end-of-line characters are added where line breaks appear. This is a
 minor syntactic convenience, but it’s useful for embedding things like
 multiline HTML, XML, or JSON code in a Python script, and stubbing out
 lines of code temporarily—just add three quotes above and below:
>>> msg = """
aaaaaaaaaaaaa
bbb'''bbbbbbbbbb""bbbbbbb'bbbb
cccccccccccccc
"""
>>> msg
'\naaaaaaaaaaaaa\nbbb\'\'\'bbbbbbbbbb""bbbbbbb\'bbbb\ncccccccccccccc\n'
Python also supports a raw string literal
 that turns off the backslash escape mechanism. Such literals start with
 the letter r and are useful for strings like
 directory paths on Windows (e.g., r'C:\text\new').

Unicode Strings
Python’s strings also come with full Unicode support
 required for processing text in internationalized character sets.
 Characters in the Japanese and Russian alphabets, for example, are
 outside the ASCII set. Such non-ASCII text can show up in web pages,
 emails, GUIs, JSON, XML, or elsewhere. When it does, handling it well
 requires Unicode support. Python has such support built in, but the form
 of its Unicode support varies per Python line, and is one of their most
 prominent differences.
In Python 3.X, the normal str string handles Unicode text (including
 ASCII, which is just a simple kind of Unicode); a distinct bytes string
 type represents raw byte values (including media and encoded text); and
 2.X Unicode literals are supported in 3.3 and later for 2.X
 compatibility (they are treated the same as normal 3.X str
 strings):
>>> 'sp\xc4m' # 3.X: normal str strings are Unicode text
'spÄm'
>>> b'a\x01c' # bytes strings are byte-based data
b'a\x01c'
>>> u'sp\u00c4m' # The 2.X Unicode literal works in 3.3+: just str
'spÄm'
In Python 2.X, the normal str string handles both 8-bit character
 strings (including ASCII text) and raw byte values; a distinct unicode string
 type represents Unicode text; and 3.X bytes literals are supported in
 2.6 and later for 3.X compatibility (they are treated the same as normal
 2.X str strings):
>>> print u'sp\xc4m' # 2.X: Unicode strings are a distinct type
spÄm
>>> 'a\x01c' # Normal str strings contain byte-based text/data
'a\x01c'
>>> b'a\x01c' # The 3.X bytes literal works in 2.6+: just str
'a\x01c'
Formally, in both 2.X and 3.X, non-Unicode strings are sequences
 of 8-bit bytes that print with ASCII characters
 when possible, and Unicode strings are sequences of Unicode code points—identifying
 numbers for characters, which do not necessarily map to single bytes
 when encoded to files or stored in memory. In fact, the notion of bytes
 doesn’t apply to Unicode: some encodings include character code points
 too large for a byte, and even simple 7-bit ASCII text is not stored one
 byte per character under some encodings and memory storage
 schemes:
>>> 'spam' # Characters may be 1, 2, or 4 bytes in memory
'spam'
>>> 'spam'.encode('utf8') # Encoded to 4 bytes in UTF-8 in files
b'spam'
>>> 'spam'.encode('utf16') # But encoded to 10 bytes in UTF-16
b'\xff\xfes\x00p\x00a\x00m\x00'
Both 3.X and 2.X also support the bytearray string type we met earlier, which is essentially a bytes string (a str in 2.X) that supports most of the list
 object’s in-place mutable change operations.
Both 3.X and 2.X also support coding
 non-ASCII characters with \x hexadecimal and short \u and long \U Unicode escapes, as well as file-wide
 encodings declared in program source files. Here’s our non-ASCII
 character coded three ways in 3.X (add a leading “u” and say “print” to
 see the same in 2.X):
>>> 'sp\xc4\u00c4\U000000c4m'
'spÄÄÄm'
What these values mean and how they are used differs between
 text strings, which are the normal string in 3.X
 and Unicode in 2.X, and byte strings, which are
 bytes in 3.X and the normal string in 2.X. All these escapes can be used
 to embed actual Unicode code-point ordinal-value integers in text
 strings. By contrast, byte strings use only \x hexadecimal escapes to embed the encoded
 form of text, not its decoded code point values—encoded bytes are the
 same as code points, only for some encodings and characters:
>>> '\u00A3', '\u00A3'.encode('latin1'), b'\xA3'.decode('latin1')
('£', b'\xa3', '£')
As a notable difference, Python 2.X allows its normal and Unicode
 strings to be mixed in expressions as long as the normal string is all
 ASCII; in contrast, Python 3.X has a tighter model that
 never allows its normal and byte strings to mix
 without explicit conversion:
u'x' + b'y' # Works in 2.X (where b is optional and ignored)
u'x' + 'y' # Works in 2.X: u'xy'

u'x' + b'y' # Fails in 3.3 (where u is optional and ignored)
u'x' + 'y' # Works in 3.3: 'xy'

'x' + b'y'.decode() # Works in 3.X if decode bytes to str: 'xy'
'x'.encode() + b'y' # Works in 3.X if encode str to bytes: b'xy'
Apart from these string types, Unicode processing mostly reduces
 to transferring text data to and from files—text is
 encoded to bytes when stored in a file, and
 decoded into characters (a.k.a. code points) when
 read back into memory. Once it is loaded, we usually process text as
 strings in decoded form only.
Because of this model, though, files are also content-specific in
 3.X: text files implement named encodings and accept and return str strings, but binary
 files instead deal in bytes
 strings for raw binary data. In Python 2.X, normal files’ content is
 str bytes, and a special codecs module
 handles Unicode and represents content with the unicode type.
We’ll meet Unicode again in the files coverage later in this
 chapter, but save the rest of the Unicode story for later in this book.
 It crops up briefly in a Chapter 25
 example in conjunction with currency symbols, but for the most part is
 postponed until this book’s advanced topics part. Unicode is crucial in
 some domains, but many programmers can get by with just a passing
 acquaintance. If your data is all ASCII text, the string and file
 stories are largely the same in 2.X and 3.X. And if you’re new to
 programming, you can safely defer most Unicode details until you’ve
 mastered string basics.

Pattern Matching
One point worth noting before we move on is that none of the string
 object’s own methods support pattern-based text processing. Text pattern
 matching is an advanced tool outside this book’s scope, but readers with
 backgrounds in other scripting languages may be interested to know that
 to do pattern matching in Python, we import a module called re. This
 module has analogous calls for searching, splitting, and replacement,
 but because we can use patterns to specify substrings, we can be much
 more general:
>>> import re
>>> match = re.match('Hello[\t]*(.*)world', 'Hello Python world')
>>> match.group(1)
'Python '
This example searches for a substring that begins with the word
 “Hello,” followed by zero or more tabs or spaces, followed by arbitrary
 characters to be saved as a matched group, terminated by the word
 “world.” If such a substring is found, portions of the substring matched
 by parts of the pattern enclosed in parentheses are available as groups.
 The following pattern, for example, picks out three groups separated by
 slashes or colons, and is similar to splitting by an alternatives
 pattern:
>>> match = re.match('[/:](.*)[/:](.*)[/:](.*)', '/usr/home:lumberjack')
>>> match.groups()
('usr', 'home', 'lumberjack')

>>> re.split('[/:]', '/usr/home:lumberjack')
['', 'usr', 'home', 'lumberjack']
Pattern matching is an advanced text-processing tool by itself,
 but there is also support in Python for even more advanced text and
 language processing, including XML and HTML parsing and natural language
 analysis. We’ll see additional brief examples of patterns and XML
 parsing at the end of Chapter 37, but
 I’ve already said enough about strings for this tutorial, so let’s move
 on to the next type.

Lists
The Python list object is the most general sequence provided by the
 language. Lists are positionally ordered collections of arbitrarily typed
 objects, and they have no fixed size. They are also
 mutable—unlike strings, lists can be modified in place by assignment to
 offsets as well as a variety of list method calls. Accordingly, they
 provide a very flexible tool for representing arbitrary collections—lists
 of files in a folder, employees in a company, emails in your inbox, and so
 on.
Sequence Operations
Because they are sequences, lists support all the sequence operations
 we discussed for strings; the only difference is that the results are
 usually lists instead of strings. For instance, given a three-item
 list:
>>> L = [123, 'spam', 1.23] # A list of three different-type objects
>>> len(L) # Number of items in the list
3
we can index, slice, and so on, just as for strings:
>>> L[0] # Indexing by position
123
>>> L[:-1] # Slicing a list returns a new list
[123, 'spam']

>>> L + [4, 5, 6] # Concat/repeat make new lists too
[123, 'spam', 1.23, 4, 5, 6]
>>> L * 2
[123, 'spam', 1.23, 123, 'spam', 1.23]

>>> L # We're not changing the original list
[123, 'spam', 1.23]

Type-Specific Operations
Python’s lists may be reminiscent of arrays in other
 languages, but they tend to be more powerful. For one thing, they have
 no fixed type constraint—the list we just looked
 at, for example, contains three objects of completely different types
 (an integer, a string, and a floating-point number). Further, lists have
 no fixed size. That is, they can grow and shrink on
 demand, in response to list-specific operations:
>>> L.append('NI') # Growing: add object at end of list
>>> L
[123, 'spam', 1.23, 'NI']

>>> L.pop(2) # Shrinking: delete an item in the middle
1.23
>>> L # "del L[2]" deletes from a list too
[123, 'spam', 'NI']
Here, the list append method
 expands the list’s size and inserts an item at the end; the pop method (or
 an equivalent del statement) then
 removes an item at a given offset, causing the list to shrink. Other
 list methods insert an item at an arbitrary position (insert), remove a given item by value
 (remove), add multiple items at the
 end (extend), and so on. Because
 lists are mutable, most list methods also change the list object in
 place, instead of creating a new one:
>>> M = ['bb', 'aa', 'cc']
>>> M.sort()
>>> M
['aa', 'bb', 'cc']
>>> M.reverse()
>>> M
['cc', 'bb', 'aa']
The list sort method here, for example, orders the list in ascending fashion by
 default, and reverse reverses it—in
 both cases, the methods modify the list directly.

Bounds Checking
Although lists have no fixed size, Python still doesn’t allow us to reference
 items that are not present. Indexing off the end of a list is always a
 mistake, but so is assigning off the end:
>>> L
[123, 'spam', 'NI']

>>> L[99]
...error text omitted...
IndexError: list index out of range

>>> L[99] = 1
...error text omitted...
IndexError: list assignment index out of range
This is intentional, as it’s usually an error to try to assign off
 the end of a list (and a particularly nasty one in the C language, which
 doesn’t do as much error checking as Python). Rather than silently
 growing the list in response, Python reports an error. To grow a list,
 we call list methods such as append
 instead.

Nesting
One nice feature of Python’s core data types is that they support arbitrary
 nesting—we can nest them in any combination, and as
 deeply as we like. For example, we can have a list that contains a
 dictionary, which contains another list, and so on. One immediate
 application of this feature is to represent matrixes, or
 “multidimensional arrays” in Python. A list with nested lists will do
 the job for basic applications (you’ll get “...” continuation-line
 prompts on lines 2 and 3 of the following in some interfaces, but not in
 IDLE):
>>> M = [[1, 2, 3], # A 3 × 3 matrix, as nested lists
 [4, 5, 6], # Code can span lines if bracketed
 [7, 8, 9]]
>>> M
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
Here, we’ve coded a list that contains three other lists. The
 effect is to represent a 3 × 3
 matrix of numbers. Such a structure can be accessed in a variety of
 ways:
>>> M[1] # Get row 2
[4, 5, 6]

>>> M[1][2] # Get row 2, then get item 3 within the row
6
The first operation here fetches the entire second row, and the
 second grabs the third item within that row (it runs left to right, like
 the earlier string strip and split). Stringing together index operations
 takes us deeper and deeper into our nested-object structure.3

Comprehensions
In addition to sequence operations and list methods, Python includes a more
 advanced operation known as a list comprehension
 expression, which turns out to be a powerful way to process
 structures like our matrix. Suppose, for instance, that we need to
 extract the second column of our sample matrix. It’s easy to grab rows
 by simple indexing because the matrix is stored by rows, but it’s almost
 as easy to get a column with a list comprehension:
>>> col2 = [row[1] for row in M] # Collect the items in column 2
>>> col2
[2, 5, 8]

>>> M # The matrix is unchanged
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
List comprehensions derive from set notation; they are a way to build a new list by
 running an expression on each item in a sequence, one at a time, from
 left to right. List comprehensions are coded in square brackets (to tip
 you off to the fact that they make a list) and are composed of an
 expression and a looping construct that share a variable name (row, here). The preceding list comprehension
 means basically what it says: “Give me row[1] for each row in matrix M, in a new list.” The result is a new list
 containing column 2 of the matrix.
List comprehensions can be more complex in practice:
>>> [row[1] + 1 for row in M] # Add 1 to each item in column 2
[3, 6, 9]

>>> [row[1] for row in M if row[1] % 2 == 0] # Filter out odd items
[2, 8]
The first operation here, for instance, adds 1 to each item as it
 is collected, and the second uses an if clause to filter odd numbers out of the
 result using the % modulus expression
 (remainder of division). List comprehensions make new lists of results,
 but they can be used to iterate over any iterable
 object—a term we’ll flesh out later in this preview. Here, for instance,
 we use list comprehensions to step over a hardcoded list of coordinates
 and a string:
>>> diag = [M[i][i] for i in [0, 1, 2]] # Collect a diagonal from matrix
>>> diag
[1, 5, 9]

>>> doubles = [c * 2 for c in 'spam'] # Repeat characters in a string
>>> doubles
['ss', 'pp', 'aa', 'mm']
These expressions can also be used to collect
 multiple values, as long as we wrap those values in a nested collection.
 The following illustrates using range—a built-in that generates successive integers, and requires a
 surrounding list to display all its
 values in 3.X only (2.X makes a physical list all at once):
>>> list(range(4)) # 0..3 (list() required in 3.X)
[0, 1, 2, 3]
>>> list(range(−6, 7, 2)) # −6 to +6 by 2 (need list() in 3.X)
[−6, −4, −2, 0, 2, 4, 6]

>>> [[x ** 2, x ** 3] for x in range(4)] # Multiple values, "if" filters
[[0, 0], [1, 1], [4, 8], [9, 27]]
>>> [[x, x / 2, x * 2] for x in range(−6, 7, 2) if x > 0]
[[2, 1, 4], [4, 2, 8], [6, 3, 12]]
As you can probably tell, list comprehensions, and relatives like
 the map and filter built-in functions, are too involved to cover more formally in this
 preview chapter. The main point of this brief introduction is to
 illustrate that Python includes both simple and advanced tools in its
 arsenal. List comprehensions are an optional feature, but they tend to
 be very useful in practice and often provide a substantial processing
 speed advantage. They also work on any type that is a sequence in
 Python, as well as some types that are not. You’ll hear much more about
 them later in this book.
As a preview, though, you’ll find that in recent Pythons,
 comprehension syntax has been generalized for other roles: it’s not just
 for making lists today. For example, enclosing a comprehension in
 parentheses can also be used to create generators that produce
 results on demand. To illustrate, the sum built-in sums items in a sequence—in this example, summing all items in
 our matrix’s rows on request:
>>> G = (sum(row) for row in M) # Create a generator of row sums
>>> next(G) # iter(G) not required here
6
>>> next(G) # Run the iteration protocol next()
15
>>> next(G)
24
The map built-in can do similar
 work, by generating the results of running items through a function, one
 at a time and on request. Like range,
 wrapping it in list forces it to
 return all its values in Python 3.X; this isn’t needed in 2.X where
 map makes a list of results all at
 once instead, and is not needed in other contexts that iterate
 automatically, unless multiple scans or list-like behavior is also
 required:
>>> list(map(sum, M)) # Map sum over items in M
[6, 15, 24]
In Python 2.7 and 3.X, comprehension syntax can also be used to
 create sets and
 dictionaries:
>>> {sum(row) for row in M} # Create a set of row sums
{24, 6, 15}

>>> {i : sum(M[i]) for i in range(3)} # Creates key/value table of row sums
{0: 6, 1: 15, 2: 24}
In fact, lists, sets, dictionaries, and generators can all be
 built with comprehensions in 3.X and 2.7:
>>> [ord(x) for x in 'spaam'] # List of character ordinals
[115, 112, 97, 97, 109]
>>> {ord(x) for x in 'spaam'} # Sets remove duplicates
{112, 97, 115, 109}
>>> {x: ord(x) for x in 'spaam'} # Dictionary keys are unique
{'p': 112, 'a': 97, 's': 115, 'm': 109}
>>> (ord(x) for x in 'spaam') # Generator of values
<generator object <genexpr> at 0x000000000254DAB0>
To understand objects like generators, sets, and dictionaries,
 though, we must move ahead.

Dictionaries
Python dictionaries are something completely different (Monty Python reference intended)—they
 are not sequences at all, but are instead known as
 mappings. Mappings are also collections of other objects, but they
 store objects by key instead of by relative position.
 In fact, mappings don’t maintain any reliable left-to-right order; they
 simply map keys to associated values. Dictionaries, the only mapping type
 in Python’s core objects set, are also mutable: like lists, they may be
 changed in place and can grow and shrink on demand. Also like lists, they
 are a flexible tool for representing collections, but their more
 mnemonic keys are better suited when a collection’s
 items are named or labeled—fields of a database record, for
 example.
Mapping Operations
When written as literals, dictionaries are coded in curly braces and consist of a series of “key: value”
 pairs. Dictionaries are useful anytime we need to associate a set of
 values with keys—to describe the properties of something, for instance.
 As an example, consider the following three-item dictionary (with keys
 “food,” “quantity,” and “color,” perhaps the details of a hypothetical
 menu item?):
>>> D = {'food': 'Spam', 'quantity': 4, 'color': 'pink'}
We can index this dictionary by key to fetch and change the keys’ associated
 values. The dictionary index operation uses the same syntax as that used
 for sequences, but the item in the square brackets is a key, not a
 relative position:
>>> D['food'] # Fetch value of key 'food'
'Spam'

>>> D['quantity'] += 1 # Add 1 to 'quantity' value
>>> D
{'color': 'pink', 'food': 'Spam', 'quantity': 5}
Although the curly-braces literal form does see use, it is perhaps
 more common to see dictionaries built up in different ways (it’s rare to
 know all your program’s data before your program runs). The following
 code, for example, starts with an empty dictionary and fills it out one
 key at a time. Unlike out-of-bounds assignments in lists, which are
 forbidden, assignments to new dictionary keys create those keys:
>>> D = {}
>>> D['name'] = 'Bob' # Create keys by assignment
>>> D['job'] = 'dev'
>>> D['age'] = 40

>>> D
{'age': 40, 'job': 'dev', 'name': 'Bob'}

>>> print(D['name'])
Bob
Here, we’re effectively using dictionary keys as field names in a
 record that describes someone. In other applications, dictionaries can
 also be used to replace searching operations—indexing a dictionary by
 key is often the fastest way to code a search in Python.
As we’ll learn later, we can also make dictionaries by passing to
 the dict type name either keyword arguments (a special
 name=value syntax in
 function calls), or the result of
 zipping together sequences of keys and values
 obtained at runtime (e.g., from files). Both the following make the same
 dictionary as the prior example and its equivalent {} literal form, though the first tends to
 make for less typing:
>>> bob1 = dict(name='Bob', job='dev', age=40) # Keywords
>>> bob1
{'age': 40, 'name': 'Bob', 'job': 'dev'}

>>> bob2 = dict(zip(['name', 'job', 'age'], ['Bob', 'dev', 40])) # Zipping
>>> bob2
{'job': 'dev', 'name': 'Bob', 'age': 40}
Notice how the left-to-right order of dictionary keys is
 scrambled. Mappings are not positionally ordered,
 so unless you’re lucky, they’ll come back in a different order than you
 typed them. The exact order may vary per Python, but you shouldn’t
 depend on it, and shouldn’t expect yours to match that in this
 book.

Nesting Revisited
In the prior example, we used a dictionary to describe a hypothetical person,
 with three keys. Suppose, though, that the information is more complex.
 Perhaps we need to record a first name and a last name, along with
 multiple job titles. This leads to another application of Python’s
 object nesting in action. The following dictionary, coded all at once as
 a literal, captures more structured information:
>>> rec = {'name': {'first': 'Bob', 'last': 'Smith'},
 'jobs': ['dev', 'mgr'],
 'age': 40.5}
Here, we again have a three-key dictionary at the top (keys
 “name,” “jobs,” and “age”), but the values have become more complex: a
 nested dictionary for the name to support multiple parts, and a nested
 list for the jobs to support multiple roles and future expansion. We can
 access the components of this structure much as we did for our
 list-based matrix earlier, but this time most indexes are dictionary
 keys, not list offsets:
>>> rec['name'] # 'name' is a nested dictionary
{'last': 'Smith', 'first': 'Bob'}

>>> rec['name']['last'] # Index the nested dictionary
'Smith'

>>> rec['jobs'] # 'jobs' is a nested list
['dev', 'mgr']
>>> rec['jobs'][-1] # Index the nested list
'mgr'

>>> rec['jobs'].append('janitor') # Expand Bob's job description in place
>>> rec
{'age': 40.5, 'jobs': ['dev', 'mgr', 'janitor'], 'name': {'last': 'Smith',
'first': 'Bob'}}
Notice how the last operation here expands the nested jobs
 list—because the jobs list is a separate piece of memory from the
 dictionary that contains it, it can grow and shrink freely (object
 memory layout will be discussed further later in this book).
The real reason for showing you this example is to demonstrate the
 flexibility of Python’s core data types. As you can
 see, nesting allows us to build up complex information structures
 directly and easily. Building a similar structure in a low-level
 language like C would be tedious and require much more code: we would
 have to lay out and declare structures and arrays, fill out values, link
 everything together, and so on. In Python, this is all automatic—running
 the expression creates the entire nested object structure for us. In
 fact, this is one of the main benefits of scripting languages like
 Python.
Just as importantly, in a lower-level language we would have to be
 careful to clean up all of the object’s space when we no longer need it.
 In Python, when we lose the last reference to the object—by assigning
 its variable to something else, for example—all of the memory space
 occupied by that object’s structure is automatically cleaned up for
 us:
>>> rec = 0 # Now the object's space is reclaimed
Technically speaking, Python has a feature known as garbage collection that
 cleans up unused memory as your program runs and frees you from having
 to manage such details in your code. In standard Python (a.k.a.
 CPython), the space is reclaimed immediately, as soon as the last
 reference to an object is removed. We’ll study how this works later in
 Chapter 6; for now, it’s enough to
 know that you can use objects freely, without worrying about creating
 their space or cleaning up as you go.
Also watch for a record structure similar to the one we just coded
 in Chapter 8, Chapter 9, and Chapter 27, where we’ll use it to compare and
 contrast lists, dictionaries, tuples, named tuples, and classes—an array
 of data structure options with tradeoffs we’ll cover in full later.4

Missing Keys: if Tests
As mappings, dictionaries support accessing items by key only, with the
 sorts of operations we’ve just seen. In addition, though, they also
 support type-specific operations with method calls
 that are useful in a variety of common use cases. For example, although
 we can assign to a new key to expand a dictionary, fetching a
 nonexistent key is still a mistake:
>>> D = {'a': 1, 'b': 2, 'c': 3}
>>> D
{'a': 1, 'c': 3, 'b': 2}

>>> D['e'] = 99 # Assigning new keys grows dictionaries
>>> D
{'a': 1, 'c': 3, 'b': 2, 'e': 99}

>>> D['f'] # Referencing a nonexistent key is an error
...error text omitted...
KeyError: 'f'
This is what we want—it’s usually a programming error to fetch
 something that isn’t really there. But in some generic programs, we
 can’t always know what keys will be present when we write our code. How
 do we handle such cases and avoid errors? One solution is to test ahead
 of time. The dictionary in membership
 expression allows us to query the existence of a key and
 branch on the result with a Python if
 statement. In the following, be sure to press Enter twice to run the
 if interactively after typing its
 code (as explained in Chapter 3, an empty
 line means “go” at the interactive prompt), and just as for the earlier
 multiline dictionaries and lists, the prompt changes to “...” on some
 interfaces for lines two and beyond:
>>> 'f' in D
False

>>> if not 'f' in D: # Python's sole selection statement
 print('missing')

missing
This book has more to say about the if statement in later chapters, but the form
 we’re using here is straightforward: it consists of the word if, followed by an expression that is
 interpreted as a true or false result, followed by a block of code to
 run if the test is true. In its full form, the if statement can also have an else clause for a default case, and one or
 more elif (“else if”)
 clauses for other tests. It’s the main selection
 statement tool in Python; along with both its ternary if/else
 expression cousin (which we’ll meet in a moment) and the if comprehension filter lookalike we saw
 earlier, it’s the way we code the logic of choices and decisions in our
 scripts.
If you’ve used some other programming languages in the past, you
 might be wondering how Python knows when the if statement ends. I’ll explain Python’s
 syntax rules in depth in later chapters, but in short, if you have more
 than one action to run in a statement block, you simply indent all their
 statements the same way—this both promotes readable code and reduces the
 number of characters you have to type:
>>> if not 'f' in D:
 print('missing')
 print('no, really...') # Statement blocks are indented

missing
no, really...
Besides the in test, there are
 a variety of ways to avoid accessing nonexistent keys in the
 dictionaries we create: the get
 method, a conditional index with a default; the Python 2.X has_key
 method, an in work-alike that is no
 longer available in 3.X; the try
 statement, a tool we’ll first meet in Chapter 10 that catches and recovers
 from exceptions altogether; and the if/else
 ternary (three-part) expression, which is essentially an if statement squeezed onto a single line. Here
 are a few examples:
>>> value = D.get('x', 0) # Index but with a default
>>> value
0
>>> value = D['x'] if 'x' in D else 0 # if/else expression form
>>> value
0
We’ll save the details on such alternatives until a later chapter.
 For now, let’s turn to another dictionary method’s role in a common
 use case.

Sorting Keys: for Loops
As mentioned earlier, because dictionaries are not sequences, they
 don’t maintain any dependable left-to-right order. If we make a
 dictionary and print it back, its keys may come back in a different
 order than that in which we typed them, and may vary per Python version
 and other variables:
>>> D = {'a': 1, 'b': 2, 'c': 3}
>>> D
{'a': 1, 'c': 3, 'b': 2}
What do we do, though, if we do need to impose an ordering on a
 dictionary’s items? One common solution is to grab a list of keys with
 the dictionary keys method,
 sort that with the list sort method, and then step through the result
 with a Python for loop (as for
 if, be sure to press the Enter key
 twice after coding the following for
 loop, and omit the outer parenthesis in the print in Python 2.X):
>>> Ks = list(D.keys()) # Unordered keys list
>>> Ks # A list in 2.X, "view" in 3.X: use list()
['a', 'c', 'b']

>>> Ks.sort() # Sorted keys list
>>> Ks
['a', 'b', 'c']

>>> for key in Ks: # Iterate though sorted keys
 print(key, '=>', D[key]) # <== press Enter twice here (3.X print)

a => 1
b => 2
c => 3
This is a three-step process, although, as we’ll see in later
 chapters, in recent versions of Python it can be done in one step with
 the newer sorted built-in
 function. The sorted call returns the
 result and sorts a variety of object types, in this case sorting
 dictionary keys automatically:
>>> D
{'a': 1, 'c': 3, 'b': 2}

>>> for key in sorted(D):
 print(key, '=>', D[key])

a => 1
b => 2
c => 3
Besides showcasing dictionaries, this use case serves to introduce
 the Python for loop. The for loop is a simple and efficient way to step
 through all the items in a sequence and run a block of code for each
 item in turn. A user-defined loop variable (key, here) is used to reference the current
 item each time through. The net effect in our example is to print the
 unordered dictionary’s keys and values, in sorted-key order.
The for loop, and its more
 general colleague the while loop, are the
 main ways we code repetitive tasks as statements in
 our scripts. Really, though, the for
 loop, like its relative the list comprehension introduced earlier, is a
 sequence operation. It works on any object that is a sequence and, like
 the list comprehension, even on some things that are not. Here, for
 example, it is stepping across the characters in a string, printing the
 uppercase version of each as it goes:
>>> for c in 'spam':
 print(c.upper())

S
P
A
M
Python’s while loop is a more
 general sort of looping tool; it’s not limited to stepping across
 sequences, but generally requires more code to do so:
>>> x = 4
>>> while x > 0:
 print('spam!' * x)
 x -= 1

spam!spam!spam!spam!
spam!spam!spam!
spam!spam!
spam!
We’ll discuss looping statements, syntax, and tools in depth later
 in the book. First, though, I need to confess that this section has not
 been as forthcoming as it might have been. Really, the for loop, and all its cohorts that step
 through objects from left to right, are not just
 sequence operations, they are
 iterable operations—as the next section describes.

Iteration and Optimization
If the last section’s for loop
 looks like the list comprehension expression introduced
 earlier, it should: both are really general iteration tools. In fact,
 both will work on any iterable object that follows the iteration
 protocol—pervasive ideas in Python that underlie all its iteration
 tools.
In a nutshell, an object is iterable if it is
 either a physically stored sequence in memory, or an object that
 generates one item at a time in the context of an iteration operation—a
 sort of “virtual” sequence. More formally, both types of objects are
 considered iterable because they support the iteration
 protocol—they respond to the iter
 call with an object that advances in response to next calls
 and raises an exception when finished producing values.
The generator comprehension expression we saw earlier is such an object: its values
 aren’t stored in memory all at once, but are produced as requested,
 usually by iteration tools. Python file objects
 similarly iterate line by line when used by an iteration tool: file
 content isn’t in a list, it’s fetched on demand. Both are iterable
 objects in Python—a category that expands in 3.X to include core tools
 like range and map. By deferring results as needed, these
 tools can both save memory and minimize delays.
I’ll have more to say about the iteration protocol later in this
 book. For now, keep in mind that every Python tool that scans an object
 from left to right uses the iteration protocol. This is why the sorted call used in the prior section works on
 the dictionary directly—we don’t have to call the keys method to get a sequence because
 dictionaries are iterable objects, with a next that returns successive keys.
It may also help you to see that any list comprehension
 expression, such as this one, which computes the squares of a list of
 numbers:
>>> squares = [x ** 2 for x in [1, 2, 3, 4, 5]]
>>> squares
[1, 4, 9, 16, 25]
can always be coded as an equivalent for loop that builds the result list manually
 by appending as it goes:
>>> squares = []
>>> for x in [1, 2, 3, 4, 5]: # This is what a list comprehension does
 squares.append(x ** 2) # Both run the iteration protocol internally

>>> squares
[1, 4, 9, 16, 25]
Both tools leverage the iteration protocol internally and produce
 the same result. The list comprehension, though, and related functional
 programming tools like map and
 filter, will often run faster than a
 for loop today on some types of code
 (perhaps even twice as fast)—a property that could matter in your
 programs for large data sets. Having said that, though, I should point
 out that performance measures are tricky business in Python because it
 optimizes so much, and they may vary from release to release.
A major rule of thumb in Python is to code for simplicity and
 readability first and worry about performance later, after your program
 is working, and after you’ve proved that there is a genuine performance
 concern. More often than not, your code will be quick enough as it is.
 If you do need to tweak code for performance, though, Python includes
 tools to help you out, including the time and
 timeit modules for timing the speed
 of alternatives, and the profile module for
 isolating bottlenecks.
You’ll find more on these later in this book (see especially Chapter 21’s benchmarking case study) and
 in the Python manuals. For the sake of this preview, let’s move ahead to
 the next core data type.

Tuples
The tuple object (pronounced “toople” or “tuhple,” depending on
 whom you ask) is roughly like a list that cannot be changed—tuples
 are sequences, like lists, but they
 are immutable, like strings.
 Functionally, they’re used to represent fixed collections of items: the
 components of a specific calendar date, for instance. Syntactically, they
 are normally coded in parentheses instead of square brackets, and they
 support arbitrary types, arbitrary nesting, and the usual sequence
 operations:
>>> T = (1, 2, 3, 4) # A 4-item tuple
>>> len(T) # Length
4

>> T + (5, 6) # Concatenation
(1, 2, 3, 4, 5, 6)

>>> T[0] # Indexing, slicing, and more
1
Tuples also have type-specific callable methods as of Python 2.6 and
 3.0, but not nearly as many as lists:
>>> T.index(4) # Tuple methods: 4 appears at offset 3
3
>>> T.count(4) # 4 appears once
1
The primary distinction for tuples is that they cannot be changed
 once created. That is, they are immutable sequences (one-item tuples like
 the one here require a trailing comma):
>>> T[0] = 2 # Tuples are immutable
...error text omitted...
TypeError: 'tuple' object does not support item assignment

>>> T = (2,) + T[1:] # Make a new tuple for a new value
>>> T
(2, 2, 3, 4)
Like lists and dictionaries, tuples support mixed types and nesting,
 but they don’t grow and shrink because they are immutable (the parentheses
 enclosing a tuple’s items can often be omitted, as done here; in contexts
 where commas don’t otherwise matter, the commas are what actually builds a
 tuple):
>>> T = 'spam', 3.0, [11, 22, 33]
>>> T[1]
3.0
>>> T[2][1]
22
>>> T.append(4)
AttributeError: 'tuple' object has no attribute 'append'
Why Tuples?
So, why have a type that is like a list, but supports fewer
 operations? Frankly, tuples are not generally used as often as lists in
 practice, but their immutability is the whole point. If you pass a
 collection of objects around your program as a list, it can be changed
 anywhere; if you use a tuple, it cannot. That is, tuples provide a sort
 of integrity constraint that is convenient in programs larger than those
 we’ll write here. We’ll talk more about tuples later in the book,
 including an extension that builds upon them called named tuples. For now, though,
 let’s jump ahead to our last major core type: the file.

Files
File objects are Python code’s main interface to external files on your
 computer. They can be used to read and write text memos, audio clips,
 Excel documents, saved email messages, and whatever else you happen to
 have stored on your machine. Files are a core type, but they’re something
 of an oddball—there is no specific literal syntax for creating them.
 Rather, to create a file object, you call the built-in open function,
 passing in an external filename and an optional processing mode as
 strings.
For example, to create a text output file, you would pass in its name and the 'w' processing mode
 string to write data:
>>> f = open('data.txt', 'w') # Make a new file in output mode ('w' is write)
>>> f.write('Hello\n') # Write strings of characters to it
6
>>> f.write('world\n') # Return number of items written in Python 3.X
6
>>> f.close() # Close to flush output buffers to disk
This creates a file in the current directory and writes text to it
 (the filename can be a full directory path if you need to access a file
 elsewhere on your computer). To read back what you just wrote, reopen the
 file in 'r' processing mode,
 for reading text input—this is the default if you omit the mode in the
 call. Then read the file’s content into a string, and display it. A file’s
 contents are always a string in your script, regardless of the type of
 data the file contains:
>>> f = open('data.txt') # 'r' (read) is the default processing mode
>>> text = f.read() # Read entire file into a string
>>> text
'Hello\nworld\n'

>>> print(text) # print interprets control characters
Hello
world

>>> text.split() # File content is always a string
['Hello', 'world']
Other file object methods support additional features we don’t have
 time to cover here. For instance, file objects provide more ways of
 reading and writing (read accepts an
 optional maximum byte/character size, readline reads one line at a time, and so on),
 as well as other tools (seek moves to a
 new file position). As we’ll see later, though, the best way to read a
 file today is to not read it at all—files provide an
 iterator that automatically reads line by line in
 for loops and other contexts:
>>> for line in open('data.txt'): print(line)
We’ll meet the full set of file methods later in this book, but if
 you want a quick preview now, run a dir
 call on any open file and a help on any
 of the method names that come back:
>>> dir(f)
[...many names omitted...
'buffer', 'close', 'closed', 'detach', 'encoding', 'errors', 'fileno', 'flush',
'isatty', 'line_buffering', 'mode', 'name', 'newlines', 'read', 'readable',
'readline', 'readlines', 'seek', 'seekable', 'tell', 'truncate', 'writable',
'write', 'writelines']

>>>help(f.seek)
...try it and see...
Binary Bytes Files
The prior section’s examples illustrate file basics that suffice for many
 roles. Technically, though, they rely on either the platform’s Unicode
 encoding default in Python 3.X, or the 8-bit byte nature of files in
 Python 2.X. Text files always encode strings in 3.X, and blindly write
 string content in 2.X. This is irrelevant for the simple ASCII data used
 previously, which maps to and from file bytes unchanged. But for richer
 types of data, file interfaces can vary depending on both content and
 the Python line you use.
As hinted when we met strings earlier, Python 3.X draws a sharp
 distinction between text and binary data in files: text
 files represent content as normal str strings and perform Unicode encoding and decoding automatically when writing
 and reading data, while binary files represent
 content as a special bytes string and
 allow you to access file content unaltered. Python 2.X supports the same
 dichotomy, but doesn’t impose it as rigidly, and its tools
 differ.
For example, binary files are useful for
 processing media, accessing data created by C programs, and so on. To
 illustrate, Python’s struct module
 can both create and unpack packed binary data—raw
 bytes that record values that are not Python objects—to be written to a
 file in binary mode. We’ll study this technique in detail later in the
 book, but the concept is simple: the following creates a binary file in
 Python 3.X (binary files work the same in 2.X, but the “b” string
 literal prefix isn’t required and won’t be displayed):
>>> import struct
>>> packed = struct.pack('>i4sh', 7, b'spam', 8) # Create packed binary data
>>> packed # 10 bytes, not objects or text
b'\x00\x00\x00\x07spam\x00\x08'
>>>
>>> file = open('data.bin', 'wb') # Open binary output file
>>> file.write(packed) # Write packed binary data
10
>>> file.close()
Reading binary data back is essentially symmetric; not all
 programs need to tread so deeply into the low-level realm of bytes, but
 binary files make this easy in Python:
>>> data = open('data.bin', 'rb').read() # Open/read binary data file
>>> data # 10 bytes, unaltered
b'\x00\x00\x00\x07spam\x00\x08'
>>> data[4:8] # Slice bytes in the middle
b'spam'
>>> list(data) # A sequence of 8-bit bytes
[0, 0, 0, 7, 115, 112, 97, 109, 0, 8]
>>> struct.unpack('>i4sh', data) # Unpack into objects again
(7, b'spam', 8)

Unicode Text Files
Text files are used to process all sorts of text-based data, from memos to email
 content to JSON and XML documents. In today’s broader interconnected
 world, though, we can’t really talk about text without also asking “what
 kind?”—you must also know the text’s Unicode encoding type if either it
 differs from your platform’s default, or you can’t rely on that default
 for data portability reasons.
Luckily, this is easier than it may sound. To access files
 containing non-ASCII Unicode text of the sort
 introduced earlier in this chapter, we simply pass in an encoding name
 if the text in the file doesn’t match the default encoding for our
 platform. In this mode, Python text files automatically
 encode on writes and decode on
 reads per the encoding scheme name you provide. In Python
 3.X:
>>> S = 'sp\xc4m' # Non-ASCII Unicode text
>>> S
'spÄm'
>>> S[2] # Sequence of characters
'Ä'

>>> file = open('unidata.txt', 'w', encoding='utf-8') # Write/encode UTF-8 text
>>> file.write(S) # 4 characters written
4
>>> file.close()

>>> text = open('unidata.txt', encoding='utf-8').read() # Read/decode UTF-8 text
>>> text
'spÄm'
>>> len(text) # 4 chars (code points)
4
This automatic encoding and decoding is what you normally want.
 Because files handle this on transfers, you may process text in memory
 as a simple string of characters without concern for its Unicode-encoded
 origins. If needed, though, you can also see what’s truly stored in your
 file by stepping into binary mode:
>>> raw = open('unidata.txt', 'rb').read() # Read raw encoded bytes
>>> raw
b'sp\xc3\x84m'
>>> len(raw) # Really 5 bytes in UTF-8
5
You can also encode and decode manually if you get Unicode data
 from a source other than a file—parsed from an email message or fetched
 over a network connection, for example:
>>> text.encode('utf-8') # Manual encode to bytes
b'sp\xc3\x84m'
>>> raw.decode('utf-8') # Manual decode to str
'spÄm'
This is also useful to see how text files would automatically
 encode the same string differently under different encoding names, and
 provides a way to translate data to different encodings—it’s different
 bytes in files, but decodes to the same string in memory if you provide
 the proper encoding name:
>>> text.encode('latin-1') # Bytes differ in others
b'sp\xc4m'
>>> text.encode('utf-16')
b'\xff\xfes\x00p\x00\xc4\x00m\x00'

>>> len(text.encode('latin-1')), len(text.encode('utf-16'))
(4, 10)

>>> b'\xff\xfes\x00p\x00\xc4\x00m\x00'.decode('utf-16') # But same string decoded
'spÄm'
This all works more or less the same in Python
 2.X, but Unicode strings are coded and display with a leading
 “u,” byte strings don’t require or show a leading “b,” and Unicode text
 files must be opened with codecs.open,
 which accepts an encoding name just like 3.X’s open, and uses the special unicode string to represent content in memory.
 Binary file mode may seem optional in 2.X since normal files are just
 byte-based data, but it’s required to avoid changing line ends if
 present (more on this later in the book):
>>> import codecs
>>> codecs.open('unidata.txt', encoding='utf8').read() # 2.X: read/decode text
u'sp\xc4m'
>>> open('unidata.txt', 'rb').read() # 2.X: read raw bytes
'sp\xc3\x84m'
>>> open('unidata.txt').read() # 2.X: raw/undecoded too
'sp\xc3\x84m'
Although you won’t generally need to care about this distinction
 if you deal only with ASCII text, Python’s strings and files are an
 asset if you deal with either binary data (which includes most types of
 media) or text in internationalized character sets (which includes most
 content on the Web and Internet at large today). Python also supports
 non-ASCII file names (not just content), but it’s
 largely automatic; tools such as walkers and listers offer more control
 when needed, though we’ll defer further details until Chapter 37.

Other File-Like Tools
The open function is the workhorse for most file processing you will do in
 Python. For more advanced tasks, though, Python comes with additional
 file-like tools: pipes, FIFOs, sockets, keyed-access files, persistent
 object shelves, descriptor-based files, relational and object-oriented
 database interfaces, and more. Descriptor files, for instance, support
 file locking and other low-level tools, and sockets provide an interface
 for networking and interprocess communication. We won’t cover many of
 these topics in this book, but you’ll find them useful once you start
 programming Python in earnest.

Other Core Types
Beyond the core types we’ve seen so far, there are others that may
 or may not qualify for membership in the category, depending on how
 broadly it is defined. Sets, for example,
 are a recent addition to the language that are neither mappings
 nor sequences; rather, they are unordered collections of unique and
 immutable objects. You create sets by calling the built-in set function or
 using new set literals and expressions in 3.X and 2.7, and they support
 the usual mathematical set operations (the choice of new {...} syntax for set literals makes sense, since
 sets are much like the keys of a valueless dictionary):
>>> X = set('spam') # Make a set out of a sequence in 2.X and 3.X
>>> Y = {'h', 'a', 'm'} # Make a set with set literals in 3.X and 2.7

>>> X, Y # A tuple of two sets without parentheses
({'m', 'a', 'p', 's'}, {'m', 'a', 'h'})

>>> X & Y # Intersection
{'m', 'a'}
>>> X | Y # Union
{'m', 'h', 'a', 'p', 's'}
>>> X - Y # Difference
{'p', 's'}
>>> X > Y # Superset
False

>>> {n ** 2 for n in [1, 2, 3, 4]} # Set comprehensions in 3.X and 2.7
{16, 1, 4, 9}
Even less mathematically inclined programmers often find sets useful
 for common tasks such as filtering out duplicates, isolating differences,
 and performing order-neutral equality tests without sorting—in lists,
 strings, and all other iterable objects:
>>> list(set([1, 2, 1, 3, 1])) # Filtering out duplicates (possibly reordered)
[1, 2, 3]
>>> set('spam') - set('ham') # Finding differences in collections
{'p', 's'}
>>> set('spam') == set('asmp') # Order-neutral equality ('spam'=='asmp' False)
True
Sets also support in membership
 tests, though all other collection types in Python do too:
>>> 'p' in set('spam'), 'p' in 'spam', 'ham' in ['eggs', 'spam', 'ham']
(True, True, True)
In addition, Python recently grew a few new numeric types:
 decimal numbers, which are fixed-precision floating-point numbers, and
 fraction numbers, which are rational numbers with both a numerator and a denominator.
 Both can be used to work around the limitations and inherent inaccuracies
 of floating-point math:
>>> 1 / 3 # Floating-point (add a .0 in Python 2.X)
0.3333333333333333
>>> (2/3) + (1/2)
1.1666666666666665

>>> import decimal # Decimals: fixed precision
>>> d = decimal.Decimal('3.141')
>>> d + 1
Decimal('4.141')

>>> decimal.getcontext().prec = 2
>>> decimal.Decimal('1.00') / decimal.Decimal('3.00')
Decimal('0.33')

>>> from fractions import Fraction # Fractions: numerator+denominator
>>> f = Fraction(2, 3)
>>> f + 1
Fraction(5, 3)
>>> f + Fraction(1, 2)
Fraction(7, 6)
Python also comes with Booleans (with predefined True and False objects that are essentially just the
 integers 1 and 0 with custom display logic), and it has long supported a
 special placeholder object called None
 commonly used to initialize names and objects:
>>> 1 > 2, 1 < 2 # Booleans
(False, True)
>>> bool('spam') # Object's Boolean value
True

>>> X = None # None placeholder
>>> print(X)
None
>>> L = [None] * 100 # Initialize a list of 100 Nones
>>> L
[None, None, None, None, None, None, None, None, None, None, None, None,
None, None, None, None, None, None, None, None, ...a list of 100 Nones...]
How to Break Your Code’s Flexibility
I’ll have more to say about all of Python’s object types later, but one merits special
 treatment here. The type object, returned by the
 type built-in function, is an object
 that gives the type of another object; its result differs slightly in
 3.X, because types have merged with classes completely (something we’ll
 explore in the context of “new-style” classes in Part VI). Assuming L is still the list of the prior
 section:
In Python 2.X:
>>> type(L) # Types: type of L is list type object
<type 'list'>
>>> type(type(L)) # Even types are objects
<type 'type'>

In Python 3.X:
>>> type(L) # 3.X: types are classes, and vice versa
<class 'list'>
>>> type(type(L)) # See Chapter 32 for more on class types
<class 'type'>
Besides allowing you to explore your objects interactively, the
 type object in its most practical
 application allows code to check the types of the objects it processes.
 In fact, there are at least three ways to do so in a Python
 script:
>>> if type(L) == type([]): # Type testing, if you must...
 print('yes')

yes
>>> if type(L) == list: # Using the type name
 print('yes')

yes
>>> if isinstance(L, list): # Object-oriented tests
 print('yes')

yes
Now that I’ve shown you all these ways to do type testing,
 however, I am required by law to tell you that doing so is almost always
 the wrong thing to do in a Python program (and often a sign of an ex-C
 programmer first starting to use Python!). The reason why won’t become
 completely clear until later in the book, when we start writing larger
 code units such as functions, but it’s a (perhaps
 the) core Python concept. By checking for specific
 types in your code, you effectively break its flexibility—you limit it
 to working on just one type. Without such tests, your code may be able
 to work on a whole range of types.
This is related to the idea of polymorphism mentioned
 earlier, and it stems from Python’s lack of type declarations. As you’ll
 learn, in Python, we code to object interfaces
 (operations supported), not to types. That is, we care what an object
 does, not what it is. Not
 caring about specific types means that code is automatically applicable
 to many of them—any object with a compatible interface will work,
 regardless of its specific type. Although type checking is supported—and
 even required in some rare cases—you’ll see that it’s not usually the
 “Pythonic” way of thinking. In fact, you’ll find that polymorphism is
 probably the key idea behind using Python well.

User-Defined Classes
We’ll study object-oriented programming
 in Python—an optional but powerful feature of the language
 that cuts development time by supporting programming by customization—in
 depth later in this book. In abstract terms, though, classes define new
 types of objects that extend the core set, so they merit a passing
 glance here. Say, for example, that you wish to have a type of object
 that models employees. Although there is no such specific core type in
 Python, the following user-defined class might fit the bill:
>>> class Worker:
 def __init__(self, name, pay): # Initialize when created
 self.name = name # self is the new object
 self.pay = pay
 def lastName(self):
 return self.name.split()[-1] # Split string on blanks
 def giveRaise(self, percent):
 self.pay *= (1.0 + percent) # Update pay in place
This class defines a new kind of object that will have name and pay attributes (sometimes called state information), as well as
 two bits of behavior coded as functions (normally called
 methods). Calling the class like a function
 generates instances of our new type, and the class’s methods
 automatically receive the instance being processed by a given method
 call (in the self argument):
>>> bob = Worker('Bob Smith', 50000) # Make two instances
>>> sue = Worker('Sue Jones', 60000) # Each has name and pay attrs
>>> bob.lastName() # Call method: bob is self
'Smith'
>>> sue.lastName() # sue is the self subject
'Jones'
>>> sue.giveRaise(.10) # Updates sue's pay
>>> sue.pay
66000.0
The implied “self” object is why we call this an
 object-oriented model: there is always an implied
 subject in functions within a class. In a sense, though, the class-based
 type simply builds on and uses core types—a user-defined Worker object here, for example, is just a
 collection of a string and a number (name and pay, respectively), plus functions for
 processing those two built-in objects.
The larger story of classes is that their inheritance mechanism
 supports software hierarchies that lend themselves to customization by
 extension. We extend software by writing new
 classes, not by changing what already works. You should also know that
 classes are an optional feature of Python, and simpler built-in types
 such as lists and dictionaries are often better tools than user-coded
 classes. This is all well beyond the bounds of our introductory
 object-type tutorial, though, so consider this just a preview; for full
 disclosure on user-defined types coded with classes, you’ll have to read
 on. Because classes build upon other tools in Python, they are one of
 the major goals of this book’s journey.

And Everything Else
As mentioned earlier, everything you can process in a Python
 script is a type of object, so our object type tour is necessarily
 incomplete. However, even though everything in Python is an “object,”
 only those types of objects we’ve met so far are considered part of
 Python’s core type set. Other types in Python either are objects related
 to program execution (like functions, modules, classes, and compiled
 code), which we will study later, or are implemented by imported module
 functions, not language syntax. The latter of these also tend to have
 application-specific roles—text patterns, database interfaces, network
 connections, and so on.
Moreover, keep in mind that the objects we’ve met here are
 objects, but not necessarily object-oriented—a
 concept that usually requires inheritance and the Python class statement, which we’ll meet again later in this book. Still, Python’s
 core objects are the workhorses of almost every Python script you’re
 likely to meet, and they usually are the basis of larger noncore
 types.

Chapter Summary
And that’s a wrap for our initial data type tour. This chapter has
 offered a brief introduction to Python’s core object types and the sorts
 of operations we can apply to them. We’ve studied generic operations that
 work on many object types (sequence operations such as indexing and
 slicing, for example), as well as type-specific operations available as
 method calls (for instance, string splits and list appends). We’ve also
 defined some key terms, such as immutability, sequences, and
 polymorphism.
Along the way, we’ve seen that Python’s core object types are more
 flexible and powerful than what is available in lower-level languages such
 as C. For instance, Python’s lists and dictionaries obviate most of the
 work you do to support collections and searching in lower-level languages.
 Lists are ordered collections of other objects, and dictionaries are
 collections of other objects that are indexed by key instead of by
 position. Both dictionaries and lists may be nested, can grow and shrink
 on demand, and may contain objects of any type. Moreover, their space is
 automatically cleaned up as you go. We’ve also seen that strings and files
 work hand in hand to support a rich variety of binary and text
 data.
I’ve skipped most of the details here in order to provide a quick
 tour, so you shouldn’t expect all of this chapter to have made sense yet.
 In the next few chapters we’ll start to dig deeper, taking a second pass
 over Python’s core object types that will fill in details omitted here,
 and give you a deeper understanding. We’ll start off the next chapter with
 an in-depth look at Python numbers. First, though, here is another quiz to
 review.

Test Your Knowledge: Quiz
We’ll explore the concepts introduced in this chapter in more detail in
 upcoming chapters, so we’ll just cover the big ideas here:
	Name four of Python’s core data types.

	Why are they called “core” data types?

	What does “immutable” mean, and which three of Python’s core
 types are considered immutable?

	What does “sequence” mean, and which three types fall into that
 category?

	What does “mapping” mean, and which core type is a
 mapping?

	What is “polymorphism,” and why should you care?

Test Your Knowledge: Answers
	Numbers, strings, lists, dictionaries, tuples, files, and sets
 are generally considered to be the core object (data) types. Types,
 None, and Booleans are sometimes
 classified this way as well. There are multiple number types (integer,
 floating point, complex, fraction, and decimal) and multiple string
 types (simple strings and Unicode strings in Python 2.X, and text
 strings and byte strings in Python 3.X).

	They are known as “core” types because they are part of the
 Python language itself and are always available; to create other
 objects, you generally must call functions in imported modules. Most
 of the core types have specific syntax for generating the objects:
 'spam', for example, is an
 expression that makes a string and determines the set of operations
 that can be applied to it. Because of this, core types are hardwired
 into Python’s syntax. In contrast, you must call the built-in open function to create a file object (even
 though this is usually considered a core type too).

	An “immutable” object is an object that cannot be changed after
 it is created. Numbers, strings, and tuples in Python fall into this
 category. While you cannot change an immutable object in place, you
 can always make a new one by running an expression. Bytearrays in
 recent Pythons offer mutability for text, but they are not normal
 strings, and only apply directly to text if it’s a simple 8-bit kind
 (e.g., ASCII).

	A “sequence” is a positionally ordered collection of objects.
 Strings, lists, and tuples are all sequences in Python. They share
 common sequence operations, such as indexing, concatenation, and
 slicing, but also have type-specific method calls. A related term,
 “iterable,” means either a physical sequence, or a virtual one that
 produces its items on request.

	The term “mapping” denotes an object that maps keys to
 associated values. Python’s dictionary is the only mapping type in the
 core type set. Mappings do not maintain any left-to-right positional
 ordering; they support access to data stored by key, plus
 type-specific method calls.

	“Polymorphism” means that the meaning of an operation (like a
 +) depends on the objects being
 operated on. This turns out to be a key idea (perhaps
 the key idea) behind using Python well—not
 constraining code to specific types makes that code automatically
 applicable to many types.

1 Pardon my formality. I’m a computer scientist.
2 In this book, the term literal simply means
 an expression whose syntax generates an object—sometimes also called a
 constant. Note that the term “constant” does not
 imply objects or variables that can never be changed (i.e., this term
 is unrelated to C++’s const or
 Python’s “immutable”—a topic explored in the section “Immutability”).
3 This matrix structure works for small-scale tasks, but for
 more serious number crunching you will probably want to use one of
 the numeric extensions to Python, such as the open source
 NumPy and SciPy systems.
 Such tools can store and process large matrixes much more
 efficiently than our nested list structure. NumPy has been said to
 turn Python into the equivalent of a free and more powerful version
 of the Matlab system, and organizations such as NASA, Los Alamos,
 JPL, and many others use this tool for scientific and financial
 tasks. Search the Web for more details.
4 Two application notes here. First, as a preview, the rec record we just created really could be
 an actual database record, when we employ Python’s object
 persistence system—an easy way to store native Python
 objects in simple files or access-by-key databases, which translates
 objects to and from serial byte streams automatically. We won’t go
 into details here, but watch for coverage of Python’s pickle and shelve persistence modules in Chapter 9, Chapter 28, Chapter 31, and Chapter 37, where we’ll explore them in
 the context of files, an OOP use case, classes, and 3.X changes,
 respectively.

Second, if you are familiar with JSON
 (JavaScript Object Notation)—an emerging data-interchange format
 used for databases and network transfers—this example may also look
 curiously similar, though Python’s support for variables, arbitrary
 expressions, and changes can make its data structures more general.
 Python’s json library module
 supports creating and parsing JSON text, but the translation to
 Python objects is often trivial. Watch for a JSON example that uses
 this record in Chapter 9 when we study
 files. For a larger use case, see MongoDB,
 which stores data using a language-neutral binary-encoded
 serialization of JSON-like documents, and its
 PyMongo interface.

Chapter 5. Numeric Types
This chapter begins our in-depth tour of the Python language. In
 Python, data takes the form of objects—either built-in
 objects that Python provides, or objects we create using Python tools and
 other languages such as C. In fact, objects are the basis of every Python
 program you will ever write. Because they are the most fundamental notion in
 Python programming, objects are also our first focus in this book.
In the preceding chapter, we took a quick pass over Python’s core
 object types. Although essential terms were introduced in that chapter, we
 avoided covering too many specifics in the interest of space. Here, we’ll
 begin a more careful second look at data type concepts, to fill in details
 we glossed over earlier. Let’s get started by exploring our first data type
 category: Python’s numeric types and operations.
Numeric Type Basics
Most of Python’s number types are fairly typical and will probably seem familiar if
 you’ve used almost any other programming language in the past. They can be
 used to keep track of your bank balance, the distance to Mars, the number
 of visitors to your website, and just about any other numeric
 quantity.
In Python, numbers are not really a single object type, but a
 category of similar types. Python supports the usual numeric types
 (integers and floating points), as well as literals for creating numbers
 and expressions for processing them. In addition, Python provides more
 advanced numeric programming support and objects for more advanced work. A
 complete inventory of Python’s numeric toolbox includes:
	Integer and floating-point objects

	Complex number objects

	Decimal: fixed-precision objects

	Fraction: rational number objects

	Sets: collections with numeric operations

	Booleans: true and false

	Built-in functions and modules: round, math, random, etc.

	Expressions; unlimited integer precision; bitwise operations;
 hex, octal, and binary formats

	Third-party extensions: vectors, libraries, visualization,
 plotting, etc.

Because the types in this list’s first bullet item tend to see the
 most action in Python code, this chapter starts with basic numbers and
 fundamentals, then moves on to explore the other types on this list, which
 serve specialized roles. We’ll also study sets here,
 which have both numeric and collection qualities, but are generally
 considered more the former than the latter. Before we jump into code,
 though, the next few sections get us started with a brief overview of how
 we write and process numbers in our scripts.
Numeric Literals
Among its basic types, Python provides
 integers, which are positive and negative whole numbers, and
 floating-point numbers, which are numbers with a
 fractional part (sometimes called “floats” for verbal economy). Python
 also allows us to write integers using hexadecimal, octal, and binary
 literals; offers a complex number type; and allows integers to have
 unlimited precision—they can grow to have as many
 digits as your memory space allows. Table 5-1 shows what Python’s
 numeric types look like when written out in a program as literals or
 constructor function calls.
Table 5-1. Numeric literals and constructors	Literal	Interpretation
	1234, −24, 0, 99999999999999
	Integers (unlimited
 size)

	1.23, 1., 3.14e-10, 4E210, 4.0e+210
	Floating-point
 numbers

	0o177, 0x9ff, 0b101010
	Octal, hex, and binary
 literals in 3.X

	0177, 0o177, 0x9ff, 0b101010
	Octal, octal, hex, and
 binary literals in 2.X

	3+4j, 3.0+4.0j, 3J
	Complex number
 literals

	set('spam'), {1, 2, 3,
 4}
	Sets: 2.X and 3.X
 construction forms

	Decimal('1.0'), Fraction(1,
 3)
	Decimal and fraction
 extension types

	bool(X), True,
 False
	Boolean type and
 constants

In general, Python’s numeric type literals
 are straightforward to write, but a few coding concepts are worth
 highlighting here:
	Integer and floating-point literals
	Integers are written as strings of decimal digits. Floating-point
 numbers have a decimal point and/or an optional signed exponent
 introduced by an e or E and followed by an optional sign. If
 you write a number with a decimal point or exponent, Python makes
 it a floating-point object and uses floating-point (not integer)
 math when the object is used in an expression. Floating-point
 numbers are implemented as C “doubles” in standard CPython, and
 therefore get as much precision as the C compiler used to build
 the Python interpreter gives to doubles.

	Integers in Python 2.X: normal and long
	In Python 2.X there are two integer types, normal (often 32
 bits) and long (unlimited precision), and an integer may end in an
 l or L to force it to become a long integer.
 Because integers are automatically converted to long integers when
 their values overflow their allocated bits, you never need to type
 the letter L yourself—Python automatically
 converts up to long integer when extra precision is needed.

	Integers in Python 3.X: a single type
	In Python 3.X, the normal and long integer types have been
 merged—there is only integer, which automatically supports the
 unlimited precision of Python 2.X’s separate long integer type.
 Because of this, integers can no longer be coded with a trailing
 l or L, and integers never print with this
 character either. Apart from this, most programs are unaffected by
 this change, unless they do type testing that checks for 2.X long
 integers.

	Hexadecimal, octal, and binary literals
	Integers may be coded in decimal (base 10), hexadecimal (base
 16), octal (base 8), or binary (base 2), the last three of which
 are common in some programming domains. Hexadecimals start with a
 leading 0x or 0X, followed by a string of hexadecimal
 digits (0–9 and A–F).
 Hex digits may be coded in lower- or uppercase. Octal literals
 start with a leading 0o or
 0O (zero and lower- or
 uppercase letter o), followed by a string of
 digits (0–7). In 2.X, octal literals can also be
 coded with just a leading 0,
 but not in 3.X—this original octal form is too easily confused
 with decimal, and is replaced by the new 0o format, which can also be used in 2.X
 as of 2.6. Binary literals, new as of 2.6 and 3.0, begin with a
 leading 0b or 0B, followed by binary digits (0–1).
Note that all of these literals produce integer objects in
 program code; they are just alternative syntaxes for specifying
 values. The built-in calls hex(I), oct(I), and bin(I) convert an integer to its representation string in these
 three bases, and int(str,
 base) converts a runtime string to an
 integer per a given base.

	Complex numbers
	Python complex literals are written as
 realpart+imaginarypart,
 where the imaginarypart is terminated
 with a j or J. The
 realpart is technically optional, so
 the imaginarypart may appear on its
 own. Internally, complex numbers are implemented as pairs of
 floating-point numbers, but all numeric operations perform complex
 math when applied to complex numbers. Complex numbers may also be
 created with the complex(real,
 imag) built-in call.

	Coding other numeric types
	As we’ll see later in this chapter, there are additional
 numeric types at the end of Table 5-1 that serve more
 advanced or specialized roles. You create some of these by calling
 functions in imported modules (e.g., decimals and fractions), and
 others have literal syntax all their own (e.g., sets).

Built-in Numeric Tools
Besides the built-in number literals and construction calls shown in
 Table 5-1, Python provides a
 set of tools for processing number objects:
	Expression operators
	+, -, *,
 /, >>, **, &, etc.

	Built-in mathematical functions
	pow, abs, round, int, hex, bin, etc.

	Utility modules
	random, math, etc.

We’ll meet all of these as we go along.
Although numbers are primarily processed with expressions,
 built-ins, and modules, they also have a handful of type-specific methods today, which
 we’ll meet in this chapter as well. Floating-point numbers, for example, have an as_integer_ratio method that is useful for the
 fraction number type, and an is_integer method to test if the number is an integer. Integers have various
 attributes, including a new bit_length method introduced in Python 3.1
 that gives the number of bits necessary to represent the object’s value.
 Moreover, as part collection and part number, sets
 also support both methods and expressions.
Since expressions are the most essential tool for most number
 types, though, let’s turn to them next.

Python Expression Operators
Perhaps the most fundamental tool that processes numbers is the expression: a combination of
 numbers (or other objects) and operators that computes a value when
 executed by Python. In Python, you write expressions using the usual
 mathematical notation and operator symbols. For instance, to add two
 numbers X and Y you would say X +
 Y, which tells Python to apply the + operator to the values named by X and Y.
 The result of the expression is the sum of X and Y,
 another number object.
Table 5-2 lists
 all the operator expressions available in Python. Many are
 self-explanatory; for instance, the usual mathematical operators
 (+, −, *,
 /, and so on) are supported. A few
 will be familiar if you’ve used other languages in the past: % computes a division remainder, << performs a bitwise left-shift,
 & computes a bitwise AND result,
 and so on. Others are more Python-specific, and not all are numeric in
 nature: for example, the is operator
 tests object identity (i.e., address in memory, a strict
 form of equality), and lambda creates
 unnamed functions.
Table 5-2. Python expression operators and precedence	Operators	Description
	yield x
	Generator function send
 protocol

	lambda args: expression
	Anonymous function generation

	x if y else z
	Ternary selection (x is
 evaluated only if y is
 true)

	x or y
	Logical OR (y is
 evaluated only if x is
 false)

	x and y
	Logical AND (y is evaluated only if x is true)

	not x
	Logical
 negation

	x in y, x not in y

 x is y, x is not y
x < y, x <= y, x > y, x >= y
x == y, x != y
	Membership (iterables,
 sets)
Object identity tests
Magnitude
 comparison, set subset and superset
Value
 equality operators

	x | y
	Bitwise OR, set union

	x ^ y
	Bitwise XOR, set
 symmetric difference

	x & y
	Bitwise AND, set
 intersection

	x << y, x >> y
	Shift x left or right by y bits

	x + y
 x – y
	Addition,
 concatenation
 Subtraction, set
 difference

	x * y
 x % y
 x / y, x // y
	Multiplication, repetition
 Remainder, format

 Division: true and floor

	−x, +x
˜x
	Negation,
 identity
Bitwise NOT (inversion)

	x ** y
	Power
 (exponentiation)

	x[i]
x[i:j:k]
x(...)
x.attr
	Indexing (sequence,
 mapping, others)
Slicing
Call (function,
 method, class, other callable)
Attribute
 reference

	(...)
[...]
{...}
	Tuple, expression,
 generator expression
List, list
 comprehension
Dictionary, set, set and dictionary
 comprehensions

Since this book addresses both Python 2.X and 3.X, here are some
 notes about version differences and recent additions related to the
 operators in Table 5-2:
	In Python 2.X, value inequality can be written as either X != Y or X
 <> Y. In Python 3.X, the latter of these options is
 removed because it is redundant. In either version, best practice is
 to use X != Y for all value
 inequality tests.

	In Python 2.X, a backquotes expression `X` works the same as repr(X) and converts objects to display strings. Due to its
 obscurity, this expression is removed in Python 3.X; use the more
 readable str and
 repr built-in functions,
 described in “Numeric Display Formats.”

	The X // Y floor division
 expression always truncates fractional remainders in both Python 2.X
 and 3.X. The X / Y expression
 performs true division in 3.X (retaining remainders) and classic
 division in 2.X (truncating for integers). See “Division: Classic, Floor, and True”.

	The syntax [...] is used
 for both list literals and list comprehension expressions. The
 latter of these performs an implied loop and collects expression
 results in a new list. See Chapter 4, Chapter 14, and Chapter 20 for examples.

	The syntax (...) is used
 for tuples and expression grouping, as well as generator
 expressions—a form of list comprehension that produces results on
 demand, instead of building a result list. See Chapter 4 and Chapter 20 for examples. The
 parentheses may sometimes be omitted in all three contexts. When a
 tuple’s parentheses are omitted, the comma
 separating its items acts like a lowest-precedence operator if not
 otherwise significant.

	The syntax {...} is used
 for dictionary literals, and in Python 3.X and 2.7 for set literals
 and both dictionary and set comprehensions. See the set coverage in
 this chapter as well as Chapter 4, Chapter 8, Chapter 14, and Chapter 20 for examples.

	The yield and ternary
 if/else selection expressions are available
 in Python 2.5 and later. The former returns send(...) arguments in generators; the
 latter is shorthand for a multiline if statement. yield requires parentheses if not alone on
 the right side of an assignment statement.

	Comparison operators may be chained: X < Y < Z produces the same result
 as X < Y and Y < Z. See
 “Comparisons: Normal and Chained” for
 details.

	In recent Pythons, the slice expression X[I:J:K] is equivalent to indexing with a
 slice object: X[slice(I, J,
 K)].

	In Python 2.X, magnitude comparisons of mixed types are
 allowed, and convert numbers to a common type, and order other mixed
 types according to type names. In Python 3.X, nonnumeric mixed-type
 magnitude comparisons are not allowed and raise exceptions; this
 includes sorts by proxy.

	Magnitude comparisons for dictionaries are also no longer
 supported in Python 3.X (though equality tests are); comparing
 sorted(aDict.items()) is one
 possible replacement.

We’ll see most of the operators in Table 5-2 in action later;
 first, though, we need to take a quick look at the ways these operators
 may be combined in expressions.
Mixed operators follow operator precedence
As in most languages, in Python, you code more complex expressions by stringing
 together the operator expressions in Table 5-2. For instance,
 the sum of two multiplications might be written as a mix of variables
 and operators:
A * B + C * D
So, how does Python know which operation to perform first? The
 answer to this question lies in operator
 precedence. When you write an expression with more than one
 operator, Python groups its parts according to what are called precedence rules, and this
 grouping determines the order in which the expression’s parts are
 computed. Table 5-2
 is ordered by operator precedence:
	Operators lower in the table have higher precedence, and so
 bind more tightly in mixed expressions.

	Operators in the same row in Table 5-2 generally
 group from left to right when combined (except for exponentiation,
 which groups right to left, and comparisons, which chain left to
 right).

For example, if you write X + Y *
 Z, Python evaluates the multiplication first (Y * Z), then adds that result to X because * has higher precedence (is lower in the
 table) than +. Similarly, in this
 section’s original example, both multiplications (A * B and C *
 D) will happen before their results are added.

Parentheses group subexpressions
You can forget about precedence completely if you’re careful to group parts
 of expressions with parentheses. When you enclose subexpressions in
 parentheses, you override Python’s precedence rules; Python always
 evaluates expressions in parentheses first before using their results
 in the enclosing expressions.
For instance, instead of coding X + Y *
 Z, you could write one of the following to force Python to
 evaluate the expression in the desired order:
(X + Y) * Z
X + (Y * Z)
In the first case, + is
 applied to X and Y first, because this subexpression is
 wrapped in parentheses. In the second case, the * is performed first (just as if there were
 no parentheses at all). Generally speaking, adding parentheses in
 large expressions is a good idea—it not only forces the evaluation
 order you want, but also aids readability.

Mixed types are converted up
Besides mixing operators in expressions, you can also mix
 numeric types. For instance, you can add an integer to a
 floating-point number:
40 + 3.14
But this leads to another question: what type is the
 result—integer or floating point? The answer is simple, especially if
 you’ve used almost any other language before: in mixed-type numeric
 expressions, Python first converts operands up to
 the type of the most complicated operand, and then performs the math
 on same-type operands. This behavior is similar to type conversions in
 the C language.
Python ranks the complexity of numeric types like so: integers
 are simpler than floating-point numbers, which are simpler than
 complex numbers. So, when an integer is mixed with a floating point,
 as in the preceding example, the integer is converted up to a
 floating-point value first, and floating-point math yields the
 floating-point result:
>>> 40 + 3.14 # Integer to float, float math/result
43.14
Similarly, any mixed-type expression where one operand is a
 complex number results in the other operand being converted up to a
 complex number, and the expression yields a complex result. In Python
 2.X, normal integers are also converted to long integers whenever
 their values are too large to fit in a normal integer; in 3.X,
 integers subsume longs entirely.
You can force the issue by calling built-in functions to convert
 types manually:
>>> int(3.1415) # Truncates float to integer
3
>>> float(3) # Converts integer to float
3.0
However, you won’t usually need to do this: because Python
 automatically converts up to the more complex type within an
 expression, the results are normally what you want.
Also, keep in mind that all these mixed-type conversions apply
 only when mixing numeric types (e.g., an integer
 and a floating point) in an expression, including those using numeric
 and comparison operators. In general, Python does not convert across
 any other type boundaries automatically. Adding a string to an
 integer, for example, results in an error, unless you manually convert
 one or the other; watch for an example when we meet strings in Chapter 7.
Note
In Python 2.X, nonnumeric mixed types can be
 compared, but no conversions are
 performed—mixed types compare according to a rule that seems
 deterministic but not aesthetically pleasing: it compares the string
 names of the objects’ types. In 3.X, nonnumeric mixed-type magnitude
 comparisons are never allowed and raise exceptions. Note that this
 applies to comparison operators such as > only; other operators like + do not allow mixed nonnumeric types in
 either 3.X or 2.X.

Preview: Operator overloading and polymorphism
Although we’re focusing on built-in numbers right now, all Python
 operators may be overloaded (i.e., implemented) by Python classes and
 C extension types to work on objects you create. For instance, you’ll
 see later that objects coded with classes may be added or concatenated
 with x+y expressions, indexed with
 x[i] expressions, and so on.
Furthermore, Python itself automatically overloads some
 operators, such that they perform different actions depending on the
 type of built-in objects being processed. For example, the + operator performs addition when applied to
 numbers but performs concatenation when applied to sequence objects
 such as strings and lists. In fact, + can mean anything at all when applied to
 objects you define with classes.
As we saw in the prior chapter, this property is usually called
 polymorphism—a term indicating that the meaning
 of an operation depends on the type of the objects being operated on.
 We’ll revisit this concept when we explore functions in Chapter 16, because it becomes a much more obvious
 feature in that context.

Numbers in Action
On to the code! Probably the best way to understand numeric objects
 and expressions is to see them in action, so with those basics in hand
 let’s start up the interactive command line and try some simple but
 illustrative operations (be sure to see Chapter 3 for pointers if you need help starting
 an interactive session).
Variables and Basic Expressions
First of all, let’s exercise some basic math. In the following interaction, we first
 assign two variables (a and b) to
 integers so we can use them later in a larger expression. Variables are
 simply names—created by you or Python—that are used to keep track of
 information in your program. We’ll say more about this in the next
 chapter, but in Python:
	Variables are created when they are first assigned
 values.

	Variables are replaced with their values when used in
 expressions.

	Variables must be assigned before they can be used in
 expressions.

	Variables refer to objects and are never declared ahead of
 time.

In other words, these assignments cause the variables a and b to
 spring into existence automatically:
% python
>>> a = 3 # Name created: not declared ahead of time
>>> b = 4
I’ve also used a comment here. Recall that in
 Python code, text after a # mark and
 continuing to the end of the line is considered to be a comment and is
 ignored by Python. Comments are a way to write human-readable
 documentation for your code, and an important part of programming. I’ve
 added them to most of this book’s examples to help explain the code. In
 the next part of the book, we’ll meet a related but more functional
 feature—documentation strings—that attaches the text of your comments to
 objects so it’s available after your code is loaded.
Because code you type interactively is temporary, though, you
 won’t normally write comments in this context. If you’re working along,
 this means you don’t need to type any of the comment text from the
 # through to the end of the line;
 it’s not a required part of the statements we’re running this
 way.
Now, let’s use our new integer objects in some expressions. At
 this point, the values of a and
 b are still 3 and 4,
 respectively. Variables like these are replaced with their values
 whenever they’re used inside an expression, and the expression results
 are echoed back immediately when we’re working interactively:
>>> a + 1, a − 1 # Addition (3 + 1), subtraction (3 − 1)
(4, 2)
>>> b * 3, b / 2 # Multiplication (4 * 3), division (4 / 2, 3.X result)
(12, 2.0)
>>> a % 2, b ** 2 # Modulus (remainder), power (4 ** 2)
(1, 16)
>>> 2 + 4.0, 2.0 ** b # Mixed-type conversions
(6.0, 16.0)
Technically, the results being echoed back here are
 tuples of two values because the lines typed at the
 prompt contain two expressions separated by commas; that’s why the
 results are displayed in parentheses (more on tuples later). Note that
 the expressions work because the variables a and b
 within them have been assigned values. If you use a different variable
 that has not yet been assigned, Python reports an
 error rather than filling in some default value:
>>> c * 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'c' is not defined
You don’t need to predeclare variables in Python, but they must
 have been assigned at least once before you can use them. In practice,
 this means you have to initialize counters to zero before you can add to
 them, initialize lists to an empty list before you can append to them,
 and so on.
Here are two slightly larger expressions to illustrate operator
 grouping and more about conversions, and preview a difference in the
 division operator in Python 3.X and 2.X:
>>> b / 2 + a # Same as ((4 / 2) + 3) [use 2.0 in 2.X]
5.0
>>> b / (2.0 + a) # Same as (4 / (2.0 + 3)) [use print before 2.7]
0.8
In the first expression, there are no parentheses, so Python
 automatically groups the components according to its precedence
 rules—because / is lower in Table 5-2 than +, it binds more tightly and so is evaluated
 first. The result is as if the expression had been organized with
 parentheses as shown in the comment to the right of the code.
Also, notice that all the numbers are
 integers in the first expression. Because of that,
 Python 2.X’s / performs integer
 division and addition and will give a result of 5, whereas Python 3.X’s / performs true division, which always retains
 fractional remainders and gives the result 5.0 shown. If you want 2.X’s integer division
 in 3.X, code this as b // 2 + a; if
 you want 3.X’s true division in 2.X, code this as b / 2.0 + a (more on division in a
 moment).
In the second expression, parentheses are added around the
 + part to force Python to evaluate it
 first (i.e., before the /). We also
 made one of the operands floating point by adding a decimal point:
 2.0. Because of the mixed types,
 Python converts the integer referenced by a to a floating-point value (3.0) before performing the +. If instead all the numbers in this
 expression were integers, integer division (4 /
 5) would yield the truncated integer 0 in Python 2.X but the floating point
 0.8 shown in Python 3.X. Again, stay
 tuned for formal division details.

Numeric Display Formats
If you’re using Python 2.6, Python 3.0, or earlier, the result of the last of the
 preceding examples may look a bit odd the first time you see it:
>>> b / (2.0 + a) # Pythons <= 2.6: echoes give more (or fewer) digits
0.80000000000000004

>>> print(b / (2.0 + a)) # But print rounds off digits
0.8
We met this phenomenon briefly in the prior chapter, and it’s not
 present in Pythons 2.7, 3.1, and later. The full story behind this odd
 result has to do with the limitations of floating-point hardware and its
 inability to exactly represent some values in a limited number of bits.
 Because computer architecture is well beyond this book’s scope, though,
 we’ll finesse this by saying that your computer’s floating-point
 hardware is doing the best it can, and neither it nor Python is in error
 here.
In fact, this is really just a display
 issue—the interactive prompt’s automatic result echo shows more digits
 than the print statement
 here only because it uses a different algorithm. It’s the same number in
 memory. If you don’t want to see all the digits, use print; as this chapter’s sidebar “str and repr Display Formats” will explain, you’ll get a
 user-friendly display. As of 2.7 and 3.1, Python’s floating-point
 display logic tries to be more intelligent, usually showing fewer
 decimal digits, but occasionally more.
Note, however, that not all values have so many digits to
 display:
>>> 1 / 2.0
0.5
and that there are more ways to display the bits of a number
 inside your computer than using print
 and automatic echoes (the following are all run in Python 3.3, and may
 vary slightly in older versions):
>>> num = 1 / 3.0
>>> num # Auto-echoes
0.3333333333333333
>>> print(num) # Print explicitly
0.3333333333333333

>>> '%e' % num # String formatting expression
'3.333333e-01'
>>> '%4.2f' % num # Alternative floating-point format
'0.33'
>>> '{0:4.2f}'.format(num) # String formatting method: Python 2.6, 3.0, and later
'0.33'
The last three of these expressions employ string formatting, a tool that
 allows for format flexibility, which we will explore in the upcoming
 chapter on strings (Chapter 7). Its results
 are strings that are typically printed to displays or reports.
str and repr Display Formats
Technically, the difference between default interactive echoes and print corresponds to the difference between
 the built-in repr and str functions:
>>> repr('spam') # Used by echoes: as-code form
"'spam'"
>>> str('spam') # Used by print: user-friendly form
'spam'
Both of these convert arbitrary objects to their string
 representations: repr (and the
 default interactive echo) produces results that look as though they
 were code; str (and the print operation) converts to a typically
 more user-friendly format if available. Some objects have both—a
 str for general use, and a repr with extra details. This notion will
 resurface when we study both strings and operator overloading in
 classes, and you’ll find more on these built-ins in general later in
 the book.
Besides providing print strings for arbitrary objects, the
 str built-in is also the name of
 the string data type, and in 3.X may be called with an encoding name
 to decode a Unicode string from a byte string (e.g., str(b'xy', 'utf8')), and serves as an
 alternative to the bytes.decode
 method we met in Chapter 4.
 We’ll study the latter advanced role in Chapter 37 of this book.

Comparisons: Normal and Chained
So far, we’ve been dealing with standard numeric operations (addition and
 multiplication), but numbers, like all Python objects, can also be
 compared. Normal comparisons work for numbers exactly as you’d
 expect—they compare the relative magnitudes of their operands and return
 a Boolean result, which we would normally test and take action on in a
 larger statement and program:
>>> 1 < 2 # Less than
True
>>> 2.0 >= 1 # Greater than or equal: mixed-type 1 converted to 1.0
True
>>> 2.0 == 2.0 # Equal value
True
>>> 2.0 != 2.0 # Not equal value
False
Notice again how mixed types are allowed in numeric expressions
 (only); in the second test here, Python compares values in terms of the
 more complex type, float.
Interestingly, Python also allows us to chain
 multiple comparisons together to perform range tests. Chained
 comparisons are a sort of shorthand for larger Boolean expressions. In
 short, Python lets us string together magnitude comparison tests to code
 chained comparisons such as range tests. The expression (A < B < C), for instance, tests whether
 B is between A and C; it
 is equivalent to the Boolean test (A < B and
 B < C) but is easier on the eyes (and the keyboard). For
 example, assume the following assignments:
>>> X = 2
>>> Y = 4
>>> Z = 6
The following two expressions have identical effects, but the
 first is shorter to type, and it may run slightly faster since Python
 needs to evaluate Y only once:
>>> X < Y < Z # Chained comparisons: range tests
True
>>> X < Y and Y < Z
True
The same equivalence holds for false results, and arbitrary chain
 lengths are allowed:
>>> X < Y > Z
False
>>> X < Y and Y > Z
False

>>> 1 < 2 < 3.0 < 4
True
>>> 1 > 2 > 3.0 > 4
False
You can use other comparisons in chained tests, but the resulting
 expressions can become nonintuitive unless you evaluate them the way
 Python does. The following, for instance, is false just because 1 is not
 equal to 2:
>>> 1 == 2 < 3 # Same as: 1 == 2 and 2 < 3
False # Not same as: False < 3 (which means 0 < 3, which is true!)
Python does not compare the 1 ==
 2 expression’s False result
 to 3—this would technically mean the same as 0
 < 3, which would be True
 (as we’ll see later in this chapter, True and False are just customized 1 and 0).
One last note here before we move on: chaining aside, numeric
 comparisons are based on magnitudes, which are generally simple—though
 floating-point numbers may not always work as you’d
 expect, and may require conversions or other massaging to be compared
 meaningfully:
>>> 1.1 + 2.2 == 3.3 # Shouldn't this be True?...
False
>>> 1.1 + 2.2 # Close to 3.3, but not exactly: limited precision
3.3000000000000003
>>> int(1.1 + 2.2) == int(3.3) # OK if convert: see also round, floor, trunc ahead
True # Decimals and fractions (ahead) may help here too
This stems from the fact that floating-point numbers cannot
 represent some values exactly due to their limited number of bits—a
 fundamental issue in numeric programming not unique to Python, which
 we’ll learn more about later when we meet decimals
 and fractions, tools that can address such
 limitations. First, though, let’s continue our tour of Python’s core
 numeric operations, with a deeper look at division.

Division: Classic, Floor, and True
You’ve seen how division works in the previous sections, so you should
 know that it behaves slightly differently in Python 3.X and 2.X. In
 fact, there are actually three flavors of division, and two different
 division operators, one of which changes in 3.X. This story gets a bit
 detailed, but it’s another major change in 3.X and can break 2.X code,
 so let’s get the division operator facts straight:
	X / Y
	Classic and true
 division. In Python 2.X, this operator performs
 classic division, truncating results for
 integers, and keeping remainders (i.e., fractional parts) for
 floating-point numbers. In Python 3.X, it performs
 true division, always keeping remainders in
 floating-point results, regardless of types.

	X // Y
	Floor division. Added in Python 2.2 and available in both Python 2.X and 3.X,
 this operator always truncates fractional remainders down to their
 floor, regardless of types. Its result type depends on the types
 of its operands.

True division was added to address the fact that the results of
 the original classic division model are dependent on operand types, and
 so can be difficult to anticipate in a dynamically typed language like
 Python. Classic division was removed in 3.X because of this
 constraint—the / and // operators implement true and floor division
 in 3.X. Python 2.X defaults to classic and floor division, but you can
 enable true division as an option. In sum:
	In 3.X, the / now always performs
 true division, returning a float result that
 includes any remainder, regardless of operand types. The // performs floor
 division, which truncates the remainder and returns an integer for
 integer operands or a float if any operand is a float.

	In 2.X, the / does classic
 division, performing truncating integer division if both operands
 are integers and float division (keeping remainders) otherwise. The
 // does
 floor division and works as it does in 3.X,
 performing truncating division for integers and floor division for
 floats.

Here are the two operators at work in 3.X and 2.X—the first
 operation in each set is the crucial difference between the lines that
 may impact code:
C:\code> C:\Python33\python
>>>
>>> 10 / 4 # Differs in 3.X: keeps remainder
2.5
>>> 10 / 4.0 # Same in 3.X: keeps remainder
2.5
>>> 10 // 4 # Same in 3.X: truncates remainder
2
>>> 10 // 4.0 # Same in 3.X: truncates to floor
2.0

C:\code> C:\Python27\python
>>>
>>> 10 / 4 # This might break on porting to 3.X!
2
>>> 10 / 4.0
2.5
>>> 10 // 4 # Use this in 2.X if truncation needed
2
>>> 10 // 4.0
2.0
Notice that the data type of the result for // is still dependent on the operand types in
 3.X: if either is a float, the result is a float; otherwise, it is an
 integer. Although this may seem similar to the type-dependent behavior
 of / in 2.X that motivated its change
 in 3.X, the type of the return value is much less critical than
 differences in the return value itself.
Moreover, because // was
 provided in part as a compatibility tool for programs that rely on
 truncating integer division (and this is more common than you might
 expect), it must return integers for integers. Using // instead of / in 2.X when integer truncation is required
 helps make code 3.X-compatible.
Supporting either Python
Although / behavior differs
 in 2.X and 3.X, you can still support both versions in your code. If
 your programs depend on truncating integer division, use // in both 2.X and 3.X as just mentioned. If
 your programs require floating-point results with remainders for
 integers, use float to guarantee
 that one operand is a float around a / when run in 2.X:
X = Y // Z # Always truncates, always an int result for ints in 2.X and 3.X

X = Y / float(Z) # Guarantees float division with remainder in either 2.X or 3.X
Alternatively, you can enable 3.X / division in 2.X with a __future__
 import, rather than forcing it with float conversions:
C:\code> C:\Python27\python
>>> from __future__ import division # Enable 3.X "/" behavior
>>> 10 / 4
2.5
>>> 10 // 4 # Integer // is the same in both
2
This special from statement
 applies to the rest of your session when typed interactively like
 this, and must appear as the first executable line when used in a
 script file (and alas, we can import from the future in Python, but
 not the past; insert something about talking to “the Doc” here...).

Floor versus truncation
One subtlety: the // operator
 is informally called truncating division, but
 it’s more accurate to refer to it as floor
 division—it truncates the result down to its floor, which means the
 closest whole number below the true result. The net effect is to round
 down, not strictly truncate, and this matters for negatives. You can
 see the difference for yourself with the Python math module
 (modules must be imported before you can use their contents; more on
 this later):
>>> import math
>>> math.floor(2.5) # Closest number below value
2
>>> math.floor(-2.5)
-3
>>> math.trunc(2.5) # Truncate fractional part (toward zero)
2
>>> math.trunc(-2.5)
-2
When running division operators, you only really truncate for
 positive results, since truncation is the same as floor; for
 negatives, it’s a floor result (really, they are both floor, but floor
 is the same as truncation for positives). Here’s the case for
 3.X:
C:\code> c:\python33\python
>>> 5 / 2, 5 / −2
(2.5, −2.5)

>>> 5 // 2, 5 // −2 # Truncates to floor: rounds to first lower integer
(2, −3) # 2.5 becomes 2, −2.5 becomes −3

>>> 5 / 2.0, 5 / −2.0
(2.5, −2.5)

>>> 5 // 2.0, 5 // −2.0 # Ditto for floats, though result is float too
(2.0, −3.0)
The 2.X case is similar, but / results differ again:
C:code> c:\python27\python
>>> 5 / 2, 5 / −2 # Differs in 3.X
(2, −3)

>>> 5 // 2, 5 // −2 # This and the rest are the same in 2.X and 3.X
(2, −3)

>>> 5 / 2.0, 5 / −2.0
(2.5, −2.5)

>>> 5 // 2.0, 5 // −2.0
(2.0, −3.0)
If you really want truncation toward zero regardless of sign,
 you can always run a float division result through math.trunc,
 regardless of Python version (also see the round built-in
 for related functionality, and the int built-in, which has the same effect here
 but requires no import):
C:\code> c:\python33\python
>>> import math
>>> 5 / −2 # Keep remainder
−2.5
>>> 5 // −2 # Floor below result
-3
>>> math.trunc(5 / −2) # Truncate instead of floor (same as int())
−2

C:\code> c:\python27\python
>>> import math
>>> 5 / float(−2) # Remainder in 2.X
−2.5
>>> 5 / −2, 5 // −2 # Floor in 2.X
(−3, −3)
>>> math.trunc(5 / float(−2)) # Truncate in 2.X
−2

Why does truncation matter?
As a wrap-up, if you are using 3.X, here is the short story on
 division operators for reference:
>>> (5 / 2), (5 / 2.0), (5 / −2.0), (5 / −2) # 3.X true division
(2.5, 2.5, −2.5, −2.5)

>>> (5 // 2), (5 // 2.0), (5 // −2.0), (5 // −2) # 3.X floor division
(2, 2.0, −3.0, −3)

>>> (9 / 3), (9.0 / 3), (9 // 3), (9 // 3.0) # Both
(3.0, 3.0, 3, 3.0)
For 2.X readers, division works as follows (the three bold
 outputs of integer division differ from 3.X):
>>> (5 / 2), (5 / 2.0), (5 / −2.0), (5 / −2) # 2.X classic division (differs)
(2, 2.5, −2.5, −3)

>>> (5 // 2), (5 // 2.0), (5 // −2.0), (5 // −2) # 2.X floor division (same)
(2, 2.0, −3.0, −3)

>>> (9 / 3), (9.0 / 3), (9 // 3), (9 // 3.0) # Both
(3, 3.0, 3, 3.0)
It’s possible that the nontruncating behavior of / in 3.X may break a significant number of
 2.X programs. Perhaps because of a C language legacy, many programmers
 rely on division truncation for integers and will have to learn to use
 // in such contexts instead. You
 should do so in all new 2.X and 3.X code you write today—in the former
 for 3.X compatibility, and in the latter because / does not truncate in 3.X. Watch for a
 simple prime number while loop
 example in Chapter 13, and a corresponding
 exercise at the end of Part IV
 that illustrates the sort of code that may be impacted by this
 / change. Also stay tuned for more
 on the special from command used in
 this section; it’s discussed further in Chapter 25.

Integer Precision
Division may differ slightly across Python releases, but it’s still
 fairly standard. Here’s something a bit more exotic. As mentioned
 earlier, Python 3.X integers support unlimited size:
>>> 999999999999999999999999999999 + 1 # 3.X
1000000000000000000000000000000
Python 2.X has a separate type for long integers, but it
 automatically converts any number too large to store in a normal integer
 to this type. Hence, you don’t need to code any special syntax to use
 longs, and the only way you can tell that you’re using 2.X longs is that
 they print with a trailing “L”:
>>> 999999999999999999999999999999 + 1 # 2.X
1000000000000000000000000000000L
Unlimited-precision integers are a convenient built-in tool. For
 instance, you can use them to count the U.S. national debt in pennies in
 Python directly (if you are so inclined, and have enough memory on your
 computer for this year’s budget). They are also why we were able to
 raise 2 to such large powers in the examples in Chapter 3. Here are the 3.X and 2.X
 cases:
>>> 2 ** 200
1606938044258990275541962092341162602522202993782792835301376

>>> 2 ** 200
1606938044258990275541962092341162602522202993782792835301376L
Because Python must do extra work to support their extended
 precision, integer math is usually substantially slower than normal when
 numbers grow large. However, if you need the precision, the fact that
 it’s built in for you to use will likely outweigh its performance
 penalty.

Complex Numbers
Although less commonly used than the types we’ve been exploring thus
 far, complex numbers are a distinct core object type in Python. They are
 typically used in engineering and science applications. If you know what
 they are, you know why they are useful; if not, consider this section
 optional reading.
Complex numbers are represented as two floating-point numbers—the
 real and imaginary parts—and you code them by adding a j or J
 suffix to the imaginary part. We can also write complex numbers with a
 nonzero real part by adding the two parts with a +. For example, the complex number with a real
 part of 2 and an imaginary part of
 −3 is written 2 + −3j. Here are some examples of complex
 math at work:
>>> 1j * 1J
(-1+0j)
>>> 2 + 1j * 3
(2+3j)
>>> (2 + 1j) * 3
(6+3j)
Complex numbers also allow us to extract their parts as
 attributes, support all the usual mathematical expressions, and may be
 processed with tools in the standard cmath module (the complex version of the
 standard math module). Because
 complex numbers are rare in most programming domains, though, we’ll skip
 the rest of this story here. Check Python’s language reference manual
 for additional details.

Hex, Octal, Binary: Literals and Conversions
Python integers can be coded in hexadecimal, octal, and binary notation,
 in addition to the normal base-10 decimal coding we’ve been using so
 far. The first three of these may at first seem foreign to 10-fingered
 beings, but some programmers find them convenient alternatives for
 specifying values, especially when their mapping to bytes and bits is
 important. The coding rules were introduced briefly at the start of this
 chapter; let’s look at some live examples here.
Keep in mind that these literals are simply an alternative syntax
 for specifying the value of an integer object. For example, the
 following literals coded in Python 3.X or 2.X produce normal integers
 with the specified values in all three bases. In memory, an integer’s
 value is the same, regardless of the base we use to specify it:
>>> 0o1, 0o20, 0o377 # Octal literals: base 8, digits 0-7 (3.X, 2.6+)
(1, 16, 255)
>>> 0x01, 0x10, 0xFF # Hex literals: base 16, digits 0-9/A-F (3.X, 2.X)
(1, 16, 255)
>>> 0b1, 0b10000, 0b11111111 # Binary literals: base 2, digits 0-1 (3.X, 2.6+)
(1, 16, 255)
Here, the octal value 0o377,
 the hex value 0xFF, and the binary
 value 0b11111111 are all decimal
 255. The F digits in the hex value, for example, each
 mean 15 in decimal and a 4-bit
 1111 in binary, and reflect powers of
 16. Thus, the hex value 0xFF and
 others convert to decimal values as follows:
>>> 0xFF, (15 * (16 ** 1)) + (15 * (16 ** 0)) # How hex/binary map to decimal
(255, 255)
>>> 0x2F, (2 * (16 ** 1)) + (15 * (16 ** 0))
(47, 47)
>>> 0xF, 0b1111, (1*(2**3) + 1*(2**2) + 1*(2**1) + 1*(2**0))
(15, 15, 15)
Python prints integer values in decimal (base 10) by default but
 provides built-in functions that allow you to convert integers to other
 bases’ digit strings, in Python-literal form—useful when programs or
 users expect to see values in a given base:
>>> oct(64), hex(64), bin(64) # Numbers=>digit strings
('0o100', '0x40', '0b1000000')
The oct function converts decimal to octal, hex to hexadecimal, and bin to binary. To go the other way, the
 built-in int function
 converts a string of digits to an integer, and an optional second
 argument lets you specify the numeric base—useful for numbers read from
 files as strings instead of coded in scripts:
>>> 64, 0o100, 0x40, 0b1000000 # Digits=>numbers in scripts and strings
(64, 64, 64, 64)

>>> int('64'), int('100', 8), int('40', 16), int('1000000', 2)
(64, 64, 64, 64)

>>> int('0x40', 16), int('0b1000000', 2) # Literal forms supported too
(64, 64)
The eval function, which you’ll meet later in this book, treats strings as
 though they were Python code. Therefore, it has a similar effect, but
 usually runs more slowly—it actually compiles and
 runs the string as a piece of a program, and it assumes the string being
 run comes from a trusted source—a clever user might
 be able to submit a string that deletes files on your machine, so be
 careful with this call:
>>> eval('64'), eval('0o100'), eval('0x40'), eval('0b1000000')
(64, 64, 64, 64)
Finally, you can also convert integers to base-specific strings with string formatting method
 calls and expressions, which return just digits, not Python literal
 strings:
>>> '{0:o}, {1:x}, {2:b}'.format(64, 64, 64) # Numbers=>digits, 2.6+
'100, 40, 1000000'

>>> '%o, %x, %x, %X' % (64, 64, 255, 255) # Similar, in all Pythons
'100, 40, ff, FF'
String formatting is covered in more detail in Chapter 7.
Two notes before moving on. First, per the start of this chapter,
 Python 2.X users should remember that you can code octals with simply a
 leading zero, the original octal format in
 Python:
>>> 0o1, 0o20, 0o377 # New octal format in 2.6+ (same as 3.X)
(1, 16, 255)
>>> 01, 020, 0377 # Old octal literals in all 2.X (error in 3.X)
(1, 16, 255)
In 3.X, the syntax in the second of these examples generates an
 error. Even though it’s not an error in 2.X, be careful not to begin a
 string of digits with a leading zero unless you really mean to code an
 octal value. Python 2.X will treat it as base 8, which may not work as
 you’d expect—010 is always decimal 8
 in 2.X, not decimal 10 (despite what you may or may not think!). This,
 along with symmetry with the hex and binary forms, is why the octal
 format was changed in 3.X—you must use 0o010 in 3.X, and probably should in 2.6 and
 2.7 both for clarity and forward-compatibility with 3.X.
Secondly, note that these literals can produce
 arbitrarily long integers. The following, for
 instance, creates an integer with hex notation and then displays it
 first in decimal and then in octal and binary with converters (run in
 3.X here: in 2.X the decimal and octal displays have a trailing
 L to denote its separate long type, and octals
 display without the letter o):
>>> X = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF
>>> X
5192296858534827628530496329220095
>>> oct(X)
'0o17777777777777777777777777777777777777'
>>> bin(X)
'0b111 ...and so on... 11111'
Speaking of binary digits, the next section shows tools for
 processing individual bits.

Bitwise Operations
Besides the normal numeric operations (addition, subtraction, and so
 on), Python supports most of the numeric expressions available in the C
 language. This includes operators that treat integers as strings of
 binary bits, and can come in handy if your Python
 code must deal with things like network packets, serial ports, or packed
 binary data produced by a C program.
We can’t dwell on the fundamentals of Boolean math here—again,
 those who must use it probably already know how it works, and others can
 often postpone the topic altogether—but the basics are straightforward.
 For instance, here are some of Python’s bitwise expression operators at
 work performing bitwise shift and Boolean operations on integers:
>>> x = 1 # 1 decimal is 0001 in bits
>>> x << 2 # Shift left 2 bits: 0100
4
>>> x | 2 # Bitwise OR (either bit=1): 0011
3
>>> x & 1 # Bitwise AND (both bits=1): 0001
1
In the first expression, a binary 1 (in base 2, 0001) is shifted left two slots to create a
 binary 4 (0100). The last two operations perform a
 binary OR to combine bits (0001|0010
 = 0011) and a binary AND to select
 common bits (0001&0001 = 0001). Such bit-masking operations allow us to
 encode and extract multiple flags and other values within a single
 integer.
This is one area where the binary and hexadecimal number support
 in Python as of 3.0 and 2.6 become especially useful—they allow us to
 code and inspect numbers by bit-strings:
>>> X = 0b0001 # Binary literals
>>> X << 2 # Shift left
4
>>> bin(X << 2) # Binary digits string
'0b100'

>>> bin(X | 0b010) # Bitwise OR: either
'0b11'
>>> bin(X & 0b1) # Bitwise AND: both
'0b1'
This is also true for values that begin life as hex literals, or
 undergo base conversions:
>>> X = 0xFF # Hex literals
>>> bin(X)
'0b11111111'
>>> X ^ 0b10101010 # Bitwise XOR: either but not both
85
>>> bin(X ^ 0b10101010)
'0b1010101'

>>> int('01010101', 2) # Digits=>number: string to int per base
85
>>> hex(85) # Number=>digits: Hex digit string
'0x55'
Also in this department, Python 3.1 and 2.7 introduced a new
 integer bit_length
 method, which allows you to query the number of bits required to
 represent a number’s value in binary. You can often achieve the same
 effect by subtracting 2 from the length of the bin string using the len built-in function we met in Chapter 4 (to account for the leading
 “0b”), though it may be less efficient:
>>> X = 99
>>> bin(X), X.bit_length(), len(bin(X)) - 2
('0b1100011', 7, 7)
>>> bin(256), (256).bit_length(), len(bin(256)) - 2
('0b100000000', 9, 9)
We won’t go into much more detail on such “bit twiddling” here.
 It’s supported if you need it, but bitwise operations are often not as
 important in a high-level language such as Python as they are in a
 low-level language such as C. As a rule of thumb, if you find yourself
 wanting to flip bits in Python, you should think about which language
 you’re really coding. As we’ll see in upcoming chapters, Python’s lists,
 dictionaries, and the like provide richer—and usually better—ways to
 encode information than bit strings, especially when your data’s
 audience includes readers of the human variety.

Other Built-in Numeric Tools
In addition to its core object types, Python also provides both built-in
 functions and standard library
 modules for numeric processing. The pow and abs built-in functions, for instance, compute
 powers and absolute values, respectively. Here are some examples of
 the built-in math module
 (which contains most of the tools in the C language’s math library) and
 a few built-in functions at work in 3.3; as described earlier, some
 floating-point displays may show more or fewer digits in Pythons before
 2.7 and 3.1:
>>> import math
>>> math.pi, math.e # Common constants
(3.141592653589793, 2.718281828459045)

>>> math.sin(2 * math.pi / 180) # Sine, tangent, cosine
0.03489949670250097

>>> math.sqrt(144), math.sqrt(2) # Square root
(12.0, 1.4142135623730951)

>>> pow(2, 4), 2 ** 4, 2.0 ** 4.0 # Exponentiation (power)
(16, 16, 16.0)

>>> abs(-42.0), sum((1, 2, 3, 4)) # Absolute value, summation
(42.0, 10)

>>> min(3, 1, 2, 4), max(3, 1, 2, 4) # Minimum, maximum
(1, 4)
The sum function shown here works on a sequence of numbers, and min and max
 accept either a sequence or individual arguments. There are a variety of
 ways to drop the decimal digits of floating-point numbers. We met
 truncation and floor earlier; we can also round, both numerically and
 for display purposes:
>>> math.floor(2.567), math.floor(-2.567) # Floor (next-lower integer)
(2, −3)

>>> math.trunc(2.567), math.trunc(−2.567) # Truncate (drop decimal digits)
(2, −2)

>>> int(2.567), int(−2.567) # Truncate (integer conversion)
(2, −2)

>>> round(2.567), round(2.467), round(2.567, 2) # Round (Python 3.X version)
(3, 2, 2.57)

>>> '%.1f' % 2.567, '{0:.2f}'.format(2.567) # Round for display (Chapter 7)
('2.6', '2.57')
As we saw earlier, the last of these produces strings that we
 would usually print and supports a variety of formatting options. As
 also described earlier, the second-to-last test here will also output
 (3, 2, 2.57) prior to 2.7 and 3.1 if
 we wrap it in a print call to request
 a more user-friendly display. String formatting is still subtly
 different, though, even in 3.X; round
 rounds and drops decimal digits but still produces a number in memory, whereas string formatting produces a
 string, not a number:
>>> (1 / 3.0), round(1 / 3.0, 2), ('%.2f' % (1 / 3.0))
(0.3333333333333333, 0.33, '0.33')
Interestingly, there are three ways to compute square roots in Python: using
 a module function, an expression, or a built-in function (if you’re
 interested in performance, we will revisit these in an exercise and its
 solution at the end of Part IV, to
 see which runs quicker):
>>> import math
>>> math.sqrt(144) # Module
12.0
>>> 144 ** .5 # Expression
12.0
>>> pow(144, .5) # Built-in
12.0

>>> math.sqrt(1234567890) # Larger numbers
35136.41828644462
>>> 1234567890 ** .5
35136.41828644462
>>> pow(1234567890, .5)
35136.41828644462
Notice that standard library modules such as math must be imported, but built-in functions
 such as abs and round are always available without imports. In
 other words, modules are external components, but built-in functions
 live in an implied namespace that Python automatically searches to find
 names used in your program. This namespace simply corresponds to the
 standard library module called builtins in
 Python 3.X (and __builtin__ in 2.X).
 There is much more about name resolution in the function and module
 parts of this book; for now, when you hear “module,” think
 “import.”
The standard library random
 module must be imported as well. This module provides an array of
 tools, for tasks such as picking a random floating-point number between
 0 and 1, and selecting a random integer between two numbers:
>>> import random
>>> random.random()
0.5566014960423105
>>> random.random() # Random floats, integers, choices, shuffles
0.051308506597373515

>>> random.randint(1, 10)
5
>>> random.randint(1, 10)
9
This module can also choose an item at random
 from a sequence, and shuffle a list of items
 randomly:
>>> random.choice(['Life of Brian', 'Holy Grail', 'Meaning of Life'])
'Holy Grail'
>>> random.choice(['Life of Brian', 'Holy Grail', 'Meaning of Life'])
'Life of Brian'

>>> suits = ['hearts', 'clubs', 'diamonds', 'spades']
>>> random.shuffle(suits)
>>> suits
['spades', 'hearts', 'diamonds', 'clubs']
>>> random.shuffle(suits)
>>> suits
['clubs', 'diamonds', 'hearts', 'spades']
Though we’d need additional code to make this more tangible here,
 the random module can be useful for
 shuffling cards in games, picking images at random in a slideshow GUI,
 performing statistical simulations, and much more. We’ll deploy it again
 later in this book (e.g., in Chapter 20’s permutations case study),
 but for more details, see Python’s library manual.

Other Numeric Types
So far in this chapter, we’ve been using Python’s core numeric
 types—integer, floating point, and complex. These will suffice for most of
 the number crunching that most programmers will ever need to do. Python
 comes with a handful of more exotic numeric types, though, that merit a
 brief look here.
Decimal Type
Python 2.4 introduced a new core numeric type: the decimal object, formally known as
 Decimal. Syntactically, you create
 decimals by calling a function within an imported module, rather than
 running a literal expression. Functionally, decimals are like
 floating-point numbers, but they have a fixed number of decimal points.
 Hence, decimals are fixed-precision floating-point
 values.
For example, with decimals, we can have a floating-point value
 that always retains just two decimal digits. Furthermore, we can specify
 how to round or truncate the extra decimal digits beyond the object’s
 cutoff. Although it generally incurs a performance penalty compared to
 the normal floating-point type, the decimal type is well suited to
 representing fixed-precision quantities like sums of money and can help
 you achieve better numeric accuracy.
Decimal basics
The last point merits elaboration. As previewed briefly when we
 explored comparisons, floating-point math is less than exact because
 of the limited space used to store values. For example, the following
 should yield zero, but it does not. The result is close to zero, but
 there are not enough bits to be precise here:
>>> 0.1 + 0.1 + 0.1 - 0.3 # Python 3.3
5.551115123125783e-17
Printing the result to produce the user-friendly display format
 doesn’t completely help either, because the hardware related to
 floating-point math is inherently limited in terms of accuracy (a.k.a.
 precision). The following in 3.3 gives the same
 result as the previous output:
>>> print(0.1 + 0.1 + 0.1 - 0.3) # Earlier Pythons (3.3. differs)
5.55111512313e-17
However, with decimals, the result can be dead-on:
>>> from decimal import Decimal
>>> Decimal('0.1') + Decimal('0.1') + Decimal('0.1') - Decimal('0.3')
Decimal('0.0')
As shown here, we can make decimal objects by calling the
 Decimal constructor function in the
 decimal module and passing in strings that have the desired number of
 decimal digits for the resulting object (using the str function to convert floating-point
 values to strings if needed). When decimals of different precision are
 mixed in expressions, Python converts up to the largest number of
 decimal digits automatically:
>>> Decimal('0.1') + Decimal('0.10') + Decimal('0.10') - Decimal('0.30')
Decimal('0.00')
In Pythons 2.7, 3.1, and later, it’s also possible to create a
 decimal object from a floating-point object, with a call of the form
 decimal.Decimal.from_float(1.25),
 and recent Pythons allow floating-point numbers to be used
 directly. The conversion is exact but can sometimes yield a large
 default number of digits, unless they are fixed per the next
 section:
>>> Decimal(0.1) + Decimal(0.1) + Decimal(0.1) - Decimal(0.3)
Decimal('2.775557561565156540423631668E-17')
In Python 3.3 and later, the decimal module was also optimized
 to improve its performance radically: the reported speedup for the new
 version is 10X to 100X, depending on the type of program benchmarked.

Setting decimal precision globally
Other tools in the decimal
 module can be used to set the precision of all decimal numbers,
 arrange error handling, and more. For instance, a context object in
 this module allows for specifying precision (number of decimal digits)
 and rounding modes (down, ceiling, etc.). The precision is applied
 globally for all decimals created in the calling thread:
>>> import decimal
>>> decimal.Decimal(1) / decimal.Decimal(7) # Default: 28 digits
Decimal('0.1428571428571428571428571429')

>>> decimal.getcontext().prec = 4 # Fixed precision
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal('0.1429')

>>> Decimal(0.1) + Decimal(0.1) + Decimal(0.1) - Decimal(0.3) # Closer to 0
Decimal('1.110E-17')
Technically, significance is determined by digits input, and
 precision is applied on math operations. Although more subtle than we
 can explore in this brief overview, this property can make
 decimals useful as the basis for some monetary applications, and
 may sometimes serve as an alternative to manual rounding and string
 formatting:
>>> 1999 + 1.33 # This has more digits in memory than displayed in 3.3
2000.33
>>>
>>> decimal.getcontext().prec = 2
>>> pay = decimal.Decimal(str(1999 + 1.33))
>>> pay
Decimal('2000.33')

Decimal context manager
In Python 2.6 and 3.0 and later, it’s also possible to reset precision temporarily by using
 the with context manager statement.
 The precision is reset to its original value on
 statement exit; in a new Python 3.3 session (per Chapter 3 the “...” here is Python’s
 interactive prompt for continuation lines in some interfaces and
 requires manual indentation; IDLE omits this prompt and indents for
 you):
C:\code> C:\Python33\python
>>> import decimal
>>> decimal.Decimal('1.00') / decimal.Decimal('3.00')
Decimal('0.3333333333333333333333333333')
>>>
>>> with decimal.localcontext() as ctx:
... ctx.prec = 2
... decimal.Decimal('1.00') / decimal.Decimal('3.00')
...
Decimal('0.33')
>>>
>>> decimal.Decimal('1.00') / decimal.Decimal('3.00')
Decimal('0.3333333333333333333333333333')
Though useful, this statement requires much more background
 knowledge than you’ve obtained at this point; watch for coverage of
 the with statement in Chapter 34.
Because use of the decimal type is still relatively rare in
 practice, I’ll defer to Python’s standard library manuals and
 interactive help for more details. And because decimals address some
 of the same floating-point accuracy issues as the fraction type, let’s
 move on to the next section to see how the two compare.

Fraction Type
Python 2.6 and 3.0 debuted a new numeric type, Fraction, which implements a
 rational number object. It essentially keeps both a
 numerator and a denominator explicitly, so as to avoid some of the
 inaccuracies and limitations of floating-point math. Like decimals,
 fractions do not map as closely to computer hardware as floating-point
 numbers. This means their performance may not be as good, but it also
 allows them to provide extra utility in a standard tool where required
 or useful.
Fraction basics
Fraction is a functional
 cousin to the Decimal
 fixed-precision type described in the prior section, as both can be
 used to address the floating-point type’s numerical
 inaccuracies. It’s also used in similar ways—like Decimal, Fraction resides in a module; import its
 constructor and pass in a numerator and a denominator to make one
 (among other schemes). The following interaction shows how:
>>> from fractions import Fraction
>>> x = Fraction(1, 3) # Numerator, denominator
>>> y = Fraction(4, 6) # Simplified to 2, 3 by gcd

>>> x
Fraction(1, 3)
>>> y
Fraction(2, 3)
>>> print(y)
2/3
Once created, Fractions can
 be used in mathematical expressions as usual:
>>> x + y
Fraction(1, 1)
>>> x − y # Results are exact: numerator, denominator
Fraction(−1, 3)
>>> x * y
Fraction(2, 9)
Fraction objects can also be
 created from floating-point number strings, much like decimals:
>>> Fraction('.25')
Fraction(1, 4)
>>> Fraction('1.25')
Fraction(5, 4)
>>>
>>> Fraction('.25') + Fraction('1.25')
Fraction(3, 2)

Numeric accuracy in fractions and decimals
Notice that this is different from floating-point-type math, which is constrained by the
 underlying limitations of floating-point hardware. To compare, here
 are the same operations run with floating-point objects, and notes on
 their limited accuracy—they may display fewer digits in recent Pythons
 than they used to, but they still aren’t exact values in
 memory:
>>> a = 1 / 3.0 # Only as accurate as floating-point hardware
>>> b = 4 / 6.0 # Can lose precision over many calculations
>>> a
0.3333333333333333
>>> b
0.6666666666666666

>>> a + b
1.0
>>> a - b
-0.3333333333333333
>>> a * b
0.2222222222222222
This floating-point limitation is especially apparent for values
 that cannot be represented accurately given their limited number of
 bits in memory. Both Fraction and
 Decimal provide ways to get exact
 results, albeit at the cost of some speed and code verbosity. For
 instance, in the following example (repeated from the prior section),
 floating-point numbers do not accurately give the zero answer
 expected, but both of the other types do:
>>> 0.1 + 0.1 + 0.1 - 0.3 # This should be zero (close, but not exact)
5.551115123125783e-17

>>> from fractions import Fraction
>>> Fraction(1, 10) + Fraction(1, 10) + Fraction(1, 10) - Fraction(3, 10)
Fraction(0, 1)

>>> from decimal import Decimal
>>> Decimal('0.1') + Decimal('0.1') + Decimal('0.1') - Decimal('0.3')
Decimal('0.0')
Moreover, fractions and decimals both allow more intuitive and
 accurate results than floating points sometimes can, in different
 ways—by using rational representation and by limiting
 precision:
>>> 1 / 3 # Use a ".0" in Python 2.X for true "/"
0.3333333333333333

>>> Fraction(1, 3) # Numeric accuracy, two ways
Fraction(1, 3)

>>> import decimal
>>> decimal.getcontext().prec = 2
>>> Decimal(1) / Decimal(3)
Decimal('0.33')
In fact, fractions both retain accuracy and automatically
 simplify results. Continuing the preceding interaction:
>>> (1 / 3) + (6 / 12) # Use a ".0" in Python 2.X for true "/"
0.8333333333333333

>>> Fraction(6, 12) # Automatically simplified
Fraction(1, 2)

>>> Fraction(1, 3) + Fraction(6, 12)
Fraction(5, 6)

>>> decimal.Decimal(str(1/3)) + decimal.Decimal(str(6/12))
Decimal('0.83')

>>> 1000.0 / 1234567890
8.100000073710001e-07
>>> Fraction(1000, 1234567890) # Substantially simpler!
Fraction(100, 123456789)

Fraction conversions and mixed types
To support fraction conversions, floating-point objects now have a method
 that yields their numerator and denominator ratio, fractions have a from_float method, and float accepts a Fraction as an argument. Trace through the
 following interaction to see how this pans out (the * in the second test is special syntax that
 expands a tuple into individual arguments; more on this when we study
 function argument passing in Chapter 18):
>>> (2.5).as_integer_ratio() # float object method
(5, 2)

>>> f = 2.5
>>> z = Fraction(*f.as_integer_ratio()) # Convert float -> fraction: two args
>>> z # Same as Fraction(5, 2)
Fraction(5, 2)

>>> x # x from prior interaction
Fraction(1, 3)
>>> x + z
Fraction(17, 6) # 5/2 + 1/3 = 15/6 + 2/6

>>> float(x) # Convert fraction -> float
0.3333333333333333
>>> float(z)
2.5
>>> float(x + z)
2.8333333333333335
>>> 17 / 6
2.8333333333333335

>>> Fraction.from_float(1.75) # Convert float -> fraction: other way
Fraction(7, 4)
>>> Fraction(*(1.75).as_integer_ratio())
Fraction(7, 4)
Finally, some type mixing is allowed in expressions, though
 Fraction must sometimes be manually
 propagated to retain accuracy. Study the following interaction to see
 how this works:
>>> x
Fraction(1, 3)
>>> x + 2 # Fraction + int -> Fraction
Fraction(7, 3)
>>> x + 2.0 # Fraction + float -> float
2.3333333333333335
>>> x + (1./3) # Fraction + float -> float
0.6666666666666666
>>> x + (4./3)
1.6666666666666665
>>> x + Fraction(4, 3) # Fraction + Fraction -> Fraction
Fraction(5, 3)
Caveat: although you can convert from floating point to
 fraction, in some cases there is an unavoidable precision loss when
 you do so, because the number is inaccurate in its original
 floating-point form. When needed, you can simplify such results by
 limiting the maximum denominator value:
>>> 4.0 / 3
1.3333333333333333
>>> (4.0 / 3).as_integer_ratio() # Precision loss from float
(6004799503160661, 4503599627370496)

>>> x
Fraction(1, 3)
>>> a = x + Fraction(*(4.0 / 3).as_integer_ratio())
>>> a
Fraction(22517998136852479, 13510798882111488)

>>> 22517998136852479 / 13510798882111488. # 5 / 3 (or close to it!)
1.6666666666666667

>>> a.limit_denominator(10) # Simplify to closest fraction
Fraction(5, 3)
For more details on the Fraction type, experiment further on your
 own and consult the Python 2.6, 2.7, and 3.X library manuals and other
 documentation.

Sets
Besides decimals, Python 2.4 also introduced a new collection type, the
 set—an unordered collection of unique and immutable
 objects that supports operations corresponding to mathematical set
 theory. By definition, an item appears only once in a set, no matter how
 many times it is added. Accordingly, sets have a variety of
 applications, especially in numeric and database-focused work.
Because sets are collections of other objects, they share some
 behavior with objects such as lists and dictionaries that are outside
 the scope of this chapter. For example, sets are iterable, can grow and
 shrink on demand, and may contain a variety of object types. As we’ll
 see, a set acts much like the keys of a valueless dictionary, but it
 supports extra operations.
However, because sets are unordered and do not map keys to values,
 they are neither sequence nor mapping types; they are a type category
 unto themselves. Moreover, because sets are fundamentally mathematical
 in nature (and for many readers, may seem more academic and be used much
 less often than more pervasive objects like dictionaries), we’ll explore
 the basic utility of Python’s set objects here.
Set basics in Python 2.6 and earlier
There are a few ways to make sets today, depending on which Python
 you use. Since this book covers all, let’s begin with the case for 2.6
 and earlier, which also is available (and sometimes still required) in
 later Pythons; we’ll refine this for 2.7 and 3.X extensions in a
 moment. To make a set object, pass in a sequence or other iterable
 object to the built-in set
 function:
>>> x = set('abcde')
>>> y = set('bdxyz')
You get back a set object, which contains all the items in the
 object passed in (notice that sets do not have a positional ordering,
 and so are not sequences—their order is arbitrary and may vary per
 Python release):
>>> x
set(['a', 'c', 'b', 'e', 'd']) # Pythons <= 2.6 display format
Sets made this way support the common mathematical set
 operations with expression operators. Note
 that we can’t perform the following operations on plain sequences like
 strings, lists, and tuples—we must create sets from them by passing
 them to set in order to apply these
 tools:
>>> x − y # Difference
set(['a', 'c', 'e'])

>>> x | y # Union
set(['a', 'c', 'b', 'e', 'd', 'y', 'x', 'z'])

>>> x & y # Intersection
set(['b', 'd'])

>>> x ^ y # Symmetric difference (XOR)
set(['a', 'c', 'e', 'y', 'x', 'z'])

>>> x > y, x < y # Superset, subset
(False, False)
The notable exception to this rule is the in set membership test—this expression is
 also defined to work on all other collection types, where it also
 performs membership (or a search, if you prefer to think in procedural
 terms). Hence, we do not need to convert things like strings and lists
 to sets to run this test:
>>> 'e' in x # Membership (sets)
True

>>> 'e' in 'Camelot', 22 in [11, 22, 33] # But works on other types too
(True, True)
In addition to expressions, the set object provides
 methods that correspond to these operations and
 more, and that support set changes—the set add method inserts one item, update is an in-place union, and remove deletes an item by value (run a
 dir call on any set instance or the
 set type name to see all the
 available methods). Assuming x and
 y are still as they were in the
 prior interaction:
>>> z = x.intersection(y) # Same as x & y
>>> z
set(['b', 'd'])
>>> z.add('SPAM') # Insert one item
>>> z
set(['b', 'd', 'SPAM'])
>>> z.update(set(['X', 'Y'])) # Merge: in-place union
>>> z
set(['Y', 'X', 'b', 'd', 'SPAM'])
>>> z.remove('b') # Delete one item
>>> z
set(['Y', 'X', 'd', 'SPAM'])
As iterable containers, sets can also be
 used in operations such as len,
 for loops, and list comprehensions.
 Because they are unordered, though, they don’t support sequence
 operations like indexing and slicing:
>>> for item in set('abc'): print(item * 3)

aaa
ccc
bbb
Finally, although the set expressions shown earlier generally
 require two sets, their method-based counterparts can often work with
 any iterable type as well:
>>> S = set([1, 2, 3])

>>> S | set([3, 4]) # Expressions require both to be sets
set([1, 2, 3, 4])
>>> S | [3, 4]
TypeError: unsupported operand type(s) for |: 'set' and 'list'

>>> S.union([3, 4]) # But their methods allow any iterable
set([1, 2, 3, 4])
>>> S.intersection((1, 3, 5))
set([1, 3])
>>> S.issubset(range(-5, 5))
True
For more details on set operations, see Python’s library
 reference manual or a reference book. Although set operations can be
 coded manually in Python with other types, like lists and dictionaries
 (and often were in the past), Python’s built-in sets use efficient
 algorithms and implementation techniques to provide quick and standard
 operation.

Set literals in Python 3.X and 2.7
If you think sets are “cool,” they eventually became noticeably
 cooler, with new syntax for set literals and
 comprehensions initially added in the Python 3.X
 line only, but back-ported to Python 2.7 by popular demand. In these
 Pythons we can still use the set
 built-in to make set objects, but also a new set literal form, using
 the curly braces formerly reserved for dictionaries. In 3.X and 2.7,
 the following are equivalent:
set([1, 2, 3, 4]) # Built-in call (all)
{1, 2, 3, 4} # Newer set literals (2.7, 3.X)
This syntax makes sense, given that sets are essentially like
 valueless dictionaries—because a set’s items are
 unordered, unique, and immutable, the items behave much like a
 dictionary’s keys. This operational similarity is even more striking
 given that dictionary key lists in 3.X are view
 objects, which support set-like behavior such as intersections and
 unions (see Chapter 8 for more on
 dictionary view objects).
Regardless of how a set is made, 3.X displays it using the new
 literal format. Python 2.7 accepts the new
 literal syntax, but still displays sets using the
 2.6 display form of the prior section. In all Pythons, the set built-in is still required to create
 empty sets and to build sets from existing iterable objects (short of
 using set comprehensions, discussed later in this chapter), but the
 new literal is convenient for initializing sets of known
 structure.
Here’s what sets look like in 3.X; it’s the same in 2.7, except
 that set results display with 2.X’s set([...]) notation, and item order may vary
 per version (which by definition is irrelevant in sets anyhow):
C:\code> c:\python33\python
>>> set([1, 2, 3, 4]) # Built-in: same as in 2.6
{1, 2, 3, 4}
>>> set('spam') # Add all items in an iterable
{'s', 'a', 'p', 'm'}

>>> {1, 2, 3, 4} # Set literals: new in 3.X (and 2.7)
{1, 2, 3, 4}
>>> S = {'s', 'p', 'a', 'm'}
>>> S
{'s', 'a', 'p', 'm'}

>>> S.add('alot') # Methods work as before
>>> S
{'s', 'a', 'p', 'alot', 'm'}
All the set processing operations discussed in the prior section
 work the same in 3.X, but the result sets print differently:
>>> S1 = {1, 2, 3, 4}
>>> S1 & {1, 3} # Intersection
{1, 3}
>>> {1, 5, 3, 6} | S1 # Union
{1, 2, 3, 4, 5, 6}
>>> S1 - {1, 3, 4} # Difference
{2}
>>> S1 > {1, 3} # Superset
True
Note that {} is still a
 dictionary in all Pythons. Empty sets must be
 created with the set built-in, and
 print the same way:
>>> S1 - {1, 2, 3, 4} # Empty sets print differently
set()
>>> type({}) # Because {} is an empty dictionary
<class 'dict'>

>>> S = set() # Initialize an empty set
>>> S.add(1.23)
>>> S
{1.23}
As in Python 2.6 and earlier, sets created with 3.X/2.7 literals
 support the same methods, some of which allow general iterable
 operands that expressions do not:
>>> {1, 2, 3} | {3, 4}
{1, 2, 3, 4}
>>> {1, 2, 3} | [3, 4]
TypeError: unsupported operand type(s) for |: 'set' and 'list'

>>> {1, 2, 3}.union([3, 4])
{1, 2, 3, 4}
>>> {1, 2, 3}.union({3, 4})
{1, 2, 3, 4}
>>> {1, 2, 3}.union(set([3, 4]))
{1, 2, 3, 4}

>>> {1, 2, 3}.intersection((1, 3, 5))
{1, 3}
>>> {1, 2, 3}.issubset(range(-5, 5))
True

Immutable constraints and frozen sets
Sets are powerful and flexible objects, but they do have one constraint in both 3.X and 2.X that
 you should keep in mind—largely because of their implementation, sets
 can only contain immutable (a.k.a. “hashable”)
 object types. Hence, lists and dictionaries cannot be embedded in
 sets, but tuples can if you need to store compound values. Tuples
 compare by their full values when used in set operations:
>>> S
{1.23}
>>> S.add([1, 2, 3]) # Only immutable objects work in a set
TypeError: unhashable type: 'list'
>>> S.add({'a':1})
TypeError: unhashable type: 'dict'
>>> S.add((1, 2, 3))
>>> S # No list or dict, but tuple OK
{1.23, (1, 2, 3)}

>>> S | {(4, 5, 6), (1, 2, 3)} # Union: same as S.union(...)
{1.23, (4, 5, 6), (1, 2, 3)}
>>> (1, 2, 3) in S # Membership: by complete values
True
>>> (1, 4, 3) in S
False
Tuples in a set, for instance, might be used to represent dates,
 records, IP addresses, and so on (more on tuples later in this part of
 the book). Sets may also contain modules, type objects, and more. Sets
 themselves are mutable too, and so cannot be nested in other sets
 directly; if you need to store a set inside another set, the frozenset
 built-in call works just like set
 but creates an immutable set that cannot change and thus can be
 embedded in other sets.

Set comprehensions in Python 3.X and 2.7
In addition to literals, Python 3.X grew a set comprehension construct that was
 back-ported for use to Python 2.7 too. Like the 3.X set literal, 2.7
 accepts its syntax, but displays its results in 2.X set notation. The
 set comprehension expression is similar in form to the list
 comprehension we previewed in Chapter 4, but is coded in curly
 braces instead of square brackets and run to make a set instead of a
 list. Set comprehensions run a loop and collect the result of an
 expression on each iteration; a loop variable gives access to the
 current iteration value for use in the collection expression. The
 result is a new set you create by running the code, with all the
 normal set behavior. Here is a set comprehension in 3.3 (again, result
 display and order differs in 2.7):
>>> {x ** 2 for x in [1, 2, 3, 4]} # 3.X/2.7 set comprehension
{16, 1, 4, 9}
In this expression, the loop is coded on the right, and the
 collection expression is coded on the left (x
 ** 2). As for list comprehensions, we get back pretty much
 what this expression says: “Give me a new set containing X squared,
 for every X in a list.” Comprehensions can also iterate across other
 kinds of objects, such as strings (the first of the following examples
 illustrates the comprehension-based way to make a set from an existing
 iterable):
>>> {x for x in 'spam'} # Same as: set('spam')
{'m', 's', 'p', 'a'}

>>> {c * 4 for c in 'spam'} # Set of collected expression results
{'pppp', 'aaaa', 'ssss', 'mmmm'}
>>> {c * 4 for c in 'spamham'}
{'pppp', 'aaaa', 'hhhh', 'ssss', 'mmmm'}

>>> S = {c * 4 for c in 'spam'}
>>> S | {'mmmm', 'xxxx'}
{'pppp', 'xxxx', 'mmmm', 'aaaa', 'ssss'}
>>> S & {'mmmm', 'xxxx'}
{'mmmm'}
Because the rest of the comprehensions story relies upon
 underlying concepts we’re not yet prepared to address, we’ll postpone
 further details until later in this book. In Chapter 8, we’ll meet a first cousin in 3.X
 and 2.7, the dictionary comprehension, and I’ll have much more to say
 about all comprehensions—list, set, dictionary, and generator—later
 on, especially in Chapter 14 and
 Chapter 20. As we’ll learn
 there, all comprehensions support additional syntax not shown here,
 including nested loops and if
 tests, which can be challenging to understand until you’ve had a
 chance to study larger statements.

Why sets?
Set operations have a variety of common uses, some more practical than
 mathematical. For example, because items are stored only once in a
 set, sets can be used to filter duplicates out of
 other collections, though items may be reordered in the process
 because sets are unordered in general. Simply convert the collection
 to a set, and then convert it back again (sets work in the list call here because they are
 iterable, another technical artifact that we’ll
 unearth later):
>>> L = [1, 2, 1, 3, 2, 4, 5]
>>> set(L)
{1, 2, 3, 4, 5}
>>> L = list(set(L)) # Remove duplicates
>>> L
[1, 2, 3, 4, 5]

>>> list(set(['yy', 'cc', 'aa', 'xx', 'dd', 'aa'])) # But order may change
['cc', 'xx', 'yy', 'dd', 'aa']
Sets can be used to isolate differences in
 lists, strings, and other iterable objects too—simply convert to sets
 and take the difference—though again the unordered nature of sets
 means that the results may not match that of the originals. The last
 two of the following compare attribute lists of string object types in
 3.X (results vary in 2.7):
>>> set([1, 3, 5, 7]) - set([1, 2, 4, 5, 6]) # Find list differences
{3, 7}
>>> set('abcdefg') - set('abdghij') # Find string differences
{'c', 'e', 'f'}
>>> set('spam') - set(['h', 'a', 'm']) # Find differences, mixed
{'p', 's'}

>>> set(dir(bytes)) - set(dir(bytearray)) # In bytes but not bytearray
{'__getnewargs__'}
>>> set(dir(bytearray)) - set(dir(bytes))
{'append', 'copy', '__alloc__', '__imul__', 'remove', 'pop', 'insert', ...more...]
You can also use sets to perform order-neutral
 equality tests by converting to a set before the test,
 because order doesn’t matter in a set. More formally, two sets are
 equal if and only if every element of each set is
 contained in the other—that is, each is a subset of the other,
 regardless of order. For instance, you might use this to compare the
 outputs of programs that should work the same but may generate results
 in different order. Sorting before testing has the same effect for
 equality, but sets don’t rely on an expensive sort, and sorts order
 their results to support additional magnitude tests that sets do not
 (greater, less, and so on):
>>> L1, L2 = [1, 3, 5, 2, 4], [2, 5, 3, 4, 1]
>>> L1 == L2 # Order matters in sequences
False
>>> set(L1) == set(L2) # Order-neutral equality
True
>>> sorted(L1) == sorted(L2) # Similar but results ordered
True
>>> 'spam' == 'asmp', set('spam') == set('asmp'), sorted('spam') == sorted('asmp')
(False, True, True)
Sets can also be used to keep track of where you’ve already been
 when traversing a graph or other cyclic
 structure. For example, the transitive module reloader and inheritance
 tree lister examples we’ll study in Chapter 25 and Chapter 31, respectively, must keep track of
 items visited to avoid loops, as Chapter 19 discusses in the abstract. Using
 a list in this context is inefficient because searches require linear
 scans. Although recording states visited as keys in a dictionary is
 efficient, sets offer an alternative that’s essentially equivalent
 (and may be more or less intuitive, depending on whom you ask).
Finally, sets are also convenient when you’re dealing with large
 data sets (database query results, for example)—the intersection of
 two sets contains objects common to both categories, and the union
 contains all items in either set. To illustrate, here’s a somewhat
 more realistic example of set operations at work, applied to lists of
 people in a hypothetical company, using 3.X/2.7 set literals and 3.X
 result displays (use set in 2.6 and
 earlier):
>>> engineers = {'bob', 'sue', 'ann', 'vic'}
>>> managers = {'tom', 'sue'}

>>> 'bob' in engineers # Is bob an engineer?
True

>>> engineers & managers # Who is both engineer and manager?
{'sue'}

>>> engineers | managers # All people in either category
{'bob', 'tom', 'sue', 'vic', 'ann'}

>>> engineers - managers # Engineers who are not managers
{'vic', 'ann', 'bob'}

>>> managers - engineers # Managers who are not engineers
{'tom'}

>>> engineers > managers # Are all managers engineers? (superset)
False

>>> {'bob', 'sue'} < engineers # Are both engineers? (subset)
True

>>> (managers | engineers) > managers # All people is a superset of managers
True

>>> managers ^ engineers # Who is in one but not both?
{'tom', 'vic', 'ann', 'bob'}

>>> (managers | engineers) - (managers ^ engineers) # Intersection!
{'sue'}
You can find more details on set operations in the Python
 library manual and some mathematical and relational database theory
 texts. Also stay tuned for Chapter 8’s
 revival of some of the set operations we’ve seen here, in the context
 of dictionary view objects in Python 3.X.

Booleans
Some may argue that the Python Boolean type, bool, is numeric in nature because its two
 values, True and False, are just customized versions of the integers 1 and 0 that print
 themselves differently. Although that’s all most programmers need to
 know, let’s explore this type in a bit more detail.
More formally, Python today has an explicit Boolean data type
 called bool, with the values True and False available as preassigned built-in names.
 Internally, the names True and
 False are instances of bool, which is in turn just a subclass (in the
 object-oriented sense) of the built-in integer type int. True
 and False behave exactly like the
 integers 1 and 0, except that they have customized printing logic—they
 print themselves as the words True
 and False, instead of the digits
 1 and 0. bool
 accomplishes this by redefining str
 and repr string formats for its two
 objects.
Because of this customization, the output of Boolean expressions
 typed at the interactive prompt prints as the words True and False instead of the older and less obvious
 1 and 0. In addition, Booleans make truth values
 more explicit in your code. For instance, an infinite loop can now be
 coded as while True: instead of the
 less intuitive while 1:. Similarly,
 flags can be initialized more clearly with flag
 = False. We’ll discuss these statements further in Part III.
Again, though, for most practical purposes, you can treat True and False as though they are predefined variables
 set to integers 1 and 0. Most programmers had been preassigning
 True and False to 1
 and 0 anyway; the bool type simply makes this standard. Its
 implementation can lead to curious results, though. Because True is just the integer 1 with a custom display format, True + 4 yields integer 5 in Python!
>>> type(True)
<class 'bool'>
>>> isinstance(True, int)
True
>>> True == 1 # Same value
True
>>> True is 1 # But a different object: see the next chapter
False
>>> True or False # Same as: 1 or 0
True
>>> True + 4 # (Hmmm)
5
Since you probably won’t come across an expression like the last
 of these in real Python code, you can safely ignore any of its deeper
 metaphysical implications.
We’ll revisit Booleans in Chapter 9 to define Python’s
 notion of truth, and again in Chapter 12 to see how Boolean operators like
 and and or work.

Numeric Extensions
Finally, although Python core numeric types offer plenty of power for most
 applications, there is a large library of third-party open source
 extensions available to address more focused needs. Because numeric
 programming is a popular domain for Python, you’ll find a wealth of
 advanced tools.
For example, if you need to do serious number crunching, an optional
 extension for Python called NumPy (Numeric Python) provides
 advanced numeric programming tools, such as a matrix data type, vector
 processing, and sophisticated computation libraries. Hardcore scientific
 programming groups at places like Los Alamos and NASA use Python with
 NumPy to implement the sorts of tasks they previously coded in C++, FORTRAN, or Matlab. The combination of
 Python and NumPy is often compared to a free, more flexible version of
 Matlab—you get NumPy’s performance, plus the Python language and its
 libraries.
Because it’s so advanced, we won’t talk further about NumPy in this
 book. You can find additional support for advanced numeric programming in
 Python, including graphics and plotting tools, extended precision floats,
 statistics libraries, and the popular SciPy package
 by searching the Web. Also note that NumPy is currently an optional
 extension; it doesn’t come with Python and must be installed separately,
 though you’ll probably want to do so if you care enough about this domain
 to look it up on the Web.

Chapter Summary
This chapter has taken a tour of Python’s numeric object types and
 the operations we can apply to them. Along the way, we met the standard
 integer and floating-point types, as well as some more exotic and less
 commonly used types such as complex numbers, decimals, fractions, and
 sets. We also explored Python’s expression syntax, type conversions,
 bitwise operations, and various literal forms for coding numbers in
 scripts.
Later in this part of the book, we’ll continue our in-depth type
 tour by filling in some details about the next object type—the string. In
 the next chapter, however, we’ll take some time to explore the mechanics
 of variable assignment in more detail than we have here. This turns out to
 be perhaps the most fundamental idea in Python, so make sure you check out
 the next chapter before moving on. First, though, it’s time to take the
 usual chapter quiz.

Test Your Knowledge: Quiz
	What is the value of the expression 2 * (3
 + 4) in Python?

	What is the value of the expression 2 *
 3 + 4 in Python?

	What is the value of the expression 2 +
 3 * 4 in Python?

	What tools can you use to find a number’s square root, as well
 as its square?

	What is the type of the result of the expression 1 + 2.0 + 3?

	How can you truncate and round a floating-point number?

	How can you convert an integer to a floating-point
 number?

	How would you display an integer in octal, hexadecimal, or
 binary notation?

	How might you convert an octal, hexadecimal, or binary string to
 a plain integer?

Test Your Knowledge: Answers
	The value will be 14, the
 result of 2 * 7, because the parentheses force the addition to happen
 before the multiplication.

	The value will be 10, the
 result of 6 + 4. Python’s operator precedence rules are applied in the
 absence of parentheses, and multiplication has higher precedence than
 (i.e., happens before) addition, per Table 5-2.

	This expression yields 14,
 the result of 2 + 12, for the same precedence reasons as in the prior
 question.

	Functions for obtaining the square root, as well as
 pi, tangents, and more, are available in the
 imported math module. To find a
 number’s square root, import math
 and call math.sqrt(N). To get a
 number’s square, use either the exponent expression X ** 2 or the built-in function pow(X, 2). Either of these last two can also
 compute the square root when given a power of 0.5 (e.g., X **
 .5).

	The result will be a floating-point number: the integers are
 converted up to floating point, the most complex type in the
 expression, and floating-point math is used to evaluate it.

	The int(N) and math.trunc(N) functions truncate, and the round(N, digits) function rounds. We can also compute the
 floor with math.floor(N) and round for display with string
 formatting operations.

	The float(I) function converts an integer to a floating
 point; mixing an integer with a floating point within an expression
 will result in a conversion as well. In some sense, Python 3.X
 / division converts too—it always
 returns a floating-point result that includes the remainder, even if
 both operands are integers.

	The oct(I) and hex(I) built-in functions return the octal and
 hexadecimal string forms for an integer. The bin(I) call also returns a number’s binary digits
 string in Pythons 2.6, 3.0, and later. The % string formatting expression and format string method also provide targets
 for some such conversions.

	The int(S, base) function can be used to convert from octal
 and hexadecimal strings to normal integers (pass in 8, 16, or
 2 for the base). The eval(S) function can be used for this purpose too,
 but it’s more expensive to run and can have security issues. Note that
 integers are always stored in binary form in computer memory; these
 are just display string format conversions.

Chapter 6. The Dynamic Typing Interlude
In the prior chapter, we began exploring Python’s core object types in
 depth by studying Python numeric types and operations. We’ll resume our
 object type tour in the next chapter, but before we move on, it’s important
 that you get a handle on what may be the most fundamental idea in Python
 programming and is certainly the basis of much of both the conciseness and
 flexibility of the Python language—dynamic typing, and the polymorphism it
 implies.
As you’ll see here and throughout this book, in Python, we do not
 declare the specific types of the objects our scripts use. In fact, most
 programs should not even care about specific types; in
 exchange, they are naturally applicable in more contexts than we can
 sometimes even plan ahead for. Because dynamic typing is the root of this
 flexibility, and is also a potential stumbling block for newcomers, let’s
 take a brief side trip to explore the model here.
The Case of the Missing Declaration Statements
If you have a background in compiled or statically typed languages
 like C, C++, or Java, you might find yourself a bit perplexed at this
 point in the book. So far, we’ve been using variables without declaring
 their existence or their types, and it somehow works. When we type
 a = 3 in an interactive session or
 program file, for instance, how does Python know that a should stand for an integer? For that matter,
 how does Python know what a is at
 all?
Once you start asking such questions, you’ve crossed over into the
 domain of Python’s dynamic typing model. In
 Python, types are determined automatically at runtime, not in response to
 declarations in your code. This means that you never declare variables
 ahead of time (a concept that is perhaps simpler to grasp if you keep in
 mind that it all boils down to variables, objects, and the links between
 them).
Variables, Objects, and References
As you’ve seen in many of the examples used so far in this book, when you
 run an assignment statement such as a =
 3 in Python, it works even if you’ve never told Python to use
 the name a as a variable, or that
 a should stand for an integer-type
 object. In the Python language, this all pans out in a very natural way,
 as follows:
	Variable creation
	A variable (also known in Python as a name), like a, is created when your code first assigns it a value.
 Future assignments change the value of the already created name.
 Technically, Python detects some names before your code runs, but
 you can think of it as though initial assignments make
 variables.

	Variable types
	A variable never has any type information or constraints
 associated with it. The notion of type lives with objects, not
 names. Variables are generic in nature; they always simply refer
 to a particular object at a particular point in time.

	Variable use
	When a variable appears in an expression, it is immediately replaced
 with the object that it currently refers to, whatever that may be.
 Further, all variables must be explicitly assigned before they can
 be used; referencing unassigned variables results in
 errors.

In sum, variables are created when assigned, can reference any
 type of object, and must be assigned before they are referenced. This
 means that you never need to declare names used by your script, but you
 must initialize names before you can update them; counters, for example,
 must be initialized to zero before you can add to them.
This dynamic typing model is strikingly different from the typing
 model of traditional languages. When you are first starting out, the
 model is usually easier to understand if you keep clear the distinction
 between names and objects. For example, when we say this to assign a
 variable a value:
>>> a = 3 # Assign a name to an object
at least conceptually, Python will perform three distinct steps to
 carry out the request. These steps reflect the operation of all
 assignments in the Python language:
	Create an object to represent the value 3.

	Create the variable a, if
 it does not yet exist.

	Link the variable a to the
 new object 3.

The net result will be a structure inside Python that resembles
 Figure 6-1. As
 sketched, variables and objects are stored in different parts of
 memory and are associated by links (the link is shown as a pointer in
 the figure). Variables always link to objects and never to other
 variables, but larger objects may link to other objects (for instance, a
 list object has links to the objects it contains).
Figure 6-1. Names (a.k.a. variables) and objects after running the
 assignment a = 3. Variable a becomes a reference to the object 3.
 Internally, the variable is really a pointer to the object’s memory
 space created by running the literal expression 3.

These links from variables to objects are called references in
 Python—that is, a reference is a kind of association, implemented as a
 pointer in memory.1 Whenever the variables are later used (i.e., referenced),
 Python automatically follows the variable-to-object links. This is all
 simpler than the terminology may imply. In concrete terms:
	Variables are entries in a system table, with spaces for links to
 objects.

	Objects are pieces of allocated memory, with enough space to represent the
 values for which they stand.

	References are automatically followed pointers from variables to
 objects.

At least conceptually, each time you generate a new value in your
 script by running an expression, Python creates a new
 object (i.e., a chunk of memory) to represent that
 value. As an optimization, Python internally caches and reuses certain
 kinds of unchangeable objects, such as small integers and strings (each
 0 is not really a new piece of
 memory—more on this caching behavior later). But from a logical
 perspective, it works as though each expression’s result value is a
 distinct object and each object is a distinct piece of memory.
Technically speaking, objects have more structure than just enough
 space to represent their values. Each object also has two standard
 header fields: a type designator used to mark the type of the object, and a reference
 counter used to determine when it’s OK to reclaim the object.
 To understand how these two header fields factor into the model, we need
 to move on.

Types Live with Objects, Not Variables
To see how object types come into play, watch what happens if we
 assign a variable multiple times:
>>> a = 3 # It's an integer
>>> a = 'spam' # Now it's a string
>>> a = 1.23 # Now it's a floating point
This isn’t typical Python code, but it does work—a starts out as an integer, then becomes a
 string, and finally becomes a floating-point number. This example tends
 to look especially odd to ex-C programmers, as it appears as though the
 type of a
 changes from integer to string when we say a =
 'spam'.
However, that’s not really what’s happening. In Python, things
 work more simply. Names have no types; as stated
 earlier, types live with objects, not names. In the preceding listing,
 we’ve simply changed a to reference
 different objects. Because variables have no type, we haven’t actually
 changed the type of the variable a;
 we’ve simply made the variable reference a different type of object. In
 fact, again, all we can ever say about a variable in Python is that it
 references a particular object at a particular point in time.
Objects, on the other hand, know what type
 they are—each object contains a header field that tags the object with
 its type. The integer object 3, for
 example, will contain the value 3,
 plus a designator that tells Python that the object is an integer
 (strictly speaking, a pointer to an object called int, the name of the integer type). The type
 designator of the 'spam' string
 object points to the string type (called str) instead. Because objects know their
 types, variables don’t have to.
To recap, types are associated with objects in Python, not with
 variables. In typical code, a given variable usually will reference just
 one kind of object. Because this isn’t a requirement, though, you’ll
 find that Python code tends to be much more flexible than you may be
 accustomed to—if you use Python well, your code might work on many types
 automatically.
I mentioned that objects have two header fields, a type designator
 and a reference counter. To understand the latter of these, we need to
 move on and take a brief look at what happens at the end of an object’s life.

Objects Are Garbage-Collected
In the prior section’s listings, we assigned the variable a
 to different types of objects in each assignment. But when we reassign a
 variable, what happens to the value it was previously referencing? For
 example, after the following statements, what happens to the object
 3?
>>> a = 3
>>> a = 'spam'
The answer is that in Python, whenever a name is assigned to a new
 object, the space held by the prior object is reclaimed if it is not
 referenced by any other name or object. This automatic reclamation of
 objects’ space is known as garbage collection, and
 makes life much simpler for programmers of languages like Python that
 support it.
To illustrate, consider the following example, which sets the name
 x to a different object on each
 assignment:
>>> x = 42
>>> x = 'shrubbery' # Reclaim 42 now (unless referenced elsewhere)
>>> x = 3.1415 # Reclaim 'shrubbery' now
>>> x = [1, 2, 3] # Reclaim 3.1415 now
First, notice that x is set to
 a different type of object each time. Again, though this is not really
 the case, the effect is as though the type of x is changing over time. Remember, in Python
 types live with objects, not names. Because names are just generic
 references to objects, this sort of code works naturally.
Second, notice that references to objects are discarded along the
 way. Each time x is assigned to a new
 object, Python reclaims the prior object’s space. For instance, when it
 is assigned the string 'shrubbery',
 the object 42 is immediately
 reclaimed (assuming it is not referenced anywhere else)—that is, the
 object’s space is automatically thrown back into the free space pool, to
 be reused for a future object.
Internally, Python accomplishes this feat by keeping a counter in
 every object that keeps track of the number of references currently
 pointing to that object. As soon as (and exactly when) this counter
 drops to zero, the object’s memory space is automatically reclaimed. In
 the preceding listing, we’re assuming that each time x is assigned to a new object, the prior
 object’s reference counter drops to zero, causing it to be
 reclaimed.
The most immediately tangible benefit of garbage collection is
 that it means you can use objects liberally without ever needing to
 allocate or free up space in your script. Python will clean up unused
 space for you as your program runs. In practice, this eliminates a
 substantial amount of bookkeeping code required in lower-level languages
 such as C and C++.
More on Python Garbage Collection
Technically speaking, Python’s garbage collection is based
 mainly upon reference counters, as
 described here; however, it also has a component that detects and
 reclaims objects with cyclic references in time.
 This component can be disabled if you’re sure that your code doesn’t
 create cycles, but it is enabled by default.
Circular references are a classic issue in reference count garbage
 collectors. Because references are implemented as pointers, it’s
 possible for an object to reference itself, or reference another
 object that does. For example, exercise 6 at the end of Part I and its
 solution in Appendix D show
 how to create a cycle easily by embedding a reference to a list within
 itself (e.g., L.append(L)). The
 same phenomenon can occur for assignments to attributes of objects
 created from user-defined classes. Though relatively rare, because the
 reference counts for such objects never drop to zero, they must be
 treated specially.
For more details on Python’s cycle detector, see the
 documentation for the gc module in
 Python’s library manual. The best news here is that
 garbage-collection-based memory management is implemented for you in
 Python, by people highly skilled at the task.
Also note that this chapter’s description of Python’s garbage
 collector applies to the standard Python (a.k.a.
 CPython) only; Chapter 2’s alternative implementations
 such as Jython, IronPython, and PyPy may use different schemes, though
 the net effect in all is similar—unused space is reclaimed for you
 automatically, if not always as immediately.

Shared References
So far, we’ve seen what happens as a single variable is assigned references to
 objects. Now let’s introduce another variable into our interaction and
 watch what happens to its names and objects:
>>> a = 3
>>> b = a
Typing these two statements generates the scene captured in Figure 6-2. The second command
 causes Python to create the variable b;
 the variable a is being used and not
 assigned here, so it is replaced with the object it references (3), and b is
 made to reference that object. The net effect is that the variables
 a and b wind up referencing the
 same object (that is, pointing to the same chunk of
 memory).
Figure 6-2. Names and objects after next running the assignment b = a.
 Variable b becomes a reference to the object 3. Internally, the variable
 is really a pointer to the object’s memory space created by running the
 literal expression 3.

This scenario in Python—with multiple names referencing the same
 object—is usually called a shared reference (and
 sometimes just a shared object). Note that the names
 a and b are not linked to each other directly when
 this happens; in fact, there is no way to ever link a variable to another
 variable in Python. Rather, both variables point to the same object via
 their references.
Next, suppose we extend the session with one more statement:
>>> a = 3
>>> b = a
>>> a = 'spam'
As with all Python assignments, this statement simply makes a new
 object to represent the string value 'spam' and sets a to reference this new object. It does not,
 however, change the value of b;
 b still references the original object,
 the integer 3. The resulting reference
 structure is shown in Figure 6-3.
Figure 6-3. Names and objects after finally running the assignment a =
 ‘spam’. Variable a references the new object (i.e., piece of memory)
 created by running the literal expression ‘spam’, but variable b still
 refers to the original object 3. Because this assignment is not an
 in-place change to the object 3, it changes only variable a, not
 b.

The same sort of thing would happen if we changed b to 'spam'
 instead—the assignment would change only b, not a.
 This behavior also occurs if there are no type differences at all. For
 example, consider these three statements:
>>> a = 3
>>> b = a
>>> a = a + 2
In this sequence, the same events transpire. Python makes the
 variable a reference the object
 3 and makes b reference the same object as a, as in Figure 6-2; as before, the last
 assignment then sets a to a completely
 different object (in this case, the integer 5, which is the result of the + expression). It does not change b as a side effect. In fact, there is no way to
 ever overwrite the value of the object 3—as introduced in Chapter 4, integers are immutable and
 thus can never be changed in place.
One way to think of this is that, unlike in some languages, in
 Python variables are always pointers to objects, not labels of changeable
 memory areas: setting a variable to a new value does not alter the
 original object, but rather causes the variable to reference an entirely
 different object. The net effect is that assignment to a variable itself
 can impact only the single variable being assigned. When mutable objects
 and in-place changes enter the equation, though, the picture changes
 somewhat; to see how, let’s move on.
Shared References and In-Place Changes
As you’ll see later in this part’s chapters, there are objects and operations
 that perform in-place object changes—Python’s
 mutable types, including lists, dictionaries, and
 sets. For instance, an assignment to an offset in a list actually
 changes the list object itself in place, rather than generating a
 brand-new list object.
Though you must take it somewhat on faith at this point in the
 book, this distinction can matter much in your programs. For objects
 that support such in-place changes, you need to be more aware of shared
 references, since a change from one name may impact others. Otherwise,
 your objects may seem to change for no apparent reason. Given that all
 assignments are based on references (including function argument
 passing), it’s a pervasive potential.
To illustrate, let’s take another look at the list objects
 introduced in Chapter 4. Recall
 that lists, which do support in-place assignments to positions, are
 simply collections of other objects, coded in square brackets:
>>> L1 = [2, 3, 4]
>>> L2 = L1
L1 here is a list containing
 the objects 2, 3, and 4.
 Items inside a list are accessed by their positions, so L1[0] refers to object 2, the first item in the list L1. Of course, lists are also objects in their
 own right, just like integers and strings. After running the two prior
 assignments, L1 and L2 reference the same shared object, just like
 a and b in the prior example (see Figure 6-2). Now say that, as
 before, we extend this interaction to say the following:
>>> L1 = 24
This assignment simply sets L1
 to a different object; L2 still
 references the original list. If we change this statement’s syntax
 slightly, however, it has a radically different effect:
>>> L1 = [2, 3, 4] # A mutable object
>>> L2 = L1 # Make a reference to the same object
>>> L1[0] = 24 # An in-place change

>>> L1 # L1 is different
[24, 3, 4]
>>> L2 # But so is L2!
[24, 3, 4]
Really, we haven’t changed L1
 itself here; we’ve changed a component of the
 object that L1
 references. This sort of change overwrites part of the list object’s
 value in place. Because the list object is shared by (referenced from)
 other variables, though, an in-place change like this doesn’t affect
 only L1—that is, you must be aware
 that when you make such changes, they can impact other parts of your
 program. In this example, the effect shows up in L2 as well because it references the same
 object as L1. Again, we haven’t
 actually changed L2, either, but its
 value will appear different because it refers to an object that has been
 overwritten in place.
This behavior only occurs for mutable objects that support
 in-place changes, and is usually what you want, but you should be aware
 of how it works, so that it’s expected. It’s also just the default: if
 you don’t want such behavior, you can request that Python
 copy objects instead of making references. There
 are a variety of ways to copy a list, including using the built-in
 list function and the standard
 library copy module. Perhaps the most
 common way is to slice from start to finish (see Chapter 4 and Chapter 7 for more on slicing):
>>> L1 = [2, 3, 4]
>>> L2 = L1[:] # Make a copy of L1 (or list(L1), copy.copy(L1), etc.)
>>> L1[0] = 24

>>> L1
[24, 3, 4]
>>> L2 # L2 is not changed
[2, 3, 4]
Here, the change made through L1 is not reflected in L2 because L2 references a copy of the object L1 references, not the original; that is, the
 two variables point to different pieces of memory.
Note that this slicing technique won’t work on the other major
 mutable core types, dictionaries and sets, because they are not
 sequences—to copy a dictionary or set, instead use their X.copy() method call (lists have one as of
 Python 3.3 as well), or pass the original object to their type names,
 dict and set. Also, note that the standard library
 copy module has a call for copying
 any object type generically, as well as a call for copying nested object
 structures—a dictionary with nested lists, for example:
import copy
X = copy.copy(Y) # Make top-level "shallow" copy of any object Y
X = copy.deepcopy(Y) # Make deep copy of any object Y: copy all nested parts
We’ll explore lists and dictionaries in more depth, and revisit
 the concept of shared references and copies, in Chapter 8 and Chapter 9. For now, keep in
 mind that objects that can be changed in place (that is, mutable
 objects) are always open to these kinds of effects in any code they pass
 through. In Python, this includes lists, dictionaries, sets, and some
 objects defined with class
 statements. If this is not the desired behavior, you can simply copy
 your objects as needed.

Shared References and Equality
In the interest of full disclosure, I should point out that the
 garbage-collection behavior described earlier in this chapter may be
 more conceptual than literal for certain types. Consider these
 statements:
>>> x = 42
>>> x = 'shrubbery' # Reclaim 42 now?
Because Python caches and reuses small integers and small strings,
 as mentioned earlier, the object 42
 here is probably not literally reclaimed; instead, it will likely remain
 in a system table to be reused the next time you generate a 42 in your code. Most kinds of objects,
 though, are reclaimed immediately when they are no longer referenced;
 for those that are not, the caching mechanism is irrelevant to your
 code.
For instance, because of Python’s reference model, there are two
 different ways to check for equality in a Python program. Let’s create a
 shared reference to demonstrate:
>>> L = [1, 2, 3]
>>> M = L # M and L reference the same object
>>> L == M # Same values
True
>>> L is M # Same objects
True
The first technique here, the == operator, tests whether the two referenced
 objects have the same values; this is the method
 almost always used for equality checks in Python. The second method, the
 is operator, instead tests for object
 identity—it returns True only if both names point to the exact
 same object, so it is a much stronger form of equality testing and is
 rarely applied in most programs.
Really, is simply compares the
 pointers that implement references, and it serves as a way to detect
 shared references in your code if needed. It returns False if the names point to equivalent but
 different objects, as is the case when we run two different literal
 expressions:
>>> L = [1, 2, 3]
>>> M = [1, 2, 3] # M and L reference different objects
>>> L == M # Same values
True
>>> L is M # Different objects
False
Now, watch what happens when we perform the same operations on
 small numbers:
>>> X = 42
>>> Y = 42 # Should be two different objects
>>> X == Y
True
>>> X is Y # Same object anyhow: caching at work!
True
In this interaction, X and
 Y should be == (same value), but not is (same object) because we ran two different
 literal expressions (42). Because
 small integers and strings are cached and reused, though, is tells us they reference the same single
 object.
In fact, if you really want to look under the hood, you can always
 ask Python how many references there are to an object: the getrefcount function in the standard sys module returns the object’s reference
 count. When I ask about the integer object 1 in the IDLE GUI, for instance, it reports
 647 reuses of this same object (most of which are in IDLE’s system code,
 not mine, though this returns 173 outside IDLE so Python must be
 hoarding 1s as well):
>>> import sys
>>> sys.getrefcount(1) # 647 pointers to this shared piece of memory
647
This object caching and reuse is irrelevant to your code (unless
 you run the is check!). Because you
 cannot change immutable numbers or strings in place, it doesn’t matter
 how many references there are to the same object—every reference will
 always see the same, unchanging value. Still, this behavior reflects one
 of the many ways Python optimizes its model for execution speed.

Dynamic Typing Is Everywhere
Of course, you don’t really need to draw name/object diagrams with circles and
 arrows to use Python. When you’re starting out, though, it sometimes helps
 you understand unusual cases if you can trace their reference structures
 as we’ve done here. If a mutable object changes out from under you when
 passed around your program, for example, chances are you are witnessing
 some of this chapter’s subject matter firsthand.
Moreover, even if dynamic typing seems a little abstract at this
 point, you probably will care about it eventually. Because
 everything seems to work by assignment and references
 in Python, a basic understanding of this model is useful in many different
 contexts. As you’ll see, it works the same in assignment statements,
 function arguments, for loop variables,
 module imports, class attributes, and more. The good news is that there is
 just one assignment model in Python; once you get a
 handle on dynamic typing, you’ll find that it works the same everywhere in
 the language.
At the most practical level, dynamic typing means there is less code
 for you to write. Just as importantly, though, dynamic typing is also the
 root of Python’s polymorphism, a concept we
 introduced in Chapter 4 and will
 revisit again later in this book. Because we do not constrain types in
 Python code, it is both concise and highly flexible. As you’ll see, when
 used well, dynamic typing—and the polymorphism it implies—produces code
 that automatically adapts to new requirements as your systems
 evolve.
“Weak” References
You may occasionally see the term “weak reference” in the Python world. This is
 a somewhat advanced tool, but is related to the reference model we’ve
 explored here, and like the is
 operator, can’t really be understood without it.
In short, a weak reference, implemented by the weakref standard
 library module, is a reference to an object that does not by itself
 prevent the referenced object from being garbage-collected. If the last
 remaining references to an object are weak references, the object is
 reclaimed and the weak references to it are automatically deleted (or
 otherwise notified).
This can be useful in dictionary-based caches of large objects,
 for example; otherwise, the cache’s reference alone would keep the
 object in memory indefinitely. Still, this is really just a special-case
 extension to the reference model. For more details, see Python’s library
 manual.

Chapter Summary
This chapter took a deeper look at Python’s dynamic typing
 model—that is, the way that Python keeps track of object types for us
 automatically, rather than requiring us to code declaration statements in
 our scripts. Along the way, we learned how variables and objects are
 associated by references in Python; we also explored the idea of garbage
 collection, learned how shared references to objects can affect multiple
 variables, and saw how references impact the notion of equality in
 Python.
Because there is just one assignment model in Python, and because
 assignment pops up everywhere in the language, it’s important that you
 have a handle on the model before moving on. The following quiz should
 help you review some of this chapter’s ideas. After that, we’ll resume our
 core object tour in the next chapter, with strings.

Test Your Knowledge: Quiz
	Consider the following three statements. Do they change the value
 printed for A?
A = "spam"
B = A
B = "shrubbery"

	Consider these three statements. Do they change the printed
 value of A?
A = ["spam"]
B = A
B[0] = "shrubbery"

	How about these—is A changed
 now?
A = ["spam"]
B = A[:]
B[0] = "shrubbery"

Test Your Knowledge: Answers
	No: A still prints as
 "spam". When B is assigned to the string "shrubbery", all that happens is that the
 variable B is reset to point to the
 new string object. A and B initially share (i.e., reference/point to)
 the same single string object "spam", but two names are never linked
 together in Python. Thus, setting B
 to a different object has no effect on A. The same would be true if the last
 statement here were B = B +
 'shrubbery', by the way—the concatenation would make a new
 object for its result, which would then be assigned to B only. We can never overwrite a string (or
 number, or tuple) in place, because strings are immutable.

	Yes: A now prints as ["shrubbery"]. Technically, we haven’t
 really changed either A or B; instead, we’ve changed part of the object
 they both reference (point to) by overwriting that object in place
 through the variable B. Because
 A references the same object as
 B, the update is reflected in
 A as well.

	No: A still prints as
 ["spam"]. The in-place assignment
 through B has no effect this time
 because the slice expression made a copy of the list object before it
 was assigned to B. After the second
 assignment statement, there are two different list objects that have
 the same value (in Python, we say they are ==, but not is). The third statement changes the value
 of the list object pointed to by B,
 but not that pointed to by A.

1 Readers with a background in C may find Python references
 similar to C pointers (memory addresses). In fact, references are
 implemented as pointers, and they often serve the same roles,
 especially with objects that can be changed in place (more on this
 later). However, because references are always automatically
 dereferenced when used, you can never actually do anything useful
 with a reference itself; this is a feature that eliminates a vast
 category of C bugs. But you can think of Python references as C
 “void*” pointers, which are automatically followed whenever
 used.

Chapter 7. String Fundamentals
So far, we’ve studied numbers and explored Python’s dynamic typing
 model. The next major type on our in-depth core object tour is the Python
 string—an ordered collection of characters used to store and represent text- and
 bytes-based information. We looked briefly at strings in Chapter 4. Here, we will revisit them in
 more depth, filling in some of the details we skipped earlier.
This Chapter’s Scope
Before we get started, I also want to clarify what we
 won’t be covering here. Chapter 4 briefly previewed
 Unicode strings and files—tools for dealing with
 non-ASCII text. Unicode is a key tool for some programmers, especially
 those who work in the Internet domain. It can pop up, for example, in web
 pages, email content and headers, FTP transfers, GUI APIs, directory
 tools, and HTML, XML and JSON text.
At the same time, Unicode can be a heavy topic for programmers just
 starting out, and many (or most) of the Python programmers I meet today
 still do their jobs in blissful ignorance of the entire topic. In light of
 that, this book relegates most of the Unicode story to Chapter 37 of its Advanced Topics part as
 optional reading, and focuses on string basics here.
That is, this chapter tells only part of the string story in
 Python—the part that most scripts use and most programmers need to know.
 It explores the fundamental str string
 type, which handles ASCII text, and works the same regardless of which
 version of Python you use. Despite this intentionally limited scope,
 because str also handles Unicode in
 Python 3.X, and the separate unicode
 type works almost identically to str in
 2.X, everything we learn here will apply directly to Unicode processing
 too.
Unicode: The Short Story
For readers who do care about Unicode, I’d like to also provide a quick summary of
 its impacts and pointers for further study. From a formal perspective,
 ASCII is a simple form of Unicode text, but just one of many possible
 encodings and alphabets. Text from non-English-speaking sources may use
 very different letters, and may be encoded very differently when stored
 in files.
As we saw in Chapter 4,
 Python addresses this by distinguishing between text and binary data,
 with distinct string object types and file interfaces for each. This
 support varies per Python line:
	In Python 3.X there are three string types: str is used for Unicode text (including
 ASCII), bytes is used for binary
 data (including encoded text), and bytearray is a mutable variant of bytes. Files
 work in two modes: text, which represents content as str and
 implements Unicode encodings, and binary, which
 deals in raw bytes and does no
 data translation.

	In Python 2.X, unicode strings represent Unicode text, str strings handle both 8-bit text and
 binary data, and bytearray is
 available in 2.6 and later as a back-port from 3.X. Normal files’
 content is simply bytes represented as str, but a codecs module opens Unicode text files,
 handles encodings, and represents content as unicode objects.

Despite such version differences, if and when you do need to care
 about Unicode you’ll find that it is a relatively minor extension—once
 text is in memory, it’s a Python string of characters that supports all
 the basics we’ll study in this chapter. In fact, the primary distinction
 of Unicode often lies in the translation (a.k.a.
 encoding) step required to move it to and from files. Beyond that, it’s
 largely just string processing.
Again, though, because most programmers don’t need to come to
 grips with Unicode details up front, I’ve moved most of the details to Chapter 37. When you’re ready to learn about
 these more advanced string concepts, I encourage you to see both their
 preview in Chapter 4 and the
 full Unicode and bytes disclosure in Chapter 37 after reading the string
 fundamentals material here.
For this chapter, we’ll focus on the basic string type and its
 operations. As you’ll find, the techniques we’ll study here also apply
 directly to the more advanced string types in Python’s toolset.

String Basics
From a functional perspective, strings can be used to represent just about
 anything that can be encoded as text or bytes. In the text department,
 this includes symbols and words (e.g., your name), contents of text files
 loaded into memory, Internet addresses, Python source code, and so on.
 Strings can also be used to hold the raw bytes used for media files and
 network transfers, and both the encoded and decoded forms of non-ASCII
 Unicode text used in internationalized programs.
You may have used strings in other languages, too. Python’s strings
 serve the same role as character arrays in languages such as C, but they
 are a somewhat higher-level tool than arrays. Unlike in C, in Python,
 strings come with a powerful set of processing tools. Also unlike
 languages such as C, Python has no distinct type for individual
 characters; instead, you just use one-character strings.
Strictly speaking, Python strings are categorized as immutable sequences,
 meaning that the characters they contain have a left-to-right positional
 order and that they cannot be changed in place. In fact, strings are the
 first representative of the larger class of objects called
 sequences that we will study here. Pay special
 attention to the sequence operations introduced in this chapter, because
 they will work the same on other sequence types we’ll explore later, such
 as lists and tuples.
Table 7-1 previews
 common string literals and operations we will discuss in this chapter.
 Empty strings are written as a pair of quotation marks (single or double)
 with nothing in between, and there are a variety of ways to code strings.
 For processing, strings support expression operations
 such as concatenation (combining strings), slicing (extracting sections),
 indexing (fetching by offset), and so on. Besides expressions, Python also
 provides a set of string methods that implement
 common string-specific tasks, as well as modules for
 more advanced text-processing tasks such as pattern matching. We’ll
 explore all of these later in the chapter.
Table 7-1. Common string literals and operations	Operation	Interpretation
	S = ''
	Empty string

	S = "spam's"
	Double quotes, same as
 single

	S = 's\np\ta\x00m'
	Escape sequences

	S = """...multiline..."""
	Triple-quoted block strings

	S = r'\temp\spam'
	Raw strings (no
 escapes)

	B = b'sp\xc4m'
	Byte strings in 2.6, 2.7,
 and 3.X (Chapter 4, Chapter 37)

	U = u'sp\u00c4m'
	Unicode strings in 2.X and
 3.3+ (Chapter 4, Chapter 37)

	S1 + S2
 S * 3
	Concatenate,
 repeat

	S[i]
 S[i:j]
 len(S)
	Index, slice,
 length

	"a %s parrot" % kind
	String formatting expression

	"a {0} parrot".format(kind)
	String formatting method in
 2.6, 2.7, and 3.X

	S.find('pa')
 S.rstrip()
 S.replace('pa', 'xx')

 S.split(',')

 S.isdigit()

 S.lower()

 S.endswith('spam')

 'spam'.join(strlist)

 S.encode('latin-1')

 B.decode('utf8')
	String methods (see ahead for all 43): search,

 remove whitespace,
 replacement,
 split on delimiter,
 content test,
 case conversion,
 end test,
 delimiter join,
 Unicode encoding,
 Unicode decoding, etc. (see Table 7-3)

	for x in S: print(x)

 'spam' in S

 [c * 2 for c in S]

 map(ord, S)
	Iteration,
 membership

	re.match('sp(.*)am', line)
	Pattern matching:
 library module

Beyond the core set of string tools in Table 7-1, Python also supports
 more advanced pattern-based string processing with the standard library’s
 re (for “regular expression”) module,
 introduced in Chapter 4 and Chapter 37, and even higher-level text
 processing tools such as XML parsers (discussed briefly in Chapter 37). This book’s scope, though, is
 focused on the fundamentals represented by Table 7-1.
To cover the basics, this chapter begins with an overview of string
 literal forms and string expressions, then moves on to look at more
 advanced tools such as string methods and formatting. Python comes with
 many string tools, and we won’t look at them all here; the complete story
 is chronicled in the Python library manual and reference books. Our goal
 here is to explore enough commonly used tools to give you a representative
 sample; methods we won’t see in action here, for example, are largely
 analogous to those we will.

String Literals
By and large, strings are fairly easy to use in Python. Perhaps the
 most complicated thing about them is that there are so many ways to write
 them in your code:
	Single quotes: 'spa"m'

	Double quotes: "spa'm"

	Triple quotes: '''... spam
 ...''', """... spam
 ..."""

	Escape sequences: "s\tp\na\0m"

	Raw strings: r"C:\new\test.spm"

	Bytes literals in 3.X and 2.6+ (see Chapter 4, Chapter 37): b'sp\x01am'

	Unicode literals in 2.X and 3.3+ (see Chapter 4, Chapter 37): u'eggs\u0020spam'

The single- and double-quoted forms are by far the most common; the
 others serve specialized roles, and we’re postponing further discussion of
 the last two advanced forms until Chapter 37. Let’s take a quick look at all the
 other options in turn.
Single- and Double-Quoted Strings Are the Same
Around Python strings, single- and double-quote characters are interchangeable.
 That is, string literals can be written enclosed in either two single or
 two double quotes—the two forms work the same and return the same type
 of object. For example, the following two strings are identical, once
 coded:
>>> 'shrubbery', "shrubbery"
('shrubbery', 'shrubbery')
The reason for supporting both is that it allows you to embed a
 quote character of the other variety inside a string without escaping it
 with a backslash. You may embed a single-quote character in a string
 enclosed in double-quote characters, and vice versa:
>>> 'knight"s', "knight's"
('knight"s', "knight's")
This book generally prefers to use single
 quotes around strings just because they are marginally easier to read,
 except in cases where a single quote is embedded in the string. This is
 a purely subjective style choice, but Python displays strings this way
 too and most Python programmers do the same today, so you probably
 should too.
Note that the comma is important here. Without it, Python
 automatically concatenates adjacent string literals
 in any expression, although it is almost as simple to add a + operator between them to invoke
 concatenation explicitly (as we’ll see in Chapter 12, wrapping this form in
 parentheses also allows it to span multiple lines):
>>> title = "Meaning " 'of' " Life" # Implicit concatenation
>>> title
'Meaning of Life'
Adding commas between these strings would result in a tuple, not a
 string. Also notice in all of these outputs that Python prints strings
 in single quotes unless they embed one. If needed, you can also embed
 quote characters by escaping them with backslashes:
>>> 'knight\'s', "knight\"s"
("knight's", 'knight"s')
To understand why, you need to know how escapes work in
 general.

Escape Sequences Represent Special Characters
The last example embedded a quote inside a string by preceding it with a
 backslash. This is representative of a general pattern in strings:
 backslashes are used to introduce special character codings known as
 escape sequences.
Escape sequences let us embed characters in strings that cannot
 easily be typed on a keyboard. The character \, and one or more characters following it in
 the string literal, are replaced with a single
 character in the resulting string object, which has the binary value
 specified by the escape sequence. For example, here is a five-character
 string that embeds a newline and a tab:
>>> s = 'a\nb\tc'
The two characters \n stand for
 a single character—the binary value of the newline character in your
 character set (in ASCII, character code 10). Similarly, the sequence
 \t is replaced with the tab
 character. The way this string looks when printed depends on how you
 print it. The interactive echo shows the special characters as escapes,
 but print interprets them
 instead:
>>> s
'a\nb\tc'
>>> print(s)
a
b c
To be completely sure how many actual characters are in this
 string, use the built-in len
 function—it returns the actual number of characters in a string,
 regardless of how it is coded or displayed:
>>> len(s)
5
This string is five characters long: it contains an ASCII
 a, a newline character, an ASCII b, and so
 on.
Note
If you’re accustomed to all-ASCII text, it’s tempting to think
 of this result as meaning 5 bytes too, but you
 probably shouldn’t. Really, “bytes” has no meaning in the Unicode
 world. For one thing, the string object is probably larger in memory
 in Python.
More critically, string content and length both reflect
 code points (identifying numbers) in
 Unicode-speak, where a single character does not necessarily map
 directly to a single byte, either when encoded in files or when stored
 in memory. This mapping might hold true for simple 7-bit ASCII text,
 but even this depends on both the external encoding type and the
 internal storage scheme used. Under UTF-16, for example, ASCII
 characters are multiple bytes in files, and they may be 1, 2, or 4
 bytes in memory depending on how Python allocates their space. For
 other, non-ASCII text, whose characters’ values might be too large to
 fit in an 8-bit byte, the character-to-byte mapping doesn’t apply at
 all.
In fact, 3.X defines str
 strings formally as sequences of Unicode code
 points, not bytes, to make this clear. There’s more on how
 strings are stored internally in Chapter 37 if you care to know. For now, to
 be safest, think characters instead of
 bytes in strings. Trust me on this; as an ex-C
 programmer, I had to break the habit too!

Note that the original backslash characters in the preceding
 result are not really stored with the string in memory; they are used
 only to describe special character values to be stored in the string.
 For coding such special characters, Python recognizes a full set of
 escape code sequences, listed in Table 7-2.
Table 7-2. String backslash characters	Escape	Meaning
	\newline
	Ignored (continuation
 line)

	\\
	Backslash (stores one
 \)

	\'
	Single quote (stores
 ')

	\"
	Double quote (stores
 ")

	\a
	Bell

	\b
	Backspace

	\f
	Formfeed

	\n
	Newline
 (linefeed)

	\r
	Carriage
 return

	\t
	Horizontal
 tab

	\v
	Vertical
 tab

	\xhh
	Character with hex value
 hh (exactly 2 digits)

	\ooo
	Character with octal
 value ooo (up to 3
 digits)

	\0
	Null: binary 0 character
 (doesn’t end string)

	\N{ id }
	Unicode database
 ID

	\uhhhh
	Unicode character with
 16-bit hex value

	\Uhhhhhhh
	Unicode character with
 32-bit hex valuea

	\other
	Not an escape (keeps both
 \ and
 other)

	a The \Uhhhh... escape sequence takes exactly
 eight hexadecimal digits (h);
 both \u and \U are recognized only in Unicode
 string literals in 2.X, but can be used in normal strings
 (which are Unicode) in 3.X. In a 3.X
 bytes literal, hexadecimal and octal
 escapes denote the byte with the given value; in a
 string literal, these escapes denote a
 Unicode character with the given code-point value. There is
 more on Unicode escapes in Chapter 37.

Some escape sequences allow you to embed absolute binary values
 into the characters of a string. For instance, here’s a five-character
 string that embeds two characters with binary zero values (coded as
 octal escapes of one digit):
>>> s = 'a\0b\0c'
>>> s
'a\x00b\x00c'
>>> len(s)
5
In Python, a zero (null) character like this does not terminate a
 string the way a “null byte” typically does in C. Instead, Python keeps
 both the string’s length and text in memory. In fact,
 no character terminates a string in Python. Here’s
 a string that is all absolute binary escape codes—a binary 1 and 2
 (coded in octal), followed by a binary 3 (coded in hexadecimal):
>>> s = '\001\002\x03'
>>> s
'\x01\x02\x03'
>>> len(s)
3
Notice that Python displays nonprintable characters in hex,
 regardless of how they were specified. You can freely combine absolute
 value escapes and the more symbolic escape types in Table 7-2. The following string contains
 the characters “spam”, a tab and newline, and an absolute zero value
 character coded in hex:
>>> S = "s\tp\na\x00m"
>>> S
's\tp\na\x00m'
>>> len(S)
7
>>> print(S)
s p
a m
This becomes more important to know when you process binary data files in Python. Because their contents are
 represented as strings in your scripts, it’s OK to process binary files
 that contain any sorts of binary byte values—when opened in binary
 modes, files return strings of raw bytes from the external file (there’s
 much more on files in Chapter 4, Chapter 9, and Chapter 37).
Finally, as the last entry in Table 7-2 implies, if Python does not
 recognize the character after a \ as
 being a valid escape code, it simply keeps the backslash in the
 resulting string:
>>> x = "C:\py\code" # Keeps \ literally (and displays it as \\)
>>> x
'C:\\py\\code'
>>> len(x)
10
However, unless you’re able to commit all of Table 7-2 to memory (and there are
 arguably better uses for your neurons!), you probably shouldn’t rely on
 this behavior. To code literal backslashes explicitly such that they are
 retained in your strings, double them up (\\ is an escape for one \) or use raw strings; the next section shows
 how.

Raw Strings Suppress Escapes
As we’ve seen, escape sequences are handy for embedding special
 character codes within strings. Sometimes, though, the special treatment
 of backslashes for introducing escapes can lead to trouble. It’s
 surprisingly common, for instance, to see Python newcomers in classes
 trying to open a file with a filename argument that looks something like
 this:
myfile = open('C:\new\text.dat', 'w')
thinking that they will open a file called text.dat in the directory C:\new. The problem here is that \n is taken to stand for a newline character,
 and \t is replaced with a tab. In
 effect, the call tries to open a file named C:(newline)ew(tab)ext.dat, with usually
 less-than-stellar results.
This is just the sort of thing that raw strings are useful for. If
 the letter r (uppercase or lowercase) appears just
 before the opening quote of a string, it turns off the escape mechanism.
 The result is that Python retains your backslashes literally, exactly as
 you type them. Therefore, to fix the filename problem, just remember to
 add the letter r on Windows:
myfile = open(r'C:\new\text.dat', 'w')
Alternatively, because two backslashes are really an escape
 sequence for one backslash, you can keep your backslashes by simply
 doubling them up:
myfile = open('C:\\new\\text.dat', 'w')
In fact, Python itself sometimes uses this doubling scheme when it
 prints strings with embedded backslashes:
>>> path = r'C:\new\text.dat'
>>> path # Show as Python code
'C:\\new\\text.dat'
>>> print(path) # User-friendly format
C:\new\text.dat
>>> len(path) # String length
15
As with numeric representation, the default format at the
 interactive prompt prints results as if they were code, and therefore
 escapes backslashes in the output. The print statement provides a more user-friendly
 format that shows that there is actually only one backslash in each
 spot. To verify this is the case, you can check the result of the
 built-in len function, which returns the number of characters in the string,
 independent of display formats. If you count the characters in the
 print(path) output, you’ll see that
 there really is just 1 character per backslash, for a total of
 15.
Besides directory paths on Windows, raw strings are also commonly
 used for regular expressions (text pattern matching, supported with the
 re module introduced in Chapter 4 and Chapter 37). Also note that Python scripts
 can usually use forward slashes in directory paths
 on Windows and Unix because Python tries to interpret paths portably
 (i.e., 'C:/new/text.dat' works when
 opening files, too). Raw strings are useful if you code paths using
 native Windows backslashes, though.
Note
Despite its role, even a raw string cannot
 end in a single backslash, because the backslash
 escapes the following quote character—you still must escape the
 surrounding quote character to embed it in the string. That is,
 r"...\" is not a valid string
 literal—a raw string cannot end in an odd number of backslashes. If
 you need to end a raw string with a single backslash, you can use two
 and slice off the second (r'1\nb\tc\\'[:-1]), tack one on manually
 (r'1\nb\tc' + '\\'), or skip the
 raw string syntax and just double up the backslashes in a normal
 string ('1\\nb\\tc\\'). All three
 of these forms create the same eight-character string containing three
 backslashes.

Triple Quotes Code Multiline Block Strings
So far, you’ve seen single quotes, double quotes, escapes, and raw strings in
 action. Python also has a triple-quoted string literal format, sometimes
 called a block string, that is a syntactic
 convenience for coding multiline text data. This form begins with three
 quotes (of either the single or double variety), is followed by any
 number of lines of text, and is closed with the same triple-quote
 sequence that opened it. Single and double quotes embedded in the
 string’s text may be, but do not have to be, escaped—the string does not
 end until Python sees three unescaped quotes of the same kind used to
 start the literal. For example (the “...” here is Python’s prompt for
 continuation lines outside IDLE: don’t type it yourself):
>>> mantra = """Always look
... on the bright
... side of life."""
>>>
>>> mantra
'Always look\n on the bright\nside of life.'
This string spans three lines. As we learned in Chapter 3, in some interfaces, the interactive
 prompt changes to ... on continuation
 lines like this, but IDLE simply drops down one line; this book shows listings
 in both forms, so extrapolate as needed. Either way, Python collects all
 the triple-quoted text into a single multiline string, with embedded
 newline characters (\n) at the places
 where your code has line breaks. Notice that, as in the literal, the
 second line in the result has leading spaces, but the third does
 not—what you type is truly what you get. To see the string with the
 newlines interpreted, print it instead of echoing:
>>> print(mantra)
Always look
 on the bright
side of life.
In fact, triple-quoted strings will retain all the enclosed text,
 including any to the right of your code that you might intend as
 comments. So don’t do this—put your comments above
 or below the quoted text, or use the automatic concatenation of adjacent
 strings mentioned earlier, with explicit newlines if desired, and
 surrounding parentheses to allow line spans (again, more on this latter
 form when we study syntax rules in Chapter 10 and Chapter 12):
>>> menu = """spam # comments here added to string!
... eggs # ditto
... """
>>> menu
'spam # comments here added to string!\neggs # ditto\n'

>>> menu = (
... "spam\n" # comments here ignored
... "eggs\n" # but newlines not automatic
...)
>>> menu
'spam\neggs\n'
Triple-quoted strings are useful anytime you need
 multiline text in your program; for example, to
 embed multiline error messages or HTML, XML, or JSON code in your Python
 source code files. You can embed such blocks directly in your scripts by
 triple-quoting without resorting to external text files or explicit
 concatenation and newline characters.
Triple-quoted strings are also commonly used for
 documentation strings, which are string literals that are taken as comments when
 they appear at specific points in your file (more on these later in the
 book). These don’t have to be triple-quoted blocks, but they usually are
 to allow for multiline comments.
Finally, triple-quoted strings are also sometimes used as a
 “horribly hackish” way to temporarily disable lines
 of code during development (OK, it’s not really too horrible, and it’s
 actually a fairly common practice today, but it wasn’t the intent). If
 you wish to turn off a few lines of code and run your script again,
 simply put three quotes above and below them, like this:
X = 1
"""
import os # Disable this code temporarily
print(os.getcwd())
"""
Y = 2
I said this was hackish because Python really might make a string
 out of the lines of code disabled this way, but this is probably not
 significant in terms of performance. For large sections of code, it’s
 also easier than manually adding hash marks before each line and later
 removing them. This is especially true if you are using a text editor
 that does not have support for editing Python code specifically. In
 Python, practicality often beats aesthetics.

Strings in Action
Once you’ve created a string with the literal expressions we just
 met, you will almost certainly want to do things with it. This section and
 the next two demonstrate string expressions, methods, and formatting—the
 first line of text-processing tools in the Python language.
Basic Operations
Let’s begin by interacting with the Python interpreter to
 illustrate the basic string operations listed earlier in Table 7-1. You can concatenate
 strings using the + operator
 and repeat them using the *
 operator:
% python
>>> len('abc') # Length: number of items
3
>>> 'abc' + 'def' # Concatenation: a new string
'abcdef'
>>> 'Ni!' * 4 # Repetition: like "Ni!" + "Ni!" + ...
'Ni!Ni!Ni!Ni!'
The len built-in function
 here returns the length of a string (or any other object
 with a length). Formally, adding two string objects with + creates a new string object, with the
 contents of its operands joined, and repetition with * is like adding a string to itself a number
 of times. In both cases, Python lets you create arbitrarily sized
 strings; there’s no need to predeclare anything in Python, including the
 sizes of data structures—you simply create string objects as needed and
 let Python manage the underlying memory space automatically (see Chapter 6 for more on Python’s memory
 management “garbage collector”).
Repetition may seem a bit obscure at first, but it comes in handy
 in a surprising number of contexts. For example, to print a line of 80
 dashes, you can count up to 80, or let Python count for you:
>>> print('------- ...more... ---') # 80 dashes, the hard way
>>> print('-' * 80) # 80 dashes, the easy way
Notice that operator overloading is at work here already: we’re
 using the same + and * operators that perform addition and
 multiplication when using numbers. Python does the correct operation
 because it knows the types of the objects being added and multiplied.
 But be careful: the rules aren’t quite as liberal as you might expect.
 For instance, Python doesn’t allow you to mix numbers and strings in
 + expressions: 'abc'+9 raises an error instead of
 automatically converting 9 to a
 string.
As shown near the end of Table 7-1, you can also iterate
 over strings in loops using for
 statements, which repeat actions, and test membership for both
 characters and substrings with the in
 expression operator, which is essentially a search. For substrings,
 in is much like the str.find() method covered later in this chapter, but it returns a Boolean
 result instead of the substring’s position (the following uses a 3.X
 print call and may leave your cursor
 a bit indented; in 2.X say print c,
 instead):
>>> myjob = "hacker"
>>> for c in myjob: print(c, end=' ') # Step through items, print each (3.X form)
...
h a c k e r
>>> "k" in myjob # Found
True
>>> "z" in myjob # Not found
False
>>> 'spam' in 'abcspamdef' # Substring search, no position returned
True
The for loop assigns a variable
 to successive items in a sequence (here, a string) and executes one or
 more statements for each item. In effect, the variable c becomes a cursor stepping across the
 string’s characters here. We will discuss iteration tools like these and
 others listed in Table 7-1 in more detail later
 in this book (especially in Chapter 14 and Chapter 20).

Indexing and Slicing
Because strings are defined as ordered collections of characters, we can
 access their components by position. In Python, characters in a string
 are fetched by indexing—providing the numeric
 offset of the desired component in square brackets after the string. You
 get back the one-character string at the specified position.
As in the C language, Python offsets start at 0 and end at one
 less than the length of the string. Unlike C, however, Python also lets
 you fetch items from sequences such as strings using
 negative offsets. Technically, a negative offset is
 added to the length of a string to derive a positive offset. You can
 also think of negative offsets as counting backward from the end. The
 following interaction demonstrates:
>>> S = 'spam'
>>> S[0], S[−2] # Indexing from front or end
('s', 'a')
>>> S[1:3], S[1:], S[:−1] # Slicing: extract a section
('pa', 'pam', 'spa')
The first line defines a four-character string and assigns it the
 name S. The next line indexes it in
 two ways: S[0] fetches the item at
 offset 0 from the left—the one-character string 's'; S[−2]
 gets the item at offset 2 back from the end—or equivalently, at offset
 (4 + (−2)) from the front. In more graphic terms, offsets and slices map
 to cells as shown in Figure 7-1.1
Figure 7-1. Offsets and slices: positive offsets start from the left end
 (offset 0 is the first item), and negatives count back from the right
 end (offset −1 is the last item). Either kind of offset can be used to
 give positions in indexing and slicing operations.

The last line in the preceding example demonstrates
 slicing, a generalized form of indexing that
 returns an entire section, not a single item.
 Probably the best way to think of slicing is that it is a type of
 parsing (analyzing structure), especially when
 applied to strings—it allows us to extract an entire
 section (substring) in a single step. Slices can be
 used to extract columns of data, chop off leading and trailing text, and
 more. In fact, we’ll explore slicing in the context of text parsing
 later in this chapter.
The basics of slicing are straightforward. When you index a
 sequence object such as a string on a pair of offsets separated by a
 colon, Python returns a new object containing the contiguous section
 identified by the offset pair. The left offset is taken to be the lower
 bound (inclusive), and the right is the upper bound
 (noninclusive). That is, Python fetches all items
 from the lower bound up to but not including the upper bound, and
 returns a new object containing the fetched items. If omitted, the left
 and right bounds default to 0 and the length of the object you are
 slicing, respectively.
For instance, in the example we just saw, S[1:3] extracts the items at offsets 1 and 2:
 it grabs the second and third items, and stops before the fourth item at
 offset 3. Next, S[1:] gets
 all items beyond the first—the upper bound, which
 is not specified, defaults to the length of the string. Finally,
 S[:−1] fetches all but the
 last item—the lower bound defaults to 0, and −1 refers to the
 last item, noninclusive.
This may seem confusing at first glance, but indexing and slicing
 are simple and powerful tools to use, once you get the knack. Remember,
 if you’re unsure about the effects of a slice, try it out interactively.
 In the next chapter, you’ll see that it’s even possible to change an
 entire section of another object in one step by assigning to a slice
 (though not for immutables like strings). Here’s a summary of the
 details for reference:
	Indexing (S[i]) fetches components at offsets:
		The first item is at offset 0.

	Negative indexes mean to count backward from the end or
 right.

	S[0] fetches the
 first item.

	S[−2] fetches the
 second item from the end (like S[len(S)−2]).

	Slicing (S[i:j]) extracts contiguous sections of
 sequences:
		The upper bound is noninclusive.

	Slice boundaries default to 0 and the sequence length,
 if omitted.

	S[1:3] fetches items
 at offsets 1 up to but not including 3.

	S[1:] fetches items
 at offset 1 through the end (the sequence length).

	S[:3] fetches items
 at offset 0 up to but not including 3.

	S[:−1] fetches items
 at offset 0 up to but not including the last item.

	S[:] fetches items at
 offsets 0 through the end—making a top-level copy of S.

	Extended slicing (S[i:j:k]) accepts a step (or stride) k, which defaults to +1:
		Allows for skipping items and reversing order—see the
 next section.

The second-to-last bullet item listed here turns out to be a very
 common technique: it makes a full top-level copy of
 a sequence object—an object with the same value, but a distinct piece of
 memory (you’ll find more on copies in Chapter 9). This isn’t very
 useful for immutable objects like strings, but it comes in handy for
 objects that may be changed in place, such as lists.
In the next chapter, you’ll see that the syntax used to index by
 offset (square brackets) is used to index dictionaries by key as well;
 the operations look the same but have different interpretations.
Extended slicing: The third limit and slice objects
In Python 2.3 and later, slice expressions have support for an
 optional third index, used as a step (sometimes called a
 stride). The step is added to the index of each
 item extracted. The full-blown form of a slice is now X[I:J:K], which means “extract all the items in
 X, from offset
 I through J−1,
 by K.” The third limit,
 K, defaults to +1, which is why normally all
 items in a slice are extracted from left to right. If you specify an
 explicit value, however, you can use the third limit to skip items or
 to reverse their order.
For instance, X[1:10:2] will
 fetch every other item in X from offsets 1–9; that is, it will collect
 the items at offsets 1, 3, 5, 7, and 9. As usual, the first and second
 limits default to 0 and the length of the sequence, respectively, so
 X[::2] gets every other item from
 the beginning to the end of the sequence:
>>> S = 'abcdefghijklmnop'
>>> S[1:10:2] # Skipping items
'bdfhj'
>>> S[::2]
'acegikmo'
You can also use a negative stride to collect items in the
 opposite order. For example, the slicing expression "hello"[::−1] returns the new string
 "olleh"—the first two bounds effectively default to sequence length–1 and –1 (they really default to None and None, but that’s unimportant here), and a stride
 of −1 indicates that the slice should go from right to left instead of
 the usual left to right. The effect, therefore, is to
 reverse the sequence:
>>> S = 'hello'
>>> S[::−1] # Reversing items
'olleh'
With a negative stride, the meanings of the first two bounds are
 essentially reversed. That is, the slice S[5:1:−1] fetches the items from 2 to 5, in
 reverse order (the result contains items from offsets 5, 4, 3, and
 2):
>>> S = 'abcedfg'
>>> S[5:1:−1] # Bounds roles differ
'fdec'
Skipping and reversing like this are the most common use cases
 for three-limit slices, but see Python’s standard library manual for
 more details (or run a few experiments interactively). We’ll revisit
 three-limit slices again later in this book, in conjunction with the
 for loop statement.
Later in the book, we’ll also learn that slicing is equivalent
 to indexing with a slice object, a finding of
 importance to class writers seeking to support both operations:
>>> 'spam'[1:3] # Slicing syntax
'pa'
>>> 'spam'[slice(1, 3)] # Slice objects with index syntax + object
'pa'
>>> 'spam'[::-1]
'maps'
>>> 'spam'[slice(None, None, −1)]
'maps'
Why You Will Care: Slices
Throughout this book, I will include common use-case sidebars
 (such as this one) to give you a peek at how some of the language
 features being introduced are typically used in real programs.
 Because you won’t be able to make much sense of realistic use cases
 until you’ve seen more of the Python picture, these sidebars
 necessarily contain many references to topics not introduced yet; at
 most, you should consider them previews of ways that you may find
 these abstract language concepts useful for common programming
 tasks.
For instance, you’ll see later that the argument words listed
 on a system command line used to launch a Python program are made
 available in the argv attribute
 of the built-in sys
 module:
File echo.py
import sys
print(sys.argv)

% python echo.py −a −b −c
['echo.py', '−a', '−b', '−c']
Usually, you’re only interested in inspecting the arguments
 that follow the program name. This leads to a typical application of
 slices: a single slice expression can be used to return all but the
 first item of a list. Here, sys.argv[1:] returns the desired list,
 ['−a', '−b', '−c']. You can then
 process this list without having to accommodate the program name at
 the front.
Slices are also often used to clean up lines read from input
 files. If you know that a line will have an end-of-line character at
 the end (a \n newline marker),
 you can get rid of it with a single expression such as line[:−1], which extracts all but the last
 character in the line (the lower limit defaults to 0). In both
 cases, slices do the job of logic that must be explicit in a
 lower-level language.
Having said that, calling the line.rstrip
 method is often preferred for stripping newline characters because
 this call leaves the line intact if it has no newline character at
 the end—a common case for files created with some text-editing
 tools. Slicing works if you’re sure the line is properly
 terminated.

String Conversion Tools
One of Python’s design mottos is that it refuses the temptation to guess.
 As a prime example, you cannot add a number and a string together in
 Python, even if the string looks like a number (i.e., is all
 digits):
Python 3.X
>>> "42" + 1
TypeError: Can't convert 'int' object to str implicitly

Python 2.X
>>> "42" + 1
TypeError: cannot concatenate 'str' and 'int' objects
This is by design: because +
 can mean both addition and concatenation, the choice of conversion would
 be ambiguous. Instead, Python treats this as an error. In Python, magic
 is generally omitted if it will make your life more complex.
What to do, then, if your script obtains a number as a text string
 from a file or user interface? The trick is that you need to employ
 conversion tools before you can treat a string like a number, or vice
 versa. For instance:
>>> int("42"), str(42) # Convert from/to string
(42, '42')
>>> repr(42) # Convert to as-code string
'42'
The int function converts a string to a number, and the str function
 converts a number to its string representation (essentially, what it
 looks like when printed). The repr
 function (and the older backquotes expression, removed in Python
 3.X) also converts an object to its string representation, but returns
 the object as a string of code that can be rerun to recreate the object.
 For strings, the result has quotes around it if displayed with a
 print statement, which differs in
 form between Python lines:
>>> print(str('spam'), repr('spam')) # 2.X: print str('spam'), repr('spam')
spam 'spam'
>>> str('spam'), repr('spam') # Raw interactive echo displays
('spam', "'spam'")
See the sidebar in Chapter 5’s “str and repr Display Formats” for more on these topics. Of
 these, int and str are the generally prescribed to-number and
 to-string conversion techniques.
Now, although you can’t mix strings and number types around
 operators such as +, you can manually
 convert operands before that operation if needed:
>>> S = "42"
>>> I = 1
>>> S + I
TypeError: Can't convert 'int' object to str implicitly

>>> int(S) + I # Force addition
43

>>> S + str(I) # Force concatenation
'421'
Similar built-in functions handle floating-point-number
 conversions to and from strings:
>>> str(3.1415), float("1.5")
('3.1415', 1.5)

>>> text = "1.234E-10"
>>> float(text) # Shows more digits before 2.7 and 3.1
1.234e-10
Later, we’ll further study the built-in eval function; it runs a string containing Python expression code and so can
 convert a string to any kind of object. The functions int and float convert only to numbers, but this restriction means they are
 usually faster (and more secure, because they do not accept arbitrary
 expression code). As we saw briefly in Chapter 5,
 the string formatting expression also provides a way to convert numbers
 to strings. We’ll discuss formatting further later in this
 chapter.
Character code conversions
On the subject of conversions, it is also possible to convert a single character to its
 underlying integer code (e.g., its ASCII byte value) by passing it to
 the built-in ord
 function—this returns the actual numeric value used to represent the
 corresponding character in memory. The chr function performs the inverse operation, taking an integer code
 and converting it to the corresponding character:
>>> ord('s')
115
>>> chr(115)
's'
Technically, both of these convert characters to and from their Unicode ordinals or
 “code points,” which are just their identifying number in the
 underlying character set. For ASCII text, this is the familiar 7-bit integer that fits
 in a single byte in memory, but the range of code points for other
 kinds of Unicode text may be wider (more on character sets and Unicode
 in Chapter 37). You can use a loop to
 apply these functions to all characters in a string if required. These
 tools can also be used to perform a sort of string-based math. To
 advance to the next character, for example, convert and do the math in
 integer:
>>> S = '5'
>>> S = chr(ord(S) + 1)
>>> S
'6'
>>> S = chr(ord(S) + 1)
>>> S
'7'
At least for single-character strings, this provides an
 alternative to using the built-in int function to convert from string to integer (though this only
 makes sense in character sets that order items as your code
 expects!):
>>> int('5')
5
>>> ord('5') - ord('0')
5
Such conversions can be used in conjunction with looping
 statements, introduced in Chapter 4 and covered in depth in
 the next part of this book, to convert a string of binary digits to
 their corresponding integer values. Each time through the loop,
 multiply the current value by 2 and add the next digit’s integer
 value:
>>> B = '1101' # Convert binary digits to integer with ord
>>> I = 0
>>> while B != '':
... I = I * 2 + (ord(B[0]) - ord('0'))
... B = B[1:]
...
>>> I
13
A left-shift operation (I <<
 1) would have the same effect as multiplying by 2 here. We’ll leave
 this change as a suggested exercise, though, both because we haven’t
 studied loops in detail yet and because the int and bin built-ins we met in Chapter 5 handle binary
 conversion tasks for us as of Python 2.6 and 3.0:
>>> int('1101', 2) # Convert binary to integer: built-in
13
>>> bin(13) # Convert integer to binary: built-in
'0b1101'
Given enough time, Python tends to automate most common
 tasks!

Changing Strings I
Remember the term “immutable sequence”? As we’ve seen, the immutable part means that you
 cannot change a string in place—for instance, by assigning to an
 index:
>>> S = 'spam'
>>> S[0] = 'x' # Raises an error!
TypeError: 'str' object does not support item assignment
How to modify text information in Python, then? To change a
 string, you generally need to build and assign a new string using tools
 such as concatenation and slicing, and then, if desired, assign the
 result back to the string’s original name:
>>> S = S + 'SPAM!' # To change a string, make a new one
>>> S
'spamSPAM!'
>>> S = S[:4] + 'Burger' + S[−1]
>>> S
'spamBurger!'
The first example adds a substring at the end of S, by concatenation. Really, it makes a new
 string and assigns it back to S, but
 you can think of this as “changing” the original string. The second
 example replaces four characters with six by slicing, indexing, and
 concatenating. As you’ll see in the next section, you can achieve
 similar effects with string method calls like replace:
>>> S = 'splot'
>>> S = S.replace('pl', 'pamal')
>>> S
'spamalot'
Like every operation that yields a new string value, string
 methods generate new string objects. If you want to retain those
 objects, you can assign them to variable names. Generating a new string
 object for each string change is not as inefficient as it may
 sound—remember, as discussed in the preceding chapter, Python
 automatically garbage-collects (reclaims the space of) old unused string
 objects as you go, so newer objects reuse the space held by prior
 values. Python is usually more efficient than you might expect.
Finally, it’s also possible to build up new text values with
 string formatting expressions. Both of the following substitute objects
 into a string, in a sense converting the objects to strings and changing
 the original string according to a format specification:
>>> 'That is %d %s bird!' % (1, 'dead') # Format expression: all Pythons
That is 1 dead bird!
>>> 'That is {0} {1} bird!'.format(1, 'dead') # Format method in 2.6, 2.7, 3.X
'That is 1 dead bird!'
Despite the substitution metaphor, though, the result of
 formatting is a new string object, not a modified one. We’ll study
 formatting later in this chapter; as we’ll find, formatting turns out to
 be more general and useful than this example implies. Because the second
 of the preceding calls is provided as a method, though, let’s get a
 handle on string method calls before we explore formatting further.
Note
As previewed in Chapter 4 and to be covered in
 Chapter 37, Python 3.0 and 2.6
 introduced a new string type known as bytearray, which is
 mutable and so may be changed in place. bytearray objects aren’t really text
 strings; they’re sequences of small, 8-bit integers. However, they
 support most of the same operations as normal strings and print as
 ASCII characters when displayed. Accordingly, they provide another
 option for large amounts of simple 8-bit text that must be changed
 frequently (richer types of Unicode text imply different techniques).
 In Chapter 37 we’ll also see that
 ord and chr handle Unicode characters, too, which
 might not be stored in single bytes.

String Methods
In addition to expression operators, strings provide a set of
 methods that implement more sophisticated
 text-processing tasks. In Python, expressions and built-in functions may
 work across a range of types, but methods are generally specific
 to object types—string methods, for example, work only on
 string objects. The method sets of some types intersect in Python 3.X
 (e.g., many types have count and
 copy methods), but they are still more
 type-specific than other tools.
Method Call Syntax
As introduced in Chapter 4, methods are simply
 functions that are associated with and act upon particular objects.
 Technically, they are attributes attached to objects that happen to
 reference callable functions which always have an implied subject. In
 finer-grained detail, functions are packages of code, and method calls
 combine two operations at once—an attribute fetch and a call:
	Attribute fetches
	An expression of the form object.attribute
 means “fetch the value of attribute in
 object.”

	Call expressions
	An expression of the form function(arguments) means “invoke the code of
 function, passing zero or more
 comma-separated argument
 objects to it, and return function’s
 result value.”

Putting these two together allows us to call a method of an
 object. The method call expression:
object.method(arguments)
is evaluated from left to right—Python will first fetch the
 method of the
 object and then call it, passing in both
 object and the
 arguments. Or, in plain words, the method
 call expression means this:
Call method to process object with arguments.
If the method computes a result, it will also come back as the
 result of the entire method-call expression. As a more tangible
 example:
>>> S = 'spam'
>>> result = S.find('pa') # Call the find method to look for 'pa' in string S
This mapping holds true for methods of both built-in types, as
 well as user-defined classes we’ll study later. As you’ll see throughout
 this part of the book, most objects have callable methods, and all are
 accessed using this same method-call syntax. To call an object method,
 as you’ll see in the following sections, you have to go through an
 existing object; methods cannot be run (and make little sense) without a
 subject.

Methods of Strings
Table 7-3 summarizes
 the methods and call patterns for built-in string objects in Python 3.3;
 these change frequently, so be sure to check Python’s standard library
 manual for the most up-to-date list, or run a dir or help
 call on any string (or the str type
 name) interactively. Python 2.X’s string methods vary slightly; it
 includes a decode, for example,
 because of its different handling of Unicode data (something we’ll
 discuss in Chapter 37). In this table,
 S is a string object, and optional
 arguments are enclosed in square brackets. String methods in this table
 implement higher-level operations such as splitting and joining, case
 conversions, content tests, and substring searches and
 replacements.
Table 7-3. String method calls in Python 3.3	S.capitalize()
	S.ljust(width [, fill])

	S.casefold()
	S.lower()

	S.center(width [, fill])
	S.lstrip([chars])

	S.count(sub [, start [, end]])
	S.maketrans(x[, y[, z]])

	S.encode([encoding [,errors]])
	S.partition(sep)

	S.endswith(suffix [, start [, end]])
	S.replace(old, new [, count])

	S.expandtabs([tabsize])
	S.rfind(sub [,start [,end]])

	S.find(sub [, start [, end]])
	S.rindex(sub [, start [, end]])

	S.format(fmtstr, *args, **kwargs)
	S.rjust(width [, fill])

	S.index(sub [, start [, end]])
	S.rpartition(sep)

	S.isalnum()
	S.rsplit([sep[, maxsplit]])

	S.isalpha()
	S.rstrip([chars])

	S.isdecimal()
	S.split([sep [,maxsplit]])

	S.isdigit()
	S.splitlines([keepends])

	S.isidentifier()
	S.startswith(prefix [, start [, end]])

	S.islower()
	S.strip([chars])

	S.isnumeric()
	S.swapcase()

	S.isprintable()
	S.title()

	S.isspace()
	S.translate(map)

	S.istitle()
	S.upper()

	S.isupper()
	S.zfill(width)

	S.join(iterable)
	

As you can see, there are quite a few string methods, and we don’t
 have space to cover them all; see Python’s library manual or reference
 texts for all the fine points. To help you get started, though, let’s
 work through some code that demonstrates some of the most commonly used
 methods in action, and illustrates Python text-processing basics along
 the way.

String Method Examples: Changing Strings II
As we’ve seen, because strings are immutable, they cannot be changed in place
 directly. The bytearray supports
 in-place text changes in 2.6, 3.0, and later, but only for simple 8-bit
 types. We explored changes to text strings earlier, but let’s take a
 quick second look here in the context of string methods.
In general, to make a new text value from an existing string, you
 construct a new string with operations such as slicing and
 concatenation. For example, to replace two characters in the middle of a
 string, you can use code like this:
>>> S = 'spammy'
>>> S = S[:3] + 'xx' + S[5:] # Slice sections from S
>>> S
'spaxxy'
But, if you’re really just out to replace a substring, you can use
 the string replace method
 instead:
>>> S = 'spammy'
>>> S = S.replace('mm', 'xx') # Replace all mm with xx in S
>>> S
'spaxxy'
The replace method is more
 general than this code implies. It takes as arguments the original
 substring (of any length) and the string (of any length) to replace it
 with, and performs a global search and replace:
>>> 'aabbcc$dd'.replace('$', 'SPAM')
'aaSPAMbbSPAMccSPAMdd'
In such a role, replace can be
 used as a tool to implement template replacements (e.g., in form
 letters). Notice that this time we simply printed the result, instead of
 assigning it to a name—you need to assign results to names only if you
 want to retain them for later use.
If you need to replace one fixed-size string that can occur at any
 offset, you can do a replacement again, or search for the substring with
 the string find method and then slice:
>>> S = 'xxxxSPAMxxxxSPAMxxxx'
>>> where = S.find('SPAM') # Search for position
>>> where # Occurs at offset 4
4
>>> S = S[:where] + 'EGGS' + S[(where+4):]
>>> S
'xxxxEGGSxxxxSPAMxxxx'
The find method returns the
 offset where the substring appears (by default, searching from the
 front), or −1 if it is not found. As
 we saw earlier, it’s a substring search operation just like the in expression, but find returns the position of a located
 substring.
Another option is to use replace with a third argument to limit it to a
 single substitution:
>>> S = 'xxxxSPAMxxxxSPAMxxxx'
>>> S.replace('SPAM', 'EGGS') # Replace all
'xxxxEGGSxxxxEGGSxxxx'

>>> S.replace('SPAM', 'EGGS', 1) # Replace one
'xxxxEGGSxxxxSPAMxxxx'
Notice that replace returns a
 new string object each time. Because strings are immutable, methods
 never really change the subject strings in place, even if they are
 called “replace”!
The fact that concatenation operations and the replace method generate new string objects
 each time they are run is actually a potential downside of using them to
 change strings. If you have to apply many changes to a very large
 string, you might be able to improve your script’s performance by
 converting the string to an object that does support in-place
 changes:
>>> S = 'spammy'
>>> L = list(S)
>>> L
['s', 'p', 'a', 'm', 'm', 'y']
The built-in list function
 (an object construction call) builds a new list out of the
 items in any sequence—in this case, “exploding” the characters of a
 string into a list. Once the string is in this form, you can make
 multiple changes to it without generating a new copy for each
 change:
>>> L[3] = 'x' # Works for lists, not strings
>>> L[4] = 'x'
>>> L
['s', 'p', 'a', 'x', 'x', 'y']
If, after your changes, you need to convert back to a string
 (e.g., to write to a file), use the string join method to
 “implode” the list back into a string:
>>> S = ''.join(L)
>>> S
'spaxxy'
The join method may look a bit
 backward at first sight. Because it is a method of strings (not of
 lists), it is called through the desired delimiter. join puts the strings in a list (or other
 iterable) together, with the delimiter between list items; in this case,
 it uses an empty string delimiter to convert from a list back to a
 string. More generally, any string delimiter and iterable of strings
 will do:
>>> 'SPAM'.join(['eggs', 'sausage', 'ham', 'toast'])
'eggsSPAMsausageSPAMhamSPAMtoast'
In fact, joining substrings all at once might often run faster
 than concatenating them individually. Be sure to also see the earlier
 note about the mutable bytearray
 string available as of Python 3.0 and 2.6, described fully in Chapter 37; because it may be changed in
 place, it offers an alternative to this list/join
 combination for some kinds of 8-bit text that must be changed often.

String Method Examples: Parsing Text
Another common role for string methods is as a simple form of text
 parsing—that is, analyzing structure and extracting
 substrings. To extract substrings at fixed offsets, we can employ
 slicing techniques:
>>> line = 'aaa bbb ccc'
>>> col1 = line[0:3]
>>> col3 = line[8:]
>>> col1
'aaa'
>>> col3
'ccc'
Here, the columns of data appear at fixed offsets and so may be
 sliced out of the original string. This technique passes for parsing, as
 long as the components of your data have fixed positions. If instead
 some sort of delimiter separates the data, you can pull out its
 components by splitting. This will work even if the data may show up at
 arbitrary positions within the string:
>>> line = 'aaa bbb ccc'
>>> cols = line.split()
>>> cols
['aaa', 'bbb', 'ccc']
The string split method
 chops up a string into a list of substrings, around a
 delimiter string. We didn’t pass a delimiter in the prior example, so it
 defaults to whitespace—the string is split at groups of one or more
 spaces, tabs, and newlines, and we get back a list of the resulting
 substrings. In other applications, more tangible delimiters may separate
 the data. This example splits (and hence parses) the string at commas, a
 separator common in data returned by some database tools:
>>> line = 'bob,hacker,40'
>>> line.split(',')
['bob', 'hacker', '40']
Delimiters can be longer than a single character, too:
>>> line = "i'mSPAMaSPAMlumberjack"
>>> line.split("SPAM")
["i'm", 'a', 'lumberjack']
Although there are limits to the parsing potential of slicing and
 splitting, both run very fast and can handle basic text-extraction
 chores. Comma-separated text data is part of the CSV file format; for more advanced tools on this front,
 see also the csv module in
 Python’s standard library.

Other Common String Methods in Action
Other string methods have more focused roles—for example, to strip
 off whitespace at the end of a line of text, perform case conversions,
 test content, and test for a substring at the end or front:
>>> line = "The knights who say Ni!\n"
>>> line.rstrip()
'The knights who say Ni!'
>>> line.upper()
'THE KNIGHTS WHO SAY NI!\n'
>>> line.isalpha()
False
>>> line.endswith('Ni!\n')
True
>>> line.startswith('The')
True
Alternative techniques can also sometimes be used to achieve the same results as
 string methods—the in membership
 operator can be used to test for the presence of a substring, for
 instance, and length and slicing operations can be used to mimic
 endswith:
>>> line
'The knights who say Ni!\n'

>>> line.find('Ni') != −1 # Search via method call or expression
True
>>> 'Ni' in line
True

>>> sub = 'Ni!\n'
>>> line.endswith(sub) # End test via method call or slice
True
>>> line[-len(sub):] == sub
True
See also the format string
 formatting method described later in this chapter; it provides more
 advanced substitution tools that combine many operations in a single
 step.
Again, because there are so many methods available for strings, we
 won’t look at every one here. You’ll see some additional string examples
 later in this book, but for more details you can also turn to the Python
 library manual and other documentation sources, or simply experiment
 interactively on your own. You can also check the help(S.method) results for a
 method of any string object S for more hints; as we saw in Chapter 4, running help on str.method likely
 gives the same details.
Note that none of the string methods accepts
 patterns—for pattern-based text processing, you
 must use the Python re standard
 library module, an advanced tool that was introduced in
 Chapter 4 but is mostly outside
 the scope of this text (one further brief example appears at the end of
 Chapter 37). Because of this
 limitation, though, string methods may sometimes run more quickly than
 the re module’s tools.

The Original string Module’s Functions (Gone in 3.X)
The history of Python’s string methods is somewhat convoluted. For roughly the first decade of
 its existence, Python provided a standard library module called string that contained functions that largely
 mirrored the current set of string object methods. By popular demand, in
 Python 2.0 these functions were made available as methods of string
 objects. Because so many people had written so much code that relied on
 the original string module, however,
 it was retained for backward compatibility.
Today, you should use only string methods,
 not the original string module. In
 fact, the original module call forms of today’s string methods have been
 removed completely from Python 3.X, and you should not use them in new
 code in either 2.X or 3.X. However, because you may still see the module
 in use in older Python 2.X code, and this text covers both Pythons 2.X
 and 3.X, a brief look is in order here.
The upshot of this legacy is that in Python 2.X, there technically
 are still two ways to invoke advanced string operations: by calling
 object methods, or by calling string
 module functions and passing in the objects as arguments. For instance,
 given a variable X assigned to a
 string object, calling an object method:
X.method(arguments)
is usually equivalent to calling the same operation through the
 string module (provided that you have
 already imported the module):
string.method(X, arguments)
Here’s an example of the method scheme in action:
>>> S = 'a+b+c+'
>>> x = S.replace('+', 'spam')
>>> x
'aspambspamcspam'
To access the same operation through the string module in Python 2.X, you need to
 import the module (at least once in your process) and pass in the
 object:
>>> import string
>>> y = string.replace(S, '+', 'spam')
>>> y
'aspambspamcspam'
Because the module approach was the standard for so long, and
 because strings are such a central component of most programs, you might
 see both call patterns in Python 2.X code you come across.
Again, though, today you should always use method calls instead of
 the older module calls. There are good reasons for this, besides the
 fact that the module calls have gone away in 3.X. For one thing, the
 module call scheme requires you to import the string module (methods do not require
 imports). For another, the module makes calls a few characters longer to
 type (when you load the module with import, that is, not using from). And, finally, the module runs more
 slowly than methods (the module maps most calls back to the methods and
 so incurs an extra call along the way).
The original string module
 itself, without its string method equivalents, is retained in Python 3.X
 because it contains additional tools, including predefined string
 constants (e.g., string.digits) and a
 Template object system—a relatively
 obscure formatting tool that predates the string format method and is largely omitted here (for
 details, see the brief note comparing it to other formatting tools
 ahead, as well as Python’s library manual). Unless you really want to
 have to change your 2.X code to use 3.X, though, you should consider any
 basic string operation calls in it to be just ghosts of Python
 past.

String Formatting Expressions
Although you can get a lot done with the string methods and sequence
 operations we’ve already met, Python also provides a more advanced way to
 combine string processing tasks—string formatting
 allows us to perform multiple type-specific substitutions on a string in a
 single step. It’s never strictly required, but it can be convenient,
 especially when formatting text to be displayed to a program’s users. Due
 to the wealth of new ideas in the Python world, string formatting is
 available in two flavors in Python today (not counting the less-used
 string module Template system mentioned in the prior
 section):
	String formatting expressions: '...%s...' % (values)
	The original technique available since Python’s inception,
 this form is based upon the C language’s “printf” model, and sees
 widespread use in much existing code.

	String formatting method calls: '...{}...'.format(values)
	A newer technique added in Python 2.6 and 3.0, this form is
 derived in part from a same-named tool in C#/.NET, and overlaps with
 string formatting expression functionality.

Since the method call flavor is newer, there is some chance that one
 or the other of these may become deprecated and removed over time. When
 3.0 was released in 2008, the expression seemed more likely to be
 deprecated in later Python releases. Indeed, 3.0’s documentation
 threatened deprecation in 3.1 and removal thereafter. This hasn’t happened
 as of 2013 and 3.3, and now looks unlikely given the expression’s wide
 use—in fact, it still appears even in Python’s own standard library
 thousands of times today!
Naturally, this story’s development depends on the future practice
 of Python’s users. On the other hand, because both the expression and
 method are valid to use today and either may appear in code you’ll come
 across, this book covers both techniques in full here. As you’ll see, the
 two are largely variations on a theme, though the
 method has some extra features (such as thousands separators), and the
 expression is often more concise and seems second nature to most Python
 programmers.
This book itself uses both techniques in later examples for
 illustrative purposes. If its author has a preference, he will keep it
 largely classified, except to quote from Python’s import this motto:
There should be one—and preferably only one—obvious way to do
 it.

Unless the newer string formatting method is compellingly better
 than the original and widely used expression, its
 doubling of Python programmers’ knowledge base
 requirements in this domain seems unwarranted—and even un-Pythonic, per
 the original and longstanding meaning of that term. Programmers should not
 have to learn two complicated tools if those tools largely overlap. You’ll
 have to judge for yourself whether formatting merits the added language
 heft, of course, so let’s give both a fair hearing.
Formatting Expression Basics
Since string formatting expressions are the
 original in this department, we’ll start with them. Python defines the
 % binary operator to work on strings (you may recall that this is also the
 remainder of division, or modulus, operator for numbers). When applied to strings,
 the % operator provides a simple way
 to format values as strings according to a format definition. In short,
 the % operator provides a compact way
 to code multiple string substitutions all at once, instead of building
 and concatenating parts individually.
To format strings:
	On the left of the % operator, provide a format string
 containing one or more embedded conversion targets, each of which
 starts with a % (e.g., %d).

	On the right of the % operator, provide the object (or
 objects, embedded in a tuple) that you want Python to insert into
 the format string on the left in place of the conversion target (or
 targets).

For instance, in the formatting example we saw earlier in this
 chapter, the integer 1 replaces the
 %d in the format string on the left,
 and the string 'dead' replaces the
 %s. The result is a new string that
 reflects these two substitutions, which may be printed or saved for use
 in other roles:
>>> 'That is %d %s bird!' % (1, 'dead') # Format expression
That is 1 dead bird!
Technically speaking, string formatting expressions are usually
 optional—you can generally do similar work with multiple concatenations
 and conversions. However, formatting allows us to combine many steps
 into a single operation. It’s powerful enough to warrant a few more
 examples:
>>> exclamation = 'Ni'
>>> 'The knights who say %s!' % exclamation # String substitution
'The knights who say Ni!'

>>> '%d %s %g you' % (1, 'spam', 4.0) # Type-specific substitutions
'1 spam 4 you'

>>> '%s -- %s -- %s' % (42, 3.14159, [1, 2, 3]) # All types match a %s target
'42 -- 3.14159 -- [1, 2, 3]'
The first example here plugs the string 'Ni' into the target on the left, replacing
 the %s marker. In the second example,
 three values are inserted into the target string. Note that when you’re
 inserting more than one value, you need to group the values on the right
 in parentheses (i.e., put them in a tuple). The
 % formatting expression operator
 expects either a single item or a tuple of one or more items on its
 right side.
The third example again inserts three values—an integer, a
 floating-point object, and a list object—but notice that all of the
 targets on the left are %s, which
 stands for conversion to string. As every type of object can be
 converted to a string (the one used when printing), every object type
 works with the %s conversion code.
 Because of this, unless you will be doing some special formatting,
 %s is often the only code you need to
 remember for the formatting expression.
Again, keep in mind that formatting always makes a new string,
 rather than changing the string on the left; because strings are
 immutable, it must work this way. As before, assign the result to a
 variable name if you need to retain it.

Advanced Formatting Expression Syntax
For more advanced type-specific formatting, you can use any of the conversion type codes listed in Table 7-4 in formatting expressions;
 they appear after the % character in
 substitution targets. C programmers will recognize most of these because
 Python string formatting supports all the usual C printf format codes (but returns the result,
 instead of displaying it, like printf). Some of the format codes in the table
 provide alternative ways to format the same type; for instance, %e, %f, and
 %g provide alternative ways to format
 floating-point numbers.
Table 7-4. String formatting type codes	Code	Meaning
	s
	String (or any object’s
 str(X) string)

	r
	Same as s, but uses repr, not str

	c
	Character (int or
 str)

	d
	Decimal (base-10
 integer)

	i
	Integer

	u
	Same as d (obsolete: no longer
 unsigned)

	o
	Octal integer (base
 8)

	x
	Hex integer (base
 16)

	X
	Same as x, but with uppercase
 letters

	e
	Floating point with
 exponent, lowercase

	E
	Same as e, but uses uppercase
 letters

	f
	Floating-point
 decimal

	F
	Same as f, but uses uppercase
 letters

	g
	Floating-point e or f

	G
	Floating-point E or F

	%
	Literal % (coded as %%)

In fact, conversion targets in the format string on the
 expression’s left side support a variety of conversion operations with a
 fairly sophisticated syntax all their own. The general structure of
 conversion targets looks like this:
%[(keyname)][flags][width][.precision]typecode
The type code characters in the first column of Table 7-4 show up at the end of this
 target string’s format. Between the %
 and the type code character, you can do any of the following:
	Provide a key name for indexing the
 dictionary used on the right side of the expression

	List flags that specify things like left
 justification (−), numeric sign
 (+), a blank before positive
 numbers and a – for negatives (a
 space), and zero fills (0)

	Give a total minimum field width for the
 substituted text

	Set the number of digits (precision) to
 display after a decimal point for floating-point numbers

Both the width and
 precision parts can also be coded as a
 * to specify that they should take
 their values from the next item in the input values on the expression’s
 right side (useful when this isn’t known until runtime). And if you
 don’t need any of these extra tools, a simple %s in the format string will be replaced by
 the corresponding value’s default print string, regardless of its
 type.

Advanced Formatting Expression Examples
Formatting target syntax is documented in full in the Python
 standard manuals and reference texts, but to demonstrate common usage,
 let’s look at a few examples. This one formats integers by default, and
 then in a six-character field with left justification and zero
 padding:
>>> x = 1234
>>> res = 'integers: ...%d...%−6d...%06d' % (x, x, x)
>>> res
'integers: ...1234...1234 ...001234'
The %e, %f, and %g
 formats display floating-point numbers in different ways, as the
 following interaction demonstrates—%E
 is the same as %e but the exponent is
 uppercase, and g chooses formats by
 number content (it’s formally defined to use exponential format e if the exponent is less than −4 or not less
 than precision, and decimal format f
 otherwise, with a default total digits precision of 6):
>>> x = 1.23456789
>>> x # Shows more digits before 2.7 and 3.1
1.23456789

>>> '%e | %f | %g' % (x, x, x)
'1.234568e+00 | 1.234568 | 1.23457'

>>> '%E' % x
'1.234568E+00'
For floating-point numbers, you can achieve a variety of
 additional formatting effects by specifying left justification, zero
 padding, numeric signs, total field width, and digits after the decimal
 point. For simpler tasks, you might get by with simply converting to
 strings with a %s format expression
 or the str built-in function shown
 earlier:
>>> '%−6.2f | %05.2f | %+06.1f' % (x, x, x)
'1.23 | 01.23 | +001.2'

>>> '%s' % x, str(x)
('1.23456789', '1.23456789')
When sizes are not known until runtime, you can use a computed
 width and precision by specifying them with a * in the format string to force their values
 to be taken from the next item in the inputs to the right of the
 % operator—the 4 in the tuple here
 gives precision:
>>> '%f, %.2f, %.*f' % (1/3.0, 1/3.0, 4, 1/3.0)
'0.333333, 0.33, 0.3333'
If you’re interested in this feature, experiment with some of
 these examples and operations on your own for more insight.

Dictionary-Based Formatting Expressions
As a more advanced extension, string formatting also allows conversion targets on the
 left to refer to the keys in a dictionary coded on
 the right and fetch the corresponding values. This opens the door to
 using formatting as a sort of template tool. We’ve only met dictionaries
 briefly thus far in Chapter 4,
 but here’s an example that demonstrates the basics:
>>> '%(qty)d more %(food)s' % {'qty': 1, 'food': 'spam'}
'1 more spam'
Here, the (qty) and (food) in the format string on the left refer
 to keys in the dictionary literal on the right and fetch their
 associated values. Programs that generate text such as HTML or XML often
 use this technique—you can build up a dictionary of values and
 substitute them all at once with a single formatting expression that
 uses key-based references (notice the first comment is above the triple
 quote so it’s not added to the string, and I’m typing this in IDLE
 without a “...” prompt for continuation lines):
>>> # Template with substitution targets
>>> reply = """
Greetings...
Hello %(name)s!
Your age is %(age)s
"""
>>> values = {'name': 'Bob', 'age': 40} # Build up values to substitute
>>> print(reply % values) # Perform substitutions

Greetings...
Hello Bob!
Your age is 40
This trick is also used in conjunction with the vars built-in function, which returns a
 dictionary containing all the variables that exist in the place it is
 called:
>>> food = 'spam'
>>> qty = 10
>>> vars()
{'food': 'spam', 'qty': 10, ...plus built-in names set by Python... }
When used on the right side of a format operation, this allows the
 format string to refer to variables by name—as dictionary keys:
>>> '%(qty)d more %(food)s' % vars() # Variables are keys in vars()
'10 more spam'
We’ll study dictionaries in more depth in Chapter 8. See also Chapter 5 for examples that convert to hexadecimal and
 octal number strings with the %x and
 %o formatting expression target
 codes, which we won’t repeat here. Additional formatting expression
 examples also appear ahead as comparisons to the formatting method—this
 chapter’s next and final string topic.

String Formatting Method Calls
As mentioned earlier, Python 2.6 and 3.0 introduced a new way to format strings
 that is seen by some as a bit more Python-specific. Unlike formatting
 expressions, formatting method calls are not closely based upon the C
 language’s “printf” model, and are sometimes more explicit in intent. On
 the other hand, the new technique still relies on core “printf” concepts,
 such as type codes and formatting specifications. Moreover, it largely
 overlaps with—and sometimes requires a bit more code than—formatting
 expressions, and in practice can be just as complex in many roles. Because
 of this, there is no best-use recommendation between expressions and
 method calls today, and most programmers would be well served by a cursory
 understanding of both schemes. Luckily, the two are similar enough that
 many core concepts overlap.
Formatting Method Basics
The string object’s format
 method, available in Python 2.6, 2.7, and 3.X, is based on normal
 function call syntax, instead of an expression. Specifically, it uses
 the subject string as a template, and takes any number of arguments that
 represent values to be substituted according to the template.
Its use requires knowledge of functions and calls, but is mostly
 straightforward. Within the subject string, curly braces designate
 substitution targets and arguments to be inserted either by position
 (e.g., {1}), or keyword (e.g.,
 {food}), or relative position in 2.7,
 3.1, and later ({}). As we’ll learn
 when we study argument passing in depth in Chapter 18,
 arguments to functions and methods may be passed by position or keyword
 name, and Python’s ability to collect arbitrarily many positional and
 keyword arguments allows for such general method call patterns. For
 example:
>>> template = '{0}, {1} and {2}' # By position
>>> template.format('spam', 'ham', 'eggs')
'spam, ham and eggs'

>>> template = '{motto}, {pork} and {food}' # By keyword
>>> template.format(motto='spam', pork='ham', food='eggs')
'spam, ham and eggs'

>>> template = '{motto}, {0} and {food}' # By both
>>> template.format('ham', motto='spam', food='eggs')
'spam, ham and eggs'

>>> template = '{}, {} and {}' # By relative position
>>> template.format('spam', 'ham', 'eggs') # New in 3.1 and 2.7
'spam, ham and eggs'
By comparison, the last section’s formatting
 expression can be a bit more concise, but uses
 dictionaries instead of keyword arguments, and doesn’t allow quite as
 much flexibility for value sources (which may be an asset or liability,
 depending on your perspective); more on how the two techniques compare
 ahead:
>>> template = '%s, %s and %s' # Same via expression
>>> template % ('spam', 'ham', 'eggs')
'spam, ham and eggs'

>>> template = '%(motto)s, %(pork)s and %(food)s'
>>> template % dict(motto='spam', pork='ham', food='eggs')
'spam, ham and eggs'
Note the use of dict() to make
 a dictionary from keyword arguments here, introduced in Chapter 4 and covered in full in
 Chapter 8; it’s an often less-cluttered
 alternative to the {...} literal.
 Naturally, the subject string in the format method call can also be a
 literal that creates a temporary string, and arbitrary object types can
 be substituted at targets much like the expression’s %s code:
>>> '{motto}, {0} and {food}'.format(42, motto=3.14, food=[1, 2])
'3.14, 42 and [1, 2]'
Just as with the % expression
 and other string methods, format
 creates and returns a new string object, which can be printed
 immediately or saved for further work (recall that strings are
 immutable, so format really
 must make a new object). String formatting is not
 just for display:
>>> X = '{motto}, {0} and {food}'.format(42, motto=3.14, food=[1, 2])
>>> X
'3.14, 42 and [1, 2]'

>>> X.split(' and ')
['3.14, 42', '[1, 2]']

>>> Y = X.replace('and', 'but under no circumstances')
>>> Y
'3.14, 42 but under no circumstances [1, 2]'

Adding Keys, Attributes, and Offsets
Like % formatting expressions,
 format calls can become more complex to support more advanced usage. For
 instance, format strings can name object attributes and dictionary keys—as in normal Python syntax, square
 brackets name dictionary keys and dots denote object attributes of an
 item referenced by position or keyword. The first of the following
 examples indexes a dictionary on the key “kind” and then fetches the
 attribute “platform” from the already imported sys module
 object. The second does the same, but names the objects by keyword
 instead of position:
>>> import sys

>>> 'My {1[kind]} runs {0.platform}'.format(sys, {'kind': 'laptop'})
'My laptop runs win32'

>>> 'My {map[kind]} runs {sys.platform}'.format(sys=sys, map={'kind': 'laptop'})
'My laptop runs win32'
Square brackets in format strings can name list (and other sequence) offsets
 to perform indexing, too, but only single positive offsets work
 syntactically within format strings, so this feature is not as general
 as you might think. As with %
 expressions, to name negative offsets or slices, or to use arbitrary
 expression results in general, you must run expressions outside the
 format string itself (note the use of *parts here to unpack a tuple’s items into
 individual function arguments, as we did in Chapter 5 when studying fractions; more on this form in
 Chapter 18):
>>> somelist = list('SPAM')
>>> somelist
['S', 'P', 'A', 'M']

>>> 'first={0[0]}, third={0[2]}'.format(somelist)
'first=S, third=A'

>>> 'first={0}, last={1}'.format(somelist[0], somelist[-1]) # [-1] fails in fmt
'first=S, last=M'

>>> parts = somelist[0], somelist[-1], somelist[1:3] # [1:3] fails in fmt
>>> 'first={0}, last={1}, middle={2}'.format(*parts) # Or '{}' in 2.7/3.1+
"first=S, last=M, middle=['P', 'A']"

Advanced Formatting Method Syntax
Another similarity with %
 expressions is that you can achieve more specific layouts by adding
 extra syntax in the format string. For the formatting method, we use a
 colon after the possibly empty substitution target’s identification,
 followed by a format specifier that can name the field size,
 justification, and a specific type code. Here’s the formal structure of
 what can appear as a substitution target in a format string—its four
 parts are all optional, and must appear without intervening
 spaces:
{fieldname component !conversionflag :formatspec}
In this substitution target syntax:
	fieldname is an optional number or
 keyword identifying an argument, which may be omitted to use
 relative argument numbering in 2.7, 3.1, and later.

	component is a string of zero or
 more “.name” or
 “[index]” references used to fetch
 attributes and indexed values of the argument, which may be omitted
 to use the whole argument value.

	conversionflag starts with a
 ! if present, which is followed
 by r, s, or a
 to call repr, str, or ascii built-in functions on the value, respectively.

	formatspec starts with a : if present, which is followed by text
 that specifies how the value should be presented, including details
 such as field width, alignment, padding, decimal precision, and so
 on, and ends with an optional data type code.

The formatspec component after the
 colon character has a rich format all its own, and is formally described
 as follows (brackets denote optional components and are not coded
 literally):
[[fill]align][sign][#][0][width][,][.precision][typecode]
In this, fill can be any fill character
 other than { or }; align may be
 <, >, =, or
 ^, for left alignment, right
 alignment, padding after a sign character, or centered alignment,
 respectively; sign may be +, −, or
 space; and the , (comma) option
 requests a comma for a thousands separator as of Python 2.7 and 3.1.
 width and
 precision are much as in the % expression, and the
 formatspec may also contain nested {} format
 strings with field names only, to take values from the arguments list
 dynamically (much like the * in
 formatting expressions).
The method’s typecode options almost
 completely overlap with those used in % expressions and listed previously in Table 7-4, but the format method also
 allows a b type code used to display
 integers in binary format (it’s equivalent to using the bin built-in call), allows a % type code to display percentages, and uses
 only d for base-10 integers (i or u are
 not used here). Note that unlike the expression’s %s, the s
 type code here requires a string object argument; omit the type code to
 accept any type generically.
See Python’s library manual for more on substitution syntax that
 we’ll omit here. In addition to the string’s format method,
 a single object may also be formatted with the format(object,
 formatspec) built-in function (which the method uses
 internally), and may be customized in user-defined classes with
 the __format__
 operator-overloading method (see Part VI).

Advanced Formatting Method Examples
As you can tell, the syntax can be complex in formatting methods.
 Because your best ally in such cases is often the interactive prompt
 here, let’s turn to some examples. In the following, {0:10} means the first positional argument in
 a field 10 characters wide, {1:<10} means the second positional
 argument left-justified in a 10-character-wide field, and {0.platform:>10} means the platform attribute of the first argument
 right-justified in a 10-character-wide field (note again the use of
 dict() to make a dictionary from
 keyword arguments, covered in Chapter 4 and Chapter 8):
>>> '{0:10} = {1:10}'.format('spam', 123.4567) # In Python 3.3
'spam = 123.4567'

>>> '{0:>10} = {1:<10}'.format('spam', 123.4567)
' spam = 123.4567 '

>>> '{0.platform:>10} = {1[kind]:<10}'.format(sys, dict(kind='laptop'))
' win32 = laptop '
In all cases, you can omit the argument number as of Python 2.7
 and 3.1 if you’re selecting them from left to right with relative
 autonumbering—though this makes your code less explicit, thereby
 negating one of the reported advantages of the formatting method over
 the formatting expression (see the related note ahead):
>>> '{:10} = {:10}'.format('spam', 123.4567)
'spam = 123.4567'

>>> '{:>10} = {:<10}'.format('spam', 123.4567)
' spam = 123.4567 '

>>> '{.platform:>10} = {[kind]:<10}'.format(sys, dict(kind='laptop'))
' win32 = laptop '
Floating-point numbers support the same type codes and formatting
 specificity in formatting method calls as in % expressions. For instance, in the following
 {2:g} means the third argument
 formatted by default according to the “g” floating-point representation,
 {1:.2f} designates the “f”
 floating-point format with just two decimal digits, and {2:06.2f} adds a field with a width of six
 characters and zero padding on the left:
>>> '{0:e}, {1:.3e}, {2:g}'.format(3.14159, 3.14159, 3.14159)
'3.141590e+00, 3.142e+00, 3.14159'

>>> '{0:f}, {1:.2f}, {2:06.2f}'.format(3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 003.14'
Hex, octal, and binary formats are supported by the format method as well. In fact, string
 formatting is an alternative to some of the built-in functions that
 format integers to a given base:
>>> '{0:X}, {1:o}, {2:b}'.format(255, 255, 255) # Hex, octal, binary
'FF, 377, 11111111'

>>> bin(255), int('11111111', 2), 0b11111111 # Other to/from binary
('0b11111111', 255, 255)

>>> hex(255), int('FF', 16), 0xFF # Other to/from hex
('0xff', 255, 255)

>>> oct(255), int('377', 8), 0o377 # Other to/from octal, in 3.X
('0o377', 255, 255) # 2.X prints and accepts 0377
Formatting parameters can either be hardcoded in format strings or
 taken from the arguments list dynamically by nested format syntax, much
 like the * syntax in formatting
 expressions’ width and precision:
>>> '{0:.2f}'.format(1 / 3.0) # Parameters hardcoded
'0.33'
>>> '%.2f' % (1 / 3.0) # Ditto for expression
'0.33'

>>> '{0:.{1}f}'.format(1 / 3.0, 4) # Take value from arguments
'0.3333'
>>> '%.*f' % (4, 1 / 3.0) # Ditto for expression
'0.3333'
Finally, Python 2.6 and 3.0 also introduced a new built-in format
 function, which can be used to format a single item. It’s a more concise
 alternative to the string format
 method, and is roughly similar to formatting a single item with the
 % formatting expression:
>>> '{0:.2f}'.format(1.2345) # String method
'1.23'
>>> format(1.2345, '.2f') # Built-in function
'1.23'
>>> '%.2f' % 1.2345 # Expression
'1.23'
Technically, the format
 built-in runs the subject object’s __format__ method, which the str.format method
 does internally for each formatted item. It’s still more verbose than
 the original % expression’s
 equivalent here, though—which leads us to the next section.

Comparison to the % Formatting Expression
If you study the prior sections closely, you’ll probably notice that at least for
 positional references and dictionary keys, the string format method looks very much like the
 % formatting expression, especially
 in advanced use with type codes and extra formatting syntax. In fact, in
 common use cases formatting expressions may be
 easier to code than formatting method calls,
 especially when you’re using the generic %s print-string substitution target, and even
 with autonumbering of fields added in 2.7 and 3.1:
print('%s=%s' % ('spam', 42)) # Format expression: in all 2.X/3.X

print('{0}={1}'.format('spam', 42)) # Format method: in 3.0+ and 2.6+

print('{}={}'.format('spam', 42)) # With autonumbering: in 3.1+ and 2.7
As we’ll see in a moment, more complex formatting tends to be a
 draw in terms of complexity (difficult tasks are generally difficult,
 regardless of approach), and some see the formatting method as redundant
 given the pervasiveness of the expression.
On the other hand, the formatting method also offers a few
 potential advantages. For example, the original % expression can’t handle keywords, attribute
 references, and binary type codes, although dictionary key references in
 % format strings can often achieve
 similar goals. To see how the two techniques overlap, compare the
 following % expressions to the
 equivalent format method calls shown
 earlier:
>>> '%s, %s and %s' % (3.14, 42, [1, 2]) # Arbitrary types
'3.14, 42 and [1, 2]'

>>> 'My %(kind)s runs %(platform)s' % {'kind': 'laptop', 'platform': sys.platform}
'My laptop runs win32'

>>> 'My %(kind)s runs %(platform)s' % dict(kind='laptop', platform=sys.platform)
'My laptop runs win32'

>>> somelist = list('SPAM')
>>> parts = somelist[0], somelist[-1], somelist[1:3]
>>> 'first=%s, last=%s, middle=%s' % parts
"first=S, last=M, middle=['P', 'A']"
When more complex formatting is applied the two techniques
 approach parity in terms of complexity, although if you compare the
 following with the format method call
 equivalents listed earlier you’ll again find that the % expressions tend to be a bit simpler and
 more concise; in Python 3.3:
Adding specific formatting

>>> '%-10s = %10s' % ('spam', 123.4567)
'spam = 123.4567'

>>> '%10s = %-10s' % ('spam', 123.4567)
' spam = 123.4567 '

>>> '%(plat)10s = %(kind)-10s' % dict(plat=sys.platform, kind='laptop')
' win32 = laptop '

Floating-point numbers

>>> '%e, %.3e, %g' % (3.14159, 3.14159, 3.14159)
'3.141590e+00, 3.142e+00, 3.14159'

>>> '%f, %.2f, %06.2f' % (3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 003.14'

Hex and octal, but not binary (see ahead)

>>> '%x, %o' % (255, 255)
'ff, 377'
The format method has a handful
 of advanced features that the %
 expression does not, but even more involved formatting still seems to be
 essentially a draw in terms of complexity. For instance, the following
 shows the same result generated with both techniques, with field sizes
 and justifications and various argument reference methods:
Hardcoded references in both
>>> import sys

>>> 'My {1[kind]:<8} runs {0.platform:>8}'.format(sys, {'kind': 'laptop'})
'My laptop runs win32'

>>> 'My %(kind)-8s runs %(plat)8s' % dict(kind='laptop', plat=sys.platform)
'My laptop runs win32'
In practice, programs are less likely to hardcode references like
 this than to execute code that builds up a set of substitution data
 ahead of time (for instance, to collect input form or database data to
 substitute into an HTML template all at once). When we account for
 common practice in examples like this, the comparison between the
 format method and the % expression is even more direct:
Building data ahead of time in both
>>> data = dict(platform=sys.platform, kind='laptop')

>>> 'My {kind:<8} runs {platform:>8}'.format(**data)
'My laptop runs win32'

>>> 'My %(kind)-8s runs %(platform)8s' % data
'My laptop runs win32'
As we’ll see in Chapter 18, the **data in the method call here is special
 syntax that unpacks a dictionary of keys and values into individual
 “name=value” keyword arguments so they can be referenced by name in the
 format string—another unavoidable far conceptual forward
 reference to function call tools, which may be another
 downside of the format method in
 general, especially for newcomers.
As usual, though, the Python community will have to decide whether
 % expressions, format method calls, or a toolset with both
 techniques proves better over time. Experiment with these techniques on
 your own to get a feel for what they offer, and be sure to see the
 library reference manuals for Python 2.6, 3.0, and later for more
 details.
Note
String format method enhancements in Python 3.1 and
 2.7: Python 3.1 and 2.7 added a thousand-separator syntax
 for numbers, which inserts commas between three-digit groups. To make
 this work, add a comma before the type code, and between the width and
 precision if present, as follows:
>>> '{0:d}'.format(999999999999)
'999999999999'
>>> '{0:,d}'.format(999999999999)
'999,999,999,999'
These Pythons also assign relative numbers to substitution
 targets automatically if they are not included explicitly, though
 using this extension doesn’t apply in all use cases, and may negate
 one of the main benefits of the formatting method—its more explicit
 code:
>>> '{:,d}'.format(999999999999)
'999,999,999,999'
>>> '{:,d} {:,d}'.format(9999999, 8888888)
'9,999,999 8,888,888'
>>> '{:,.2f}'.format(296999.2567)
'296,999.26'
See the 3.1 release notes for more details. See also the
 formats.py comma-insertion and
 money-formatting function examples in Chapter 25 for a simple manual solution that
 can be imported and used prior to Python 3.1 and 2.7. As typical in
 programming, it’s straightforward to implement new functionality in a
 callable, reusable, and customizable function of your own, rather than
 relying on a fixed set of built-in tools:
>>> from formats import commas, money
>>> '%s' % commas(999999999999)
'999,999,999,999'
>>> '%s %s' % (commas(9999999), commas(8888888))
'9,999,999 8,888,888'
>>> '%s' % money(296999.2567)
'$296,999.26'
And as usual, a simple function like this can be applied in more
 advanced contexts too, such as the iteration tools we met in Chapter 4 and will study fully in
 later chapters:
>>> [commas(x) for x in (9999999, 8888888)]
['9,999,999', '8,888,888']
>>> '%s %s' % tuple(commas(x) for x in (9999999, 8888888))
'9,999,999 8,888,888'
>>> ''.join(commas(x) for x in (9999999, 8888888))
'9,999,9998,888,888'
For better or worse, Python developers often seem to prefer
 adding special-case built-in tools over general development
 techniques—a tradeoff explored in the next section.

Why the Format Method?
Now that I’ve gone to such lengths to compare and contrast the two
 formatting techniques, I wish to also explain why you still might want
 to consider using the format method
 variant at times. In short, although the formatting method can sometimes
 require more code, it also:
	Has a handful of extra features not found in the % expression itself (though % can use alternatives)

	Has more flexible value reference syntax (though it may be
 overkill, and % often has
 equivalents)

	Can make substitution value references more explicit (though
 this is now optional)

	Trades an operator for a more mnemonic method name (though
 this is also more verbose)

	Does not allow different syntax for single and multiple values
 (though practice suggests this is trivial)

	As a function can be used in places an expression cannot
 (though a one-line function renders this moot)

Although both techniques are available today and the formatting
 expression is still widely used, the format method might eventually grow in
 popularity and may receive more attention from Python developers in the
 future. Further, with both the expression and method in the language,
 either may appear in code you will encounter so it
 behooves you to understand both. But because the
 choice is currently still yours to make in new code, let’s briefly
 expand on the tradeoffs before closing the book on this topic.
Extra features: Special-case “batteries” versus general
 techniques
The method call supports a few extras that the expression does
 not, such as binary type codes and (as of Python 2.7 and 3.1)
 thousands groupings. As we’ve seen, though, the formatting expression
 can usually achieve the same effects in other ways. Here’s the
 case for binary formatting:
>>> '{0:b}'.format((2 ** 16) − 1) # Expression (only) binary format code
'1111111111111111'
>>> '%b' % ((2 ** 16) − 1)
ValueError: unsupported format character 'b'...

>>> bin((2 ** 16) − 1) # But other more general options work too
'0b1111111111111111'
>>> '%s' % bin((2 ** 16) - 1) # Usable with both method and % expression
'0b1111111111111111'
>>> '{}'.format(bin((2 ** 16) - 1)) # With 2.7/3.1+ relative numbering
'0b1111111111111111'

>>> '%s' % bin((2 ** 16) - 1)[2:] # Slice off 0b to get exact equivalent
'1111111111111111'
The preceding note showed that general functions could similarly
 stand in for the format method’s thousands
 groupings option, and more fully support customization. In
 this case, a simple 8-line reusable function buys
 us the same utility without extra special-case syntax:
>>> '{:,d}'.format(999999999999) # New str.format method feature in 3.1/2.7
'999,999,999,999'

>>> '%s' % commas(999999999999) # But % is same with simple 8-line function
'999,999,999,999'
See the prior note for more comma comparisons. This is
 essentially the same as the preceding bin case for binary formatting, but the
 commas function here is
 user-defined, not built in. As such, this technique is far more
 general purpose than precoded tools or special
 syntax added for a single purpose.
This case also seems indicative, perhaps, of a trend in Python
 (and scripting language in general) toward relying more on
 special-case “batteries included” tools than on general development
 techniques—a mindset that makes code dependent on those batteries, and
 seems difficult to justify unless one views software development as an
 end-user enterprise. To some, programmers might be better served
 learning how to code an algorithm to insert commas than be provided a
 tool that does.
We’ll leave that philosophical debate aside here, but in
 practical terms the net effect of the trend in this case is extra
 syntax for you to have to both learn and remember. Given their
 alternatives, it’s not clear that these extra features of the methods
 by themselves are compelling enough to be decisive.

Flexible reference syntax: Extra complexity and functional
 overlap
The method call also supports key and
 attribute references directly, which some may see
 as more flexible. But as we saw in earlier examples comparing
 dictionary-based formatting in the % expression to key and attribute references
 in the format method, the two are
 usually too similar to warrant a preference on these grounds. For
 instance, both can reference the same value multiple times:
>>> '{name} {job} {name}'.format(name='Bob', job='dev')
'Bob dev Bob'
>>> '%(name)s %(job)s %(name)s' % dict(name='Bob', job='dev')
'Bob dev Bob'
Especially in common practice, though, the expression seems just
 as simple, or simpler:
>>> D = dict(name='Bob', job='dev')
>>> '{0[name]} {0[job]} {0[name]}'.format(D) # Method, key references
'Bob dev Bob'
>>> '{name} {job} {name}'.format(**D) # Method, dict-to-args
'Bob dev Bob'
>>> '%(name)s %(job)s %(name)s' % D # Expression, key references
'Bob dev Bob'
To be fair, the method has even more specialized substitution
 syntax, and other comparisons might favor either scheme in small ways.
 But given the overlap and extra complexity, one could argue that the
 format method’s utility seems either a wash, or features in search of
 use cases. At the least, the added conceptual burden on Python
 programmers who may now need to know both tools
 doesn’t seem clearly justified.

Explicit value references: Now optional and unlikely to be
 used
One use case where the format
 method is at least debatably clearer is when there are many values to
 be substituted into the format string. The lister.py classes example we’ll meet in
 Chapter 31, for example, substitutes
 six items into a single string, and in this case the method’s {i} position labels seem marginally easier
 to read than the expression’s %s:
'\n%s<Class %s, address %s:\n%s%s%s>\n' % (...) # Expression

'\n{0}<Class {1}, address {2}:\n{3}{4}{5}>\n'.format(...) # Method
On the other hand, using dictionary keys in
 % expressions can mitigate much of
 this difference. This is also something of a worst-case scenario for
 formatting complexity, and not very common in practice; more typical
 use cases seem more of a tossup. Further, as of Python 3.1 and 2.7,
 numbering substitution targets becomes optional when relative to
 position, potentially subverting this purported benefit
 altogether:
>>> 'The {0} side {1} {2}'.format('bright', 'of', 'life') # Python 3.X, 2.6+
'The bright side of life'

>>> 'The {} side {} {}'.format('bright', 'of', 'life') # Python 3.1+, 2.7+
'The bright side of life'

>>> 'The %s side %s %s' % ('bright', 'of', 'life') # All Pythons
'The bright side of life'
Given its conciseness, the second of these is likely to be
 preferred to the first, but seems to negate part of the method’s
 advantage. Compare the effect on floating-point formatting, for
 example—the formatting expression is still more concise, and still
 seems less cluttered:
>>> '{0:f}, {1:.2f}, {2:05.2f}'.format(3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 03.14'

>>> '{:f}, {:.2f}, {:06.2f}'.format(3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 003.14'

>>> '%f, %.2f, %06.2f' % (3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 003.14'

Named method and context-neutral arguments: Aesthetics versus
 practice
The formatting method also claims an advantage in replacing the
 % operator with a more mnemonic
 format method name, and not
 distinguishing between single and multiple substitution values. The
 former may make the method appear simpler to beginners at first glance
 (“format” may be easier to parse than multiple “%” characters), though
 this probably varies per reader and seems minor.
Some may see the latter difference as more significant—with the
 format expression, a single value can be given by
 itself, but multiple values must be enclosed in a
 tuple:
>>> '%.2f' % 1.2345 # Single value
'1.23'
>>> '%.2f %s' % (1.2345, 99) # Multiple values tuple
'1.23 99'
Technically, the formatting expression accepts
 either a single substitution value, or a tuple of
 one or more items. As a consequence, because a single item can be
 given either by itself or within a tuple, a tuple to be formatted must
 be provided as a nested tuple—a perhaps rare but plausible
 case:
>>> '%s' % 1.23 # Single value, by itself
'1.23'
>>> '%s' % (1.23,) # Single value, in a tuple
'1.23'
>>> '%s' % ((1.23,),) # Single value that is a tuple
'(1.23,)'
The formatting method, on the other hand, tightens this up by
 accepting only general function arguments in both cases, instead of
 requiring a tuple both for multiple values or a single value that is a
 tuple:
>>> '{0:.2f}'.format(1.2345) # Single value
'1.23'
>>> '{0:.2f} {1}'.format(1.2345, 99) # Multiple values
'1.23 99'

>>> '{0}'.format(1.23) # Single value, by itself
'1.23'
>>> '{0}'.format((1.23,)) # Single value that is a tuple
'(1.23,)'
Consequently, the method might be less confusing to beginners
 and cause fewer programming mistakes. This seems a fairly minor issue,
 though—if you always enclose values in a tuple
 and ignore the nontupled option, the expression is essentially the
 same as the method call here. Moreover, the method incurs a price in
 inflated code size to achieve its constrained usage mode. Given the
 expression’s wide use over Python’s history, this issue may be more
 theoretical than practical, and may not justify porting existing code
 to a new tool that is so similar to that it seeks to subsume.

Functions versus expressions: A minor convenience
The final rationale for the format method—it’s a function
 that can appear where an expression cannot—requires more information
 about functions than we yet have at this point in the book, so we
 won’t dwell on it here. Suffice it to say that both the str.format method and the format built-in function can be passed to
 other functions, stored in other objects, and so on. An expression
 like % cannot directly, but this
 may be narrow-sighted—it’s trivial to wrap any expression in a
 one-line def or partial-line
 lambda once to turn it into a
 function with the same properties (though finding a reason to do so
 may be more challenging):
def myformat(fmt, args): return fmt % args # See Part IV

myformat('%s %s', (88, 99)) # Call your function object
str.format('{} {}', 88, 99) # Versus calling the built-in

otherfunction(myformat) # Your function is an object too
In the end, this may not be an either/or choice. While the
 expression still seems more pervasive in Python code, both formatting
 expressions and methods are available for use in Python today, and
 most programmers will benefit from being familiar with both techniques
 for years to come. That may double the work of newcomers to the
 language in this department, but in this bazaar of ideas we call the
 open source software world, there always seems to be room for
 more.2
Note
Plus one more: Technically speaking,
 there are 3 (not 2) formatting tools built into
 Python, if we include the obscure string module’s Template tool mentioned earlier. Now that
 we’ve seen the other two, I can show you how it compares. The
 expression and method can be used as templating tools too, referring
 to substitution values by name via dictionary keys or keyword
 arguments:
>>> '%(num)i = %(title)s' % dict(num=7, title='Strings')
'7 = Strings'
>>> '{num:d} = {title:s}'.format(num=7, title='Strings')
'7 = Strings'
>>> '{num} = {title}'.format(**dict(num=7, title='Strings'))
'7 = Strings'
The module’s templating system allows values to be referenced
 by name too, prefixed by a $, as
 either dictionary keys or keywords, but does not support all the
 utilities of the other two methods—a limitation that yields
 simplicity, the prime motivation for this tool:
>>> import string
>>> t = string.Template('$num = $title')
>>> t.substitute({'num': 7, 'title': 'Strings'})
'7 = Strings'
>>> t.substitute(num=7, title='Strings')
'7 = Strings'
>>> t.substitute(dict(num=7, title='Strings'))
'7 = Strings'
See Python’s manuals for more details. It’s possible that you
 may see this alternative (as well as additional tools in the
 third-party domain) in Python code too; thankfully this technique is
 simple, and is used rarely enough to warrant its limited coverage
 here. The best bet for most newcomers today is to learn and use
 %, str.format, or both.

General Type Categories
Now that we’ve explored the first of Python’s collection objects,
 the string, let’s close this chapter by defining a few general type
 concepts that will apply to most of the types we look at from here on.
 With regard to built-in types, it turns out that operations work the same
 for all the types in the same category, so we’ll only need to define most
 of these ideas once. We’ve only examined numbers and strings so far, but
 because they are representative of two of the three major type categories
 in Python, you already know more about several other types than you might
 think.
Types Share Operation Sets by Categories
As you’ve learned, strings are immutable sequences: they cannot be
 changed in place (the immutable part), and they are
 positionally ordered collections that are accessed by offset (the
 sequence part). It so happens that all the
 sequences we’ll study in this part of the book respond to the same
 sequence operations shown in this chapter at work on
 strings—concatenation, indexing, iteration, and so on. More formally,
 there are three major type (and operation) categories in Python that
 have this generic nature:
	Numbers (integer, floating-point, decimal, fraction,
 others)
	Support addition, multiplication, etc.

	Sequences (strings, lists, tuples)
	Support indexing, slicing, concatenation, etc.

	Mappings (dictionaries)
	Support indexing by key, etc.

I’m including the Python 3.X byte strings and 2.X Unicode strings
 I mentioned at the start of this chapter under the general “strings”
 label here (see Chapter 37). Sets are
 something of a category unto themselves (they don’t map keys to values
 and are not positionally ordered sequences), and we haven’t yet explored
 mappings on our in-depth tour (we will in the next chapter). However,
 many of the other types we will encounter will be similar to numbers and
 strings. For example, for any sequence objects X and Y:
	X + Y makes a new sequence
 object with the contents of both operands.

	X * N makes a new sequence
 object with N copies of the
 sequence operand X.

In other words, these operations work the same way on any kind of
 sequence, including strings, lists, tuples, and some user-defined object
 types. The only difference is that the new result object you get back is
 of the same type as the operands X
 and Y—if you concatenate lists, you
 get back a new list, not a string. Indexing, slicing, and other sequence
 operations work the same on all sequences, too; the type of the objects
 being processed tells Python which flavor of the task to perform.

Mutable Types Can Be Changed in Place
The immutable classification is an important constraint to be
 aware of, yet it tends to trip up new users. If an object type is
 immutable, you cannot change its value in place; Python raises an error
 if you try. Instead, you must run code to make a new object containing
 the new value. The major core types in Python break down as
 follows:
	Immutables (numbers, strings, tuples, frozensets)
	None of the object types in the immutable category support
 in-place changes, though we can always run expressions to make new
 objects and assign their results to variables as needed.

	Mutables (lists, dictionaries, sets, bytearray)
	Conversely, the mutable types can always be changed in place
 with operations that do not create new objects. Although such
 objects can be copied, in-place changes support direct
 modification.

Generally, immutable types give some degree of integrity by
 guaranteeing that an object won’t be changed by another part of a
 program. For a refresher on why this matters, see the discussion of
 shared object references in Chapter 6. To see how lists,
 dictionaries, and tuples participate in type categories, we need to move
 ahead to the next chapter.

Chapter Summary
In this chapter, we took an in-depth tour of the string object type.
 We learned about coding string literals, and we explored string
 operations, including sequence expressions, string method calls, and
 string formatting with both expressions and method calls. Along the way,
 we studied a variety of concepts in depth, such as slicing, method call
 syntax, and triple-quoted block strings. We also defined some core ideas
 common to a variety of types: sequences, for example, share an entire set
 of operations.
In the next chapter, we’ll continue our types tour with a look at
 the most general object collections in Python—lists and dictionaries. As
 you’ll find, much of what you’ve learned here will apply to those types as
 well. And as mentioned earlier, in the final part of this book we’ll
 return to Python’s string model to flesh out the details of Unicode text
 and binary data, which are of interest to some, but not all, Python
 programmers. Before moving on, though, here’s another chapter quiz to
 review the material covered here.

Test Your Knowledge: Quiz
	Can the string find method be
 used to search a list?

	Can a string slice expression be used on a list?

	How would you convert a character to its ASCII integer code? How
 would you convert the other way, from an integer to a
 character?

	How might you go about changing a string in Python?

	Given a string S with the
 value "s,pa,m", name two ways to
 extract the two characters in the middle.

	How many characters are there in the string "a\nb\x1f\000d"?

	Why might you use the string
 module instead of string method calls?

Test Your Knowledge: Answers
	No, because methods are always type-specific; that is, they only
 work on a single data type. Expressions like X+Y and built-in functions like len(X) are generic, though, and may work on
 a variety of types. In this case, for instance, the in membership expression has a similar
 effect as the string find, but it
 can be used to search both strings and lists. In Python 3.X, there is
 some attempt to group methods by categories (for example, the mutable
 sequence types list and bytearray have similar method sets), but
 methods are still more type-specific than other operation sets.

	Yes. Unlike methods, expressions are generic and apply to many
 types. In this case, the slice expression is really a sequence
 operation—it works on any type of sequence object, including strings,
 lists, and tuples. The only difference is that when you slice a list,
 you get back a new list.

	The built-in ord(S) function converts from a one-character
 string to an integer character code; chr(I) converts from the integer code back to a
 string. Keep in mind, though, that these integers are only ASCII codes
 for text whose characters are drawn only from ASCII character set. In
 the Unicode model, text strings are really sequences of Unicode code
 point identifying integers, which may fall outside the 7-bit range of
 numbers reserved by ASCII (more on Unicode in Chapter 4 and Chapter 37).

	Strings cannot be changed; they are immutable. However, you can
 achieve a similar effect by creating a new string—by concatenating,
 slicing, running formatting expressions, or using a method call like
 replace—and then assigning the
 result back to the original variable name.

	You can slice the string using S[2:4], or split on the comma and index the
 string using S.split(',')[1]. Try
 these interactively to see for yourself.

	Six. The string "a\nb\x1f\000d" contains the characters
 a, newline (\n), b, literal value 31 (a hex escape \x1f), literal value 0 (an octal escape \000), and d. Pass the string to the built-in len function to verify this, and print each
 of its character’s ord results to
 see the actual code point (identifying number) values. See Table 7-2 for more details on
 escapes.

	You should never use the string module instead of string object
 method calls today—it’s deprecated, and its calls are removed
 completely in Python 3.X. The only valid reason for using the string module at all today is for its other
 tools, such as predefined constants. You might also see it appear in
 what is now very old and dusty Python code (and books of the misty
 past—like the 1990s).

1 More mathematically minded readers (and students in my
 classes) sometimes detect a small asymmetry here: the leftmost item
 is at offset 0, but the rightmost is at offset −1. Alas, there is no
 such thing as a distinct −0 value in Python.
2 See also the Chapter 31 note
 about a str.format bug (or
 regression) in Pythons 3.2 and 3.3 concerning generic empty
 substitution targets for object attributes that define no __format__ handler. This impacted a
 working example from this book’s prior edition. While it may be a
 temporary regression, it does at the least underscore that this
 method is still a bit of a moving target—yet another reason to
 question the feature redundancy it implies.

Chapter 8. Lists and Dictionaries
Now that we’ve learned about numbers and strings, this chapter moves
 on to give the full story on Python’s list and
 dictionary object types—collections of other objects,
 and the main workhorses in almost all Python scripts. As you’ll see, both
 types are remarkably flexible: they can be changed in place, can grow and
 shrink on demand, and may contain and be nested in any other kind of object.
 By leveraging these types, you can build up and process arbitrarily rich
 information structures in your scripts.
Lists
The next stop on our built-in object tour is the Python
 list. Lists are Python’s most flexible ordered
 collection object type. Unlike strings, lists can contain any sort of
 object: numbers, strings, and even other lists. Also, unlike strings,
 lists may be changed in place by assignment to offsets and slices, list
 method calls, deletion statements, and more—they are mutable objects.
Python lists do the work of many of the collection data structures you
 might have to implement manually in lower-level languages such as C. Here
 is a quick look at their main properties. Python lists are:
	Ordered collections of arbitrary objects
	From a functional view, lists are just places to collect other
 objects so you can treat them as groups. Lists also maintain a
 left-to-right positional ordering among the items they contain
 (i.e., they are sequences).

	Accessed by offset
	Just as with strings, you can fetch a component object out of
 a list by indexing the list on the object’s offset. Because items in
 lists are ordered by their positions, you can also do tasks such as
 slicing and concatenation.

	Variable-length, heterogeneous, and arbitrarily nestable
	Unlike strings, lists can grow and shrink in place (their
 lengths can vary), and they can contain any sort of object, not just
 one-character strings (they’re heterogeneous). Because lists can
 contain other complex objects, they also support arbitrary nesting;
 you can create lists of lists of lists, and so on.

	Of the category “mutable sequence”
	In terms of our type category qualifiers, lists are mutable
 (i.e., can be changed in place) and can respond to all the sequence
 operations used with strings, such as indexing, slicing, and
 concatenation. In fact, sequence operations work the same on lists
 as they do on strings; the only difference is that sequence
 operations such as concatenation and slicing return new lists
 instead of new strings when applied to lists. Because lists are
 mutable, however, they also support other operations that strings
 don’t, such as deletion and index assignment operations, which
 change the lists in place.

	Arrays of object references
	Technically, Python lists contain zero or more references to
 other objects. Lists might remind you of arrays of pointers
 (addresses) if you have a background in some other languages.
 Fetching an item from a Python list is about as fast as indexing a C
 array; in fact, lists really are arrays inside the standard Python
 interpreter, not linked structures. As we learned in Chapter 6, though, Python always
 follows a reference to an object whenever the reference is used, so
 your program deals only with objects. Whenever you assign an object
 to a data structure component or variable name, Python always stores
 a reference to that same object, not a copy of it (unless you
 request a copy explicitly).

As a preview and reference, Table 8-1 summarizes common and
 representative list object operations. It is fairly complete for Python
 3.3, but for the full story, consult the Python standard library manual,
 or run a help(list) or dir(list) call interactively for a complete list
 of list methods—you can pass in a real list, or the word list, which is the name of the list data type.
 The set of methods here is especially prone to change—in fact, two are new
 as of Python 3.3.
Table 8-1. Common list literals and operations	Operation	Interpretation
	L = []
	An empty list

	L = [123, 'abc', 1.23, {}]
	Four items: indexes
 0..3

	L = ['Bob', 40.0, ['dev', 'mgr']]
	Nested
 sublists

	L = list('spam')
 L = list(range(-4, 4))
	List of an iterable’s
 items, list of successive integers

	L[i]
 L[i][j]
 L[i:j]
 len(L)
	Index, index of index,
 slice, length

	L1 + L2
 L * 3
	Concatenate,
 repeat

	for x in L: print(x)

 3 in L
	Iteration,
 membership

	L.append(4)
 L.extend([5,6,7])
 L.insert(i, X)
	Methods:
 growing

	L.index(X)
 L.count(X)
	Methods:
 searching

	L.sort()
 L.reverse()
 L.copy()
 L.clear()
	Methods: sorting, reversing,
 copying (3.3+), clearing (3.3+)

	L.pop(i)
 L.remove(X)
 del L[i]
 del L[i:j]
 L[i:j] = []
	Methods, statements:
 shrinking

	L[i] = 3
 L[i:j] = [4,5,6]
	Index assignment, slice
 assignment

	L = [x**2 for x in range(5)]
 list(map(ord, 'spam'))
	List comprehensions and
 maps (Chapter 4, Chapter 14, Chapter 20)

When written down as a literal expression, a list is coded as a
 series of objects (really, expressions that return objects) in square
 brackets, separated by commas. For instance, the second row in Table 8-1 assigns the variable
 L to a four-item list. A nested list is
 coded as a nested square-bracketed series (row 3), and the empty list is
 just a square-bracket pair with nothing inside (row 1).1
Many of the operations in Table 8-1 should look familiar, as
 they are the same sequence operations we put to work on strings
 earlier—indexing, concatenation, iteration, and so on. Lists also respond
 to list-specific method calls (which provide utilities such as sorting,
 reversing, adding items to the end, etc.), as well as in-place change
 operations (deleting items, assignment to indexes and slices, and so
 forth). Lists have these tools for change operations because they are a
 mutable object type.

Lists in Action
Perhaps the best way to understand lists is to see them at work.
 Let’s once again turn to some simple interpreter interactions to
 illustrate the operations in Table 8-1.
Basic List Operations
Because they are sequences, lists support many of the same operations as
 strings. For example, lists respond to the + and *
 operators much like strings—they mean concatenation and repetition here too, except that the
 result is a new list, not a string:
% python
>>> len([1, 2, 3]) # Length
3
>>> [1, 2, 3] + [4, 5, 6] # Concatenation
[1, 2, 3, 4, 5, 6]
>>> ['Ni!'] * 4 # Repetition
['Ni!', 'Ni!', 'Ni!', 'Ni!']
Although the + operator works
 the same for lists and strings, it’s important to know that it expects
 the same sort of sequence on both sides—otherwise,
 you get a type error when the code runs. For instance, you cannot
 concatenate a list and a string unless you first convert the list to a
 string (using tools such as str or
 % formatting) or convert the string
 to a list (the list built-in function
 does the trick):
>>> str([1, 2]) + "34" # Same as "[1, 2]" + "34"
'[1, 2]34'
>>> [1, 2] + list("34") # Same as [1, 2] + ["3", "4"]
[1, 2, '3', '4']

List Iteration and Comprehensions
More generally, lists respond to all the sequence operations we used on strings
 in the prior chapter, including iteration tools:
>>> 3 in [1, 2, 3] # Membership
True
>>> for x in [1, 2, 3]:
... print(x, end=' ') # Iteration (2.X uses: print x,)
...
1 2 3
We will talk more formally about for iteration and the range built-ins of Table 8-1
 in Chapter 13, because they are related to
 statement syntax. In short, for loops
 step through items in any sequence from left to right, executing one or
 more statements for each item; range
 produces successive integers.
The last items in Table 8-1, list comprehensions
 and map calls, are covered in more
 detail in Chapter 14 and expanded
 on in Chapter 20. Their basic
 operation is straightforward, though—as introduced in Chapter 4, list comprehensions are a
 way to build a new list by applying an expression to each item in a
 sequence (really, in any iterable), and are close relatives to for loops:
>>> res = [c * 4 for c in 'SPAM'] # List comprehensions
>>> res
['SSSS', 'PPPP', 'AAAA', 'MMMM']
This expression is functionally equivalent to a for loop that builds up a list of results
 manually, but as we’ll learn in later chapters, list comprehensions are
 simpler to code and likely faster to run today:
>>> res = []
>>> for c in 'SPAM': # List comprehension equivalent
... res.append(c * 4)
...
>>> res
['SSSS', 'PPPP', 'AAAA', 'MMMM']
As also introduced briefly in Chapter 4, the map built-in function does similar work, but applies a function to items in a
 sequence and collects all the results in a new list:
>>> list(map(abs, [−1, −2, 0, 1, 2])) # Map a function across a sequence
[1, 2, 0, 1, 2]
Because we’re not quite ready for the full iteration story, we’ll
 postpone further details for now, but watch for a similar comprehension
 expression for dictionaries later in this chapter.

Indexing, Slicing, and Matrixes
Because lists are sequences, indexing and slicing work the same way for
 lists as they do for strings. However, the result of indexing a list is
 whatever type of object lives at the offset you specify, while slicing a
 list always returns a new list:
>>> L = ['spam', 'Spam', 'SPAM!']
>>> L[2] # Offsets start at zero
'SPAM!'
>>> L[−2] # Negative: count from the right
'Spam'
>>> L[1:] # Slicing fetches sections
['Spam', 'SPAM!']
One note here: because you can nest lists and other object types
 within lists, you will sometimes need to string together index
 operations to go deeper into a data structure. For example, one of the
 simplest ways to represent matrixes (multidimensional arrays) in Python
 is as lists with nested sublists. Here’s a basic 3 × 3 two-dimensional
 list-based array:
>>> matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
With one index, you get an entire row (really, a nested sublist),
 and with two, you get an item within the row:
>>> matrix[1]
[4, 5, 6]
>>> matrix[1][1]
5
>>> matrix[2][0]
7
>>> matrix = [[1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]]
>>> matrix[1][1]
5
Notice in the preceding interaction that lists can naturally span
 multiple lines if you want them to because they are contained by a pair
 of brackets; the “...”s here are Python’s continuation line prompt (see
 Chapter 4 for comparable code
 without the “...”s, and watch for more on syntax in the next part of the
 book).
For more on matrixes, watch later in this chapter for a
 dictionary-based matrix representation, which can be more efficient when
 matrixes are largely empty. We’ll also continue this thread in Chapter 20 where we’ll write additional
 matrix code, especially with list comprehensions. For high-powered
 numeric work, the NumPy extension mentioned in Chapter 4 and Chapter 5 provides other ways to handle
 matrixes.

Changing Lists in Place
Because lists are mutable, they support operations that change a list
 object in place. That is, the operations in this
 section all modify the list object directly—overwriting its former
 value—without requiring that you make a new copy, as you had to for
 strings. Because Python deals only in object references, this
 distinction between changing an object in place and creating a new
 object matters; as discussed in Chapter 6, if you change an object in
 place, you might impact more than one reference to it at the same
 time.
Index and slice assignments
When using a list, you can change its contents by assigning to either a particular
 item (offset) or an entire section (slice):
>>> L = ['spam', 'Spam', 'SPAM!']
>>> L[1] = 'eggs' # Index assignment
>>> L
['spam', 'eggs', 'SPAM!']

>>> L[0:2] = ['eat', 'more'] # Slice assignment: delete+insert
>>> L # Replaces items 0,1
['eat', 'more', 'SPAM!']
Both index and slice assignments are in-place changes—they
 modify the subject list directly, rather than generating a new list
 object for the result. Index assignment in Python
 works much as it does in C and most other languages: Python replaces
 the single object reference at the designated offset with a new
 one.
Slice assignment, the last operation in the
 preceding example, replaces an entire section of a list in a single
 step. Because it can be a bit complex, it is perhaps best thought of
 as a combination of two steps:
	Deletion. The slice you specify to the
 left of the = is
 deleted.

	Insertion. The new items contained in
 the iterable object to the right of the = are inserted into the list on the
 left, at the place where the old slice was deleted.2

This isn’t what really happens, but it can help clarify why the
 number of items inserted doesn’t have to match the number of items
 deleted. For instance, given a list L of two or more items, an assignment
 L[1:2]=[4,5] replaces one item with
 two—Python first deletes the one-item slice at [1:2] (from offset 1, up to but not
 including offset 2), then inserts both 4 and 5
 where the deleted slice used to be.
This also explains why the second slice assignment in the
 following is really an insert—Python replaces an empty slice at
 [1:1] with two items; and why the
 third is really a deletion—Python deletes the slice (the item at
 offset 1), and then inserts nothing:
>>> L = [1, 2, 3]
>>> L[1:2] = [4, 5] # Replacement/insertion
>>> L
[1, 4, 5, 3]
>>> L[1:1] = [6, 7] # Insertion (replace nothing)
>>> L
[1, 6, 7, 4, 5, 3]
>>> L[1:2] = [] # Deletion (insert nothing)
>>> L
[1, 7, 4, 5, 3]
In effect, slice assignment replaces an entire section, or
 “column,” all at once—even if the column or its replacement is empty.
 Because the length of the sequence being assigned does not have to
 match the length of the slice being assigned to, slice assignment can
 be used to replace (by overwriting), expand (by inserting), or shrink
 (by deleting) the subject list. It’s a powerful operation, but
 frankly, one that you may not see very often in practice. There are
 often more straightforward and mnemonic ways to replace, insert, and
 delete (concatenation, and the insert, pop, and remove list methods, for example), which
 Python programmers tend to prefer in practice.
On the other hand, this operation can be used as a sort of
 in-place concatenation at the front of the list—per the next section’s
 method coverage, something the list’s extend does more mnemonically at list end:
>>> L = [1]
>>> L[:0] = [2, 3, 4] # Insert all at :0, an empty slice at front
>>> L
[2, 3, 4, 1]
>>> L[len(L):] = [5, 6, 7] # Insert all at len(L):, an empty slice at end
>>> L
[2, 3, 4, 1, 5, 6, 7]
>>> L.extend([8, 9, 10]) # Insert all at end, named method
>>> L
[2, 3, 4, 1, 5, 6, 7, 8, 9, 10]

List method calls
Like strings, Python list objects also support type-specific
 method calls, many of which change the subject list in
 place:
>>> L = ['eat', 'more', 'SPAM!']
>>> L.append('please') # Append method call: add item at end
>>> L
['eat', 'more', 'SPAM!', 'please']
>>> L.sort() # Sort list items ('S' < 'e')
>>> L
['SPAM!', 'eat', 'more', 'please']
Methods were introduced in Chapter 7. In brief, they are functions
 (really, object attributes that reference functions) that are
 associated with and act upon particular objects. Methods provide
 type-specific tools; the list methods presented here, for instance,
 are generally available only for lists.
Perhaps the most commonly used list method is append,
 which simply tacks a single item (object reference) onto the end of
 the list. Unlike concatenation, append expects you to pass in a single
 object, not a list. The effect of L.append(X) is similar to L+[X], but while the former changes L in place, the latter makes a new
 list.3 The sort method
 orders the list’s items here, but merits a section of its own.

More on sorting lists
Another commonly seen method, sort,
 orders a list in place; it uses Python standard comparison tests
 (here, string comparisons, but applicable to every object type), and
 by default sorts in ascending order. You can modify sort behavior by
 passing in keyword arguments—a special
 “name=value” syntax in function calls that specifies passing by name
 and is often used for giving configuration options.
In sorts, the reverse
 argument allows sorts to be made in descending instead of
 ascending order, and the key
 argument gives a one-argument function that returns the value to be
 used in sorting—the string object’s standard lower case converter in the following (though its newer casefold may
 handle some types of Unicode text better):
>>> L = ['abc', 'ABD', 'aBe']
>>> L.sort() # Sort with mixed case
>>> L
['ABD', 'aBe', 'abc']
>>> L = ['abc', 'ABD', 'aBe']
>>> L.sort(key=str.lower) # Normalize to lowercase
>>> L
['abc', 'ABD', 'aBe']
>>>
>>> L = ['abc', 'ABD', 'aBe']
>>> L.sort(key=str.lower, reverse=True) # Change sort order
>>> L
['aBe', 'ABD', 'abc']
The sort key argument might
 also be useful when sorting lists of dictionaries, to pick out a sort
 key by indexing each dictionary. We’ll study dictionaries later in
 this chapter, and you’ll learn more about keyword function arguments in Part IV.
Note
Comparison and sorts in 3.X: In Python
 2.X, relative magnitude comparisons of differently typed objects
 (e.g., a string and a list) work as first noted in Chapter 5—the language defines a fixed ordering
 among different types, which is deterministic, if not aesthetically
 pleasing. That is, the ordering is based on the names of the types
 involved: all integers are less than all strings, for example,
 because "int" is less than
 "str". Comparisons never
 automatically convert types, except when comparing numeric type
 objects.
In Python 3.X, this has changed: magnitude comparison of mixed
 types raises an exception instead of falling back on the fixed
 cross-type ordering. Because sorting uses comparisons internally,
 this means that [1, 2,
 'spam'].sort() succeeds in Python 2.X but will raise an
 exception in Python 3.X. Sorting mixed-types fails by proxy.
Python 3.X also no longer supports passing in an arbitrary
 comparison function to sorts, to implement
 different orderings. The suggested workaround is to use the key=func
 keyword argument to code value transformations during the sort, and
 use the reverse=True keyword
 argument to change the sort order to descending. These were the
 typical uses of comparison functions in the past.

One warning here: beware that append and
 sort change the associated list
 object in place, but don’t return the list as a result (technically,
 they both return a value called None). If you say something like L=L.append(X), you won’t get the modified
 value of L (in fact, you’ll lose
 the reference to the list altogether!). When you use attributes such
 as append and sort, objects are changed as a side effect,
 so there’s no reason to reassign.
Partly because of such constraints, sorting is also available in
 recent Pythons as a built-in function, which sorts any collection (not
 just lists) and returns a new list for the result (instead of in-place
 changes):
>>> L = ['abc', 'ABD', 'aBe']
>>> sorted(L, key=str.lower, reverse=True) # Sorting built-in
['aBe', 'ABD', 'abc']

>>> L = ['abc', 'ABD', 'aBe']
>>> sorted([x.lower() for x in L], reverse=True) # Pretransform items: differs!
['abe', 'abd', 'abc']
Notice the last example here—we can convert to lowercase prior
 to the sort with a list comprehension, but the result does not contain
 the original list’s values as it does with the key argument. The latter is applied
 temporarily during the sort, instead of changing the values to be
 sorted altogether. As we move along, we’ll see contexts in which
 the sorted built-in
 can sometimes be more useful than the sort
 method.

Other common list methods
Like strings, lists have other methods that perform other
 specialized operations. For instance, reverse
 reverses the list in-place, and the extend and pop methods insert multiple items at and
 delete an item from the end of the list, respectively. There is
 also a reversed
 built-in function that works much like sorted and returns a new result object, but
 it must be wrapped in a list call
 in both 2.X and 3.X here because its result is an iterator that
 produces results on demand (more on iterators later):
>>> L = [1, 2]
>>> L.extend([3, 4, 5]) # Add many items at end (like in-place +)
>>> L
[1, 2, 3, 4, 5]
>>> L.pop() # Delete and return last item (by default: −1)
5
>>> L
[1, 2, 3, 4]
>>> L.reverse() # In-place reversal method
>>> L
[4, 3, 2, 1]
>>> list(reversed(L)) # Reversal built-in with a result (iterator)
[1, 2, 3, 4]
Technically, the extend
 method always iterates through and adds each item in an
 iterable object, whereas append simply adds a single item as is
 without iterating through it—a distinction that will be more
 meaningful by Chapter 14. For
 now, it’s enough to know that extend adds many items, and append adds one. In some types of programs, the list pop method is
 often used in conjunction with append to implement a quick last-in-first-out (LIFO)
 stack structure. The end of the list serves as
 the top of the stack:
>>> L = []
>>> L.append(1) # Push onto stack
>>> L.append(2)
>>> L
[1, 2]
>>> L.pop() # Pop off stack
2
>>> L
[1]
The pop method also accepts
 an optional offset of the item to be deleted and returned (the default
 is the last item at offset −1). Other list methods remove an item by
 value (remove),
 insert an item at an offset (insert),
 count the number of occurrences (count), and search for an item’s offset (index—a
 search for the index of an item, not to be
 confused with indexing!):
>>> L = ['spam', 'eggs', 'ham']
>>> L.index('eggs') # Index of an object (search/find)
1
>>> L.insert(1, 'toast') # Insert at position
>>> L
['spam', 'toast', 'eggs', 'ham']
>>> L.remove('eggs') # Delete by value
>>> L
['spam', 'toast', 'ham']
>>> L.pop(1) # Delete by position
'toast'
>>> L
['spam', 'ham']
>>> L.count('spam') # Number of occurrences
1
Note that unlike other list methods, count and index do not change the list itself, but
 return information about its content. See other documentation sources
 or experiment with these calls interactively on your own to learn more
 about list methods.

Other common list operations
Because lists are mutable, you can use the del statement
 to delete an item or section in place:
>>> L = ['spam', 'eggs', 'ham', 'toast']
>>> del L[0] # Delete one item
>>> L
['eggs', 'ham', 'toast']
>>> del L[1:] # Delete an entire section
>>> L # Same as L[1:] = []
['eggs']
As we saw earlier, because slice assignment is a deletion plus an
 insertion, you can also delete a section of a list by assigning an
 empty list to a slice (L[i:j]=[]);
 Python deletes the slice named on the left, and then inserts nothing.
 Assigning an empty list to an index, on the other hand, just stores a
 reference to the empty list object in the specified slot, rather than
 deleting an item:
>>> L = ['Already', 'got', 'one']
>>> L[1:] = []
>>> L
['Already']
>>> L[0] = []
>>> L
[[]]
Although all the operations just discussed are typical, there
 may be additional list methods and operations not illustrated here.
 The method set, for example, may change over time, and in fact has in
 Python 3.3—its new L.copy() method
 makes a top-level copy of the list, much like L[:] and list(L), but is symmetric with copy in sets and dictionaries. For a
 comprehensive and up-to-date list of type tools, you should always
 consult Python’s manuals, Python’s dir and help functions (which we first met in Chapter 4), or one of the reference
 texts mentioned in the preface.
And because it’s such a common hurdle, I’d also like to remind
 you again that all the in-place change operations discussed here work
 only for mutable objects: they won’t work on strings (or tuples,
 discussed in Chapter 9), no matter how
 hard you try. Mutability is an inherent property of each object
 type.

Dictionaries
Along with lists, dictionaries are one
 of the most flexible built-in data types in Python. If you
 think of lists as ordered collections of objects, you can think of
 dictionaries as unordered collections; the chief distinction is that in
 dictionaries, items are stored and fetched by key,
 instead of by positional offset. While lists can serve roles similar to
 arrays in other languages, dictionaries take the place of records, search
 tables, and any other sort of aggregation where item names are more
 meaningful than item positions.
For example, dictionaries can replace many of the searching
 algorithms and data structures you might have to implement manually in
 lower-level languages—as a highly optimized built-in type, indexing a
 dictionary is a very fast search operation. Dictionaries also sometimes do
 the work of records, structs, and symbol tables used in other languages;
 can be used to represent sparse (mostly empty) data structures; and much
 more. Here’s a rundown of their main properties. Python dictionaries
 are:
	Accessed by key, not offset position
	Dictionaries are sometimes called associative
 arrays or hashes (especially by
 users of other scripting languages). They associate a set of values
 with keys, so you can fetch an item out of a dictionary using the
 key under which you originally stored it. You use the same indexing
 operation to get components in a dictionary as you do in a list, but
 the index takes the form of a key, not a relative offset.

	Unordered collections of arbitrary objects
	Unlike in a list, items stored in a dictionary aren’t kept in
 any particular order; in fact, Python pseudo-randomizes their
 left-to-right order to provide quick lookup. Keys provide the
 symbolic (not physical) locations of items in a dictionary.

	Variable-length, heterogeneous, and arbitrarily nestable
	Like lists, dictionaries can grow and shrink in place (without
 new copies being made), they can contain objects of any type, and
 they support nesting to any depth (they can contain lists, other
 dictionaries, and so on). Each key can have
 just one associated value, but that value can
 be a collection of multiple objects if needed,
 and a given value can be stored under any number of keys.

	Of the category “mutable mapping”
	You can change dictionaries in place by assigning to indexes
 (they are mutable), but they don’t support the sequence operations
 that work on strings and lists. Because dictionaries are unordered
 collections, operations that depend on a fixed positional order
 (e.g., concatenation, slicing) don’t make sense. Instead,
 dictionaries are the only built-in, core type representatives of the
 mapping category—objects that map keys to
 values. Other mappings in Python are created by imported
 modules.

	Tables of object references (hash tables)
	If lists are arrays of object references that support access
 by position, dictionaries are unordered tables of object references
 that support access by key. Internally, dictionaries are implemented
 as hash tables (data structures that support very fast retrieval),
 which start small and grow on demand. Moreover, Python employs
 optimized hashing algorithms to find keys, so retrieval is quick.
 Like lists, dictionaries store object references (not copies, unless
 you ask for them explicitly).

For reference and preview again, Table 8-2 summarizes some of
 the most common and representative dictionary operations, and is
 relatively complete as of Python 3.3. As usual, though, see the library
 manual or run a dir(dict) or help(dict) call for a complete list—dict is the name of the type. When coded as a
 literal expression, a dictionary is written as a series of
 key:value pairs,
 separated by commas, enclosed in curly braces.4 An empty dictionary is an empty set of braces, and you can
 nest dictionaries by simply coding one as a value inside another
 dictionary, or within a list or tuple.
Table 8-2. Common dictionary literals and operations	Operation	Interpretation
	D = {}
	Empty dictionary

	D = {'name': 'Bob', 'age': 40}
	Two-item
 dictionary

	E = {'cto': {'name': 'Bob', 'age': 40}}
	Nesting

	D = dict(name='Bob', age=40)
 D = dict([('name', 'Bob'), ('age', 40)])
 D = dict(zip(keyslist, valueslist))
 D = dict.fromkeys(['name', 'age'])
	Alternative construction
 techniques:
 keywords, key/value pairs, zipped
 key/value pairs, key lists

	D['name']
 E['cto']['age']
	Indexing by key

	'age' in D
	Membership: key present
 test

	D.keys()
 D.values()
 D.items()
 D.copy()
 D.clear()
 D.update(D2)
 D.get(key, default?)

 D.pop(key, default?)
 D.setdefault(key, default?)

 D.popitem()
	Methods: all keys,
 all values,
 all key+value tuples,
 copy (top-level),
 clear (remove all items),
 merge by keys,
 fetch by key, if absent default (or None),

 remove by key, if absent default (or error)

 fetch by key, if absent set default (or None),

 remove/return any (key, value) pair; etc.

	len(D)
	Length: number of stored
 entries

	D[key] = 42
	Adding keys, changing key
 values

	del D[key]
	Deleting entries by key

	list(D.keys())
 D1.keys() & D2.keys()
	Dictionary views (Python
 3.X)

	D.viewkeys(), D.viewvalues()
	Dictionary views (Python 2.7)

	D = {x: x*2 for x in range(10)}
	Dictionary comprehensions
 (Python 3.X, 2.7)

Dictionaries in Action
As Table 8-2
 suggests, dictionaries are indexed by key, and nested dictionary entries
 are referenced by a series of indexes (keys in square brackets). When
 Python creates a dictionary, it stores its items in any left-to-right
 order it chooses; to fetch a value back, you supply the key with which it
 is associated, not its relative position. Let’s go back to the interpreter
 to get a feel for some of the dictionary operations in Table 8-2.
Basic Dictionary Operations
In normal operation, you create dictionaries with literals and store and access
 items by key with indexing:
% python
>>> D = {'spam': 2, 'ham': 1, 'eggs': 3} # Make a dictionary
>>> D['spam'] # Fetch a value by key
2
>>> D # Order is "scrambled"
{'eggs': 3, 'spam': 2, 'ham': 1}
Here, the dictionary is assigned to the variable D; the value of the key 'spam' is the integer 2, and so on. We use the same square bracket
 syntax to index dictionaries by key as we did to index lists by offset,
 but here it means access by key, not by position.
Notice the end of this example—much like sets, the left-to-right
 order of keys in a dictionary will almost always be different
 from what you originally typed. This is on purpose: to implement fast
 key lookup (a.k.a. hashing), keys need to be reordered in memory. That’s
 why operations that assume a fixed left-to-right order (e.g., slicing,
 concatenation) do not apply to dictionaries; you can fetch values only
 by key, not by position. Technically, the ordering is
 pseudo-random—it’s not truly random (you might be
 able to decipher it given Python’s source code and a lot of time to
 kill), but it’s arbitrary, and might vary per release and platform, and
 even per interactive session in Python 3.3.
The built-in len function
 works on dictionaries, too; it returns the number of items
 stored in the dictionary or, equivalently, the length of its keys list.
 The dictionary in membership operator
 allows you to test for key existence, and the keys method returns
 all the keys in the dictionary. The latter of these can be useful for
 processing dictionaries sequentially, but you shouldn’t depend on the
 order of the keys list. Because the keys result can be used as a normal list,
 however, it can always be sorted if order matters (more on sorting and
 dictionaries later):
>>> len(D) # Number of entries in dictionary
3
>>> 'ham' in D # Key membership test alternative
True
>>> list(D.keys()) # Create a new list of D's keys
['eggs', 'spam', 'ham']
Observe the second expression in this listing. As mentioned
 earlier, the in membership test used
 for strings and lists also works on dictionaries—it checks whether a key
 is stored in the dictionary. Technically, this works because
 dictionaries define keys iterators, and use fast
 direct lookups whenever possible. Other types provide iterators that
 reflect their common uses; files, for example, have iterators that read
 line by line. We’ll discuss iterators more formally in Chapter 14 and Chapter 20.
Also note the syntax of the last example in this listing. We have
 to enclose it in a list call in
 Python 3.X for similar reasons—keys
 in 3.X returns an iterable object, instead of a
 physical list. The list call forces
 it to produce all its values at once so we can print them interactively,
 though this call isn’t required in some other contexts. In 2.X, keys builds and returns an actual list, so the
 list call isn’t even needed to
 display a result; more on this later in this chapter.

Changing Dictionaries in Place
Let’s continue with our interactive session. Dictionaries, like lists, are
 mutable, so you can change, expand, and shrink them in place without
 making new dictionaries: simply assign a value to a key to change or
 create an entry. The del statement
 works here, too; it deletes the entry associated with the key specified
 as an index. Notice also the nesting of a list inside a dictionary in
 this example (the value of the key 'ham'). All collection data types in Python
 can nest inside each other arbitrarily:
>>> D
{'eggs': 3, 'spam': 2, 'ham': 1}

>>> D['ham'] = ['grill', 'bake', 'fry'] # Change entry (value=list)
>>> D
{'eggs': 3, 'spam': 2, 'ham': ['grill', 'bake', 'fry']}

>>> del D['eggs'] # Delete entry
>>> D
{'spam': 2, 'ham': ['grill', 'bake', 'fry']}

>>> D['brunch'] = 'Bacon' # Add new entry
>>> D
{'brunch': 'Bacon', 'spam': 2, 'ham': ['grill', 'bake', 'fry']}
Like lists, assigning to an existing index in a dictionary changes
 its associated value. Unlike lists, however, whenever you assign a
 new dictionary key (one that hasn’t been assigned
 before) you create a new entry in the dictionary, as was done in the
 previous example for the key 'brunch'. This doesn’t work for lists because
 you can only assign to existing list offsets—Python considers an offset
 beyond the end of a list out of bounds and raises an error. To expand a
 list, you need to use tools such as the append method or slice assignment
 instead.

More Dictionary Methods
Dictionary methods provide a variety of type-specific tools. For instance,
 the dictionary values and
 items methods return all of the
 dictionary’s values and (key,value) pair tuples, respectively; along with keys, these are
 useful in loops that need to step through dictionary entries one by one
 (we’ll start coding examples of such loops in the next section). As with
 keys, these two methods also return
 iterable objects in 3.X, so wrap them in a list call there to collect their values all at
 once for display:
>>> D = {'spam': 2, 'ham': 1, 'eggs': 3}
>>> list(D.values())
[3, 2, 1]
>>> list(D.items())
 [('eggs', 3), ('spam', 2), ('ham', 1)]
In realistic programs that gather data as they run, you often
 won’t be able to predict what will be in a dictionary before the program
 is launched, much less when it’s coded. Fetching a nonexistent key is
 normally an error, but the get method returns
 a default value—None, or a passed-in
 default—if the key doesn’t exist. It’s an easy way to fill in a default
 for a key that isn’t present, and avoid a missing-key error when your
 program can’t anticipate contents ahead of time:
>>> D.get('spam') # A key that is there
2
>>> print(D.get('toast')) # A key that is missing
None
>>> D.get('toast', 88)
88
The update method provides
 something similar to concatenation for dictionaries,
 though it has nothing to do with left-to-right ordering (again, there is
 no such thing in dictionaries). It merges the keys
 and values of one dictionary into another, blindly overwriting values of
 the same key if there’s a clash:
>>> D
{'eggs': 3, 'spam': 2, 'ham': 1}
>>> D2 = {'toast':4, 'muffin':5} # Lots of delicious scrambled order here
>>> D.update(D2)
>>> D
{'eggs': 3, 'muffin': 5, 'toast': 4, 'spam': 2, 'ham': 1}
Notice how mixed up the key order is in the last result; again,
 that’s just how dictionaries work. Finally, the dictionary pop method
 deletes a key from a dictionary and returns the value it had. It’s
 similar to the list pop method, but
 it takes a key instead of an optional position:
pop a dictionary by key
>>> D
{'eggs': 3, 'muffin': 5, 'toast': 4, 'spam': 2, 'ham': 1}
>>> D.pop('muffin')
5
>>> D.pop('toast') # Delete and return from a key
4
>>> D
{'eggs': 3, 'spam': 2, 'ham': 1}

pop a list by position
>>> L = ['aa', 'bb', 'cc', 'dd']
>>> L.pop() # Delete and return from the end
'dd'
>>> L
['aa', 'bb', 'cc']
>>> L.pop(1) # Delete from a specific position
'bb'
>>> L
['aa', 'cc']
Dictionaries also provide a copy method; we’ll revisit this in Chapter 9, as it’s a way to
 avoid the potential side effects of shared references to the same
 dictionary. In fact, dictionaries come with more methods than those
 listed in Table 8-2;
 see the Python library manual, dir
 and help, or other reference sources
 for a comprehensive list.
Note
Your dictionary ordering may vary: Don’t be
 alarmed if your dictionaries print in a different order than shown
 here. As mentioned, key order is arbitrary, and might vary per
 release, platform, and interactive session in 3.3 (and quite possibly
 per day of the week, and phase of the moon!).
Most of the dictionary examples in this book reflect Python
 3.3’s key ordering, but it has changed both since and prior to 3.0.
 Your Python’s key order may vary, but you’re not supposed to care
 anyhow: dictionaries are processed by key, not position. Programs
 shouldn’t rely on the arbitrary order of keys in dictionaries, even if
 shown in books.
There are extension types in Python’s standard library that
 maintain insertion order among their keys—see OrderedDict in the collections module—but they are hybrids that
 incur extra space and speed overheads to achieve their extra utility,
 and are not true dictionaries. In short, keys are kept redundantly in
 a linked list to support sequence operations.
As we’ll see in Chapter 9, this module also
 implements a namedtuple that allows
 tuple items to be accessed by both attribute name and sequence
 position—a sort of tuple/class/dictionary hybrid that adds processing
 steps and is not a core object type in any event. Python’s library
 manual has the full story on these and other extension types.

Example: Movie Database
Let’s look at a more realistic dictionary example. In honor of Python’s
 namesake, the following example creates a simple in-memory Monty Python
 movie database, as a table that maps movie release date
 years (the keys) to movie
 titles (the values). As coded, you fetch movie
 names by indexing on release year strings:
>>> table = {'1975': 'Holy Grail', # Key: Value
... '1979': 'Life of Brian',
... '1983': 'The Meaning of Life'}
>>>
>>> year = '1983'
>>> movie = table[year] # dictionary[Key] => Value
>>> movie
'The Meaning of Life'

>>> for year in table: # Same as: for year in table.keys()
... print(year + '\t' + table[year])
...
1979 Life of Brian
1975 Holy Grail
1983 The Meaning of Life
The last command uses a for
 loop, which we previewed in Chapter 4 but haven’t covered in
 detail yet. If you aren’t familiar with for loops, this command simply iterates
 through each key in the table and prints a tab-separated list of keys
 and their values. We’ll learn more about for loops in Chapter 13.
Dictionaries aren’t sequences like lists and strings, but if you
 need to step through the items in a dictionary, it’s easy—calling the
 dictionary keys method returns all
 stored keys, which you can iterate through with a
 for. If needed, you can index from
 key to value inside the for loop as you go, as was done in this
 code.
In fact, Python also lets you step through a dictionary’s keys
 list without actually calling the keys method in most for loops. For any dictionary D, saying for key in
 D works the same as saying the complete for key in D.keys(). This is really just
 another instance of the iterators mentioned
 earlier, which allow the in
 membership operator to work on dictionaries as well; more on iterators
 later in this book.
Preview: Mapping values to keys
Notice how the prior table maps year to titles, but not vice versa. If
 you want to map the other way—titles to years—you can either code the
 dictionary differently, or use methods like items that give searchable sequences, though
 using them to best effect requires more background information than we
 yet have:
>>> table = {'Holy Grail': '1975', # Key=>Value (title=>year)
... 'Life of Brian': '1979',
... 'The Meaning of Life': '1983'}
>>>
>>> table['Holy Grail']
'1975'

>>> list(table.items()) # Value=>Key (year=>title)
[('The Meaning of Life', '1983'), ('Holy Grail', '1975'), ('Life of Brian', '1979')]
>>> [title for (title, year) in table.items() if year == '1975']
['Holy Grail']
The last command here is in part a preview for the
 comprehension syntax introduced in Chapter 4 and covered in full in
 Chapter 14. In short, it scans
 the dictionary’s (key, value) tuple pairs returned by the items method, selecting keys having a
 specified value. The net effect is to index
 backward—from value to key, instead of key to
 value—useful if you want to store data just once and map backward only
 rarely (searching through sequences like this is generally much slower
 than a direct key index).
In fact, although dictionaries by nature map keys to values
 unidirectionally, there are multiple ways to map values back to keys
 with a bit of extra generalizable code:
>>> K = 'Holy Grail'
>>> table[K] # Key=>Value (normal usage)
'1975'

>>> V = '1975'
>>> [key for (key, value) in table.items() if value == V] # Value=>Key
['Holy Grail']
>>> [key for key in table.keys() if table[key] == V] # Ditto
['Holy Grail']
Note that both of the last two commands return a
 list of titles: in dictionaries, there’s just
 one value per key, but there may be
 many keys per value. A given value may be stored
 under multiple keys (yielding multiple keys per value), and a value
 might be a collection itself (supporting multiple values per key). For
 more on this front, also watch for a dictionary inversion function in
 Chapter 32’s mapattrs.py example—code that would surely
 stretch this preview past its breaking point if included here. For
 this chapter’s purposes, let’s explore more dictionary basics.

Dictionary Usage Notes
Dictionaries are fairly straightforward tools once you get the hang of
 them, but here are a few additional pointers and reminders you should be
 aware of when using them:
	Sequence operations don’t
 work. Dictionaries are mappings, not sequences; because there’s no notion
 of ordering among their items, things like concatenation (an ordered
 joining) and slicing (extracting a contiguous section) simply don’t
 apply. In fact, Python raises an error when your code runs if you
 try to do such things.

	Assigning to new indexes adds
 entries. Keys can be created when you write a dictionary literal
 (embedded in the code of the literal itself), or when you assign
 values to new keys of an existing dictionary object individually.
 The end result is the same.

	Keys need not always be
 strings. Our examples so far have used strings as keys,
 but any other immutable objects work just as
 well. For instance, you can use integers as keys, which makes the
 dictionary look much like a list (when indexing, at least). Tuples
 may be used as dictionary keys too, allowing compound key
 values—such as dates and IP addresses—to have associated values.
 User-defined class instance objects (discussed in Part VI) can also be used as keys, as long as
 they have the proper protocol methods; roughly, they need to tell
 Python that their values are “hashable” and thus won’t change, as
 otherwise they would be useless as fixed keys. Mutable objects such
 as lists, sets, and other dictionaries don’t work as keys, but are
 allowed as values.

Using dictionaries to simulate flexible lists: Integer
 keys
The last point in the prior list is important enough to demonstrate with a
 few examples. When you use lists, it is illegal to assign to an offset
 that is off the end of the list:
>>> L = []
>>> L[99] = 'spam'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IndexError: list assignment index out of range
Although you can use repetition to preallocate as big a list as
 you’ll need (e.g., [0]*100), you
 can also do something that looks similar with dictionaries that does
 not require such space allocations. By using integer keys,
 dictionaries can emulate lists that seem to grow on offset
 assignment:
>>> D = {}
>>> D[99] = 'spam'
>>> D[99]
'spam'
>>> D
{99: 'spam'}
Here, it looks as if D is a
 100-item list, but it’s really a dictionary with a single entry; the
 value of the key 99 is the string
 'spam'. You can access this
 structure with offsets much like a list, catching nonexistent keys
 with get or in tests if required, but you don’t have to
 allocate space for all the positions you might ever need to assign
 values to in the future. When used like this, dictionaries are like
 more flexible equivalents of lists.
As another example, we might also employ integer keys in our
 first movie database’s code earlier to avoid
 quoting the year, albeit at the expense of some expressiveness (keys
 cannot contain nondigit characters):
>>> table = {1975: 'Holy Grail',
... 1979: 'Life of Brian', # Keys are integers, not strings
... 1983: 'The Meaning of Life'}
>>> table[1975]
'Holy Grail'
>>> list(table.items())
[(1979, 'Life of Brian'), (1983, 'The Meaning of Life'), (1975, 'Holy Grail')]

Using dictionaries for sparse data structures: Tuple
 keys
In a similar way, dictionary keys are also commonly leveraged to implement sparse data
 structures—for example, multidimensional arrays where only a few
 positions have values stored in them:
>>> Matrix = {}
>>> Matrix[(2, 3, 4)] = 88
>>> Matrix[(7, 8, 9)] = 99
>>>
>>> X = 2; Y = 3; Z = 4 # ; separates statements: see Chapter 10
>>> Matrix[(X, Y, Z)]
88
>>> Matrix
{(2, 3, 4): 88, (7, 8, 9): 99}
Here, we’ve used a dictionary to represent a three-dimensional
 array that is empty except for the two positions (2,3,4) and (7,8,9). The keys are
 tuples that record the coordinates of nonempty
 slots. Rather than allocating a large and mostly empty
 three-dimensional matrix to hold these values, we can use a simple
 two-item dictionary. In this scheme, accessing an empty slot triggers
 a nonexistent key exception, as these slots are not physically
 stored:
>>> Matrix[(2,3,6)]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
KeyError: (2, 3, 6)

Avoiding missing-key errors
Errors for nonexistent key fetches are common in sparse matrixes,
 but you probably won’t want them to shut down your program. There are
 at least three ways to fill in a default value instead of getting such
 an error message—you can test for keys ahead of time in if statements, use a try statement to catch and recover from the
 exception explicitly, or simply use the dictionary get method
 shown earlier to provide a default for keys that do not exist.
 Consider the first two of these previews for statement syntax we’ll
 begin studying in Chapter 10:
>>> if (2, 3, 6) in Matrix: # Check for key before fetch
... print(Matrix[(2, 3, 6)]) # See Chapters 10 and 12 for if/else
... else:
... print(0)
...
0
>>> try:
... print(Matrix[(2, 3, 6)]) # Try to index
... except KeyError: # Catch and recover
... print(0) # See Chapters 10 and 34 for try/except
...
0
>>> Matrix.get((2, 3, 4), 0) # Exists: fetch and return
88
>>> Matrix.get((2, 3, 6), 0) # Doesn't exist: use default arg
0
Of these, the get method is
 the most concise in terms of coding requirements, but the if and try statements are much more general in
 scope; again, more on these starting in Chapter 10.

Nesting in dictionaries
As you can see, dictionaries can play many roles in Python. In general,
 they can replace search data structures (because indexing by key is a
 search operation) and can represent many types of structured
 information. For example, dictionaries are one of many ways to
 describe the properties of an item in your program’s domain; that is,
 they can serve the same role as “records” or “structs” in other
 languages.
The following, for example, fills out a dictionary describing a
 hypothetical person, by assigning to new keys over time (if you are a
 Bob, my apologies for picking on your name in this book—it’s easy to
 type!):
>>> rec = {}
>>> rec['name'] = 'Bob'
>>> rec['age'] = 40.5
>>> rec['job'] = 'developer/manager'
>>>
>>> print(rec['name'])
Bob
Especially when nested, Python’s built-in data types allow us to
 easily represent structured information. The
 following again uses a dictionary to capture object properties, but it
 codes it all at once (rather than assigning to each key separately)
 and nests a list and a dictionary to represent structured property
 values:
>>> rec = {'name': 'Bob',
... 'jobs': ['developer', 'manager'],
... 'web': 'www.bobs.org/˜Bob',
... 'home': {'state': 'Overworked', 'zip': 12345}}
To fetch components of nested objects, simply string together
 indexing operations:
>>> rec['name']
'Bob'
>>> rec['jobs']
['developer', 'manager']
>>> rec['jobs'][1]
'manager'
>>> rec['home']['zip']
12345
Although we’ll learn in Part VI that
 classes (which group both data and logic) can be
 better in this record role, dictionaries are an easy-to-use tool for
 simpler requirements. For more on record representation choices, see
 also the upcoming sidebar “Why You Will Care: Dictionaries Versus Lists”, as well as its
 extension to tuples in Chapter 9 and classes in
 Chapter 27.
Also notice that while we’ve focused on a single “record” with
 nested data here, there’s no reason we couldn’t nest the record itself
 in a larger, enclosing database collection coded
 as a list or dictionary, though an external file or formal database
 interface often plays the role of top-level container in realistic
 programs (the following snippets both print Bob’s 2-item job list if
 run live and provided with another record structure):
db = []
db.append(rec) # A list "database"
db.append(other)
db[0]['jobs']

db = {}
db['bob'] = rec # A dictionary "database"
db['sue'] = other
db['bob']['jobs']
Later in the book we’ll meet tools such as Python’s shelve, which works much the same way, but
 automatically maps objects to and from files to make them permanent
 (watch for more in this chapter’s sidebar “Why You Will Care: Dictionary Interfaces”).

Other Ways to Make Dictionaries
Finally, note that because dictionaries are so useful, more ways to build
 them have emerged over time. In Python 2.3 and later, for example, the
 last two calls to the dict
 constructor (really, type name) shown here have the same effect as the
 literal and key-assignment forms above them:
{'name': 'Bob', 'age': 40} # Traditional literal expression

D = {} # Assign by keys dynamically
D['name'] = 'Bob'
D['age'] = 40

dict(name='Bob', age=40) # dict keyword argument form

dict([('name', 'Bob'), ('age', 40)]) # dict key/value tuples form
All four of these forms create the same two-key dictionary, but
 they are useful in differing circumstances:
	The first is handy if you can spell out the entire dictionary
 ahead of time.

	The second is of use if you need to create the dictionary one
 field at a time on the fly.

	The third involves less typing than the first, but it requires
 all keys to be strings.

	The last is useful if you need to build up keys and values as
 sequences at runtime.

We met keyword arguments earlier when sorting; the third form
 illustrated in this code listing has become especially popular in Python
 code today, since it has less syntax (and hence there is less
 opportunity for mistakes). As suggested previously in Table 8-2, the last form in
 the listing is also commonly used in conjunction with the zip function, to
 combine separate lists of keys and values obtained dynamically at
 runtime (parsed out of a data file’s columns, for instance):
dict(zip(keyslist, valueslist)) # Zipped key/value tuples form (ahead)
More on zipping dictionary keys in the next section. Provided all
 the key’s values are the same initially, you can also create a
 dictionary with this special form—simply pass in a list of keys and an
 initial value for all of the values (the default is None):
>>> dict.fromkeys(['a', 'b'], 0)
{'a': 0, 'b': 0}
Although you could get by with just literals and key assignments
 at this point in your Python career, you’ll probably find uses for all
 of these dictionary-creation forms as you start applying them in
 realistic, flexible, and dynamic Python programs.
The listings in this section document the various ways to create
 dictionaries in both Python 2.X and 3.X. However, there is yet another
 way to create dictionaries, available only in Python 3.X and 2.7:
 the dictionary comprehension
 expression. To see how this last form looks, we need to move on to the
 next and final section of this chapter.
Why You Will Care: Dictionaries Versus Lists
With all the objects in Python’s core types arsenal, some readers may
 be puzzled over the choice between lists and dictionaries. In short,
 although both are flexible collections of other objects, lists assign
 items to positions, and dictionaries assign them
 to more mnemonic keys. Because of this,
 dictionary data often carries more meaning to human readers. For
 example, the nested list structure in row 3 of Table 8-1 could be used to
 represent a record too:
>>> L = ['Bob', 40.5, ['dev', 'mgr']] # List-based "record"
>>> L[0]
'Bob'
>>> L[1] # Positions/numbers for fields
40.5
>>> L[2][1]
'mgr'
For some types of data, the list’s access-by-position makes
 sense—a list of employees in a company, the files in a directory, or
 numeric matrixes, for example. But a more symbolic record like this
 may be more meaningfully coded as a dictionary along the lines of row
 2 in Table 8-2, with
 labeled fields replacing field positions (this is similar to a record
 we coded in Chapter 4):
>>> D = {'name': 'Bob', 'age': 40.5, 'jobs': ['dev', 'mgr']}
>>> D['name']
'Bob'
>>> D['age'] # Dictionary-based "record"
40.5
>>> D['jobs'][1] # Names mean more than numbers
'mgr'
For variety, here is the same record recoded with keywords,
 which may seem even more readable to some human readers:
>>> D = dict(name='Bob', age=40.5, jobs=['dev', 'mgr'])
>>> D['name']
'Bob'
>>> D['jobs'].remove('mgr')
>>> D
{'jobs': ['dev'], 'age': 40.5, 'name': 'Bob'}
In practice, dictionaries tend to be best for data with labeled
 components, as well as structures that can benefit from quick, direct
 lookups by name, instead of slower linear searches. As we’ve seen,
 they also may be better for sparse collections and collections that
 grow at arbitrary positions.
Python programmers also have access to the
 sets we studied in Chapter 5, which are much like the keys of a
 valueless dictionary; they don’t map keys to values, but can often be
 used like dictionaries for fast lookups when there is no associated
 value, especially in search routines:
>>> D = {}
>>> D['state1'] = True # A visited-state dictionary
>>> 'state1' in D
True
>>> S = set()
>>> S.add('state1') # Same, but with sets
>>> 'state1' in S
True
Watch for a rehash of this record representation thread in the
 next chapter, where we’ll see how tuples and
 named tuples compare to dictionaries in this
 role, as well as in Chapter 27, where
 we’ll learn how user-defined classes factor into
 this picture, combining both data and logic to process it.

Dictionary Changes in Python 3.X and 2.7
This chapter has so far focused on dictionary basics that span releases, but
 the dictionary’s functionality has mutated in Python 3.X. If you are
 using Python 2.X code, you may come across some dictionary tools that
 either behave differently or are missing altogether in 3.X. Moreover,
 3.X coders have access to additional dictionary tools not available in
 2.X, apart from two back-ports to 2.7.
Specifically, dictionaries in Python
 3.X:
	Support a new dictionary comprehension
 expression, a close cousin to list and set comprehensions

	Return set-like iterable views instead of
 lists for the methods D.keys,
 D.values, and D.items

	Require new coding styles for scanning by sorted keys, because
 of the prior point

	No longer support relative magnitude comparisons
 directly—compare manually instead

	No longer have the D.has_key
 method—the in membership test is
 used instead

As later back-ports from 3.X, dictionaries in Python
 2.7 (but not earlier in 2.X):
	Support item 1 in the prior list—dictionary
 comprehensions—as a direct back-port from
 3.X

	Support item 2 in the prior list—set-like iterable
 views—but do so with special method names D.viewkeys,
 D.viewvalues, and D.viewitems; their nonview methods return
 lists as before

Because of this overlap, some of the material in this section
 pertains both to 3.X and 2.7, but is presented here in the context of
 3.X extensions because of its origin. With that in mind, let’s take a
 look at what’s new in dictionaries in 3.X and 2.7.
Dictionary comprehensions in 3.X and 2.7
As mentioned at the end of the prior section, dictionaries in 3.X and 2.7
 can also be created with dictionary comprehensions. Like the set
 comprehensions we met in Chapter 5, dictionary
 comprehensions are available only in 3.X and 2.7 (not in 2.6 and
 earlier). Like the longstanding list comprehensions we met briefly in
 Chapter 4 and earlier in this
 chapter, they run an implied loop, collecting the key/value results of
 expressions on each iteration and using them to fill out a new
 dictionary. A loop variable allows the comprehension to use loop
 iteration values along the way.
To illustrate, a standard way to initialize a dictionary
 dynamically in both 2.X and 3.X is to combine its keys and values
 with zip, and pass
 the result to the dict call. The
 zip built-in function is the hook
 that allows us to construct a dictionary from key and value lists this
 way—if you cannot predict the set of keys and values in your code, you
 can always build them up as lists and zip them together. We’ll study
 zip in detail in Chapter 13 and Chapter 14 after exploring statements;
 it’s an iterable in 3.X, so we must wrap it in a list call to show its results there, but its
 basic usage is otherwise straightforward:
>>> list(zip(['a', 'b', 'c'], [1, 2, 3])) # Zip together keys and values
[('a', 1), ('b', 2), ('c', 3)]

>>> D = dict(zip(['a', 'b', 'c'], [1, 2, 3])) # Make a dict from zip result
>>> D
{'b': 2, 'c': 3, 'a': 1}
In Python 3.X and 2.7, though, you can achieve the same effect
 with a dictionary comprehension expression. The following builds a new
 dictionary with a key/value pair for every such pair in the zip result (the Python code reads almost the same as its natural-language description, but with a bit more formality):
>>> D = {k: v for (k, v) in zip(['a', 'b', 'c'], [1, 2, 3])}
>>> D
{'b': 2, 'c': 3, 'a': 1}
Comprehensions actually require more code in this case, but they
 are also more general than this example implies—we can use them to map
 a single stream of values to dictionaries as well, and keys can be
 computed with expressions just like values:
>>> D = {x: x ** 2 for x in [1, 2, 3, 4]} # Or: range(1, 5)
>>> D
{1: 1, 2: 4, 3: 9, 4: 16}

>>> D = {c: c * 4 for c in 'SPAM'} # Loop over any iterable
>>> D
{'S': 'SSSS', 'P': 'PPPP', 'A': 'AAAA', 'M': 'MMMM'}

>>> D = {c.lower(): c + '!' for c in ['SPAM', 'EGGS', 'HAM']}
>>> D
{'eggs': 'EGGS!', 'spam': 'SPAM!', 'ham': 'HAM!'}
Dictionary comprehensions are also useful for initializing
 dictionaries from keys lists, in much the same way as the fromkeys
 method we met at the end of the preceding section:
>>> D = dict.fromkeys(['a', 'b', 'c'], 0) # Initialize dict from keys
>>> D
{'b': 0, 'c': 0, 'a': 0}

>>> D = {k:0 for k in ['a', 'b', 'c']} # Same, but with a comprehension
>>> D
{'b': 0, 'c': 0, 'a': 0}

>>> D = dict.fromkeys('spam') # Other iterables, default value
>>> D
{'s': None, 'p': None, 'a': None, 'm': None}

>>> D = {k: None for k in 'spam'}
>>> D
{'s': None, 'p': None, 'a': None, 'm': None}
Like related tools, dictionary comprehensions support additional
 syntax not shown here, including nested loops and if clauses. Unfortunately, to truly
 understand dictionary comprehensions, we need to also know more about
 iteration statements and concepts in Python, and we don’t yet have
 enough information to address that story well. We’ll learn much more
 about all flavors of comprehensions (list, set, dictionary, and
 generator) in Chapter 14 and
 Chapter 20, so we’ll defer
 further details until later. We’ll also revisit the zip built-in we used in this section in more
 detail in Chapter 13, when we explore for
 loops.

Dictionary views in 3.X (and 2.7 via new methods)
In 3.X the dictionary keys,
 values, and items methods all return view
 objects, whereas in 2.X they return actual result lists.
 This functionality is also available in Python 2.7, but in the guise
 of the special, distinct method names listed at the start of this
 section (2.7’s normal methods still return simple lists, so as to
 avoid breaking existing 2.X code); because of this, I’ll refer to this
 as a 3.X feature in this section.
View objects are iterables, which simply
 means objects that generate result items one at a time, instead of
 producing the result list all at once in memory. Besides being
 iterable, dictionary views also retain the original order of
 dictionary components, reflect future changes to the dictionary, and
 may support set operations. On the other hand, because they are not
 lists, they do not directly support operations like indexing or the
 list sort method, and do not
 display their items as a normal list when printed (they do show their
 components as of Python 3.1 but not as a list, and are still a
 divergence from 2.X).
We’ll discuss the notion of iterables more formally in Chapter 14, but for our purposes here
 it’s enough to know that we have to run the results of these three
 methods through the list built-in if
 we want to apply list operations or display their values. For example,
 in Python 3.3 (other version’s outputs may differ slightly):
>>> D = dict(a=1, b=2, c=3)
>>> D
{'b': 2, 'c': 3, 'a': 1}

>>> K = D.keys() # Makes a view object in 3.X, not a list
>>> K
dict_keys(['b', 'c', 'a'])
>>> list(K) # Force a real list in 3.X if needed
['b', 'c', 'a']

>>> V = D.values() # Ditto for values and items views
>>> V
dict_values([2, 3, 1])
>>> list(V)
[2, 3, 1]

>>> D.items()
dict_items([('b', 2), ('c', 3), ('a', 1)])
>>> list(D.items())
[('b', 2), ('c', 3), ('a', 1)]

>>> K[0] # List operations fail unless converted
TypeError: 'dict_keys' object does not support indexing
>>> list(K)[0]
'b'
Apart from result displays at the interactive prompt, you will
 probably rarely even notice this change, because looping constructs in
 Python automatically force iterable objects to produce one result on
 each iteration:
>>> for k in D.keys(): print(k) # Iterators used automatically in loops
...
b
c
a
In addition, 3.X dictionaries still have iterators themselves,
 which return successive keys—as in 2.X, it’s still often not necessary
 to call keys directly:
>>> for key in D: print(key) # Still no need to call keys() to iterate
...
b
c
a
Unlike 2.X’s list results, though, dictionary views in 3.X are
 not carved in stone when created—they dynamically reflect
 future changes made to the dictionary after the view object
 has been created:
>>> D = {'a': 1, 'b': 2, 'c': 3}
>>> D
{'b': 2, 'c': 3, 'a': 1}

>>> K = D.keys()
>>> V = D.values()
>>> list(K) # Views maintain same order as dictionary
['b', 'c', 'a']
>>> list(V)
[2, 3, 1]

>>> del D['b'] # Change the dictionary in place
>>> D
{'c': 3, 'a': 1}

>>> list(K) # Reflected in any current view objects
['c', 'a']
>>> list(V) # Not true in 2.X! - lists detached from dict
[3, 1]

Dictionary views and sets
Also unlike 2.X’s list results, 3.X’s view objects returned by the keys method are
 set-like and support common set operations such
 as intersection and union; values
 views are not set-like, but items
 results are if their (key, value) pairs are unique and hashable (immutable).
 Given that sets behave much like valueless dictionaries (and may even
 be coded in curly braces like dictionaries in 3.X and 2.7), this is a
 logical symmetry. Per Chapter 5, set items are
 unordered, unique, and immutable, just like dictionary keys.
Here is what keys views look
 like when used in set operations (continuing the prior section’s
 session); dictionary value views are never set-like, since their items
 are not necessarily unique or immutable:
>>> K, V
(dict_keys(['c', 'a']), dict_values([3, 1]))

>>> K | {'x': 4} # Keys (and some items) views are set-like
{'c', 'x', 'a'}

>>> V & {'x': 4}
TypeError: unsupported operand type(s) for &: 'dict_values' and 'dict'
>>> V & {'x': 4}.values()
TypeError: unsupported operand type(s) for &: 'dict_values' and 'dict_values'
In set operations, views may be mixed with other views, sets,
 and dictionaries; dictionaries are treated the same as their keys views in this context:
>>> D = {'a': 1, 'b': 2, 'c': 3}
>>> D.keys() & D.keys() # Intersect keys views
{'b', 'c', 'a'}
>>> D.keys() & {'b'} # Intersect keys and set
{'b'}
>>> D.keys() & {'b': 1} # Intersect keys and dict
{'b'}
>>> D.keys() | {'b', 'c', 'd'} # Union keys and set
{'b', 'c', 'a', 'd'}
Items views are set-like too if they are hashable—that is, if
 they contain only immutable objects:
>>> D = {'a': 1}
>>> list(D.items()) # Items set-like if hashable
[('a', 1)]
>>> D.items() | D.keys() # Union view and view
{('a', 1), 'a'}
>>> D.items() | D # dict treated same as its keys
{('a', 1), 'a'}

>>> D.items() | {('c', 3), ('d', 4)} # Set of key/value pairs
{('d', 4), ('a', 1), ('c', 3)}

>>> dict(D.items() | {('c', 3), ('d', 4)}) # dict accepts iterable sets too
{'c': 3, 'a': 1, 'd': 4}
See Chapter 5’s coverage of sets if you
 need a refresher on these operations. Here, let’s wrap up with three
 other quick coding notes for 3.X dictionaries.

Sorting dictionary keys in 3.X
First of all, because keys does not
 return a list in 3.X, the traditional coding pattern for scanning a
 dictionary by sorted keys in 2.X won’t work in 3.X:
>>> D = {'a': 1, 'b': 2, 'c': 3}
>>> D
{'b': 2, 'c': 3, 'a': 1}

>>> Ks = D.keys() # Sorting a view object doesn't work!
>>> Ks.sort()
AttributeError: 'dict_keys' object has no attribute 'sort'
To work around this, in 3.X you must either convert to a list
 manually or use the sorted call
 (introduced in Chapter 4 and
 covered in this chapter) on either a keys view or the dictionary itself:
>>> Ks = list(Ks) # Force it to be a list and then sort
>>> Ks.sort()
>>> for k in Ks: print(k, D[k]) # 2.X: omit outer parens in prints
...
a 1
b 2
c 3

>>> D
{'b': 2, 'c': 3, 'a': 1}
>>> Ks = D.keys() # Or you can use sorted() on the keys
>>> for k in sorted(Ks): print(k, D[k]) # sorted() accepts any iterable
... # sorted() returns its result
a 1
b 2
c 3
Of these, using the dictionary’s keys iterator is probably
 preferable in 3.X, and works in 2.X as well:
>>> D
{'b': 2, 'c': 3, 'a': 1} # Better yet, sort the dict directly
>>> for k in sorted(D): print(k, D[k]) # dict iterators return keys
...
a 1
b 2
c 3

Dictionary magnitude comparisons no longer work in 3.X
Secondly, while in Python 2.X dictionaries may be compared for relative
 magnitude directly with <,
 >, and so on, in Python 3.X this
 no longer works. However, you can simulate it by comparing sorted key/value pairs manually:
sorted(D1.items()) < sorted(D2.items()) # Like 2.X D1 < D2
Dictionary equality tests (e.g., D1 ==
 D2) still work in 3.X, though. Since we’ll revisit this near
 the end of the next chapter in the context of comparisons at large,
 we’ll postpone further details here.

The has_key method is dead in 3.X: Long live in!
Finally, the widely used dictionary has_key
 key presence test method is gone in 3.X. Instead, use the in membership expression, or a get with a default test (of these, in is generally preferred):
>>> D
{'b': 2, 'c': 3, 'a': 1}

>>> D.has_key('c') # 2.X only: True/False
AttributeError: 'dict' object has no attribute 'has_key'

>>> 'c' in D # Required in 3.X
True
>>> 'x' in D # Preferred in 2.X today
False
>>> if 'c' in D: print('present', D['c']) # Branch on result
...
present 3

>>> print(D.get('c')) # Fetch with default
3
>>> print(D.get('x'))
None
>>> if D.get('c') != None: print('present', D['c']) # Another option
...
present 3
To summarize, the dictionary story changes substantially in 3.X.
 If you work in 2.X and care about 3.X
 compatibility (or suspect that you might someday), here are
 some pointers. Of the 3.X changes we’ve met in this section:
	The first (dictionary comprehensions) can be coded only in
 3.X and 2.7.

	The second (dictionary views) can be coded only in 3.X, and
 with special method names in 2.7.

However, the last three techniques—sorted, manual comparisons, and in—can be coded in 2.X today to ease 3.X
 migration in the future.
Why You Will Care: Dictionary Interfaces
Dictionaries aren’t just a convenient way to store information by key in your
 programs—some Python extensions also present interfaces that look
 like and work the same as dictionaries. For instance, Python’s
 interface to DBM access-by-key files looks much like a dictionary
 that must be opened. You store and fetch strings using key
 indexes:
import dbm # Named anydbm in Python 2.X
file = dbm.open("filename") # Link to file
file['key'] = 'data' # Store data by key
data = file['key'] # Fetch data by key
In Chapter 28, you’ll see
 that you can store entire Python objects this way, too, if you
 replace dbm in the preceding code
 with shelve (shelves are access-by-key databases that store persistent Python
 objects, not just strings). For Internet work, Python’s CGI script
 support also presents a dictionary-like interface. A call to cgi.FieldStorage yields a dictionary-like
 object with one entry per input field on the client’s web
 page:
import cgi
form = cgi.FieldStorage() # Parse form data
if 'name' in form:
 showReply('Hello, ' + form['name'].value)
Though dictionaries are the only core mapping type, all of
 these others are instances of mappings, and support most of the same
 operations. Once you learn dictionary interfaces, you’ll find that
 they apply to a variety of built-in tools in Python.
For another dictionary use case, see also Chapter 9’s upcoming
 overview of JSON—a language-neutral data format
 used for databases and data transfer. Python dictionaries, lists,
 and nested combinations of them can almost pass for records in this
 format as is, and may be easily translated to and from formal JSON
 text strings with Python’s json standard library module.

Chapter Summary
In this chapter, we explored the list and dictionary types—probably
 the two most common, flexible, and powerful collection types you will see
 and use in Python code. We learned that the list type supports
 positionally ordered collections of arbitrary objects, and that it may be
 freely nested and grown and shrunk on demand. The dictionary type is
 similar, but it stores items by key instead of by position and does not
 maintain any reliable left-to-right order among its items. Both lists and
 dictionaries are mutable, and so support a variety of in-place change
 operations not available for strings: for example, lists can be grown by
 append calls, and dictionaries by
 assignment to new keys.
In the next chapter, we will wrap up our in-depth core object type
 tour by looking at tuples and files. After that, we’ll move on to
 statements that code the logic that processes our objects, taking us
 another step toward writing complete programs. Before we tackle those
 topics, though, here are some chapter quiz questions to review.

Test Your Knowledge: Quiz
	Name two ways to build a list containing five integer
 zeros.

	Name two ways to build a dictionary with two keys, 'a' and 'b', each having an associated value of
 0.

	Name four operations that change a list object in place.

	Name four operations that change a dictionary object in
 place.

	Why might you use a dictionary instead of a list?

Test Your Knowledge: Answers
	A literal expression like [0, 0, 0, 0,
 0] and a repetition expression like [0] * 5 will each create a list of five
 zeros. In practice, you might also build one up with a loop that
 starts with an empty list and appends 0 to it in each iteration, with L.append(0). A list comprehension ([0 for i in range(5)]) could work here, too,
 but this is more work than you need to do for this answer.

	A literal expression such as {'a': 0,
 'b': 0} or a series of assignments like D = {}, D['a'] =
 0, and D['b'] = 0 would
 create the desired dictionary. You can also use the newer and
 simpler-to-code dict(a=0, b=0)
 keyword form, or the more flexible dict([('a', 0), ('b', 0)]) key/value
 sequences form. Or, because all the values are the same, you can use
 the special form dict.fromkeys('ab',
 0). In 3.X and 2.7, you can also use a dictionary
 comprehension: {k:0 for k in 'ab'},
 though again, this may be overkill here.

	The append and extend methods grow a list in place, the
 sort and reverse methods order and reverse lists, the
 insert method inserts an item at an
 offset, the remove and pop methods delete from a list by value and
 by position, the del statement
 deletes an item or slice, and index and slice assignment statements
 replace an item or entire section. Pick any four of these for the
 quiz.

	Dictionaries are primarily changed by assignment to a new or
 existing key, which creates or changes the key’s entry in the table.
 Also, the del statement deletes a
 key’s entry, the dictionary update
 method merges one dictionary into another in place, and D.pop(key) removes a key and returns the
 value it had. Dictionaries also have other, more exotic in-place
 change methods not presented in this chapter, such as setdefault; see reference sources for more
 details.

	Dictionaries are generally better when the data is labeled (a
 record with field names, for example); lists are best suited to
 collections of unlabeled items (such as all the files in a directory).
 Dictionary lookup is also usually quicker than searching a list,
 though this might vary per program.

1 In practice, you won’t see many lists written out like this in
 list-processing programs. It’s more common to see code that processes
 lists constructed dynamically (at runtime), from user inputs, file
 contents, and so on. In fact, although it’s important to master
 literal syntax, many data structures in Python are built by running
 program code at runtime.
2 This description requires elaboration when the value and
 the slice being assigned overlap: L[2:5]=L[3:6], for instance, works
 fine because the value to be inserted is fetched before the
 deletion happens on the left.
3 Unlike + concatenation,
 append doesn’t have to generate
 new objects, so it’s usually faster than + too. You can also mimic append with the clever slice assignments
 of the prior section: L[len(L):]=[X] is like L.append(X), and L[:0]=[X] is like appending at the front
 of a list. Both delete an empty slice and insert X, changing L in place quickly, like append. Both are arguably more complex
 than list methods, though. For instance, L.insert(0, X) can also append an item
 to the front of a list, and seems noticeably more mnemonic;
 L.insert(len(L), X) inserts one
 object at the end too, but unless you like typing, you might as
 well use L.append(X)!
4 As for lists, you might not see dictionaries coded in full using
 literals very often—programs rarely know all their data before they
 are run, and more typically extract it dynamically from users, files,
 and so on. Lists and dictionaries are grown in different ways, though.
 In the next section you’ll see that you often build up dictionaries by
 assigning to new keys at runtime; this approach fails for lists, which
 are commonly grown with append or
 extend instead.

Chapter 9. Tuples, Files, and Everything Else
This chapter rounds out our in-depth tour of the core object types in
 Python by exploring the tuple, a collection of other
 objects that cannot be changed, and the file, an
 interface to external files on your computer. As you’ll see, the tuple is a
 relatively simple object that largely performs operations you’ve already
 learned about for strings and lists. The file object is a commonly used and
 full-featured tool for processing files on your computer. Because files are
 so pervasive in programming, the basic overview of files here is
 supplemented by larger examples in later chapters.
This chapter also concludes this part of the book by looking at
 properties common to all the core object types we’ve met—the notions of
 equality, comparisons, object copies, and so on. We’ll also briefly explore
 other object types in Python’s toolbox, including the None placeholder and the namedtuple hybrid; as you’ll see, although we’ve
 covered all the primary built-in types, the object story in Python is
 broader than I’ve implied thus far. Finally, we’ll close this part of the
 book by taking a look at a set of common object type pitfalls and exploring
 some exercises that will allow you to experiment with the ideas you’ve
 learned.
Note
This chapter’s
 scope—files: As in Chapter 7 on strings, our look at files here will
 be limited in scope to file fundamentals that most Python
 programmers—including newcomers to programming—need to know. In
 particular, Unicode text files were previewed in
 Chapter 4, but we’re going to
 postpone full coverage of them until Chapter 37, as optional or deferred reading in
 the Advanced Topics part of this book.
For this chapter’s purpose, we’ll assume any text files used will be
 encoded and decoded per your platform’s default, which may be UTF-8 on
 Windows, and ASCII or other elsewhere (and if you don’t know why this
 matters, you probably don’t need to up front). We’ll also assume that
 filenames encode properly on the underlying platform, though we’ll stick
 with ASCII names for portability here.
If Unicode text and files is a critical subject for you, I suggest
 reading the Chapter 4 preview for
 a quick first look, and continuing on to Chapter 37 after you master the file basics
 covered here. For all others, the file coverage here will apply both to
 typical text and binary files of the sort we’ll meet here, as well as to
 more advanced file-processing modes you may choose to explore
 later.

Tuples
The last collection type in our survey is the Python tuple. Tuples construct
 simple groups of objects. They work exactly like lists, except that tuples
 can’t be changed in place (they’re immutable) and are usually written as a
 series of items in parentheses, not square brackets. Although they don’t
 support as many methods, tuples share most of their properties with lists.
 Here’s a quick look at the basics. Tuples are:
	Ordered collections of arbitrary objects
	Like strings and lists, tuples are positionally ordered
 collections of objects (i.e., they maintain a left-to-right order
 among their contents); like lists, they can embed any kind of
 object.

	Accessed by offset
	Like strings and lists, items in a tuple are accessed by
 offset (not by key); they support all the offset-based access
 operations, such as indexing and slicing.

	Of the category “immutable sequence”
	Like strings and lists, tuples are sequences; they support
 many of the same operations. However, like strings, tuples are
 immutable; they don’t support any of the in-place change operations
 applied to lists.

	Fixed-length, heterogeneous, and arbitrarily nestable
	Because tuples are immutable, you cannot change the size of a
 tuple without making a copy. On the other hand, tuples can hold any
 type of object, including other compound objects (e.g., lists,
 dictionaries, other tuples), and so support arbitrary
 nesting.

	Arrays of object references
	Like lists, tuples are best thought of as object reference
 arrays; tuples store access points to other objects (references),
 and indexing a tuple is relatively quick.

Table 9-1 highlights
 common tuple operations. A tuple is written as a series of objects
 (technically, expressions that generate objects), separated by commas and
 normally enclosed in parentheses. An empty tuple is just a
 parentheses pair with nothing inside.
Table 9-1. Common tuple literals and operations	Operation	Interpretation
	()
	An empty tuple

	T = (0,)
	A one-item tuple (not an
 expression)

	T = (0, 'Ni', 1.2, 3)
	A four-item
 tuple

	T = 0, 'Ni', 1.2, 3
	Another four-item tuple
 (same as prior line)

	T = ('Bob', ('dev', 'mgr'))
	Nested tuples

	T = tuple('spam')
	Tuple of items in an
 iterable

	T[i]
 T[i][j]
 T[i:j]
 len(T)
	Index, index of index, slice, length

	T1 + T2
 T * 3
	Concatenate, repeat

	for x in T: print(x)

 'spam' in T

 [x ** 2 for x in T]
	Iteration, membership

	T.index('Ni')
 T.count('Ni')
	Methods in 2.6, 2.7, and 3.X: search, count

	namedtuple('Emp', ['name', 'jobs'])
	Named tuple extension type

Tuples in Action
As usual, let’s start an interactive session to explore tuples at work.
 Notice in Table 9-1 that
 tuples do not have all the methods that lists have (e.g., an append call won’t work here). They do,
 however, support the usual sequence operations that we saw for both
 strings and lists:
>>> (1, 2) + (3, 4) # Concatenation
(1, 2, 3, 4)

>>> (1, 2) * 4 # Repetition
(1, 2, 1, 2, 1, 2, 1, 2)

>>> T = (1, 2, 3, 4) # Indexing, slicing
>>> T[0], T[1:3]
(1, (2, 3))
Tuple syntax peculiarities: Commas and parentheses
The second and fourth entries in Table 9-1 merit a bit more
 explanation. Because parentheses can also enclose expressions (see
 Chapter 5), you need to do something special to
 tell Python when a single object in parentheses is a tuple object and
 not a simple expression. If you really want a single-item tuple,
 simply add a trailing comma after the single item, before the closing
 parenthesis:
>>> x = (40) # An integer!
>>> x
40
>>> y = (40,) # A tuple containing an integer
>>> y
(40,)
As a special case, Python also allows you to omit the opening
 and closing parentheses for a tuple in contexts where it isn’t
 syntactically ambiguous to do so. For instance, the fourth line of
 Table 9-1 simply lists
 four items separated by commas. In the context of an assignment
 statement, Python recognizes this as a tuple, even though it doesn’t
 have parentheses.
Now, some people will tell you to always use parentheses in your
 tuples, and some will tell you to never use parentheses in tuples (and
 still others have lives, and won’t tell you what to do with your
 tuples!). The most common places where the parentheses are
 required for tuple literals are those
 where:
	Parentheses matter—within a function
 call, or nested in a larger expression.

	Commas matter—embedded in the literal
 of a larger data structure like a list or dictionary, or listed in
 a Python 2.X print
 statement.

In most other contexts, the enclosing parentheses are optional.
 For beginners, the best advice is that it’s probably easier to use the
 parentheses than it is to remember when they are optional or required.
 Many programmers also find that parentheses tend to aid script
 readability by making the tuples more explicit and obvious.1

Conversions, methods, and immutability
Apart from literal syntax differences, tuple operations (the middle rows in
 Table 9-1) are identical
 to string and list operations. The only differences worth noting are
 that the +, *, and slicing operations return new
 tuples when applied to tuples, and that tuples
 don’t provide the same methods you saw for strings, lists, and
 dictionaries. If you want to sort a tuple, for example, you’ll usually
 have to either first convert it to a list to gain access to a sorting
 method call and make it a mutable object, or use the newer sorted built-in
 that accepts any sequence object (and other
 iterables—a term introduced in Chapter 4 that we’ll be more formal
 about in the next part of this book):
>>> T = ('cc', 'aa', 'dd', 'bb')
>>> tmp = list(T) # Make a list from a tuple's items
>>> tmp.sort() # Sort the list
>>> tmp
['aa', 'bb', 'cc', 'dd']
>>> T = tuple(tmp) # Make a tuple from the list's items
>>> T
('aa', 'bb', 'cc', 'dd')

>>> sorted(T) # Or use the sorted built-in, and save two steps
['aa', 'bb', 'cc', 'dd']
Here, the list and tuple built-in functions are used to convert the object to a list and
 then back to a tuple; really, both calls make new objects, but the net
 effect is like a conversion.
List comprehensions can also be used to convert tuples. The
 following, for example, makes a list from a tuple, adding 20 to each
 item along the way:
>>> T = (1, 2, 3, 4, 5)
>>> L = [x + 20 for x in T]
>>> L
[21, 22, 23, 24, 25]
List comprehensions are really sequence
 operations—they always build new lists, but they may be used to
 iterate over any sequence objects, including tuples, strings, and
 other lists. As we’ll see later in the book, they even work on some
 things that are not physically stored sequences—any
 iterable objects will do, including files, which
 are automatically read line by line. Given this, they may be better
 called iteration tools.
Although tuples don’t have the same methods as lists and
 strings, they do have two of their own as of Python 2.6 and 3.0—index and
 count work as they do for lists,
 but they are defined for tuple objects:
>>> T = (1, 2, 3, 2, 4, 2) # Tuple methods in 2.6, 3.0, and later
>>> T.index(2) # Offset of first appearance of 2
1
>>> T.index(2, 2) # Offset of appearance after offset 2
3
>>> T.count(2) # How many 2s are there?
3
Prior to 2.6 and 3.0, tuples have no methods at all—this was an
 old Python convention for immutable types, which was violated years
 ago on grounds of practicality with strings, and more recently with
 both numbers and tuples.
Also, note that the rule about tuple
 immutability applies only to the top level of the
 tuple itself, not to its contents. A list inside a tuple, for
 instance, can be changed as usual:
>>> T = (1, [2, 3], 4)
>>> T[1] = 'spam' # This fails: can't change tuple itself
TypeError: object doesn't support item assignment

>>> T[1][0] = 'spam' # This works: can change mutables inside
>>> T
(1, ['spam', 3], 4)
For most programs, this one-level-deep immutability is
 sufficient for common tuple roles. Which, coincidentally, brings us to
 the next section.

Why Lists and Tuples?
This seems to be the first question that always comes up when teaching
 beginners about tuples: why do we need tuples if we have lists? Some of
 the reasoning may be historic; Python’s creator is a mathematician by
 training, and he has been quoted as seeing a tuple as a simple
 association of objects and a list as a data structure that changes over
 time. In fact, this use of the word “tuple” derives from mathematics, as
 does its frequent use for a row in a relational database table.
The best answer, however, seems to be that the immutability of
 tuples provides some integrity—you can be sure a
 tuple won’t be changed through another reference elsewhere in a program,
 but there’s no such guarantee for lists. Tuples and other immutables,
 therefore, serve a similar role to “constant” declarations in other
 languages, though the notion of constantness is associated with objects
 in Python, not variables.
Tuples can also be used in places that lists cannot—for example,
 as dictionary keys (see the sparse matrix example in Chapter 8). Some built-in operations may also
 require or imply tuples instead of lists (e.g., the substitution values
 in a string format expression), though such operations have often been
 generalized in recent years to be more flexible. As a rule of thumb,
 lists are the tool of choice for ordered collections that might need to
 change; tuples can handle the other cases of fixed associations.

Records Revisited: Named Tuples
In fact, the choice of data types is even richer than the prior section may have
 implied—today’s Python programmers can choose from an assortment of both
 built-in core types, and extension types built on top of them. For
 example, in the prior chapter’s sidebar “Why You Will Care: Dictionaries Versus Lists”, we saw how to
 represent record-like information with both a list and a dictionary, and
 noted that dictionaries offer the advantage of more mnemonic keys that
 label data. As long as we don’t require mutability,
 tuples can serve similar roles, with positions for
 record fields like lists:
>>> bob = ('Bob', 40.5, ['dev', 'mgr']) # Tuple record
>>> bob
('Bob', 40.5, ['dev', 'mgr'])

>>> bob[0], bob[2] # Access by position
('Bob', ['dev', 'mgr'])
As for lists, though, field numbers in tuples generally carry less
 information than the names of keys in a dictionary.
 Here’s the same record recoded as a dictionary with named fields:
>>> bob = dict(name='Bob', age=40.5, jobs=['dev', 'mgr']) # Dictionary record
>>> bob
{'jobs': ['dev', 'mgr'], 'name': 'Bob', 'age': 40.5}

>>> bob['name'], bob['jobs'] # Access by key
('Bob', ['dev', 'mgr'])
In fact, we can convert parts of the dictionary to a tuple if
 needed:
>>> tuple(bob.values()) # Values to tuple
(['dev', 'mgr'], 'Bob', 40.5)
>>> list(bob.items()) # Items to tuple list
[('jobs', ['dev', 'mgr']), ('name', 'Bob'), ('age', 40.5)]
But with a bit of extra work, we can implement objects that offer
 both positional and named access to record fields.
 For example, the namedtuple utility,
 available in the standard library’s collections module mentioned in Chapter 8,
 implements an extension type that adds logic to tuples that allows
 components to be accessed by both position and
 attribute name, and can be converted to
 dictionary-like form for access by key if desired.
 Attribute names come from classes and are not exactly dictionary keys,
 but they are similarly mnemonic:
>>> from collections import namedtuple # Import extension type
>>> Rec = namedtuple('Rec', ['name', 'age', 'jobs']) # Make a generated class
>>> bob = Rec('Bob', age=40.5, jobs=['dev', 'mgr']) # A named-tuple record
>>> bob
Rec(name='Bob', age=40.5, jobs=['dev', 'mgr'])

>>> bob[0], bob[2] # Access by position
('Bob', ['dev', 'mgr'])
>>> bob.name, bob.jobs # Access by attribute
('Bob', ['dev', 'mgr'])
Converting to a dictionary supports key-based behavior when
 needed:
>>> O = bob._asdict() # Dictionary-like form
>>> O['name'], O['jobs'] # Access by key too
('Bob', ['dev', 'mgr'])
>>> O
OrderedDict([('name', 'Bob'), ('age', 40.5), ('jobs', ['dev', 'mgr'])])
As you can see, named tuples are a tuple/class/dictionary
 hybrid. They also represent a classic
 tradeoff. In exchange for their extra utility, they
 require extra code (the two startup lines in the preceding examples that
 import the type and make the class), and incur some performance costs to
 work this magic. (In short, named tuples build new classes that extend
 the tuple type, inserting a property
 accessor method for each named field that maps the name to its
 position—a technique that relies on advanced topics we’ll explore in
 Part VIII, and uses formatted code strings
 instead of class annotation tools like decorators and metaclasses.)
 Still, they are a good example of the kind of custom data types that we
 can build on top of built-in types like tuples when extra utility is
 desired.
Named tuples are available in Python 3.X, 2.7, 2.6 (where _asdict returns a true dictionary), and
 perhaps earlier, though they rely on features relatively modern by
 Python standards. They are also extensions, not
 core types—they live in the standard library and fall into the same
 category as Chapter 5’s Fraction and Decimal—so we’ll delegate to the Python
 library manual for more details.
As a quick preview, though, both tuples and named tuples support
 unpacking tuple assignment, which we’ll study
 formally in Chapter 13, as well as the
 iteration contexts we’ll explore in Chapter 14 and Chapter 20 (notice the positional
 initial values here: named tuples accept these by name, position, or
 both):
>>> bob = Rec('Bob', 40.5, ['dev', 'mgr']) # For both tuples and named tuples
>>> name, age, jobs = bob # Tuple assignment (Chapter 11)
>>> name, jobs
('Bob', ['dev', 'mgr'])

>>> for x in bob: print(x) # Iteration context (Chapters 14, 20)
...prints Bob, 40.5, ['dev', 'mgr']...
Tuple-unpacking assignment doesn’t quite apply to dictionaries,
 short of fetching and converting keys and values and assuming or
 imposing an positional ordering on them (dictionaries are not
 sequences), and iteration steps through keys, not values (notice the
 dictionary literal form here: an alternative to dict):
>>> bob = {'name': 'Bob', 'age': 40.5, 'jobs': ['dev', 'mgr']}
>>> job, name, age = bob.values()
>>> name, job # Dict equivalent (but order may vary)
('Bob', ['dev', 'mgr'])

>>> for x in bob: print(bob[x]) # Step though keys, index values
...prints values...
>>> for x in bob.values(): print(x) # Step through values view
...prints values...
Watch for a final rehash of this record representation thread when
 we see how user-defined classes compare in Chapter 27; as we’ll find, classes label fields
 with names too, but can also provide program logic
 to process the record’s data in the same package.

Files
You may already be familiar with the notion of files, which are named storage
 compartments on your computer that are managed by your operating system.
 The last major built-in object type that we’ll examine on our object types
 tour provides a way to access those files inside Python programs.
In short, the built-in open
 function creates a Python file object, which serves as a link to a file
 residing on your machine. After calling open, you can transfer strings of data to and
 from the associated external file by calling the returned file object’s
 methods.
Compared to the types you’ve seen so far, file objects are somewhat
 unusual. They are considered a core type because they are created by a
 built-in function, but they’re not numbers, sequences, or mappings, and
 they don’t respond to expression operators; they export only methods for
 common file-processing tasks. Most file methods are concerned with
 performing input from and output to the external file associated with a
 file object, but other file methods allow us to seek to a new position in
 the file, flush output buffers, and so on. Table 9-2 summarizes common file
 operations.
Table 9-2. Common file operations	Operation	Interpretation
	output = open(r'C:\spam', 'w')
	Create output file ('w' means
 write)

	input = open('data', 'r')
	Create input file ('r' means
 read)

	input = open('data')
	Same as prior line
 ('r' is the
 default)

	aString = input.read()
	Read entire file into a
 single string

	aString = input.read(N)
	Read up to next N characters
 (or bytes) into a string

	aString = input.readline()
	Read next line (including \n newline) into a string

	aList = input.readlines()
	Read entire file into list of line strings (with \n)

	output.write(aString)
	Write a string of characters (or bytes) into file

	output.writelines(aList)
	Write all line strings in a list into file

	output.close()
	Manual close (done for you when file is collected)

	output.flush()
	Flush output buffer to disk without closing

	anyFile.seek(N)
	Change file position to offset N for next operation

	for line in open('data'):
 use line
	File iterators read line by
 line

	open('f.txt', encoding='latin-1')
	Python 3.X Unicode text
 files (str
 strings)

	open('f.bin', 'rb')
	Python 3.X bytes files
 (bytes strings)

	codecs.open('f.txt', encoding='utf8')
	Python 2.X Unicode text files (unicode strings)

	open('f.bin', 'rb')
	Python 2.X bytes files
 (str strings)

Opening Files
To open a file, a program calls the built-in open function, with the external filename
 first, followed by a processing mode. The call returns a file object,
 which in turn has methods for data transfer:
afile = open(filename, mode)
afile.method()
The first argument to open, the
 external filename, may include a platform-specific
 and absolute or relative directory path prefix. Without a directory
 path, the file is assumed to exist in the current working directory
 (i.e., where the script runs). As we’ll see in Chapter 37’s expanded file coverage, the
 filename may also contain non-ASCII Unicode
 characters that Python automatically translates to and from the
 underlying platform’s encoding, or be provided as a pre-encoded byte
 string.
The second argument to open,
 processing mode, is typically the string 'r' to open for text input (the default),
 'w' to create and open for text
 output, or 'a' to open for appending
 text to the end (e.g., for adding to logfiles). The processing mode
 argument can specify additional options:
	Adding a b to the mode
 string allows for binary data (end-of-line
 translations and 3.X Unicode encodings are turned off).

	Adding a + opens the file
 for both input and output (i.e., you can both
 read and write to the same file object, often in conjunction with
 seek operations to reposition in the file).

Both of the first two arguments to open must be Python strings. An optional third
 argument can be used to control output
 buffering—passing a zero means that output is
 unbuffered (it is transferred to the external file immediately on a
 write method call), and additional arguments may be provided for special
 types of files (e.g., an encoding for Unicode text
 files in Python 3.X).
We’ll cover file fundamentals and explore some basic examples
 here, but we won’t go into all file-processing mode options; as usual,
 consult the Python library manual for additional details.

Using Files
Once you make a file object with open,
 you can call its methods to read from or write to the associated
 external file. In all cases, file text takes the form of strings in
 Python programs; reading a file returns its content in strings, and
 content is passed to the write methods as strings. Reading and writing
 methods come in multiple flavors; Table 9-2 lists the most common. Here are a
 few fundamental usage notes:
	File iterators are best for reading lines
	Though the reading and writing methods in the table are
 common, keep in mind that probably the best way to read lines from
 a text file today is to not read the file at all—as we’ll see in
 Chapter 14, files also have
 an iterator that automatically reads one line
 at a time in a for loop, list
 comprehension, or other iteration context.

	Content is strings, not objects
	Notice in Table 9-2 that
 data read from a file always comes back to
 your script as a string, so you’ll have to convert it to a
 different type of Python object if a string is not what you need.
 Similarly, unlike with the print operation, Python does not add any
 formatting and does not convert objects to strings automatically
 when you write data to a file—you must send
 an already formatted string. Because of this, the tools we have
 already met to convert objects to and from strings (e.g., int, float, str, and the string formatting
 expression and method) come in handy when dealing with
 files.
Python also includes advanced standard library tools for
 handling generic object storage (the pickle module), for dealing with packed
 binary data in files (the struct module), and for processing
 special types of content such as JSON, XML, and CSV text. We’ll
 see these at work later in this chapter and book, but Python’s
 manuals document them in full.

	Files are buffered and seekable
	By default, output files are always
 buffered, which means that text you write may
 not be transferred from memory to disk immediately—closing a file,
 or running its flush method,
 forces the buffered data to disk. You can avoid buffering with
 extra open arguments, but it
 may impede performance. Python files are also
 random-access on a byte offset basis—their
 seek method allows your scripts
 to jump around to read and write at specific locations.

	close is often optional:
 auto-close on collection
	Calling the file close
 method terminates your connection to the external file, releases its
 system resources, and flushes its buffered output to disk if any
 is still in memory. As discussed in Chapter 6, in Python an object’s
 memory space is automatically reclaimed as soon as the object is
 no longer referenced anywhere in the program. When
 file objects are reclaimed, Python also
 automatically closes the files if they are
 still open (this also happens when a program shuts down). This
 means you don’t always need to manually close your files in
 standard Python, especially those in simple scripts with short
 runtimes, and temporary files used by a single line or
 expression.
On the other hand, including manual close calls doesn’t hurt, and may be a
 good habit to form, especially in long-running systems. Strictly
 speaking, this auto-close-on-collection feature of files is not
 part of the language definition—it may change over time, may not
 happen when you expect it to in interactive shells, and may not
 work the same in other Python implementations whose garbage
 collectors may not reclaim and close files at the same points as
 standard CPython. In fact, when many files are opened within
 loops, Pythons other than CPython may require close calls to free
 up system resources immediately, before garbage collection can get
 around to freeing objects. Moreover, close calls may sometimes be
 required to flush buffered output of file objects not yet
 reclaimed. For an alternative way to guarantee automatic file
 closes, also see this section’s later discussion of the file
 object’s context manager, used
 with the with/as statement in Python 2.6, 2.7,
 and 3.X.

Files in Action
Let’s work through a simple example that demonstrates file-processing
 basics. The following code begins by opening a new text file for output,
 writing two lines (strings terminated with a newline marker, \n), and closing the file. Later, the example
 opens the same file again in input mode and reads the lines back one at
 a time with readline. Notice
 that the third readline call returns
 an empty string; this is how Python file methods tell you that you’ve
 reached the end of the file (empty lines in the file come back as
 strings containing just a newline character, not as empty strings).
 Here’s the complete interaction:
>>> myfile = open('myfile.txt', 'w') # Open for text output: create/empty
>>> myfile.write('hello text file\n') # Write a line of text: string
16
>>> myfile.write('goodbye text file\n')
18
>>> myfile.close() # Flush output buffers to disk

>>> myfile = open('myfile.txt') # Open for text input: 'r' is default
>>> myfile.readline() # Read the lines back
'hello text file\n'
>>> myfile.readline()
'goodbye text file\n'
>>> myfile.readline() # Empty string: end-of-file
''
Notice that file write calls
 return the number of characters written in Python 3.X; in 2.X they
 don’t, so you won’t see these numbers echoed interactively. This example
 writes each line of text, including its end-of-line terminator, \n, as a string; write methods don’t add the
 end-of-line character for us, so we must include it to properly
 terminate our lines (otherwise the next write will simply extend the
 current line in the file).
If you want to display the file’s content with end-of-line
 characters interpreted, read the entire file into a string all
 at once with the file object’s read
 method and print it:
>>> open('myfile.txt').read() # Read all at once into string
'hello text file\ngoodbye text file\n'

>>> print(open('myfile.txt').read()) # User-friendly display
hello text file
goodbye text file
And if you want to scan a text file line by line, file iterators are often your
 best option:
>>> for line in open('myfile.txt'): # Use file iterators, not reads
... print(line, end='')
...
hello text file
goodbye text file
When coded this way, the temporary file object created by open will automatically read and return one
 line on each loop iteration. This form is usually easiest to code, good
 on memory use, and may be faster than some other options (depending on
 many variables, of course). Since we haven’t reached statements or
 iterators yet, though, you’ll have to wait until Chapter 14 for a more complete
 explanation of this code.
Note
Windows users: As mentioned in Chapter 7, open accepts Unix-style forward slashes in
 place of backward slashes on Windows, so any of the following forms
 work for directory paths—raw strings, forward slashes, or doubled-up
 backslashes:
>>> open(r'C:\Python33\Lib\pdb.py').readline()
'#! /usr/bin/env python3\n'
>>> open('C:/Python33/Lib/pdb.py').readline()
'#! /usr/bin/env python3\n'
>>> open('C:\\Python33\\Lib\\pdb.py').readline()
'#! /usr/bin/env python3\n'
The raw string form in the first command is still useful to turn
 off accidental escapes when you can’t control string content, and in
 other contexts.

Text and Binary Files: The Short Story
Strictly speaking, the example in the prior section uses text
 files. In both Python 3.X and 2.X, file type is determined by the second
 argument to open, the mode string—an included “b” means binary. Python has
 always supported both text and binary files, but in Python 3.X there is
 a sharper distinction between the two:
	Text files represent content as
 normal str strings,
 perform Unicode encoding and decoding automatically, and perform
 end-of-line translation by default.

	Binary files represent content as a
 special bytes
 string type and allow programs to access file content
 unaltered.

In contrast, Python 2.X text files handle both 8-bit text and
 binary data, and a special string type and file interface (unicode
 strings and codecs.open) handles
 Unicode text. The differences in Python 3.X stem from the
 fact that simple and Unicode text have been merged in the normal string
 type—which makes sense, given that all text is Unicode, including ASCII
 and other 8-bit encodings.
Because most programmers deal only with ASCII text, they can get
 by with the basic text file interface used in the prior example, and
 normal strings. All strings are technically Unicode in 3.X, but ASCII
 users will not generally notice. In fact, text files and strings work
 the same in 3.X and 2.X if your script’s scope is limited to such simple
 forms of text.
If you need to handle internationalized applications or
 byte-oriented data, though, the distinction in 3.X impacts your code
 (usually for the better). In general, you must use bytes strings for binary files, and normal
 str strings for text files. Moreover,
 because text files implement Unicode encodings, you should not open a
 binary data file in text mode—decoding its content to Unicode text will
 likely fail.
Let’s look at an example. When you read a
 binary data file you get back a bytes object—a sequence of small integers that
 represent absolute byte values (which may or may not correspond to
 characters), which looks and feels almost exactly like a normal string.
 In Python 3.X, and assuming an existing binary file:
>>> data = open('data.bin', 'rb').read() # Open binary file: rb=read binary
>>> data # bytes string holds binary data
b'\x00\x00\x00\x07spam\x00\x08'
>>> data[4:8] # Act like strings
b'spam'
>>> data[4:8][0] # But really are small 8-bit integers
115
>>> bin(data[4:8][0]) # Python 3.X/2.6+ bin() function
'0b1110011'
In addition, binary files do not perform any end-of-line
 translation on data; text files by
 default map all forms to and from \n
 when written and read and implement Unicode encodings on transfers in
 3.X. Binary files like this one work the same in Python 2.X, but byte
 strings are simply normal strings and have no leading
 b when displayed, and text files must use the
 codecs module to add Unicode
 processing.
Per the note at the start of this chapter, though, that’s as much
 as we’re going to say about Unicode text and binary data files here, and
 just enough to understand upcoming examples in this chapter. Since the
 distinction is of marginal interest to many Python programmers, we’ll
 defer to the files preview in Chapter 4 for a quick tour and
 postpone the full story until Chapter 37. For now, let’s move on to some
 more substantial file examples to demonstrate a few common use
 cases.

Storing Python Objects in Files: Conversions
Our next example writes a variety of Python objects into a text file on
 multiple lines. Notice that it must convert objects to strings using
 conversion tools. Again, file data is always
 strings in our scripts, and write methods do not do
 any automatic to-string formatting for us (for space, I’m omitting
 byte-count return values from write
 methods from here on):
>>> X, Y, Z = 43, 44, 45 # Native Python objects
>>> S = 'Spam' # Must be strings to store in file
>>> D = {'a': 1, 'b': 2}
>>> L = [1, 2, 3]
>>>
>>> F = open('datafile.txt', 'w') # Create output text file
>>> F.write(S + '\n') # Terminate lines with \n
>>> F.write('%s,%s,%s\n' % (X, Y, Z)) # Convert numbers to strings
>>> F.write(str(L) + '$' + str(D) + '\n') # Convert and separate with $
>>> F.close()
Once we have created our file, we can inspect its contents by
 opening it and reading it into a string (strung together as a single
 operation here). Notice that the interactive echo gives the exact byte
 contents, while the print operation
 interprets embedded end-of-line characters to render a more
 user-friendly display:
>>> chars = open('datafile.txt').read() # Raw string display
>>> chars
"Spam\n43,44,45\n[1, 2, 3]${'a': 1, 'b': 2}\n"
>>> print(chars) # User-friendly display
Spam
43,44,45
[1, 2, 3]${'a': 1, 'b': 2}
We now have to use other conversion tools to translate from the
 strings in the text file to real Python objects. As Python never
 converts strings to numbers (or other types of objects) automatically,
 this is required if we need to gain access to normal object tools like
 indexing, addition, and so on:
>>> F = open('datafile.txt') # Open again
>>> line = F.readline() # Read one line
>>> line
'Spam\n'
>>> line.rstrip() # Remove end-of-line
'Spam'
For this first line, we used the string rstrip method to
 get rid of the trailing end-of-line character; a line[:−1] slice would work, too, but only if
 we can be sure all lines end in the \n character (the last line in a file
 sometimes does not).
So far, we’ve read the line containing the string. Now let’s grab
 the next line, which contains numbers, and parse out (that is, extract)
 the objects on that line:
>>> line = F.readline() # Next line from file
>>> line # It's a string here
'43,44,45\n'
>>> parts = line.split(',') # Split (parse) on commas
>>> parts
['43', '44', '45\n']
We used the string split method
 here to chop up the line on its comma delimiters; the result is a list
 of substrings containing the individual numbers. We still must convert
 from strings to integers, though, if we wish to perform math on
 these:
>>> int(parts[1]) # Convert from string to int
44
>>> numbers = [int(P) for P in parts] # Convert all in list at once
>>> numbers
[43, 44, 45]
As we have learned, int
 translates a string of digits into an integer object, and the list
 comprehension expression introduced in Chapter 4 can apply the call to each
 item in our list all at once (you’ll find more on list comprehensions
 later in this book). Notice that we didn’t have to run rstrip to delete the \n at the end of the last part; int and some other converters quietly ignore
 whitespace around digits.
Finally, to convert the stored list and dictionary in the third
 line of the file, we can run them through eval, a
 built-in function that treats a string as a piece of executable program
 code (technically, a string containing a Python expression):
>>> line = F.readline()
>>> line
"[1, 2, 3]${'a': 1, 'b': 2}\n"
>>> parts = line.split('$') # Split (parse) on $
>>> parts
['[1, 2, 3]', "{'a': 1, 'b': 2}\n"]
>>> eval(parts[0]) # Convert to any object type
[1, 2, 3]
>>> objects = [eval(P) for P in parts] # Do same for all in list
>>> objects
[[1, 2, 3], {'a': 1, 'b': 2}]
Because the end result of all this parsing and converting is a
 list of normal Python objects instead of strings, we can now apply list
 and dictionary operations to them in our script.

Storing Native Python Objects: pickle
Using eval to convert
 from strings to objects, as demonstrated in the preceding
 code, is a powerful tool. In fact, sometimes it’s
 too powerful. eval will happily run any Python
 expression—even one that might delete all the files on your computer,
 given the necessary permissions! If you really want to store native
 Python objects, but you can’t trust the source of the data in the file,
 Python’s standard library pickle
 module is ideal.
The pickle module is a more
 advanced tool that allows us to store almost any Python object in a file
 directly, with no to- or from-string conversion requirement on our part.
 It’s like a super-general data formatting and parsing utility. To store
 a dictionary in a file, for instance, we pickle it directly:
>>> D = {'a': 1, 'b': 2}
>>> F = open('datafile.pkl', 'wb')
>>> import pickle
>>> pickle.dump(D, F) # Pickle any object to file
>>> F.close()
Then, to get the dictionary back later, we simply use pickle again to re-create it:
>>> F = open('datafile.pkl', 'rb')
>>> E = pickle.load(F) # Load any object from file
>>> E
{'a': 1, 'b': 2}
We get back an equivalent dictionary object, with no manual
 splitting or converting required. The pickle module performs what is known as
 object serialization—converting objects to and from
 strings of bytes—but requires very little work on our part. In fact,
 pickle internally translates our
 dictionary to a string form, though it’s not much to look at (and may
 vary if we pickle in other data protocol modes):
>>> open('datafile.pkl', 'rb').read() # Format is prone to change!
b'\x80\x03}q\x00(X\x01\x00\x00\x00bq\x01K\x02X\x01\x00\x00\x00aq\x02K\x01u.'
Because pickle can reconstruct
 the object from this format, we don’t have to deal with it ourselves.
 For more on the pickle module, see
 the Python standard library manual, or import pickle and pass it to help interactively. While you’re exploring,
 also take a look at the shelve
 module. shelve is a tool that uses
 pickle to store Python objects in an
 access-by-key filesystem, which is beyond our scope here (though you will get to see
 an example of shelve in action in
 Chapter 28, and other pickle examples
 in Chapter 31 and Chapter 37).
Note
Notice that I opened the file used to store the pickled object
 in binary mode; binary mode is always required in
 Python 3.X, because the pickler creates and uses a bytes string object, and these objects imply
 binary-mode files (text-mode files imply str strings in 3.X). In earlier Pythons it’s
 OK to use text-mode files for protocol 0 (the default, which creates
 ASCII text), as long as text mode is used consistently; higher
 protocols require binary-mode files. Python 3.X’s default protocol is
 3 (binary), but it creates bytes
 even for protocol 0. See Chapter 28,
 Chapter 31, and Chapter 37; Python’s library manual; or
 reference books for more details on and examples of pickled
 data.
Python 2.X also has a cPickle
 module, which is an optimized version of pickle that can be imported directly for
 speed. Python 3.X renames this module _pickle and uses it automatically in
 pickle—scripts simply import
 pickle and let Python optimize
 itself.

Storing Python Objects in JSON Format
The prior section’s pickle module
 translates nearly arbitrary Python objects to a proprietary format
 developed specifically for Python, and honed for performance over many
 years. JSON is a newer and emerging data interchange format, which is
 both programming-language-neutral and supported by a variety of systems.
 MongoDB, for instance, stores data in a JSON
 document database (using a binary JSON format).
JSON does not support as broad a range of Python object types as
 pickle, but its portability is an
 advantage in some contexts, and it represents another way to serialize a
 specific category of Python objects for storage and transmission.
 Moreover, because JSON is so close to Python dictionaries and lists in
 syntax, the translation to and from Python objects is trivial, and is
 automated by the json standard
 library module.
For example, a Python dictionary with nested structures is very
 similar to JSON data, though Python’s variables and expressions support
 richer structuring options (any part of the following can be an
 arbitrary expression in Python code):
>>> name = dict(first='Bob', last='Smith')
>>> rec = dict(name=name, job=['dev', 'mgr'], age=40.5)
>>> rec
{'job': ['dev', 'mgr'], 'name': {'last': 'Smith', 'first': 'Bob'}, 'age': 40.5}
The final dictionary format displayed here is a valid literal in
 Python code, and almost passes for JSON when printed as is, but the
 json module makes the translation
 official—here translating Python objects to and from a JSON serialized
 string representation in memory:
>>> import json
>>> json.dumps(rec)
'{"job": ["dev", "mgr"], "name": {"last": "Smith", "first": "Bob"}, "age": 40.5}'

>>> S = json.dumps(rec)
>>> S
'{"job": ["dev", "mgr"], "name": {"last": "Smith", "first": "Bob"}, "age": 40.5}'

>>> O = json.loads(S)
>>> O
{'job': ['dev', 'mgr'], 'name': {'last': 'Smith', 'first': 'Bob'}, 'age': 40.5}
>>> O == rec
True
It’s similarly straightforward to translate Python objects to and
 from JSON data strings in files. Prior to being stored in a file, your
 data is simply Python objects; the JSON module recreates them from the
 JSON textual representation when it loads it from the file:
>>> json.dump(rec, fp=open('testjson.txt', 'w'), indent=4)
>>> print(open('testjson.txt').read())
{
 "job": [
 "dev",
 "mgr"
],
 "name": {
 "last": "Smith",
 "first": "Bob"
 },
 "age": 40.5
}
>>> P = json.load(open('testjson.txt'))
>>> P
{'job': ['dev', 'mgr'], 'name': {'last': 'Smith', 'first': 'Bob'}, 'age': 40.5}
Once you’ve translated from JSON text, you process the data using
 normal Python object operations in your script. For more details on
 JSON-related topics, see Python’s library manuals and search the
 Web.
Note that strings are all Unicode in JSON to support text
 drawn from international character sets, so you’ll see a leading
 u on strings after translating from JSON data in
 Python 2.X (but not in 3.X); this is just the syntax of Unicode objects
 in 2.X, as introduced Chapter 4
 and Chapter 7, and covered in full in Chapter 37. Because Unicode text strings
 support all the usual string operations, the difference is negligible to
 your code while text resides in memory; the distinction matters most
 when transferring text to and from files, and then usually only for non-ASCII types of text where encodings
 come into play.
Note
There is also support in the Python world for translating
 objects to and from XML, a text format used in Chapter 37; see the web for details.For
 another semirelated tool that deals with formatted data files, see the
 standard library’s csv module. It
 parses and creates CSV (comma-separated value) data in files and
 strings. This doesn’t map as directly to Python objects, but is
 another common data exchange format:
>>> import csv
>>> rdr = csv.reader(open('csvdata.txt'))
>>> for row in rdr: print(row)
...
['a', 'bbb', 'cc', 'dddd']
['11', '22', '33', '44']

Storing Packed Binary Data: struct
One other file-related note before we move on: some advanced applications also
 need to deal with packed binary data, created perhaps by a C language
 program or a network connection. Python’s standard library includes a
 tool to help in this domain—the struct module knows how to both compose and
 parse packed binary data. In a sense, this is another data-conversion
 tool that interprets strings in files as binary data.
We saw an overview of this tool in Chapter 4, but let’s take another
 quick look here for more perspective. To create a packed binary data
 file, open it in 'wb' (write binary)
 mode, and pass struct a format string
 and some Python objects. The format string used here means pack as a
 4-byte integer, a 4-character string (which must be a bytes string as of Python 3.2), and a 2-byte
 integer, all in big-endian form (other format codes handle padding
 bytes, floating-point numbers, and more):
>>> F = open('data.bin', 'wb') # Open binary output file
>>> import struct
>>> data = struct.pack('>i4sh', 7, b'spam', 8) # Make packed binary data
>>> data
b'\x00\x00\x00\x07spam\x00\x08'
>>> F.write(data) # Write byte string
>>> F.close()
Python creates a binary bytes
 data string, which we write out to the file normally—this one consists
 mostly of nonprintable characters printed in hexadecimal escapes, and is
 the same binary file we met earlier. To parse the values out to normal
 Python objects, we simply read the string back and unpack it using the
 same format string. Python extracts the values into normal Python
 objects—integers and a string:
>>> F = open('data.bin', 'rb')
>>> data = F.read() # Get packed binary data
>>> data
b'\x00\x00\x00\x07spam\x00\x08'
>>> values = struct.unpack('>i4sh', data) # Convert to Python objects
>>> values
(7, b'spam', 8)
Binary data files are advanced and somewhat low-level tools that
 we won’t cover in more detail here; for more help, see the struct coverage in Chapter 37, consult the Python library
 manual, or import struct and pass it
 to the help function interactively.
 Also note that you can use the binary file-processing modes 'wb' and 'rb' to process a simpler binary file, such as
 an image or audio file, as a whole without having to unpack its
 contents; in such cases your code might pass it unparsed to other files
 or tools.

File Context Managers
You’ll also want to watch for Chapter 34’s
 discussion of the file’s context manager support,
 new as of Python 3.0 and 2.6. Though more a feature of exception
 processing than files themselves, it allows us to wrap file-processing
 code in a logic layer that ensures that the file will be closed (and if
 needed, have its output flushed to disk) automatically on exit, instead
 of relying on the auto-close during garbage collection:
with open(r'C:\code\data.txt') as myfile: # See Chapter 34 for details
 for line in myfile:
 ...use line here...
The try/finally statement
 that we’ll also study in Chapter 34 can provide similar functionality,
 but at some cost in extra code—three extra lines, to be precise (though
 we can often avoid both options and let Python close files for us
 automatically):
myfile = open(r'C:\code\data.txt')
try:
 for line in myfile:
 ...use line here...
finally:
 myfile.close()
The with context manager scheme
 ensures release of system resources in all Pythons, and may be more
 useful for output files to guarantee buffer flushes; unlike the more
 general try, though, it is also
 limited to objects that support its protocol. Since both these options
 require more information than we have yet obtained, however, we’ll
 postpone details until later in this book.

Other File Tools
There are additional, more specialized file methods shown in Table 9-2, and even more that are not in the
 table. For instance, as mentioned earlier, seek resets your current position in a file
 (the next read or write happens at that position), flush forces buffered output to be written out to disk without closing the
 connection (by default, files are always buffered), and so on.
The Python standard library manual and the reference books
 described in the preface provide complete lists of file methods; for a
 quick look, run a dir or help call interactively, passing in an open
 file object (in Python 2.X but not 3.X, you can pass in the name
 file instead). For more
 file-processing examples, watch for the sidebar “Why You Will Care: File Scanners” in Chapter 13. It sketches common file-scanning loop
 code patterns with statements we have not covered enough yet to use
 here.
Also, note that although the open function and the file objects it returns
 are your main interface to external files in a Python script, there are
 additional file-like tools in the Python toolset. Among these:
	Standard streams
	Preopened file objects in the sys module,
 such as sys.stdout (see “Print Operations” in Chapter 11 for
 details)

	Descriptor files in the os
 module
	Integer file handles that support lower-level tools such as file
 locking (see also the “x” mode in Python 3.3’s open for exclusive creation)

	Sockets, pipes, and FIFOs
	File-like objects used to synchronize processes or
 communicate over networks

	Access-by-key files known as “shelves”
	Used to store unaltered and pickled Python objects directly, by key (used in
 Chapter 28)

	Shell command streams
	Tools such as os.popen and
 subprocess.Popen that
 support spawning shell commands and reading and
 writing to their standard streams (see Chapter 13 and Chapter 21 for examples)

The third-party open source domain offers even more file-like
 tools, including support for communicating with serial ports in
 the PySerial extension and
 interactive programs in the pexpect system. See
 applications-focused Python texts and the Web at large for additional
 information on file-like tools.
Note
Version skew note: In Python 2.X, the
 built-in name open is essentially a
 synonym for the name file, and you
 may technically open files by calling either open or file (though open is generally preferred for opening). In
 Python 3.X, the name file is no
 longer available, because of its redundancy with open.
Python 2.X users may also use the name file as the file object type, in order to
 customize files with object-oriented programming (described later in
 this book). In Python 3.X, files have changed radically. The classes
 used to implement file objects live in the standard library module
 io. See this module’s documentation
 or code for the classes it makes available for customization, and run
 a type(F) call on an open file
 F for hints.

Core Types Review and Summary
Now that we’ve seen all of Python’s core built-in types in action, let’s wrap up our
 object types tour by reviewing some of the properties they share. Table 9-3 classifies all the major types we’ve
 seen so far according to the type categories introduced earlier. Here are
 some points to remember:
	Objects share operations according to their category; for
 instance, sequence objects—strings, lists, and tuples—all share
 sequence operations such as concatenation, length, and
 indexing.

	Only mutable objects—lists, dictionaries, and sets—may be
 changed in place; you cannot change numbers, strings, or tuples in
 place.

	Files export only methods, so mutability doesn’t really apply to
 them—their state may be changed when they are processed, but this
 isn’t quite the same as Python core type mutability
 constraints.

	“Numbers” in Table 9-3 includes
 all number types: integer (and the distinct long integer in 2.X),
 floating point, complex, decimal, and fraction.

	“Strings” in Table 9-3 includes
 str, as well as bytes in 3.X and unicode in 2.X; the bytearray string type in 3.X, 2.6, and 2.7
 is mutable.

	Sets are something like the keys of a valueless dictionary, but
 they don’t map to values and are not ordered, so sets are neither a
 mapping nor a sequence type; frozenset is an immutable variant of set.

	In addition to type category operations, as of Python 2.6 and
 3.0 all the types in Table 9-3 have
 callable methods, which are generally specific to their type.

Table 9-3. Object classifications	Object
 type	Category	Mutable?
	Numbers
 (all)
	Numeric
	No

	Strings
 (all)
	Sequence
	No

	Lists
	Sequence
	Yes

	Dictionaries
	Mapping
	Yes

	Tuples
	Sequence
	No

	Files
	Extension
	N/A

	Sets
	Set
	Yes

	Frozenset
	Set
	No

	bytearray
	Sequence
	Yes

Why You Will Care: Operator Overloading
In Part VI of this book, we’ll see that
 objects we implement with classes can pick and choose from these categories
 arbitrarily. For instance, if we want to provide a new kind of
 specialized sequence object that is consistent with built-in sequences,
 we can code a class that overloads things like indexing and
 concatenation:
class MySequence:
 def __getitem__(self, index):
 # Called on self[index], others
 def __add__(self, other):
 # Called on self + other
 def __iter__(self):
 # Preferred in iterations
and so on. We can also make the new object mutable or not by
 selectively implementing methods called for in-place change operations (e.g., __setitem__ is called on self[index]=value assignments). Although it’s
 beyond this book’s scope, it’s also possible to implement new objects in
 an external language like C as C extension types. For these, we fill in
 C function pointer slots to choose between number, sequence, and mapping
 operation sets.

Object Flexibility
This part of the book introduced a number of compound object
 types—collections with components. In general:
	Lists, dictionaries, and tuples can hold any kind of
 object.

	Sets can contain any type of immutable object.

	Lists, dictionaries, and tuples can be arbitrarily
 nested.

	Lists, dictionaries, and sets can dynamically grow and
 shrink.

Because they support arbitrary structures, Python’s compound
 object types are good at representing complex information in programs.
 For example, values in dictionaries may be lists, which may contain
 tuples, which may contain dictionaries, and so on. The nesting can be as
 deep as needed to model the data to be processed.
Let’s look at an example of nesting. The following interaction
 defines a tree of nested compound sequence objects, shown in Figure 9-1. To access its
 components, you may include as many index operations as required. Python
 evaluates the indexes from left to right, and fetches a reference to a
 more deeply nested object at each step. Figure 9-1 may be a
 pathologically complicated data structure, but it illustrates the syntax
 used to access nested objects in general:
>>> L = ['abc', [(1, 2), ([3], 4)], 5]
>>> L[1]
[(1, 2), ([3], 4)]
>>> L[1][1]
([3], 4)
>>> L[1][1][0]
[3]
>>> L[1][1][0][0]
3
Figure 9-1. A nested object tree with the offsets of its components,
 created by running the literal expression [‘abc’, [(1, 2), ([3], 4)],
 5]. Syntactically nested objects are internally represented as
 references (i.e., pointers) to separate pieces of memory.

References Versus Copies
Chapter 6 mentioned that
 assignments always store references to objects, not copies
 of those objects. In practice, this is usually what you want. Because
 assignments can generate multiple references to the same object, though,
 it’s important to be aware that changing a mutable object in place may
 affect other references to the same object elsewhere in your program. If
 you don’t want such behavior, you’ll need to tell Python to copy the
 object explicitly.
We studied this phenomenon in Chapter 6, but it can become more subtle
 when larger objects of the sort we’ve explored since then come into
 play. For instance, the following example creates a list assigned to
 X, and another list assigned to
 L that embeds a reference back to
 list X. It also creates a dictionary
 D that contains another reference
 back to list X:
>>> X = [1, 2, 3]
>>> L = ['a', X, 'b'] # Embed references to X's object
>>> D = {'x':X, 'y':2}
At this point, there are three references to the first list
 created: from the name X, from inside
 the list assigned to L, and from
 inside the dictionary assigned to D.
 The situation is illustrated in Figure 9-2.
Figure 9-2. Shared object references: because the list referenced by
 variable X is also referenced from within the objects referenced by L
 and D, changing the shared list from X makes it look different from L
 and D, too.

Because lists are mutable, changing the shared list object from
 any of the three references also changes what the other two
 reference:
>>> X[1] = 'surprise' # Changes all three references!
>>> L
['a', [1, 'surprise', 3], 'b']
>>> D
{'x': [1, 'surprise', 3], 'y': 2}
References are a higher-level analog of pointers in other
 languages that are always followed when used. Although you can’t grab
 hold of the reference itself, it’s possible to store the same reference
 in more than one place (variables, lists, and so on). This is a
 feature—you can pass a large object around a program without generating
 expensive copies of it along the way. If you really do want copies,
 however, you can request them:
	Slice expressions with empty limits (L[:]) copy sequences.

	The dictionary, set, and list copy
 method (X.copy()) copies a
 dictionary, set, or list (the list’s copy is new as of 3.3).

	Some built-in functions, such as list and dict make copies (list(L), dict(D), set(S)).

	The copy standard library
 module makes full copies when needed.

For example, say you have a list and a dictionary, and you don’t
 want their values to be changed through other variables:
>>> L = [1,2,3]
>>> D = {'a':1, 'b':2}
To prevent this, simply assign copies to the other variables, not
 references to the same objects:
>>> A = L[:] # Instead of A = L (or list(L))
>>> B = D.copy() # Instead of B = D (ditto for sets)
This way, changes made from the other variables will change the
 copies, not the originals:
>>> A[1] = 'Ni'
>>> B['c'] = 'spam'
>>>
>>> L, D
([1, 2, 3], {'a': 1, 'b': 2})
>>> A, B
([1, 'Ni', 3], {'a': 1, 'c': 'spam', 'b': 2})
In terms of our original example, you can avoid the reference side
 effects by slicing the original list instead of simply naming it:
>>> X = [1, 2, 3]
>>> L = ['a', X[:], 'b'] # Embed copies of X's object
>>> D = {'x':X[:], 'y':2}
This changes the picture in Figure 9-2—L and D
 will now point to different lists than X. The net effect is that changes made through
 X will impact only X, not L
 and D; similarly, changes to L or D will
 not impact X.
One final note on copies: empty-limit slices and the dictionary
 copy method only make
 top-level copies; that is, they do not copy nested
 data structures, if any are present. If you need a complete, fully
 independent copy of a deeply nested data structure (like the various
 record structures we’ve coded in recent chapters), use the standard
 copy module, introduced in Chapter 6:
import copy
X = copy.deepcopy(Y) # Fully copy an arbitrarily nested object Y
This call recursively traverses objects to copy all their parts.
 This is a much more rare case, though, which is why you have to say more
 to use this scheme. References are usually what you will want; when they
 are not, slices and copy methods are usually as much copying as you’ll
 need to do.

Comparisons, Equality, and Truth
All Python objects also respond to comparisons: tests for equality, relative
 magnitude, and so on. Python comparisons always inspect all parts of
 compound objects until a result can be determined. In fact, when nested
 objects are present, Python automatically traverses data structures to
 apply comparisons from left to right, and as deeply as needed. The first
 difference found along the way determines the comparison result.
This is sometimes called a recursive comparison—the same
 comparison requested on the top-level objects is applied to each of the
 nested objects, and to each of their nested
 objects, and so on, until a result is found. Later in this book—in Chapter 19—we’ll see how to write recursive
 functions of our own that work similarly on nested structures. For now,
 think about comparing all the linked pages at two websites if you want a
 metaphor for such structures, and a reason for writing recursive
 functions to process them.
In terms of core types, the recursion is automatic. For instance,
 a comparison of list objects compares all their components automatically
 until a mismatch is found or the end is reached:
>>> L1 = [1, ('a', 3)] # Same value, unique objects
>>> L2 = [1, ('a', 3)]
>>> L1 == L2, L1 is L2 # Equivalent? Same object?
(True, False)
Here, L1 and L2 are assigned lists that are equivalent but
 distinct objects. As a review of what we saw in Chapter 6, because of the nature of
 Python references, there are two ways to test for equality:
	The == operator
 tests value equivalence. Python performs an equivalence test, comparing all nested objects
 recursively.

	The is operator
 tests object identity. Python tests whether the two are really the same object (i.e., live at the
 same address in memory).

In the preceding example, L1
 and L2 pass the == test (they have equivalent values because
 all their components are equivalent) but fail the is check (they reference two different
 objects, and hence two different pieces of memory). Notice what happens
 for short strings, though:
>>> S1 = 'spam'
>>> S2 = 'spam'
>>> S1 == S2, S1 is S2
(True, True)
Here, we should again have two distinct objects that happen to
 have the same value: == should be
 true, and is should be false. But
 because Python internally caches and reuses some strings as an
 optimization, there really is just a single string 'spam' in memory, shared by S1 and S2;
 hence, the is identity test reports a
 true result. To trigger the normal behavior, we need to use longer
 strings:
>>> S1 = 'a longer string'
>>> S2 = 'a longer string'
>>> S1 == S2, S1 is S2
(True, False)
Of course, because strings are immutable, the
 object caching mechanism is irrelevant to your code—strings can’t be
 changed in place, regardless of how many variables refer to them. If
 identity tests seem confusing, see Chapter 6 for a refresher on object
 reference concepts.
As a rule of thumb, the ==
 operator is what you will want to use for almost all equality checks;
 is is reserved for highly specialized
 roles. We’ll see cases later in the book where both operators are put to
 use.
Relative magnitude comparisons are also applied recursively to
 nested data structures:
>>> L1 = [1, ('a', 3)]
>>> L2 = [1, ('a', 2)]
>>> L1 < L2, L1 == L2, L1 > L2 # Less, equal, greater: tuple of results
(False, False, True)
Here, L1 is greater than
 L2 because the nested 3 is greater than 2. By now you should know that the result of
 the last line is really a tuple of three objects—the results of the
 three expressions typed (an example of a tuple without its enclosing
 parentheses).
More specifically, Python compares types as follows:
	Numbers are compared by relative magnitude, after conversion to the common
 highest type if needed.

	Strings are compared lexicographically (by the character set code point
 values returned by ord), and
 character by character until the end or first mismatch ("abc" < "ac").

	Lists and tuples are
 compared by comparing each component from left to right, and recursively for
 nested structures, until the end or first mismatch ([2] > [1, 2]).

	Sets are equal if both contain the same items (formally, if each is a
 subset of the other), and set relative magnitude comparisons apply
 subset and superset tests.

	Dictionaries compare as equal if their
 sorted (key, value) lists are equal. Relative magnitude
 comparisons are not supported for dictionaries in Python 3.X, but
 they work in 2.X as though comparing sorted (key, value) lists.

	Nonnumeric mixed-type magnitude comparisons (e.g., 1 < 'spam') are errors in Python 3.X.
 They are allowed in Python 2.X, but use a fixed but arbitrary
 ordering rule based on type name string. By proxy, this also applies
 to sorts, which use comparisons internally: nonnumeric mixed-type
 collections cannot be sorted in 3.X.

In general, comparisons of structured objects proceed as though
 you had written the objects as literals and compared all their parts one
 at a time from left to right. In later chapters, we’ll see other object
 types that can change the way they get compared.
Python 2.X and 3.X mixed-type comparisons and sorts
Per the last point in the preceding section’s list, the change in Python 3.X for
 nonnumeric mixed-type comparisons applies to
 magnitude tests, not equality, but it also
 applies by proxy to sorting, which does magnitude
 testing internally. In Python 2.X these all work,
 though mixed types compare by an arbitrary ordering:
c:\code> c:\python27\python
>>> 11 == '11' # Equality does not convert non-numbers
False
>>> 11 >= '11' # 2.X compares by type name string: int, str
False
>>> ['11', '22'].sort() # Ditto for sorts
>>> [11, '11'].sort()
But Python 3.X disallows mixed-type
 magnitude testing, except numeric types and manually converted
 types:
c:\code> c:\python33\python
>>> 11 == '11' # 3.X: equality works but magnitude does not
False
>>> 11 >= '11'
TypeError: unorderable types: int() > str()

>>> ['11', '22'].sort() # Ditto for sorts
>>> [11, '11'].sort()
TypeError: unorderable types: str() < int()

>>> 11 > 9.123 # Mixed numbers convert to highest type
True
>>> str(11) >= '11', 11 >= int('11') # Manual conversions force the issue
(True, True)

Python 2.X and 3.X dictionary comparisons
The second-to-last point in the preceding section also merits illustration. In
 Python 2.X, dictionaries support magnitude
 comparisons, as though you were comparing sorted key/value
 lists:
C:\code> c:\python27\python
>>> D1 = {'a':1, 'b':2}
>>> D2 = {'a':1, 'b':3}
>>> D1 == D2 # Dictionary equality: 2.X + 3.X
False
>>> D1 < D2 # Dictionary magnitude: 2.X only
True
As noted briefly in Chapter 8,
 though, magnitude comparisons for dictionaries are removed in Python
 3.X because they incur too much overhead when
 equality is desired (equality uses an optimized scheme in 3.X that
 doesn’t literally compare sorted key/value lists):
C:\code> c:\python33\python
>>> D1 = {'a':1, 'b':2}
>>> D2 = {'a':1, 'b':3}
>>> D1 == D2
False
>>> D1 < D2
TypeError: unorderable types: dict() < dict()
The alternative in 3.X is to either write loops to compare
 values by key, or compare the sorted key/value lists manually—the items
 dictionary method and sorted
 built-in suffice:
>>> list(D1.items())
[('b', 2), ('a', 1)]
>>> sorted(D1.items())
[('a', 1), ('b', 2)]
>>>
>>> sorted(D1.items()) < sorted(D2.items()) # Magnitude test in 3.X
True
>>> sorted(D1.items()) > sorted(D2.items())
False
This takes more code, but in practice, most programs requiring
 this behavior will develop more efficient ways to compare data in
 dictionaries than either this workaround or the original behavior in
 Python 2.X.

The Meaning of True and False in Python
Notice that the test results returned in the last two examples
 represent true and false values. They print as the words True and False, but now that we’re using logical tests
 like these in earnest, I should be a bit more formal about what these
 names really mean.
In Python, as in most programming languages, an integer 0 represents false, and an integer 1 represents true. In addition, though, Python
 recognizes any empty data structure as false and any nonempty data
 structure as true. More generally, the notions of true and false are
 intrinsic properties of every object in Python—each
 object is either true or false, as follows:
	Numbers are false if zero, and true otherwise.

	Other objects are false if empty, and true otherwise.

Table 9-4 gives examples of
 true and false values of objects in Python.
Table 9-4. Example object truth values	Object	Value
	"spam"
	True

	""
	False

	[1, 2]
	True

	[]
	False

	{'a': 1}
	True

	{}
	False

	1
	True

	0.0
	False

	None
	False

As one application, because objects are true or false themselves,
 it’s common to see Python programmers code tests like if X:, which, assuming X is a string, is the same as if X != '':. In other words, you can test the
 object itself to see if it contains anything, instead of comparing it to
 an empty, and therefore false, object of the same type (more on if statements in the next chapter).
The None object
As shown in the last row in Table 9-4, Python also provides a
 special object called None, which
 is always considered to be false. None was introduced briefly in Chapter 4; it is the only value of
 a special data type in Python and typically serves as an empty
 placeholder (much like a NULL
 pointer in C).
For example, recall that for lists you cannot assign to an
 offset unless that offset already exists—the list does not magically
 grow if you attempt an out-of-bounds assignment. To preallocate a
 100-item list such that you can add to any of the 100 offsets, you can
 fill it with None objects:
>>> L = [None] * 100
>>>
>>> L
[None, None, None, None, None, None, None, ...]
This doesn’t limit the size of the list (it can still grow and
 shrink later), but simply presets an initial size to allow for future
 index assignments. You could initialize a list with zeros the same
 way, of course, but best practice dictates using None if the type of the list’s contents is
 variable or not yet known.
Keep in mind that None does
 not mean “undefined.” That is, None
 is something, not nothing (despite its name!)—it is a real object and
 a real piece of memory that is created and given a built-in name by
 Python itself. Watch for other uses of this special object later in
 the book; as we’ll learn in Part IV, it is also the default return
 value of functions that don’t exit by running into a return statement with a result value.

The bool type
While we’re on the topic of truth, also keep in mind that the Python
 Boolean type bool, introduced in
 Chapter 5, simply augments the notions of true
 and false in Python. As we learned in Chapter 5, the built-in words True and False are just customized versions of the
 integers 1 and 0—it’s as if these two words have been
 preassigned to 1 and 0 everywhere in Python. Because of the way
 this new type is implemented, this is really just a minor extension to
 the notions of true and false already described, designed to make
 truth values more explicit:
	When used explicitly in truth test code, the words True and False are equivalent to 1 and 0, but they make the programmer’s intent
 clearer.

	Results of Boolean tests run interactively print as the
 words True and False, instead of as 1 and 0, to make the type of result
 clearer.

You are not required to use only Boolean types in logical
 statements such as if; all objects
 are still inherently true or false, and all the Boolean concepts
 mentioned in this chapter still work as described if you use other
 types. Python also provides a bool
 built-in function that can be used to test the Boolean value of an
 object if you want to make this explicit (i.e., whether it is
 true—that is, nonzero or nonempty):
>>> bool(1)
True
>>> bool('spam')
True
>>> bool({})
False
In practice, though, you’ll rarely notice the Boolean type
 produced by logic tests, because Boolean results are used
 automatically by if statements and
 other selection tools. We’ll explore Booleans further when we study
 logical statements in Chapter 12.

Python’s Type Hierarchies
As a summary and reference, Figure 9-3 sketches all the
 built-in object types available in Python and their relationships. We’ve
 looked at the most prominent of these; most of the other kinds of
 objects in Figure 9-3
 correspond to program units (e.g., functions and modules) or exposed
 interpreter internals (e.g., stack frames and compiled code).
The largest point to notice here is that
 everything in a Python system is an object type and
 may be processed by your Python programs. For instance, you can pass a
 class to a function, assign it to a variable, stuff it in a list or
 dictionary, and so on.

Type Objects
In fact, even types themselves are an object type in Python: the
 type of an object is an object of type type (say that three times fast!). Seriously,
 a call to the built-in function type(X)
 returns the type object of object X.
 The practical application of this is that type objects can be used for
 manual type comparisons in Python if
 statements. However, for reasons introduced in Chapter 4, manual type testing is
 usually not the right thing to do in Python, since it limits your code’s
 flexibility.
One note on type names: as of Python 2.2, each core type has a new
 built-in name added to support type customization through
 object-oriented subclassing: dict,
 list, str, tuple,
 int, float, complex, bytes, type, set,
 and more. In Python 3.X these names reference classes, and in
 Python 2.X but not 3.X, file is also
 a type name and a synonym for open.
 Calls to these names are really object constructor calls, not simply
 conversion functions, though you can treat them as simple functions for
 basic usage.
In addition, the types standard
 library module in Python 3.X provides additional type names for types
 that are not available as built-ins (e.g., the type of a function; in
 Python 2.X but not 3.X, this module also includes synonyms for built-in
 type names), and it is possible to do type tests with the isinstance
 function. For example, all of the following type tests are true:
type([1]) == type([]) # Compare to type of another list
type([1]) == list # Compare to list type name
isinstance([1], list) # Test if list or customization thereof

import types # types has names for other types
def f(): pass
type(f) == types.FunctionType
Figure 9-3. Python’s major built-in object types, organized by categories.
 Everything is a type of object in Python, even the type of an object!
 Some extension types, such as named tuples, might belong in this
 figure too, but the criteria for inclusion in the core types set are
 not formal.

Because types can be subclassed in Python today, the isinstance technique is generally recommended.
 See Chapter 32 for more on subclassing
 built-in types in Python 2.2 and later.
Note
Also in Chapter 32, we will
 explore how type(X) and type
 testing in general apply to instances of user-defined
 classes. In short, in Python 3.X and for
 new-style classes in Python 2.X, the type of a class instance is the
 class from which the instance was made. For classic classes in Python
 2.X, all class instances are instead of the type “instance,” and we
 must compare instance __class__
 attributes to compare their types meaningfully. Since we’re not yet
 equipped to tackle the subject of classes, we’ll postpone the rest of
 this story until Chapter 32.

Other Types in Python
Besides the core objects studied in this part of the book, and the
 program-unit objects such as functions, modules, and classes that we’ll
 meet later, a typical Python installation has dozens of additional
 object types available as linked-in C extensions or Python
 classes—regular expression objects, DBM files, GUI widgets, network
 sockets, and so on. Depending on whom you ask, the named
 tuple we met earlier in this chapter may fall in this
 category too (Decimal and Fraction of Chapter 5
 tend to be more ambiguous).
The main difference between these extra tools and the built-in
 types we’ve seen so far is that the built-ins provide special language
 creation syntax for their objects (e.g., 4 for an integer, [1,2] for a list, the open function for files, and def and lambda for functions). Other tools are
 generally made available in standard library modules that you must first
 import to use, and aren’t usually considered core types. For instance,
 to make a regular expression object, you import re and call re.compile(). See Python’s library reference
 for a comprehensive guide to all the tools available to Python
 programs.

Built-in Type Gotchas
That’s the end of our look at core data types. We’ll wrap up this part of the book
 with a discussion of common problems that seem to trap new users (and the
 occasional expert), along with their solutions. Some of this is a review
 of ideas we’ve already covered, but these issues are important enough to
 warn about again here.
Assignment Creates References, Not Copies
Because this is such a central concept, I’ll mention it again: shared
 references to mutable objects in your program can matter. For instance,
 in the following example, the list object assigned to the name L is referenced both from L and from inside the list assigned to the
 name M. Changing L in place changes what M references, too:
>>> L = [1, 2, 3]
>>> M = ['X', L, 'Y'] # Embed a reference to L
>>> M
['X', [1, 2, 3], 'Y']

>>> L[1] = 0 # Changes M too
>>> M
['X', [1, 0, 3], 'Y']
This effect usually becomes important only in larger programs, and
 shared references are often exactly what you want. If objects change out
 from under you in unwanted ways, you can avoid sharing objects by
 copying them explicitly. For lists, you can always make a top-level copy
 by using an empty-limits slice, among other techniques described
 earlier:
>>> L = [1, 2, 3]
>>> M = ['X', L[:], 'Y'] # Embed a copy of L (or list(L), or L.copy())
>>> L[1] = 0 # Changes only L, not M
>>> L
[1, 0, 3]
>>> M
['X', [1, 2, 3], 'Y']
Remember, slice limits default to 0 and the length of the sequence
 being sliced; if both are omitted, the slice extracts every item in the
 sequence and so makes a top-level copy (a new, unshared object).

Repetition Adds One Level Deep
Repeating a sequence is like adding it to itself a number of times.
 However, when mutable sequences are nested, the effect might not always
 be what you expect. For instance, in the following example X is assigned to L repeated four times, whereas Y is assigned to a list
 containing L
 repeated four times:
>>> L = [4, 5, 6]
>>> X = L * 4 # Like [4, 5, 6] + [4, 5, 6] + ...
>>> Y = [L] * 4 # [L] + [L] + ... = [L, L,...]

>>> X
[4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6]
>>> Y
[[4, 5, 6], [4, 5, 6], [4, 5, 6], [4, 5, 6]]
Because L was nested in the
 second repetition, Y winds up
 embedding references back to the original list assigned to L, and so is open to the same sorts of side
 effects noted in the preceding section:
>>> L[1] = 0 # Impacts Y but not X
>>> X
[4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6]
>>> Y
[[4, 0, 6], [4, 0, 6], [4, 0, 6], [4, 0, 6]]
This may seem artificial and academic—until it happens
 unexpectedly in your code! The same solutions to this problem apply here
 as in the previous section, as this is really just another way to create
 the shared mutable object reference case—make copies when you don’t want
 shared references:
>>> L = [4, 5, 6]
>>> Y = [list(L)] * 4 # Embed a (shared) copy of L
>>> L[1] = 0
>>> Y
[[4, 5, 6], [4, 5, 6], [4, 5, 6], [4, 5, 6]]
Even more subtly, although Y
 doesn’t share an object with L
 anymore, it still embeds four references to the same copy of it. If you
 must avoid that sharing too, you’ll want to make sure each embedded copy
 is unique:
>>> Y[0][1] = 99 # All four copies are still the same
>>> Y
[[4, 99, 6], [4, 99, 6], [4, 99, 6], [4, 99, 6]]

>>> L = [4, 5, 6]
>>> Y = [list(L) for i in range(4)]
>>> Y
[[4, 5, 6], [4, 5, 6], [4, 5, 6], [4, 5, 6]]
>>> Y[0][1] = 99
>>> Y
[[4, 99, 6], [4, 5, 6], [4, 5, 6], [4, 5, 6]]
If you remember that repetition, concatenation, and slicing copy
 only the top level of their operand objects, these sorts of cases make
 much more sense.

Beware of Cyclic Data Structures
We actually encountered this concept in a prior exercise: if a
 collection object contains a reference to itself, it’s called a
 cyclic object. Python prints a [...] whenever it detects a cycle in the
 object, rather than getting stuck in an infinite loop (as it once did
 long ago):
>>> L = ['grail'] # Append reference to same object
>>> L.append(L) # Generates cycle in object: [...]
>>> L
['grail', [...]]
Besides understanding that the three dots in square brackets
 represent a cycle in the object, this case is worth knowing about
 because it can lead to gotchas—cyclic structures may cause code of your
 own to fall into unexpected loops if you don’t anticipate them.
For instance, some programs that walk through structured data must
 keep a list, dictionary, or set of already visited
 items, and check it when they’re about to step into a cycle that could
 cause an unwanted loop. See the Part I exercise solutions in “Part I, Getting Started” in Appendix D for more on this
 problem. Also watch for general discussion of recursion in Chapter 19, as well as the reloadall.py program in Chapter 25 and the ListTree class in Chapter 31, for concrete examples of programs
 where cycle detection can matter.
The solution is knowledge: don’t use cyclic references unless you
 really need to, and make sure you anticipate them in programs that must
 care. There are good reasons to create cycles, but unless you have code
 that knows how to handle them, objects that reference themselves may be
 more surprise than asset.

Immutable Types Can’t Be Changed in Place
And once more for completeness: you can’t change an immutable object in
 place. Instead, you construct a new object with slicing, concatenation,
 and so on, and assign it back to the original reference, if
 needed:
T = (1, 2, 3)

T[2] = 4 # Error!

T = T[:2] + (4,) # OK: (1, 2, 4)
That might seem like extra coding work, but the upside is that the
 previous gotchas in this section can’t happen when you’re using
 immutable objects such as tuples and strings; because they can’t be
 changed in place, they are not open to the sorts of side effects that
 lists are.

Chapter Summary
This chapter explored the last two major core object types—the tuple
 and the file. We learned that tuples support all the usual sequence
 operations, have just a few methods, do not allow any in-place changes
 because they are immutable, and are extended by the named tuple type. We
 also learned that files are returned by the built-in open function and provide methods for reading
 and writing data.
Along the way we explored how to translate Python objects to and
 from strings for storing in files, and we looked at the pickle, json,
 and struct modules for advanced roles
 (object serialization and binary data). Finally, we wrapped up by
 reviewing some properties common to all object types (e.g., shared
 references) and went through a list of common mistakes (“gotchas”) in the
 object type domain.
In the next part of this book, we’ll shift gears, turning to the
 topic of statement syntax—the way you code processing
 logic in your scripts. Along the way, this next part explores all of
 Python’s basic procedural statements. The next chapter kicks off this
 topic with an introduction to Python’s general syntax model, which is
 applicable to all statement types. Before moving on, though, take the
 chapter quiz, and then work through the end-of-part lab exercises to
 review type concepts. Statements largely just create and process objects,
 so make sure you’ve mastered this domain by working through all the
 exercises before reading on.

Test Your Knowledge: Quiz
	How can you determine how large a tuple is? Why is this tool
 located where it is?

	Write an expression that changes the first item in a tuple.
 (4, 5, 6) should become (1, 5, 6) in the process.

	What is the default for the processing mode argument in a file
 open call?

	What module might you use to store Python objects in a file
 without converting them to strings yourself?

	How might you go about copying all parts of a nested structure
 at once?

	When does Python consider an object true?

	What is your quest?

Test Your Knowledge: Answers
	The built-in len function
 returns the length (number of contained items) for any container
 object in Python, including tuples. It is a built-in function instead
 of a type method because it applies to many different types of
 objects. In general, built-in functions and expressions may span many
 object types; methods are specific to a single object type, though
 some may be available on more than one type (index, for example, works on lists and
 tuples).

	Because they are immutable, you can’t really change tuples in
 place, but you can generate a new tuple with the desired value. Given
 T = (4, 5, 6), you can change the
 first item by making a new tuple from its parts by slicing and
 concatenating: T = (1,) + T[1:].
 (Recall that single-item tuples require a trailing comma.) You could
 also convert the tuple to a list, change it in place, and convert it
 back to a tuple, but this is more expensive and is rarely required in
 practice—simply use a list if you know that the object will require
 in-place changes.

	The default for the processing mode argument in a file open call is 'r', for reading text input. For input text
 files, simply pass in the external file’s name.

	The pickle module can be used
 to store Python objects in a file without explicitly converting them
 to strings. The struct module is
 related, but it assumes the data is to be in packed binary format in
 the file; json similarly converts a
 limited set of Python objects to and from strings per the JSON
 format.

	Import the copy module, and
 call copy.deepcopy(X) if you need
 to copy all parts of a nested structure X. This is also rarely seen in practice;
 references are usually the desired behavior, and shallow copies (e.g.,
 aList[:], aDict.copy(), set(aSet)) usually suffice for most
 copies.

	An object is considered true if it is either a nonzero number or
 a nonempty collection object. The built-in words True and False are essentially predefined to have the
 same meanings as integer 1 and
 0, respectively.

	Acceptable answers include “To learn Python,” “To move on to the
 next part of the book,” or “To seek the Holy Grail.”

Test Your Knowledge: Part II Exercises
This session asks you to get your feet wet with built-in object fundamentals. As
 before, a few new ideas may pop up along the way, so be sure to flip to
 the answers in “Part II, Types and Operations” in
 Appendix D when you’re done (or
 even when you’re not). If you have limited time, I suggest starting with
 exercises 10 and 11 (the most practical of the bunch), and then working
 from first to last as time allows. This is all fundamental material, so
 try to do as many of these as you can; programming is a hands-on activity,
 and there is no substitute for practicing what you’ve read to make ideas
 gel.
	The basics. Experiment interactively with
 the common type operations found in the various operation tables in
 this part of the book. To get started, bring up the Python interactive
 interpreter, type each of the following expressions, and try to
 explain what’s happening in each case. Note that the semicolon in some
 of these is being used as a statement separator, to squeeze multiple
 statements onto a single line: for example, X=1;X assigns and then prints a variable
 (more on statement syntax in the next part of the book). Also remember
 that a comma between expressions usually builds a tuple, even if there
 are no enclosing parentheses: X,Y,Z
 is a three-item tuple, which Python prints back to you in
 parentheses.
2 ** 16
2 / 5, 2 / 5.0

"spam" + "eggs"
S = "ham"
"eggs " + S
S * 5
S[:0]
"green %s and %s" % ("eggs", S)
'green {0} and {1}'.format('eggs', S)

('x',)[0]
('x', 'y')[1]

L = [1,2,3] + [4,5,6]
L, L[:], L[:0], L[−2], L[−2:]
([1,2,3] + [4,5,6])[2:4]
[L[2], L[3]]
L.reverse(); L
L.sort(); L
L.index(4)

{'a':1, 'b':2}['b']
D = {'x':1, 'y':2, 'z':3}
D['w'] = 0
D['x'] + D['w']
D[(1,2,3)] = 4
list(D.keys()), list(D.values()), (1,2,3) in D

[[]], ["",[],(),{},None]

	Indexing and slicing. At the interactive
 prompt, define a list named L that
 contains four strings or numbers (e.g., L=[0,1,2,3]). Then, experiment with the
 following boundary cases. You may never see these cases in real
 programs (especially not in the bizarre ways they appear here!), but
 they are intended to make you think about the underlying model, and
 some may be useful in less artificial forms—slicing out of bounds can
 help, for example, if a sequence is not as long as you expect:
	What happens when you try to index out of bounds (e.g.,
 L[4])?

	What about slicing out of bounds (e.g., L[−1000:100])?

	Finally, how does Python handle it if you try to extract a
 sequence in reverse, with the lower bound greater than the higher
 bound (e.g., L[3:1])? Hint: try
 assigning to this slice (L[3:1]=['?']), and see where the value
 is put. Do you think this may be the same phenomenon you saw when
 slicing out of bounds?

	Indexing, slicing, and
 del. Define another list L with four items, and assign an empty list
 to one of its offsets (e.g., L[2]=[]). What happens? Then, assign an
 empty list to a slice (L[2:3]=[]).
 What happens now? Recall that slice assignment deletes the slice and
 inserts the new value where it used to be.
The del statement deletes
 offsets, keys, attributes, and names. Use it on your list to delete an
 item (e.g., del L[0]). What happens
 if you delete an entire slice (del
 L[1:])? What happens when you assign a nonsequence to a
 slice (L[1:2]=1)?

	Tuple assignment. Type the following
 lines:
>>> X = 'spam'
>>> Y = 'eggs'
>>> X, Y = Y, X
What do you think is happening to X and Y
 when you type this sequence?

	Dictionary keys. Consider the following
 code fragments:
>>> D = {}
>>> D[1] = 'a'
>>> D[2] = 'b'
You’ve learned that dictionaries aren’t accessed by offsets, so
 what’s going on here? Does the following shed any light on the
 subject? (Hint: strings, integers, and tuples share which type
 category?)
>>> D[(1, 2, 3)] = 'c'
>>> D
{1: 'a', 2: 'b', (1, 2, 3): 'c'}

	Dictionary indexing. Create a dictionary
 named D with three entries, for
 keys 'a', 'b', and 'c'. What happens if you try to index a
 nonexistent key (D['d'])? What does
 Python do if you try to assign to a nonexistent key 'd' (e.g., D['d']='spam')? How does this compare to
 out-of-bounds assignments and references for lists? Does this sound
 like the rule for variable names?

	Generic operations. Run interactive tests
 to answer the following questions:
	What happens when you try to use the + operator on different/mixed types
 (e.g., string + list, list
 + tuple)?

	Does + work when one of
 the operands is a dictionary?

	Does the append method
 work for both lists and strings? How about using the keys method on lists? (Hint: what does
 append assume about its subject
 object?)

	Finally, what type of object do you get back when you slice
 or concatenate two lists or two strings?

	String indexing. Define a string S of four characters: S = "spam". Then type the following
 expression: S[0][0][0][0][0]. Any
 clue as to what’s happening this time? (Hint: recall that a string is
 a collection of characters, but Python characters are one-character
 strings.) Does this indexing expression still work if you apply it to
 a list such as ['s', 'p', 'a',
 'm']? Why?

	Immutable types. Define a string S of four characters again: S = "spam". Write an assignment that changes
 the string to "slam", using only
 slicing and concatenation. Could you perform the same operation using
 just indexing and concatenation? How about index assignment?

	Nesting. Write a data structure that
 represents your personal information: name (first, middle, last), age,
 job, address, email address, and phone number. You may build the data
 structure with any combination of built-in object types you like
 (lists, tuples, dictionaries, strings, numbers). Then, access the
 individual components of your data structures by indexing. Do some
 structures make more sense than others for this object?

	Files. Write a script that creates a new
 output file called myfile.txt and
 writes the string "Hello file
 world!" into it. Then write another script that opens
 myfile.txt and reads and prints
 its contents. Run your two scripts from the system command line. Does
 the new file show up in the directory where you ran your scripts? What
 if you add a different directory path to the filename passed to
 open? Note: file write methods do not add newline characters
 to your strings; add an explicit \n
 at the end of the string if you want to fully terminate the line in
 the file.

1 A subtler factor: the comma is a sort of lowest precedence
 operator, but only in contexts where it’s not otherwise
 significant. In such contexts, it’s the comma that builds tuples,
 not the parenthesis; this makes the latter optional, but can also
 lead to odd, unexpected syntax errors if parentheses are
 omitted.

Part III. Statements and Syntax

Chapter 10. Introducing Python Statements
Now that you’re familiar with Python’s core built-in object types,
 this chapter begins our exploration of its fundamental statement forms. As
 in the previous part, we’ll begin here with a general introduction to
 statement syntax, and we’ll follow up with more details about specific
 statements in the next few chapters.
In simple terms, statements are the things you write to tell Python what your programs should do.
 If, as suggested in Chapter 4,
 programs “do things with stuff,” then statements are the way you specify
 what sort of things a program does. Less informally,
 Python is a procedural, statement-based language; by combining statements,
 you specify a procedure that Python performs to satisfy
 a program’s goals.
The Python Conceptual Hierarchy Revisited
Another way to understand the role of statements is to revisit the
 concept hierarchy introduced in Chapter 4, which talked about built-in
 objects and the expressions used to manipulate them. This chapter climbs
 the hierarchy to the next level of Python program structure:
	Programs are composed of modules.

	Modules contain statements.

	Statements contain expressions.

	Expressions create and process objects.

At their base, programs written in the Python language are composed
 of statements and expressions. Expressions process objects and are
 embedded in statements. Statements code the larger
 logic of a program’s operation—they use and direct
 expressions to process the objects we studied in the preceding chapters.
 Moreover, statements are where objects spring into existence (e.g., in
 expressions within assignment statements), and some statements create
 entirely new kinds of objects (functions, classes, and so on). At the top,
 statements always exist in modules, which themselves are managed with
 statements.

Python’s Statements
Table 10-1 summarizes Python’s statement set. Each statement in Python
 has its own specific purpose and its own specific
 syntax—the rules that define its structure—though, as
 we’ll see, many share common syntax patterns, and some statements’ roles
 overlap. Table 10-1 also gives examples of each
 statement, when coded according to its syntax rules. In your programs,
 these units of code can perform actions, repeat tasks, make choices, build
 larger program structures, and so on.
This part of the book deals with entries in the table from the top
 through break and continue. You’ve informally been introduced to a
 few of the statements in Table 10-1 already;
 this part of the book will fill in details that were skipped earlier,
 introduce the rest of Python’s procedural statement set, and cover the
 overall syntax model. Statements lower in Table 10-1 that have to do with larger program
 units—functions, classes, modules, and exceptions—lead to larger
 programming ideas, so they will each have a section of their own. More
 focused statements (like del, which
 deletes various components) are covered elsewhere in the book, or in
 Python’s standard manuals.
Table 10-1. Python statements	Statement	Role	Example
	Assignment
	Creating references
	a, b = 'good', 'bad'

	Calls and other
 expressions
	Running
 functions
	log.write("spam, ham")

	print calls
	Printing
 objects
	print('The Killer', joke)

	if/elif/else
	Selecting actions
	if "python" in text:
 print(text)

	for/else
	Iteration
	for x in mylist:
 print(x)

	while/else
	General loops
	while X > Y:
 print('hello')

	pass
	Empty placeholder
	while True:
 pass

	break
	Loop exit
	while True:
 if exittest(): break

	continue
	Loop continue
	while True:
 if skiptest(): continue

	def
	Functions and methods
	def f(a, b, c=1, *d):
 print(a+b+c+d[0])

	return
	Functions results
	def f(a, b, c=1, *d):
 return a+b+c+d[0]

	yield
	Generator functions
	def gen(n):
 for i in n: yield i*2

	global
	Namespaces
	x = 'old'
def function():
 global x, y; x = 'new'

	nonlocal
	Namespaces (3.X)
	def outer():
 x = 'old'
 def function():
 nonlocal x; x = 'new'

	import
	Module access
	import sys

	from
	Attribute access
	from sys import stdin

	class
	Building objects
	class Subclass(Superclass):
 staticData = []
 def method(self): pass

	try/except/ finally
	Catching exceptions
	try:
 action()
except:
 print('action error')

	raise
	Triggering exceptions
	raise EndSearch(location)

	assert
	Debugging checks
	assert X > Y, 'X too small'

	with/as
	Context managers (3.X, 2.6+)
	with open('data') as myfile:
 process(myfile)

	del
	Deleting references
	del data[k]
del data[i:j]
del obj.attr
del variable

Technically, Table 10-1 reflects
 Python 3.X’s statements. Though sufficient as a quick
 preview and reference, it’s not quite complete as is. Here are a few fine
 points about its content:
	Assignment statements come in a variety of syntax flavors,
 described in Chapter 11: basic, sequence,
 augmented, and more.

	print is technically neither
 a reserved word nor a statement in 3.X, but a built-in function call;
 because it will nearly always be run as an expression statement,
 though (and often on a line by itself), it’s generally thought of as a
 statement type. We’ll study print operations in Chapter 11.

	yield is also an expression
 instead of a statement as of 2.5; like print, it’s typically used as an expression
 statement and so is included in this table, but scripts occasionally
 assign or otherwise use its result, as we’ll see in Chapter 20. As an expression,
 yield is also a reserved word,
 unlike print.

Most of this table applies to Python 2.X, too, except where it
 doesn’t—if you are using Python 2.X, here are a few notes for your Python,
 too:
	In 2.X, nonlocal is not
 available; as we’ll see in Chapter 17, there are
 alternative ways to achieve this statement’s writeable state-retention
 effect.

	In 2.X, print is a statement
 instead of a built-in function call, with specific syntax covered in
 Chapter 11.

	In 2.X, the 3.X exec code
 execution built-in function is a statement, with specific syntax;
 since it supports enclosing parentheses, though, you can generally use
 its 3.X call form in 2.X code.

	In 2.5, the try/except and try/finally statements were merged: the two were
 formerly separate statements, but we can now say both except and finally in the same try statement.

	In 2.5, with/as is an optional extension, and it is not
 available unless you explicitly turn it on by running the statement from __future__
 import with_statement (see Chapter 34).

A Tale of Two ifs
Before we delve into the details of any of the concrete statements in Table 10-1, I want to begin our look at Python
 statement syntax by showing you what you are not
 going to type in Python code so you can compare and contrast it with other
 syntax models you might have seen in the past.
Consider the following if
 statement, coded in a C-like language:
if (x > y) {
 x = 1;
 y = 2;
}
This might be a statement in C, C++, Java, JavaScript, or similar.
 Now, look at the equivalent statement in the Python language:
if x > y:
 x = 1
 y = 2
The first thing that may pop out at you is that the equivalent
 Python statement is less, well, cluttered—that is, there are fewer
 syntactic components. This is by design; as a scripting language, one of
 Python’s goals is to make programmers’ lives easier by requiring less
 typing.
More specifically, when you compare the two syntax models, you’ll
 notice that Python adds one new thing to the mix, and that three items
 that are present in the C-like language are not present in Python
 code.
What Python Adds
The one new syntax component in Python is the colon character
 (:). All
 Python compound statements—statements that
 have other statements nested inside them—follow the same general pattern
 of a header line terminated in a colon, followed by a nested block of
 code usually indented underneath the header line, like this:
Header line:
 Nested statement block
The colon is required, and omitting it is probably the most common
 coding mistake among new Python programmers—it’s certainly one I’ve
 witnessed thousands of times in Python training classes I’ve taught. In
 fact, if you are new to Python, you’ll almost certainly forget the colon
 character very soon. You’ll get an error message if you do, and most
 Python-friendly editors make this mistake easy to spot. Including it
 eventually becomes an unconscious habit (so much so that you may start
 typing colons in your C-like language code, too, generating many
 entertaining error messages from that language’s compiler!).

What Python Removes
Although Python requires the extra colon character, there are
 three things programmers in C-like languages must include that you don’t
 generally have to in Python.
Parentheses are optional
The first of these is the set of parentheses around the tests at the top of the
 statement:
if (x < y)
The parentheses here are required by the syntax of many C-like
 languages. In Python, though, they are not—we simply omit the
 parentheses, and the statement works the same way:
if x < y
Technically speaking, because every expression can be enclosed
 in parentheses, including them will not hurt in this Python code, and
 they are not treated as an error if present.
But don’t do that: you’ll be wearing out
 your keyboard needlessly, and broadcasting to the world that you’re a
 programmer of a C-like language still learning Python (I know, because
 I was once, too). The “Python way” is to simply omit the parentheses
 in these kinds of statements altogether.

End-of-line is end of statement
The second and more significant syntax component you won’t find in Python
 code is the semicolon. You don’t need to terminate statements with
 semicolons in Python the way you do in C-like languages:
x = 1;
In Python, the general rule is that the end of a line
 automatically terminates the statement that appears on that line. In
 other words, you can leave off the semicolons, and it works the same
 way:
x = 1
There are some ways to work around this rule, as you’ll see in a
 moment (for instance, wrapping code in a bracketed structure allows it
 to span lines). But, in general, you write one statement per line for
 the vast majority of Python code, and no semicolon is required.
Here, too, if you are pining for your C programming days (if
 such a state is possible) you can continue to use semicolons at the
 end of each statement—the language lets you get away with them if they
 are present, because the semicolon is also a separator when statements
 are combined.
But don’t do that either (really!). Again,
 doing so tells the world that you’re a programmer of a C-like language
 who still hasn’t quite made the switch to Python coding. The Pythonic
 style is to leave off the semicolons altogether. Judging from students
 in classes, this seems a tough habit for some veteran programmers to
 break. But you’ll get there; semicolons are useless noise in this role
 in Python.

End of indentation is end of block
The third and final syntax component that Python removes, and the one
 that may seem the most unusual to soon-to-be-ex-programmers of C-like
 languages (until they’ve used it for 10 minutes and realize it’s
 actually a feature), is that you do not type anything explicit in your
 code to syntactically mark the beginning and end of a nested block of
 code. You don’t need to include begin/end, then/endif, or braces around the nested block, as
 you do in C-like languages:
if (x > y) {
 x = 1;
 y = 2;
}
Instead, in Python, we consistently indent all the statements in
 a given single nested block the same distance to the right, and Python
 uses the statements’ physical indentation to determine where the block
 starts and stops:
if x > y:
 x = 1
 y = 2
By indentation, I mean the blank whitespace
 all the way to the left of the two nested statements here. Python
 doesn’t care how you indent (you may use either
 spaces or tabs), or how much you indent (you may
 use any number of spaces or tabs). In fact, the indentation of one
 nested block can be totally different from that of another. The syntax
 rule is only that for a given single nested block, all of its
 statements must be indented the same distance to the right. If this is
 not the case, you will get a syntax error, and your code will not run
 until you repair its indentation to be consistent.

Why Indentation Syntax?
The indentation rule may seem unusual at first glance to
 programmers accustomed to C-like languages, but it is a deliberate
 feature of Python, and it’s one of the main ways that Python almost
 forces programmers to produce uniform, regular, and readable code. It
 essentially means that you must line up your code vertically, in
 columns, according to its logical structure. The net effect is to make
 your code more consistent and readable (unlike much of the code written
 in C-like languages).
To put that more strongly, aligning your code according to its
 logical structure is a major part of making it readable, and thus
 reusable and maintainable, by yourself and others. In fact, even if you
 never use Python after reading this book, you should get into the habit
 of aligning your code for readability in any block-structured language.
 Python underscores the issue by making this a part of its syntax, but
 it’s an important thing to do in any programming language, and it has a
 huge impact on the usefulness of your code.
Your experience may vary, but when I was still doing development
 on a full-time basis, I was mostly paid to work on large old C++
 programs that had been worked on by many programmers over the years.
 Almost invariably, each programmer had his or her own style for
 indenting code. For example, I’d often be asked to change a while loop coded in the C++ language that
 began like this:
while (x > 0) {
Before we even get into indentation, there are three or four ways
 that programmers can arrange these braces in a C-like language, and
 organizations often endure political battles and standards manuals to
 address the options (which seems more than a little off-topic for the
 problem to be solved by programming). Be that as it may, here’s the
 scenario I often encountered in C++ code. The first person who worked on
 the code indented the loop four spaces:
while (x > 0) {
 --------;
 --------;
That person eventually moved on to management, only to be replaced
 by someone who liked to indent further to the right:
while (x > 0) {
 --------;
 --------;
 --------;
 --------;
That person later moved on to other opportunities (ending that
 individual’s reign of coding terror...), and someone else picked up the
 code who liked to indent less:
while (x > 0) {
 --------;
 --------;
 --------;
 --------;
--------;
--------;
}
And so on. Eventually, the block is terminated by a closing brace
 (}), which of course makes this
 “block-structured code” (he says, sarcastically). No: in any
 block-structured language, Python or otherwise, if nested blocks are not
 indented consistently, they become very difficult for the reader to
 interpret, change, or reuse, because the code no longer visually
 reflects its logical meaning. Readability matters,
 and indentation is a major component of readability.
Here is another example that may have burned you in the past if
 you’ve done much programming in a C-like language. Consider the
 following statement in C:
if (x)
 if (y)
 statement1;
else
 statement2;
Which if does the else here go with? Surprisingly, the else is paired with the nested if statement (if
 (y)) in C, even though it looks visually as though it is
 associated with the outer if (x).
 This is a classic pitfall in the C language, and it can lead to the
 reader completely misinterpreting the code and changing it incorrectly
 in ways that might not be uncovered until the Mars rover crashes into a
 giant rock!
This cannot happen in Python—because indentation is significant,
 the way the code looks is the way it will work. Consider an equivalent
 Python statement:
if x:
 if y:
 statement1
else:
 statement2
In this example, the if that
 the else lines up with vertically is
 the one it is associated with logically (the outer if x). In a sense, Python is a WYSIWYG
 language—what you see is what you get—because the way code looks is the
 way it runs, regardless of who coded it.
If this still isn’t enough to underscore the benefits of Python’s
 syntax, here’s another anecdote. Early in my career, I worked at a
 successful company that developed systems software in the C language,
 where consistent indentation is not required. Even so, when we checked
 our code into source control at the end of the day, this company ran an
 automated script that analyzed the indentation used in the code. If the
 script noticed that we’d indented our code inconsistently, we received
 an automated email about it the next morning—and so did our
 managers!
The point is that even when a language doesn’t require it, good
 programmers know that consistent use of indentation has a huge impact on
 code readability and quality. The fact that Python promotes this to the
 level of syntax is seen by most as a feature of the language.
Also keep in mind that nearly every programmer-friendly text
 editor has built-in support for Python’s syntax model. In the IDLE
 Python GUI, for example, lines of code are automatically indented when
 you are typing a nested block; pressing the Backspace key backs up one
 level of indentation, and you can customize how far to the right IDLE
 indents statements in a nested block. There is no universal standard on
 this: four spaces or one tab per level is common, but it’s generally up
 to you to decide how and how much you wish to indent (unless you work at
 a company that’s endured politics and manuals to standardize this too).
 Indent further to the right for further nested blocks, and less to close
 the prior block.
As a rule of thumb, you probably shouldn’t mix tabs and spaces in
 the same block in Python, unless you do so consistently; use tabs or
 spaces in a given block, but not both (in fact, Python 3.X now issues an
 error for inconsistent use of tabs and spaces, as we’ll see in Chapter 12). Then again, you probably
 shouldn’t mix tabs or spaces in indentation in any
 structured language—such code can cause major readability issues if the
 next programmer has his or her editor set to display tabs differently
 than yours. C-like languages might let coders get away with this, but
 they shouldn’t: the result can be a mangled mess.
Regardless of which language you code in, you should be indenting
 consistently for readability. In fact, if you weren’t taught to do this
 earlier in your career, your teachers did you a disservice. Most
 programmers—especially those who must read others’ code—consider it a
 major asset that Python elevates this to the level of syntax. Moreover,
 generating tabs instead of braces is no more difficult in practice for
 tools that must output Python code. In general, if you do what you
 should be doing in a C-like language anyhow, but get rid of the braces,
 your code will satisfy Python’s syntax rules.

A Few Special Cases
As mentioned previously, in Python’s syntax model:
	The end of a line terminates the statement on that line
 (without semicolons).

	Nested statements are blocked and associated by their physical
 indentation (without braces).

Those rules cover almost all Python code you’ll write or see in
 practice. However, Python also provides some special-purpose rules that
 allow customization of both statements and nested statement blocks.
 They’re not required and should be used sparingly, but programmers have
 found them useful in practice.
Statement rule special cases
Although statements normally appear one per line, it is possible to squeeze
 more than one statement onto a single line in Python by separating
 them with semicolons:
a = 1; b = 2; print(a + b) # Three statements on one line
This is the only place in Python where semicolons are required:
 as statement separators. This only
 works, though, if the statements thus combined are not themselves
 compound statements. In other words, you can chain together only
 simple statements, like assignments, prints, and function calls. Compound
 statements like if tests and
 while loops must still appear on
 lines of their own (otherwise, you could squeeze an entire program
 onto one line, which probably would not make you very popular among
 your coworkers!).
The other special rule for statements is essentially the
 inverse: you can make a single statement span across
 multiple lines. To make this work, you simply
 have to enclose part of your statement in a bracketed pair—parentheses (()),
 square brackets ([]),
 or curly braces ({}).
 Any code enclosed in these constructs can cross multiple lines: your
 statement doesn’t end until Python reaches the line containing the
 closing part of the pair. For instance, to continue a list
 literal:
mylist = [1111,
 2222,
 3333]
Because the code is enclosed in a square brackets pair, Python
 simply drops down to the next line until it encounters the closing
 bracket. The curly braces surrounding dictionaries (as well as set
 literals and dictionary and set comprehensions in 3.X and 2.7) allow
 them to span lines this way too, and parentheses handle tuples,
 function calls, and expressions. The indentation of the continuation
 lines does not matter, though common sense dictates that the lines
 should be aligned somehow for readability.
Parentheses are the catchall device—because any expression can
 be wrapped in them, simply inserting a left parenthesis allows you to
 drop down to the next line and continue your statement:
X = (A + B +
 C + D)
This technique works with compound statements, too, by the way.
 Anywhere you need to code a large expression, simply wrap it in
 parentheses to continue it on the next line:
if (A == 1 and
 B == 2 and
 C == 3):
 print('spam' * 3)
An older rule also allows for continuation lines when the prior line ends in a backslash:
X = A + B + \
 C + D # An error-prone older alternative
This alternative technique is dated, though, and is frowned on
 today because it’s difficult to notice and maintain the backslashes.
 It’s also fairly brittle and error-prone—there can be no spaces after
 the backslash, and accidentally omitting it can have unexpected
 effects if the next line is mistaken to be a new statement (in this
 example, “C + D” is a valid statement by itself if it’s not indented).
 This rule is also another throwback to the C language, where it is
 commonly used in “#define” macros; again, when in Pythonland, do as
 Pythonistas do, not as C programmers do.

Block rule special case
As mentioned previously, statements in a nested block of code are
 normally associated by being indented the same amount to the right. As
 one special case here, the body of a compound statement can instead
 appear on the same line as the header in Python, after the
 colon:
if x > y: print(x)
This allows us to code single-line if statements, single-line while and for loops, and so on. Here again, though,
 this will work only if the body of the compound statement itself does
 not contain any compound statements. That is, only simple
 statements—assignments, prints,
 function calls, and the like—are allowed after the colon. Larger
 statements must still appear on lines by themselves. Extra parts of
 compound statements (such as the else part of an if, which we’ll meet in the next section)
 must also be on separate lines of their own. Compound statement bodies
 can also consist of multiple simple statements separated by
 semicolons, but this tends to be frowned upon.
In general, even though it’s not always required, if you keep
 all your statements on individual lines and always indent your nested
 blocks, your code will be easier to read and change in the future.
 Moreover, some code profiling and coverage tools may not be able to
 distinguish between multiple statements squeezed onto a single line or
 the header and body of a one-line compound statement. It is almost
 always to your advantage to keep things simple in Python. You can use
 the special-case exceptions to write Python code that’s hard to read,
 but it takes a lot of work, and there are probably better ways to
 spend your time.
To see a prime and common exception to one of these rules in
 action, however (the use of a single-line if statement to break out of a loop), and to introduce more
 of Python’s syntax, let’s move on to the next section and write some
 real code.

A Quick Example: Interactive Loops
We’ll see all these syntax rules in action when we tour Python’s specific compound
 statements in the next few chapters, but they work the same everywhere in
 the Python language. To get started, let’s work through a brief, realistic
 example that demonstrates the way that statement syntax and statement
 nesting come together in practice, and introduces a few statements along
 the way.
A Simple Interactive Loop
Suppose you’re asked to write a Python program that interacts with
 a user in a console window. Maybe you’re accepting inputs to send to a
 database, or reading numbers to be used in a calculation. Regardless of
 the purpose, you need to code a loop that reads one or more inputs from
 a user typing on a keyboard, and prints back a result for each. In other
 words, you need to write a classic read/evaluate/print loop
 program.
In Python, typical boilerplate code for such an interactive loop
 might look like this:
while True:
 reply = input('Enter text:')
 if reply == 'stop': break
 print(reply.upper())
This code makes use of a few new ideas and some we’ve already
 seen:
	The code leverages the Python while loop,
 Python’s most general looping statement. We’ll study the while statement in more detail later, but
 in short, it consists of the word while, followed by an expression that is
 interpreted as a true or false result, followed by a nested block of
 code that is repeated while the test at the top is true (the word
 True here is considered always
 true).

	The input built-in function
 we met earlier in the book is used here for general
 console input—it prints its optional argument string as a prompt and
 returns the user’s typed reply as a string. Use raw_input in 2.X instead, per the upcoming
 note.

	A single-line if statement
 that makes use of the special rule for nested blocks also
 appears here: the body of the if
 appears on the header line after the colon instead of being indented
 on a new line underneath it. This would work either way, but as it’s
 coded, we’ve saved an extra line.

	Finally, the Python break
 statement is used to exit the loop immediately—it simply jumps out
 of the loop statement altogether, and the program continues after
 the loop. Without this exit statement, the while would loop forever, as its test is
 always true.

In effect, this combination of statements essentially means “read
 a line from the user and print it in uppercase until the user enters the
 word ‘stop.’” There are other ways to code such a loop, but the form
 used here is very common in Python code.
Notice that all three lines nested under the while header line are indented the same
 amount—because they line up vertically in a column this way, they are
 the block of code that is associated with the while test and repeated. Either the end of the
 source file or a lesser-indented statement will suffice to terminate the
 loop body block.
When this code is run, either interactively or as a script file,
 here is the sort of interaction we get—all of the code for this example
 is in interact.py in the book’s
 examples package:
Enter text:spam
SPAM
Enter text:42
42
Enter text:stop
Note
Version skew note: This example is coded
 for Python 3.X. If you are working in Python 2.X, the code works the
 same, but you must use raw_input
 instead of input in all of this
 chapter’s examples, and you can omit the outer parentheses in print statements (though they don’t hurt).
 In fact, if you study the interact.py file in the examples package,
 you’ll see that it does this automatically—to support 2.X
 compatibility, it resets input if
 the running Python’s major version is 2 (“input” winds up running
 raw_input):
import sys
if sys.version[0] == '2': input = raw_input # 2.X compatible
In 3.X, raw_input was renamed
 input, and print is a built-in function instead of a
 statement (more on prints in the
 next chapter). Python 2.X has an input too, but it tries to evaluate the
 input string as though it were Python code, which probably won’t work
 in this context; eval(input()) can
 yield the same effect 3.X.

Doing Math on User Inputs
Our script works, but now suppose that instead of converting a
 text string to uppercase, we want to do some math with numeric
 input—squaring it, for example, perhaps in some misguided effort of an
 age-input program to tease its users. We might try statements like these
 to achieve the desired effect:
>>> reply = '20'
>>> reply ** 2
...error text omitted...
TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'
This won’t quite work in our script, though, because (as discussed
 in the prior part of the book) Python won’t convert object types in
 expressions unless they are all numeric, and input from a user is always
 returned to our script as a string. We cannot raise
 a string of digits to a power unless we convert it manually to an
 integer:
>>> int(reply) ** 2
400
Armed with this information, we can now recode our loop to perform
 the necessary math. Type the following in a file to test it:
while True:
 reply = input('Enter text:')
 if reply == 'stop': break
 print(int(reply) ** 2)
print('Bye')
This script uses a single-line if statement to exit on “stop” as before, but
 it also converts inputs to perform the required math. This version also
 adds an exit message at the bottom. Because the print statement in the last line is not
 indented as much as the nested block of code, it is not considered part
 of the loop body and will run only once, after the loop is
 exited:
Enter text:2
4
Enter text:40
1600
Enter text:stop
Bye
Note
Usage note: From this point on I’ll assume
 that this code is stored in and run from a script file, via command
 line, IDLE menu option, or any of the other file launching techniques
 we met in Chapter 3. Again, it’s named
 interact.py in the book’s
 examples. If you are entering this code interactively, though, be sure
 to include a blank line (i.e., press Enter twice) before the final
 print statement, to terminate the
 loop. This implies that you also can’t cut and paste the code in its
 entirety into an interactive prompt: an extra blank line is required
 interactively, but not in script files. The final print doesn’t quite make sense in
 interactive mode, though—you’ll have to code it after interacting with
 the loop!

Handling Errors by Testing Inputs
So far so good, but notice what happens when the input is invalid:
Enter text:xxx
...error text omitted...
ValueError: invalid literal for int() with base 10: 'xxx'
The built-in int function
 raises an exception here in the face of a mistake. If we
 want our script to be robust, we can check the string’s content ahead of
 time with the string object’s isdigit
 method:
>>> S = '123'
>>> T = 'xxx'
>>> S.isdigit(), T.isdigit()
(True, False)
This also gives us an excuse to further nest the statements in our
 example. The following new version of our interactive script uses a
 full-blown if statement to work
 around the exception on errors:
while True:
 reply = input('Enter text:')
 if reply == 'stop':
 break
 elif not reply.isdigit():
 print('Bad!' * 8)
 else:
 print(int(reply) ** 2)
print('Bye')
We’ll study the if statement in
 more detail in Chapter 12, but it’s a fairly lightweight
 tool for coding logic in scripts. In its full form, it consists of the
 word if followed by a test and an
 associated block of code, one or more optional elif (“else if”) tests and code blocks, and an
 optional else part, with an
 associated block of code at the bottom to serve as a default. Python
 runs the block of code associated with the first test that is true,
 working from top to bottom, or the else part if all tests are false.
The if, elif, and else parts in the preceding example are
 associated as part of the same statement because they all line up
 vertically (i.e., share the same level of indentation). The if statement spans from the word if to the start of the print statement on the last line of the
 script. In turn, the entire if block
 is part of the while loop because all
 of it is indented under the loop’s header line. Statement nesting like
 this is natural once you get the hang of it.
When we run our new script, its code catches errors before they
 occur and prints an error message before continuing (which you’ll
 probably want to improve in a later release), but “stop” still gets us
 out, and valid numbers are still squared:
Enter text:5
25
Enter text:xyz
Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!
Enter text:10
100
Enter text:stop
Bye

Handling Errors with try Statements
The preceding solution works, but as you’ll see later in the book, the most
 general way to handle errors in Python is to catch and recover from them
 completely using the Python try
 statement. We’ll explore this statement in depth in Part VII of this book, but as a preview, using
 a try here can lead to code that some
 would see as simpler than the prior version:
while True:
 reply = input('Enter text:')
 if reply == 'stop': break
 try:
 num = int(reply)
 except:
 print('Bad!' * 8)
 else:
 print(num ** 2)
print('Bye')
This version works exactly like the previous one, but we’ve
 replaced the explicit error check with code that assumes the conversion
 will work and wraps it in an exception handler for cases when it
 doesn’t. In other words, rather than detecting an error, we simply
 respond if one occurs.
This try statement is another
 compound statement, and follows the same pattern as if and while. It’s composed of the word try, followed by the main block of code (the
 action we are trying to run), followed by an except part that gives the exception handler
 code and an else part to be run if no
 exception is raised in the try part.
 Python first runs the try part, then
 runs either the except part (if an
 exception occurs) or the else part
 (if no exception occurs).
In terms of statement nesting, because the words try, except, and else are all indented to the same level, they
 are all considered part of the same single try statement. Notice that the else part is associated with the try here, not the if. As we’ve seen, else can appear in if statements in Python, but it can also
 appear in try statements and
 loops—its indentation tells you what statement it is a part of. In this
 case, the try statement spans from
 the word try through the code
 indented under the word else, because
 the else is indented the same as
 try. The if statement in this code is a one-liner and
 ends after the break.
Supporting floating-point numbers
Again, we’ll come back to the try
 statement later in this book. For now, be aware that because try can be used to intercept any error, it
 reduces the amount of error-checking code you have to write, and it’s
 a very general approach to dealing with unusual cases. If we’re sure
 that print won’t fail, for instance, this example could be even more
 concise:
while True:
 reply = input('Enter text:')
 if reply == 'stop': break
 try:
 print(int(reply) ** 2)
 except:
 print('Bad!' * 8)
print('Bye')
And if we wanted to support input of floating-point numbers
 instead of just integers, for example, using try would be much easier than manual error
 testing—we could simply run a float
 call and catch its exceptions:
while True:
 reply = input('Enter text:')
 if reply == 'stop': break
 try:
 print(float(reply) ** 2)
 except:
 print('Bad!' * 8)
print('Bye')
There is no isfloat for
 strings today, so this exception-based approach spares us from having
 to analyze all possible floating-point syntax in an explicit error
 check. When coding this way, we can enter a wider variety of numbers,
 but errors and exits still work as before:
Enter text:50
2500.0
Enter text:40.5
1640.25
Enter text:1.23E-100
1.5129e-200
Enter text:spam
Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!
Enter text:stop
Bye
Note
Python’s eval call, which
 we used in Chapter 5 and Chapter 9 to convert data
 in strings and files, would work in place of float here too, and would allow input of
 arbitrary expressions (“2 ** 100” would be a legal, if curious,
 input, especially if we’re assuming the program is processing
 ages!). This is a powerful concept that is open to the same security
 issues mentioned in the prior chapters. If you can’t trust the
 source of a code string, use more restrictive conversion tools like
 int and float.
Python’s exec, used in
 Chapter 3 to run code read from a
 file, is similar to eval (but
 assumes the string is a statement instead of an expression and has
 no result), and its compile call
 precompiles frequently used code strings to bytecode objects for
 speed. Run a help on any of these
 for more details; as mentioned, exec is a statement in 2.X but a function
 in 3.X, so see its manual entry in 2.X instead. We’ll also use
 exec to import modules by name
 string in Chapter 25—an example of
 its more dynamic roles.

Nesting Code Three Levels Deep
Let’s look at one last mutation of our code. Nesting can take us even
 further if we need it to—we could, for example, extend our prior
 integer-only script to branch to one of a set of alternatives based on
 the relative magnitude of a valid input:
while True:
 reply = input('Enter text:')
 if reply == 'stop':
 break
 elif not reply.isdigit():
 print('Bad!' * 8)
 else:
 num = int(reply)
 if num < 20:
 print('low')
 else:
 print(num ** 2)
print('Bye')
This version adds an if
 statement nested in the else clause
 of another if statement, which is in
 turn nested in the while loop. When
 code is conditional or repeated like this, we simply indent it further
 to the right. The net effect is like that of prior versions, but we’ll
 now print “low” for numbers less than 20:
Enter text:19
low
Enter text:20
400
Enter text:spam
Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!
Enter text:stop
Bye

Chapter Summary
That concludes our quick look at Python statement syntax. This
 chapter introduced the general rules for coding statements and blocks of
 code. As you’ve learned, in Python we normally code one statement per line
 and indent all the statements in a nested block the same amount
 (indentation is part of Python’s syntax). However, we also looked at a few
 exceptions to these rules, including continuation lines and single-line
 tests and loops. Finally, we put these ideas to work in an interactive
 script that demonstrated a handful of statements and showed statement
 syntax in action.
In the next chapter, we’ll start to dig deeper by going over each of
 Python’s basic procedural statements in depth. As you’ll see, though, all
 statements follow the same general rules introduced here.

Test Your Knowledge: Quiz
	What three things are required in a C-like language but omitted in
 Python?

	How is a statement normally terminated in Python?

	How are the statements in a nested block of code normally
 associated in Python?

	How can you make a single statement span multiple lines?

	How can you code a compound statement on a single line?

	Is there any valid reason to type a semicolon at the end of a
 statement in Python?

	What is a try statement
 for?

	What is the most common coding mistake among Python
 beginners?

Test Your Knowledge: Answers
	C-like languages require parentheses around the tests in some
 statements, semicolons at the end of each statement, and braces around
 a nested block of code.

	The end of a line terminates the statement that appears on that
 line. Alternatively, if more than one statement appears on the same
 line, they can be terminated with semicolons; similarly, if a
 statement spans many lines, you must terminate it by closing a
 bracketed syntactic pair.

	The statements in a nested block are all indented the same
 number of tabs or spaces.

	You can make a statement span many lines by enclosing part of it
 in parentheses, square brackets, or curly braces; the statement ends
 when Python sees a line that contains the closing part of the
 pair.

	The body of a compound statement can be moved to the header line
 after the colon, but only if the body consists of only noncompound
 statements.

	Only when you need to squeeze more than one statement onto a
 single line of code. Even then, this only works if all the statements
 are noncompound, and it’s discouraged because it can lead to code that
 is difficult to read.

	The try statement is used to
 catch and recover from exceptions (errors) in a Python script. It’s
 usually an alternative to manually checking for errors in code.

	Forgetting to type the colon character at the end of the header
 line in a compound statement is the most common beginner’s mistake. If
 you’re new to Python and haven’t made it yet, you probably will
 soon!

Chapter 11. Assignments, Expressions, and Prints
Now that we’ve had a quick introduction to Python statement syntax,
 this chapter begins our in-depth tour of specific Python statements. We’ll
 begin with the basics: assignment statements, expression statements, and
 print operations. We’ve already seen all of these in action, but here we’ll
 fill in important details we’ve skipped so far. Although they’re relatively
 simple, as you’ll see, there are optional variations for each of these
 statement types that will come in handy once you begin writing realistic
 Python programs.
Assignment Statements
We’ve been using the Python assignment statement for a while to assign
 objects to names. In its basic form, you write the
 target of an assignment on the left of an equals
 sign, and the object to be assigned on the right. The
 target on the left may be a name or object component, and the object on
 the right can be an arbitrary expression that computes an object. For the
 most part, assignments are straightforward, but here are a few properties
 to keep in mind:
	Assignments create object
 references. As discussed in Chapter 6, Python assignments store
 references to objects in names or data structure components. They always create references to objects
 instead of copying the objects. Because of that, Python variables are
 more like pointers than data storage areas.

	Names are created when first
 assigned. Python creates a variable name the first time you
 assign it a value (i.e., an object reference), so there’s no need to
 predeclare names ahead of time. Some (but not all) data structure
 slots are created when assigned, too (e.g., dictionary entries, some
 object attributes). Once assigned, a name is replaced with the value
 it references whenever it appears in an expression.

	Names must be assigned before being
 referenced. It’s an error to use a name to which you
 haven’t yet assigned a value. Python raises an exception if you try,
 rather than returning some sort of ambiguous default value. This turns
 out to be crucial in Python because names are not predeclared—if
 Python provided default values for unassigned names used in your
 program instead of treating them as errors, it would be much more
 difficult for you to spot name typos in your code.

	Some operations perform assignments
 implicitly. In this section we’re concerned with the
 = statement, but assignment occurs
 in many contexts in Python. For instance, we’ll see later that module
 imports, function and class definitions, for loop variables, and function arguments
 are all implicit assignments. Because assignment works the same
 everywhere it pops up, all these contexts simply
 bind (i.e., assign) names to object references at
 runtime.

Assignment Statement Forms
Although assignment is a general and pervasive concept in
 Python, we are primarily interested in assignment
 statements in this chapter. Table 11-1 illustrates the different
 assignment statement forms in Python, and their syntax patterns.
Table 11-1. Assignment statement forms	Operation	Interpretation
	spam = 'Spam'
	Basic form

	spam, ham = 'yum', 'YUM'
	Tuple assignment
 (positional)

	[spam, ham] = ['yum', 'YUM']
	List assignment
 (positional)

	a, b, c, d = 'spam'
	Sequence assignment,
 generalized

	a, *b = 'spam'
	Extended sequence
 unpacking (Python 3.X)

	spam = ham = 'lunch'
	Multiple-target
 assignment

	spams += 42
	Augmented assignment (equivalent to spams = spams + 42)

The first form in Table 11-1 is by far the most common:
 binding a name (or data structure component) to a single object. In
 fact, you could get all your work done with this basic form alone. The
 other table entries represent special forms that are all optional, but
 that programmers often find convenient in practice:
	Tuple- and list-unpacking assignments
	The second and third forms in the table are related. When you code a tuple or list on
 the left side of the =, Python
 pairs objects on the right side with targets on the left by
 position and assigns them from left to right. For example, in the
 second line of Table 11-1,
 the name spam is assigned the
 string 'yum', and the name
 ham is bound to the string
 'YUM'. In this case Python
 internally may make a tuple of the items on the right, which is
 why this is called tuple-unpacking assignment.

	Sequence assignments
	In later versions of Python, tuple and list assignments were generalized into
 instances of what we now call sequence
 assignment—any sequence of names can be assigned to any
 sequence of values, and Python assigns the items one at a time by
 position. We can even mix and match the types of the sequences
 involved. The fourth line in Table 11-1, for example, pairs a
 tuple of names with a string of characters: a is assigned 's', b is assigned 'p', and so on.

	Extended sequence unpacking
	In Python 3.X (only), a new form of sequence assignment allows us to be more flexible in how we
 select portions of a sequence to assign. The fifth line in Table 11-1, for example, matches
 a with the first character in
 the string on the right and b
 with the rest: a is assigned
 's', and b is assigned ['p', 'a', 'm']. This provides a simpler
 alternative to assigning the results of manual slicing
 operations.

	Multiple-target assignments
	The sixth line in Table 11-1 shows the multiple-target form of assignment. In this form,
 Python assigns a reference to the same object (the object farthest
 to the right) to all the targets on the left. In the table, the
 names spam and ham are both assigned references to the
 same string object, 'lunch'.
 The effect is the same as if we had coded ham = 'lunch' followed by spam = ham, as ham evaluates to the original string
 object (i.e., not a separate copy of that object).

	Augmented assignments
	The last line in Table 11-1 is an example of augmented
 assignment—a shorthand that combines an expression and
 an assignment in a concise way. Saying spam += 42, for example, has the same
 effect as spam = spam + 42, but
 the augmented form requires less typing and is generally quicker
 to run. In addition, if the subject is mutable and supports the
 operation, an augmented assignment may run even quicker by
 choosing an in-place update operation instead of an object copy.
 As we’ll see, there is one augmented assignment statement for most binary expression operators in Python.

Sequence Assignments
We’ve already used and explored basic assignments in this book, so
 we’ll take them as a given. Here are a few simple examples of
 sequence-unpacking assignments in action:
% python
>>> nudge = 1 # Basic assignment
>>> wink = 2
>>> A, B = nudge, wink # Tuple assignment
>>> A, B # Like A = nudge; B = wink
(1, 2)
>>> [C, D] = [nudge, wink] # List assignment
>>> C, D
(1, 2)
Notice that we really are coding two tuples in the third line in
 this interaction—we’ve just omitted their enclosing parentheses. Python
 pairs the values in the tuple on the right side of the assignment
 operator with the variables in the tuple on the left side and assigns
 the values one at a time.
Tuple assignment leads to a common coding trick in Python that was
 introduced in a solution to the exercises at the end of Part II. Because Python creates a temporary
 tuple that saves the original values of the variables on the right while
 the statement runs, unpacking assignments are also a way to
 swap two variables’ values without creating a
 temporary variable of your own—the tuple on the right remembers the
 prior values of the variables automatically:
>>> nudge = 1
>>> wink = 2
>>> nudge, wink = wink, nudge # Tuples: swaps values
>>> nudge, wink # Like T = nudge; nudge = wink; wink = T
(2, 1)
In fact, the original tuple and list assignment forms in Python
 have been generalized to accept any type of
 sequence (really, iterable) on the right as long as it is of the same
 length as the sequence on the left. You can assign a tuple of values to
 a list of variables, a string of characters to a tuple of variables, and
 so on. In all cases, Python assigns items in the sequence on the right
 to variables in the sequence on the left by position, from left to
 right:
>>> [a, b, c] = (1, 2, 3) # Assign tuple of values to list of names
>>> a, c
(1, 3)
>>> (a, b, c) = "ABC" # Assign string of characters to tuple
>>> a, c
('A', 'C')
Technically speaking, sequence assignment actually supports any
 iterable object on the right, not just any
 sequence. This is a more general category that includes collections both
 physical (e.g., lists) and virtual (e.g., a file’s lines), which was
 defined briefly in Chapter 4
 and has popped up in passing ever since. We’ll firm up this term when we
 explore iterables in Chapter 14 and Chapter 20.
Advanced sequence assignment patterns
Although we can mix and match sequence types around the = symbol, we must generally have the
 same number of items on the right as we have
 variables on the left, or we’ll get an error. Python 3.X allows us to
 be more general with extended unpacking * syntax, described in the next section. But
 normally in 3.X—and always in 2.X—the number of items in the
 assignment target and subject must match:
>>> string = 'SPAM'
>>> a, b, c, d = string # Same number on both sides
>>> a, d
('S', 'M')

>>> a, b, c = string # Error if not
...error text omitted...
ValueError: too many values to unpack (expected 3)
To be more flexible, we can slice in both 2.X and 3.X. There are
 a variety of ways to employ slicing to make this last case
 work:
>>> a, b, c = string[0], string[1], string[2:] # Index and slice
>>> a, b, c
('S', 'P', 'AM')

>>> a, b, c = list(string[:2]) + [string[2:]] # Slice and concatenate
>>> a, b, c
('S', 'P', 'AM')

>>> a, b = string[:2] # Same, but simpler
>>> c = string[2:]
>>> a, b, c
('S', 'P', 'AM')

>>> (a, b), c = string[:2], string[2:] # Nested sequences
>>> a, b, c
('S', 'P', 'AM')
As the last example in this interaction demonstrates, we can
 even assign nested sequences, and Python unpacks
 their parts according to their shape, as expected. In this case, we
 are assigning a tuple of two items, where the first item is a nested
 sequence (a string), exactly as though we had coded it this
 way:
>>> ((a, b), c) = ('SP', 'AM') # Paired by shape and position
>>> a, b, c
('S', 'P', 'AM')
Python pairs the first string on the right ('SP') with the first tuple on the left
 ((a, b)) and assigns one character
 at a time, before assigning the entire second string ('AM') to the variable c all at once. In this event, the
 sequence-nesting shape of the object on the left must match that of
 the object on the right. Nested sequence assignment like this is
 somewhat rare to see, but it can be convenient for picking out the
 parts of data structures with known shapes.
For example, we’ll see in Chapter 13
 that this technique also works in for loops, because loop items are assigned
 to the target given in the loop header:
for (a, b, c) in [(1, 2, 3), (4, 5, 6)]: ... # Simple tuple assignment

for ((a, b), c) in [((1, 2), 3), ((4, 5), 6)]: ... # Nested tuple assignment
In a note in Chapter 18, we’ll also see that
 this nested tuple (really, sequence) unpacking assignment form works
 for function argument lists in Python 2.X (though not in 3.X), because
 function arguments are passed by assignment as well:
def f(((a, b), c)): ... # For arguments too in Python 2.X, but not 3.X
f(((1, 2), 3))
Sequence-unpacking assignments also give rise to another common
 coding idiom in Python—assigning an integer series to a set of
 variables:
>>> red, green, blue = range(3)
>>> red, blue
(0, 2)
This initializes the three names to the integer codes 0, 1, and
 2, respectively (it’s Python’s
 equivalent of the enumerated data types you may
 have seen in other languages). To make sense of this, you need to know
 that the range built-in
 function generates a list of successive integers (in 3.X only, it
 requires a list around it if you
 wish to display its values all at once like this):
>>> list(range(3)) # list() required in Python 3.X only
[0, 1, 2]
This call was previewed briefly in Chapter 4; because range is commonly used in for loops, we’ll
 say more about it in Chapter 13.
Another place you may see a tuple assignment at work is for
 splitting a sequence into its front and the rest in loops like
 this:
>>> L = [1, 2, 3, 4]
>>> while L:
... front, L = L[0], L[1:] # See next section for 3.X * alternative
... print(front, L)
...
1 [2, 3, 4]
2 [3, 4]
3 [4]
4 []
The tuple assignment in the loop here could be coded as the
 following two lines instead, but it’s often more convenient to string
 them together:
... front = L[0]
... L = L[1:]
Notice that this code is using the list as a sort of stack data
 structure, which can often also be achieved with the append and pop methods of list objects; here, front = L.pop(0) would have much the same
 effect as the tuple assignment statement, but it would be an in-place
 change. We’ll learn more about while loops, and other (often better) ways
 to step through a sequence with for loops, in
 Chapter 13.

Extended Sequence Unpacking in Python 3.X
The prior section demonstrated how to use manual slicing to make
 sequence assignments more general. In Python 3.X (but not 2.X), sequence
 assignment has been generalized to make this easier. In short, a single
 starred name, *X, can be used in the assignment target in
 order to specify a more general matching against the sequence—the
 starred name is assigned a list, which collects all items in the
 sequence not assigned to other names. This is especially handy for
 common coding patterns such as splitting a sequence into its “front” and
 “rest,” as in the preceding section’s last example.
Extended unpacking in action
Let’s look at an example. As we’ve seen, sequence assignments
 normally require exactly as many names in the target on the left as
 there are items in the subject on the right. We get an error if the
 lengths disagree in both 2.X and 3.X (unless we manually sliced on the
 right, as shown in the prior section):
C:\code> c:\python33\python
>>> seq = [1, 2, 3, 4]

>>> a, b, c, d = seq
>>> print(a, b, c, d)
1 2 3 4

>>> a, b = seq
ValueError: too many values to unpack (expected 2)
In Python 3.X, though, we can use a single starred name in the
 target to match more generally. In the following continuation of our
 interactive session, a matches the
 first item in the sequence, and b
 matches the rest:
>>> a, *b = seq
>>> a
1
>>> b
[2, 3, 4]
When a starred name is used, the number of items in the target
 on the left need not match the length of the subject sequence. In
 fact, the starred name can appear anywhere in the target. For
 instance, in the next interaction b
 matches the last item in the sequence, and a matches everything before the last:
>>> *a, b = seq
>>> a
[1, 2, 3]
>>> b
4
When the starred name appears in the middle, it collects
 everything between the other names listed. Thus, in the following
 interaction a and c are assigned the first and last items, and
 b gets everything in between
 them:
>>> a, *b, c = seq
>>> a
1
>>> b
[2, 3]
>>> c
4
More generally, wherever the starred name shows up, it will be
 assigned a list that collects every unassigned name at that
 position:
>>> a, b, *c = seq
>>> a
1
>>> b
2
>>> c
[3, 4]
Naturally, like normal sequence assignment, extended sequence
 unpacking syntax works for any sequence types (really, again, any
 iterable), not just lists. Here it is unpacking
 characters in a string and a range
 (an iterable in 3.X):
>>> a, *b = 'spam'
>>> a, b
('s', ['p', 'a', 'm'])

>>> a, *b, c = 'spam'
>>> a, b, c
('s', ['p', 'a'], 'm')

>>> a, *b, c = range(4)
>>> a, b, c
(0, [1, 2], 3)
This is similar in spirit to slicing, but not exactly the same—a
 sequence unpacking assignment always returns a
 list for matched items, whereas slicing
 returns a sequence of the same type as the object sliced:
>>> S = 'spam'

>>> S[0], S[1:] # Slices are type-specific, * assignment always returns a list
('s', 'pam')

>>> S[0], S[1:3], S[3]
('s', 'pa', 'm')
Given this extension in 3.X, as long as we’re processing a list
 the last example of the prior section becomes even simpler, since we
 don’t have to manually slice to get the first and rest of the
 items:
>>> L = [1, 2, 3, 4]
>>> while L:
... front, *L = L # Get first, rest without slicing
... print(front, L)
...
1 [2, 3, 4]
2 [3, 4]
3 [4]
4 []

Boundary cases
Although extended sequence unpacking is flexible, some boundary
 cases are worth noting. First, the starred name may match just a
 single item, but is always assigned a list:
>>> seq = [1, 2, 3, 4]

>>> a, b, c, *d = seq
>>> print(a, b, c, d)
1 2 3 [4]
Second, if there is nothing left to match the starred name, it
 is assigned an empty list, regardless of where it appears. In the
 following, a, b, c, and
 d have matched every item in the
 sequence, but Python assigns e an
 empty list instead of treating this as an error case:
>>> a, b, c, d, *e = seq
>>> print(a, b, c, d, e)
1 2 3 4 []

>>> a, b, *e, c, d = seq
>>> print(a, b, c, d, e)
1 2 3 4 []
Finally, errors can still be triggered if there is more than one
 starred name, if there are too few values and no star (as before), and
 if the starred name is not itself coded inside a sequence:
>>> a, *b, c, *d = seq
SyntaxError: two starred expressions in assignment

>>> a, b = seq
ValueError: too many values to unpack (expected 2)

>>> *a = seq
SyntaxError: starred assignment target must be in a list or tuple

>>> *a, = seq
>>> a
[1, 2, 3, 4]

A useful convenience
Keep in mind that extended sequence unpacking assignment is just
 a convenience. We can usually achieve the same effects with explicit
 indexing and slicing (and in fact must in Python 2.X), but extended
 unpacking is simpler to code. The common “first, rest” splitting
 coding pattern, for example, can be coded either way, but slicing
 involves extra work:
>>> seq
[1, 2, 3, 4]

>>> a, *b = seq # First, rest
>>> a, b
(1, [2, 3, 4])

>>> a, b = seq[0], seq[1:] # First, rest: traditional
>>> a, b
(1, [2, 3, 4])
The also-common “rest, last” splitting pattern can similarly be
 coded either way, but the new extended unpacking syntax requires
 noticeably fewer keystrokes:
>>> *a, b = seq # Rest, last
>>> a, b
([1, 2, 3], 4)

>>> a, b = seq[:-1], seq[-1] # Rest, last: traditional
>>> a, b
([1, 2, 3], 4)
Because it is not only simpler but, arguably, more natural,
 extended sequence unpacking syntax will likely become widespread in
 Python code over time.

Application to for loops
Because the loop variable in the for loop statement can be any assignment target, extended sequence
 assignment works here too. We met the for loop iteration tool briefly in Chapter 4 and will study it
 formally in Chapter 13. In Python 3.X,
 extended assignments may show up after the word for, where a simple variable name is more
 commonly used:
for (a, *b, c) in [(1, 2, 3, 4), (5, 6, 7, 8)]:
 ...
When used in this context, on each iteration Python simply
 assigns the next tuple of values to the tuple of names. On the first
 loop, for example, it’s as if we’d run the following assignment
 statement:
a, *b, c = (1, 2, 3, 4) # b gets [2, 3]
The names a, b, and c
 can be used within the loop’s code to reference the extracted
 components. In fact, this is really not a special case at all, but
 just an instance of general assignment at work. As we saw earlier in
 this chapter, we can do the same thing with simple tuple assignment in
 both Python 2.X and 3.X:
for (a, b, c) in [(1, 2, 3), (4, 5, 6)]: # a, b, c = (1, 2, 3), ...
And we can always emulate 3.X’s extended assignment behavior in
 2.X by manually slicing:
for all in [(1, 2, 3, 4), (5, 6, 7, 8)]:
 a, b, c = all[0], all[1:3], all[3]
Since we haven’t learned enough to get more detailed about the
 syntax of for loops, we’ll return
 to this topic in Chapter 13.

Multiple-Target Assignments
A multiple-target assignment simply assigns all the given names to the
 object all the way to the right. The following, for example, assigns the
 three variables a, b, and c to
 the string 'spam':
>>> a = b = c = 'spam'
>>> a, b, c
('spam', 'spam', 'spam')
This form is equivalent to (but easier to code than) these three
 assignments:
>>> c = 'spam'
>>> b = c
>>> a = b
Multiple-target assignment and shared references
Keep in mind that there is just one object here, shared by all three variables
 (they all wind up pointing to the same object in memory). This
 behavior is fine for immutable types—for example, when initializing a
 set of counters to zero (recall that variables must be assigned before
 they can be used in Python, so you must initialize counters to zero
 before you can start adding to them):
>>> a = b = 0
>>> b = b + 1
>>> a, b
(0, 1)
Here, changing b only changes
 b because numbers do not support
 in-place changes. As long as the object assigned is immutable, it’s
 irrelevant if more than one name references it.
As usual, though, we have to be more cautious when initializing
 variables to an empty mutable object such as a list or
 dictionary:
>>> a = b = []
>>> b.append(42)
>>> a, b
([42], [42])
This time, because a and
 b reference the same object,
 appending to it in place through b
 will impact what we see through a
 as well. This is really just another example of the shared reference
 phenomenon we first met in Chapter 6. To avoid the issue,
 initialize mutable objects in separate statements instead, so that
 each creates a distinct empty object by running a distinct literal
 expression:
>>> a = []
>>> b = [] # a and b do not share the same object
>>> b.append(42)
>>> a, b
([], [42])
A tuple assignment like the following has the same effect—by
 running two list expressions, it creates two distinct objects:
>>> a, b = [], [] # a and b do not share the same object

Augmented Assignments
Beginning with Python 2.0, the set of additional assignment statement formats listed in
 Table 11-2 became available.
 Known as augmented assignments, and borrowed from
 the C language, these formats are mostly just shorthand. They imply the
 combination of a binary expression and an assignment. For instance, the
 following two formats are roughly equivalent:
X = X + Y # Traditional form
X += Y # Newer augmented form
Table 11-2. Augmented assignment statements	X += Y
	X &= Y
	X −= Y
	X |= Y

	X *= Y
	X ^= Y
	X /= Y
	X >>= Y

	X %= Y
	X <<= Y
	X **= Y
	X //= Y

Augmented assignment works on any type that supports the implied
 binary expression. For example, here are two ways to add 1 to a
 name:
>>> x = 1
>>> x = x + 1 # Traditional
>>> x
2
>>> x += 1 # Augmented
>>> x
3
When applied to a sequence such as a string, the augmented form
 performs concatenation instead. Thus, the second line here is equivalent
 to typing the longer S = S +
 "SPAM":
>>> S = "spam"
>>> S += "SPAM" # Implied concatenation
>>> S
'spamSPAM'
As shown in Table 11-2,
 there are analogous augmented assignment forms for most Python binary
 expression operators (i.e., operators with values on the left and
 right side). For instance, X *= Y
 multiplies and assigns, X >>= Y
 shifts right and assigns, and so on. X //=
 Y (for floor division) was added in version 2.2.
Augmented assignments have three advantages:1
	There’s less for you to type. Need I say more?

	The left side has to be evaluated only once. In X += Y, X may be a complicated object expression.
 In the augmented form, its code must be run only once. However, in
 the long form, X = X + Y,
 X appears twice and must be run
 twice. Because of this, augmented assignments usually run
 faster.

	The optimal technique is automatically chosen. That is, for
 objects that support in-place changes, the augmented forms
 automatically perform in-place change operations instead of slower
 copies.

The last point here requires a bit more explanation. For augmented
 assignments, in-place operations may be applied for mutable objects as
 an optimization. Recall that lists can be extended in a variety of ways.
 To add a single item to the end of a list, we can concatenate or call
 append:
>>> L = [1, 2]
>>> L = L + [3] # Concatenate: slower
>>> L
[1, 2, 3]
>>> L.append(4) # Faster, but in place
>>> L
[1, 2, 3, 4]
And to add a set of items to the end, we can either concatenate
 again or call the list extend
 method:2
>>> L = L + [5, 6] # Concatenate: slower
>>> L
[1, 2, 3, 4, 5, 6]
>>> L.extend([7, 8]) # Faster, but in place
>>> L
[1, 2, 3, 4, 5, 6, 7, 8]
In both cases, concatenation is less prone to the side effects of
 shared object references but will generally run slower than the in-place
 equivalent. Concatenation operations must create a new object, copy in
 the list on the left, and then copy in the list on the right. By
 contrast, in-place method calls simply add items at the end of a memory
 block (it can be a bit more complicated than that internally, but this
 description suffices).
When we use augmented assignment to extend a list, we can largely
 forget these details—Python automatically calls the quicker extend method instead of using the slower
 concatenation operation implied by +:
>>> L += [9, 10] # Mapped to L.extend([9, 10])
>>> L
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Note however, that because of this equivalence += for a list is not exactly the same as a
 + and = in all cases—for lists += allows arbitrary sequences (just like
 extend), but concatenation normally
 does not:
>>> L = []
>>> L += 'spam' # += and extend allow any sequence, but + does not!
>>> L
['s', 'p', 'a', 'm']
>>> L = L + 'spam'
TypeError: can only concatenate list (not "str") to list
Augmented assignment and shared references
This behavior is usually what we want, but notice that it implies that the += is an in-place
 change for lists; thus, it is not exactly like + concatenation, which always makes a
 new object. As for all shared reference cases,
 this difference might matter if other names reference the object being
 changed:
>>> L = [1, 2]
>>> M = L # L and M reference the same object
>>> L = L + [3, 4] # Concatenation makes a new object
>>> L, M # Changes L but not M
([1, 2, 3, 4], [1, 2])

>>> L = [1, 2]
>>> M = L
>>> L += [3, 4] # But += really means extend
>>> L, M # M sees the in-place change too!
([1, 2, 3, 4], [1, 2, 3, 4])
This only matters for mutables like lists and dictionaries, and
 it is a fairly obscure case (at least, until it impacts your code!).
 As always, make copies of your mutable objects if you need to break
 the shared reference structure.

Variable Name Rules
Now that we’ve explored assignment statements, it’s time to get more
 formal about the use of variable names. In Python, names come into
 existence when you assign values to them, but there are a few rules to
 follow when choosing names for the subjects of your programs:
	Syntax: (underscore or letter) + (any number of letters,
 digits, or underscores)
	Variable names must start with an underscore or letter,
 which can be followed by any number of letters, digits, or
 underscores. _spam, spam, and Spam_1 are legal names, but 1_Spam, spam$, and @#! are not.

	Case matters: SPAM is not
 the same as spam
	Python always pays attention to case in programs, both in
 names you create and in reserved words. For instance, the names
 X and x refer to two different variables. For
 portability, case also matters in the names of imported module
 files, even on platforms where the filesystems are
 case-insensitive. That way, your imports still work after programs
 are copied to differing platforms.

	Reserved words are off-limits
	Names you define cannot be the same as words that mean special things in the
 Python language. For instance, if you try to use a variable name
 like class, Python will raise a
 syntax error, but klass and
 Class work fine. Table 11-3 lists the words that are
 currently reserved (and hence off-limits for names of your own) in
 Python.

Table 11-3. Python 3.X reserved words	False
	class
	finally
	is
	return

	None
	continue
	for
	lambda
	try

	True
	def
	from
	nonlocal
	while

	and
	del
	global
	not
	with

	as
	elif
	if
	or
	yield

	assert
	else
	import
	pass
	
	break
	except
	in
	raise
	

Table 11-3 is specific to Python
 3.X. In Python 2.X, the set of reserved words differs slightly:
	print is a reserved word,
 because printing is a statement, not a built-in function (more on
 this later in this chapter).

	exec is a reserved word,
 because it is a statement, not a built-in function.

	nonlocal is not a reserved
 word because this statement is not available.

In older Pythons the story is also more or less the same, with a
 few variations:
	with and as were not reserved until 2.6, when
 context managers were officially enabled.

	yield was not reserved
 until Python 2.3, when generator functions came online.

	yield morphed from
 statement to expression in 2.5, but it’s still a reserved word, not
 a built-in function.

As you can see, most of Python’s reserved words are all lowercase.
 They are also all truly reserved—unlike names in the built-in scope that
 you will meet in the next part of this book, you cannot redefine
 reserved words by assignment (e.g., and =
 1 results in a syntax error).3
Besides being of mixed case, the first three entries in Table 11-3, True, False, and None, are somewhat unusual in meaning—they
 also appear in the built-in scope of Python described in Chapter 17, and they are technically names assigned to objects.
 In 3.X they are truly reserved in all other senses, though, and cannot
 be used for any other purpose in your script other than that of the
 objects they represent. All the other reserved words are hardwired into
 Python’s syntax and can appear only in the specific contexts for which
 they are intended.
Furthermore, because module names in import statements become variables in your
 scripts, variable name constraints extend to your module
 filenames too. For instance, you can code files called
 and.py and my-code.py and run them as top-level scripts,
 but you cannot import them: their names without the “.py” extension
 become variables in your code and so must follow
 all the variable rules just outlined. Reserved words are off-limits, and
 dashes won’t work, though underscores will. We’ll revisit this module
 idea in Part V of this book.
Python’s Deprecation Protocol
It is interesting to note how reserved word changes are gradually phased
 into the language. When a new feature might break existing code,
 Python normally makes it an option and begins issuing “deprecation”
 warnings one or more releases before the feature is officially
 enabled. The idea is that you should have ample time to notice the
 warnings and update your code before migrating to the new release.
 This is not true for major new releases like 3.0 (which breaks
 existing code freely), but it is generally true in other cases.
For example, yield was an
 optional extension in Python 2.2, but is a standard keyword as of 2.3.
 It is used in conjunction with generator functions. This was one of a
 small handful of instances where Python broke with backward
 compatibility. Still, yield was
 phased in over time: it began generating deprecation warnings in 2.2
 and was not enabled until 2.3.
Similarly, in Python 2.6, the words with and as become new reserved words for use in
 context managers (a newer form of exception handling). These two words
 are not reserved in 2.5, unless the context manager feature is turned
 on manually with a from__future__import (discussed later in
 this book). When used in 2.5, with
 and as generate warnings about the
 upcoming change—except in the version of IDLE in Python 2.5, which
 appears to have enabled this feature for you (that is, using these
 words as variable names does generate errors in 2.5, but only in its
 version of the IDLE GUI).

Naming conventions
Besides these rules, there is also a set of naming
 conventions—rules that are not required but are
 followed in normal practice. For instance, because names with two
 leading and trailing underscores (e.g., __name__) generally have special meaning to
 the Python interpreter, you should avoid this pattern for your own
 names. Here is a list of the conventions Python follows:
	Names that begin with a single underscore (_X) are not imported by a from module import * statement
 (described in Chapter 23).

	Names that have two leading and trailing underscores
 (__X__) are system-defined
 names that have special meaning to the interpreter.

	Names that begin with two underscores and do not end with
 two more (__X) are localized
 (“mangled”) to enclosing classes (see the discussion of
 pseudoprivate attributes in Chapter 31).

	The name that is just a single underscore (_) retains the result of the last
 expression when you are working interactively.

In addition to these Python interpreter conventions, there are
 various other conventions that Python programmers usually follow. For
 instance, later in the book we’ll see that class names commonly start
 with an uppercase letter and module names with a lowercase letter, and
 that the name self, though not
 reserved, usually has a special role in classes. In Chapter 17 we’ll also study another, larger category of names
 known as the built-ins, which are predefined but
 not reserved (and so can be reassigned: open
 = 42 works, though sometimes you might wish it
 didn’t!).

Names have no type, but objects do
This is mostly review, but remember that it’s crucial to keep
 Python’s distinction between names and objects clear. As described in
 Chapter 6, objects have a type
 (e.g., integer, list) and may be mutable or not. Names (a.k.a.
 variables), on the other hand, are always just references to objects;
 they have no notion of mutability and have no associated type
 information, apart from the type of the object they happen to
 reference at a given point in time.
Thus, it’s OK to assign the same name to different kinds of
 objects at different times:
>>> x = 0 # x bound to an integer object
>>> x = "Hello" # Now it's a string
>>> x = [1, 2, 3] # And now it's a list
In later examples, you’ll see that this generic nature of names
 can be a decided advantage in Python programming. In Chapter 17, you’ll also learn that names also live in
 something called a scope, which defines where
 they can be used; the place where you assign a name determines where
 it is visible.4
Note
For additional naming suggestions, see the discussion of
 naming conventions in Python’s semi-official style guide, known as
 PEP 8. This guide is available at http://www.python.org/dev/peps/pep-0008, or via a web
 search for “Python PEP 8.” Technically, this document formalizes
 coding standards for Python library code.
Though useful, the usual caveats about coding standards apply
 here. For one thing, PEP 8 comes with more detail than you are
 probably ready for at this point in the book. And frankly, it has
 become more complex, rigid, and subjective than it may need to
 be—some of its suggestions are not at all universally accepted or
 followed by Python programmers doing real work. Moreover, some of
 the most prominent companies using Python today have adopted coding
 standards of their own that differ.
PEP 8 does codify useful rule-of-thumb Python knowledge,
 though, and it’s a great read for Python beginners, as long as you
 take its recommendations as guidelines, not gospel.

Expression Statements
In Python, you can use an expression as a statement, too—that is, on a line by itself.
 But because the result of the expression won’t be saved, it usually makes
 sense to do so only if the expression does something useful as a side
 effect. Expressions are commonly used as statements in two
 situations:
	For calls to functions and methods
	Some functions and methods do their work without returning a value. Such
 functions are sometimes called procedures in other
 languages. Because they don’t return values that you might be
 interested in retaining, you can call these functions with
 expression statements.

	For printing values at the interactive prompt
	Python echoes back the results of expressions typed at the interactive
 command line. Technically, these are expression statements, too;
 they serve as a shorthand for typing print statements.

Table 11-4 lists some
 common expression statement forms in Python. Calls to functions and
 methods are coded with zero or more argument objects (really, expressions
 that evaluate to objects) in parentheses, after the function/method
 name.
Table 11-4. Common Python expression statements	Operation	Interpretation
	spam(eggs, ham)
	Function
 calls

	spam.ham(eggs)
	Method calls

	spam
	Printing variables in the
 interactive interpreter

	print(a, b, c, sep='')
	Printing operations in
 Python 3.X

	yield x ** 2
	Yielding expression
 statements

The last two entries in Table 11-4 are somewhat special cases—as we’ll see later in this chapter, printing
 in Python 3.X is a function call usually coded on a line by itself, and
 the yield operation in generator
 functions (discussed in Chapter 20)
 is often coded as a statement as well. Both are really just instances of
 expression statements.
For instance, though you normally run a 3.X print call on a line by itself as an expression
 statement, it returns a value like any other function call (its return
 value is None, the default return value
 for functions that don’t return anything meaningful):
>>> x = print('spam') # print is a function call expression in 3.X
spam
>>> print(x) # But it is coded as an expression statement
None
Also keep in mind that although expressions can appear as statements
 in Python, statements cannot be used as expressions. A statement that is
 not an expression must generally appear on a line all by itself, not
 nested in a larger syntactic structure. For example, Python doesn’t allow
 you to embed assignment statements (=)
 in other expressions. The rationale for this is that it avoids common
 coding mistakes; you can’t accidentally change a variable by typing
 = when you really mean to use the
 == equality test. You’ll see how to
 code around this restriction when you meet the Python while loop in Chapter 13.
Expression Statements and In-Place Changes
This brings up another mistake that is common in Python work. Expression statements are often
 used to run list methods that change a list in place:
>>> L = [1, 2]
>>> L.append(3) # Append is an in-place change
>>> L
[1, 2, 3]
However, it’s not unusual for Python newcomers to code such an
 operation as an assignment statement instead, intending to assign
 L to the larger list:
>>> L = L.append(4) # But append returns None, not L
>>> print(L) # So we lose our list!
None
This doesn’t quite work, though. Calling an in-place change operation such as
 append, sort, or reverse on a list always changes the list in
 place, but these methods do not return the list they have changed;
 instead, they return the None object.
 Thus, if you assign such an operation’s result back to the variable
 name, you effectively lose the list (and it is probably
 garbage-collected in the process!).
The moral of the story is, don’t do this—call in-place change
 operations without assigning their results. We’ll revisit this
 phenomenon in the section “Common Coding Gotchas”
 because it can also appear in the context of some looping statements
 we’ll meet in later chapters.

Print Operations
In Python, print prints
 things—it’s simply a programmer-friendly interface to the standard output
 stream.
Technically, printing converts one or more objects to their textual
 representations, adds some minor formatting, and sends the resulting text
 to either standard output or another file-like stream. In a bit more
 detail, print is strongly bound up with
 the notions of files and streams in Python:
	File object methods
	In Chapter 9,
 we learned about file object methods that write text (e.g.,
 file.write(str)). Printing
 operations are similar, but more focused—whereas file write methods
 write strings to arbitrary files, print writes objects to the stdout stream by default, with some
 automatic formatting added. Unlike with file methods, there is no
 need to convert objects to strings when using print
 operations.

	Standard output stream
	The standard output stream (often known as stdout) is simply a default place to send
 a program’s text output. Along with the standard input and error
 streams, it’s one of three data connections created when your script
 starts. The standard output stream is usually mapped to the window
 where you started your Python program, unless it’s been redirected
 to a file or pipe in your operating system’s shell.
Because the standard output stream is available in Python as
 the stdout file object in
 the built-in sys
 module (i.e., sys.stdout), it’s
 possible to emulate print with
 file write method calls. However, print is noticeably easier to use and
 makes it easy to print text to other files and streams.

Printing is also one of the most visible places where Python 3.X and
 2.X have diverged. In fact, this divergence is usually the first reason
 that most 2.X code won’t run unchanged under 3.X. Specifically, the way
 you code print operations depends on which version of Python you
 use:
	In Python 3.X, printing is a built-in
 function, with keyword arguments for special modes.

	In Python 2.X, printing is a statement with
 specific syntax all its own.

Because this book covers both 3.X and 2.X, we will look at each form
 in turn here. If you are fortunate enough to be able to work with code
 written for just one version of Python, feel free to pick the section that
 is relevant to you. Because your needs may change, however, it probably
 won’t hurt to be familiar with both cases. Moreover, users of recent
 Python 2.X releases can also import and use 3.X’s flavor of printing in
 their Pythons if desired—both for its extra functionality and to ease
 future migration to 3.X.
The Python 3.X print Function
Strictly speaking, printing is not a separate statement form in 3.X. Instead, it is
 simply an instance of the expression statement we
 studied in the preceding section.
The print built-in function is
 normally called on a line of its own, because it doesn’t return any
 value we care about (technically, it returns None, as we saw in the preceding section).
 Because it is a normal function, though, printing in 3.X uses
 standard function-call syntax, rather than a
 special statement form. And because it provides special operation modes
 with keyword arguments, this form is both more general and supports
 future enhancements better.
By comparison, Python 2.X print
 statements have somewhat ad hoc syntax to support extensions such as
 end-of-line suppression and target files. Further, the 2.X statement
 does not support separator specification at all; in 2.X, you wind up
 building strings ahead of time more often than you do in 3.X. Rather
 than adding yet more ad hoc syntax, Python 3.X’s print takes a single,
 general approach that covers them all.
Call format
Syntactically, calls to the 3.X print function have the following form (the
 flush argument is new as of Python
 3.3):
print([object, ...][, sep=' '][, end='\n'][, file=sys.stdout][, flush=False])
In this formal notation, items in square brackets are optional
 and may be omitted in a given call, and values after = give argument defaults. In English, this
 built-in function prints the textual representation of one or more
 objects separated by the string
 sep and followed by the string
 end to the stream file, flushing buffered output or not per
 flush.
The sep, end, file, and (in 3.3 and later) flush parts, if present, must be given as
 keyword arguments—that is, you must use a special
 “name=value” syntax to pass the arguments by name instead of position.
 Keyword arguments are covered in depth in Chapter 18, but they’re straightforward to use. The
 keyword arguments sent to this call may appear in any left-to-right
 order following the objects to be printed, and they control the
 print operation:
	sep is a string inserted
 between each object’s text, which defaults to a single space if
 not passed; passing an empty string suppresses separators
 altogether.

	end is a string added at
 the end of the printed text, which defaults to a \n newline character if not passed.
 Passing an empty string avoids dropping down to the next output
 line at the end of the printed text—the next print will keep adding to the end of the
 current output line.

	file specifies the file,
 standard stream, or other file-like object to which the text will
 be sent; it defaults to the sys.stdout standard output stream if not
 passed. Any object with a file-like write(string) method may be passed, but real files
 should be already opened for output.

	flush, added in 3.3,
 defaults to False. It allows
 prints to mandate that their text be flushed through the output
 stream immediately to any waiting recipients. Normally, whether
 printed output is buffered in memory or not is determined by
 file; passing a true value to
 flush forcibly flushes the
 stream.

The textual representation of each object to be printed is obtained by passing
 the object to the str built-in call
 (or its equivalent inside Python); as we’ve seen, this built-in
 returns a “user friendly” display string for any object.5 With no arguments at all, the print function simply prints a newline
 character to the standard output stream, which usually displays a
 blank line.

The 3.X print function in action
Printing in 3.X is probably simpler than some of its details may
 imply. To illustrate, let’s run some quick examples. The following
 prints a variety of object types to the default standard output
 stream, with the default separator and end-of-line formatting added
 (these are the defaults because they are the most common use
 case):
C:\code> c:\python33\python
>>> print() # Display a blank line

>>> x = 'spam'
>>> y = 99
>>> z = ['eggs']
>>>
>>> print(x, y, z) # Print three objects per defaults
spam 99 ['eggs']
There’s no need to convert objects to strings here, as would be
 required for file write methods. By default, print calls add a space between the objects
 printed. To suppress this, send an empty string to the sep keyword argument, or send an alternative
 separator of your choosing:
>>> print(x, y, z, sep='') # Suppress separator
spam99['eggs']
>>>
>>> print(x, y, z, sep=', ') # Custom separator
spam, 99, ['eggs']
Also by default, print adds
 an end-of-line character to terminate the output line. You can
 suppress this and avoid the line break altogether by passing an empty
 string to the end keyword argument,
 or you can pass a different terminator of your own including a
 \n character to break the line
 manually if desired (the second of the following is two statements on
 one line, separated by a semicolon):
>>> print(x, y, z, end='') # Suppress line break
spam 99 ['eggs']>>>
>>>
>>> print(x, y, z, end=''); print(x, y, z) # Two prints, same output line
spam 99 ['eggs']spam 99 ['eggs']
>>> print(x, y, z, end='...\n') # Custom line end
spam 99 ['eggs']...
>>>
You can also combine keyword arguments to specify both
 separators and end-of-line strings—they may appear in any order but
 must appear after all the objects being printed:
>>> print(x, y, z, sep='...', end='!\n') # Multiple keywords
spam...99...['eggs']!
>>> print(x, y, z, end='!\n', sep='...') # Order doesn't matter
spam...99...['eggs']!
Here is how the file keyword
 argument is used—it directs the printed text to an open output file or
 other compatible object for the duration of the single print (this is really a form of stream
 redirection, a topic we will revisit later in this section):
>>> print(x, y, z, sep='...', file=open('data.txt', 'w')) # Print to a file
>>> print(x, y, z) # Back to stdout
spam 99 ['eggs']
>>> print(open('data.txt').read()) # Display file text
spam...99...['eggs']
Finally, keep in mind that the separator and end-of-line options
 provided by print operations are just conveniences. If you need to
 display more specific formatting, don’t print this way. Instead, build
 up a more complex string ahead of time or within the print itself using the string tools we met
 in Chapter 7, and print the string all at
 once:
>>> text = '%s: %-.4f, %05d' % ('Result', 3.14159, 42)
>>> print(text)
Result: 3.1416, 00042
>>> print('%s: %-.4f, %05d' % ('Result', 3.14159, 42))
Result: 3.1416, 00042
As we’ll see in the next section, almost everything we’ve just
 seen about the 3.X print function
 also applies directly to 2.X print
 statements—which makes sense, given that the function was intended to
 both emulate and improve upon 2.X printing support.

The Python 2.X print Statement
As mentioned earlier, printing in Python 2.X uses a statement with unique and
 specific syntax, rather than a built-in function. In practice, though,
 2.X printing is mostly a variation on a theme; with the exception of
 separator strings (which are supported in 3.X but not 2.X) and flushes
 on prints (available as of 3.3 only), everything we can do with the 3.X
 print function has a direct
 translation to the 2.X print
 statement.
Statement forms
Table 11-5 lists the
 print statement’s forms in Python
 2.X and gives their Python 3.X print function equivalents for reference.
 Notice that the comma is significant in print statements—it separates objects to be
 printed, and a trailing comma suppresses the end-of-line character
 normally added at the end of the printed text (not to be confused with
 tuple syntax!). The >>
 syntax, normally used as a bitwise right-shift operation, is used here
 as well, to specify a target output stream other than the sys.stdout default.
Table 11-5. Python 2.X print statement forms	Python 2.X
 statement	Python 3.X
 equivalent	Interpretation
	print x, y
	print(x, y)
	Print objects’ textual
 forms to sys.stdout; add a
 space between the items and an end-of-line at the
 end

	print x, y,
	print(x, y, end='')
	Same, but don’t add
 end-of-line at end of text

	print >> afile, x, y
	print(x, y, file=afile)
	Send text to afile.write, not to sys.stdout.write

The 2.X print statement in action
Although the 2.X print
 statement has more unique syntax than the 3.X function, it’s similarly
 easy to use. Let’s turn to some basic examples again. The 2.X print statement adds a space between the
 items separated by commas and by default adds a line break at the end
 of the current output line:
C:\code> c:\python27\python
>>> x = 'a'
>>> y = 'b'
>>> print x, y
a b
This formatting is just a default; you can choose to use it or
 not. To suppress the line break so you can add more text to the
 current line later, end your print
 statement with a comma, as shown in the second line of Table 11-5 (the following uses a
 semicolon to separate two statements on one line again):
>>> print x, y,; print x, y
a b a b
To suppress the space between items, again, don’t print this
 way. Instead, build up an output string using the string concatenation
 and formatting tools covered in Chapter 7, and print the string all at
 once:
>>> print x + y
ab
>>> print '%s...%s' % (x, y)
a...b
As you can see, apart from their special syntax for usage modes,
 2.X print statements are roughly as
 simple to use as 3.X’s function. The next section uncovers the way
 that files are specified in 2.X prints.

Print Stream Redirection
In both Python 3.X and 2.X, printing sends text to the standard output stream by default.
 However, it’s often useful to send it elsewhere—to a text file, for
 example, to save results for later use or testing purposes. Although
 such redirection can be accomplished in system shells outside Python
 itself, it turns out to be just as easy to redirect a script’s streams
 from within the script.
The Python “hello world” program
Let’s start off with the usual (and largely pointless) language
 benchmark—the “hello world” program. To print a “hello world” message
 in Python, simply print the string per your version’s print
 operation:
>>> print('hello world') # Print a string object in 3.X
hello world

>>> print 'hello world' # Print a string object in 2.X
hello world
Because expression results are echoed on the interactive command
 line, you often don’t even need to use a print statement there—simply type the
 expressions you’d like to have printed, and their results are echoed
 back:
>>> 'hello world' # Interactive echoes
'hello world'
This code isn’t exactly an earth-shattering piece of software
 mastery, but it serves to illustrate printing behavior. Really, the
 print operation is just an
 ergonomic feature of Python—it provides a simple interface to the sys.stdout object, with a bit of default
 formatting. In fact, if you enjoy working harder than you must, you
 can also code print operations this way (per Chapters 4 and 9, a 3.X-only return value is omitted
 here):
>>> import sys # Printing the hard way
>>> sys.stdout.write('hello world\n')
hello world
This code explicitly calls the write method of sys.stdout—an attribute preset when Python
 starts up to an open file object connected to the output stream. The
 print operation hides most of those
 details, providing a simple tool for simple printing tasks.

Manual stream redirection
So, why did I just show you the hard way to print? The sys.stdout print equivalent turns out to be
 the basis of a common technique in Python. In general, print and sys.stdout are directly related as follows.
 This statement:
print(X, Y) # Or, in 2.X: print X, Y
is equivalent to the longer:
import sys
sys.stdout.write(str(X) + ' ' + str(Y) + '\n')
which manually performs a string conversion with str, adds a separator and newline with
 +, and calls the output stream’s
 write method. Which would you
 rather code? (He says, hoping to underscore the programmer-friendly
 nature of prints...)
Obviously, the long form isn’t all that useful for printing by
 itself. However, it is useful to know that this is exactly what
 print operations do because it is
 possible to reassign sys.stdout to something different from the
 standard output stream. In other words, this equivalence provides a
 way of making your print operations
 send their text to other places. For example:
import sys
sys.stdout = open('log.txt', 'a') # Redirects prints to a file
...
print(x, y, x) # Shows up in log.txt
Here, we reset sys.stdout to
 a manually opened file named log.txt, located in the script’s working
 directory and opened in append mode (so we add to its current
 content). After the reset, every print operation anywhere in the program will
 write its text to the end of the file log.txt instead of to the original output
 stream. The print operations are
 happy to keep calling sys.stdout’s
 write method, no matter what
 sys.stdout happens to refer to.
 Because there is just one sys
 module in your process, assigning sys.stdout this way will redirect every
 print anywhere in your
 program.
In fact, as the sidebar “Why You Will Care: print and stdout” will explain,
 you can even reset sys.stdout to an
 object that isn’t a file at all, as long as it has the expected
 interface: a method named write to
 receive the printed text string argument. When that object is a
 class, printed text can be routed and processed
 arbitrarily per a write method you
 code yourself.
This trick of resetting the output stream might be more useful
 for programs originally coded with print statements. If you know that output
 should go to a file to begin with, you can always call file write
 methods instead. To redirect the output of a print-based program, though, resetting
 sys.stdout provides a convenient
 alternative to changing every print
 statement or using system shell-based redirection syntax.
In other roles, streams may be reset to objects that display
 them in pop-up windows in GUIs, colorize them in IDEs like IDLE, and
 so on. It’s a general technique.

Automatic stream redirection
Although redirecting printed text by assigning sys.stdout is a useful tool, a potential
 problem with the last section’s code is that there is no direct way to
 restore the original output stream should you need to switch back
 after printing to a file. Because sys.stdout is just a normal file object,
 though, you can always save it and restore it if needed:6
C:\code> c:\python33\python
>>> import sys
>>> temp = sys.stdout # Save for restoring later
>>> sys.stdout = open('log.txt', 'a') # Redirect prints to a file
>>> print('spam') # Prints go to file, not here
>>> print(1, 2, 3)
>>> sys.stdout.close() # Flush output to disk
>>> sys.stdout = temp # Restore original stream

>>> print('back here') # Prints show up here again
back here
>>> print(open('log.txt').read()) # Result of earlier prints
spam
1 2 3
As you can see, though, manual saving and restoring of the
 original output stream like this involves quite a bit of extra work.
 Because this crops up fairly often, a print extension is available to make it
 unnecessary.
In 3.X, the file keyword
 allows a single print call to send
 its text to the write method of a
 file (or file-like object), without actually resetting sys.stdout. Because the redirection is
 temporary, normal print calls keep
 printing to the original output stream. In 2.X, a print statement that begins with a >> followed by an output file object
 (or other compatible object) has the same effect. For example, the
 following again sends printed text to a file named log.txt:
log = open('log.txt', 'a') # 3.X
print(x, y, z, file=log) # Print to a file-like object
print(a, b, c) # Print to original stdout

log = open('log.txt', 'a') # 2.X
print >> log, x, y, z # Print to a file-like object
print a, b, c # Print to original stdout
These redirected forms of print are handy if you need to print to
 both files and the standard output stream in the
 same program. If you use these forms, however, be sure to give them a
 file object (or an object that has the same write method as a file object), not a file’s
 name string. Here is the technique in action:
C:\code> c:\python33\python
>>> log = open('log.txt', 'w')
>>> print(1, 2, 3, file=log) # For 2.X: print >> log, 1, 2, 3
>>> print(4, 5, 6, file=log)
>>> log.close()
>>> print(7, 8, 9) # For 2.X: print 7, 8, 9
7 8 9
>>> print(open('log.txt').read())
1 2 3
4 5 6
These extended forms of print
 are also commonly used to print error messages to the standard error
 stream, available to your script as the preopened file object sys.stderr.
 You can either use its file write
 methods and format the output manually, or print with redirection
 syntax:
>>> import sys
>>> sys.stderr.write(('Bad!' * 8) + '\n')
Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!

>>> print('Bad!' * 8, file=sys.stderr) # In 2.X: print >> sys.stderr, 'Bad!' * 8
Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!
Now that you know all about print redirections, the equivalence
 between printing and file write
 methods should be fairly obvious. The following interaction prints
 both ways in 3.X, then redirects the output to an external file to
 verify that the same text is printed:
>>> X = 1; Y = 2
>>> print(X, Y) # Print: the easy way
1 2
>>> import sys # Print: the hard way
>>> sys.stdout.write(str(X) + ' ' + str(Y) + '\n')
1 2
4
>>> print(X, Y, file=open('temp1', 'w')) # Redirect text to file

>>> open('temp2', 'w').write(str(X) + ' ' + str(Y) + '\n') # Send to file manually
4
>>> print(open('temp1', 'rb').read()) # Binary mode for bytes
b'1 2\r\n'
>>> print(open('temp2', 'rb').read())
b'1 2\r\n'
As you can see, unless you happen to enjoy typing, print
 operations are usually the best option for displaying text. For
 another example of the equivalence between prints and file writes,
 watch for a 3.X print function
 emulation example in Chapter 18; it uses this code
 pattern to provide a general 3.X print function equivalent for use in
 Python 2.X.

Version-Neutral Printing
Finally, if you need your prints to work on both
 Python lines, you have some options. This is true whether you’re writing
 2.X code that strives for 3.X compatibility, or 3.X code that aims to
 support 2.X too.
2to3 converter
For one, you can code 2.X print statements and let 3.X’s 2to3 conversion script translate them to 3.X
 function calls automatically. See the Python 3.X manuals for more
 details about this script; it attempts to translate 2.X code to run
 under 3.X—a useful tool, but perhaps more than you want to make just
 your print operations version-neutral. A related tool named 3to2 attempts
 to do the inverse: convert 3.X code to run on 2.X; see Appendix C for more information.

Importing from __future__
Alternatively, you can code 3.X print function calls in code to be run by 2.X, by enabling the function
 call variant with a statement like the following coded at the top of a
 script, or anywhere in an interactive session:
from __future__ import print_function
This statement changes 2.X to support 3.X’s print functions exactly. This way, you can
 use 3.X print features and won’t have to change your prints if you
 later migrate to 3.X. Two usage notes here:
	This statement is simply ignored if it
 appears in code run by 3.X—it doesn’t hurt if included in 3.X code
 for 2.X compatibility.

	This statement must appear at the top of each
 file that prints in 2.X—because it modifies that parser
 for a single file only, it’s not enough to import another file
 that includes this statement.

Neutralizing display differences with code
Also keep in mind that simple prints, like those in the first row of Table 11-5, work in
 either version of Python—because any expression
 may be enclosed in parentheses, we can always pretend to be calling a
 3.X print function in 2.X by adding
 outer parentheses. The main downside to this is that it makes a
 tuple out of your printed objects if there are
 more than one, or none—they will print with extra enclosing
 parentheses. In 3.X, for example, any number of objects may be listed
 in the call’s parentheses:
C:\code> c:\python33\python
>>> print('spam') # 3.X print function call syntax
spam
>>> print('spam', 'ham', 'eggs') # These are multiple arguments
spam ham eggs
The first of these works the same in 2.X, but the second
 generates a tuple in the output:
C:\code> c:\python27\python
>>> print('spam') # 2.X print statement, enclosing parens
spam
>>> print('spam', 'ham', 'eggs') # This is really a tuple object!
('spam', 'ham', 'eggs')
The same applies when there are no objects
 printed to force a line-feed: 2.X shows a tuple, unless you print an
 empty string:
c:\code> py −2
>> print() # This is just a line-feed on 3.X
()
>>> print('') # This is a line-feed in both 2.X and 3.X
Strictly speaking, outputs may in some cases differ in more than
 just extra enclosing parentheses in 2.X. If you look closely at the
 preceding results, you’ll notice that the strings also print with
 enclosing quotes in 2.X only. This is because
 objects may print differently when nested in
 another object than they do as top-level items. Technically, nested
 appearances display with repr and
 top-level objects with str—the two
 alternative display formats we noted in Chapter 5.
Here this just means extra quotes around strings nested in the
 tuple that is created for printing multiple parenthesized items in
 2.X. Displays of nested objects can differ much more for other object
 types, though, and especially for class objects that define
 alternative displays with operator
 overloading—a topic we’ll cover in Part VI in general and Chapter 30 in particular.
To be truly portable without enabling 3.X prints everywhere, and
 to sidestep display difference for nested appearances, you can always
 format the print string as a single object to unify displays across
 versions, using the string formatting expression or method call, or
 other string tools that we studied in Chapter 7:
>>> print('%s %s %s' % ('spam', 'ham', 'eggs'))
spam ham eggs
>>> print('{0} {1} {2}'.format('spam', 'ham', 'eggs'))
spam ham eggs
>>> print('answer: ' + str(42))
answer: 42
Of course, if you can use 3.X exclusively you can forget such
 mappings entirely, but many Python programmers will at least
 encounter, if not write, 2.X code and systems for some time to come.
 We’ll use both __future__ and
 version-neutral code to achieve 2.X/3.X portability in many examples
 in this book.
Note
I use Python 3.X print
 function calls throughout this book. I’ll often make prints
 version-neutral, and will usually warn you when the results may
 differ in 2.X, but I sometimes don’t, so please consider this note a
 blanket warning. If you see extra parentheses in your printed text
 in 2.X, either drop the parentheses in your print statements, import 3.X prints from
 the __future__, recode your
 prints using the version-neutral scheme outlined here, or learn to
 love superfluous text.

Why You Will Care: print and stdout
The equivalence between the print
 operation and writing to sys.stdout is important. It makes it
 possible to reassign sys.stdout
 to any user-defined object that provides the same write method as files. Because the
 print statement just sends text
 to the sys.stdout.write method,
 you can capture printed text in your programs by assigning sys.stdout to an object whose write method processes the text in
 arbitrary ways.
For instance, you can send printed text to a GUI window, or
 tee it off to multiple destinations, by defining an object with a
 write method that does the
 required routing. You’ll see an example of this trick when we study
 classes in Part VI of this book, but
 abstractly, it looks like this:
class FileFaker:
 def write(self, string):
 # Do something with printed text in string

import sys
sys.stdout = FileFaker()
print(someObjects) # Sends to class write method
This works because print is
 what we will call in the next part of this book a
 polymorphic operation—it doesn’t care what
 sys.stdout is, only that it has a
 method (i.e., interface) called write. This redirection to objects is made
 even simpler with the file
 keyword argument in 3.X and the >> extended form of print in 2.X, because we don’t need to
 reset sys.stdout
 explicitly—normal prints will still be routed to the stdout stream:
myobj = FileFaker() # 3.X: Redirect to object for one print
print(someObjects, file=myobj) # Does not reset sys.stdout

myobj = FileFaker() # 2.X: same effect
print >> myobj, someObjects # Does not reset sys.stdout
Python’s 3.X’s built-in input function (named raw_input in 2.X) reads from the sys.stdin file,
 so you can intercept read requests in a similar way, using classes
 that implement file-like read
 methods instead. See the input
 and while loop example in Chapter 10 for more background on
 this function.
Notice that because printed text goes to the stdout stream, it’s also the way to print
 HTML reply pages in CGI scripts used on the Web, and enables you to
 redirect Python script input and output at the operating system’s
 shell command line as usual:
python script.py < inputfile > outputfile
python script.py | filterProgram
Python’s print operation redirection tools are essentially
 pure-Python alternatives to these shell syntax forms. See other
 resources for more on CGI scripts and shell syntax.

Chapter Summary
In this chapter, we began our in-depth look at Python statements by
 exploring assignments, expressions, and print operations. Although these
 are generally simple to use, they have some alternative forms that, while
 optional, are often convenient in practice—augmented assignment statements
 and the redirection form of print
 operations, for example, allow us to avoid some manual coding work. Along
 the way, we also studied the syntax of variable names, stream redirection
 techniques, and a variety of common mistakes to avoid, such as assigning
 the result of an append method call
 back to a variable.
In the next chapter, we’ll continue our statement tour by filling in
 details about the if statement,
 Python’s main selection tool; there, we’ll also revisit Python’s syntax
 model in more depth and look at the behavior of Boolean expressions.
 Before we move on, though, the end-of-chapter quiz will test your
 knowledge of what you’ve learned here.

Test Your Knowledge: Quiz
	Name three ways that you can assign three variables to the same
 value.

	Why might you need to care when assigning three variables to a
 mutable object?

	What’s wrong with saying L =
 L.sort()?

	How might you use the print
 operation to send text to an external file?

Test Your Knowledge: Answers
	You can use multiple-target assignments (A = B = C = 0), sequence assignment
 (A, B, C = 0, 0, 0), or multiple
 assignment statements on three separate lines (A = 0, B =
 0, and C = 0). With the
 latter technique, as introduced in Chapter 10, you can also string the
 three separate statements together on the same line by separating them
 with semicolons (A = 0; B = 0; C =
 0).

	If you assign them this way:
A = B = C = []
all three names reference the same object, so changing it in
 place from one (e.g., A.append(99))
 will affect the others. This is true only for in-place changes to
 mutable objects like lists and dictionaries; for immutable objects
 such as numbers and strings, this issue is irrelevant.

	The list sort method is like
 append in that it makes an in-place
 change to the subject list—it returns None, not the list it changes. The
 assignment back to L sets L to None, not to the sorted list. As discussed
 both earlier and later in this book (e.g., Chapter 8), a newer built-in function,
 sorted, sorts any sequence and
 returns a new list with the sorting result; because this is not an
 in-place change, its result can be meaningfully assigned to a
 name.

	To print to a file for a single print operation, you can use 3.X’s print(X, file=F) call form, use 2.X’s
 extended print >> file, X
 statement form, or assign sys.stdout to a manually opened file before
 the print and restore the original
 after. You can also redirect all of a program’s printed text to a file
 with special syntax in the system shell, but this is outside Python’s
 scope.

1 C/C++ programmers take note: although Python now supports
 statements like X += Y, it still
 does not have C’s auto-increment/decrement operators (e.g., X++, −−X). These don’t quite map to the Python
 object model because Python has no notion of
 in-place changes to immutable objects like
 numbers.
2 As suggested in Chapter 6, we can also use slice
 assignment (e.g., L[len(L):] =
 [11,12,13]), but this works roughly the same as the
 simpler and more mnemonic list extend method.
3 In standard CPython, at least. Alternative implementations of
 Python might allow user-defined variable names to be the same as
 Python reserved words. See Chapter 2 for an overview of alternative
 implementations, such as Jython.
4 If you’ve used a more restrictive language like C++, you may
 be interested to know that there is no notion of C++’s const declaration in Python; certain
 objects may be immutable, but names can
 always be assigned. Python also has ways to hide names in classes
 and modules, but they’re not the same as C++’s declarations (if
 hiding attributes matters to you, see the coverage of _X module names in Chapter 25, __X class names in Chapter 31, and the Private and Public
 class decorators example in Chapter 39).
5 Technically, printing uses the equivalent of str in the internal implementation of
 Python, but the effect is the same. Besides this to-string
 conversion role, str is also
 the name of the string data type and can be used to decode Unicode
 strings from raw bytes with an extra encoding argument, as we’ll
 learn in Chapter 37; this latter
 role is an advanced usage that we can safely ignore here.
6 In both 2.X and 3.X you may also be able to use the __stdout__ attribute in the sys module, which refers to the original
 value sys.stdout had at program
 startup time. You still need to restore sys.stdout to sys.__stdout__ to go back to this
 original stream value, though. See the sys module documentation for more
 details.

Chapter 12. if Tests and Syntax Rules
This chapter presents the Python if
 statement, which is the main statement used for selecting from alternative
 actions based on test results. Because this is our first in-depth look
 at compound statements—statements that
 embed other statements—we will also explore the general concepts behind the
 Python statement syntax model here in more detail than we did in the
 introduction in Chapter 10. Because
 the if statement introduces the notion of
 tests, this chapter will also deal with Boolean expressions, cover the
 “ternary” if expression, and fill in some
 details on truth tests in general.
if Statements
In simple terms, the Python if statement
 selects actions to perform. Along with its expression counterpart, it’s
 the primary selection tool in Python and represents much of the
 logic a Python program possesses. It’s also our first
 compound statement. Like all compound Python statements, the if statement may contain other statements,
 including other ifs. In fact, Python
 lets you combine statements in a program sequentially (so that they
 execute one after another), and in an arbitrarily nested fashion (so that
 they execute only under certain conditions such as selections and
 loops).
General Format
The Python if statement is
 typical of if
 statements in most procedural languages. It takes the form of an
 if test, followed by one or more
 optional elif (“else if”) tests and a
 final optional else block. The tests
 and the else part each have an
 associated block of nested statements, indented under a header line.
 When the if statement runs, Python
 executes the block of code associated with the first test that evaluates
 to true, or the else block if all
 tests prove false. The general form of an if statement looks like this:
if test1: # if test
 statements1 # Associated block
elif test2: # Optional elifs
 statements2
else: # Optional else
 statements3

Basic Examples
To demonstrate, let’s look at a few simple examples of the if statement at work. All parts are optional,
 except the initial if test and its
 associated statements. Thus, in the simplest case, the other parts are
 omitted:
>>> if 1:
... print('true')
...
true
Notice how the prompt changes to ... for continuation lines when you’re typing
 interactively in the basic interface used here; in IDLE, you’ll simply
 drop down to an indented line instead (hit Backspace to back up). A
 blank line (which you can get by pressing Enter twice) terminates and
 runs the entire statement. Remember that 1 is Boolean true (as we’ll see later, the
 word True is its equivalent), so this
 statement’s test always succeeds. To handle a false result, code the
 else:
>>> if not 1:
... print('true')
... else:
... print('false')
...
false

Multiway Branching
Now here’s an example of a more complex if
 statement, with all its optional parts present:
>>> x = 'killer rabbit'
>>> if x == 'roger':
... print("shave and a haircut")
... elif x == 'bugs':
... print("what's up doc?")
... else:
... print('Run away! Run away!')
...
Run away! Run away!
This multiline statement extends from the if line through the block nested under the
 else. When it’s run, Python executes
 the statements nested under the first test that is true, or the else part if all tests are false (in this
 example, they are). In practice, both the elif and else parts may be omitted, and there may be
 more than one statement nested in each section. Note that the words
 if, elif, and else are associated by the fact that they line
 up vertically, with the same indentation.
If you’ve used languages like C or Pascal, you might be interested
 to know that there is no switch or
 case statement in Python that selects
 an action based on a variable’s value. Instead, you usually code
 multiway branching as a series of if/elif
 tests, as in the prior example, and occasionally by indexing
 dictionaries or searching lists. Because dictionaries and lists can be
 built at runtime dynamically, they are sometimes more flexible than
 hardcoded if logic in your
 script:
>>> choice = 'ham'
>>> print({'spam': 1.25, # A dictionary-based 'switch'
... 'ham': 1.99, # Use has_key or get for default
... 'eggs': 0.99,
... 'bacon': 1.10}[choice])
1.99
Although it may take a few moments for this to sink in the first
 time you see it, this dictionary is a multiway branch—indexing on the
 key choice branches to one of a set
 of values, much like a switch in C.
 An almost equivalent but more verbose Python if statement might look like the
 following:
>>> if choice == 'spam': # The equivalent if statement
... print(1.25)
... elif choice == 'ham':
... print(1.99)
... elif choice == 'eggs':
... print(0.99)
... elif choice == 'bacon':
... print(1.10)
... else:
... print('Bad choice')
...
1.99
Though it’s perhaps more readable, the potential downside of an
 if like this is that, short of
 constructing it as a string and running it with tools like the prior
 chapter’s eval or exec, you cannot construct it at runtime as
 easily as a dictionary. In more dynamic programs, data structures offer
 added flexibility.
Handling switch defaults
Notice the else clause on the
 if here to handle the default case
 when no key matches. As we saw in Chapter 8, dictionary defaults can be coded
 with in expressions, get method calls, or exception catching with
 the try statement introduced in the
 preceding chapter. All of the same techniques can be used here to code
 a default action in a dictionary-based multiway branch. As a review in
 the context of this use case, here’s the get scheme at work with defaults:
>>> branch = {'spam': 1.25,
... 'ham': 1.99,
... 'eggs': 0.99}

>>> print(branch.get('spam', 'Bad choice'))
1.25
>>> print(branch.get('bacon', 'Bad choice'))
Bad choice
An in membership test in an
 if statement can have the same
 default effect:
>>> choice = 'bacon'
>>> if choice in branch:
... print(branch[choice])
... else:
... print('Bad choice')
...
Bad choice
And the try statement is a
 general way to handle defaults by catching and handling the exceptions
 they’d otherwise trigger (for more on exceptions, see Chapter 11’s overview and
 Part VII’s full treatment):
>>> try:
... print(branch[choice])
... except KeyError:
... print('Bad choice')
...
Bad choice

Handling larger actions
Dictionaries are good for associating values with keys, but what
 about the more complicated actions you can code in the statement
 blocks associated with if
 statements? In Part IV, you’ll
 learn that dictionaries can also contain
 functions to represent more complex branch
 actions and implement general jump tables. Such functions appear as
 dictionary values, they may be coded as function names or inline
 lambdas, and they are called by adding parentheses to trigger their
 actions. Here’s an abstract sampler, but stay tuned for a rehash of
 this topic in Chapter 19 after we’ve
 learned more about function definition:
def function(): ...
def default(): ...

branch = {'spam': lambda: ..., # A table of callable function objects
 'ham': function,
 'eggs': lambda: ...}

branch.get(choice, default)()
Although dictionary-based multiway branching is useful in
 programs that deal with more dynamic data, most programmers will
 probably find that coding an if
 statement is the most straightforward way to perform multiway
 branching. As a rule of thumb in coding, when in doubt, err on the
 side of simplicity and readability; it’s the “Pythonic” way.

Python Syntax Revisited
I introduced Python’s syntax model in Chapter 10. Now that we’re stepping up to
 larger statements like if, this section
 reviews and expands on the syntax ideas introduced earlier. In general,
 Python has a simple, statement-based syntax. However, there are a few
 properties you need to know about:
	Statements execute one after another,
 until you say otherwise. Python normally runs statements in
 a file or nested block in order from first to last as a sequence, but statements like if
 (as well as loops and exceptions) cause the interpreter to jump around
 in your code. Because Python’s path through a program is called the
 control flow, statements such as if that affect it are often called
 control-flow statements.

	Block and statement boundaries are
 detected automatically. As we’ve seen, there are no braces
 or “begin/end” delimiters around blocks of code in Python; instead,
 Python uses the indentation of statements under a header to group the
 statements in a nested block. Similarly, Python statements are not
 normally terminated with semicolons; rather, the end of a line usually
 marks the end of the statement coded on that line. As a special case,
 statements can span lines and be combined on a line with special
 syntax.

	Compound statements = header + “:” +
 indented statements. All Python compound
 statements—those with nested statements—follow the same
 pattern: a header line terminated with a colon, followed by one or
 more nested statements, usually indented under the header. The
 indented statements are called a block (or
 sometimes, a suite). In the if
 statement, the elif and else clauses are part of the if, but they are also header lines with
 nested blocks of their own. As a special case, blocks can show up on
 the same line as the header if they are simple noncompound
 code.

	Blank lines, spaces, and comments are
 usually ignored. Blank lines are both optional and ignored
 in files (but not at the interactive prompt, when they terminate
 compound statements). Spaces inside statements and
 expressions are almost always ignored (except in string literals, and
 when used for indentation). Comments are always ignored: they start
 with a # character (not inside a
 string literal) and extend to the end of the current line.

	Docstrings are ignored but are saved and
 displayed by tools. Python supports an additional comment
 form called documentation strings (docstrings for
 short), which, unlike #
 comments, are retained at runtime for inspection. Docstrings are
 simply strings that show up at the top of program files and some
 statements. Python ignores their contents, but they are automatically
 attached to objects at runtime and may be displayed with documentation
 tools like PyDoc. Docstrings are part of Python’s larger documentation
 strategy and are covered in the last chapter in this part of the
 book.

As you’ve seen, there are no variable type declarations in Python;
 this fact alone makes for a much simpler language syntax than what you may
 be used to. However, for most new users the lack of the braces and
 semicolons used to mark blocks and statements in many other languages
 seems to be the most novel syntactic feature of Python, so let’s explore
 what this means in more detail.
Block Delimiters: Indentation Rules
As introduced in Chapter 10, Python detects block
 boundaries automatically, by line indentation—that
 is, the empty space to the left of your code. All statements indented
 the same distance to the right belong to the same block of code. In
 other words, the statements within a block line up vertically, as in a
 column. The block ends when the end of the file or a lesser-indented
 line is encountered, and more deeply nested blocks are simply indented
 further to the right than the statements in the enclosing block.
 Compound statement bodies can appear on the header’s line in some cases
 we’ll explore later, but most are indented under it.
For instance, Figure 12-1 demonstrates the
 block structure of the following code:
x = 1
if x:
 y = 2
 if y:
 print('block2')
 print('block1')
print('block0')
This code contains three blocks: the first (the top-level code of
 the file) is not indented at all, the second (within the outer if statement) is indented four spaces, and the
 third (the print statement under the
 nested if) is indented eight
 spaces.
In general, top-level (unnested) code must start in column 1.
 Nested blocks can start in any column; indentation may consist of any
 number of spaces and tabs, as long as it’s the same for all the
 statements in a given single block. That is, Python doesn’t care
 how you indent your code; it only cares that it’s
 done consistently. Four spaces or one tab per indentation level are
 common conventions, but there is no absolute standard in the Python
 world.
Figure 12-1. Nested blocks of code: a nested block starts with a statement
 indented further to the right and ends with either a statement that is
 indented less, or the end of the file.

Indenting code is quite natural in practice. For example, the
 following (arguably silly) code snippet demonstrates common indentation
 errors in Python code:
 x = 'SPAM' # Error: first line indented
if 'rubbery' in 'shrubbery':
 print(x * 8)
 x += 'NI' # Error: unexpected indentation
 if x.endswith('NI'):
 x *= 2
 print(x) # Error: inconsistent indentation
The properly indented version of this code looks like the
 following—even for an artificial example like this, proper indentation
 makes the code’s intent much more apparent:
x = 'SPAM'
if 'rubbery' in 'shrubbery':
 print(x * 8) # Prints 8 "SPAM"
 x += 'NI'
 if x.endswith('NI'):
 x *= 2
 print(x) # Prints "SPAMNISPAMNI"
It’s important to know that the only major place in Python where
 whitespace matters is where it’s used to the left of your code, for
 indentation; in most other contexts, space can be coded or not. However,
 indentation is really part of Python syntax, not just a stylistic
 suggestion: all the statements within any given single block must be
 indented to the same level, or Python reports a syntax error. This is
 intentional—because you don’t need to explicitly mark the start and end
 of a nested block of code, some of the syntactic clutter found in other
 languages is unnecessary in Python.
As described in Chapter 10,
 making indentation part of the syntax model also enforces consistency, a
 crucial component of readability in structured programming languages
 like Python. Python’s syntax is sometimes described as “what you see is
 what you get”—the indentation of each line of code unambiguously tells
 readers what it is associated with. This uniform and consistent
 appearance makes Python code easier to maintain and reuse.
Indentation is simpler in practice than its details might
 initially imply, and it makes your code reflect its logical structure.
 Consistently indented code always satisfies Python’s rules. Moreover,
 most text editors (including IDLE) make it easy to follow Python’s
 indentation model by automatically indenting code as you type it.
Avoid mixing tabs and spaces: New error checking in 3.X
One rule of thumb: although you can use spaces or tabs to indent, it’s
 usually not a good idea to mix the two within a
 block—use one or the other. Technically, tabs count for enough spaces
 to move the current column number up to a multiple of 8, and your code
 will work if you mix tabs and spaces consistently. However, such code
 can be difficult to change. Worse, mixing tabs and spaces makes your
 code difficult to read completely apart from Python’s syntax
 rules—tabs may look very different in the next programmer’s editor
 than they do in yours.
In fact, Python 3.X issues an error, for these very reasons,
 when a script mixes tabs and spaces for indentation inconsistently
 within a block (that is, in a way that makes it dependent on a tab’s
 equivalent in spaces). Python 2.X allows such scripts to run, but it
 has a -t command-line flag that
 will warn you about inconsistent tab usage and a -tt flag that will issue errors for
 such code (you can use these switches in a command line like python –t main.py in a system shell window).
 Python 3.X’s error case is equivalent to 2.X’s -tt
 switch.

Statement Delimiters: Lines and Continuations
A statement in Python normally ends at the end of the line on which it
 appears. When a statement is too long to fit on a single line, though, a
 few special rules may be used to make it span multiple lines:
	Statements may span multiple lines if
 you’re continuing an open syntactic pair. Python lets you
 continue typing a statement on the next line if you’re coding
 something enclosed in a (),
 {}, or [] pair. For instance, expressions in
 parentheses and dictionary and list literals can span any number of
 lines; your statement doesn’t end until the Python interpreter
 reaches the line on which you type the closing part of the pair (a
), }, or]). Continuation
 lines—lines 2 and beyond of the statement—can start at any
 indentation level you like, but you should try to make them align
 vertically for readability if possible. This open pairs rule also
 covers set and dictionary comprehensions in Python 3.X and
 2.7.

	Statements may span multiple lines if
 they end in a backslash. This is a somewhat outdated
 feature that’s not generally recommended, but if a statement needs
 to span multiple lines, you can also add a backslash (a \ not
 embedded in a string literal or comment) at the end of the prior
 line to indicate you’re continuing on the next line. Because you can
 also continue by adding parentheses around most constructs,
 backslashes are rarely used today. This approach is also
 error-prone: accidentally forgetting a \ usually generates a syntax error and
 might even cause the next line to be silently mistaken (i.e.,
 without warning) for a new statement, with unexpected
 results.

	Special rules for string
 literals. As we learned in Chapter 7, triple-quoted string blocks are
 designed to span multiple lines normally. We also learned in Chapter 7 that
 adjacent string literals are implicitly concatenated; when it’s used
 in conjunction with the open pairs rule mentioned earlier, wrapping
 this construct in parentheses allows it to span multiple
 lines.

	Other rules. There are a
 few other points to mention with regard to statement delimiters.
 Although it is uncommon, you can terminate a statement with a
 semicolon—this convention is sometimes used to squeeze more than one
 simple (noncompound) statement onto a single line. Also, comments
 and blank lines can appear anywhere in a file; comments (which begin
 with a # character) terminate at
 the end of the line on which they appear.

A Few Special Cases
Here’s what a continuation line looks like using the open syntactic
 pairs rule just described. Delimited constructs, such as lists in square
 brackets, can span across any number of lines:
L = ["Good",
 "Bad",
 "Ugly"] # Open pairs may span lines
This also works for anything in parentheses (expressions, function
 arguments, function headers, tuples, and generator expressions), as well
 as anything in curly braces (dictionaries and, in 3.X and 2.7, set
 literals and set and dictionary comprehensions). Some of these are tools
 we’ll study in later chapters, but this rule naturally covers most
 constructs that span lines in practice.
If you like using backslashes to continue lines, you can, but it’s
 not common practice in Python:
if a == b and c == d and \
 d == e and f == g:
 print('olde') # Backslashes allow continuations...
Because any expression can be enclosed in parentheses, you can
 usually use the open pairs technique instead if you need your code to
 span multiple lines—simply wrap a part of your statement in
 parentheses:
if (a == b and c == d and
 d == e and e == f):
 print('new') # But parentheses usually do too, and are obvious
In fact, backslashes are generally frowned on by most Python
 developers, because they’re too easy to not notice and too easy to omit
 altogether. In the following, x is
 assigned 10 with the backslash, as
 intended; if the backslash is accidentally omitted, though, x is assigned 6 instead, and no error is
 reported (the +4 is a
 valid expression statement by itself).
In a real program with a more complex assignment, this could be
 the source of a very nasty bug:1
x = 1 + 2 + 3 \ # Omitting the \ makes this very different!
+4
As another special case, Python allows you to write more than one
 noncompound statement (i.e., statements without nested statements) on
 the same line, separated by semicolons. Some coders use this form to
 save program file real estate, but it usually makes for more readable
 code if you stick to one statement per line for most of your
 work:
x = 1; y = 2; print(x) # More than one simple statement
As we learned in Chapter 7,
 triple-quoted string literals span lines too. In addition, if two string
 literals appear next to each other, they are concatenated as if a
 + had been added between them—when
 used in conjunction with the open pairs rule, wrapping in parentheses
 allows this form to span multiple lines. For example, the first of the
 following inserts newline characters at line breaks and assigns S to '\naaaa\nbbbb\ncccc', and the second
 implicitly concatenates and assigns S
 to 'aaaabbbbcccc'; as we also saw in
 Chapter 7, # comments are ignored in the second form, but
 included in the string in the first:
S = """
aaaa
bbbb
cccc"""

S = ('aaaa'
 'bbbb' # Comments here are ignored
 'cccc')
Finally, Python lets you move a compound statement’s body up to
 the header line, provided the body contains just simple (noncompound)
 statements. You’ll most often see this used for simple if statements with a single test and action,
 as in the interactive loops we coded in Chapter 10:
if 1: print('hello') # Simple statement on header line
You can combine some of these special cases to write code that is
 difficult to read, but I don’t recommend it; as a rule of thumb, try to
 keep each statement on a line of its own, and indent all but the
 simplest of blocks. Six months down the road, you’ll be happy you
 did.

Truth Values and Boolean Tests
The notions of comparison, equality, and truth values were introduced in Chapter 9. Because the if statement is the first statement we’ve looked
 at that actually uses test results, we’ll expand on some of these ideas
 here. In particular, Python’s Boolean operators are a bit different from
 their counterparts in languages like C. In Python:
	All objects have an inherent Boolean true or false value.

	Any nonzero number or nonempty object is true.

	Zero numbers, empty objects, and the special object None are considered false.

	Comparisons and equality tests are applied recursively to data
 structures.

	Comparisons and equality tests return True or False (custom versions of 1 and 0).

	Boolean and and or operators return a true or false operand
 object.

	Boolean operators stop evaluating (“short circuit”) as soon as a
 result is known.

The if statement takes action on
 truth values, but Boolean operators are used to combine the results of
 other tests in richer ways to produce new truth values. More formally,
 there are three Boolean expression operators in Python:
	X and Y
	Is true if both X and
 Y are true

	X or Y
	Is true if either X or
 Y is true

	not X
	Is true if X is false (the
 expression returns True or
 False)

Here, X and Y may be any truth value, or any expression that
 returns a truth value (e.g., an equality test, range comparison, and so
 on). Boolean operators are typed out as words in Python (instead of C’s
 &&, ||, and !).
 Also, Boolean and and or operators return a true or false
 object in Python, not the values True or False. Let’s look at a few examples to see how
 this works:
>>> 2 < 3, 3 < 2 # Less than: return True or False (1 or 0)
(True, False)
Magnitude comparisons such as these return True or False
 as their truth results, which, as we learned in Chapter 5 and Chapter 9, are really just
 custom versions of the integers 1 and
 0 (they print themselves differently
 but are otherwise the same).
On the other hand, the and and
 or operators always return an
 object—either the object on the left side of the
 operator or the object on the right. If we test their
 results in if or other statements, they
 will be as expected (remember, every object is inherently true or false),
 but we won’t get back a simple True or
 False.
For or tests, Python evaluates
 the operand objects from left to right and returns the first one that is
 true. Moreover, Python stops at the first true operand it finds. This is
 usually called short-circuit evaluation, as
 determining a result short-circuits (terminates) the rest of the
 expression as soon as the result is known:
>>> 2 or 3, 3 or 2 # Return left operand if true
(2, 3) # Else, return right operand (true or false)
>>> [] or 3
3
>>> [] or {}
{}
In the first line of the preceding example, both operands (2 and 3) are
 true (i.e., are nonzero), so Python always stops and returns the one on
 the left—it determines the result because true or anything is always true. In the other two
 tests, the left operand is false (an empty object), so Python simply
 evaluates and returns the object on the right—which may happen to have
 either a true or a false value when tested.
Python and operations also stop
 as soon as the result is known; however, in this case Python evaluates the
 operands from left to right and stops if the left operand is a
 false object because it determines the result—false
 and anything is always false:
>>> 2 and 3, 3 and 2 # Return left operand if false
(3, 2) # Else, return right operand (true or false)
>>> [] and {}
[]
>>> 3 and []
[]
Here, both operands are true in the first line, so Python evaluates
 both sides and returns the object on the right. In the second test, the
 left operand is false ([]), so Python
 stops and returns it as the test result. In the last test, the left side
 is true (3), so Python evaluates and
 returns the object on the right—which happens to be a false [].
The end result of all this is the same as in C and most other
 languages—you get a value that is logically true or false if tested in an
 if or while according to the normal definitions of
 or and and. However, in Python Booleans return either
 the left or the right object, not a simple integer
 flag.
This behavior of and and or may seem esoteric at first glance, but see
 this chapter’s sidebar “Why You Will Care: Booleans”
 for examples of how it is sometimes used to advantage in coding by Python
 programmers. The next section also shows a common way to leverage this
 behavior, and its more mnemonic replacement in recent versions of
 Python.

The if/else Ternary Expression
One common role for the prior section’s Boolean operators is to code an
 expression that runs the same as an if
 statement. Consider the following statement, which sets A to either Y
 or Z, based on the truth value of
 X:
if X:
 A = Y
else:
 A = Z
Sometimes, though, the items involved in such a statement are so
 simple that it seems like overkill to spread them across four lines. At
 other times, we may want to nest such a construct in a larger statement
 instead of assigning its result to a variable. For these reasons (and,
 frankly, because the C language has a similar tool), Python 2.5 introduced
 a new expression format that allows us to say the same thing in one
 expression:
A = Y if X else Z
This expression has the exact same effect as the preceding four-line
 if statement, but it’s simpler to code.
 As in the statement equivalent, Python runs expression Y only if X
 turns out to be true, and runs expression Z only if X
 turns out to be false. That is, it short-circuits,
 just like the Boolean operators described in the prior section, running
 just Y or Z but not both. Here are some examples of it in
 action:
>>> A = 't' if 'spam' else 'f' # For strings, nonempty means true
>>> A
't'
>>> A = 't' if '' else 'f'
>>> A
'f'
Prior to Python 2.5 (and after 2.5, if you insist), the same effect
 can often be achieved by a careful combination of the and and or
 operators, because they return either the object on the left side or the
 object on the right as the preceding section described:
A = ((X and Y) or Z)
This works, but there is a catch—you have to be able to assume that
 Y will be Boolean true. If that is the
 case, the effect is the same: the and
 runs first and returns Y if X is true; if X is false the and skips Y,
 and the or simply returns Z. In other words, we get “if X then Y else
 Z.” This is equivalent to the ternary
 form:
A = Y if X else Z
The and/or combination form also seems to require a
 “moment of great clarity” to understand the first time you see it, and
 it’s no longer required as of 2.5—use the equivalent and more robust and
 mnemonic if/else expression when you need this structure, or
 use a full if statement if the parts
 are nontrivial.
As a side note, using the following expression in Python is similar
 because the bool function will
 translate X into the equivalent of
 integer 1 or 0, which can then be used as offsets to pick
 true and false values from a list:
A = [Z, Y][bool(X)]
For example:
>>> ['f', 't'][bool('')]
'f'
>>> ['f', 't'][bool('spam')]
't'
However, this isn’t exactly the same, because Python will not
 short-circuit—it will always run both Z and Y,
 regardless of the value of X. Because
 of such complexities, you’re better off using the simpler and more easily
 understood if/else expression as of Python 2.5 and later.
 Again, though, you should use even that sparingly, and only if its parts
 are all fairly simple; otherwise, you’re better off coding the full
 if statement form to make changes
 easier in the future. Your coworkers will be happy you did.
Still, you may see the and/or
 version in code written prior to 2.5 (and in Python code written by ex–C
 programmers who haven’t quite let go of their dark coding pasts).2
Why You Will Care: Booleans
One common way to use the somewhat unusual behavior of Python Boolean operators is
 to select from a set of objects with an or. A statement such as this:
X = A or B or C or None
assigns X to the first nonempty
 (that is, true) object among A,
 B, and C, or to None if all of them are empty. This works
 because the or operator returns one
 of its two objects, and it turns out to be a fairly common coding
 paradigm in Python: to select a nonempty object from among a fixed-size
 set, simply string them together in an or expression. In simpler form, this is also
 commonly used to designate a default—the following sets X to A if
 A is true (or nonempty), and to
 default otherwise:
X = A or default
It’s also important to understand the short-circuit evaluation of
 Boolean operators and the if/else, because it may prevent actions from
 running. Expressions on the right of a Boolean operator, for example,
 might call functions that perform substantial or important work, or have
 side effects that won’t happen if the short-circuit rule takes
 effect:
if f1() or f2(): ...
Here, if f1 returns a true (or
 nonempty) value, Python will never run f2. To guarantee that both functions will be
 run, call them before the or:
tmp1, tmp2 = f1(), f2()
if tmp1 or tmp2: ...
You’ve already seen another application of this behavior in this
 chapter: because of the way Booleans work, the expression ((A and B) or C) can be used to emulate an
 if statement—almost (see this
 chapter’s discussion of this form for details).
We met additional Boolean use cases in prior chapters. As we saw
 in Chapter 9, because
 all objects are inherently true or false, it’s common and easier in
 Python to test an object directly (if
 X:) than to compare it to an empty value (if X != '':). For a string, the two tests are
 equivalent. As we also saw in Chapter 5, the
 preset Boolean values True and
 False are the same as the integers
 1 and 0 and are useful for initializing variables
 (X = False), for loop tests (while True:), and for displaying results at
 the interactive prompt.
Also watch for related discussion in operator overloading in Part VI: when we define new object types with
 classes, we can specify their Boolean nature with either the __bool__ or __len__ methods (__bool__ is named __nonzero__ in 2.7). The latter of these is
 tried if the former is absent and designates false by returning a length
 of zero—an empty object is considered false.
Finally, and as a preview, other tools in Python have roles
 similar to the or chains at the start
 of this sidebar: the filter call and
 list comprehensions we’ll meet later can be used to select true values
 when the set of candidates isn’t known until runtime (though they
 evaluate all values and return all that are true), and the any and all
 built-ins can be used to test if any or all items in a collection are
 true (though they don’t select an item):
>>> L = [1, 0, 2, 0, 'spam', '', 'ham', []]
>>> list(filter(bool, L)) # Get true values
[1, 2, 'spam', 'ham']
>>> [x for x in L if x] # Comprehensions
[1, 2, 'spam', 'ham']
>>> any(L), all(L) # Aggregate truth
(True, False)
As seen in Chapter 9, the bool function here simply returns its
 argument’s true or false value, as though it were tested in an if. Watch for more on these related tools in
 Chapter 14, Chapter 19, and Chapter 20.

Chapter Summary
In this chapter, we studied the Python if statement. Additionally, because this was our
 first compound and logical statement, we reviewed Python’s general syntax
 rules and explored the operation of truth values and tests in more depth
 than we were able to previously. Along the way, we also looked at how to
 code multiway branching in Python, learned about the if/else
 expression introduced in Python 2.5, and explored some common ways that
 Boolean values crop up in code.
The next chapter continues our look at procedural statements by
 expanding on the while and for loops. There, we’ll learn about alternative
 ways to code loops in Python, some of which may be better than others.
 Before that, though, here is the usual chapter quiz.

Test Your Knowledge: Quiz
	How might you code a multiway branch in Python?

	How can you code an if/else
 statement as an expression in Python?

	How can you make a single statement span many lines?

	What do the words True and
 False mean?

Test Your Knowledge: Answers
	An if statement with multiple
 elif clauses is often the most
 straightforward way to code a multiway branch, though not necessarily
 the most concise or flexible. Dictionary indexing can often achieve
 the same result, especially if the dictionary contains callable
 functions coded with def statements
 or lambda expressions.

	In Python 2.5 and later, the expression form Y if X else Z returns Y if X is
 true, or Z otherwise; it’s the same
 as a four-line if statement. The
 and/or combination (((X
 and Y) or Z)) can work the same way, but it’s more obscure
 and requires that the Y part be
 true.

	Wrap up the statement in an open syntactic pair ((), [],
 or {}), and it can span as many
 lines as you like; the statement ends when Python sees the closing
 (right) half of the pair, and lines 2 and beyond of the statement can
 begin at any indentation level. Backslash continuations work too, but
 are broadly discouraged in the Python world.

	True and False are just custom versions of the
 integers 1 and 0, respectively: they always stand for
 Boolean true and false values in Python. They’re available for use in
 truth tests and variable initialization, and are printed for
 expression results at the interactive prompt. In all these roles, they
 serve as a more mnemonic and hence readable alternative to 1 and 0.

1 Candidly, it was a bit surprising that backslash continuations
 were not removed in Python 3.0, given the broad scope of its other
 changes! See the 3.0 changes tables in Appendix C for a list of 3.0
 removals; some seem fairly innocuous in comparison with the dangers
 inherent in backslash continuations. Then again, this book’s goal is
 Python instruction, not populist outrage, so the best advice I can
 give is simply: don’t do this. You should generally avoid backslash
 continuations in new Python code, even if you developed the habit in
 your C programming days.
2 In fact, Python’s Y if X else
 Z has a slightly different order than C’s X ? Y : Z, and uses more readable words. Its
 differing order was reportedly chosen in response to analysis of
 common usage patterns in Python code. According to the Python
 folklore, this order was also chosen in part to discourage ex–C
 programmers from overusing it! Remember, simple is better than
 complex, in Python and elsewhere. If you have to work at packing logic
 into expressions like this, statements are probably your better
 bet.

Chapter 13. while and for Loops
This chapter concludes our tour of Python procedural statements by
 presenting the language’s two main looping
 constructs—statements that repeat an action over and over. The first of
 these, the while statement, provides a
 way to code general loops. The second, the for statement, is designed for stepping through
 the items in a sequence or other iterable object and running a block of code
 for each.
We’ve seen both of these informally already, but we’ll fill in
 additional usage details here. While we’re at it, we’ll also study a few
 less prominent statements used within loops, such as break and continue, and cover some built-ins commonly used
 with loops, such as range, zip, and map.
Although the while and for statements covered here are the primary syntax
 provided for coding repeated actions, there are additional looping
 operations and concepts in Python. Because of that, the iteration story is
 continued in the next chapter, where we’ll explore the related ideas of
 Python’s iteration protocol (used by the for loop) and list
 comprehensions (a close cousin to the for loop). Later chapters explore even more exotic
 iteration tools such as generators, filter, and reduce. For now, though, let’s keep things
 simple.
while Loops
Python’s while statement
 is the most general iteration construct in the language. In
 simple terms, it repeatedly executes a block of (normally indented)
 statements as long as a test at the top keeps evaluating to a true value.
 It is called a “loop” because control keeps looping back to the start of
 the statement until the test becomes false. When the test becomes false,
 control passes to the statement that follows the while block. The net effect is that the loop’s
 body is executed repeatedly while the test at the top is true. If the test
 is false to begin with, the body never runs and the while statement is skipped.
General Format
In its most complex form, the while
 statement consists of a header line with a test expression, a body of
 one or more normally indented statements, and an optional else part that is executed if control exits
 the loop without a break statement
 being encountered. Python keeps evaluating the test at the top and
 executing the statements nested in the loop body until the test returns
 a false value:
while test: # Loop test
 statements # Loop body
else: # Optional else
 statements # Run if didn't exit loop with break

Examples
To illustrate, let’s look at a few simple while
 loops in action. The first, which consists of a print statement nested in a while loop, just prints a message forever.
 Recall that True is just a custom
 version of the integer 1 and always
 stands for a Boolean true value; because the test is always true, Python
 keeps executing the body forever, or until you stop its execution. This
 sort of behavior is usually called an infinite
 loop—it’s not really immortal, but you may need a Ctrl-C key
 combination to forcibly terminate one:
>>> while True:
... print('Type Ctrl-C to stop me!')
The next example keeps slicing off the first character of a string
 until the string is empty and hence false. It’s typical to test an
 object directly like this instead of using the more verbose equivalent
 (while x != '':). Later in this
 chapter, we’ll see other ways to step through the items in a string more
 easily with a for loop.
>>> x = 'spam'
>>> while x: # While x is not empty
... print(x, end=' ') # In 2.X use print x,
... x = x[1:] # Strip first character off x
...
spam pam am m
Note the end=' ' keyword
 argument used here to place all outputs on the same line separated by a
 space; see Chapter 11 if
 you’ve forgotten why this works as it does. This may leave your input
 prompt in an odd state at the end of your output; type Enter to reset.
 Python 2.X readers: also remember to use a trailing comma instead of
 end in the prints like this.
The following code counts from the value of a up to, but not including, b. We’ll also see an easier way to do this
 with a Python for loop and the
 built-in range function later:
>>> a=0; b=10
>>> while a < b: # One way to code counter loops
... print(a, end=' ')
... a += 1 # Or, a = a + 1
...
0 1 2 3 4 5 6 7 8 9
Finally, notice that Python doesn’t have what some languages call
 a “do until” loop statement. However, we can simulate one with a test
 and break at the bottom of the loop
 body, so that the loop’s body is always run at least once:
while True:
 ...loop body...
 if exitTest(): break
To fully understand how this structure works, we need to move on
 to the next section and learn more about the break statement.

break, continue, pass, and the Loop else
Now that we’ve seen a few Python loops in action, it’s time to take
 a look at two simple statements that have a purpose only when nested
 inside loops—the break and continue statements. While
 we’re looking at oddballs, we will also study the loop else clause here because it is intertwined with
 break, and Python’s empty placeholder
 statement, pass (which is not tied to
 loops per se, but falls into the general category of simple one-word
 statements). In Python:
	break
	Jumps out of the closest enclosing loop (past the entire loop
 statement)

	continue
	Jumps to the top of the closest enclosing loop (to the loop’s
 header line)

	pass
	Does nothing at all: it’s an empty statement
 placeholder

	Loop else block
	Runs if and only if the loop is exited normally (i.e., without hitting a break)

General Loop Format
Factoring in break and continue statements, the general format of the
 while loop looks like this:
while test:
 statements
 if test: break # Exit loop now, skip else if present
 if test: continue # Go to test at top of loop now
else:
 statements # Run if we didn't hit a 'break'
break and continue statements can appear anywhere inside
 the while (or for) loop’s body, but they are usually coded
 further nested in an if test to take
 action in response to some condition.
Let’s turn to a few simple examples to see how these statements
 come together in practice.

pass
Simple things first: the pass
 statement is a no-operation placeholder that is used when the syntax
 requires a statement, but you have nothing useful to say. It is often
 used to code an empty body for a compound statement. For instance, if
 you want to code an infinite loop that does nothing each time through,
 do it with a pass:
while True: pass # Type Ctrl-C to stop me!
Because the body is just an empty statement, Python gets stuck in
 this loop. pass is roughly to
 statements as None is to objects—an
 explicit nothing. Notice that here the while loop’s body is on the same line as the
 header, after the colon; as with if
 statements, this only works if the body isn’t a compound
 statement.
This example does nothing forever. It probably isn’t the most
 useful Python program ever written (unless you want to warm up your
 laptop computer on a cold winter’s day!); frankly, though, I couldn’t
 think of a better pass example at
 this point in the book.
We’ll see other places where pass makes more sense later—for instance, to
 ignore exceptions caught by try
 statements, and to define empty class
 objects with attributes that behave like “structs” and “records” in
 other languages. A pass is also
 sometime coded to mean “to be filled in later,” to stub out the bodies
 of functions temporarily:
def func1():
 pass # Add real code here later

def func2():
 pass
We can’t leave the body empty without getting a syntax error,
 so we say pass
 instead.
Note
Version skew note: Python 3.X (but not 2.X)
 allows ellipses coded as ... (literally, three consecutive dots) to
 appear any place an expression can. Because ellipses do nothing by
 themselves, this can serve as an alternative to the pass statement, especially for code to be
 filled in later—a sort of Python “TBD”:
def func1():
 ... # Alternative to pass

def func2():
 ...

func1() # Does nothing if called
Ellipses can also appear on the same line as a statement header
 and may be used to initialize variable names if no specific type is
 required:
def func1(): ... # Works on same line too
def func2(): ...

>>> X = ... # Alternative to None
>>> X
Ellipsis
This notation is new in Python 3.X—and goes well beyond the
 original intent of ... in slicing
 extensions—so time will tell if it becomes widespread enough to
 challenge pass and None in these roles.

continue
The continue statement
 causes an immediate jump to the top of a loop. It also
 sometimes lets you avoid statement nesting. The next example uses
 continue to skip odd numbers. This
 code prints all even numbers less than 10 and greater than or equal to
 0. Remember, 0 means false and % is
 the remainder of division (modulus) operator, so this loop counts down
 to 0, skipping numbers that aren’t multiples of 2—it prints 8 6 4 2 0:
x = 10
while x:
 x = x−1 # Or, x -= 1
 if x % 2 != 0: continue # Odd? -- skip print
 print(x, end=' ')
Because continue jumps to the
 top of the loop, you don’t need to nest the print statement here inside an if test; the print is only reached if the continue is not run. If this sounds similar to
 a “go to” in other languages, it should. Python has no “go to”
 statement, but because continue lets
 you jump about in a program, many of the warnings about readability and
 maintainability you may have heard about “go to” apply. continue should probably
 be used sparingly, especially when you’re first getting started with
 Python. For instance, the last example might be clearer if the print were nested under the if:
x = 10
while x:
 x = x−1
 if x % 2 == 0: # Even? -- print
 print(x, end=' ')
Later in this book, we’ll also learn that raised and caught
 exceptions can also emulate “go to” statements in limited and structured
 ways; stay tuned for more on this technique in Chapter 36 where we will learn how to use it
 to break out of multiple nested loops, a feat not possible with the next
 section’s topic alone.

break
The break statement causes an immediate exit from a loop. Because the code
 that follows it in the loop is not executed if the break is reached, you can also sometimes avoid
 nesting by including a break. For
 example, here is a simple interactive loop (a variant of a larger
 example we studied in Chapter 10)
 that inputs data with input (known as
 raw_input in Python 2.X) and exits
 when the user enters “stop” for the name request:
>>> while True:
... name = input('Enter name:') # Use raw_input() in 2.X
... if name == 'stop': break
... age = input('Enter age: ')
... print('Hello', name, '=>', int(age) ** 2)
...
Enter name:bob
Enter age: 40
Hello bob => 1600
Enter name:sue
Enter age: 30
Hello sue => 900
Enter name:stop
Notice how this code converts the age input to an integer with int before raising it to the second power; as
 you’ll recall, this is necessary because input returns user input as a string. In Chapter 36, you’ll see that input also raises an exception at end-of-file
 (e.g., if the user types Ctrl-Z on Windows or Ctrl-D on Unix); if this
 matters, wrap input in try statements.

Loop else
When combined with the loop else
 clause, the break statement can often
 eliminate the need for the search status flags used in other languages.
 For instance, the following piece of code determines whether a positive
 integer y is prime by searching for
 factors greater than 1:
x = y // 2 # For some y > 1
while x > 1:
 if y % x == 0: # Remainder
 print(y, 'has factor', x)
 break # Skip else
 x -= 1
else: # Normal exit
 print(y, 'is prime')
Rather than setting a flag to be tested when the loop is exited,
 it inserts a break where a factor is
 found. This way, the loop else clause
 can assume that it will be executed only if no factor is found; if you
 don’t hit the break, the number is
 prime. Trace through this code to see how this works.
The loop else clause is also
 run if the body of the loop is never executed, as you don’t run a
 break in that event either; in a
 while loop, this happens if the test
 in the header is false to begin with. Thus, in the preceding example you
 still get the “is prime” message if x
 is initially less than or equal to 1 (for instance, if y is 2).
Note
This example determines primes, but only informally so. Numbers
 less than 2 are not considered prime by the strict mathematical
 definition. To be really picky, this code also fails for negative
 numbers and succeeds for floating-point numbers with no decimal
 digits. Also note that its code must use // instead of / in Python 3.X because of the migration of
 / to “true division,” as described
 in Chapter 5 (we need the initial division to
 truncate remainders, not retain them!). If you want to experiment with
 this code, be sure to see the exercise at the end of Part IV, which wraps it in a function
 for reuse.

More on the loop else
Because the loop else clause
 is unique to Python, it tends to perplex some newcomers (and go unused
 by some veterans; I’ve met some who didn’t even know there
 was an else on
 loops!). In general terms, the loop else simply provides explicit syntax for a
 common coding scenario—it is a coding structure that lets us catch the
 “other” way out of a loop, without setting and checking flags or
 conditions.
Suppose, for instance, that we are writing a loop to search a
 list for a value, and we need to know whether the value was found
 after we exit the loop. We might code such a task this way (this code
 is intentionally abstract and incomplete; x is a sequence and match is a tester function to be
 defined):
found = False
while x and not found:
 if match(x[0]): # Value at front?
 print('Ni')
 found = True
 else:
 x = x[1:] # Slice off front and repeat
if not found:
 print('not found')
Here, we initialize, set, and later test a flag to determine
 whether the search succeeded or not. This is valid Python code, and it
 does work; however, this is exactly the sort of structure that the
 loop else clause is there to
 handle. Here’s an else
 equivalent:
while x: # Exit when x empty
 if match(x[0]):
 print('Ni')
 break # Exit, go around else
 x = x[1:]
else:
 print('Not found') # Only here if exhausted x
This version is more concise. The flag is gone, and we’ve
 replaced the if test at the loop
 end with an else (lined up
 vertically with the word while).
 Because the break inside the main
 part of the while exits the loop
 and goes around the else, this
 serves as a more structured way to catch the search-failure
 case.
Some readers might have noticed that the prior example’s
 else clause could be replaced with
 a test for an empty x after the
 loop (e.g., if not x:). Although
 that’s true in this example, the else provides explicit syntax for this
 coding pattern (it’s more obviously a search-failure clause here), and
 such an explicit empty test may not apply in some cases. The loop
 else becomes even more useful when
 used in conjunction with the for
 loop—the topic of the next section—because sequence iteration is not
 under your control.
Why You Will Care: Emulating C while Loops
The section on expression statements in Chapter 11 stated that
 Python doesn’t allow statements such as assignments to appear in
 places where it expects an expression. That is, each statement must
 generally appear on a line by itself, not nested in a larger
 construct. That means this common C language coding pattern won’t
 work in Python:
while ((x = next(obj)) != NULL) {...process x...}
C assignments return the value assigned, but Python
 assignments are just statements, not expressions. This eliminates a
 notorious class of C errors: you can’t accidentally type = in Python when you mean ==. If you need similar behavior, though,
 there are at least three ways to get the same effect in Python
 while loops without embedding
 assignments in loop tests. You can move the assignment into the loop
 body with a break:
while True:
 x = next(obj)
 if not x: break
 ...process x...
or move the assignment into the loop with tests:
x = True
while x:
 x = next(obj)
 if x:
 ...process x...
or move the first assignment outside the loop:
x = next(obj)
while x:
 ...process x...
 x = next(obj)
Of these three coding patterns, the first may be considered by
 some to be the least structured, but it also seems to be the
 simplest and is the most commonly used. A simple Python for loop may replace such C loops as well
 and be more Pythonic, but C doesn’t have a directly analogous
 tool:
for x in obj: ...process x...

for Loops
The for loop is a generic iterator in Python: it can step through the items
 in any ordered sequence or other iterable object. The for statement works on strings, lists, tuples,
 and other built-in iterables, as well as new user-defined objects that
 we’ll learn how to create later with classes. We met for briefly in Chapter 4 and in conjunction with
 sequence object types; let’s expand on its usage more formally
 here.
General Format
The Python for loop begins with a header line that specifies an assignment
 target (or targets), along with the object you want to step through. The
 header is followed by a block of (normally indented) statements that you
 want to repeat:
for target in object: # Assign object items to target
 statements # Repeated loop body: use target
else: # Optional else part
 statements # If we didn't hit a 'break'
When Python runs a for loop, it
 assigns the items in the iterable object to the target one by one and executes the loop body
 for each. The loop body typically uses the assignment target to refer to
 the current item in the sequence as though it were a cursor stepping
 through the sequence.
The name used as the assignment target in a for header line is usually a (possibly new)
 variable in the scope where the for
 statement is coded. There’s not much unique about this name; it can even
 be changed inside the loop’s body, but it will automatically be set to
 the next item in the sequence when control returns to the top of the
 loop again. After the loop this variable normally still refers to the
 last item visited, which is the last item in the sequence unless the
 loop exits with a break
 statement.
The for statement also supports
 an optional else block, which works
 exactly as it does in a while
 loop—it’s executed if the loop exits without running into a break statement (i.e., if all items in the
 sequence have been visited). The break and continue statements introduced earlier also
 work the same in a for loop as they
 do in a while. The for loop’s complete format can be described
 this way:
for target in object: # Assign object items to target
 statements
 if test: break # Exit loop now, skip else
 if test: continue # Go to top of loop now
else:
 statements # If we didn't hit a 'break'

Examples
Let’s type a few for loops
 interactively now, so you can see how they are used in
 practice.
Basic usage
As mentioned earlier, a for
 loop can step across any kind of sequence object. In our first
 example, for instance, we’ll assign the name x to each of the three items in a list in
 turn, from left to right, and the print statement will be executed for each.
 Inside the print statement (the
 loop body), the name x refers to
 the current item in the list:
>>> for x in ["spam", "eggs", "ham"]:
... print(x, end=' ')
...
spam eggs ham
The next two examples compute the sum and product of all the
 items in a list. Later in this chapter and later in the book we’ll
 meet tools that apply operations such as + and *
 to items in a list automatically, but it’s often just as easy to use a
 for:
>>> sum = 0
>>> for x in [1, 2, 3, 4]:
... sum = sum + x
...
>>> sum
10
>>> prod = 1
>>> for item in [1, 2, 3, 4]: prod *= item
...
>>> prod
24

Other data types
Any sequence works in a for,
 as it’s a generic tool. For example, for loops work on strings and tuples:
>>> S = "lumberjack"
>>> T = ("and", "I'm", "okay")

>>> for x in S: print(x, end=' ') # Iterate over a string
...
l u m b e r j a c k

>>> for x in T: print(x, end=' ') # Iterate over a tuple
...
and I'm okay
In fact, as we’ll learn in the next chapter when we explore the
 notion of “iterables,” for loops
 can even work on some objects that are not sequences—files and
 dictionaries work, too.

Tuple assignment in for loops
If you’re iterating through a sequence of tuples, the loop
 target itself can actually be a tuple of targets.
 This is just another case of the tuple-unpacking assignment we studied in Chapter 11 at work.
 Remember, the for loop assigns
 items in the sequence object to the target, and assignment works the
 same everywhere:
>>> T = [(1, 2), (3, 4), (5, 6)]
>>> for (a, b) in T: # Tuple assignment at work
... print(a, b)
...
1 2
3 4
5 6
Here, the first time through the loop is like writing (a,b) = (1,2), the second time is like
 writing (a,b) = (3,4), and so on.
 The net effect is to automatically unpack the current tuple on each
 iteration.
This form is commonly used in conjunction with the zip call we’ll meet later in this chapter to
 implement parallel traversals. It also makes regular appearances in
 conjunction with SQL databases in Python, where query result tables
 are returned as sequences of sequences like the list used here—the
 outer list is the database table, the nested tuples are the rows
 within the table, and tuple assignment extracts columns.
Tuples in for loops also come
 in handy to iterate through both keys and values
 in dictionaries using the items
 method, rather than looping through the keys and indexing to fetch the
 values manually:
>>> D = {'a': 1, 'b': 2, 'c': 3}
>>> for key in D:
... print(key, '=>', D[key]) # Use dict keys iterator and index
...
a => 1
c => 3
b => 2

>>> list(D.items())
[('a', 1), ('c', 3), ('b', 2)]

>>> for (key, value) in D.items():
... print(key, '=>', value) # Iterate over both keys and values
...
a => 1
c => 3
b => 2
It’s important to note that tuple assignment in for loops isn’t a special case; any
 assignment target works syntactically after the word for. We can always assign manually within
 the loop to unpack:
>>> T
[(1, 2), (3, 4), (5, 6)]

>>> for both in T:
... a, b = both # Manual assignment equivalent
... print(a, b) # 2.X: prints with enclosing tuple "()"
...
1 2
3 4
5 6
But tuples in the loop header save us an extra step when
 iterating through sequences of sequences. As suggested in Chapter 11, even
 nested structures may be automatically unpacked
 this way in a for:
>>> ((a, b), c) = ((1, 2), 3) # Nested sequences work too
>>> a, b, c
(1, 2, 3)

>>> for ((a, b), c) in [((1, 2), 3), ((4, 5), 6)]: print(a, b, c)
...
1 2 3
4 5 6
Even this is not a special case, though—the for loop simply runs the sort of assignment
 we ran just before it, on each iteration. Any nested sequence
 structure may be unpacked this way, simply because sequence
 assignment is so generic:
>>> for ((a, b), c) in [([1, 2], 3), ['XY', 6]]: print(a, b, c)
...
1 2 3
X Y 6

Python 3.X extended sequence assignment in for loops
In fact, because the loop variable in a for loop can be any assignment target, we
 can also use Python 3.X’s extended sequence-unpacking assignment
 syntax here to extract items and sections of sequences within
 sequences. Really, this isn’t a special case either, but simply a new
 assignment form in 3.X, as discussed in Chapter 11; because it works
 in assignment statements, it automatically works in for loops.
Consider the tuple assignment form introduced in the prior
 section. A tuple of values is assigned to a tuple of names on each
 iteration, exactly like a simple assignment statement:
>>> a, b, c = (1, 2, 3) # Tuple assignment
>>> a, b, c
(1, 2, 3)

>>> for (a, b, c) in [(1, 2, 3), (4, 5, 6)]: # Used in for loop
... print(a, b, c)
...
1 2 3
4 5 6
In Python 3.X, because a sequence can be assigned to a more
 general set of names with a starred name to collect multiple items, we
 can use the same syntax to extract parts of nested sequences in the
 for loop:
>>> a, *b, c = (1, 2, 3, 4) # Extended seq assignment
>>> a, b, c
(1, [2, 3], 4)

>>> for (a, *b, c) in [(1, 2, 3, 4), (5, 6, 7, 8)]:
... print(a, b, c)
...
1 [2, 3] 4
5 [6, 7] 8
In practice, this approach might be used to pick out multiple
 columns from rows of data represented as nested sequences. In Python
 2.X starred names aren’t allowed, but you can achieve similar effects
 by slicing. The only difference is that slicing returns a
 type-specific result, whereas starred names always are assigned
 lists:
>>> for all in [(1, 2, 3, 4), (5, 6, 7, 8)]: # Manual slicing in 2.X
... a, b, c = all[0], all[1:3], all[3]
... print(a, b, c)
...
1 (2, 3) 4
5 (6, 7) 8
See Chapter 11
 for more on this assignment form.

Nested for loops
Now let’s look at a for loop
 that’s a bit more sophisticated than those we’ve seen so far.
 The next example illustrates statement nesting and the loop else clause in a for. Given a list of objects (items) and a list of keys (tests), this code searches for each key in
 the objects list and reports on the search’s outcome:
>>> items = ["aaa", 111, (4, 5), 2.01] # A set of objects
>>> tests = [(4, 5), 3.14] # Keys to search for
>>>
>>> for key in tests: # For all keys
... for item in items: # For all items
... if item == key: # Check for match
... print(key, "was found")
... break
... else:
... print(key, "not found!")
...
(4, 5) was found
3.14 not found!
Because the nested if runs a
 break when a match is found, the
 loop else clause can assume that if
 it is reached, the search has failed. Notice the nesting here. When
 this code runs, there are two loops going at the same time: the outer
 loop scans the keys list, and the inner loop scans the items list for
 each key. The nesting of the loop else clause is critical; it’s indented to
 the same level as the header line of the inner for loop, so it’s associated with the inner
 loop, not the if or the outer
 for.
This example is illustrative, but it may be easier to code if we
 employ the in operator to test
 membership. Because in implicitly
 scans an object looking for a match (at least logically), it replaces
 the inner loop:
>>> for key in tests: # For all keys
... if key in items: # Let Python check for a match
... print(key, "was found")
... else:
... print(key, "not found!")
...
(4, 5) was found
3.14 not found!
In general, it’s a good idea to let Python do as much of the
 work as possible (as in this solution) for the sake of brevity and
 performance.
The next example is similar, but builds a list as it goes for
 later use instead of printing. It performs a typical data-structure
 task with a for—collecting common
 items in two sequences (strings)—and serves as a rough set
 intersection routine. After the loop runs, res refers to a list that contains all the
 items found in seq1 and seq2:
>>> seq1 = "spam"
>>> seq2 = "scam"
>>>
>>> res = [] # Start empty
>>> for x in seq1: # Scan first sequence
... if x in seq2: # Common item?
... res.append(x) # Add to result end
...
>>> res
['s', 'a', 'm']
Unfortunately, this code is equipped to work only on two
 specific variables: seq1 and
 seq2. It would be nice if this loop
 could somehow be generalized into a tool you could use more than once.
 As you’ll see, that simple idea leads us to
 functions, the topic of the next part of the
 book.
This code also exhibits the classic list comprehension
 pattern—collecting a results list with an iteration and optional
 filter test—and could be coded more concisely too:
>>> [x for x in seq1 if x in seq2] # Let Python collect results
['s', 'a', 'm']
But you’ll have to read on to the next chapter for the rest of
 this story.
Why You Will Care: File Scanners
In general, loops come in handy anywhere you need to repeat an
 operation or process something more than once. Because
 files contain multiple characters and lines,
 they are one of the more typical use cases for loops.
 To load a file’s contents into a string all at once, you simply call
 the file object’s read
 method:
file = open('test.txt', 'r') # Read contents into a string
print(file.read())
But to load a file in smaller pieces, it’s common to code
 either a while loop with breaks
 on end-of-file, or a for loop. To
 read by characters, either of the following
 codings will suffice:
file = open('test.txt')
while True:
 char = file.read(1) # Read by character
 if not char: break # Empty string means end-of-file
 print(char)

for char in open('test.txt').read():
 print(char)
The for loop here also
 processes each character, but it loads the file into memory all at
 once (and assumes it fits!). To read by lines
 or blocks instead, you can use while loop code like this:
file = open('test.txt')
while True:
 line = file.readline() # Read line by line
 if not line: break
 print(line.rstrip()) # Line already has a \n

file = open('test.txt', 'rb')
while True:
 chunk = file.read(10) # Read byte chunks: up to 10 bytes
 if not chunk: break
 print(chunk)
You typically read binary data in blocks. To read text files
 line by line, though, the for loop tends to be easiest to code and
 the quickest to run:
for line in open('test.txt').readlines():
 print(line.rstrip())

for line in open('test.txt'): # Use iterators: best for text input
 print(line.rstrip())
Both of these versions work in both Python 2.X and 3.X. The
 first uses the file readlines
 method to load a file all at once into a line-string list, and the
 last example here relies on file iterators to
 automatically read one line on each loop iteration.
The last example is also generally the
 best option for text files—besides its
 simplicity, it works for arbitrarily large files because it doesn’t
 load the entire file into memory all at once. The iterator version
 may also be the quickest, though I/O performance may vary per Python
 line and release.
File readlines calls can
 still be useful, though—to reverse a file’s
 lines, for example, assuming its content can fit in memory.
 The reversed
 built-in accepts a sequence, but not an arbitrary iterable that
 generates values; in other words, a list works, but a file object
 doesn’t:
for line in reversed(open('test.txt').readlines()): ...
In some 2.X Python code, you may also see the name open replaced with file and the file object’s older xreadlines method used to achieve the same
 effect as the file’s automatic line iterator (it’s like readlines but doesn’t load the file into
 memory all at once). Both file
 and xreadlines are removed in
 Python 3.X, because they are redundant. You should generally avoid
 them in new 2.X code too—use file iterators and open call in recent 2.X releases—but they
 may pop up in older code and resources.
See the library manual for more on the calls used here, and
 Chapter 14 for more on file
 line iterators. Also watch for the sidebar “Why You Will Care: Shell Commands and More” in this chapter;
 it applies these same file tools to the os.popen
 command-line launcher to read program output. There’s more on
 reading files in Chapter 37 too; as
 we’ll see there, text and binary files have slightly different
 semantics in 3.X.

Loop Coding Techniques
The for loop we just studied subsumes most counter-style loops. It’s
 generally simpler to code and often quicker to run than a while, so it’s the first tool you should reach
 for whenever you need to step through a sequence or other iterable. In
 fact, as a general rule, you should resist the temptation to
 count things in Python—its iteration tools automate much of the
 work you do to loop over collections in lower-level languages like
 C.
Still, there are situations where you will need to iterate in more
 specialized ways. For example, what if you need to visit every second or
 third item in a list, or change the list along the way? How about
 traversing more than one sequence in parallel, in the same for loop? What if you need indexes too?
You can always code such unique iterations with a while loop and manual indexing, but Python
 provides a set of built-ins that allow you to specialize the iteration in
 a for:
	The built-in range function
 (available since Python 0.X) produces a series of
 successively higher integers, which can be used as indexes in a
 for.

	The built-in zip function
 (available since Python 2.0) returns a series of
 parallel-item tuples, which can be used to traverse multiple sequences
 in a for.

	The built-in enumerate
 function (available since Python 2.3) generates both the values
 and indexes of items in an iterable, so we don’t need to count
 manually.

	The built-in map function
 (available since Python 1.0) can have a similar effect to
 zip in Python 2.X, though this role
 is removed in 3.X.

Because for loops may run quicker
 than while-based counter loops, though,
 it’s to your advantage to use tools like these that allow you to use
 for whenever possible. Let’s look at
 each of these built-ins in turn, in the context of common use cases. As
 we’ll see, their usage may differ slightly between 2.X and 3.X, and some
 of their applications are more valid than others.
Counter Loops: range
Our first loop-related function, range, is really a general tool that can be used in a variety of
 contexts. We met it briefly in Chapter 4. Although it’s used most
 often to generate indexes in a for,
 you can use it anywhere you need a series of integers. In Python 2.X
 range creates a physical list;
 in 3.X, range is an
 iterable that generates items on demand, so we need
 to wrap it in a list call to display
 its results all at once in 3.X only:
>>> list(range(5)), list(range(2, 5)), list(range(0, 10, 2))
([0, 1, 2, 3, 4], [2, 3, 4], [0, 2, 4, 6, 8])
With one argument, range
 generates a list of integers from zero up to but not including the
 argument’s value. If you pass in two arguments, the first is taken as
 the lower bound. An optional third argument can give a
 step; if it is used, Python adds the step to each
 successive integer in the result (the step defaults to +1). Ranges can
 also be nonpositive and nonascending, if you want them to be:
>>> list(range(−5, 5))
[−5, −4, −3, −2, −1, 0, 1, 2, 3, 4]

>>> list(range(5, −5, −1))
[5, 4, 3, 2, 1, 0, −1, −2, −3, −4]
We’ll get more formal about iterables like this one in Chapter 14. There, we’ll also see that
 Python 2.X has a cousin named xrange,
 which is like its range but
 doesn’t build the result list in memory all at once. This is a space
 optimization, which is subsumed in 3.X by the generator behavior of its
 range.
Although such range results may
 be useful all by themselves, they tend to come in most handy within
 for loops. For one thing, they
 provide a simple way to repeat an action a specific number of times. To
 print three lines, for example, use a range to generate the appropriate number of
 integers:
>>> for i in range(3):
... print(i, 'Pythons')
...
0 Pythons
1 Pythons
2 Pythons
Note that for loops force
 results from range automatically in
 3.X, so we don’t need to use a list
 wrapper here in 3.X (in 2.X we get a temporary list unless we call
 xrange instead).

Sequence Scans: while and range Versus for
The range call is also
 sometimes used to iterate over a sequence indirectly,
 though it’s often not the best approach in this role. The easiest and
 generally fastest way to step through a sequence exhaustively is always
 with a simple for, as Python handles
 most of the details for you:
>>> X = 'spam'
>>> for item in X: print(item, end=' ') # Simple iteration
...
s p a m
Internally, the for loop
 handles the details of the iteration automatically when used this way.
 If you really need to take over the indexing logic explicitly, you can
 do it with a while loop:
>>> i = 0
>>> while i < len(X): # while loop iteration
... print(X[i], end=' ')
... i += 1
...
s p a m
You can also do manual indexing with a for, though, if you use range to generate a list of indexes to iterate
 through. It’s a multistep process, but it’s sufficient to generate
 offsets, rather than the items at those offsets:
>>> X
'spam'
>>> len(X) # Length of string
4
>>> list(range(len(X))) # All legal offsets into X
[0, 1, 2, 3]
>>>
>>> for i in range(len(X)): print(X[i], end=' ') # Manual range/len iteration
...
s p a m
Note that because this example is stepping over a list of
 offsets into X,
 not the actual items of X, we need to index back into X within the loop to fetch each item. If this
 seems like overkill, though, it’s because it is: there’s really no
 reason to work this hard in this example.
Although the range/len combination suffices in this role, it’s
 probably not the best option. It may run slower, and it’s also more work
 than we need to do. Unless you have a special indexing requirement,
 you’re better off using the simple for loop form in Python:
>>> for item in X: print(item, end=' ') # Use simple iteration if you can
As a general rule, use for
 instead of while whenever possible,
 and don’t use range calls in for loops except as a last resort. This
 simpler solution is almost always better. Like every good rule, though,
 there are plenty of exceptions—as the next section demonstrates.

Sequence Shufflers: range and len
Though not ideal for simple sequence scans, the coding pattern used in the
 prior example does allow us to do more specialized sorts of traversals
 when required. For example, some algorithms can make use of sequence
 reordering—to generate alternatives in searches, to test the effect of
 different value orderings, and so on. Such cases may require offsets in
 order to pull sequences apart and put them back together, as in the
 following; the range’s integers provide a repeat count in the first, and
 a position for slicing in the second:
>>> S = 'spam'
>>> for i in range(len(S)): # For repeat counts 0..3
... S = S[1:] + S[:1] # Move front item to end
... print(S, end=' ')
...
pams amsp mspa spam

>>> S
'spam'
>>> for i in range(len(S)): # For positions 0..3
... X = S[i:] + S[:i] # Rear part + front part
... print(X, end=' ')
...
spam pams amsp mspa
Trace through these one iteration at a time if they seem
 confusing. The second creates the same results as the first, though in a
 different order, and doesn’t change the original variable as it goes.
 Because both slice to obtain parts to concatenate, they also work on any
 type of sequence, and return sequences of the same type as that being
 shuffled—if you shuffle a list, you create reordered lists:
>>> L = [1, 2, 3]
>>> for i in range(len(L)):
... X = L[i:] + L[:i] # Works on any sequence type
... print(X, end=' ')
...
[1, 2, 3] [2, 3, 1] [3, 1, 2]
We’ll make use of code like this to test functions with different
 argument orderings in Chapter 18, and will extend it
 to functions, generators, and more complete permutations in Chapter 20—it’s a widely useful tool.

Nonexhaustive Traversals: range Versus Slices
Cases like that of the prior section are valid applications for the range/len
 combination. We might also use this technique to skip items as we
 go:
>>> S = 'abcdefghijk'
>>> list(range(0, len(S), 2))
[0, 2, 4, 6, 8, 10]

>>> for i in range(0, len(S), 2): print(S[i], end=' ')
...
a c e g i k
Here, we visit every second item in the
 string S by stepping over the
 generated range list. To visit every
 third item, change the third range
 argument to be 3, and so on. In
 effect, using range this way lets you
 skip items in loops while still retaining the simplicity of the for loop construct.
In most cases, though, this is also probably not the “best
 practice” technique in Python today. If you really mean to skip items in
 a sequence, the extended three-limit form of the slice
 expression, presented in Chapter 7, provides a simpler route to the same
 goal. To visit every second character in S, for example, slice with a stride of
 2:
>>> S = 'abcdefghijk'
>>> for c in S[::2]: print(c, end=' ')
...
a c e g i k
The result is the same, but substantially easier for you to write
 and for others to read. The potential advantage to using range here instead is space: slicing makes a
 copy of the string in both 2.X and 3.X, while range in 3.X and xrange in 2.X do not create a list; for very
 large strings, they may save memory.

Changing Lists: range Versus Comprehensions
Another common place where you may use the range/len
 combination with for is in loops that
 change a list as it is being traversed. Suppose, for example, that you
 need to add 1 to every item in a list (maybe you’re giving everyone a
 raise in an employee database list). You can try this with a simple
 for loop, but the result probably
 won’t be exactly what you want:
>>> L = [1, 2, 3, 4, 5]

>>> for x in L:
... x += 1 # Changes x, not L
...
>>> L
[1, 2, 3, 4, 5]
>>> x
6
This doesn’t quite work—it changes the loop variable x, not the list L. The reason is somewhat subtle. Each time
 through the loop, x refers to the
 next integer already pulled out of the list. In the first iteration, for
 example, x is integer 1. In the next iteration, the loop body sets
 x to a different object, integer
 2, but it does not update the list
 where 1 originally came from; it’s a
 piece of memory separate from the list.
To really change the list as we march across it, we need to use
 indexes so we can assign an updated value to each position as we go. The
 range/len combination can produce the required
 indexes for us:
>>> L = [1, 2, 3, 4, 5]

>>> for i in range(len(L)): # Add one to each item in L
... L[i] += 1 # Or L[i] = L[i] + 1
...
>>> L
[2, 3, 4, 5, 6]
When coded this way, the list is changed as we proceed through the
 loop. There is no way to do the same with a simple for x in L:–style loop, because such a loop
 iterates through actual items, not list positions. But what about the
 equivalent while loop? Such a loop
 requires a bit more work on our part, and might run more slowly
 depending on your Python (it does on 2.7 and 3.3, though less so on
 3.3—we’ll see how to verify this in Chapter 21):
>>> i = 0
>>> while i < len(L):
... L[i] += 1
... i += 1
...
>>> L
[3, 4, 5, 6, 7]
Here again, though, the range
 solution may not be ideal either. A list comprehension expression of the
 form:
[x + 1 for x in L]
likely runs faster today and would do similar work, albeit without
 changing the original list in place (we could assign the expression’s
 new list object result back to L, but
 this would not update any other references to the original list).
 Because this is such a central looping concept, we’ll save a complete
 exploration of list comprehensions for the next chapter, and continue
 this story there.

Parallel Traversals: zip and map
Our next loop coding technique extends a loop’s scope. As we’ve seen, the
 range built-in allows us to traverse
 sequences with for in a
 nonexhaustive fashion. In the same spirit, the built-in zip function allows us to use for loops to visit multiple sequences
 in parallel—not overlapping in time, but during the
 same loop. In basic operation, zip
 takes one or more sequences as arguments and returns a series of tuples
 that pair up parallel items taken from those sequences. For example,
 suppose we’re working with two lists (a list of names and addresses
 paired by position, perhaps):
>>> L1 = [1,2,3,4]
>>> L2 = [5,6,7,8]
To combine the items in these lists, we can use zip to create a list of tuple pairs. Like
 range, zip is a list in Python 2.X, but an iterable
 object in 3.X where we must wrap it in a list call to display all its results at once
 (again, there’s more on iterables coming up in the next chapter):
>>> zip(L1, L2)
<zip object at 0x026523C8>
>>> list(zip(L1, L2)) # list() required in 3.X, not 2.X
[(1, 5), (2, 6), (3, 7), (4, 8)]
Such a result may be useful in other contexts as well, but when
 wedded with the for loop, it supports
 parallel iterations:
>>> for (x, y) in zip(L1, L2):
... print(x, y, '--', x+y)
...
1 5 -- 6
2 6 -- 8
3 7 -- 10
4 8 -- 12
Here, we step over the result of the zip call—that is, the pairs of items pulled
 from the two lists. Notice that this for loop again uses the tuple assignment form
 we met earlier to unpack each tuple in the zip result. The first time through, it’s as
 though we ran the assignment statement (x, y) =
 (1, 5).
The net effect is that we scan both L1 and L2 in our loop. We could achieve a similar
 effect with a while loop that handles
 indexing manually, but it would require more typing and would likely run
 more slowly than the for/zip approach.
Strictly speaking, the zip
 function is more general than this example suggests. For instance, it
 accepts any type of sequence (really, any iterable object, including
 files), and it accepts more than two arguments. With three arguments, as
 in the following example, it builds a list of three-item tuples with
 items from each sequence, essentially projecting by columns
 (technically, we get an N-ary tuple for N arguments):
>>> T1, T2, T3 = (1,2,3), (4,5,6), (7,8,9)
>>> T3
(7, 8, 9)
>>> list(zip(T1, T2, T3)) # Three tuples for three arguments
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]
Moreover, zip truncates result
 tuples at the length of the shortest sequence when the argument lengths
 differ. In the following, we zip together two strings to pick out
 characters in parallel, but the result has only as many tuples as the
 length of the shortest sequence:
>>> S1 = 'abc'
>>> S2 = 'xyz123'
>>>
>>> list(zip(S1, S2)) # Truncates at len(shortest)
[('a', 'x'), ('b', 'y'), ('c', 'z')]
map equivalence in Python 2.X
In Python 2.X only, the related built-in map
 function pairs items from sequences in a similar fashion when passed
 None for its function argument, but
 it pads shorter sequences with None
 if the argument lengths differ instead of truncating to the shortest
 length:
>>> S1 = 'abc'
>>> S2 = 'xyz123'

>>> map(None, S1, S2) # 2.X only: pads to len(longest)
[('a', 'x'), ('b', 'y'), ('c', 'z'), (None, '1'), (None, '2'), (None,'3')]
This example is using a degenerate form of the map built-in, which is no longer supported
 in 3.X. Normally, map takes a
 function and one or more sequence arguments and collects the results
 of calling the function with parallel items taken from the
 sequence(s).
We’ll study map in detail in
 Chapter 19 and Chapter 20, but as a brief example,
 the following maps the built-in ord
 function across each item in a string and collects the results (like
 zip, map is a value generator in 3.X and so must
 be passed to list to collect all
 its results at once in 3.X only):
>>> list(map(ord, 'spam'))
[115, 112, 97, 109]
This works the same as the following loop statement, but
 map is often quicker, as Chapter 21 will show:
>>> res = []
>>> for c in 'spam': res.append(ord(c))
>>> res
[115, 112, 97, 109]
Note
Version skew note: The degenerate form of
 map using a function argument of
 None is no longer supported in
 Python 3.X, because it largely overlaps with zip (and was, frankly, a bit at odds with
 map’s function-application
 purpose). In 3.X, either use zip
 or write loop code to pad results yourself. In fact, we’ll see how
 to write such loop code in Chapter 20, after we’ve had a
 chance to study some additional iteration concepts.

Dictionary construction with zip
Let’s look at another zip use case.
 Chapter 8 suggested that the zip call used here can also be handy for
 generating dictionaries when the sets of keys and values must be
 computed at runtime. Now that we’re becoming proficient with zip, let’s explore more fully how it relates
 to dictionary construction. As you’ve learned, you can always create a
 dictionary by coding a dictionary literal, or by assigning to keys
 over time:
>>> D1 = {'spam':1, 'eggs':3, 'toast':5}
>>> D1
{'eggs': 3, 'toast': 5, 'spam': 1}

>>> D1 = {}
>>> D1['spam'] = 1
>>> D1['eggs'] = 3
>>> D1['toast'] = 5
What to do, though, if your program obtains dictionary keys and
 values in lists at runtime, after you’ve coded
 your script? For example, say you had the following keys and values
 lists, collected from a user, parsed from a file, or obtained from
 another dynamic source:
>>> keys = ['spam', 'eggs', 'toast']
>>> vals = [1, 3, 5]
One solution for turning those lists into a dictionary would be
 to zip the lists and step through
 them in parallel with a for
 loop:
>>> list(zip(keys, vals))
[('spam', 1), ('eggs', 3), ('toast', 5)]

>>> D2 = {}
>>> for (k, v) in zip(keys, vals): D2[k] = v
...
>>> D2
{'eggs': 3, 'toast': 5, 'spam': 1}
It turns out, though, that in Python 2.2 and later you can skip
 the for loop altogether and simply
 pass the zipped keys/values lists to the built-in dict constructor call:
>>> keys = ['spam', 'eggs', 'toast']
>>> vals = [1, 3, 5]

>>> D3 = dict(zip(keys, vals))
>>> D3
{'eggs': 3, 'toast': 5, 'spam': 1}
The built-in name dict is
 really a type name in Python (you’ll learn more about type names, and
 subclassing them, in Chapter 32).
 Calling it achieves something like a list-to-dictionary conversion,
 but it’s really an object construction request.
In the next chapter we’ll explore the related but richer
 concept, the list comprehension, which builds lists in a single
 expression; we’ll also revisit Python 3.X and 2.7 dictionary
 comprehensions, an alternative to the dict call for zipped key/value pairs:
>>> {k: v for (k, v) in zip(keys, vals)}
{'eggs': 3, 'toast': 5, 'spam': 1}

Generating Both Offsets and Items: enumerate
Our final loop helper function is designed to support dual usage modes.
 Earlier, we discussed using range to
 generate the offsets of items in a string, rather than the items at
 those offsets. In some programs, though, we need both: the item to use,
 plus an offset as we go. Traditionally, this was coded with a simple
 for loop that also kept a counter of
 the current offset:
>>> S = 'spam'
>>> offset = 0
>>> for item in S:
... print(item, 'appears at offset', offset)
... offset += 1
...
s appears at offset 0
p appears at offset 1
a appears at offset 2
m appears at offset 3
This works, but in all recent Python 2.X and 3.X releases (since
 2.3) a new built-in named enumerate
 does the job for us—its net effect is to give loops a counter “for
 free,” without sacrificing the simplicity of automatic iteration:
>>> S = 'spam'
>>> for (offset, item) in enumerate(S):
... print(item, 'appears at offset', offset)
...
s appears at offset 0
p appears at offset 1
a appears at offset 2
m appears at offset 3
The enumerate function returns
 a generator object—a kind of object that supports
 the iteration protocol that we will study in the next chapter and will
 discuss in more detail in the next part of the book. In short, it has a
 method called by the next built-in
 function, which returns an (index, value) tuple each time through the loop. The
 for steps through these tuples
 automatically, which allows us to unpack their values with tuple
 assignment, much as we did for zip:
>>> E = enumerate(S)
>>> E
<enumerate object at 0x0000000002A8B900>
>>> next(E)
(0, 's')
>>> next(E)
(1, 'p')
>>> next(E)
(2, 'a')
We don’t normally see this machinery because all iteration
 contexts—including list comprehensions, the subject of Chapter 14—run the iteration protocol
 automatically:
>>> [c * i for (i, c) in enumerate(S)]
['', 'p', 'aa', 'mmm']

>>> for (i, l) in enumerate(open('test.txt')):
... print('%s) %s' % (i, l.rstrip()))
...
0) aaaaaa
1) bbbbbb
2) cccccc
To fully understand iteration concepts like enumerate, zip, and list comprehensions, though, we need
 to move on to the next chapter for a more formal dissection.
Why You Will Care: Shell Commands and More
An earlier sidebar showed loops applied to files. As briefly noted in Chapter 9, Python’s related
 os.popen call also gives a file-like interface, for reading the
 outputs of spawned shell commands. Now that we’ve
 studied looping statements in full, here’s an example of this tool in
 action—to run a shell command and read its standard output text, pass
 the command as a string to os.popen, and read text from the file-like object it returns
 (if this triggers a Unicode encoding issue on your computer, Chapter 25’s discussion of currency symbols
 may apply):
>>> import os
>>> F = os.popen('dir') # Read line by line
>>> F.readline()
' Volume in drive C has no label.\n'
>>> F = os.popen('dir') # Read by sized blocks
>>> F.read(50)
' Volume in drive C has no label.\n Volume Serial Nu'

>>> os.popen('dir').readlines()[0] # Read all lines: index
' Volume in drive C has no label.\n'
>>> os.popen('dir').read()[:50] # Read all at once: slice
' Volume in drive C has no label.\n Volume Serial Nu'

>>> for line in os.popen('dir'): # File line iterator loop
... print(line.rstrip())
...
 Volume in drive C has no label.
 Volume Serial Number is D093-D1F7
...and so on...
This runs a dir directory
 listing on Windows, but any program that can be started with a command
 line can be launched this way. We might use this scheme, for example,
 to display the output of the windows systeminfo
 command—os.system simply runs a shell command, but os.popen also connects to its streams; both
 of the following show the shell command’s output in a simple console
 window, but the first might not in a GUI interface such as
 IDLE:
>>> os.system('systeminfo')
...output in console, popup in IDLE...
0
>>> for line in os.popen('systeminfo'): print(line.rstrip())

Host Name: MARK-VAIO
OS Name: Microsoft Windows 7 Professional
OS Version: 6.1.7601 Service Pack 1 Build 7601
...lots of system information text...
And once we have a command’s output in text form, any string
 processing tool or technique applies—including display formatting and
 content parsing:
Formatted, limited display
>>> for (i, line) in enumerate(os.popen('systeminfo')):
... if i == 4: break
... print('%05d) %s' % (i, line.rstrip()))
...
00000)
00001) Host Name: MARK-VAIO
00002) OS Name: Microsoft Windows 7 Professional
00003) OS Version: 6.1.7601 Service Pack 1 Build 7601

Parse for specific lines, case neutral
>>> for line in os.popen('systeminfo'):
... parts = line.split(':')
... if parts and parts[0].lower() == 'system type':
... print(parts[1].strip())
...
x64-based PC
We’ll see os.popen in action
 again in Chapter 21, where we’ll
 deploy it to read the results of a constructed command line that times
 code alternatives, and in Chapter 25,
 where it will be used to compare outputs of scripts being
 tested.
Tools like os.popen and
 os.system (and the subprocess module not shown here) allow you to leverage every command-line
 program on your computer, but you can also write emulators with
 in-process code. For example, simulating the Unix awk utility’s
 ability to strip columns out of text files is almost trivial in
 Python, and can become a reusable function in the process:
awk emulation: extract column 7 from whitespace-delimited file
for val in [line.split()[6] for line in open('input.txt')]:
 print(val)

Same, but more explicit code that retains result
col7 = []
for line in open('input.txt'):
 cols = line.split()
 col7.append(cols[6])
for item in col7: print(item)

Same, but a reusable function (see next part of book)
def awker(file, col):
 return [line.rstrip().split()[col-1] for line in open(file)]

print(awker('input.txt', 7)) # List of strings
print(','.join(awker('input.txt', 7))) # Put commas between
By itself, though, Python provides file-like access to a wide
 variety of data—including the text returned by
 websites and their pages identified by URL,
 though we’ll have to defer to Part V
 for more on the package import used here, and other resources for more
 on such tools in general (e.g., this works in 2.X, but uses urllib instead of urllib.request, and returns text
 strings):
>>> from urllib.request import urlopen
>>> for line in urlopen('http://learning-python.com/books'):
... print(line)
...
b'<HTML>\n'
b'\n'
b'<HEAD>\n'
b"<TITLE>Mark Lutz's Book Support Site</TITLE>\n"
...etc...

Chapter Summary
In this chapter, we explored Python’s looping statements as well as
 some concepts related to looping in Python. We looked at the while and for
 loop statements in depth, and we learned about their associated else clauses. We also studied the break and continue statements, which have meaning only
 inside loops, and met several built-in tools commonly used in for loops, including range, zip,
 map, and enumerate, although some of the details
 regarding their roles as iterables in Python 3.X were intentionally cut
 short.
In the next chapter, we continue the iteration story by discussing
 list comprehensions and the iteration protocol in Python—concepts strongly
 related to for loops. There, we’ll also
 give the rest of the picture behind the iterable tools we met here, such
 as range and zip, and study some of the subtleties of their
 operation. As always, though, before moving on let’s exercise what you’ve
 picked up here with a quiz.

Test Your Knowledge: Quiz
	What are the main functional differences between a while and a for?

	What’s the difference between break and continue?

	When is a loop’s else clause
 executed?

	How can you code a counter-based loop in Python?

	What can a range be used for
 in a for loop?

Test Your Knowledge: Answers
	The while loop is a general
 looping statement, but the for is
 designed to iterate across items in a sequence or other iterable.
 Although the while can imitate the
 for with counter loops, it takes
 more code and might run slower.

	The break statement exits a
 loop immediately (you wind up below the entire while or for loop statement), and continue jumps back to the top of the loop
 (you wind up positioned just before the test in while or the next item fetch in for).

	The else clause in a while or for loop will be run once as the loop is
 exiting, if the loop exits normally (without running into a break statement). A break exits the loop immediately, skipping
 the else part on the way out (if
 there is one).

	Counter loops can be coded with a while statement that keeps track of the
 index manually, or with a for loop
 that uses the range built-in
 function to generate successive integer offsets. Neither is the
 preferred way to work in Python, if you need to simply step across all
 the items in a sequence. Instead, use a simple for loop without range or counters, whenever possible; it
 will be easier to code and usually quicker to run.

	The range built-in can be
 used in a for to implement a fixed
 number of repetitions, to scan by offsets instead of items at offsets,
 to skip successive items as you go, and to change a list while
 stepping across it. None of these roles requires range, and most have alternatives—scanning
 actual items, three-limit slices, and list comprehensions are often
 better solutions today (despite the natural inclinations of ex–C
 programmers to want to count things!).

Chapter 14. Iterations and Comprehensions
In the prior chapter we met Python’s two looping statements, while and for.
 Although they can handle most repetitive tasks programs need to perform, the
 need to iterate over sequences is so common and pervasive that Python
 provides additional tools to make it simpler and more efficient. This
 chapter begins our exploration of these tools. Specifically, it presents the
 related concepts of Python’s iteration protocol, a
 method-call model used by the for loop,
 and fills in some details on list comprehensions, which
 are a close cousin to the for
 loop that applies an expression to items in an iterable.
Because these tools are related to both the for loop and functions, we’ll take a two-pass
 approach to covering them in this book, along with a postscript:
	This chapter introduces their basics in the context of looping
 tools, serving as something of a continuation of the prior
 chapter.

	Chapter 20 revisits them in
 the context of function-based tools, and extends the topic to include
 built-in and user-defined generators.

	Chapter 30 also provides a
 shorter final installment in this story, where we’ll learn about
 user-defined iterable objects coded with
 classes.

In this chapter, we’ll also sample additional iteration tools in
 Python, and touch on the new iterables available in Python 3.X—where the
 notion of iterables grows even more pervasive.
One note up front: some of the concepts presented in these chapters
 may seem advanced at first glance. With practice, though, you’ll find that
 these tools are useful and powerful. Although never strictly required,
 because they’ve become commonplace in Python code, a basic understanding can
 also help if you must read programs written by others.
Iterations: A First Look
In the preceding chapter, I mentioned that the for
 loop can work on any sequence type in Python, including lists, tuples, and
 strings, like this:
>>> for x in [1, 2, 3, 4]: print(x ** 2, end=' ') # In 2.X: print x ** 2,
...
1 4 9 16

>>> for x in (1, 2, 3, 4): print(x ** 3, end=' ')
...
1 8 27 64

>>> for x in 'spam': print(x * 2, end=' ')
...
ss pp aa mm
Actually, the for loop turns out
 to be even more generic than this—it works on any iterable object. In fact, this
 is true of all iteration tools that scan objects from left to right in
 Python, including for loops, the list
 comprehensions we’ll study in this chapter, in membership tests, the map built-in function, and more.
The concept of “iterable objects” is relatively recent in Python,
 but it has come to permeate the language’s design. It’s essentially a
 generalization of the notion of sequences—an object is considered
 iterable if it is either a physically stored
 sequence, or an object that produces one result at a time in the context
 of an iteration tool like a for loop.
 In a sense, iterable objects include both physical sequences and
 virtual sequences computed on demand.
Note
Terminology in this topic tends to be a bit
 loose. The terms “iterable” and “iterator” are sometimes used
 interchangeably to refer to an object that supports iteration in
 general. For clarity, this book has a very strong preference for using
 the term iterable to refer to an object that
 supports the iter call, and
 iterator to refer to an object returned by an
 iterable on iter that supports the
 next(I) call. Both these calls are defined
 ahead.
That convention is not universal in either the Python world or
 this book, though; “iterator” is also sometimes used for tools that
 iterate. Chapter 20 extends this
 category with the term “generator”—which refers to objects that
 automatically support the iteration protocol, and hence are
 iterable—even though all iterables generate results!

The Iteration Protocol: File Iterators
One of the easiest ways to understand the iteration protocol is to see how it
 works with a built-in type such as the file. In this chapter, we’ll be
 using the following input file to demonstrate:
>>> print(open('script2.py').read())
import sys
print(sys.path)
x = 2
print(x ** 32)

>>> open('script2.py').read()
'import sys\nprint(sys.path)\nx = 2\nprint(x ** 32)\n'
Recall from Chapter 9 that open file
 objects have a method called readline, which reads one line of text from a
 file at a time—each time we call the readline method, we
 advance to the next line. At the end of the file, an empty string is
 returned, which we can detect to break out of the loop:
>>> f = open('script2.py') # Read a four-line script file in this directory
>>> f.readline() # readline loads one line on each call
'import sys\n'
>>> f.readline()
'print(sys.path)\n'
>>> f.readline()
'x = 2\n'
>>> f.readline() # Last lines may have a \n or not
'print(x ** 32)\n'
>>> f.readline() # Returns empty string at end-of-file
''
However, files also have a method named __next__ in 3.X
 (and next in 2.X) that has a nearly
 identical effect—it returns the next line from a file each time it is
 called. The only noticeable difference is that __next__ raises a built-in StopIteration
 exception at end-of-file instead of returning an empty string:
>>> f = open('script2.py') # __next__ loads one line on each call too
>>> f.__next__() # But raises an exception at end-of-file
'import sys\n'
>>> f.__next__() # Use f.next() in 2.X, or next(f) in 2.X or 3.X
'print(sys.path)\n'
>>> f.__next__()
'x = 2\n'
>>> f.__next__()
'print(x ** 32)\n'
>>> f.__next__()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
This interface is most of what we call the iteration
 protocol in Python. Any object with a __next__ method to advance to a next result,
 which raises StopIteration at the end
 of the series of results, is considered an iterator in Python. Any such
 object may also be stepped through with a for loop or other iteration tool, because all
 iteration tools normally work internally by calling __next__ on each iteration and catching the
 StopIteration exception to determine
 when to exit. As we’ll see in a moment, for some objects the full
 protocol includes an additional first step to call iter, but this isn’t required for
 files.
The net effect of this magic is that, as mentioned in Chapter 9 and Chapter 13, the best way to read a text file line
 by line today is to not read it at all—instead,
 allow the for loop to
 automatically call __next__ to
 advance to the next line on each iteration. The file object’s iterator
 will do the work of automatically loading lines as you go. The
 following, for example, reads a file line by line, printing the
 uppercase version of each line along the way, without ever explicitly
 reading from the file at all:
>>> for line in open('script2.py'): # Use file iterators to read by lines
... print(line.upper(), end='') # Calls __next__, catches StopIteration
...
IMPORT SYS
PRINT(SYS.PATH)
X = 2
PRINT(X ** 32)
Notice that the print uses
 end='' here to suppress adding a
 \n, because line strings already have
 one (without this, our output would be double-spaced; in 2.X, a trailing
 comma works the same as the end).
 This is considered the best way to read text files
 line by line today, for three reasons: it’s the simplest to code, might
 be the quickest to run, and is the best in terms of memory usage. The
 older, original way to achieve the same effect with a for loop is to call the file readlines method
 to load the file’s content into memory as a list of line strings:
>>> for line in open('script2.py').readlines():
... print(line.upper(), end='')
...
IMPORT SYS
PRINT(SYS.PATH)
X = 2
PRINT(X ** 32)
This readlines technique still
 works but is not considered the best practice today and performs poorly
 in terms of memory usage. In fact, because this version really does load
 the entire file into memory all at once, it will not even work for files
 too big to fit into the memory space available on your computer. By
 contrast, because it reads one line at a time, the iterator-based
 version is immune to such memory-explosion issues. The iterator version
 might run quicker too, though this can vary per release
As mentioned in the prior chapter’s sidebar, “Why You Will Care: File Scanners”, it’s also possible
 to read a file line by line with a while
 loop:
>>> f = open('script2.py')
>>> while True:
... line = f.readline()
... if not line: break
... print(line.upper(), end='')
...
...same output...
However, this may run slower than the iterator-based for loop version, because iterators run at C
 language speed inside Python, whereas the while loop version runs Python byte code
 through the Python virtual machine. Anytime we trade Python code for C
 code, speed tends to increase. This is not an absolute truth, though,
 especially in Python 3.X; we’ll see timing techniques later in Chapter 21 for measuring the relative speed
 of alternatives like these.1
Note
Version skew note: In Python 2.X, the
 iteration method is named X.next()
 instead of X.__next__(). For
 portability, a next(X) built-in
 function is also available in both Python 3.X and 2.X (2.6 and later),
 and calls X.__next__() in 3.X and
 X.next() in 2.X. Apart from method
 names, iteration works the same in 2.X and 3.X in all other ways. In
 2.6 and 2.7, simply use X.next() or
 next(X) for manual iterations
 instead of 3.X’s X.__next__();
 prior to 2.6, use X.next() calls
 instead of next(X).

Manual Iteration: iter and next
To simplify manual iteration code, Python 3.X also provides a built-in
 function, next, that automatically
 calls an object’s __next__ method.
 Per the preceding note, this call also is supported on
 Python 2.X for portability. Given an iterator object X, the call next(X) is the
 same as X.__next__() on 3.X (and
 X.next() on 2.X), but is noticeably
 simpler and more version-neutral. With files, for instance, either form
 may be used:
>>> f = open('script2.py')
>>> f.__next__() # Call iteration method directly
'import sys\n'
>>> f.__next__()
'print(sys.path)\n'

>>> f = open('script2.py')
>>> next(f) # The next(f) built-in calls f.__next__() in 3.X
'import sys\n'
>>> next(f) # next(f) => [3.X: f.__next__()], [2.X: f.next()]
'print(sys.path)\n'
Technically, there is one more piece to the iteration protocol
 alluded to earlier. When the for loop
 begins, it first obtains an iterator from the iterable object by passing
 it to the iter built-in function; the
 object returned by iter in turn has
 the required next method. The
 iter function internally runs the
 __iter__ method, much like next and __next__.
The full iteration protocol
As a more formal definition, Figure 14-1 sketches this
 full iteration protocol, used by every iteration tool in Python, and
 supported by a wide variety of object types. It’s really based on
 two objects, used in two distinct steps by
 iteration tools:
	The iterable object you request
 iteration for, whose __iter__
 is run by iter

	The iterator object returned by the
 iterable that actually produces values during the iteration, whose
 __next__ is run by next and raises StopIteration when finished producing results

Figure 14-1. The Python iteration protocol, used by for loops,
 comprehensions, maps, and more, and supported by files, lists,
 dictionaries, Chapter 20’s
 generators, and more. Some objects are both iteration context and
 iterable object, such as generator expressions and 3.X’s flavors of
 some tools (such as map and zip). Some objects are both iterable and
 iterator, returning themselves for the iter() call, which is then a
 no-op.

These steps are orchestrated automatically by iteration tools in
 most cases, but it helps to understand these two objects’ roles. For
 example, in some cases these two objects are the
 same when only a single scan is supported (e.g.,
 files), and the iterator object is often
 temporary, used internally by the iteration tool.
Moreover, some objects are both an iteration
 context tool (they iterate) and an iterable object (their results are
 iterable)—including Chapter 20’s generator expressions,
 and map and zip in Python 3.X. As we’ll see ahead, more
 tools become iterables in 3.X—including map, zip,
 range, and some dictionary
 methods—to avoid constructing result lists in memory all at
 once.
In actual code, the protocol’s first step becomes obvious if we
 look at how for loops
 internally process built-in sequence types such as lists:
>>> L = [1, 2, 3]
>>> I = iter(L) # Obtain an iterator object from an iterable
>>> I.__next__() # Call iterator's next to advance to next item
1
>>> I.__next__() # Or use I.next() in 2.X, next(I) in either line
2
>>> I.__next__()
3
>>> I.__next__()
...error text omitted...
StopIteration
This initial step is not required for files, because a file
 object is its own iterator. Because they support just one iteration
 (they can’t seek backward to support multiple active scans), files
 have their own __next__ method and
 do not need to return a different object that does:
>>> f = open('script2.py')
>>> iter(f) is f
True
>>> iter(f) is f.__iter__()
True
>>> f.__next__()
'import sys\n'
Lists and many other built-in objects, though, are not their own
 iterators because they do support multiple open iterations—for
 example, there may be multiple iterations in nested loops all at
 different positions. For such objects, we must call iter to start iterating:
>>> L = [1, 2, 3]
>>> iter(L) is L
False
>>> L.__next__()
AttributeError: 'list' object has no attribute '__next__'

>>> I = iter(L)
>>> I.__next__()
1
>>> next(I) # Same as I.__next__()
2

Manual iteration
Although Python iteration tools call these functions
 automatically, we can use them to apply the iteration protocol
 manually, too. The following interaction
 demonstrates the equivalence between automatic and manual
 iteration:2
>>> L = [1, 2, 3]
>>>
>>> for X in L: # Automatic iteration
... print(X ** 2, end=' ') # Obtains iter, calls __next__, catches exceptions
...
1 4 9

>>> I = iter(L) # Manual iteration: what for loops usually do
>>> while True:
... try: # try statement catches exceptions
... X = next(I) # Or call I.__next__ in 3.X
... except StopIteration:
... break
... print(X ** 2, end=' ')
...
1 4 9
To understand this code, you need to know that try statements run an action and catch
 exceptions that occur while the action runs (we met exceptions briefly
 in Chapter 11 but will
 explore them in depth in Part VII). I
 should also note that for loops and
 other iteration contexts can sometimes work differently for
 user-defined classes, repeatedly indexing an object instead of running
 the iteration protocol, but prefer the iteration protocol if it’s
 used. We’ll defer that story until we study class operator overloading in Chapter 30.

Other Built-in Type Iterables
Besides files and physical sequences like lists, other types have useful
 iterators as well. The classic way to step through the keys of a
 dictionary, for example, is to request its keys
 list explicitly:
>>> D = {'a':1, 'b':2, 'c':3}
>>> for key in D.keys():
... print(key, D[key])
...
a 1
b 2
c 3
In recent versions of Python, though, dictionaries are iterables with an iterator that
 automatically returns one key at a time in an iteration context:
>>> I = iter(D)
>>> next(I)
'a'
>>> next(I)
'b'
>>> next(I)
'c'
>>> next(I)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
The net effect is that we no longer need to call the keys
 method to step through dictionary keys—the for loop will use the iteration protocol to grab one key each time
 through:
>>> for key in D:
... print(key, D[key])
...
a 1
b 2
c 3
We can’t delve into their details here, but other Python object
 types also support the iteration protocol and thus may be used in
 for loops too. For instance,
 shelves (an access-by-key filesystem for Python objects) and the results from os.popen (a tool
 for reading the output of shell commands, which we met in the preceding
 chapter) are iterable as well:
>>> import os
>>> P = os.popen('dir')
>>> P.__next__()
' Volume in drive C has no label.\n'
>>> P.__next__()
' Volume Serial Number is D093-D1F7\n'
>>> next(P)
TypeError: _wrap_close object is not an iterator
Notice that popen objects
 themselves support a P.next() method
 in Python 2.X. In 3.X, they support the P.__next__() method, but not the next(P) built-in. Since the latter is defined
 to call the former, this may seem unusual, though both calls work
 correctly if we use the full iteration protocol employed automatically
 by for loops and other iteration
 contexts, with its top-level iter
 call (this performs internal steps required to also support next calls for this object):
>>> P = os.popen('dir')
>>> I = iter(P)
>>> next(I)
' Volume in drive C has no label.\n'
>>> I.__next__()
' Volume Serial Number is D093-D1F7\n'
Also in the systems domain, the standard directory walker in
 Python, os.walk, is
 similarly iterable, but we’ll save an example until Chapter 20’s coverage of this tool’s
 basis—generators and yield.
The iteration protocol also is the reason that we’ve had to wrap
 some results in a list call
 to see their values all at once. Objects that are iterable return results one at a time, not in a
 physical list:
>>> R = range(5)
>>> R # Ranges are iterables in 3.X
range(0, 5)
>>> I = iter(R) # Use iteration protocol to produce results
>>> next(I)
0
>>> next(I)
1
>>> list(range(5)) # Or use list to collect all results at once
[0, 1, 2, 3, 4]
Note that the list call here is
 not required in 2.X (where range
 builds a real list), and is not needed in 3.X for contexts where
 iteration happens automatically (such as within for loops). It is needed for displaying values
 here in 3.X, though, and may also be required when list-like behavior or
 multiple scans are required for objects that produce results on demand
 in 2.X or 3.X (more on this ahead).
Now that you have a better understanding of this protocol, you
 should be able to see how it explains why the enumerate tool
 introduced in the prior chapter works the way it does:
>>> E = enumerate('spam') # enumerate is an iterable too
>>> E
<enumerate object at 0x00000000029B7678>
>>> I = iter(E)
>>> next(I) # Generate results with iteration protocol
(0, 's')
>>> next(I) # Or use list to force generation to run
(1, 'p')
>>> list(enumerate('spam'))
[(0, 's'), (1, 'p'), (2, 'a'), (3, 'm')]
We don’t normally see this machinery because for loops run it for us automatically to step
 through results. In fact, everything that scans left to right in Python
 employs the iteration protocol in the same way—including the topic of
 the next section.

List Comprehensions: A First Detailed Look
Now that we’ve seen how the iteration protocol works, let’s turn to one of
 its most common use cases. Together with for loops, list comprehensions are one of the
 most prominent contexts in which the iteration protocol is applied.
In the previous chapter, we learned how to use range to change a list as we step across
 it:
>>> L = [1, 2, 3, 4, 5]

>>> for i in range(len(L)):
... L[i] += 10
...
>>> L
[11, 12, 13, 14, 15]
This works, but as I mentioned there, it may not be the optimal
 “best practice” approach in Python. Today, the list comprehension
 expression makes many such prior coding patterns obsolete. Here, for
 example, we can replace the loop with a single expression that produces
 the desired result list:
>>> L = [x + 10 for x in L]
>>> L
[21, 22, 23, 24, 25]
The net result is similar, but it requires less coding on our part
 and is likely to run substantially faster. The list comprehension isn’t
 exactly the same as the for loop
 statement version because it makes a
 new list object (which might matter if there are
 multiple references to the original list), but it’s close enough for most
 applications and is a common and convenient enough approach to merit a
 closer look here.
List Comprehension Basics
We met the list comprehension briefly in Chapter 4. Syntactically, its syntax
 is derived from a construct in set theory notation that applies an
 operation to each item in a set, but you don’t have to know set theory
 to use this tool. In Python, most people find that a list comprehension
 simply looks like a backward for
 loop.
To get a handle on the syntax, let’s dissect the prior section’s
 example in more detail:
L = [x + 10 for x in L]
List comprehensions are written in square brackets because they
 are ultimately a way to construct a new list. They begin with an
 arbitrary expression that we make up, which uses a loop variable that we
 make up (x + 10). That is followed by
 what you should now recognize as the header of a for loop, which names the loop variable, and
 an iterable object (for x in
 L).
To run the expression, Python executes an iteration across
 L inside the interpreter, assigning
 x to each item in turn, and collects
 the results of running the items through the expression on the left
 side. The result list we get back is exactly what the list comprehension
 says—a new list containing x + 10,
 for every x in L.
Technically speaking, list comprehensions are never really
 required because we can always build up a list of expression results
 manually with for loops that append
 results as we go:
>>> res = []
>>> for x in L:
... res.append(x + 10)
...
>>> res
[31, 32, 33, 34, 35]
In fact, this is exactly what the list comprehension does
 internally.
However, list comprehensions are more concise to write, and
 because this code pattern of building up result lists is so common in
 Python work, they turn out to be very useful in many contexts. Moreover,
 depending on your Python and code, list comprehensions might run much
 faster than manual for loop
 statements (often roughly twice as fast) because their iterations are
 performed at C language speed inside the interpreter, rather than with
 manual Python code. Especially for larger data sets, there is often a
 major performance advantage to using this expression.

Using List Comprehensions on Files
Let’s work through another common application of list comprehensions to
 explore them in more detail. Recall that the file object has a readlines
 method that loads the file into a list of line strings all at
 once:
>>> f = open('script2.py')
>>> lines = f.readlines()
>>> lines
['import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n']
This works, but the lines in the result all include the newline
 character (\n) at the end. For many
 programs, the newline character gets in the way—we have to be careful to
 avoid double-spacing when printing, and so on. It would be nice if we
 could get rid of these newlines all at once, wouldn’t it?
Anytime we start thinking about performing an operation on each
 item in a sequence, we’re in the realm of list comprehensions. For
 example, assuming the variable lines
 is as it was in the prior interaction, the following code does the job
 by running each line in the list through the string rstrip method to remove whitespace on the right side (a line[:−1] slice would work, too, but only if
 we can be sure all lines are properly \n terminated, and this may not always be the
 case for the last line in a file):
>>> lines = [line.rstrip() for line in lines]
>>> lines
['import sys', 'print(sys.path)', 'x = 2', 'print(x ** 32)']
This works as planned. Because list comprehensions are an
 iteration context just like for loop
 statements, though, we don’t even have to open the file ahead of time.
 If we open it inside the expression, the list comprehension will
 automatically use the iteration protocol we met earlier in this chapter.
 That is, it will read one line from the file at a time by calling the
 file’s next handler
 method, run the line through the rstrip expression, and add it to the result
 list. Again, we get what we ask for—the rstrip result of a line, for every line in the
 file:
>>> lines = [line.rstrip() for line in open('script2.py')]
>>> lines
['import sys', 'print(sys.path)', 'x = 2', 'print(x ** 32)']
This expression does a lot implicitly, but we’re getting a lot of
 work for free here—Python scans the file by lines and builds a list of
 operation results automatically. It’s also an efficient way to code this
 operation: because most of this work is done inside the Python
 interpreter, it may be faster than an equivalent for statement, and won’t load a file into
 memory all at once like some other techniques. Again, especially for
 large files, the advantages of list comprehensions can be
 significant.
Besides their efficiency, list comprehensions are also remarkably
 expressive. In our example, we can run any string operation on a file’s
 lines as we iterate. To illustrate, here’s the list comprehension
 equivalent to the file iterator uppercase example we met earlier, along
 with a few other representative operations:
>>> [line.upper() for line in open('script2.py')]
['IMPORT SYS\n', 'PRINT(SYS.PATH)\n', 'X = 2\n', 'PRINT(X ** 32)\n']

>>> [line.rstrip().upper() for line in open('script2.py')]
['IMPORT SYS', 'PRINT(SYS.PATH)', 'X = 2', 'PRINT(X ** 32)']

>>> [line.split() for line in open('script2.py')]
[['import', 'sys'], ['print(sys.path)'], ['x', '=', '2'], ['print(x', '**', '32)']]

>>> [line.replace(' ', '!') for line in open('script2.py')]
['import!sys\n', 'print(sys.path)\n', 'x!=!2\n', 'print(x!**!32)\n']

>>> [('sys' in line, line[:5]) for line in open('script2.py')]
[(True, 'impor'), (True, 'print'), (False, 'x = 2'), (False, 'print')]
Recall that the method chaining in the
 second of these examples works because string methods
 return a new string, to which we can apply another string method. The
 last of these shows how we can also collect
 multiple results, as long as they’re wrapped in a
 collection like a tuple or list.
Note
One fine point here: recall from Chapter 9 that file objects
 close themselves automatically when
 garbage-collected if still open. Hence, these list comprehensions will
 also automatically close the file when their temporary file object is
 garbage-collected after the expression runs. Outside CPython, though,
 you may want to code these to close manually if this is run in a loop,
 to ensure that file resources are freed immediately. See Chapter 9 for more on file
 close calls if you need a refresher on this.

Extended List Comprehension Syntax
In fact, list comprehensions can be even richer in practice, and even
 constitute a sort of iteration mini-language in
 their fullest forms. Let’s take a quick look at their syntax tools
 here.
Filter clauses: if
As one particularly useful extension, the for loop nested in a comprehension
 expression can have an associated if clause
 to filter out of the result items for which the
 test is not true.
For example, suppose we want to repeat the prior section’s
 file-scanning example, but we need to collect only lines that begin
 with the letter p (perhaps the first character on
 each line is an action code of some sort). Adding an if filter clause to our expression does the
 trick:
>>> lines = [line.rstrip() for line in open('script2.py') if line[0] == 'p']
>>> lines
['print(sys.path)', 'print(x ** 32)']
Here, the if clause checks
 each line read from the file to see whether its first character is
 p; if not, the line is omitted from the result
 list. This is a fairly big expression, but it’s easy to understand if
 we translate it to its simple for
 loop statement equivalent. In general, we can always translate a list
 comprehension to a for statement by
 appending as we go and further indenting each successive part:
>>> res = []
>>> for line in open('script2.py'):
... if line[0] == 'p':
... res.append(line.rstrip())
...
>>> res
['print(sys.path)', 'print(x ** 32)']
This for statement equivalent
 works, but it takes up four lines instead of one and may run slower.
 In fact, you can squeeze a substantial amount of logic into a list
 comprehension when you need to—the following works like the prior but
 selects only lines that end in a digit (before
 the newline at the end), by filtering with a more sophisticated
 expression on the right side (replace [-1] with
 [-1:] for files with blank lines):
>>> [line.rstrip() for line in open('script2.py') if line.rstrip()[-1].isdigit()]
['x = 2']
As another if filter example,
 the first result in the following gives the total lines in a text
 file, and the second strips whitespace on both ends to omit
 blank lines in the tally in just one line of code (this
 file, not included, contains lines describing typos found in the first
 draft of this book by my proofreader):
>>> fname = r'd:\books\5e\lp5e\draft1typos.txt'
>>> len(open(fname).readlines()) # All lines
263
>>> len([line for line in open(fname) if line.strip() != '']) # Nonblank lines
185

Nested loops: for
List comprehensions can become even more complex if we need them to—for
 instance, they may contain nested loops, coded as
 a series of for clauses. In fact,
 their full syntax allows for any number of for clauses, each of which can have an
 optional associated if
 clause.
For example, the following builds a list of the concatenation of
 x + y for every x in one string and every y in another. It effectively collects all
 the ordered combinations of the characters in two
 strings:
>>> [x + y for x in 'abc' for y in 'lmn']
['al', 'am', 'an', 'bl', 'bm', 'bn', 'cl', 'cm', 'cn']
Again, one way to understand this expression is to convert it to
 statement form by indenting its parts. The following is an equivalent,
 but likely slower, alternative way to achieve the same effect:
>>> res = []
>>> for x in 'abc':
... for y in 'lmn':
... res.append(x + y)
...
>>> res
['al', 'am', 'an', 'bl', 'bm', 'bn', 'cl', 'cm', 'cn']
Beyond this complexity level, though, list comprehension
 expressions can often become too compact for their own good. In
 general, they are intended for simple types of iterations; for more
 involved work, a simpler for
 statement structure will probably be easier to understand and modify
 in the future. As usual in programming, if something is difficult for
 you to understand, it’s probably not a good idea.
Because comprehensions are generally best taken in multiple
 doses, we’ll cut this story short here for now. We’ll revisit list
 comprehensions in Chapter 20 in
 the context of functional programming tools, and will define their
 syntax more formally and explore additional examples there. As we’ll
 find, comprehensions turn out to be just as related to
 functions as they are to looping statements.
Note
A blanket qualification for all performance
 claims in this book, list comprehension or other: the
 relative speed of code depends much on the exact code tested and
 Python used, and is prone to change from release to release.
For example, in CPython 2.7 and 3.3 today, list comprehensions
 can still be twice as fast as corresponding for loops on some tests, but just
 marginally quicker on others, and perhaps even slightly slower on
 some when if filter clauses are
 used.
We’ll see how to time code in Chapter 21, and will learn how to
 interpret the file listcomp-speed.txt in the book examples
 package, which times this chapter’s code. For now, keep in mind that
 absolutes in performance benchmarks are as elusive as consensus in
 open source projects!

Other Iteration Contexts
Later in the book, we’ll see that user-defined classes can implement the
 iteration protocol too. Because of this, it’s sometimes important to know
 which built-in tools make use of it—any tool that employs the iteration
 protocol will automatically work on any built-in type or user-defined
 class that provides it.
So far, I’ve been demonstrating iterators in the context of the
 for loop statement, because this part
 of the book is focused on statements. Keep in mind, though, that
 every built-in tool that scans from left to right
 across objects uses the iteration protocol. This includes the for loops we’ve seen:
>>> for line in open('script2.py'): # Use file iterators
... print(line.upper(), end='')
...
IMPORT SYS
PRINT(SYS.PATH)
X = 2
PRINT(X ** 32)
But also much more. For instance, list comprehensions and the
 map built-in function use the same
 protocol as their for loop cousin. When
 applied to a file, they both leverage the file object’s iterator
 automatically to scan line by line, fetching an iterator with __iter__ and calling __next__ each time through:
>>> uppers = [line.upper() for line in open('script2.py')]
>>> uppers
['IMPORT SYS\n', 'PRINT(SYS.PATH)\n', 'X = 2\n', 'PRINT(X ** 32)\n']

>>> map(str.upper, open('script2.py')) # map is itself an iterable in 3.X
<map object at 0x00000000029476D8>
>>> list(map(str.upper, open('script2.py')))
['IMPORT SYS\n', 'PRINT(SYS.PATH)\n', 'X = 2\n', 'PRINT(X ** 32)\n']
We introduced the map call used
 here briefly in the preceding chapter (and in passing in
 Chapter 4); it’s a built-in that
 applies a function call to each item in the passed-in iterable object.
 map is similar to a list comprehension
 but is more limited because it requires a function instead of an arbitrary
 expression. It also returns an iterable object itself
 in Python 3.X, so we must wrap it in a list call to force it to give us all its values at once; more on this
 change later in this chapter. Because map, like the list comprehension, is related to
 both for loops and functions, we’ll
 also explore both again in Chapter 19 and
 Chapter 20.
Many of Python’s other built-ins process iterables, too. For
 example, sorted sorts items in an iterable; zip
 combines items from iterables; enumerate pairs items in an iterable with relative positions; filter selects items for which a function is true; and reduce runs pairs of items in an iterable through a function. All of
 these accept iterables, and zip, enumerate, and filter also return an
 iterable in Python 3.X, like map. Here
 they are in action running the file’s iterator automatically to read line
 by line:
>>> sorted(open('script2.py'))
['import sys\n', 'print(sys.path)\n', 'print(x ** 32)\n', 'x = 2\n']

>>> list(zip(open('script2.py'), open('script2.py')))
[('import sys\n', 'import sys\n'), ('print(sys.path)\n', 'print(sys.path)\n'),
('x = 2\n', 'x = 2\n'), ('print(x ** 32)\n', 'print(x ** 32)\n')]

>>> list(enumerate(open('script2.py')))
[(0, 'import sys\n'), (1, 'print(sys.path)\n'), (2, 'x = 2\n'),
(3, 'print(x ** 32)\n')]

>>> list(filter(bool, open('script2.py'))) # nonempty=True
['import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n']

>>> import functools, operator
>>> functools.reduce(operator.add, open('script2.py'))
'import sys\nprint(sys.path)\nx = 2\nprint(x ** 32)\n'
All of these are iteration tools, but they have unique roles. We met
 zip and enumerate in the prior chapter; filter and reduce are in Chapter 19’s functional programming domain, so
 we’ll defer their details for now; the point to notice here is their use
 of the iteration protocol for files and other iterables.
We first saw the sorted function
 used here at work in Chapter 4,
 and we used it for dictionaries in Chapter 8. sorted is a built-in that employs the iteration
 protocol—it’s like the original list sort method, but it returns the new sorted list
 as a result and runs on any iterable object. Notice that, unlike map and others, sorted returns an actual
 list in Python 3.X instead of an iterable.
Interestingly, the iteration protocol is even more pervasive in
 Python today than the examples so far have demonstrated—essentially
 everything in Python’s built-in toolset that scans an
 object from left to right is defined to use the iteration protocol on the
 subject object. This even includes tools such as the list and tuple built-in functions (which build new objects from iterables), and the string join method (which
 makes a new string by putting a substring between strings contained in an
 iterable). Consequently, these will also work on an open file and
 automatically read one line at a time:
>>> list(open('script2.py'))
['import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n']

>>> tuple(open('script2.py'))
('import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n')

>>> '&&'.join(open('script2.py'))
'import sys\n&&print(sys.path)\n&&x = 2\n&&print(x ** 32)\n'
Even some tools you might not expect fall into this category. For
 example, sequence assignment, the in
 membership test, slice assignment, and the list’s extend method also leverage the iteration protocol to scan, and thus read
 a file by lines automatically:
>>> a, b, c, d = open('script2.py') # Sequence assignment
>>> a, d
('import sys\n', 'print(x ** 32)\n')

>>> a, *b = open('script2.py') # 3.X extended form
>>> a, b
('import sys\n', ['print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n'])

>>> 'y = 2\n' in open('script2.py') # Membership test
False
>>> 'x = 2\n' in open('script2.py')
True

>>> L = [11, 22, 33, 44] # Slice assignment
>>> L[1:3] = open('script2.py')
>>> L
[11, 'import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n', 44]

>>> L = [11]
>>> L.extend(open('script2.py')) # list.extend method
>>> L
[11, 'import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n']
Per Chapter 8 extend iterates automatically, but append does not—use
 the latter (or similar) to add an iterable to a list without iterating,
 with the potential to be iterated across later:
>>> L = [11]
>>> L.append(open('script2.py')) # list.append does not iterate
>>> L
[11, <_io.TextIOWrapper name='script2.py' mode='r' encoding='cp1252'>]
>>> list(L[1])
['import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n']
Iteration is a broadly supported and powerful model. Earlier, we saw
 that the built-in dict call
 accepts an iterable zip result, too
 (see Chapter 8 and Chapter 13). For that matter, so does the set call, as well as the newer set and
 dictionary comprehension expressions in Python 3.X and 2.7, which we met
 in Chapter 4, Chapter 5, and Chapter 8:
>>> set(open('script2.py'))
{'print(x ** 32)\n', 'import sys\n', 'print(sys.path)\n', 'x = 2\n'}

>>> {line for line in open('script2.py')}
{'print(x ** 32)\n', 'import sys\n', 'print(sys.path)\n', 'x = 2\n'}

>>> {ix: line for ix, line in enumerate(open('script2.py'))}
{0: 'import sys\n', 1: 'print(sys.path)\n', 2: 'x = 2\n', 3: 'print(x ** 32)\n'}
In fact, both set and dictionary comprehensions support the extended syntax of list comprehensions we met
 earlier in this chapter, including if
 tests:
>>> {line for line in open('script2.py') if line[0] == 'p'}
{'print(x ** 32)\n', 'print(sys.path)\n'}
>>> {ix: line for (ix, line) in enumerate(open('script2.py')) if line[0] == 'p'}
{1: 'print(sys.path)\n', 3: 'print(x ** 32)\n'}
Like the list comprehension, both of these scan the file line by
 line and pick out lines that begin with the letter p.
 They also happen to build sets and dictionaries in the end, but we get a
 lot of work “for free” by combining file iteration and comprehension
 syntax. Later in the book we’ll meet a relative of
 comprehensions—generator expressions—that deploys the same syntax and
 works on iterables too, but is also iterable itself:
>>> list(line.upper() for line in open('script2.py')) # See Chapter 20
['IMPORT SYS\n', 'PRINT(SYS.PATH)\n', 'X = 2\n', 'PRINT(X ** 32)\n']
Other built-in functions support the iteration protocol as well, but
 frankly, some are harder to cast in interesting examples related to files!
 For example, the sum call computes the
 sum of all the numbers in any iterable; the any and all
 built-ins return True if any or all
 items in an iterable are True,
 respectively; and max and min return the largest and smallest item in an
 iterable, respectively. Like reduce,
 all of the tools in the following examples accept any iterable as an
 argument and use the iteration protocol to scan it, but return a single
 result:
>>> sum([3, 2, 4, 1, 5, 0]) # sum expects numbers only
15
>>> any(['spam', '', 'ni'])
True
>>> all(['spam', '', 'ni'])
False
>>> max([3, 2, 5, 1, 4])
5
>>> min([3, 2, 5, 1, 4])
1
Strictly speaking, the max and
 min functions can be applied to files as well—they automatically use the
 iteration protocol to scan the file and pick out the lines with the
 highest and lowest string values, respectively (though I’ll leave valid
 use cases to your imagination):
>>> max(open('script2.py')) # Line with max/min string value
'x = 2\n'
>>> min(open('script2.py'))
'import sys\n'
There’s one last iteration context that’s worth mentioning, although
 it’s mostly a preview: in Chapter 18, we’ll learn that
 a special *arg form can be
 used in function calls to unpack a collection of values into individual
 arguments. As you can probably predict by now, this accepts any iterable,
 too, including files (see Chapter 18 for more details on
 this call syntax; Chapter 20 for a
 section that extends this idea to generator expressions; and Chapter 11 for tips on using the
 following’s 3.X print in 2.X as
 usual):
>>> def f(a, b, c, d): print(a, b, c, d, sep='&')
...
>>> f(1, 2, 3, 4)
1&2&3&4
>>> f(*[1, 2, 3, 4]) # Unpacks into arguments
1&2&3&4
>>>
>>> f(*open('script2.py')) # Iterates by lines too!
import sys
&print(sys.path)
&x = 2
&print(x ** 32)
In fact, because this argument-unpacking syntax in calls accepts
 iterables, it’s also possible to use the zip built-in to
 unzip zipped tuples, by making prior or nested
 zip results arguments for another
 zip call (warning: you probably
 shouldn’t read the following example if you plan to operate heavy
 machinery anytime soon!):
>>> X = (1, 2)
>>> Y = (3, 4)
>>>
>>> list(zip(X, Y)) # Zip tuples: returns an iterable
[(1, 3), (2, 4)]
>>>
>>> A, B = zip(*zip(X, Y)) # Unzip a zip!
>>> A
(1, 2)
>>> B
(3, 4)
Still other tools in Python, such as the range built-in and
 dictionary view objects, return iterables instead of
 processing them. To see how these have been absorbed into the iteration
 protocol in Python 3.X as well, we need to move on to the next section.

New Iterables in Python 3.X
One of the fundamental distinctions of Python 3.X is its stronger
 emphasis on iterators than 2.X. This, along with its Unicode model and
 mandated new-style classes, is one of 3.X’s most sweeping changes.
Specifically, in addition to the iterators associated with built-in
 types such as files and dictionaries, the dictionary methods keys, values, and items return iterable objects in Python 3.X, as
 do the built-in functions range,
 map, zip, and filter. As shown in the prior section, the last
 three of these functions both return iterables and process them. All of
 these tools produce results on demand in Python 3.X, instead of
 constructing result lists as they do in 2.X.
Impacts on 2.X Code: Pros and Cons
Although this saves memory space, it can impact your coding styles
 in some contexts. In various places in this book so far, for example,
 we’ve had to wrap up some function and method call results in a list(...) call in
 order to force them to produce all their results at once for
 display:
>>> zip('abc', 'xyz') # An iterable in Python 3.X (a list in 2.X)
<zip object at 0x000000000294C308>

>>> list(zip('abc', 'xyz')) # Force list of results in 3.X to display
[('a', 'x'), ('b', 'y'), ('c', 'z')]
A similar conversion is required if we wish to apply list
 or sequence operations to most
 iterables that generate items on demand—to index, slice, or concatenate
 the iterable itself, for example. The list results for these tools in
 2.X support such operations directly:
>>> Z = zip((1, 2), (3, 4)) # Unlike 2.X lists, cannot index, etc.
>>> Z[0]
TypeError: 'zip' object is not subscriptable
As we’ll see in more detail in Chapter 20, conversion to lists may
 also be more subtly required to support multiple
 iterations for newly iterable tools that support just one
 scan such as map and zip—unlike their 2.X list forms, their values
 in 3.X are exhausted after a single pass:
>>> M = map(lambda x: 2 ** x, range(3))
>>> for i in M: print(i)
...
1
2
4
>>> for i in M: print(i) # Unlike 2.X lists, one pass only (zip too)
...
>>>
Such conversion isn’t required in 2.X, because functions like
 zip return lists of results. In 3.X,
 though, they return iterable objects, producing results on demand. This
 may break 2.X code, and means extra typing is required to display the
 results at the interactive prompt (and possibly in some other contexts),
 but it’s an asset in larger programs—delayed evaluation like this
 conserves memory and avoids pauses while large result lists are
 computed. Let’s take a quick look at some of the new 3.X iterables in
 action.

The range Iterable
We studied the range built-in’s
 basic behavior in the preceding chapter. In 3.X, it returns an
 iterable that generates numbers in the range on demand, instead of
 building the result list in memory. This subsumes the older 2.X xrange (see the upcoming version skew note),
 and you must use list(range(...)) to
 force an actual range list if one is needed (e.g., to display
 results):
C:\code> c:\python33\python
>>> R = range(10) # range returns an iterable, not a list
>>> R
range(0, 10)

>>> I = iter(R) # Make an iterator from the range iterable
>>> next(I) # Advance to next result
0 # What happens in for loops, comprehensions, etc.
>>> next(I)
1
>>> next(I)
2

>>> list(range(10)) # To force a list if required
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Unlike the list returned by this call in 2.X, range objects in 3.X support only iteration,
 indexing, and the len function. They
 do not support any other sequence operations (use list(...) if you require more list tools):
>>> len(R) # range also does len and indexing, but no others
10
>>> R[0]
0
>>> R[-1]
9

>>> next(I) # Continue taking from iterator, where left off
3
>>> I.__next__() # .next() becomes .__next__(), but use new next()
4
Note
Version skew note: As first mentioned in
 the preceding chapter, Python 2.X also has a built-in called xrange, which is like range but produces items on demand instead
 of building a list of results in memory all at once. Since this is
 exactly what the new iterator-based range does in Python 3.X, xrange is no longer available in 3.X—it has
 been subsumed. You may still both see and use it in 2.X code, though,
 especially since range builds
 result lists there and so is not as efficient in its memory
 usage.
As noted in the prior chapter, the file.xreadlines() method used to minimize
 memory use in 2.X has been dropped in Python 3.X for similar reasons,
 in favor of file iterators.

The map, zip, and filter Iterables
Like range, the map, zip,
 and filter built-ins also become iterables in 3.X to conserve space, rather
 than producing a result list all at once in memory. All three not only
 process iterables, as in 2.X, but also return iterable results in 3.X.
 Unlike range, though, they are their
 own iterators—after you step through their results once, they are
 exhausted. In other words, you can’t have multiple iterators on their
 results that maintain different positions in those results.
Here is the case for the map
 built-in we met in the prior chapter. As with other iterables, you can
 force a list with list(...) if you
 really need one, but the default behavior can save substantial space in
 memory for large result sets:
>>> M = map(abs, (-1, 0, 1)) # map returns an iterable, not a list
>>> M
<map object at 0x00000000029B75C0>
>>> next(M) # Use iterator manually: exhausts results
1 # These do not support len() or indexing
>>> next(M)
0
>>> next(M)
1
>>> next(M)
StopIteration

>>> for x in M: print(x) # map iterator is now empty: one pass only
...

>>> M = map(abs, (-1, 0, 1)) # Make a new iterable/iterator to scan again
>>> for x in M: print(x) # Iteration contexts auto call next()
...
1
0
1
>>> list(map(abs, (-1, 0, 1))) # Can force a real list if needed
[1, 0, 1]
The zip built-in, introduced in the prior chapter, is an iteration context
 itself, but also returns an iterable with an iterator that works the
 same way:
>>> Z = zip((1, 2, 3), (10, 20, 30)) # zip is the same: a one-pass iterator
>>> Z
<zip object at 0x0000000002951108>

>>> list(Z)
[(1, 10), (2, 20), (3, 30)]

>>> for pair in Z: print(pair) # Exhausted after one pass
...

>>> Z = zip((1, 2, 3), (10, 20, 30))
>>> for pair in Z: print(pair) # Iterator used automatically or manually
...
(1, 10)
(2, 20)
(3, 30)

>>> Z = zip((1, 2, 3), (10, 20, 30)) # Manual iteration (iter() not needed)
>>> next(Z)
(1, 10)
>>> next(Z)
(2, 20)
The filter built-in, which we met briefly in Chapter 12 and will study in the next part
 of this book, is also analogous. It returns items in an iterable for
 which a passed-in function returns True (as we’ve learned, in Python True includes nonempty objects, and bool returns an object’s truth value):
>>> filter(bool, ['spam', '', 'ni'])
<filter object at 0x00000000029B7B70>
>>> list(filter(bool, ['spam', '', 'ni']))
['spam', 'ni']
Like most of the tools discussed in this section, filter both accepts an
 iterable to process and returns an iterable to
 generate results in 3.X. It can also generally be emulated by extended
 list comprehension syntax that automatically tests truth values:
>>> [x for x in ['spam', '', 'ni'] if bool(x)]
['spam', 'ni']
>>> [x for x in ['spam', '', 'ni'] if x]
['spam', 'ni']

Multiple Versus Single Pass Iterators
It’s important to see how the range object
 differs from the built-ins described in this section—it supports
 len and indexing, it is not its own
 iterator (you make one with iter when
 iterating manually), and it supports multiple iterators
 over its result that remember their positions independently:
>>> R = range(3) # range allows multiple iterators
>>> next(R)
TypeError: range object is not an iterator

>>> I1 = iter(R)
>>> next(I1)
0
>>> next(I1)
1
>>> I2 = iter(R) # Two iterators on one range
>>> next(I2)
0
>>> next(I1) # I1 is at a different spot than I2
2
By contrast, in 3.X zip,
 map, and filter do not support multiple active
 iterators on the same result; because of this the iter call is optional for stepping through
 such objects’ results—their iter is
 themselves (in 2.X these built-ins return multiple-scan lists so the
 following does not apply):
>>> Z = zip((1, 2, 3), (10, 11, 12))
>>> I1 = iter(Z)
>>> I2 = iter(Z) # Two iterators on one zip
>>> next(I1)
(1, 10)
>>> next(I1)
(2, 11)
>>> next(I2) # (3.X) I2 is at same spot as I1!
(3, 12)

>>> M = map(abs, (-1, 0, 1)) # Ditto for map (and filter)
>>> I1 = iter(M); I2 = iter(M)
>>> print(next(I1), next(I1), next(I1))
1 0 1
>>> next(I2) # (3.X) Single scan is exhausted!
StopIteration

>>> R = range(3) # But range allows many iterators
>>> I1, I2 = iter(R), iter(R)
>>> [next(I1), next(I1), next(I1)]
[0 1 2]
>>> next(I2) # Multiple active scans, like 2.X lists
0
When we code our own iterable objects with classes later in the
 book (Chapter 30), we’ll see that
 multiple iterators are usually supported by returning new objects for
 the iter call; a single iterator
 generally means an object returns itself. In Chapter 20, we’ll also find that generator functions and
 expressions behave like map and zip
 instead of range in this regard,
 supporting just a single active iteration scan. In that chapter, we’ll
 see some subtle implications of one-shot iterators in loops that attempt
 to scan multiple times—code that formerly treated these as lists may
 fail without manual list conversions.

Dictionary View Iterables
Finally, as we saw briefly in Chapter 8,
 in Python 3.X the dictionary keys,
 values, and items methods return iterable
 view objects that generate result items one at a
 time, instead of producing result lists all at once in memory. Views are
 also available in 2.7 as an option, but under special method names to
 avoid impacting existing code. View items maintain the same physical
 ordering as that of the dictionary and reflect changes made to the
 underlying dictionary. Now that we know more about iterables here’s the
 rest of this story—in Python 3.3 (your key order may vary):
>>> D = dict(a=1, b=2, c=3)
>>> D
{'a': 1, 'b': 2, 'c': 3}

>>> K = D.keys() # A view object in 3.X, not a list
>>> K
dict_keys(['a', 'b', 'c'])

>>> next(K) # Views are not iterators themselves
TypeError: dict_keys object is not an iterator

>>> I = iter(K) # View iterables have an iterator,
>>> next(I) # which can be used manually,
'a' # but does not support len(), index
>>> next(I)
'b'

>>> for k in D.keys(): print(k, end=' ') # All iteration contexts use auto
...
a b c
As for all iterables that produce values on request, you can
 always force a 3.X dictionary view to build a real list by passing it to
 the list built-in.
 However, this usually isn’t required except to display results
 interactively or to apply list operations like indexing:
>>> K = D.keys()
>>> list(K) # Can still force a real list if needed
['a', 'b', 'c']

>>> V = D.values() # Ditto for values() and items() views
>>> V
dict_values([1, 2, 3])
>>> list(V) # Need list() to display or index as list
[1, 2, 3]

>>> V[0]
TypeError: 'dict_values' object does not support indexing
>>> list(V)[0]
1

>>> list(D.items())
[('a', 1), ('b', 2), ('c', 3)]

>>> for (k, v) in D.items(): print(k, v, end=' ')
...
a 1 b 2 c 3
In addition, 3.X dictionaries still are iterables themselves, with
 an iterator that returns successive keys. Thus, it’s not often necessary
 to call keys directly in this
 context:
>>> D # Dictionaries still produce an iterator
{'a': 1, 'b': 2, 'c': 3} # Returns next key on each iteration
>>> I = iter(D)
>>> next(I)
'a'
>>> next(I)
'b'

>>> for key in D: print(key, end=' ') # Still no need to call keys() to iterate
... # But keys is an iterable in 3.X too!
a b c
Finally, remember again that because keys no longer returns a list, the traditional
 coding pattern for scanning a dictionary by sorted keys won’t work in
 3.X. Instead, convert keys views first with a list call, or use the sorted call on either a keys view or the
 dictionary itself, as follows. We saw this in Chapter 8, but it’s important enough to 2.X
 programmers making the switch to demonstrate again:
>>> D
{'a': 1, 'b': 2, 'c': 3}
>>> for k in sorted(D.keys()): print(k, D[k], end=' ')
...
a 1 b 2 c 3
>>> for k in sorted(D): print(k, D[k], end=' ') # "Best practice" key sorting
...
a 1 b 2 c 3

Other Iteration Topics
As mentioned in this chapter’s introduction, there is more coverage of both list
 comprehensions and iterables in Chapter 20, in conjunction with
 functions, and again in Chapter 30 when
 we study classes. As you’ll see later:
	User-defined functions can be turned into iterable generator functions,
 with yield
 statements.

	List comprehensions morph into iterable generator
 expressions when coded in parentheses.

	User-defined classes are made iterable with __iter__ or
 __getitem__ operator
 overloading.

In particular, user-defined iterables defined with classes allow
 arbitrary objects and operations to be used in any of the iteration
 contexts we’ve met in this chapter. By supporting just a single
 operation—iteration—objects may be used in a wide
 variety of contexts and tools.

Chapter Summary
In this chapter, we explored concepts related to looping in Python.
 We took our first substantial look at the iteration
 protocol in Python—a way for nonsequence objects to take part
 in iteration loops—and at list comprehensions. As we
 saw, a list comprehension is an expression similar to a for loop that applies another expression to all
 the items in any iterable object. Along the way, we also saw other
 built-in iteration tools at work and studied recent iteration additions in
 Python 3.X.
This wraps up our tour of specific procedural statements and related
 tools. The next chapter closes out this part of the book by discussing
 documentation options for Python code. Though a bit of a diversion from
 the more detailed aspects of coding, documentation is also part of the
 general syntax model, and it’s an important component of well-written
 programs. In the next chapter, we’ll also dig into a set of exercises for
 this part of the book before we turn our attention to larger structures
 such as functions. As usual, though, let’s first exercise what we’ve
 learned here with a quiz.

Test Your Knowledge: Quiz
	How are for loops
 and iterable objects related?

	How are for loops and list
 comprehensions related?

	Name four iteration contexts in the Python language.

	What is the best way to read line by line from a text file
 today?

	What sort of weapons would you expect to see employed by the
 Spanish Inquisition?

Test Your Knowledge: Answers
	The for loop uses the
 iteration protocol to step through items in the
 iterable object across which it is iterating. It first fetches an
 iterator from the iterable by passing the object to iter, and then calls this iterator object’s
 __next__ method in 3.X on each
 iteration and catches the StopIteration exception to determine when to
 stop looping. The method is named next in 2.X, and is run by the next built-in function in both 3.x and 2.X.
 Any object that supports this model works in a for loop and in all other iteration
 contexts. For some objects that are their own iterator, the initial
 iter call is extraneous but
 harmless.

	Both are iteration tools and contexts. List comprehensions are a
 concise and often efficient way to perform a common for loop task: collecting the results of
 applying an expression to all items in an iterable object. It’s always
 possible to translate a list comprehension to a for loop, and part of the list comprehension
 expression looks like the header of a for loop syntactically.

	Iteration contexts in Python include the for loop; list comprehensions; the map built-in function; the in membership test expression; and the
 built-in functions sorted, sum, any,
 and all. This category also
 includes the list and tuple built-ins, string join methods, and sequence assignments, all
 of which use the iteration protocol (see answer #1) to step across
 iterable objects one item at a time.

	The best way to read lines from a text file today is to not read
 it explicitly at all: instead, open the file within an iteration
 context tool such as a for loop or
 list comprehension, and let the iteration tool automatically scan one
 line at a time by running the file’s next handler method on each iteration. This
 approach is generally best in terms of coding simplicity, memory
 space, and possibly execution speed requirements.

	I’ll accept any of the following as correct answers: fear,
 intimidation, nice red uniforms, a comfy chair, and soft
 pillows.

1 Spoiler alert: the file iterator still appears to be slightly
 faster than readlines and at
 least 30% faster than the while
 loop in both 2.7 and 3.3 on tests I’ve run with this chapter’s code
 on a 1,000-line file (while is
 twice as slow on 2.7). The usual benchmarking caveats apply—this is
 true only for my Pythons, my computer, and my test file, and Python
 3.X complicates such analyses by rewriting I/O libraries to support
 Unicode text and be less system-dependent. Chapter 21 covers tools and techniques
 you can use to time these loop statements on your own.
2 Technically speaking, the for loop calls the internal equivalent
 of I.__next__, instead of the
 next(I) used here, though there
 is rarely any difference between the two. Your manual iterations
 can generally use either call scheme.

Chapter 15. The Documentation Interlude
This part of the book concludes with a look at techniques and tools
 used for documenting Python code. Although Python code is designed to be
 readable, a few well-placed human-accessible comments can do much to help
 others understand the workings of your programs. As we’ll see, Python
 includes both syntax and tools to make documentation easier. In particular,
 the PyDoc system covered here can render a module’s
 internal documentation as either plain text in a shell, or HTML in a web
 browser.
Although this is something of a tools-related concept, this topic is
 presented here partly because it involves Python’s syntax model, and partly
 as a resource for readers struggling to understand Python’s toolset. For the
 latter purpose, I’ll also expand here on documentation pointers first given
 in Chapter 4. As usual, because
 this chapter closes out its part, it also ends with some warnings about
 common pitfalls and a set of exercises for this part of the text, in
 addition to its chapter quiz.
Python Documentation Sources
By this point in the book, you’re probably starting to realize that Python comes
 with an amazing amount of prebuilt functionality—built-in functions and
 exceptions, predefined object attributes and methods, standard library
 modules, and more. And we’ve really only scratched the surface of each of
 these categories.
One of the first questions that bewildered beginners often ask is:
 how do I find information on all the built-in tools? This section provides
 hints on the various documentation sources available in Python. It also
 presents documentation strings (docstrings) and the
 PyDoc system that makes use of them. These topics are
 somewhat peripheral to the core language itself, but they become essential
 knowledge as soon as your code reaches the level of the examples and
 exercises in this part of the book.
As summarized in Table 15-1, there are a variety of
 places to look for information on Python, with generally increasing
 verbosity. Because documentation is such a crucial tool in practical
 programming, we’ll explore each of these categories in the sections that
 follow.
Table 15-1. Python documentation sources	Form	Role
	# comments
	In-file documentation

	The dir function
	Lists of attributes available in objects

	Docstrings: __doc__
	In-file documentation attached to objects

	PyDoc: the help function
	Interactive help for objects

	PyDoc: HTML
 reports
	Module documentation in a browser

	Sphinx third-party
 tool
	Richer documentation for larger projects

	The standard manual
 set
	Official language and library descriptions

	Web
 resources
	Online tutorials, examples,
 and so on

	Published
 books
	Commercially polished
 reference texts

Comments
As we’ve learned, hash-mark comments are the most basic way to document your
 code. Python simply ignores all the text following a # (as long as it’s not inside a string
 literal), so you can follow this character with any words and
 descriptions meaningful to programmers. Such comments are accessible
 only in your source files, though; to code comments that are more widely
 available, you’ll need to use docstrings.
In fact, current best practice generally dictates that docstrings
 are best for larger functional documentation (e.g., “my file does
 this”), and # comments are best
 limited to smaller code documentation (e.g., “this strange expression
 does that”) and are best limited in scope to a statement or small group
 of statements within a script or function. More on docstrings in a
 moment; first, let’s see how to explore objects.

The dir Function
As we’ve also seen, the built-in dir function is an easy way to grab a list of
 all the attributes available inside an object (i.e., its methods and
 simpler data items). It can be called with no arguments to list
 variables in the caller’s scope. More usefully, it can also be called on
 any object that has attributes, including imported modules and built-in
 types, as well as the name of a data type. For example, to find out
 what’s available in a module such as the standard
 library’s sys, import it and pass it
 to dir:
>>> import sys
>>> dir(sys)
['__displayhook__', ...more names omitted..., 'winver']
These results are from Python 3.3, and I’m omitting most returned
 names because they vary slightly elsewhere; run this on your own for a
 better look. In fact, there are currently 78 attributes in sys, though we generally care only about the
 69 that do not have leading double underscores (two usually means
 interpreter-related) or the 62 that have no leading underscore at all
 (one underscore usually means informal implementation private)—a prime
 example of the preceding chapter’s list comprehension at work:
>>> len(dir(sys)) # Number names in sys
78
>>> len([x for x in dir(sys) if not x.startswith('__')]) # Non __X names only
69
>>> len([x for x in dir(sys) if not x[0] == '_']) # Non underscore names
62
To find out what attributes are provided in objects of
 built-in types, run dir on a literal or an existing instance of
 the desired type. For example, to see list and string attributes, you
 can pass empty objects:
>>> dir([])
['__add__', '__class__', '__contains__', ...more..., 'append', 'clear', 'copy',
'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

>>> dir('')
['__add__', '__class__', '__contains__', ...more..., 'split', 'splitlines',
'startswith','strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']
The dir results for any
 built-in type include a set of attributes that are related to the
 implementation of that type (technically, operator overloading methods);
 much as in modules they all begin and end with double underscores to
 make them distinct, and you can safely ignore them at this point in the
 book (they are used for OOP). For instance, there are 45 list
 attributes, but only 11 that correspond to named methods:
>>> len(dir([])), len([x for x in dir([]) if not x.startswith('__')])
(45, 11)
>>> len(dir('')), len([x for x in dir('') if not x.startswith('__')])
(76, 44)
In fact, to filter out double-underscored items that are not of
 common program interest, run the same list comprehensions but print the
 attributes. For instance, here are the named attributes in lists and
 dictionaries in Python 3.3:
>>> [a for a in dir(list) if not a.startswith('__')]
['append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort']

>>> [a for a in dir(dict) if not a.startswith('__')]
['clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem',
'setdefault', 'update', 'values']
This may seem like a lot to type to get an attribute list, but
 beginning in the next chapter we’ll learn how to wrap such code in an
 importable and reusable function so we don’t need
 to type it again:
>>> def dir1(x): return [a for a in dir(x) if not a.startswith('__')] # See Part IV
...
>>> dir1(tuple)
['count', 'index']
Notice that you can list built-in type attributes by passing a
 type name to dir instead of a
 literal:
>>> dir(str) == dir('') # Same result, type name or literal
True
>>> dir(list) == dir([])
True
This works because names like str and list that were once type converter functions
 are actually names of types in Python today; calling one of these
 invokes its constructor to generate an instance of that type. Part VI will have more to say about constructors
 and operator overloading methods when we discuss classes.
The dir function serves as a
 sort of memory-jogger—it provides a list of attribute names, but it does
 not tell you anything about what those names mean. For such extra
 information, we need to move on to the next documentation source.
Note
Some IDEs for Python work, including IDLE, have features that
 list attributes on objects automatically within their GUIs, and can be
 viewed as alternatives to dir.
 IDLE, for example, will list an object’s attributes in a pop-up
 selection window when you type a period after the object’s name and
 pause or press Tab. This is mostly meant as an autocomplete feature,
 though, not an information source. Chapter 3 has more on IDLE.

Docstrings: __doc__
Besides # comments, Python supports documentation that is automatically
 attached to objects and retained at runtime for inspection.
 Syntactically, such comments are coded as strings at the tops of module
 files and function and class statements, before any other executable
 code (# comments, including
 Unix-style #! lines are OK before
 them). Python automatically stuffs the text of these strings, known
 informally as docstrings, into the __doc__ attributes of the corresponding
 objects.
User-defined docstrings
For example, consider the following file, docstrings.py. Its docstrings appear at the
 beginning of the file and at the start of a function and a class
 within it. Here, I’ve used triple-quoted block strings for multiline
 comments in the file and the function, but any sort of string will
 work; single- or double-quoted one-liners like those in the class are
 fine, but don’t allow multiple-line text. We haven’t studied the
 def or class statements in detail yet, so ignore
 everything about them here except the strings at their tops:
"""
Module documentation
Words Go Here
"""

spam = 40

def square(x):
 """
 function documentation
 can we have your liver then?
 """
 return x ** 2 # square

class Employee:
 "class documentation"
 pass

print(square(4))
print(square.__doc__)
The whole point of this documentation protocol is that your
 comments are retained for inspection in __doc__ attributes after the file is
 imported. Thus, to display the docstrings associated with the module
 and its objects, we simply import the file and print their __doc__ attributes, where Python has saved
 the text:
>>> import docstrings
16

 function documentation
 can we have your liver then?

>>> print(docstrings.__doc__)

Module documentation
Words Go Here

>>> print(docstrings.square.__doc__)

 function documentation
 can we have your liver then?

>>> print(docstrings.Employee.__doc__)
 class documentation
Note that you will generally want to use print to print docstrings; otherwise, you’ll
 get a single string with embedded \n newline characters.
You can also attach docstrings to methods
 of classes (covered in Part VI), but
 because these are just def
 statements nested in class
 statements, they’re not a special case. To fetch the docstring of a
 method function inside a class within a module, you would simply
 extend the path to go through the class: module.class.method.__doc__ (we’ll see an
 example of method docstrings in Chapter 29).

Docstring standards and priorities
As mentioned earlier, common practice today recommends hash-mark
 comments for only smaller-scale documentation about an expression,
 statement, or small group of statements. Docstrings are better used
 for higher-level and broader functional documentation for a file,
 function, or class, and have become an expected part of Python
 software. Beyond these guidelines, though, you still must decide what
 to write.
Although some companies have internal standards, there is no
 broad standard about what should go into the text of a docstring.
 There have been various markup language and template proposals (e.g.,
 HTML or XML), but they don’t seem to have caught on in the Python
 world. Frankly, convincing Python programmers to document their code
 using handcoded HTML is probably not going to happen in our lifetimes.
 That may be too much to ask, but this doesn’t apply to documenting
 code in general.
Documentation tends to have a lower priority among some
 programmers than it should. Too often, if you get any comments in a
 file at all, you count yourself lucky (and even better if it’s
 accurate and up to date). I strongly encourage you to document your
 code liberally—it really is an important part of well-written
 programs. When you do, though, there is presently no standard on the
 structure of docstrings; if you want to use them, anything goes today.
 Just as for writing code itself, it’s up to you to create
 documentation content and keep it up to date, but common sense is
 probably your best ally on this task too.

Built-in docstrings
As it turns out, built-in modules and objects in Python use
 similar techniques to attach documentation above and beyond the
 attribute lists returned by dir.
 For example, to see an actual human-readable description of a built-in
 module, import it and print its __doc__ string:
>>> import sys
>>> print(sys.__doc__)
This module provides access to some objects used or maintained by the
interpreter and to functions that interact strongly with the interpreter.

Dynamic objects:

argv -- command line arguments; argv[0] is the script pathname if known
path -- module search path; path[0] is the script directory, else ''
modules -- dictionary of loaded modules
...more text omitted...
Functions, classes, and methods within built-in modules have
 attached descriptions in their __doc__ attributes as well:
>>> print(sys.getrefcount.__doc__)
getrefcount(object) -> integer

Return the reference count of object. The count returned is generally
one higher than you might expect, because it includes the (temporary)
reference as an argument to getrefcount().
You can also read about built-in functions via their
 docstrings:
>>> print(int.__doc__)
int(x[, base]) -> integer

Convert a string or number to an integer, if possible. A floating
point argument will be truncated towards zero (this does not include a
...more text omitted...

>>> print(map.__doc__)
map(func, *iterables) --> map object

Make an iterator that computes the function using arguments from
each of the iterables. Stops when the shortest iterable is exhausted.
You can get a wealth of information about built-in tools by
 inspecting their docstrings this way, but you don’t have to—the
 help function, the topic of the
 next section, does this automatically for you.

PyDoc: The help Function
The docstring technique proved to be so useful that Python eventually added a tool
 that makes docstrings even easier to display. The standard
 PyDoc tool is Python code that knows how to extract
 docstrings and associated structural information and format them into
 nicely arranged reports of various types. Additional tools for
 extracting and formatting docstrings are available in the open source
 domain (including tools that may support structured text—search the Web
 for pointers), but Python ships with PyDoc in its standard
 library.
There are a variety of ways to launch PyDoc, including
 command-line script options that can save the resulting documentation
 for later viewing (described both ahead and in the Python library
 manual). Perhaps the two most prominent PyDoc interfaces are the
 built-in help function
 and the PyDoc GUI- and web-based HTML report interfaces. We met the
 help function briefly in Chapter 4; it invokes PyDoc to
 generate a simple textual report for any Python object. In this mode,
 help text looks much like a “manpage” on Unix-like systems, and in fact
 pages the same way as a Unix “more” outside GUIs like IDLE when there
 are multiple pages of text—press the space bar to move to the next page,
 Enter to go to the next line, and Q to quit:
>>> import sys
>>> help(sys.getrefcount)
Help on built-in function getrefcount in module sys:

getrefcount(...)
 getrefcount(object) -> integer

 Return the reference count of object. The count returned is generally
 one higher than you might expect, because it includes the (temporary)
 reference as an argument to getrefcount().
Note that you do not have to import sys in order to call help, but you do have to import sys to get help on sys this way; it expects an object reference
 to be passed in. In Pythons 3.3 and 2.7, you can get help for a module
 you have not imported by quoting the module’s name as a string—for
 example, help('re'), help('email.message')—but support for this and
 other modes may differ across Python versions.
For larger objects such as modules and classes, the help display is broken down into multiple
 sections, the preambles of which are shown here. Run this interactively
 to see the full report (I’m running this on 3.3):
>>> help(sys)
Help on built-in module sys:

NAME
 sys

MODULE REFERENCE
 http://docs.python.org/3.3/library/sys
 ...more omitted...

DESCRIPTION
 This module provides access to some objects used or maintained by the
 interpreter and to functions that interact strongly with the interpreter.
 ...more omitted...

FUNCTIONS
 __displayhook__ = displayhook(...)
 displayhook(object) -> None
 ...more omitted...

DATA
 __stderr__ = <_io.TextIOWrapper name='<stderr>' mode='w' encoding='cp4...
 __stdin__ = <_io.TextIOWrapper name='<stdin>' mode='r' encoding='cp437...
 __stdout__ = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='cp4...
 ...more omitted...

FILE
 (built-in)
Some of the information in this report is docstrings, and some of
 it (e.g., function call patterns) is structural information that PyDoc
 gleans automatically by inspecting objects’ internals, when
 available.
Besides modules, you can also use help on built-in functions, methods, and
 types. Usage varies slightly across Python versions, but to get help for
 a built-in type, try either the type name (e.g.,
 dict for dictionary, str for string, list for list); an actual object of the type
 (e.g., {}, '', []); or
 a method of an actual object or type name (e.g., str.join, 's'.join).1 You’ll get a large display that describes all the methods
 available for that type or the usage of that method:
>>> help(dict)
Help on class dict in module builtins:

class dict(object)
 | dict() -> new empty dictionary.
 | dict(mapping) -> new dictionary initialized from a mapping object's
 ...more omitted...

>>> help(str.replace)
Help on method_descriptor:

replace(...)
 S.replace (old, new[, count]) -> str

 Return a copy of S with all occurrences of substring
 ...more omitted...

>>> help(''.replace)
...similar to prior result...

>>> help(ord)
Help on built-in function ord in module builtins:

ord(...)
 ord(c) -> integer

 Return the integer ordinal of a one-character string.
Finally, the help function
 works just as well on your modules as it does on built-ins. Here it is
 reporting on the docstrings.py file
 we coded earlier. Again, some of this is docstrings, and some is
 information automatically extracted by inspecting objects’ structures:
>>> import docstrings
>>> help(docstrings.square)
Help on function square in module docstrings:

square(x)
 function documentation
 can we have your liver then?

>>> help(docstrings.Employee)
Help on class Employee in module docstrings:

class Employee(builtins.object)
 | class documentation
 |
 ...more omitted...

>>> help(docstrings)
Help on module docstrings:

NAME
 docstrings

DESCRIPTION
 Module documentation
 Words Go Here

CLASSES
 builtins.object
 Employee

 class Employee(builtins.object)
 | class documentation
 |
 ...more omitted...

FUNCTIONS
 square(x)
 function documentation
 can we have your liver then?

DATA
 spam = 40

FILE
 c:\code\docstrings.py

PyDoc: HTML Reports
The text displays of the help
 function are adequate in many contexts, especially at the
 interactive prompt. To readers who’ve grown accustomed to richer
 presentation mediums, though, they may seem a bit primitive. This
 section presents the HTML-based flavor of PyDoc, which renders module
 documentation more graphically for viewing in a web browser, and can
 even open one automatically for you. The way this is run has changed as
 of Python 3.3:
	Prior to 3.3, Python ships with a simple
 GUI desktop client for submitting search requests. This client
 launches a web browser to view documentation produced by an
 automatically started local server.

	As of 3.3, the former GUI client is
 replaced by an all-browser interface scheme, which combines both
 search and display in a web page that communicates with an
 automatically started local server.

	Python 3.2 straddles this fence,
 supporting both the original GUI client scheme, as well as the newer
 all-browser mode mandated as of 3.3.

Because this book’s audience is both users of the
 latest-and-greatest as well as the masses still using older
 tried-and-true Pythons, we’ll explore both schemes here. As we do, keep
 in mind that the way these schemes differ pertains only to the top level
 of their user interfaces. Their documentation displays are nearly
 identical, and under either regime PyDoc can also be used to generate
 both text in a console, and HTML files for later viewing in whatever
 manner you wish.
Python 3.2 and later: PyDoc’s all-browser mode
As of Python 3.3 the original GUI client mode of PyDoc, present
 in 2.X and earlier 3.X releases, is no longer available. This mode is
 present through Python 3.2 with the “Module Docs” Start button entry
 on Windows 7 and earlier, and via the pydoc
 -g command line. This GUI mode was reportedly deprecated in
 3.2, though you had to look closely to notice—it works fine and
 without warning on 3.2 on my machine.
In 3.3, though, this mode goes away altogether, and is replaced
 with a pydoc -b command line, which
 instead spawns both a locally running documentation server, as well as
 a web browser that functions as both search engine client and page
 display. The browser is initially opened on a module index page with
 enhanced functionality. There are additional ways to use PyDoc (e.g.,
 to save the HTML page to a file for later viewing, as described
 ahead), so this is a relatively minor operational change.
To launch the newer browser-only mode of PyDoc in Python 3.2 and
 later, a command line like any of the following suffice: they all use
 the –m Python command-line argument
 for convenience to locate PyDoc’s module file on your module import
 search path. The first assumes Python is on your system path; the
 second employs Python 3.3’s new Windows launcher; and the third gives
 the full path to your Python if the other two schemes won’t work. See
 Appendix A for more on –m, and Appendix B for coverage of the
 Windows launcher.
c:\code> python -m pydoc -b
Server ready at http://localhost:62135/
Server commands: [b]rowser, [q]uit
server> q
Server stopped

c:\code> py −3 -m pydoc -b
Server ready at http://localhost:62144/
Server commands: [b]rowser, [q]uit
server> q
Server stopped

c:\code> C:\python33\python -m pydoc -b
Server ready at http://localhost:62153/
Server commands: [b]rowser, [q]uit
server> q
Server stopped
However you run this command line, the effect is to start PyDoc
 as a locally running web server on a dedicated
 (but by default arbitrary unused) port, and pop up a web browser to
 act as client, displaying a page giving links to
 documentation for all the modules importable on your module search
 path (including the directory where PyDoc is launched). PyDoc’s
 top-level web page interface is captured in Figure 15-1.
Figure 15-1. The top-level index start page of the all-browser PyDoc HTML
 interface in Python 3.2 and later, which as of 3.3 replaces the
 former GUI client in earlier Pythons.

Besides the module index, PyDoc’s web page also includes input
 fields at the top to request a specific module’s documentation page
 (Get) and search for related entries
 (Search), which stand in for the prior
 interface’s GUI client fields. You can also click on this page’s links
 to go to the Module Index (the start page),
 Topics (general Python subjects), and
 Keywords (overviews of statements and some
 expressions).
Notice that the index page in Figure 15-1 lists both
 modules and top-level
 scripts in the current directory—the book’s
 C:\code, where PyDoc was started
 by the earlier command lines. PyDoc is mostly intended for documenting
 importable modules, but can sometimes be used to show documentation
 for scripts too. A selected file must be imported in order to render
 its documentation, and as we’ve learned, importing runs a file’s code.
 Modules normally just define tools when run, so this is usually
 irrelevant.
If you ask for documentation for a top-level script file,
 though, the shell window where you launched PyDoc serves as the
 script’s standard input and output for any user interaction. The net
 effect is that the documentation page for a script will appear after
 it runs, and after its printed output shows up in
 the shell window. This may work better for some scripts than others,
 though; interactive input, for example, may interleave oddly with
 PyDoc’s own server command prompts.
Once you get past the new start page in Figure 15-1, the
 documentation pages for specific modules are essentially the same in
 both the newer all-browser mode and the earlier GUI-client scheme,
 apart from the additional input fields at the top of page in the
 former. For instance, Figure 15-2 shows the new
 documentation display pages—opened on two user-defined modules we’ll
 be writing in the next part of this book, as part of Chapter 21’s benchmarking case study. In
 either scheme, documentation pages contain automatically created
 hyperlinks that allow you to click your way through the documentation
 of related components in your application. For instance, you’ll find
 links to open imported modules’ pages too.
Because of the similarity in their display pages, the next
 section on pre-3.2 PyDoc and its screen shots largely apply after 3.2
 too, so be sure to read ahead for additional notes even if you’re
 using more recent Python. In effect, 3.3’s PyDoc simply cuts out the
 pre-3.2 GUI client “middleman,” while retaining its browser and
 server.
PyDoc in Python 3.3 also still supports other former usage
 modes. For instance, pydoc –p
 port can be used to set its PyDoc server
 port, and pydoc -w
 module still writes a module’s HTML
 documentation to a file named
 module.html for later viewing. Only the pydoc -g GUI client mode is removed and
 replaced by pydoc -b. You can also
 run PyDoc to generate a plain-text form of the documentation (its Unix
 “manpage” flavor shown earlier in this chapter)—the following command
 line is equivalent to the help call
 at an interactive Python prompt:
c:\code> py −3 -m pydoc timeit # Command-line text help

c:\code> py −3
>>> help("timeit") # Interactive prompt text help
As an interactive system, your best bet is to take PyDoc’s
 web-based interface for a test drive, so we’ll cut its usage details
 short here; see Python’s manuals for additional details and
 command-line options. Also note that PyDoc’s server and browser
 functionality come largely “for free” from tools that automate such
 utility in the portable modules of Python’s standard library (e.g.,
 webbrowser, http.server). Consult PyDoc’s Python code in
 the standard library file pydoc.py for additional details and
 inspiration.
Figure 15-2. PyDoc’s module display page in Python 3.2 and later with
 input fields at the top, displaying two modules we will be coding in
 the next part of this book (Chapter 21).

Changing PyDoc’s Colors
You won’t be able to tell in the paper version of this book, but if you
 have an ebook or start PyDoc live, you’ll notice that it chooses
 colors that may or may not be to your liking. Unfortunately, there
 presently is no easy way to customize PyDoc’s colors. They are
 hardcoded deep in its source code, and can’t be passed in as
 arguments to functions or command lines, or changed in configuration
 files or global variables in the PyDoc module itself.
Except that, in an open source system, you can always change
 the code—PyDoc lives in the file pydoc.py in Python’s standard library,
 which is directory C:\Python33\Lib on Windows for Python
 3.3. Its colors are hardcoded RGB value hex strings embedded
 throughout its code. For instance, its string '#eeaa77' defines a 3-byte (24-bit) value, with 2 hexadecimal digits giving a 1-byte (8-bit) level value for each of red, green, and blue (decimal 238, 170, and 119),
 yielding a shade of orange for function banners. The string '#ee77aa' similarly renders the dark
 pinkish color used in nine places, including class and index page
 banners.
To tailor, search for these color value strings and replace
 them with your preferences. In IDLE, an Edit/Find for regular
 expression #\w{6} will locate
 color strings (this matches six alphanumeric characters after a
 # per Python’s re module pattern syntax; see the library
 manual for details).
To pick colors, in most programs with color selection dialogs
 you can map to and from RGB values; the book’s examples include a
 GUI script setcolor.py that
 does the same. In my copy of PyDoc, I replaced all #ee77aa with #008080 (teal) to banish the dark pink.
 Replacing #ffc8d8 with #c0c0c0 (grey) does similar for the light
 pink background of class docstrings.
Such surgery isn’t for the faint of heart—PyDoc’s file is
 currently 2,600 lines long—but makes for a fair exercise in code
 maintenance. Be cautious when replacing colors like #ffffff and #000000 (white and black), and be sure to
 make a backup copy of pydoc.py
 first so you have a fallback. This file uses tools we haven’t yet
 met, but you can safely ignore the rest of its code while you make
 your tactical changes.
Be sure to watch for PyDoc changes on the configurations
 front; this seems a prime candidate for improvement. In fact, there
 already is an effort under way: issue 10716 on the Python
 developers’ list seeks to make PyDoc more user-customizable by
 changing it to support CSS style sheets. If
 successful, this may allow users to make color and other display
 choices in external CSS files instead of PyDoc’s source code.
On the other hand, this is currently not planned to appear
 until Python 3.4, and will require PyDoc’s users to also be
 proficient with CSS code—which unfortunately has a nontrivial
 structure all its own that many people using Python may not
 understand well enough to change. As I write this, for example, the
 proposed PyDoc CSS file is already 234 lines of code that probably
 won’t mean much to people not already familiar with web development
 (and it hardly seems reasonable to ask them to learn a web
 development tool just to tailor PyDoc!).
Today’s PyDoc in 3.3 already supports a CSS style sheet that
 offers some customization options, but only half-heartedly, and
 ships with one that is empty. Until this is hashed out, code changes
 seem the best option. In any event, CSS style sheets are well beyond
 this Python book’s scope—see the Web for details, and check future
 Python release notes for PyDoc developments.

Python 3.2 and earlier: GUI client
This section documents the original GUI client mode of PyDoc,
 for readers using 3.2 and earlier, and gives some addition PyDoc
 context in general. It builds on the basics covered in the prior
 section, which aren’t repeated here, so be sure to at least scan the
 prior section if you’re using an older Python.
As mentioned, through Python 3.2, PyDoc provides a top-level GUI
 interface—a simple but portable Python/tkinter script for submitting
 requests—as well as a documentation server. Requests in the client are
 routed to the server, which produces reports displayed in a popped-up
 web browser. Apart from your having to submit search requests, this
 process is largely automatic.
To start PyDoc in this mode, you generally first launch the
 search engine GUI captured in Figure 15-3. You can start
 this either by selecting the Module Docs item in Python’s Start button
 menu on Windows 7 and earlier, or by launching the pydoc.py script in Python’s standard
 library directory with a -g
 command-line argument: it lives in Lib on Windows, but you can use Python’s
 –m flag to avoid typing script
 paths here too:
c:\code> c:\python32\python -m pydoc -g # Explicit Python path
c:\code> py −3.2 -m pydoc -g # Windows 3.3+ launcher version
Enter the name of a module you’re interested in, and press the
 Enter key; PyDoc will march down your module import search path
 (sys.path), looking for the
 requested module and references to it.
Figure 15-3. The PyDoc top-level search engine GUI client in 3.2 and
 earlier: type the name of a module you want documentation for, press
 Enter, select the module, and then press “go to selected” (or omit
 the module name and press “open browser” to see all available
 modules).

Once you’ve found a promising entry, select it and click “go to
 selected.” PyDoc will spawn a web browser on your machine to display
 the report rendered in HTML format. Figure 15-4 shows the
 information PyDoc displays for the built-in glob module. Notice the hyperlinks in the
 Modules section of this page—you can click these
 to jump to the PyDoc pages for related (imported) modules. For larger
 pages, PyDoc also generates hyperlinks to sections within the
 page.
Figure 15-4. When you find a module in the Figure 15-3 GUI (such as
 this built-in standard library module) and press “go to selected,”
 the module’s documentation is rendered in HTML and displayed in a
 web browser window like this one.

Like the help function
 interface, the GUI interface works on user-defined modules as well as
 built-ins. Figure 15-5
 shows the page generated for our docstrings.py module file coded
 earlier.
Make sure that the directory containing your module is on your
 module import search path—as mentioned, PyDoc must be able to import a
 file to render its documentation. This includes the current working
 directory—PyDoc might not check the directory it was launched from
 (which is probably meaningless when started from the Windows Start
 button anyhow), so you may need to extend your PYTHONPATH
 setting to get this to work. On Pythons 3.2 and 2.7, I had to add “.”
 to my PYTHONPATH to get PyDoc’s GUI
 client mode to look in the directory it was started from by command
 line:
c:\code> set PYTHONPATH=.;%PYTHONPATH%
c:\code> py −3.2 -m pydoc -g
This setting was also required to see the current directory for
 the new all-browser pydoc -b mode
 in 3.2. However, Python 3.3 automatically includes “.” in its index
 list, so no path setting is required to view files in the directory
 where PyDoc is started—a minor but noteworthy improvement.
Figure 15-5. PyDoc can serve up documentation pages for both built-in and
 user-coded modules on the module search path. Here is the page for a
 user-defined module, showing all its documentation strings
 (docstrings) extracted from the source file.

PyDoc can be customized and launched in various ways we won’t
 cover here; see its entry in Python’s standard library manual for more
 details. The main thing to take away from this section is that PyDoc
 essentially gives you implementation reports “for free”—if you are
 good about using docstrings in your files, PyDoc does all the work of
 collecting and formatting them for display. PyDoc helps only for
 objects like functions and modules, but it provides an easy way to
 access a middle level of documentation for such tools—its reports are
 more useful than raw attribute lists, and less exhaustive than the
 standard manuals.
PyDoc can also be run to save the HTML documentation for a
 module in a file for later viewing or printing; see the preceding
 section for pointers. Also, note that PyDoc might not work well if run
 on scripts that read from standard input—PyDoc
 imports the target module to inspect its contents, and there may be no
 connection for standard input text when it is run in GUI mode,
 especially if run from the Windows Start button. Modules that can be
 imported without immediate input requirements will always work under
 PyDoc, though. See also the preceding section’s notes regarding
 scripts in PyDoc’s -b mode in 3.2
 and later; launching PyDoc’s GUI mode by command line works the
 same—you interact in the launch window.
Note
PyDoc GUI client trick of the day: If you
 press the “open browser” button in Figure 15-3’s window,
 PyDoc will produce an index page containing a hyperlink to every
 module you can possibly import on your computer. This includes
 Python standard library modules, modules of installed third-party
 extensions, user-defined modules on your import search path, and
 even statically or dynamically linked-in C-coded modules. Such
 information is hard to come by otherwise without writing code that
 inspects all module sources. On Python 3.2, you’ll want to do this
 immediately after the GUI opens, as it may not fully work after
 searches. Also note that in PyDoc’s all-browser –b interface in 3.2 and later, you get the
 same index functionality on its top-level start page of Figure 15-1.

Beyond docstrings: Sphinx
If you’re looking for a way to document your Python system in a more sophisticated
 way, you may wish to check out Sphinx (currently at
 http://sphinx-doc.org). Sphinx is used by the standard
 Python documentation described in the next section, and many other
 projects. It uses simple reStructuredText as its markup
 language, and inherits much from the Docutils suite
 of reStructuredText parsing and translating tools.
Among other things, Sphinx supports a variety of output formats
 (HTML including Windows HTML Help, LaTeX for printable PDF versions,
 manual pages, and plain text); extensive and automatic cross-references;
 hierarchical structure with automatic links to relatives; automatic
 indexes; automatic code highlighting using Pygments
 (itself a notable Python tool); and more. This is probably overkill for
 smaller programs where docstrings and PyDoc may suffice, but can yield
 professional-grade documentation for large projects. See the Web for
 more details on Sphinx and its related tools.

The Standard Manual Set
For the complete and most up-to-date description of the language and its
 toolset, Python’s standard manuals stand ready to serve. Python’s
 manuals ship in HTML and other formats, and they are installed with the
 Python system on Windows—they are available in your Start button’s menu
 for Python on Windows 7 and earlier, and they can also be opened from
 the Help menu within IDLE. You can also fetch the manual set separately
 from http://www.python.org in a variety of formats, or read it
 online at that site (follow the Documentation link). On Windows, the
 manuals are a compiled help file to support searches, and the online
 versions at the Python website include a web-based search page.
When opened, the Windows format of the manuals displays a root page like that in Figure 15-6, showing the local
 copy on Windows. The two most important entries here are most likely the
 Library Reference (which documents built-in types,
 functions, exceptions, and standard library modules) and the
 Language Reference (which provides a formal
 description of language-level details). The tutorial listed on this page
 also provides a brief introduction for newcomers, which you’re probably
 already beyond.
Figure 15-6. Python’s standard manual set, available online at http://www.python.org, from IDLE’s Help menu, and in
 the Windows 7 and earlier Start button menu. It’s a searchable help
 file on Windows, and there is a search engine for the online version.
 Of these, the Library Reference is the one you’ll want to use most of
 the time.

Of notable interest, the What’s New documents
 in this standard manual set chronicle Python changes made in each
 release beginning with Python 2.0, which came out in late 2000—useful
 for those porting older Python code, or older Python skills. These
 documents are especially useful for uncovering additional details on the
 differences in the Python 2.X and 3.X language lines covered in this
 book, as well as in their standard libraries.

Web Resources
At the official Python website (http://www.python.org), you’ll find links to various
 Python resources, some of which cover special topics or domains. Click
 the Documentation link to access an online tutorial and the Beginners
 Guide to Python. The site also lists non-English Python resources, and
 introductions scaled to different target audiences.
Today you will also find numerous Python wikis, blogs, websites,
 and a host of other resources on the Web at large. To sample the online
 community, try searching for a term like “Python programming” in Google,
 or search on any topic of interest; chances are good you’ll find ample
 material to browse.

Published Books
As a final resource, you can choose from a collection of
 professionally edited and published reference books for Python. Bear in
 mind that books tend to lag behind the cutting edge of Python changes,
 partly because of the work involved in writing, and partly because of
 the natural delays built into the publishing cycle. Usually, by the time
 a book comes out, it’s three or more months behind the current Python
 state (trust me on that—my books have a nasty habit of falling out of
 date in minor ways between the time I write them and the time they hit
 the shelves!). Unlike standard manuals, books are also generally not
 free.
Still, for many, the convenience and quality of a professionally
 published text is worth the cost. Moreover, Python changes so slowly
 that books are usually still relevant years after they are published,
 especially if their authors post updates on the Web. See the preface for
 pointers to other Python books.

Common Coding Gotchas
Before the programming exercises for this part of the book, let’s run
 through some of the most common mistakes beginners make when coding Python
 statements and programs. Many of these are warnings I’ve thrown out
 earlier in this part of the book, collected here for ease of reference.
 You’ll learn to avoid these pitfalls once you’ve gained a bit of Python
 coding experience, but a few words now might help you avoid falling into
 some of these traps initially:
	Don’t forget the colons.
 Always remember to type a : at the
 end of compound statement headers—the first line of an if, while, for, etc. You’ll probably forget at first (I
 did, and so have most of my roughly 4,000 Python students over the
 years), but you can take some comfort from the fact that it will soon
 become an unconscious habit.

	Start in column 1. Be sure to
 start top-level (unnested) code in column 1. That includes unnested
 code typed into module files, as well as unnested code typed at the
 interactive prompt.

	Blank lines matter at the interactive
 prompt. Blank lines in compound statements are always
 irrelevant and ignored in module files, but when you’re typing code at
 the interactive prompt, they end the statement. In other words, blank
 lines tell the interactive command line that you’ve finished a
 compound statement; if you want to continue, don’t hit the Enter key
 at the ... prompt (or in IDLE)
 until you’re really done. This also means you can’t paste multiline
 code at this prompt; it must run one full statement at a time.

	Indent consistently. Avoid
 mixing tabs and spaces in the indentation of a block, unless you know
 what your text editor does with tabs. Otherwise, what you see in your
 editor may not be what Python sees when it counts tabs as a number of
 spaces. This is true in any block-structured language, not just
 Python—if the next programmer has tabs set differently, it will be
 difficult or impossible to understand the structure of your code. It’s
 safer to use all tabs or all spaces for each block.

	Don’t code C in Python. A
 reminder for C/C++ programmers: you don’t need to type parentheses
 around tests in if and while headers (e.g., if (X==1):). You can, if you like (any
 expression can be enclosed in parentheses), but they are fully
 superfluous in this context. Also, do not terminate all your
 statements with semicolons; it’s technically legal to do this in
 Python as well, but it’s totally useless unless you’re placing more
 than one statement on a single line (the end of a line normally
 terminates a statement). And remember, don’t embed assignment
 statements in while loop tests, and
 don’t use {} around blocks (indent
 your nested code blocks consistently instead).

	Use simple for loops instead
 of while or range. Another reminder: a simple for loop (e.g., for
 x in seq:) is almost always simpler to code and often
 quicker to run than a while- or
 range-based counter loop. Because
 Python handles indexing internally for a simple for, it can sometimes be faster than the
 equivalent while, though this can
 vary per code and Python. For code simplicity alone, though, avoid the
 temptation to count things in Python!

	Beware of mutables in
 assignments. I mentioned this in Chapter 11: you need to be
 careful about using mutables in a multiple-target assignment (a = b = []), as well as in an augmented
 assignment (a += [1, 2]). In both
 cases, in-place changes may impact other variables. See Chapter 11 for details if
 you’ve forgotten why this is true.

	Don’t expect results from functions that
 change objects in place. We encountered this one earlier,
 too: in-place change operations like the list.append and list.sort methods introduced in Chapter 8 do not return values (other than
 None), so you should call them
 without assigning the result. It’s not uncommon for beginners to say
 something like mylist =
 mylist.append(X) to try to get the result of an append, but what this actually does is
 assign mylist to None, not to the modified list (in fact,
 you’ll lose your reference to the list altogether).
A more devious example of this pops up in Python 2.X code when
 trying to step through dictionary items in a sorted fashion. It’s
 fairly common to see code like for k in
 D.keys().sort():. This almost works—the keys method builds a keys list, and the
 sort method orders it—but because
 the sort method returns None, the loop fails because it is
 ultimately a loop over None (a
 nonsequence). This fails even sooner in Python 3.X, because dictionary
 keys are views, not lists! To code this correctly, either use the
 newer sorted built-in function,
 which returns the sorted list, or split the method calls out to
 statements: Ks = list(D.keys()),
 then Ks.sort(), and finally,
 for k in Ks:. This, by the way, is
 one case where you may still want to call the keys method explicitly for looping, instead
 of relying on the dictionary iterators—iterators do not sort.

	Always use parentheses to call a
 function. You must add parentheses after a function name to
 call it, whether it takes arguments or not (e.g., use function(), not function). In the next part of this book,
 we’ll learn that functions are simply objects that have a special
 operation—a call that you trigger with the parentheses. They can be
 referenced like any other object without triggering a call.
In classes, this problem seems to occur most often with files;
 it’s common to see beginners type file.close to close a file, rather than
 file.close(). Because it’s legal to
 reference a function without calling it, the first version with no
 parentheses succeeds silently, but it does not close the file!

	Don’t use extensions or paths in imports
 and reloads. Omit directory paths and file extensions in
 import statements—say import mod, not import mod.py. We discussed module basics in
 Chapter 3 and will continue studying
 modules in Part V. Because modules
 may have other extensions besides .py (.pyc, for instance), hardcoding a
 particular extension is not only illegal syntax, it doesn’t make
 sense. Python picks an extension automatically, and any
 platform-specific directory path syntax comes from module search path
 settings, not the import
 statement.

	And other pitfalls in other
 parts. Be sure to also see the built-in type warnings at
 the end of the prior part, as they may qualify as coding issues too.
 There are additional “gotchas” that crop up commonly in Python
 coding—losing a built-in function by reassigning its name, hiding a
 library module by using its name for one of your own, changing mutable
 argument defaults, and so on—but we don’t have enough background to
 cover them yet. To learn more about both what you should and shouldn’t
 do in Python, you’ll have to read on; later parts extend the set of
 “gotchas” and fixes we’ve added to here.

Chapter Summary
This chapter took us on a tour of program documentation—both
 documentation we write ourselves for our own programs, and documentation
 available for tools we use. We met docstrings, explored the online and
 manual resources for Python reference, and learned how PyDoc’s help function and web page interfaces provide
 extra sources of documentation. Because this is the last chapter in this
 part of the book, we also reviewed common coding mistakes to help you
 avoid them.
In the next part of this book, we’ll start applying what we already
 know to larger program constructs. Specifically, the next part takes up
 the topic of functions—a tool used to group
 statements for reuse. Before moving on, however, be sure to work through
 the set of lab exercises for this part of the book that appear at the end
 of this chapter. And even before that, let’s run through this chapter’s
 quiz.

Test Your Knowledge: Quiz
	When should you use documentation strings instead of
 hash-mark comments?

	Name three ways you can view documentation strings.

	How can you obtain a list of the available attributes in an
 object?

	How can you get a list of all available modules on your
 computer?

	Which Python book should you purchase after this one?

Test Your Knowledge: Answers
	Documentation strings (docstrings) are considered best for
 larger, functional documentation, describing the use of modules,
 functions, classes, and methods in your code. Hash-mark comments are
 today best limited to smaller-scale documentation about arcane
 expressions or statements at strategic points on your code. This is
 partly because docstrings are easier to find in a source file, but
 also because they can be extracted and displayed by the PyDoc
 system.

	You can see docstrings by printing an object’s __doc__ attribute, by passing it to PyDoc’s
 help function, and by selecting
 modules in PyDoc’s HTML-based user interfaces—either the -g GUI client mode in Python 3.2 and
 earlier, or the -b all-browser mode
 in Python 3.2 and later (and required as of 3.3). Both run a
 client/server system that displays documentation in a popped-up web
 browser. PyDoc can also be run to save a module’s documentation in an
 HTML file for later viewing or printing.

	The built-in dir(X) function
 returns a list of all the attributes attached to any object. A list
 comprehension of the form [a for a in dir(X)
 if not a.startswith('__')] can be used to filter out
 internals names with underscores (we’ll learn how to wrap this in a
 function in the next part of the book to make it easier to
 use).

	In Python 3.2 and earlier, you can run the PyDoc GUI interface,
 and select “open browser”; this opens a web page containing a link to
 every module available to your programs. This GUI mode no longer works
 as of Python 3.3. In Python 3.2 and later, you get the same
 functionality by running PyDoc’s newer all-browser mode with a
 -b command-line switch; the
 top-level start page displayed in a web browser in this newer mode has
 the same index page listing all available modules.

	Mine, of course. (Seriously, there are hundreds today; the
 preface lists a few recommended follow-up books, both for reference
 and for application tutorials, and you should browse for books that
 fit your needs.)

Test Your Knowledge: Part III Exercises
Now that you know how to code basic program logic, the following exercises will ask
 you to implement some simple tasks with statements. Most of the work is in
 exercise 4, which lets you explore coding alternatives. There are always
 many ways to arrange statements, and part of learning Python is learning
 which arrangements work better than others. You’ll eventually gravitate
 naturally toward what experienced Python programmers call “best practice,”
 but best practice takes practice.
See “Part III, Statements and Syntax” in Appendix D for the solutions.
	Coding basic loops. This exercise asks you
 to experiment with for loops.
	Write a for loop that
 prints the ASCII code of each character in a string named S. Use the built-in function ord(character) to convert each character
 to an ASCII integer. This function technically returns a Unicode
 code point in Python 3.X, but if you restrict its content to ASCII
 characters, you’ll get back ASCII codes. (Test it interactively to
 see how it works.)

	Next, change your loop to compute the
 sum of the ASCII codes of all the characters
 in a string.

	Finally, modify your code again to return a new list that
 contains the ASCII codes of each character in
 the string. Does the expression map(ord,
 S) have a similar effect? How about [ord(c) for c in S]? Why? (Hint: see
 Chapter 14.)

	Backslash characters. What happens on your
 machine when you type the following code interactively?
for i in range(50):
 print('hello %d\n\a' % i)
Beware that if it’s run outside of the IDLE interface this
 example may beep at you, so you may not want to run it in a crowded
 room! IDLE prints odd characters instead of beeping—spoiling much of
 the joke (see the backslash escape characters in Table 7-2).

	Sorting dictionaries. In Chapter 8, we saw that dictionaries are
 unordered collections. Write a for
 loop that prints a dictionary’s items in sorted (ascending) order.
 (Hint: use the dictionary keys and
 list sort methods, or the newer
 sorted built-in function.)

	Program logic alternatives. Consider the
 following code, which uses a while
 loop and found flag to search a
 list of powers of 2 for the value of 2 raised to the fifth power (32).
 It’s stored in a module file called power.py.
L = [1, 2, 4, 8, 16, 32, 64]
X = 5

found = False
i = 0
while not found and i < len(L):
 if 2 ** X == L[i]:
 found = True
 else:
 i = i+1

if found:
 print('at index', i)
else:
 print(X, 'not found')

C:\book\tests> python power.py
at index 5
As is, the example doesn’t follow normal Python coding
 techniques. Follow the steps outlined here to improve it (for all the
 transformations, you may either type your code interactively or store
 it in a script file run from the system command line—using a file
 makes this exercise much easier):
	First, rewrite this code with a while loop else clause to eliminate the found flag and final if statement.

	Next, rewrite the example to use a for loop with an else clause, to eliminate the explicit
 list-indexing logic. (Hint: to get the index of an item, use the
 list index method—L.index(X) returns the offset of the
 first X in list L.)

	Next, remove the loop completely by rewriting the example
 with a simple in operator
 membership expression. (See Chapter 8 for more details, or type this
 to test: 2 in [1,2,3].)

	Finally, use a for loop
 and the list append method to
 generate the powers-of-2 list (L) instead of hardcoding a list
 literal.

Deeper thoughts:
	Do you think it would improve performance to move the
 2 ** X expression outside the
 loops? How would you code that?

	As we saw in exercise 1, Python includes a map(function, list) tool that can
 generate a powers-of-2 list, too: map(lambda x: 2 ** x, range(7)). Try
 typing this code interactively; we’ll meet lambda more formally in the next part of
 this book, especially in Chapter 19. Would a list comprehension
 help here (see Chapter 14)?

	Code maintenance. If you haven’t already
 done so, experiment with making the code changes suggested in this
 chapter’s sidebar “Changing PyDoc’s Colors”. Much of
 the work of real software development is in changing existing code, so
 the sooner you begin doing so, the better. For reference, my edited
 copy of PyDoc is in the book’s examples package, named mypydoc.py; to see how it differs, you can
 run a file compare (fc on Windows)
 with the original pydoc.py in 3.3
 (also included, lest it change radically in 3.4 as the sidebar
 describes). If PyDoc is more easily customized by the time you read
 these words, customize colors per its current convention instead; if
 this involves changing a CSS file, let’s hope the procedure will be
 well documented in Python’s manuals.

1 Note that asking for help on an actual string
 object directly (e.g., help('')) doesn’t work in recent Pythons:
 you usually get no help, because strings are interpreted
 specially—as a request for help on an unimported module, for
 instance (see earlier). You must use the str type name in this context, though both
 other types of actual objects (help([])) and string method names
 referenced through actual objects (help(''.join)) work fine (at least in
 Python 3.3—this has been prone to change over time). There is also
 an interactive help mode, which you start by typing just help().

Part IV. Functions and Generators

Chapter 16. Function Basics
In Part III, we studied basic
 procedural statements in Python. Here, we’ll move on to explore a set of
 additional statements and expressions that we can use to create functions of
 our own.
In simple terms, a function is a device that groups a set of statements so they can be run more
 than once in a program—a packaged procedure invoked by name. Functions also
 can compute a result value and let us specify parameters that serve as
 function inputs and may differ each time the code is run. Coding an
 operation as a function makes it a generally useful tool, which we can use
 in a variety of contexts.
More fundamentally, functions are the alternative to programming by
 cutting and pasting—rather than having multiple
 redundant copies of an operation’s code, we can factor it into a single
 function. In so doing, we reduce our future work radically: if the operation
 must be changed later, we have only one copy to update in the function, not
 many scattered throughout the program.
Functions are also the most basic program structure Python provides
 for maximizing code reuse, and lead us to the larger
 notions of program design. As we’ll see, functions let
 us split complex systems into manageable parts. By implementing each part as
 a function, we make it both reusable and easier to code.
Table 16-1 previews
 the primary function-related tools we’ll study in this part of the book—a
 set that includes call expressions, two ways to make functions (def and lambda), two ways to manage scope visibility
 (global and nonlocal), and two ways to send results back to
 callers (return and yield).
Table 16-1. Function-related statements and expressions	Statement or
 expression	Examples
	Call
 expressions
	myfunc('spam', 'eggs', meat=ham, *rest)

	def
	def printer(message):
 print('Hello ' + message)

	return
	def adder(a, b=1, *c):
 return a + b + c[0]

	global
	x = 'old'
def changer():
 global x; x = 'new'

	nonlocal (3.X)
	def outer():
 x = 'old'
 def changer():
 nonlocal x; x = 'new'

	yield
	def squares(x):
 for i in range(x): yield i ** 2

	lambda
	funcs = [lambda x: x**2, lambda x: x**3]

Why Use Functions?
Before we get into the details, let’s establish a clear picture of
 what functions are all about. Functions are a nearly universal
 program-structuring device. You may have come across them before in other
 languages, where they may have been called
 subroutines or procedures. As a
 brief introduction, functions serve two primary development roles:
	Maximizing code reuse and minimizing redundancy
	As in most programming languages, Python functions are the
 simplest way to package logic you may wish to use in more than one
 place and more than one time. Up until now, all the code we’ve been
 writing has run immediately. Functions allow us to group and
 generalize code to be used arbitrarily many times later. Because
 they allow us to code an operation in a single place and use it in
 many places, Python functions are the most basic
 factoring tool in the language: they allow us
 to reduce code redundancy in our programs, and thereby reduce
 maintenance effort.

	Procedural decomposition
	Functions also provide a tool for splitting systems into
 pieces that have well-defined roles. For instance, to make a pizza
 from scratch, you would start by mixing the dough, rolling it out,
 adding toppings, baking it, and so on. If you were programming a
 pizza-making robot, functions would help you divide the overall
 “make pizza” task into chunks—one function for each subtask in the
 process. It’s easier to implement the smaller tasks in isolation
 than it is to implement the entire process at once. In general,
 functions are about procedure—how to do
 something, rather than what you’re doing it to. We’ll see why this
 distinction matters in Part VI, when we
 start making new objects with classes.

In this part of the book, we’ll explore the tools used to code
 functions in Python: function basics, scope rules, and argument passing,
 along with a few related concepts such as generators and functional tools.
 Because its importance begins to become more apparent at this level of
 coding, we’ll also revisit the notion of polymorphism, which was
 introduced earlier in the book. As you’ll see, functions don’t imply much
 new syntax, but they do lead us to some bigger programming ideas.

Coding Functions
Although it wasn’t made very formal, we’ve already used some functions in earlier
 chapters. For instance, to make a file object, we called the built-in
 open function; similarly, we used the
 len built-in function to ask for the
 number of items in a collection object.
In this chapter, we will explore how to write
 new functions in Python. Functions we write behave
 the same way as the built-ins we’ve already seen: they are called in
 expressions, are passed values, and return results. But writing new
 functions requires the application of a few additional ideas that haven’t
 yet been introduced. Moreover, functions behave very differently in Python
 than they do in compiled languages like C. Here is a brief introduction to
 the main concepts behind Python functions, all of which we will study in
 this part of the book:
	def is executable code. Python functions
 are written with a new statement, the def. Unlike functions in compiled languages
 such as C, def is an executable
 statement—your function does not exist until Python reaches and runs
 the def. In fact, it’s legal (and
 even occasionally useful) to nest def statements inside if statements, while loops, and even other defs. In typical operation, def statements are coded in module files and
 are naturally run to generate functions when the module file they
 reside in is first imported.

	def creates an object and assigns it to a name.
 When Python reaches and runs a def
 statement, it generates a new function object and assigns it to the
 function’s name. As with all assignments, the function name becomes a
 reference to the function object. There’s nothing magic about the name
 of a function—as you’ll see, the function object can be assigned to
 other names, stored in a list, and so on. Function objects may also
 have arbitrary user-defined attributes attached
 to them to record data.

	lambda creates an object but returns it as a result.
 Functions may also be created with the lambda expression, a feature that allows us
 to in-line function definitions in places where a
 def statement won’t work
 syntactically. This is a more advanced concept that we’ll defer until
 Chapter 19.

	return sends a result object back to the caller.
 When a function is called, the caller stops until the function
 finishes its work and returns control to the caller. Functions that
 compute a value send it back to the caller with a return statement; the returned value becomes
 the result of the function call. A return without a value simply returns to the
 caller (and sends back None, the
 default result).

	yield sends a result object back to the caller, but remembers
 where it left off. Functions known as generators may also use
 the yield statement to send back a
 value and suspend their state such that they may be resumed later, to
 produce a series of results over time. This is another advanced topic
 covered later in this part of the book.

	global declares module-level variables that are to be
 assigned. By default, all names assigned in a function are local to that function and
 exist only while the function runs. To assign a name in the enclosing
 module, functions need to list it in a global statement. More generally, names are
 always looked up in scopes—places where variables
 are stored—and assignments bind names to scopes.

	nonlocal declares enclosing function variables that are to be
 assigned. Similarly, the nonlocal statement added in Python 3.X allows a function to assign a name
 that exists in the scope of a syntactically enclosing def statement. This allows enclosing
 functions to serve as a place to retain
 state—information remembered between function
 calls—without using shared global names.

	Arguments are passed by assignment
 (object reference). In Python, arguments are passed to functions by assignment (which,
 as we’ve learned, means by object reference). As you’ll see, in
 Python’s model the caller and function share objects by references,
 but there is no name aliasing. Changing an argument name within a
 function does not also change the corresponding name in the caller,
 but changing passed-in mutable objects in place can change objects
 shared by the caller, and serve as a function result.

	Arguments are passed by position, unless
 you say otherwise. Values you pass in a function call match
 argument names in a function’s definition from left to right by
 default. For flexibility, function calls can also
 pass arguments by name with name=value keyword
 syntax, and unpack arbitrarily many arguments to send with *pargs and
 **kargs
 starred-argument notation. Function definitions
 use the same two forms to specify argument defaults, and collect
 arbitrarily many arguments received.

	Arguments, return values, and variables
 are not declared. As with everything in Python, there are
 no type constraints on functions. In fact, nothing about a function
 needs to be declared ahead of time: you can pass in arguments of any
 type, return any kind of object, and so on. As one consequence, a
 single function can often be applied to a variety of object types—any
 objects that sport a compatible interface
 (methods and expressions) will do, regardless of their specific
 types.

If some of the preceding words didn’t sink in, don’t worry—we’ll
 explore all of these concepts with real code in this part of the book.
 Let’s get started by expanding on some of these ideas and looking at a few
 examples.
def Statements
The def statement creates a
 function object and assigns it to a name. Its general
 format is as follows:
def name(arg1, arg2,... argN):
 statements
As with all compound Python statements, def consists of a header line followed by a
 block of statements, usually indented (or a simple statement after the
 colon). The statement block becomes the function’s
 body—that is, the code Python executes each time
 the function is later called.
The def header line specifies a
 function name that is assigned the function object,
 along with a list of zero or more arguments
 (sometimes called parameters) in parentheses. The argument names in the header are assigned
 to the objects passed in parentheses at the point of call.
Function bodies often contain a return
 statement:
def name(arg1, arg2,... argN):
 ...
 return value
The Python return statement can
 show up anywhere in a function body; when reached, it ends the function
 call and sends a result back to the caller. The return statement consists of an optional
 object value expression that gives the function’s result. If the value
 is omitted, return sends back a
 None.
The return statement itself is
 optional too; if it’s not present, the function exits when the control
 flow falls off the end of the function body. Technically, a function
 without a return statement also
 returns the None object
 automatically, but this return value is usually ignored at the
 call.
Functions may also contain yield statements, which are designed to
 produce a series of values over time, but we’ll defer discussion of
 these until we survey generator topics in Chapter 20.

def Executes at Runtime
The Python def is a true
 executable statement: when it runs, it creates a new function object
 and assigns it to a name. (Remember, all we have in Python is
 runtime; there is no such thing as a separate
 compile time.) Because it’s a statement, a def can appear anywhere a statement can—even
 nested in other statements. For instance, although defs normally are run when the module
 enclosing them is imported, it’s also completely legal to nest a
 function def inside an
 if statement to select between
 alternative definitions:
if test:
 def func(): # Define func this way
 ...
else:
 def func(): # Or else this way
 ...
...
func() # Call the version selected and built
One way to understand this code is to realize that the def is much like an = statement: it simply assigns a name at
 runtime. Unlike in compiled languages such as C, Python functions do not
 need to be fully defined before the program runs. More generally,
 defs are not evaluated until they are
 reached and run, and the code inside defs is not evaluated until the functions are
 later called.
Because function definition happens at runtime, there’s nothing
 special about the function name. What’s important is the object to which
 it refers:
othername = func # Assign function object
othername() # Call func again
Here, the function was assigned to a different name and called
 through the new name. Like everything else in Python, functions are just
 objects; they are recorded explicitly in memory at
 program execution time. In fact, besides calls, functions allow
 arbitrary attributes to be attached to record
 information for later use:
def func(): ... # Create function object
func() # Call object
func.attr = value # Attach attributes

A First Example: Definitions and Calls
Apart from such runtime concepts (which tend to seem most unique to
 programmers with backgrounds in traditional compiled languages), Python
 functions are straightforward to use. Let’s code a first real example to
 demonstrate the basics. As you’ll see, there are two sides to the function
 picture: a definition (the def that creates a function) and a
 call (an expression that tells Python to run the
 function’s body).
Definition
Here’s a definition typed interactively that defines a function called
 times, which returns the product of
 its two arguments:
>>> def times(x, y): # Create and assign function
... return x * y # Body executed when called
...
When Python reaches and runs this def, it creates a new function object that
 packages the function’s code and assigns the object to the name times. Typically, such a statement is coded in
 a module file and runs when the enclosing file is imported; for
 something this small, though, the interactive prompt suffices.

Calls
The def statement makes a
 function but does not call it. After the def has run, you can call (run) the function
 in your program by adding parentheses after the function’s name. The
 parentheses may optionally contain one or more object arguments, to be
 passed (assigned) to the names in the function’s header:
>>> times(2, 4) # Arguments in parentheses
8
This expression passes two arguments to times. As mentioned previously, arguments are
 passed by assignment, so in this case the name x in the function header is assigned the value
 2, y is assigned the value 4, and the function’s body is run. For this
 function, the body is just a return
 statement that sends back the result as the value of the call
 expression. The returned object was printed here interactively (as in
 most languages, 2 * 4 is 8 in Python), but if we needed to use it later
 we could instead assign it to a variable. For example:
>>> x = times(3.14, 4) # Save the result object
>>> x
12.56
Now, watch what happens when the function is called a third time,
 with very different kinds of objects passed in:
>>> times('Ni', 4) # Functions are "typeless"
'NiNiNiNi'
This time, our function means something completely different
 (Monty Python reference again intended). In this third call, a string
 and an integer are passed to x and
 y, instead of two numbers. Recall
 that * works on both numbers and
 sequences; because we never declare the types of variables, arguments,
 or return values in Python, we can use times to either multiply
 numbers or repeat sequences.
In other words, what our times
 function means and does depends on what we pass into it. This is a core
 idea in Python (and perhaps the key to using the language well), which
 merits a bit of expansion here.

Polymorphism in Python
As we just saw, the very meaning of the expression x * y in our simple times function depends completely upon the
 kinds of objects that x and y are—thus, the same function can perform
 multiplication in one instance and repetition in another. Python leaves
 it up to the objects to do something reasonable for
 the syntax. Really, * is just a
 dispatch mechanism that routes control to the objects being
 processed.
This sort of type-dependent behavior is known as
 polymorphism, a term we first met in Chapter 4 that essentially means that
 the meaning of an operation depends on the objects being operated upon.
 Because it’s a dynamically typed language, polymorphism runs rampant in
 Python. In fact, every operation is a polymorphic
 operation in Python: printing, indexing, the * operator, and much more.
This is deliberate, and it accounts for much of the language’s
 conciseness and flexibility. A single function, for instance, can
 generally be applied to a whole category of object types automatically.
 As long as those objects support the expected
 interface (a.k.a. protocol), the function can
 process them. That is, if the objects passed into a function have the
 expected methods and expression operators, they are plug-and-play
 compatible with the function’s logic.
Even in our simple times
 function, this means that any two objects that
 support a * will work, no matter what
 they may be, and no matter when they are coded. This function will work
 on two numbers (performing multiplication), or a string and a number
 (performing repetition), or any other combination of objects supporting
 the expected interface—even class-based objects we have not even
 imagined yet.
Moreover, if the objects passed in do not
 support this expected interface, Python will detect the error when the
 * expression is run and raise an
 exception automatically. It’s therefore usually pointless to code error
 checking ourselves. In fact, doing so would limit our function’s
 utility, as it would be restricted to work only on objects whose types
 we test for.
This turns out to be a crucial philosophical difference between
 Python and statically typed languages like C++ and Java: in Python, your
 code is not supposed to care about specific data
 types. If it does, it will be limited to working on just the types you
 anticipated when you wrote it, and it will not support other compatible
 object types that may be coded in the future. Although it is possible to
 test for types with tools like the type built-in function, doing so breaks your
 code’s flexibility. By and large, we code to object interfaces in Python, not data
 types.1
Of course, some programs have unique requirements, and this
 polymorphic model of programming means we have to test our code to
 detect errors, rather than providing type declarations a compiler can
 use to detect some types of errors for us ahead of time. In exchange for
 an initial bit of testing, though, we radically reduce the amount of
 code we have to write and radically increase our code’s flexibility. As
 you’ll learn, it’s a net win in practice.

A Second Example: Intersecting Sequences
Let’s look at a second function example that does something a bit more
 useful than multiplying arguments and further illustrates function
 basics.
In Chapter 13, we coded a for loop that collected items held in common in
 two strings. We noted there that the code wasn’t as useful as it could be
 because it was set up to work only on specific variables and could not be
 rerun later. Of course, we could copy the code and paste it into each
 place where it needs to be run, but this solution is neither good nor
 general—we’d still have to edit each copy to support different sequence
 names, and changing the algorithm would then require changing multiple
 copies.
Definition
By now, you can probably guess that the solution to this dilemma
 is to package the for loop inside a
 function. Doing so offers a number of advantages:
	Putting the code in a function makes it a tool that you can
 run as many times as you like.

	Because callers can pass in arbitrary arguments, functions are
 general enough to work on any two sequences (or other iterables) you
 wish to intersect.

	When the logic is packaged in a function, you have to change
 code in only one place if you ever need to change the way the
 intersection works.

	Coding the function in a module file means it can be imported
 and reused by any program run on your machine.

In effect, wrapping the code in a function makes it a general
 intersection utility:
def intersect(seq1, seq2):
 res = [] # Start empty
 for x in seq1: # Scan seq1
 if x in seq2: # Common item?
 res.append(x) # Add to end
 return res
The transformation from the simple code of Chapter 13 to this function is straightforward;
 we’ve just nested the original logic under a def header and made the objects on which it
 operates passed-in parameter names. Because this function computes a
 result, we’ve also added a return
 statement to send a result object back to the caller.

Calls
Before you can call a function, you have to make it. To do this,
 run its def statement, either by
 typing it interactively or by coding it in a module file and importing
 the file. Once you’ve run the def,
 you can call the function by passing any two sequence objects in
 parentheses:
>>> s1 = "SPAM"
>>> s2 = "SCAM"
>>> intersect(s1, s2) # Strings
['S', 'A', 'M']
Here, we’ve passed in two strings, and we get back a list
 containing the characters in common. The algorithm the function uses is
 simple: “for every item in the first argument, if that item is also in
 the second argument, append the item to the result.” It’s a little
 shorter to say that in Python than in English, but it works out the
 same.
To be fair, our intersect function is fairly slow (it executes
 nested loops), isn’t really mathematical intersection (there may be
 duplicates in the result), and isn’t required at all (as we’ve seen,
 Python’s set data type provides a built-in intersection operation).
 Indeed, the function could be replaced with a single list comprehension
 expression, as it exhibits the classic loop collector code
 pattern:
>>> [x for x in s1 if x in s2]
['S', 'A', 'M']
As a function basics example, though, it does the job—this single
 piece of code can apply to an entire range of object types, as the next
 section explains. In fact, we’ll improve and extend this to support
 arbitrarily many operands in Chapter 18, after we
 learn more about argument passing modes.

Polymorphism Revisited
Like all good functions in Python, intersect is
 polymorphic. That is, it works on arbitrary types, as long as they
 support the expected object interface:
>>> x = intersect([1, 2, 3], (1, 4)) # Mixed types
>>> x # Saved result object
[1]
This time, we passed in different types of objects to our
 function—a list and a tuple (mixed types)—and it still picked out the
 common items. Because you don’t have to specify the types of arguments
 ahead of time, the intersect function
 happily iterates through any kind of sequence objects you send it, as
 long as they support the expected interfaces.
For intersect, this means that
 the first argument has to support the for loop, and the second has to support the
 in membership test. Any two such
 objects will work, regardless of their specific types—that includes
 physically stored sequences like strings and lists; all the iterable
 objects we met in Chapter 14,
 including files and dictionaries; and even any class-based objects we
 code that apply operator overloading techniques we’ll discuss later in
 the book.2
Here again, if we pass in objects that do not support these
 interfaces (e.g., numbers), Python will automatically detect the
 mismatch and raise an exception for us—which is exactly what we want,
 and the best we could do on our own if we coded explicit type tests. By
 not coding type tests and allowing Python to detect the mismatches for
 us, we both reduce the amount of code we need to write and increase our
 code’s flexibility.

Local Variables
Probably the most interesting part of this example, though, is its names. It
 turns out that the variable res
 inside intersect is what in Python is
 called a local variable—a name that is visible only
 to code inside the function def and
 that exists only while the function runs. In fact, because all names
 assigned in any way inside a function are
 classified as local variables by default, nearly all the names in
 intersect are local variables:
	res is obviously assigned,
 so it is a local variable.

	Arguments are passed by assignment, so seq1 and seq2 are, too.

	The for loop assigns items
 to a variable, so the name x is
 also local.

All these local variables appear when the function is called and
 disappear when the function exits—the return statement at the end of intersect sends back the result
 object, but the name res goes away. Because of this, a function’s
 variables won’t remember values between calls; although the object
 returned by a function lives on, retaining other sorts of state
 information requires other sorts of techniques. To fully explore the
 notion of locals and state, though, we need to move on to the scopes
 coverage of Chapter 17.

Chapter Summary
This chapter introduced the core ideas behind function
 definition—the syntax and operation of the def and return statements, the behavior of function call
 expressions, and the notion and benefits of polymorphism in Python
 functions. As we saw, a def statement
 is executable code that creates a function object at runtime; when the
 function is later called, objects are passed into it by assignment (recall
 that assignment means object reference in Python, which, as we learned in
 Chapter 6, really means pointer
 internally), and computed values are sent back by return. We also began exploring the concepts of
 local variables and scopes in this chapter, but we’ll save all the details
 on those topics for Chapter 17. First, though, a quick
 quiz.

Test Your Knowledge: Quiz
	What is the point of coding functions?

	At what time does Python create a function?

	What does a function return if it has no return statement in it?

	When does the code nested inside the function definition
 statement run?

	What’s wrong with checking the types of objects passed into a
 function?

Test Your Knowledge: Answers
	Functions are the most basic way of avoiding code
 redundancy in Python—factoring code into
 functions means that we have only one copy of an operation’s code to
 update in the future. Functions are also the basic unit of code
 reuse in Python—wrapping code in functions makes
 it a reusable tool, callable in a variety of programs. Finally,
 functions allow us to divide a complex system into manageable parts,
 each of which may be developed individually.

	A function is created when Python reaches and runs the def statement; this statement creates a
 function object and assigns it the function’s name. This normally
 happens when the enclosing module file is imported by another module
 (recall that imports run the code in a file from top to bottom,
 including any defs), but it can
 also occur when a def is typed
 interactively or nested in other statements, such as ifs.

	A function returns the None
 object by default if the control flow falls off the end of the
 function body without running into a return statement. Such functions are usually
 called with expression statements, as assigning their None results to variables is generally
 pointless. A return statement with
 no expression in it also returns None.

	The function body (the code nested inside the function
 definition statement) is run when the function is later called with a
 call expression. The body runs anew each time the function is
 called.

	Checking the types of objects passed into a function effectively
 breaks the function’s flexibility, constraining the function to work
 on specific types only. Without such checks, the function would likely
 be able to process an entire range of object types—any objects that
 support the interface expected by the function will work. (The term
 interface means the set of methods and expression
 operators the function’s code runs.)

1 This polymorphic behavior has in recent years come to also be
 known as duck typing—the essential idea being
 that your code is not supposed to care if an object is a
 duck, only that it quacks.
 Anything that quacks will do, duck or not, and the implementation of
 quacks is up to the object, a principle which will become even more
 apparent when we study classes in Part VI. Graphic metaphor to be sure, though
 this is really just a new label for an older idea, and use cases for
 quacking software would seem limited in the tangible world (he says,
 bracing for emails from militant ornithologists...).
2 This code will always work if we intersect files’ contents
 obtained with file.readlines().
 It may not work to intersect lines in open input files directly,
 though, depending on the file object’s implementation of the
 in operator or general iteration.
 Files must generally be rewound (e.g., with a file.seek(0) or another open) after they have been read to
 end-of-file once, and so are single-pass iterators. As we’ll see in
 Chapter 30 when we study operator
 overloading, objects implement the in operator either by providing the
 specific __contains__ method or
 by supporting the general iteration protocol with the __iter__ or older __getitem__ methods; classes can code
 these methods arbitrarily to define what iteration means for their
 data.

Chapter 17. Scopes
Chapter 16 introduced basic function
 definitions and calls. As we saw, Python’s core function model is simple to
 use, but even simple function examples quickly led us to questions about the
 meaning of variables in our code. This chapter moves on to present the
 details behind Python’s scopes—the places where
 variables are defined and looked up. Like module files, scopes help prevent
 name clashes across your program’s code: names defined in one program unit
 don’t interfere with names in another.
As we’ll see, the place where a name is assigned in our code is
 crucial to determining what the name means. We’ll also find that scope usage
 can have a major impact on program maintenance effort; overuse of
 globals, for example, is a generally bad thing. On the
 plus side, we’ll learn that scopes can provide a way to retain
 state information between function calls, and offer an
 alternative to classes in some roles.
Python Scope Basics
Now that you’re ready to start writing your own functions, we need to get more
 formal about what names mean in Python. When you use a name in a program,
 Python creates, changes, or looks up the name in what is known as a namespace—a place where names
 live. When we talk about the search for a name’s value in relation to
 code, the term scope refers to a namespace: that is,
 the location of a name’s assignment in your source code determines the
 scope of the name’s visibility to your code.
Just about everything related to names, including scope classification, happens at assignment
 time in Python. As we’ve seen, names in Python spring into existence when
 they are first assigned values, and they must be assigned before they are
 used. Because names are not declared ahead of time, Python uses the
 location of the assignment of a name to associate it with (i.e.,
 bind it to) a particular namespace. In other words,
 the place where you assign a name in your source code determines the
 namespace it will live in, and hence its scope of
 visibility.
Besides packaging code for reuse, functions add an extra namespace
 layer to your programs to minimize the potential for collisions among
 variables of the same name—by default, all names assigned inside
 a function are associated with that function’s namespace, and no
 other. This rule means that:
	Names assigned inside a def
 can only be seen by the code within that def. You cannot even refer to such names
 from outside the function.

	Names assigned inside a def
 do not clash with variables outside the def, even if the same names are used
 elsewhere. A name X assigned
 outside a given def (i.e., in a
 different def or at the top level
 of a module file) is a completely different variable from a name
 X assigned inside that def.

In all cases, the scope of a variable (where it can be used) is
 always determined by where it is assigned in your source code and has
 nothing to do with which functions call which. In fact, as we’ll learn in
 this chapter, variables may be assigned in three different places,
 corresponding to three different scopes:
	If a variable is assigned inside a def, it is local to
 that function.

	If a variable is assigned in an enclosing def, it is nonlocal to
 nested functions.

	If a variable is assigned outside all defs, it is global to
 the entire file.

We call this lexical scoping because variable scopes are determined entirely by the
 locations of the variables in the source code of your program files, not
 by function calls.
For example, in the following module file, the X = 99 assignment creates a
 global variable named X (visible everywhere in this file), but the
 X = 88 assignment creates a
 local variable X
 (visible only within the def
 statement):
X = 99 # Global (module) scope X

def func():
 X = 88 # Local (function) scope X: a different variable
Even though both variables are named X, their scopes make them different. The net
 effect is that function scopes help to avoid name clashes in your programs
 and help to make functions more self-contained program units—their code
 need not be concerned with names used elsewhere.
Scope Details
Before we started writing functions, all the code we wrote was at
 the top level of a module (i.e., not nested in a def), so the names we used either lived in the
 module itself or were built-ins predefined by Python (e.g., open). Technically, the interactive prompt is
 a module named __main__ that prints
 results and doesn’t save its code; in all other ways, though, it’s like
 the top level of a module file.
Functions, though, provide nested namespaces (scopes) that
 localize the names they use, such that names inside a function won’t
 clash with those outside it (in a module or another function). Functions
 define a local scope and modules define a
 global scope with the following properties:
	The enclosing module is a global
 scope. Each module is a global scope—that is, a namespace in which
 variables created (assigned) at the top level of the module file
 live. Global variables become attributes of a module object to the
 outside world after imports but can also be used as simple variables
 within the module file itself.

	The global scope spans a single file
 only. Don’t be fooled by the word “global” here—names at
 the top level of a file are global to code within that single file
 only. There is really no notion of a single, all-encompassing global
 file-based scope in Python. Instead, names are partitioned into
 modules, and you must always import a module explicitly if you want
 to be able to use the names its file defines. When you hear “global”
 in Python, think “module.”

	Assigned names are local unless
 declared global or nonlocal. By default, all the names
 assigned inside a function definition are put in the local scope
 (the namespace associated with the function call). If you need to
 assign a name that lives at the top level of the module enclosing
 the function, you can do so by declaring it in a global statement inside the function. If you need to assign a name that lives in
 an enclosing def, as of Python
 3.X you can do so by declaring it in a nonlocal
 statement.

	All other names are enclosing function
 locals, globals, or built-ins. Names not assigned a value
 in the function definition are assumed to be
 enclosing scope locals, defined in a physically
 surrounding def statement;
 globals that live in the enclosing module’s
 namespace; or built-ins in the predefined built-ins module Python provides.

	Each call to a function creates a new
 local scope. Every time you call a function, you create a new local
 scope—that is, a namespace in which the names created inside that
 function will usually live. You can think of each def statement
 (and lambda expression) as defining a new local scope, but the local scope
 actually corresponds to a function call.
 Because Python allows functions to call themselves to loop—an
 advanced technique known as recursion and noted briefly in
 Chapter 9 when we
 explored comparisons—each active call receives its own copy of the
 function’s local variables. Recursion is useful in functions we
 write as well, to process structures whose shapes can’t be predicted
 ahead of time; we’ll explore it more fully in Chapter 19.

There are a few subtleties worth underscoring here. First, keep in
 mind that code typed at the interactive command prompt lives
 in a module, too, and follows the normal scope rules: they are global
 variables, accessible to the entire interactive session. You’ll learn
 more about modules in the next part of this book.
Also note that any type of assignment within
 a function classifies a name as local. This includes = statements, module names in import, function names in def, function argument names, and so on. If
 you assign a name in any way within a def, it will become a local to that function
 by default.
Conversely, in-place changes to objects do not classify names as locals; only actual name
 assignments do. For instance, if the name L is assigned to a list at the top level of a
 module, a statement L = X within a
 function will classify L as a local,
 but L.append(X) will not. In the
 latter case, we are changing the list object that L references, not L itself—L
 is found in the global scope as usual, and Python happily modifies it
 without requiring a global (or
 nonlocal) declaration. As usual, it
 helps to keep the distinction between names and objects clear: changing
 an object is not an assignment to a name.

Name Resolution: The LEGB Rule
If the prior section sounds confusing, it really boils down to three simple
 rules. Within a def statement:
	Name assignments create or change local
 names by default.

	Name references search at most four
 scopes: local, then enclosing functions (if any), then global, then
 built-in.

	Names declared in global
 and nonlocal statements map
 assigned names to enclosing module and function scopes,
 respectively.

In other words, all names assigned inside a function def statement (or a lambda, an expression we’ll meet later) are
 locals by default. Functions can freely use names assigned in
 syntactically enclosing functions and the global scope, but they must
 declare such nonlocals and globals in order to change them.
Python’s name-resolution scheme is sometimes called the LEGB rule, after the scope
 names:
	When you use an unqualified name inside a function, Python
 searches up to four scopes—the local (L) scope,
 then the local scopes of any enclosing (E)
 defs and lambdas, then the global (G) scope, and then
 the built-in (B) scope—and stops at the first
 place the name is found. If the name is not found during this
 search, Python reports an error.

	When you assign a name in a function (instead of just
 referring to it in an expression), Python always creates or changes
 the name in the local scope, unless it’s declared to be global or
 nonlocal in that function.

	When you assign a name outside any function (i.e., at the top
 level of a module file, or at the interactive prompt), the local
 scope is the same as the global scope—the module’s namespace.

Because names must be assigned before they can be used (as we
 learned in Chapter 6), there are
 no automatic components in this model: assignments always determine name
 scopes unambiguously. Figure 17-1 illustrates
 Python’s four scopes. Note that the second scope lookup layer,
 E—the scopes of enclosing defs or lambdas—can technically correspond to more
 than one lookup level. This case only comes into play when you nest
 functions within functions, and is enhanced by the nonlocal statement in 3.X.1
Figure 17-1. The LEGB scope lookup rule. When a variable is referenced,
 Python searches for it in this order: in the local scope, in any
 enclosing functions’ local scopes, in the global scope, and finally in
 the built-in scope. The first occurrence wins. The place in your code
 where a variable is assigned usually determines its scope. In Python
 3.X, nonlocal declarations can also force names to be mapped to
 enclosing function scopes, whether assigned or not.

Also keep in mind that these rules apply only to simple
 variable names (e.g., spam). In Parts V and VI, we’ll see that
 qualified attribute names (e.g.,
 object.spam) live in particular objects and follow a
 completely different set of lookup rules than those covered here.
 References to attribute names following periods (.) search one or more
 objects, not scopes, and in fact may invoke
 something called inheritance in Python’s OOP model;
 more on this in Part VI of this book.
Other Python scopes: Preview
Though obscure at this point in the book, there are technically
 three more scopes in Python—temporary loop variables in some
 comprehensions, exception reference variables in some try handlers, and local scopes in class statements.
 The first two of these are special cases that rarely impact real code,
 and the third falls under the LEGB umbrella rule.
Most statement blocks and other constructs do not localize the
 names used within them, with the following version-specific exceptions
 (whose variables are not available to, but also will not clash with,
 surrounding code, and which involve topics covered in full
 later):
	Comprehension variables—the variable
 X used to refer to the current iteration item in a comprehension
 expression such as [X for X in
 I]. Because they might clash with other names and
 reflect internal state in generators, in 3.X, such variables are
 local to the expression itself in all comprehension forms:
 generator, list, set, and dictionary. In 2.X, they are local to
 generator expressions and set and dictionary comprehensions, but
 not to list comprehensions that map their names to the scope
 outside the expression. By contrast, for loop statements never localize their
 variables to the statement block in any Python. See Chapter 20 for more details and
 examples.

	Exception variables—the variable
 X used to reference the raised exception in a try statement handler clause such as
 except E as X. Because they
 might defer garbage collection’s memory recovery, in 3.X, such
 variables are local to that except block, and in fact are removed
 when the block is exited (even if you’ve used it earlier in your
 code!). In 2.X, these variables live on after the try statement. See Chapter 34 for additional
 information.

These contexts augment the LEGB rule, rather than modifying it.
 Variables assigned in a comprehension, for example, are simply bound
 to a further nested and special-case scope; other names referenced
 within these expressions follow the usual LEGB lookup rules.
It’s also worth noting that the class statement we’ll meet in Part VI creates a new local
 scope too for the names assigned inside the top level of its block. As
 for def, names assigned inside a
 class don’t clash with names
 elsewhere, and follow the LEGB lookup rule, where the class block is the “L” level. Like modules
 and imports, these names also morph into class object attributes after
 the class statements ends.
Unlike functions, though, class names are not created per call: class
 object calls generate instances, which inherit
 names assigned in the class and
 record per-object state as attributes. As we’ll also learn in Chapter 29, although the LEGB rule is used to
 resolve names used in both the top level of a class itself as well as
 the top level of method functions nested within it, classes themselves
 are skipped by scope lookups—their names must be
 fetched as object attributes. Because Python searches enclosing
 functions for referenced names, but not enclosing classes, the LEGB
 rule still applies to OOP code.

Scope Example
Let’s step through a larger example that demonstrates scope ideas. Suppose we
 wrote the following code in a module file:
Global scope
X = 99 # X and func assigned in module: global

def func(Y): # Y and Z assigned in function: locals
 # Local scope
 Z = X + Y # X is a global
 return Z

func(1) # func in module: result=100
This module and the function it contains use a number of names to
 do their business. Using Python’s scope rules, we can classify the names
 as follows:
	Global names: X, func
	X is global because it’s
 assigned at the top level of the module file; it can be referenced
 inside the function as a simple unqualified variable without being
 declared global. func is global
 for the same reason; the def
 statement assigns a function object to the name func at the top level of the
 module.

	Local names: Y, Z
	Y and Z are local to the function (and exist
 only while the function runs) because they are both assigned
 values in the function definition: Z by virtue of the = statement, and Y because arguments are always passed by
 assignment.

The underlying rationale for this name-segregation scheme is that
 local variables serve as temporary names that you
 need only while a function is running. For instance, in the preceding
 example, the argument Y and the
 addition result Z exist only inside
 the function; these names don’t interfere with the enclosing module’s
 namespace (or any other function, for that matter). In fact, local
 variables are removed from memory when the function call exits, and
 objects they reference may be garbage-collected if
 not referenced elsewhere. This is an automatic, internal step, but it
 helps minimize memory requirements.
The local/global distinction also makes functions easier to
 understand, as most of the names a function uses appear in the function
 itself, not at some arbitrary place in a module. Also, because you can
 be sure that local names will not be changed by some remote function in
 your program, they tend to make programs easier to debug and modify.
 Functions are self-contained units of software.

The Built-in Scope
We’ve been talking about the built-in scope in the abstract, but it’s a bit simpler
 than you may think. Really, the built-in scope is just a built-in module
 called builtins, but
 you have to import builtins to query
 built-ins because the name builtins
 is not itself built in...
No, I’m serious! The built-in scope is implemented as a standard
 library module named builtins in 3.X,
 but that name itself is not placed in the built-in scope, so you have to
 import it in order to inspect it. Once you do, you can run a dir call to see which names are predefined. In
 Python 3.3 (see ahead for 2.X usage):
>>> import builtins
>>> dir(builtins)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
...many more names omitted...
'ord', 'pow', 'print', 'property', 'quit', 'range', 'repr', 'reversed',
'round', 'set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum',
'super', 'tuple', 'type', 'vars', 'zip']
The names in this list constitute the built-in scope in Python; roughly the first half are
 built-in exceptions, and the second half are built-in functions. Also in
 this list are the special names None,
 True, and False, though they are treated as reserved
 words in 3.X. Because Python automatically searches this module last in
 its LEGB lookup, you get all the names in this list “for free”—that is,
 you can use them without importing any modules. Thus, there are really
 two ways to refer to a built-in function—by taking advantage of the LEGB
 rule, or by manually importing the builtins module:
>>> zip # The normal way
<class 'zip'>

>>> import builtins # The hard way: for customizations
>>> builtins.zip
<class 'zip'>

>>> zip is builtins.zip # Same object, different lookups
True
The second of these approaches is sometimes useful in advanced
 ways we’ll meet in this chapter’s sidebars.
Redefining built-in names: For better or worse
The careful reader might also notice that because the LEGB
 lookup procedure takes the first occurrence of a
 name that it finds, names in the local scope may override variables of
 the same name in both the global and built-in scopes, and global names
 may override built-ins. A function can, for instance, create a local
 variable called open by assigning
 to it:
def hider():
 open = 'spam' # Local variable, hides built-in here
 ...
 open('data.txt') # Error: this no longer opens a file in this scope!
However, this will hide the built-in function called open that lives in the built-in (outer)
 scope, such that the name open will
 no longer work within the function to open files—it’s now a string,
 not the opener function. This isn’t a problem if you don’t need to
 open files in this function, but triggers an error if you attempt to
 open through this name.
This can even occur more simply at the interactive prompt, which
 works as a global, module scope:
>>> open = 99 # Assign in global scope, hides built-in here too
Now, there is nothing inherently wrong with
 using a built-in name for variables of your own, as long as you don’t
 need the original built-in version. After all, if these were truly off
 limits, we would need to memorize the entire built-in names list and
 treat all its names as reserved. With over 140 names in this module in
 3.3, that would be far too restrictive and daunting:
>>> len(dir(builtins)), len([x for x in dir(builtins) if not x.startswith('__')])
(148, 142)
In fact, there are times in advanced programming where you may
 really want to replace a built-in name by
 redefining it in your code—to define a custom open that verifies access attempts, for
 instance (see this chapter’s sidebar “Breaking the Universe in Python 2.X” for more on this
 thread).
Still, redefining a built-in name is often a bug, and a nasty
 one at that, because Python will not issue a warning message about it.
 Tools like PyChecker (see the Web) can warn you
 of such mistakes, but knowledge may be your best defense on this
 point: don’t redefine a built-in name you need. If you accidentally
 reassign a built-in name at the interactive prompt this way, you can
 either restart your session or run a del name
 statement to remove the redefinition from your scope, thereby
 restoring the original in the built-in scope.
Note that functions can similarly hide global variables of the
 same name with locals, but this is more broadly useful, and in fact is
 much of the point of local scopes—because they minimize the potential
 for name clashes, your functions are self-contained namespace
 scopes:
X = 88 # Global X

def func():
 X = 99 # Local X: hides global, but we want this here

func()
print(X) # Prints 88: unchanged
Here, the assignment within the function creates a local
 X that is a completely different
 variable from the global X in the
 module outside the function. As one consequence, though, there is no
 way to change a name outside a function without
 adding a global (or nonlocal) declaration to the def, as described in the next section.
Note
Version skew note: Actually, the tongue
 twisting gets a bit worse. The Python 3.X builtins module used here is named
 __builtin__ in Python 2.X. In
 addition, the name __builtins__
 (with the s) is preset in most global scopes,
 including the interactive session, to reference the module known as
 builtins in 3.X and __builtin__ in 2.X, so you can often use
 __builtins__ without an import
 but cannot run an import on that name itself—it’s a preset variable,
 not a module’s name.
That is, in 3.X builtins is
 __builtins__ is True
 after you import builtins, and in
 2.X __builtin__ is __builtins__
 is True after you import __builtin__. The upshot is that we can
 usually inspect the built-in scope by simply running dir(__builtins__) with no import in both
 3.X and 2.X, but we are advised to use builtins for real work and customization
 in 3.X, and __builtin__ for the
 same in 2.X. Who said documenting this stuff was easy?

Breaking the Universe in Python 2.X
Here’s another thing you can do in Python that you probably shouldn’t—because the names
 True and False in 2.X are just variables in the
 built-in scope and are not reserved, it’s possible to reassign them
 with a statement like True =
 False. Don’t worry: you won’t actually break the logical
 consistency of the universe in so doing! This statement merely
 redefines the word True for the
 single scope in which it appears to return False. All other scopes still find the
 originals in the built-in scope.
For more fun, though, in Python 2.X you could say __builtin__.True = False, to reset
 True to False for the entire Python process. This
 works because there is only one built-in scope module in a program,
 shared by all its clients. Alas, this type of assignment has been
 disallowed in Python 3.X, because True and False are treated as actual reserved
 words, just like None. In 2.X,
 though, it sends IDLE into a strange panic state that resets the
 user code process (in other words, don’t try this at home,
 kids).
This technique can be useful, however, both to illustrate the
 underlying namespace model, and for tool writers who must change
 built-ins such as open to
 customized functions. By reassigning a function’s name in the
 built-in scope, you reset it to your customization for every module
 in the process. If you do, you’ll probably also need to remember the
 original version to call from your customization—in fact, we’ll see
 one way to achieve this for a custom open in the sidebar “Why You Will Care: Customizing open” after we’ve
 had a chance to explore nested scope closures and state retention
 options.
Also, note again that third-party tools such as PyChecker, and
 others such as PyLint, will warn about common programming mistakes,
 including accidental assignment to built-in names (this is usually
 known as “shadowing” a built-in in such tools). It’s not a bad idea
 to run your first few Python programs through tools like these to
 see what they point out.

The global Statement
The global statement and its nonlocal 3.X
 cousin are the only things that are remotely like declaration statements
 in Python. They are not type or size declarations, though; they are
 namespace declarations. The global statement tells Python that a function
 plans to change one or more global names—that is, names that live in the
 enclosing module’s scope (namespace).
We’ve talked about global in
 passing already. Here’s a summary:
	Global names are variables assigned at the top level of the
 enclosing module file.

	Global names must be declared only if they are assigned within a
 function.

	Global names may be referenced within a function without being
 declared.

In other words, global allows us
 to change names that live outside a def at the top level of a module file. As we’ll
 see later, the nonlocal statement is
 almost identical but applies to names in the enclosing def’s local scope, rather than names in the
 enclosing module.
The global statement consists of
 the keyword global, followed by one or
 more names separated by commas. All the listed names will be mapped to the
 enclosing module’s scope when assigned or referenced within the function
 body. For instance:
X = 88 # Global X

def func():
 global X
 X = 99 # Global X: outside def

func()
print(X) # Prints 99
We’ve added a global declaration
 to the example here, such that the X
 inside the def now refers to the
 X outside the def; they are the same variable this time, so
 changing X inside the function changes
 the X outside it. Here is a slightly
 more involved example of global at
 work:
y, z = 1, 2 # Global variables in module
def all_global():
 global x # Declare globals assigned
 x = y + z # No need to declare y, z: LEGB rule
Here, x, y, and z are
 all globals inside the function all_global. y
 and z are global because they aren’t
 assigned in the function; x is global
 because it was listed in a global
 statement to map it to the module’s scope explicitly. Without the global here, x would be considered local by virtue of the
 assignment.
Notice that y and z are not declared global; Python’s LEGB lookup
 rule finds them in the module automatically. Also, notice that x does not even exist in the enclosing module
 before the function runs; in this case, the first assignment in the
 function creates x in the
 module.
Program Design: Minimize Global Variables
Functions in general, and global variables in particular, raise some larger
 design questions. How should our functions communicate? Although some of
 these will become more apparent when you begin writing larger functions
 of your own, a few guidelines up front might spare you from problems
 later. In general, functions should rely on arguments and return values
 instead of globals, but I need to explain why.
By default, names assigned in functions are locals, so if you want
 to change names outside functions you have to write extra code (e.g.,
 global statements). This is
 deliberate—as is common in Python, you have to say more to do the
 potentially “wrong” thing. Although there are times when globals are
 useful, variables assigned in a def
 are local by default because that is normally the best policy. Changing
 globals can lead to well-known software engineering problems: because
 the variables’ values are dependent on the order of calls to arbitrarily
 distant functions, programs can become difficult to debug, or to
 understand at all.
Consider this module file, for example, which is presumably
 imported and used elsewhere:
X = 99
def func1():
 global X
 X = 88

def func2():
 global X
 X = 77
Now, imagine that it is your job to modify or reuse this code.
 What will the value of X be here?
 Really, that question has no meaning unless it’s qualified with a point
 of reference in time—the value of X is timing-dependent, as it depends on which
 function was called last (something we can’t tell from this file
 alone).
The net effect is that to understand this code, you have to trace
 the flow of control through the entire program.
 And, if you need to reuse or modify the code, you have to keep the
 entire program in your head all at once. In this case, you can’t really
 use one of these functions without bringing along the other. They are
 dependent on—that is, coupled with—the global
 variable. This is the problem with globals: they generally make code
 more difficult to understand and reuse than code consisting of
 self-contained functions that rely on locals.
On the other hand, short of using tools like nested scope closures
 or object-oriented programming with classes, global variables are
 probably the most straightforward way in Python to retain shared
 state information—information that a function needs
 to remember for use the next time it is called. Local variables
 disappear when the function returns, but globals do not. As we’ll see
 later, other techniques can achieve this, too, and allow for multiple
 copies of the retained information, but they are generally more complex
 than pushing values out to the global scope for retention in simple use
 cases where this applies.
Moreover, some programs designate a single module to collect
 globals; as long as this is expected, it is not as harmful. Programs
 that use multithreading to do parallel processing in Python also
 commonly depend on global variables—they become shared memory between
 functions running in parallel threads, and so act as a communication device.2
For now, though, especially if you are relatively new to
 programming, avoid the temptation to use globals whenever you can—they
 tend to make programs difficult to understand and reuse, and won’t work
 for cases where one copy of saved data is not enough. Try to communicate
 with passed-in arguments and return values instead. Six months from now,
 both you and your coworkers may be happy you did.

Program Design: Minimize Cross-File Changes
Here’s another scope-related design issue: although we can change
 variables in another file directly, we usually shouldn’t. Module files
 were introduced in Chapter 3 and are
 covered in more depth in the next part of this book. To illustrate their
 relationship to scopes, consider these two module files:
first.py
X = 99 # This code doesn't know about second.py

second.py
import first
print(first.X) # OK: references a name in another file
first.X = 88 # But changing it can be too subtle and implicit
The first defines a variable X,
 which the second prints and then changes by assignment. Notice that we
 must import the first module into the second file to get to its variable
 at all—as we’ve learned, each module is a self-contained namespace
 (package of variables), and we must import one module to see inside it
 from another. That’s the main point about modules: by segregating
 variables on a per-file basis, they avoid name collisions across files,
 in much the same way that local variables avoid name clashes across
 functions.
Really, though, in terms of this chapter’s topic, the global scope
 of a module file becomes the attribute namespace of
 the module object once it is imported—importers automatically have
 access to all of the file’s global variables, because a file’s global
 scope morphs into an object’s attribute namespace when it is
 imported.
After importing the first module, the second module prints its
 variable and then assigns it a new value. Referencing the module’s
 variable to print it is fine—this is how modules are linked together
 into a larger system normally. The problem with the assignment to
 first.X, however, is that it is far
 too implicit: whoever’s charged with maintaining or reusing the first
 module probably has no clue that some arbitrarily far-removed module on
 the import chain can change X out
 from under him or her at runtime. In fact, the second module may be in a
 completely different directory, and so difficult to notice at
 all.
Although such cross-file variable changes are always possible in
 Python, they are usually much more subtle than you will want. Again,
 this sets up too strong a coupling between the two
 files—because they are both dependent on the value of the variable
 X, it’s difficult to understand or
 reuse one file without the other. Such implicit cross-file dependencies
 can lead to inflexible code at best, and outright bugs at worst.
Here again, the best prescription is generally to not do this—the
 best way to communicate across file boundaries is to call functions,
 passing in arguments and getting back return values. In this specific
 case, we would probably be better off coding an accessor function to manage the
 change:
first.py
X = 99

def setX(new): # Accessors make external changes explicit
 global X # And can manage access in a single place
 X = new

second.py
import first
first.setX(88) # Call the function instead of changing directly
This requires more code and may seem like a trivial change, but it
 makes a huge difference in terms of readability and maintainability—when
 a person reading the first module by itself sees a function, that person
 will know that it is a point of interface and will
 expect the change to the X. In other
 words, it removes the element of surprise that is rarely a good thing in
 software projects. Although we cannot prevent cross-file changes from
 happening, common sense dictates that they should be minimized unless
 widely accepted across the program.
Note
When we meet classes in Part VI,
 we’ll see similar techniques for coding attribute accessors. Unlike
 modules, classes can also intercept attribute fetches automatically
 with operator overloading, even when accessors aren’t used by their
 clients.

Other Ways to Access Globals
Interestingly, because global-scope variables morph into the attributes
 of a loaded module object, we can emulate the global statement by importing the enclosing
 module and assigning to its attributes, as in the following example
 module file. Code in this file imports the enclosing module, first by
 name, and then by indexing the sys.modules loaded
 modules table (more on this table in Chapter 22 and Chapter 25):
thismod.py

var = 99 # Global variable == module attribute

def local():
 var = 0 # Change local var

def glob1():
 global var # Declare global (normal)
 var += 1 # Change global var

def glob2():
 var = 0 # Change local var
 import thismod # Import myself
 thismod.var += 1 # Change global var

def glob3():
 var = 0 # Change local var
 import sys # Import system table
 glob = sys.modules['thismod'] # Get module object (or use __name__)
 glob.var += 1 # Change global var

def test():
 print(var)
 local(); glob1(); glob2(); glob3()
 print(var)
When run, this adds 3 to the global variable (only the first
 function does not impact it):
>>> import thismod
>>> thismod.test()
99
102
>>> thismod.var
102
This works, and it illustrates the equivalence of globals to
 module attributes, but it’s much more work than using the global statement to make your intentions
 explicit.
As we’ve seen, global allows us
 to change names in a module outside a function. It has a close relative
 named nonlocal that can be used to
 change names in enclosing functions, too—but to understand how that can
 be useful, we first need to explore enclosing functions in
 general.

Scopes and Nested Functions
So far, I’ve omitted one part of Python’s scope rules on purpose, because it’s
 relatively uncommon to encounter it in practice. However, it’s time to
 take a deeper look at the letter E in the LEGB lookup
 rule. The E layer was added in Python 2.2; it takes
 the form of the local scopes of any and all enclosing function’s local
 scopes. Enclosing scopes are sometimes also called statically
 nested scopes. Really, the nesting is a lexical one—nested
 scopes correspond to physically and syntactically nested code structures
 in your program’s source code text.
Nested Scope Details
With the addition of nested function scopes, variable lookup rules
 become slightly more complex. Within a function:
	A reference (X) looks for the name X first in the
 current local scope (function); then in the local scopes of any
 lexically enclosing functions in your source code, from inner to
 outer; then in the current global scope (the module file); and
 finally in the built-in scope (the module builtins). global declarations make the search begin
 in the global (module file) scope instead.

	An assignment (X = value) creates or changes the name X
 in the current local scope, by default. If X is declared global
 within the function, the assignment creates or changes the name
 X in the enclosing module’s scope
 instead. If, on the other hand, X
 is declared nonlocal within the function in 3.X
 (only), the assignment changes the name X in the closest enclosing function’s
 local scope.

Notice that the global
 declaration still maps variables to the enclosing module. When nested
 functions are present, variables in enclosing functions may be
 referenced, but they require 3.X nonlocal declarations to be changed.

Nested Scope Examples
To clarify the prior section’s points, let’s illustrate with some
 real code. Here is what an enclosing function scope looks like (type
 this into a script file or at the interactive prompt to run it
 live):
X = 99 # Global scope name: not used

def f1():
 X = 88 # Enclosing def local
 def f2():
 print(X) # Reference made in nested def
 f2()

f1() # Prints 88: enclosing def local
First off, this is legal Python code: the def is simply an executable statement, which
 can appear anywhere any other statement can—including nested in another
 def. Here, the nested def runs while a call to the function f1 is running; it generates a function and
 assigns it to the name f2, a local
 variable within f1’s local scope. In
 a sense, f2 is a temporary function
 that lives only during the execution of (and is visible only to code in)
 the enclosing f1.
But notice what happens inside f2: when it prints the variable X, it refers to the X that lives in the enclosing f1 function’s local scope. Because functions
 can access names in all physically enclosing def statements, the X in f2 is
 automatically mapped to the X in
 f1, by the LEGB lookup rule.
This enclosing scope lookup works even if the enclosing function
 has already returned. For example, the following code defines a function
 that makes and returns another function, and
 represents a more common usage pattern:
def f1():
 X = 88
 def f2():
 print(X) # Remembers X in enclosing def scope
 return f2 # Return f2 but don't call it

action = f1() # Make, return function
action() # Call it now: prints 88
In this code, the call to action is really running the function we named
 f2 when f1 ran. This works because functions are
 objects in Python like everything else, and can be passed back as return
 values from other functions. Most importantly, f2 remembers the enclosing scope’s X in f1,
 even though f1 is no longer
 active—which leads us to the next topic.

Factory Functions: Closures
Depending on whom you ask, this sort of behavior is also sometimes called a
 closure or a factory
 function—the former describing a functional programming
 technique, and the latter denoting a design pattern. Whatever
 the label, the function object in question remembers values in enclosing
 scopes regardless of whether those scopes are still present in memory.
 In effect, they have attached packets of memory (a.k.a. state retention),
 which are local to each copy of the nested function created, and often
 provide a simple alternative to classes in this role.
A simple function factory
Factory functions (a.k.a. closures) are sometimes used by
 programs that need to generate event handlers on the fly in response
 to conditions at runtime. For instance, imagine a GUI that must define
 actions according to user inputs that cannot be anticipated when the
 GUI is built. In such cases, we need a function that creates and
 returns another function, with information that may vary per function
 made.
To illustrate this in simple terms, consider the following
 function, typed at the interactive prompt (and shown here without the
 “...” continuation-line prompts, per the presentation note
 ahead):
>>> def maker(N):
 def action(X): # Make and return action
 return X ** N # action retains N from enclosing scope
 return action
This defines an outer function that simply generates and returns
 a nested function, without calling it—maker makes action, but simply returns action without running it. If we call the
 outer function:
>>> f = maker(2) # Pass 2 to argument N
>>> f
<function maker.<locals>.action at 0x0000000002A4A158>
what we get back is a reference to the generated nested
 function—the one created when the nested def runs. If we now call what we got back
 from the outer function:
>>> f(3) # Pass 3 to X, N remembers 2: 3 ** 2
9
>>> f(4) # 4 ** 2
16
we invoke the nested function—the one called action within maker. In other words, we’re calling the
 nested function that maker created
 and passed back.
Perhaps the most unusual part of this, though, is that the
 nested function remembers integer 2, the value of the variable N in maker, even though maker has returned and exited by the time we
 call action. In effect, N from the enclosing local scope is retained
 as state information attached to the generated action, which is why we get back its
 argument squared when it is later called.
Just as important, if we now call the outer function again, we
 get back a new nested function with
 different state information attached. That is, we
 get the argument cubed instead of squared when calling the new
 function, but the original still squares as before:
>>> g = maker(3) # g remembers 3, f remembers 2
>>> g(4) # 4 ** 3
64
>>> f(4) # 4 ** 2
16
This works because each call to a factory function like this
 gets its own set of state information. In our
 case, the function we assign to name g remembers 3, and f
 remembers 2, because each has its
 own state information retained by the variable N in maker.
This is a somewhat advanced technique that you may not see very
 often in most code, and may be popular among programmers with
 backgrounds in functional programming languages. On the other hand,
 enclosing scopes are often employed by the lambda function-creation expressions we’ll
 expand on later in this chapter—because they are expressions, they are
 almost always nested within a def.
 For example, a lambda would serve
 in place of a def in our
 example:
>>> def maker(N):
 return lambda X: X ** N # lambda functions retain state too

>>> h = maker(3)
>>> h(4) # 4 ** 3 again
64
For a more tangible example of closures at work, see the
 upcoming sidebar “Why You Will Care: Customizing open”. It uses similar
 techniques to store information for later use in an enclosing
 scope.
Note
Presentation note: In this chapter, I’ve
 started listing interactive examples without the “...”
 continuation-line prompts that may or may not
 appear in your interface (they do at the shell, but not in IDLE).
 This convention will be followed from this point on to make larger
 code examples a bit easier to cut and paste from an ebook or other.
 I’m assuming that by now you understand indentation rules and have
 had your fair share of typing Python code, and some functions and
 classes ahead may be too large for rote input.
I’m also listing more and more code alone or in
 files, and switching between these and
 interactive input arbitrarily; when you see a “>>>” prompt,
 the code is typed interactively, and can generally be cut and pasted
 into your Python shell if you omit the “>>>” itself. If
 this fails, you can still run by pasting line by line, or editing in
 a file.

Closures versus classes, round 1
To some, classes, described in full in Part VI of this book,
 may seem better at state retention like this, because they make their
 memory more explicit with attribute assignments. Classes also directly
 support additional tools that closure functions do not, such as
 customization by inheritance and operator overloading, and more
 naturally implement multiple behaviors in the form of methods. Because
 of such distinctions, classes may be better at implementing more
 complete objects.
Still, closure functions often provide a lighter-weight and
 viable alternative when retaining state is the only goal. They provide
 for per-call localized storage for data required by a single nested
 function. This is especially true when we add the 3.X nonlocal statement described ahead to allow
 enclosing scope state changes (in 2.X, enclosing scopes are read-only,
 and so have more limited uses).
From a broader perspective, there are multiple ways for Python
 functions to retain state between calls. Although the values of normal
 local variables go away when a function returns, values can be
 retained from call to call in global variables; in class instance
 attributes; in the enclosing scope references we’ve met here; and in
 argument defaults and function attributes. Some might include mutable
 default arguments to this list too (though others may wish they
 didn’t).
We’ll preview class-based alternatives and meet function
 attributes later in this chapter, and get the full story on arguments
 and defaults in Chapter 18. To help us judge how
 defaults compete on state retention, though, the next section gives
 enough of an introduction to get us started.
Note
Closures can also be created when a class is nested in a def: the values of the enclosing
 function’s local names are retained by references within the class,
 or one of its method functions. See Chapter 29 for more on nested classes. As
 we’ll see in later examples (e.g., Chapter 39’s
 decorators), the outer def in
 such code serves a similar role: it becomes a class factory, and
 provides state retention for the nested class.

Retaining Enclosing Scope State with Defaults
In early versions of Python (prior to 2.2), the sort of code in the prior
 section failed because nested defs
 did not do anything about scopes—a reference to a variable within
 f2 in the following would search only
 the local (f2), then global (the code
 outside f1), and then built-in
 scopes. Because it skipped the scopes of enclosing functions, an error
 would result. To work around this, programmers typically used
 default argument values to pass in and remember the
 objects in an enclosing scope:
def f1():
 x = 88
 def f2(x=x): # Remember enclosing scope X with defaults
 print(x)
 f2()

f1() # Prints 88
This coding style works in all Python releases, and you’ll still
 see this pattern in some existing Python code. In fact, it’s still
 required for loop variables, as we’ll see in a
 moment, which is why it remains worth studying today. In short, the
 syntax arg=val in a def header means that the argument arg will default to the value val if no real value is passed to arg in a call. This syntax is used here to
 explicitly assign enclosing scope state to be retained.
Specifically, in the modified f2 here, the x=x means that the argument x will default to the value of x in the enclosing scope—because the second
 x is evaluated before Python steps
 into the nested def, it still refers
 to the x in f1. In effect, the default argument remembers
 what x was in f1: the object 88.
That’s fairly complex, and it depends entirely on the timing of
 default value evaluations. In fact, the nested scope lookup rule was
 added to Python to make defaults unnecessary for this role—today, Python
 automatically remembers any values required in the enclosing scope for
 use in nested defs.
Of course, the best prescription for much code is simply to avoid
 nesting defs within defs, as it will make your programs much
 simpler—in the Pythonic view, flat is generally
 better than nested. The following is an equivalent of the prior example
 that avoids nesting altogether. Notice the forward reference in this
 code—it’s OK to call a function defined after the function that calls
 it, as long as the second def runs
 before the first function is actually called. Code inside a def is never evaluated until the function is
 actually called:
>>> def f1():
 x = 88 # Pass x along instead of nesting
 f2(x) # Forward reference OK

>>> def f2(x):
 print(x) # Flat is still often better than nested!

>>> f1()
88
If you avoid nesting this way, you can almost forget about the
 nested scopes concept in Python. On the other hand, the nested functions
 of closure (factory) functions are fairly common in modern Python code,
 as are lambda functions—which almost
 naturally appear nested in defs and
 often rely on the nested scopes layer, as the next section
 explains.
Nested scopes, defaults, and lambdas
Although they see increasing use in defs these days, you may be more likely to care about nested
 function scopes when you start coding or reading lambda expressions. We’ve met lambda briefly and won’t cover it in depth until Chapter 19, but in short, it’s an
 expression that generates a new function to be called later, much like
 a def statement. Because it’s an
 expression, though, it can be used in places that def cannot, such as within list and
 dictionary literals.
Like a def, a lambda expression also introduces a new
 local scope for the function it creates. Thanks to the enclosing
 scopes lookup layer, lambdas can
 see all the variables that live in the functions in which they are
 coded. Thus, the following code—a variation on the factory we saw
 earlier—works, but only because the nested scope rules are
 applied:
def func():
 x = 4
 action = (lambda n: x ** n) # x remembered from enclosing def
 return action

x = func()
print(x(2)) # Prints 16, 4 ** 2
Prior to the introduction of nested function scopes, programmers
 used defaults to pass values from an enclosing scope into lambdas, just as for defs. For instance, the following works on
 all Pythons:
def func():
 x = 4
 action = (lambda n, x=x: x ** n) # Pass x in manually
 return action
Because lambdas are
 expressions, they naturally (and even normally) nest inside enclosing
 defs. Hence, they were perhaps the
 biggest initial beneficiaries of the addition of enclosing function
 scopes in the lookup rules; in most cases, it is no longer necessary
 to pass values into lambdas with
 defaults.

Loop variables may require defaults, not scopes
There is one notable exception to the rule I just gave (and a reason why I’ve shown you
 the otherwise dated default argument technique we just saw): if a
 lambda or def defined within a function is nested
 inside a loop, and the nested function references an enclosing scope
 variable that is changed by that loop, all functions generated within
 the loop will have the same value—the value the referenced variable
 had in the last loop iteration. In such cases,
 you must still use defaults to save the variable’s
 current value instead.
This may seem a fairly obscure case, but it can come up in
 practice more often than you may think, especially in code that
 generates callback handler functions for a number of widgets in a
 GUI—for instance, handlers for button-clicks for all the buttons in a
 row. If these are created in a loop, you may need to be careful to
 save state with defaults, or all your buttons’ callbacks may wind up
 doing the same thing.
Here’s an illustration of this phenomenon reduced to simple
 code: the following attempts to build up a list of functions that each
 remember the current variable i
 from the enclosing scope:
>>> def makeActions():
 acts = []
 for i in range(5): # Tries to remember each i
 acts.append(lambda x: i ** x) # But all remember same last i!
 return acts

>>> acts = makeActions()
>>> acts[0]
<function makeActions.<locals>.<lambda> at 0x0000000002A4A400>
This doesn’t quite work, though—because the enclosing scope
 variable is looked up when the nested functions are later
 called, they all effectively remember the same
 value: the value the loop variable had on the
 last loop iteration. That is, when we pass a
 power argument of 2 in each of the following calls, we get back 4 to
 the power of 2 for each function in the list, because i is the same in all of them—4:
>>> acts[0](2) # All are 4 ** 2, 4=value of last i
16
>>> acts[1](2) # This should be 1 ** 2 (1)
16
>>> acts2 # This should be 2 ** 2 (4)
16
>>> acts[4](2) # Only this should be 4 ** 2 (16)
16
This is the one case where we still have to explicitly retain
 enclosing scope values with default arguments, rather than enclosing
 scope references. That is, to make this sort of code work, we must
 pass in the current value of the enclosing
 scope’s variable with a default. Because defaults are evaluated when
 the nested function is created (not when it’s
 later called), each remembers its own value for
 i:
>>> def makeActions():
 acts = []
 for i in range(5): # Use defaults instead
 acts.append(lambda x, i=i: i ** x) # Remember current i
 return acts

>>> acts = makeActions()
>>> acts[0](2) # 0 ** 2
0
>>> acts[1](2) # 1 ** 2
1
>>> acts2 # 2 ** 2
4
>>> acts[4](2) # 4 ** 2
16
This may seem an odd special case, but it reflects Python’s implementation of variable scopes, and will become more important as you start writing larger programs.
 We’ll talk more about defaults in Chapter 18 and
 lambdas in Chapter 19, so you may also want to return
 and review this section later.3

Arbitrary scope nesting
Before ending this discussion, we should note that scopes may
 nest arbitrarily, but only enclosing function def statements (not classes, described in
 Part VI) are searched when names are
 referenced:
>>> def f1():
 x = 99
 def f2():
 def f3():
 print(x) # Found in f1's local scope!
 f3()
 f2()

>>> f1()
99
Python will search the local scopes of all
 enclosing defs, from inner to
 outer, after the referencing function’s local scope and before the
 module’s global scope or built-ins. However, this sort of code is even
 less likely to pop up in practice. Again, in Python, we say
 flat is better than nested, and this still holds
 generally true even with the addition of nested scope closures. Except
 in limited contexts, your life (and the lives of your coworkers) will
 generally be better if you minimize nested function definitions.

The nonlocal Statement in 3.X
In the prior section we explored the way that nested functions can
 reference variables in an enclosing function’s scope,
 even if that function has already returned. It turns out that, in Python
 3.X (though not in 2.X), we can also change such
 enclosing scope variables, as long as we declare them in nonlocal statements. With this statement, nested
 defs can have both read and write
 access to names in enclosing functions. This makes nested scope closures
 more useful, by providing changeable state information.
The nonlocal statement is similar
 in both form and role to global,
 covered earlier. Like global, nonlocal declares that a name will be changed in
 an enclosing scope. Unlike global,
 though, nonlocal applies to a name in
 an enclosing function’s scope, not the global module scope outside all
 defs. Also unlike global, nonlocal names must already exist in the
 enclosing function’s scope when declared—they can exist only in enclosing
 functions and cannot be created by a first assignment in a nested def.
In other words, nonlocal both
 allows assignment to names in enclosing function scopes and limits scope
 lookups for such names to enclosing defs. The net effect is a more direct and
 reliable implementation of changeable state information, for contexts that
 do not desire or need classes with attributes, inheritance, and multiple
 behaviors.
nonlocal Basics
Python 3.X introduces a new nonlocal statement, which has meaning only
 inside a function:
def func():
 nonlocal name1, name2, ... # OK here

>>> nonlocal X
SyntaxError: nonlocal declaration not allowed at module level
This statement allows a nested function to change one or more
 names defined in a syntactically enclosing function’s scope. In Python
 2.X, when one function def is nested
 in another, the nested function can reference any of the names defined
 by assignment in the enclosing def’s
 scope, but it cannot change them. In 3.X, declaring the enclosing
 scopes’ names in a nonlocal statement
 enables nested functions to assign and thus change such names as
 well.
This provides a way for enclosing functions to provide
 writeable state information, remembered when the
 nested function is later called. Allowing the state to change makes it
 more useful to the nested function (imagine a counter in the enclosing
 scope, for instance). In 2.X, programmers usually achieve similar goals
 by using classes or other schemes. Because nested functions have become
 a more common coding pattern for state retention, though, nonlocal makes it more generally
 applicable.
Besides allowing names in enclosing defs to be changed, the nonlocal statement also forces the issue for
 references—much like the global
 statement, nonlocal causes searches
 for the names listed in the statement to begin in the enclosing defs’ scopes, not in the local scope of the
 declaring function. That is, nonlocal
 also means “skip my local scope entirely.”
In fact, the names listed in a nonlocal must have been
 previously defined in an enclosing def when the nonlocal is reached, or an error is raised.
 The net effect is much like global:
 global means the names reside in the
 enclosing module, and nonlocal means
 they reside in an enclosing def.
 nonlocal is even more strict,
 though—scope search is restricted to only enclosing
 defs. That is, nonlocal names can
 appear only in enclosing defs, not in
 the module’s global scope or built-in scopes outside the defs.
The addition of nonlocal does
 not alter name reference scope rules in general; they still work as
 before, per the “LEGB” rule described earlier. The nonlocal statement mostly serves to allow
 names in enclosing scopes to be changed rather than just referenced.
 However, both global and nonlocal statements do tighten up and even
 restrict the lookup rules somewhat, when coded in a function:
	global makes scope
 lookup begin in the enclosing module’s scope and
 allows names there to be assigned. Scope lookup continues on to the
 built-in scope if the name does not exist in the module, but
 assignments to global names always create or change them in the
 module’s scope.

	nonlocal restricts scope
 lookup to just enclosing defs,
 requires that the names already exist there, and allows them to be
 assigned. Scope lookup does not continue on to the global or
 built-in scopes.

In Python 2.X, references to enclosing def scope names are allowed, but not
 assignment. However, you can still use classes with explicit attributes
 to achieve the same changeable state information effect as nonlocals
 (and you may be better off doing so in some contexts); globals and
 function attributes can sometimes accomplish similar goals as well. More
 on this in a moment; first, let’s turn to some working code to make this
 more concrete.

nonlocal in Action
On to some examples, all run in 3.X. References to enclosing
 def scopes work in 3.X as they do in
 2.X—in the following, tester builds
 and returns the function nested, to
 be called later, and the state
 reference in nested maps the local
 scope of tester using the normal
 scope lookup rules:
C:\code> c:\python33\python

>>> def tester(start):
 state = start # Referencing nonlocals works normally
 def nested(label):
 print(label, state) # Remembers state in enclosing scope
 return nested

>>> F = tester(0)
>>> F('spam')
spam 0
>>> F('ham')
ham 0
Changing a name in an enclosing def’s scope is not allowed by default, though;
 this is the normal case in 2.X as well:
>>> def tester(start):
 state = start
 def nested(label):
 print(label, state)
 state += 1 # Cannot change by default (never in 2.X)
 return nested

>>> F = tester(0)
>>> F('spam')
UnboundLocalError: local variable 'state' referenced before assignment
Using nonlocal for changes
Now, under 3.X, if we declare state in the tester scope as nonlocal within nested, we get to change it inside the
 nested function, too. This works even though tester has returned and exited by the time
 we call the returned nested
 function through the name F:
>>> def tester(start):
 state = start # Each call gets its own state
 def nested(label):
 nonlocal state # Remembers state in enclosing scope
 print(label, state)
 state += 1 # Allowed to change it if nonlocal
 return nested

>>> F = tester(0)
>>> F('spam') # Increments state on each call
spam 0
>>> F('ham')
ham 1
>>> F('eggs')
eggs 2
As usual with enclosing scope references, we can call the
 tester factory (closure) function
 multiple times to get multiple copies of its state in memory. The
 state object in the enclosing scope
 is essentially attached to the nested function object returned; each call
 makes a new, distinct state object,
 such that updating one function’s state won’t impact the other. The
 following continues the prior listing’s interaction:
>>> G = tester(42) # Make a new tester that starts at 42
>>> G('spam')
spam 42

>>> G('eggs') # My state information updated to 43
eggs 43

>>> F('bacon') # But F's is where it left off: at 3
bacon 3 # Each call has different state information
In this sense, Python’s nonlocals are more functional than
 function locals typical in some other languages: in a closure
 function, nonlocals are per-call, multiple copy
 data.

Boundary cases
Though useful, nonlocals come with some subtleties to be aware of. First, unlike the
 global statement, nonlocal names really
 must have previously been assigned in an
 enclosing def’s scope when a
 nonlocal is evaluated, or else
 you’ll get an error—you cannot create them dynamically by assigning
 them anew in the enclosing scope. In fact, they are checked at
 function definition time before either an enclosing or nested function
 is called:
>>> def tester(start):
 def nested(label):
 nonlocal state # Nonlocals must already exist in enclosing def!
 state = 0
 print(label, state)
 return nested

SyntaxError: no binding for nonlocal 'state' found

>>> def tester(start):
 def nested(label):
 global state # Globals don't have to exist yet when declared
 state = 0 # This creates the name in the module now
 print(label, state)
 return nested

>>> F = tester(0)
>>> F('abc')
abc 0
>>> state
0
Second, nonlocal restricts
 the scope lookup to just enclosing defs; nonlocals are not looked up in the
 enclosing module’s global scope or the built-in scope outside all
 defs, even if they are already
 there:
>>> spam = 99
>>> def tester():
 def nested():
 nonlocal spam # Must be in a def, not the module!
 print('Current=', spam)
 spam += 1
 return nested

SyntaxError: no binding for nonlocal 'spam' found
These restrictions make sense once you realize that Python would
 not otherwise generally know which enclosing scope to create a
 brand-new name in. In the prior listing, should spam be assigned in tester, or the module outside? Because this
 is ambiguous, Python must resolve nonlocals at function
 creation time, not function call time.

Why nonlocal? State Retention Options
Given the extra complexity of nested functions, you might wonder what the
 fuss is about. Although it’s difficult to see in our small examples, state
 information becomes crucial in many programs. While functions can return
 results, their local variables won’t normally retain other values that
 must live on between calls. Moreover, many applications require such
 values to differ per context of use.
As mentioned earlier, there are a variety of ways to “remember”
 information across function and method calls in Python. While there are
 tradeoffs for all, nonlocal does
 improve this story for enclosing scope references—the nonlocal statement allows multiple copies of
 changeable state to be retained in memory. It
 addresses simple state-retention needs where classes may not be warranted
 and global variables do not apply, though function attributes can often
 serve similar roles more portably. Let’s review the options to see how
 they stack up.
State with nonlocal: 3.X only
As we saw in the prior section, the following code allows state to
 be retained and modified in an enclosing scope. Each call to tester creates a self-contained
 package of changeable information, whose names do
 not clash with any other part of the program:
>>> def tester(start):
 state = start # Each call gets its own state
 def nested(label):
 nonlocal state # Remembers state in enclosing scope
 print(label, state)
 state += 1 # Allowed to change it if nonlocal
 return nested

>>> F = tester(0)
>>> F('spam') # State visible within closure only
spam 0
>>> F.state
AttributeError: 'function' object has no attribute 'state'
We need to declare variables nonlocal only if they must be changed
 (other enclosing scope name references are automatically retained as
 usual), and nonlocal names are still not visible outside the enclosing
 function.
Unfortunately, this code works in Python 3.X only. If you are
 using Python 2.X, other options are available, depending on your goals.
 The next three sections present some alternatives. Some of the code in
 these sections uses tools we haven’t covered yet and is intended
 partially as preview, but we’ll keep the examples simple here so that
 you can compare and contrast along the way.

State with Globals: A Single Copy Only
One common prescription for achieving the nonlocal effect in 2.X and earlier is to
 simply move the state out to the global scope (the
 enclosing module):
>>> def tester(start):
 global state # Move it out to the module to change it
 state = start # global allows changes in module scope
 def nested(label):
 global state
 print(label, state)
 state += 1
 return nested

>>> F = tester(0)
>>> F('spam') # Each call increments shared global state
spam 0
>>> F('eggs')
eggs 1
This works in this case, but it requires global declarations in both functions and is
 prone to name collisions in the global scope (what if “state” is already
 being used?). A worse, and more subtle, problem is that it only allows
 for a single shared copy of the state information
 in the module scope—if we call tester
 again, we’ll wind up resetting the module’s state variable, such that prior calls will see
 their state overwritten:
>>> G = tester(42) # Resets state's single copy in global scope
>>> G('toast')
toast 42

>>> G('bacon')
bacon 43

>>> F('ham') # But my counter has been overwritten!
ham 44
As shown earlier, when you are using nonlocal and nested function closures instead
 of global, each call to tester remembers its own unique copy of the
 state object.

State with Classes: Explicit Attributes (Preview)
The other prescription for changeable state information in 2.X and earlier is to use
 classes with attributes to make state information
 access more explicit than the implicit magic of scope lookup rules. As
 an added benefit, each instance of a class gets a fresh copy of the
 state information, as a natural byproduct of Python’s object model.
 Classes also support inheritance, multiple behaviors, and other
 tools.
We haven’t explored classes in detail yet, but as a brief preview
 for comparison, the following is a reformulation of the earlier tester/nested functions as a class, which records
 state in objects explicitly as they are created. To make sense of this
 code, you need to know that a def
 within a class like this works
 exactly like a normal def, except
 that the function’s self argument
 automatically receives the implied subject of the call (an instance
 object created by calling the class itself). The function named __init__ is run automatically when the class
 is called:
>>> class tester: # Class-based alternative (see Part VI)
 def __init__(self, start): # On object construction,
 self.state = start # save state explicitly in new object
 def nested(self, label):
 print(label, self.state) # Reference state explicitly
 self.state += 1 # Changes are always allowed

>>> F = tester(0) # Create instance, invoke __init__
>>> F.nested('spam') # F is passed to self
spam 0
>>> F.nested('ham')
ham 1
In classes, we save every attribute
 explicitly, whether it’s changed or just referenced, and they are
 available outside the class. As for nested functions and nonlocal, the class alternative supports
 multiple copies of the retained data:
>>> G = tester(42) # Each instance gets new copy of state
>>> G.nested('toast') # Changing one does not impact others
toast 42
>>> G.nested('bacon')
bacon 43

>>> F.nested('eggs') # F's state is where it left off
eggs 2
>>> F.state # State may be accessed outside class
3
With just slightly more magic—which we’ll delve into later in this
 book—we could also make our class objects look like callable functions
 using operator overloading. __call__
 intercepts direct calls on an instance, so we don’t need to call a named
 method:
>>> class tester:
 def __init__(self, start):
 self.state = start
 def __call__(self, label): # Intercept direct instance calls
 print(label, self.state) # So .nested() not required
 self.state += 1

>>> H = tester(99)
>>> H('juice') # Invokes __call__
juice 99
>>> H('pancakes')
pancakes 100
Don’t sweat the details in this code too much at this point in the
 book; it’s mostly a preview, intended for general comparison to closures
 only. We’ll explore classes in depth in Part VI, and will look at specific operator
 overloading tools like __call__ in
 Chapter 30. The point to notice here is
 that classes can make state information more obvious, by leveraging
 explicit attribute assignment instead of implicit scope lookups. In
 addition, class attributes are always changeable and don’t require a
 nonlocal statement, and classes are
 designed to scale up to implementing richer objects with many attributes
 and behaviors.
While using classes for state information is generally a good rule
 of thumb to follow, they might also be overkill in
 cases like this, where state is a single counter. Such trivial state
 cases are more common than you might think; in such contexts, nested
 defs are sometimes more lightweight
 than coding classes, especially if you’re not familiar with OOP yet.
 Moreover, there are some scenarios in which nested defs may actually work
 better than classes—stay tuned for the description
 of method decorators in Chapter 39 for an example that is far beyond this chapter’s
 already well-stretched scope!

State with Function Attributes: 3.X and 2.X
As a portable and often simpler state-retention option, we can also
 sometimes achieve the same effect as nonlocals with function
 attributes—user-defined names attached to functions directly.
 When you attach user-defined attributes to nested functions generated by
 enclosing factory functions, they can also serve as per-call, multiple
 copy, and writeable state, just like nonlocal scope closures and class
 attributes. Such user-defined attribute names won’t clash with names
 Python creates itself, and as for nonlocal, need be used only for state
 variables that must be changed; other scope
 references are retained and work normally.
Crucially, this scheme is portable—like
 classes, but unlike nonlocal,
 function attributes work in both Python 3.X and 2.X. In fact, they’ve
 been available since 2.1, much longer than 3.X’s nonlocal. Because factory functions make a new
 function on each call anyhow, this does not require extra objects—the
 new function’s attributes become per-call state in much the same way as
 nonlocals, and are similarly associated with the generated function in
 memory.
Moreover, function attributes allow state variables to be accessed
 outside the nested function, like class attributes;
 with nonlocal, state variables can be
 seen directly only within the nested def. If you need to access a call counter
 externally, it’s a simple function attribute fetch in this model.
Here’s a final version of our example based on this technique—it
 replaces a nonlocal with an attribute
 attached to the nested function. This scheme may not seem as intuitive
 to some at first glance; you access state through the function’s name
 instead of as simple variables, and must initialize after the nested
 def. Still, it’s far more portable,
 allows state to be accessed externally, and saves a line by not
 requiring a nonlocal
 declaration:
>>> def tester(start):
 def nested(label):
 print(label, nested.state) # nested is in enclosing scope
 nested.state += 1 # Change attr, not nested itself
 nested.state = start # Initial state after func defined
 return nested

>>> F = tester(0)
>>> F('spam') # F is a 'nested' with state attached
spam 0
>>> F('ham')
ham 1
>>> F.state # Can access state outside functions too
2
Because each call to the outer function produces a new nested
 function object, this scheme supports multiple copy
 per-call changeable data just like nonlocal
 closures and classes—a usage mode that global variables cannot
 provide:
>>> G = tester(42) # G has own state, doesn't overwrite F's
>>> G('eggs')
eggs 42
>>> F('ham')
ham 2

>>> F.state # State is accessible and per-call
3
>>> G.state
43
>>> F is G # Different function objects
False
This code relies on the fact that the function name nested is a local variable in the tester scope enclosing nested; as such, it can be referenced freely
 inside nested. This code also relies
 on the fact that changing an object in place is not an assignment to a
 name; when it increments nested.state, it is changing part of the
 object nested references, not the
 name nested itself. Because we’re not
 really assigning a name in the enclosing scope, no nonlocal declaration is required.
Function attributes are supported in both Python 3.X and 2.X;
 we’ll explore them further in Chapter 19. Importantly, we’ll see there that
 Python uses naming conventions in both 2.X and 3.X that ensure that the
 arbitrary names you assign as function attributes won’t clash with names
 related to internal implementation, making the namespace equivalent to a
 scope. Subjective factors aside, function attributes’ utility does
 overlap with the newer nonlocal in
 3.X, making the latter technically redundant and far less
 portable.
State with mutables: Obscure ghost of Pythons past?
On a related note, it’s also possible to change a
 mutable object in the enclosing scope in 2.X and
 3.X without declaring its name nonlocal. The following, for example, works
 the same as the previous version, is just as portable, and provides
 changeable per-call state:
def tester(start):
 def nested(label):
 print(label, state[0]) # Leverage in-place mutable change
 state[0] += 1 # Extra syntax, deep magic?
 state = [start]
 return nested
This leverages the mutability of lists, and like function
 attributes, relies on the fact that in-place object changes do not
 classify a name as local. This is perhaps more obscure than either
 function attributes or 3.X’s nonlocal, though—a technique that predates
 even function attributes, and seems to lie today somewhere on the
 spectrum from clever hack to dark magic! You’re probably better off
 using named function attributes than lists and numeric offsets this
 way, though this may show up in code you must use.
To summarize: globals, nonlocals, classes, and function
 attributes all offer changeable state-retention options. Globals
 support only single-copy shared data; nonlocals can be changed in 3.X
 only; classes require a basic knowledge of OOP; and both classes and
 function attributes provide portable solutions that allow state to be
 accessed directly from outside the stateful callable object itself. As
 usual, the best tool for your program depends upon your program’s
 goals.
We’ll revisit all the state options introduced here in Chapter 39 in a more realistic context—decorators, a tool
 that by nature involves multilevel state retention. State options have
 additional selection factors (e.g., performance), which we’ll have to
 leave unexplored here for space (we’ll learn how to time code speed in
 Chapter 21). For now, it’s time to
 move on to explore argument passing modes.
Why You Will Care: Customizing open
For another example of closures at work, consider changing the
 built-in open call
 to a custom version, as suggested in this chapter’s earlier sidebar
 “Breaking the Universe in Python 2.X”. If the custom
 version needs to call the original, it must save it before changing
 it, and retain it for later use—a classic state retention scenario.
 Moreover, if we wish to support multiple customizations to the same
 function, globals won’t do: we need per-customizer state.
The following, coded for Python 3.X in file makeopen.py, is one way to achieve this
 (in 2.X, change the built-in scope name and prints). It uses a
 nested scope closure to remember a value for later use, without
 relying on global variables—which can clash and allow just one
 value, and without using a class—that may require more code than is
 warranted here:
import builtins

def makeopen(id):
 original = builtins.open
 def custom(*pargs, **kargs):
 print('Custom open call %r:' % id , pargs, kargs)
 return original(*pargs, **kargs)
 builtins.open = custom
To change open for every
 module in a process, this code reassigns it in the built-in scope to
 a custom version coded with a nested def, after saving the original in the
 enclosing scope so the customization can call it later. This code is
 also partially preview, as it relies on
 starred-argument forms to collect and later
 unpack arbitrary positional and keyword arguments meant for open—a topic coming up in the next
 chapter. Much of the magic here, though, is nested scope closures:
 the custom open found by the
 scope lookup rules retains the original for later use:
>>> F = open('script2.py') # Call built-in open in builtins
>>> F.read()
'import sys\nprint(sys.path)\nx = 2\nprint(x ** 32)\n'

>>> from makeopen import makeopen # Import open resetter function
>>> makeopen('spam') # Custom open calls built-in open

>>> F = open('script2.py') # Call custom open in builtins
Custom open call 'spam': ('script2.py',) {}
>>> F.read()
'import sys\nprint(sys.path)\nx = 2\nprint(x ** 32)\n'
Because each customization remembers the former built-in scope
 version in its own enclosing scope, they can even be
 nested naturally in ways that global variables
 cannot support—each call to the makeopen closure function remembers its
 own versions of id and original, so multiple customizations may
 be run:
>>> makeopen('eggs') # Nested customizers work too!
>>> F = open('script2.py') # Because each retains own state
Custom open call 'eggs': ('script2.py',) {}
Custom open call 'spam': ('script2.py',) {}
>>> F.read()
'import sys\nprint(sys.path)\nx = 2\nprint(x ** 32)\n'
As is, our function simply adds possibly nested call tracing
 to a built-in function, but the general technique may have other
 applications. A class-based equivalent to this may require more code
 because it would need to save the id and original values explicitly in object
 attributes—but requires more background knowledge than we yet have,
 so consider this a Part VI preview
 only:
import builtins

class makeopen: # See Part VI: call catches self()
 def __init__(self, id):
 self.id = id
 self.original = builtins.open
 builtins.open = self
 def __call__(self, *pargs, **kargs):
 print('Custom open call %r:' % self.id, pargs, kargs)
 return self.original(*pargs, **kargs)
The point to notice here is that classes may be more explicit
 but also may take extra code when state retention is the only goal.
 We’ll see additional closure use cases later, especially when
 exploring decorators in Chapter 39, where we’ll find the closures are actually
 preferred to classes in certain roles.

Chapter Summary
In this chapter, we studied one of two key concepts related to
 functions: scopes, which determine how variables are
 looked up when used. As we learned, variables are considered local to the
 function definitions in which they are assigned, unless they are
 specifically declared to be global or nonlocal. We also explored some more
 advanced scope concepts here, including nested function scopes and
 function attributes. Finally, we looked at some general design ideas, such
 as the need to avoid globals and cross-file changes.
In the next chapter, we’re going to continue our function tour with
 the second key function-related concept: argument passing. As we’ll find,
 arguments are passed into a function by assignment, but Python also
 provides tools that allow functions to be flexible in how items are
 passed. Before we move on, let’s take this chapter’s quiz to review the
 scope concepts we’ve covered here.

Test Your Knowledge: Quiz
	What is the output of the following code, and why?
>>> X = 'Spam'
>>> def func():
 print(X)

>>> func()

	What is the output of this code, and why?
>>> X = 'Spam'
>>> def func():
 X = 'NI!'

>>> func()
>>> print(X)

	What does this code print, and why?
>>> X = 'Spam'
>>> def func():
 X = 'NI'
 print(X)

>>> func()
>>> print(X)

	What output does this code produce? Why?
>>> X = 'Spam'
>>> def func():
 global X
 X = 'NI'

>>> func()
>>> print(X)

	What about this code—what’s the output, and why?
>>> X = 'Spam'
>>> def func():
 X = 'NI'
 def nested():
 print(X)
 nested()

>>> func()
>>> X

	How about this example: what is its output in Python 3.X, and
 why?
>>> def func():
 X = 'NI'
 def nested():
 nonlocal X
 X = 'Spam'
 nested()
 print(X)

>>> func()

	Name three or more ways to retain state information in a Python
 function.

Test Your Knowledge: Answers
	The output here is 'Spam',
 because the function references a global variable in the enclosing
 module (because it is not assigned in the function, it is considered
 global).

	The output here is 'Spam'
 again because assigning the variable inside the function makes it a
 local and effectively hides the global of the same name. The print statement finds the variable unchanged
 in the global (module) scope.

	It prints 'NI' on one line
 and 'Spam' on another, because the
 reference to the variable within the function finds the assigned local
 and the reference in the print
 statement finds the global.

	This time it just prints 'NI'
 because the global declaration forces the variable assigned inside the
 function to refer to the variable in the enclosing global
 scope.

	The output in this case is again 'NI' on one line and 'Spam' on another, because the print statement in the nested function finds
 the name in the enclosing function’s local scope, and the display at
 the end finds the variable in the global scope.

	This example prints 'Spam',
 because the nonlocal statement
 (available in Python 3.X but not 2.X) means that the assignment to
 X inside the nested function
 changes X in the enclosing
 function’s local scope. Without this statement, this assignment would
 classify X as local to the nested
 function, making it a different variable; the code would then print
 'NI' instead.

	Although the values of local variables go away when a function
 returns, you can make a Python function retain state information by
 using shared global variables, enclosing function scope references
 within nested functions, or using default argument values. Function
 attributes can sometimes allow state to be attached to the function
 itself, instead of looked up in scopes. Another alternative, using
 classes and OOP, sometimes supports state retention better than any of
 the scope-based techniques because it makes it explicit with attribute
 assignments; we’ll explore this option in Part VI.

1 The scope lookup rule was called the “LGB rule” in the first
 edition of this book. The enclosing def “E” layer was added later in Python to
 obviate the task of passing in enclosing scope names explicitly with
 default arguments—a topic usually of marginal interest to Python
 beginners that we’ll defer until later in this chapter. Since this
 scope is now addressed by the nonlocal statement in Python 3.X, the
 lookup rule might be better named “LNGB” today, but backward
 compatibility matters in books, too. The present form of this
 acronym also does not account for the newer obscure scopes of some
 comprehensions and exception handlers, but acronyms longer than four
 letters tend to defeat their purpose!
2 Multithreading runs function calls in
 parallel with the rest of the program and is supported by Python’s
 standard library modules _thread,
 threading, and queue (thread, threading, and Queue in Python 2.X). Because all threaded
 functions run in the same process, global scopes often serve as one
 form of shared memory between them (threads may share both names in
 global scopes, as well as objects in a process’s memory space).
 Threading is commonly used for long-running tasks in GUIs, to
 implement nonblocking operations in general and to maximize CPU
 capacity. It is also beyond this book’s scope; see the Python
 library manual, as well as the follow-up texts listed in the preface
 (such as O’Reilly’s Programming
 Python), for more details.
3 In the section “Function Gotchas”, we’ll
 also see that there is a similar issue with using mutable objects
 like lists and dictionaries for default arguments (e.g., def f(a=[]))—because defaults are
 implemented as single objects attached to functions, mutable
 defaults retain state from call to call, rather then being
 initialized anew on each call. Depending on whom you ask, this is
 either considered a feature that supports another way to implement
 state retention, or a strange corner of the language; more on this
 at the end of Chapter 21.

Chapter 18. Arguments
Chapter 17 explored the details behind Python’s
 scopes—the places where variables are defined and
 looked up. As we learned, the place where a name is defined in our code
 determines much of its meaning. This chapter continues the function story by
 studying the concepts in Python argument passing—the
 way that objects are sent to functions as inputs. As we’ll see, arguments
 (a.k.a. parameters) are assigned to names in a function, but they have more
 to do with object references than with variable scopes. We’ll also find that
 Python provides extra tools, such as keywords, defaults, and arbitrary
 argument collectors and extractors that allow for wide flexibility in the
 way arguments are sent to a function, and we’ll put them to work in
 examples.
Argument-Passing Basics
Earlier in this part of the book, I noted that arguments are passed by
 assignment. This has a few ramifications that aren’t
 always obvious to newcomers, which I’ll expand on in this section. Here is
 a rundown of the key points in passing arguments to functions:
	Arguments are passed by automatically
 assigning objects to local variable names. Function
 arguments—references to (possibly) shared objects sent by the
 caller—are just another instance of Python assignment at work. Because
 references are implemented as pointers, all arguments are, in effect,
 passed by pointer. Objects passed as arguments are never automatically
 copied.

	Assigning to argument names inside a
 function does not affect the caller. Argument names in the
 function header become new, local names when the function runs, in the
 scope of the function. There is no aliasing between function argument
 names and variable names in the scope of the caller.

	Changing a mutable object argument in a
 function may impact the caller. On the other hand, as
 arguments are simply assigned to passed-in objects, functions can
 change passed-in mutable objects in place, and the results may affect
 the caller. Mutable arguments can be input and output for
 functions.

For more details on references, see Chapter 6; everything we learned there
 also applies to function arguments, though the assignment to argument
 names is automatic and implicit.
Python’s pass-by-assignment scheme isn’t quite the same as C++’s
 reference parameters option, but it turns out to be very similar to the
 argument-passing model of the C language (and others) in practice:
	Immutable arguments are effectively
 passed “by value.” Objects such as integers and strings are passed by object
 reference instead of by copying, but because you can’t change
 immutable objects in place anyhow, the effect is much like making a
 copy.

	Mutable arguments are effectively passed
 “by pointer.” Objects such as lists and dictionaries are also passed by object
 reference, which is similar to the way C passes arrays as
 pointers—mutable objects can be changed in place in the function, much
 like C arrays.

Of course, if you’ve never used C, Python’s argument-passing mode
 will seem simpler still—it involves just the assignment of objects to
 names, and it works the same whether the objects are mutable or
 not.
Arguments and Shared References
To illustrate argument-passing properties at work, consider the following code:
>>> def f(a): # a is assigned to (references) the passed object
 a = 99 # Changes local variable a only

>>> b = 88
>>> f(b) # a and b both reference same 88 initially
>>> print(b) # b is not changed
88
In this example the variable a
 is assigned the object 88 at the
 moment the function is called with f(b), but a
 lives only within the called function. Changing a inside the function has no effect on the
 place where the function is called; it simply resets the local variable
 a to a completely different
 object.
That’s what is meant by a lack of name
 aliasing—assignment to an argument name inside a
 function (e.g., a=99) does not
 magically change a variable like b in
 the scope of the function call. Argument names may share passed objects
 initially (they are essentially pointers to those objects), but only
 temporarily, when the function is first called. As soon as an argument
 name is reassigned, this relationship ends.
At least, that’s the case for assignment to argument
 names themselves. When arguments are passed
 mutable objects like lists and dictionaries, we
 also need to be aware that in-place changes to such
 objects may live on after a function exits, and
 hence impact callers. Here’s an example that demonstrates this
 behavior:
>>> def changer(a, b): # Arguments assigned references to objects
 a = 2 # Changes local name's value only
 b[0] = 'spam' # Changes shared object in place

>>> X = 1
>>> L = [1, 2] # Caller:
>>> changer(X, L) # Pass immutable and mutable objects
>>> X, L # X is unchanged, L is different!
(1, ['spam', 2])
In this code, the changer
 function assigns values to argument a
 itself, and to a component of the object referenced
 by argument b. These two assignments
 within the function are only slightly different in syntax but have
 radically different results:
	Because a is a local
 variable name in the function’s scope, the first assignment has no
 effect on the caller—it simply changes the local variable a to reference a completely different
 object, and does not change the binding of the name X in the caller’s scope. This is the same
 as in the prior example.

	Argument b is a local
 variable name, too, but it is passed a mutable object (the list that
 L references in the caller’s
 scope). As the second assignment is an in-place object change, the
 result of the assignment to b[0]
 in the function impacts the value of L after the function returns.

Really, the second assignment statement in changer doesn’t change b—it changes part of the object that b currently references. This in-place change
 impacts the caller only because the changed object outlives the function
 call. The name L hasn’t changed
 either—it still references the same, changed object—but it seems as
 though L differs after the call
 because the value it references has been modified within the function.
 In effect, the list name L serves as
 both input to and output from the function.
Figure 18-1
 illustrates the name/object bindings that exist immediately after the
 function has been called, and before its code has run.
If this example is still confusing, it may help to notice that the
 effect of the automatic assignments of the passed-in arguments is the
 same as running a series of simple assignment statements. In terms of
 the first argument, the assignment has no effect on the caller:
>>> X = 1
>>> a = X # They share the same object
>>> a = 2 # Resets 'a' only, 'X' is still 1
>>> print(X)
1
Figure 18-1. References: arguments. Because arguments are passed by
 assignment, argument names in the function may share objects with
 variables in the scope of the call. Hence, in-place changes to mutable
 arguments in a function can impact the caller. Here, a and b in the
 function initially reference the objects referenced by variables X and
 L when the function is first called. Changing the list through
 variable b makes L appear different after the call returns.

The assignment through the second argument does affect a variable
 at the call, though, because it is an in-place object change:
>>> L = [1, 2]
>>> b = L # They share the same object
>>> b[0] = 'spam' # In-place change: 'L' sees the change too
>>> print(L)
['spam', 2]
If you recall our discussions about shared mutable objects in
 Chapter 6 and Chapter 9, you’ll recognize
 the phenomenon at work: changing a mutable object in place can impact
 other references to that object. Here, the effect is to make one of the
 arguments work like both an input and an output of the function.

Avoiding Mutable Argument Changes
This behavior of in-place changes to mutable arguments isn’t a bug—it’s simply the
 way argument passing works in Python, and turns out to be widely useful
 in practice. Arguments are normally passed to functions by reference
 because that is what we normally want. It means we can pass large
 objects around our programs without making multiple copies along the
 way, and we can easily update these objects as we go. In fact, as we’ll
 see in Part VI, Python’s class model
 depends upon changing a passed-in “self” argument
 in place, to update object state.
If we don’t want in-place changes within functions to impact
 objects we pass to them, though, we can simply make explicit copies of
 mutable objects, as we learned in Chapter 6. For function arguments, we
 can always copy the list at the point of call, with tools like list, list.copy as of 3.3, or an empty slice:
L = [1, 2]
changer(X, L[:]) # Pass a copy, so our 'L' does not change
We can also copy within the function itself, if we never want to
 change passed-in objects, regardless of how the function is
 called:
def changer(a, b):
 b = b[:] # Copy input list so we don't impact caller
 a = 2
 b[0] = 'spam' # Changes our list copy only
Both of these copying schemes don’t stop the function from
 changing the object—they just prevent those changes from impacting the
 caller. To really prevent changes, we can always convert to immutable
 objects to force the issue. Tuples, for example, raise an exception when
 changes are attempted:
L = [1, 2]
changer(X, tuple(L)) # Pass a tuple, so changes are errors
This scheme uses the built-in tuple function, which builds a new tuple out
 of all the items in a sequence (really, any iterable). It’s also
 something of an extreme—because it forces the function to be written to
 never change passed-in arguments, this solution might impose more
 limitations on the function than it should, and so should generally be
 avoided (you never know when changing arguments might come in handy for
 other calls in the future). Using this technique will also make the
 function lose the ability to call any list-specific methods on the
 argument, including methods that do not change the object in
 place.
The main point to remember here is that functions might update
 mutable objects like lists and dictionaries passed into them. This isn’t
 necessarily a problem if it’s expected, and often serves useful
 purposes. Moreover, functions that change passed-in mutable objects in
 place are probably designed and intended to do so—the change is likely
 part of a well-defined API that you shouldn’t violate by making
 copies.
However, you do have to be aware of this property—if objects
 change out from under you unexpectedly, check whether a called function
 might be responsible, and make copies when objects are passed if
 needed.

Simulating Output Parameters and Multiple Results
We’ve already discussed the return
 statement and used it in a few examples. Here’s another way to use this
 statement: because return can send
 back any sort of object, it can return multiple
 values by packaging them in a tuple or other collection type.
 In fact, although Python doesn’t support what some languages label “call
 by reference” argument passing, we can usually simulate it by returning
 tuples and assigning the results back to the original argument names in
 the caller:
>>> def multiple(x, y):
 x = 2 # Changes local names only
 y = [3, 4]
 return x, y # Return multiple new values in a tuple

>>> X = 1
>>> L = [1, 2]
>>> X, L = multiple(X, L) # Assign results to caller's names
>>> X, L
(2, [3, 4])
It looks like the code is returning two values here, but it’s
 really just one—a two-item tuple with the optional surrounding
 parentheses omitted. After the call returns, we can use tuple assignment
 to unpack the parts of the returned tuple. (If you’ve forgotten why this
 works, flip back to “Tuples” in Chapter 4 and Chapter 9, and “Assignment
 Statements” in Chapter 11.) The net effect of
 this coding pattern is to both send back multiple results and simulate
 the output parameters of other languages by
 explicit assignments. Here, X
 and L change after the call, but only
 because the code said so.
Note
Unpacking arguments in Python 2.X: The
 preceding example unpacks a tuple returned by the function with tuple
 assignment. In Python 2.X, it’s also possible to automatically unpack
 tuples in arguments passed to a function. In 2.X
 (only), a function defined by this header:
def f((a, (b, c))):
can be called with tuples that match the expected structure:
 f((1, (2, 3))) assigns a, b, and
 c to 1, 2, and
 3, respectively. Naturally, the
 passed tuple can also be an object created before the call (f(T)). This def syntax is no longer supported in Python
 3.X. Instead, code this function as:
def f(T): (a, (b, c)) = T
to unpack in an explicit assignment statement. This explicit
 form works in both 3.X and 2.X. Argument unpacking is reportedly an
 obscure and rarely used feature in Python 2.X (except in code that
 uses it!). Moreover, a function header in 2.X supports only the
 tuple form of sequence assignment; more general
 sequence assignments (e.g., def f((a, [b,
 c])):) fail on syntax errors in 2.X as well and require the
 explicit assignment form mandated in 3.X. Conversely, arbitrary
 sequences in the call successfully match tuples in the header (e.g.,
 f((1, [2, 3])), f((1, "ab"))).
Tuple unpacking argument syntax is also disallowed by 3.X in
 lambda function argument lists: see
 the Chapter 20 sidebar “Why You Will Care: List Comprehensions and map” for a lambda unpacking example. Somewhat
 asymmetrically, tuple unpacking assignment is still automatic in 3.X
 for loops targets; see Chapter 13 for examples.

Special Argument-Matching Modes
As we’ve just seen, arguments are always passed by
 assignment in Python; names in the def header are assigned to passed-in objects. On
 top of this model, though, Python provides additional tools that alter the
 way the argument objects in a call are matched with
 argument names in the header prior to assignment. These tools are all
 optional, but they allow us to write functions that support more flexible
 calling patterns, and you may encounter some libraries that require
 them.
By default, arguments are matched by position,
 from left to right, and you must pass exactly as many arguments as there
 are argument names in the function header. However, you can also specify
 matching by name, provide default values, and use collectors for extra
 arguments.
Argument Matching Basics
Before we go into the syntactic details, I want to stress that
 these special modes are optional and deal only with matching objects to
 names; the underlying passing mechanism after the matching takes place
 is still assignment. In fact, some of these tools are intended more for
 people writing libraries than for application developers. But because
 you may stumble across these modes even if you don’t code them yourself,
 here’s a synopsis of the available tools:
	Positionals: matched from left to right
	The normal case, which we’ve mostly been using so far, is to match
 passed argument values to argument names in a function header by
 position, from left to right.

	Keywords: matched by argument name
	Alternatively, callers can specify which argument in the function is to
 receive a value by using the argument’s name in the call, with the
 name=value syntax.

	Defaults: specify values for optional arguments that aren’t
 passed
	Functions themselves can specify default values for arguments
 to receive if the call passes too few values, again using the
 name=value syntax.

	Varargs collecting: collect arbitrarily many positional or
 keyword arguments
	Functions can use special arguments preceded with one or two * characters to collect an arbitrary
 number of possibly extra arguments. This feature is often referred
 to as varargs, after a variable-length
 argument list tool in the C language; in Python, the arguments are
 collected in a normal object.

	Varargs unpacking: pass arbitrarily many positional or keyword
 arguments
	Callers can also use the * syntax to unpack argument collections
 into separate arguments. This is the inverse of a * in a function header—in the header it
 means collect arbitrarily many arguments, while in the call it
 means unpack arbitrarily many arguments, and pass them
 individually as discrete values.

	Keyword-only arguments: arguments that must be passed by
 name
	In Python 3.X (but not 2.X), functions can also specify
 arguments that must be passed by name with keyword arguments, not
 by position. Such arguments are typically used to define
 configuration options in addition to actual arguments.

Argument Matching Syntax
Table 18-1 summarizes the
 syntax that invokes the special argument-matching modes.
Table 18-1. Function argument-matching forms	Syntax	Location	Interpretation
	func(value)
	Caller
	Normal argument: matched
 by position

	func(name=value)
	Caller
	Keyword argument: matched
 by name

	func(*iterable)
	Caller
	Pass all objects in
 iterable as individual positional
 arguments

	func(**dict)
	Caller
	Pass all key/value pairs
 in dict as individual keyword
 arguments

	def func(name)
	Function
	Normal argument: matches
 any passed value by position or name

	def func(name=value)
	Function
	Default argument value,
 if not passed in the call

	def func(*name)
	Function
	Matches and collects
 remaining positional arguments in a tuple

	def func(**name)
	Function
	Matches and collects
 remaining keyword arguments in a dictionary

	def func(*other, name)
	Function
	Arguments that must be
 passed by keyword only in calls (3.X)

	def func(*, name=value)	Function
	Arguments that must be
 passed by keyword only in calls (3.X)

These special matching modes break down into function calls and
 definitions as follows:
	In a function call (the first four rows
 of the table), simple values are matched by position, but using the
 name=value form tells Python to
 match by name to arguments instead; these are called
 keyword arguments. Using a *iterable or **dict in a call allows us to package up
 arbitrarily many positional or keyword objects in sequences (and
 other iterables) and dictionaries, respectively, and unpack them as
 separate, individual arguments when they are passed to the
 function.

	In a function header (the rest of the
 table), a simple name is matched
 by position or name depending on how the caller passes it, but the
 name=value form specifies a
 default value. The *name form collects any extra unmatched
 positional arguments in a tuple, and the **name form collects extra keyword
 arguments in a dictionary. In Python 3.X, any normal or defaulted
 argument names following a *name
 or a bare * are
 keyword-only arguments and must be passed by
 keyword in calls.

Of these, keyword arguments and defaults are probably the most
 commonly used in Python code. We’ve informally used both of these
 earlier in this book:
	We’ve already used keywords to specify
 options to the 3.X print
 function, but they are more general—keywords allow us to label any
 argument with its name, to make calls more informational.

	We met defaults earlier, too, as a way to
 pass in values from the enclosing function’s scope, but they are
 also more general—they allow us to make any argument optional,
 providing its default value in a function definition.

As we’ll see, the combination of defaults in a function header and
 keywords in a call further allows us to pick and choose which defaults
 to override.
In short, special argument-matching modes let you be fairly
 liberal about how many arguments must be passed to a function. If a
 function specifies defaults, they are used if you pass too
 few arguments. If a function uses the * variable argument list forms, you can
 seemingly pass too many arguments; the * names collect the extra arguments in data
 structures for processing in the function.

The Gritty Details
If you choose to use and combine the special argument-matching
 modes, Python will ask you to follow these ordering rules among the
 modes’ optional components:
	In a function call, arguments must appear
 in this order: any positional arguments (value); followed by a combination of any
 keyword arguments (name=value)
 and the *iterable form; followed
 by the **dict form.

	In a function header, arguments must
 appear in this order: any normal arguments (name); followed by any default arguments
 (name=value); followed by the
 *name (or * in 3.X) form; followed by any name or name=value keyword-only arguments (in
 3.X); followed by the **name
 form.

In both the call and header, the **args form must
 appear last if present. If you mix arguments in any other order, you
 will get a syntax error because the combinations can be ambiguous. The
 steps that Python internally carries out to match arguments before
 assignment can roughly be described as follows:
	Assign nonkeyword arguments by position.

	Assign keyword arguments by matching names.

	Assign extra nonkeyword arguments to *name tuple.

	Assign extra keyword arguments to **name dictionary.

	Assign default values to unassigned arguments in
 header.

After this, Python checks to make sure each argument is passed
 just one value; if not, an error is raised. When all matching is
 complete, Python assigns argument names to the objects passed to
 them.
The actual matching algorithm Python uses is a bit more complex
 (it must also account for keyword-only arguments in 3.X, for instance),
 so we’ll defer to Python’s standard language manual for a more exact
 description. It’s not required reading, but tracing Python’s matching
 algorithm may help you to understand some convoluted cases, especially
 when modes are mixed.
Note
In Python 3.X only, argument names in a function header can also
 have annotation values, specified as name:value (or name:value=default when defaults are
 present). This is simply additional syntax for arguments and does not
 augment or change the argument-ordering rules described here. The
 function itself can also have an annotation value, given as def f()->value. Python attaches
 annotation values to the function object. See the discussion of
 function annotation in Chapter 19 for
 more details.

Keyword and Default Examples
This is all simpler in code than the preceding descriptions may imply. If you don’t
 use any special matching syntax, Python matches names by position from
 left to right, like most other languages. For instance, if you define a
 function that requires three arguments, you must call it with three
 arguments:
>>> def f(a, b, c): print(a, b, c)

>>> f(1, 2, 3)
1 2 3
Here, we pass by position—a is
 matched to 1, b is matched to 2, and so on (this works the same in Python
 3.X and 2.X, but extra tuple parentheses are displayed in 2.X because
 we’re using 3.X print calls
 again).
Keywords
In Python, though, you can be more specific about what goes
 where when you call a function. Keyword arguments allow us to match by
 name, instead of by position. Using the same
 function:
>>> f(c=3, b=2, a=1)
1 2 3
The c=3 in this call, for
 example, means send 3 to the
 argument named c. More formally,
 Python matches the name c in the
 call to the argument named c in the
 function definition’s header, and then passes the value 3 to that argument. The net effect of this
 call is the same as that of the prior call, but notice that the
 left-to-right order of the arguments no longer matters when keywords
 are used because arguments are matched by name, not by position. It’s
 even possible to combine positional and keyword arguments in a single
 call. In this case, all positionals are matched first from left to
 right in the header, before keywords are matched by name:
>>> f(1, c=3, b=2) # a gets 1 by position, b and c passed by name
1 2 3
When most people see this the first time, they wonder why one
 would use such a tool. Keywords typically have two roles in Python.
 First, they make your calls a bit more self-documenting (assuming that
 you use better argument names than a, b, and
 c!). For example, a call of this
 form:
func(name='Bob', age=40, job='dev')
is much more meaningful than a call with three naked values
 separated by commas, especially in larger programs—the keywords serve
 as labels for the data in the call. The second major use of keywords
 occurs in conjunction with defaults, which we turn to next.

Defaults
We talked about defaults in brief earlier, when discussing
 nested function scopes. In short, defaults allow us to make selected
 function arguments optional; if not passed a value, the argument is
 assigned its default before the function runs. For example, here is a
 function that requires one argument and defaults two:
>>> def f(a, b=2, c=3): print(a, b, c) # a required, b and c optional
When we call this function, we must provide a value for a, either by position or by keyword;
 however, providing values for b and
 c is optional. If we don’t pass
 values to b and c, they default to 2 and 3,
 respectively:
>>> f(1) # Use defaults
1 2 3
>>> f(a=1)
1 2 3
If we pass two values, only c
 gets its default, and with three values, no defaults are used:
>>> f(1, 4) # Override defaults
1 4 3
>>> f(1, 4, 5)
1 4 5
Finally, here is how the keyword and default features interact.
 Because they subvert the normal left-to-right positional mapping,
 keywords allow us to essentially skip over arguments with
 defaults:
>>> f(1, c=6) # Choose defaults
1 2 6
Here, a gets 1 by position, c gets 6
 by keyword, and b, in between,
 defaults to 2.
Be careful not to confuse the special name=value syntax in a function header and a
 function call; in the call it means a
 match-by-name keyword argument, while in the
 header it specifies a default for an optional
 argument. In both cases, this is not an assignment statement (despite
 its appearance); it is special syntax for these two contexts, which
 modifies the default argument-matching mechanics.

Combining keywords and defaults
Here is a slightly larger example that demonstrates keywords and
 defaults in action. In the following, the caller must always pass at
 least two arguments (to match spam
 and eggs), but the other two are
 optional. If they are omitted, Python assigns toast and ham to the defaults specified in the
 header:
def func(spam, eggs, toast=0, ham=0): # First 2 required
 print((spam, eggs, toast, ham))

func(1, 2) # Output: (1, 2, 0, 0)
func(1, ham=1, eggs=0) # Output: (1, 0, 0, 1)
func(spam=1, eggs=0) # Output: (1, 0, 0, 0)
func(toast=1, eggs=2, spam=3) # Output: (3, 2, 1, 0)
func(1, 2, 3, 4) # Output: (1, 2, 3, 4)
Notice again that when keyword arguments are used in the call,
 the order in which the arguments are listed doesn’t matter; Python
 matches by name, not by position. The caller must supply values for
 spam and eggs, but they can be matched by position or
 by name. Again, keep in mind that the form name=value means different things in the
 call and the def: a keyword in the
 call and a default in the header.
Note
Beware mutable defaults: As footnoted in
 the prior chapter, if you code a default to be a mutable object
 (e.g., def f(a=[])), the same,
 single mutable object is reused every time the
 function is later called—even if it is changed in place within the
 function. The net effect is that the argument’s default retains its
 value from the prior call, and is not reset to its original value
 coded in the def header. To reset
 anew on each call, move the assignment into the function body
 instead. Mutable defaults allow state retention, but this is often a
 surprise. Since this is such a common trap, we’ll postpone further
 exploration until this part’s “gotchas” list at the end of Chapter 21.

Arbitrary Arguments Examples
The last two matching extensions, * and
 **, are designed to support functions
 that take any number of arguments. Both can appear
 in either the function definition or a function call, and they have
 related purposes in the two locations.
Headers: Collecting arguments
The first use, in the function definition, collects unmatched positional arguments into
 a tuple:
>>> def f(*args): print(args)
When this function is called, Python collects all the positional
 arguments into a new tuple and assigns the
 variable args to that tuple.
 Because it is a normal tuple object, it can be indexed, stepped
 through with a for loop, and so
 on:
>>> f()
()
>>> f(1)
(1,)
>>> f(1, 2, 3, 4)
(1, 2, 3, 4)
The ** feature is similar,
 but it only works for keyword arguments—it
 collects them into a new dictionary, which can
 then be processed with normal dictionary tools. In a sense, the
 ** form allows you to convert from
 keywords to dictionaries, which you can then step through with
 keys calls, dictionary iterators,
 and the like (this is roughly what the dict call does when passed keywords, but it
 returns the new dictionary):
>>> def f(**args): print(args)

>>> f()
{}
>>> f(a=1, b=2)
{'a': 1, 'b': 2}
Finally, function headers can combine normal arguments, the
 *, and the ** to implement wildly flexible call
 signatures. For instance, in the following, 1 is passed to a by position, 2 and 3
 are collected into the pargs
 positional tuple, and x and
 y wind up in the kargs keyword dictionary:
>>> def f(a, *pargs, **kargs): print(a, pargs, kargs)

>>> f(1, 2, 3, x=1, y=2)
1 (2, 3) {'y': 2, 'x': 1}
Such code is rare, but shows up in functions that need to
 support multiple call patterns (for backward compatibility, for
 instance). In fact, these features can be combined in even more
 complex ways that may seem ambiguous at first glance—an idea we will
 revisit later in this chapter. First, though, let’s see what happens
 when * and ** are coded in function calls instead of
 definitions.

Calls: Unpacking arguments
In all recent Python releases, we can use the * syntax when we call a function, too. In
 this context, its meaning is the inverse of its meaning in the
 function definition—it unpacks a collection of arguments, rather than
 building a collection of arguments. For example, we can pass four
 arguments to a function in a tuple and let Python unpack them into
 individual arguments:
>>> def func(a, b, c, d): print(a, b, c, d)

>>> args = (1, 2)
>>> args += (3, 4)
>>> func(*args) # Same as func(1, 2, 3, 4)
1 2 3 4
Similarly, the ** syntax in a
 function call unpacks a dictionary of key/value pairs into separate
 keyword arguments:
>>> args = {'a': 1, 'b': 2, 'c': 3}
>>> args['d'] = 4
>>> func(**args) # Same as func(a=1, b=2, c=3, d=4)
1 2 3 4
Again, we can combine normal, positional, and keyword arguments
 in the call in very flexible ways:
>>> func(*(1, 2), **{'d': 4, 'c': 3}) # Same as func(1, 2, d=4, c=3)
1 2 3 4
>>> func(1, *(2, 3), **{'d': 4}) # Same as func(1, 2, 3, d=4)
1 2 3 4
>>> func(1, c=3, *(2,), **{'d': 4}) # Same as func(1, 2, c=3, d=4)
1 2 3 4
>>> func(1, *(2, 3), d=4) # Same as func(1, 2, 3, d=4)
1 2 3 4
>>> func(1, *(2,), c=3, **{'d':4}) # Same as func(1, 2, c=3, d=4)
1 2 3 4
This sort of code is convenient when you cannot predict the
 number of arguments that will be passed to a function when you write
 your script; you can build up a collection of arguments at runtime
 instead and call the function generically this way. Again, don’t
 confuse the */** starred-argument syntax in the function
 header and the function call—in the header it
 collects any number of arguments, while in the
 call it unpacks any number of arguments. In both,
 one star means positionals, and two applies to keywords.
Note
As we saw in Chapter 14,
 the *pargs form in a call is an
 iteration context, so technically it accepts
 any iterable object, not just tuples or other sequences as shown in
 the examples here. For instance, a file object works after the
 *, and unpacks its lines into
 individual arguments (e.g., func(*open('fname')). Watch for additional
 examples of this utility in Chapter 20, after we study
 generators.
This generality is supported in both Python 3.X and 2.X, but
 it holds true only for calls—a *pargs in a call allows any iterable, but
 the same form in a def header
 always bundles extra arguments into a tuple.
 This header behavior is similar in spirit and syntax to the * in Python 3.X extended sequence
 unpacking assignment forms we met in Chapter 11 (e.g., x, *y = z), though that star usage always
 creates lists, not tuples.

Applying functions generically
The prior section’s examples may seem academic (if not downright esoteric),
 but they are used more often than you might expect. Some programs need
 to call arbitrary functions in a generic fashion, without knowing
 their names or arguments ahead of time. In fact, the real power of the
 special “varargs” call syntax is that you don’t need to know how many
 arguments a function call requires before you write a script. For
 example, you can use if logic to
 select from a set of functions and argument lists, and call any of
 them generically (functions in some of the following examples are
 hypothetical):
if sometest:
 action, args = func1, (1,) # Call func1 with one arg in this case
else:
 action, args = func2, (1, 2, 3) # Call func2 with three args here
...etc...
action(*args) # Dispatch generically
This leverages both the *
 form, and the fact that functions are objects that may be both
 referenced by, and called through, any variable. More generally, this
 varargs call syntax is useful anytime you cannot predict the arguments
 list. If your user selects an arbitrary function via a user interface,
 for instance, you may be unable to hardcode a function call when
 writing your script. To work around this, simply build up the
 arguments list with sequence operations, and call it with
 starred-argument syntax to unpack the arguments:
>>> ...define or import func3...
>>> args = (2,3)
>>> args += (4,)
>>> args
(2, 3, 4)
>>> func3(*args)
Because the arguments list is passed in as a tuple here, the
 program can build it at runtime. This technique also comes in handy
 for functions that test or time other functions. For instance, in the
 following code we support any function with any arguments by passing
 along whatever arguments were sent in (this is file tracer0.py in the book examples
 package):
def tracer(func, *pargs, **kargs): # Accept arbitrary arguments
 print('calling:', func.__name__)
 return func(*pargs, **kargs) # Pass along arbitrary arguments

def func(a, b, c, d):
 return a + b + c + d

print(tracer(func, 1, 2, c=3, d=4))
This code uses the built-in __name__ attribute
 attached to every function (as you might expect, it’s the function’s
 name string), and uses stars to collect and then unpack the arguments
 intended for the traced function. In other words, when this code is
 run, arguments are intercepted by the tracer and then
 propagated with varargs call syntax:
calling: func
10
For another example of this technique, see the preview near the
 end of the preceding chapter, where it was used to reset the built-in
 open function. We’ll code
 additional examples of such roles later in this book; see especially
 the sequence timing examples in Chapter 21 and the various decorator
 utilities we will code in Chapter 39. It’s a common
 technique in general tools.

The defunct apply built-in (Python 2.X)
Prior to Python 3.X, the effect of the *args and **args varargs call syntax could be achieved
 with a built-in function named apply. This original technique has been
 removed in 3.X because it is now redundant (3.X cleans up many such
 dusty tools that have been subsumed over the years). It’s still
 available in all Python 2.X releases, though, and you may come across
 it in older 2.X code.
In short, the following are equivalent prior to Python
 3.X:
func(*pargs, **kargs) # Newer call syntax: func(*sequence, **dict)
apply(func, pargs, kargs) # Defunct built-in: apply(func, sequence, dict)
For example, consider the following function, which accepts any
 number of positional or keyword arguments:
>>> def echo(*args, **kwargs): print(args, kwargs)

>>> echo(1, 2, a=3, b=4)
(1, 2) {'a': 3, 'b': 4}
In Python 2.X, we can call it generically with apply, or with the call syntax that is now
 required in 3.X:
>>> pargs = (1, 2)
>>> kargs = {'a':3, 'b':4}

>>> apply(echo, pargs, kargs)
(1, 2) {'a': 3, 'b': 4}

>>> echo(*pargs, **kargs)
(1, 2) {'a': 3, 'b': 4}
Both forms work for built-in functions in 2.X too (notice 2.X’s
 trailing L for its long
 integers):
>>> apply(pow, (2, 100))
1267650600228229401496703205376L
>>> pow(*(2, 100))
1267650600228229401496703205376L
The unpacking call syntax form is newer than the apply function, is preferred in general, and
 is required in 3.X. (Technically, the syntax was added in 2.0; the function was deprecated in 2.3, is still usable without warning in 2.7, but is gone in 3.X.) Apart from its symmetry with the * collector forms in def headers, and the fact that it requires
 fewer keystrokes, the newer call syntax also allows us to pass along
 additional arguments without having to manually extend argument
 sequences or dictionaries:
>>> echo(0, c=5, *pargs, **kargs) # Normal, keyword, *sequence, **dictionary
(0, 1, 2) {'a': 3, 'c': 5, 'b': 4}
That is, the call syntax form is more
 general. Since it’s required in 3.X, you should now disavow
 all knowledge of apply (unless, of
 course, it appears in 2.X code you must use or maintain...).

Python 3.X Keyword-Only Arguments
Python 3.X generalizes the ordering rules in function headers to allow us to
 specify keyword-only arguments—arguments that must
 be passed by keyword only and will never be filled in by a positional
 argument. This is useful if we want a function to both process any
 number of arguments and accept possibly optional configuration
 options.
Syntactically, keyword-only arguments are coded as named arguments
 that may appear after *args in the
 arguments list. All such arguments must be passed using keyword syntax
 in the call. For example, in the following, a may be passed by name or position, b collects any extra positional arguments, and
 c must be passed by keyword only. In
 3.X:
>>> def kwonly(a, *b, c):
 print(a, b, c)

>>> kwonly(1, 2, c=3)
1 (2,) 3
>>> kwonly(a=1, c=3)
1 () 3
>>> kwonly(1, 2, 3)
TypeError: kwonly() missing 1 required keyword-only argument: 'c'
We can also use a * character
 by itself in the arguments list to indicate that a function does not
 accept a variable-length argument list but still expects all arguments
 following the * to be passed as
 keywords. In the next function, a may
 be passed by position or name again, but b and c
 must be keywords, and no extra positionals are allowed:
>>> def kwonly(a, *, b, c):
 print(a, b, c)

>>> kwonly(1, c=3, b=2)
1 2 3
>>> kwonly(c=3, b=2, a=1)
1 2 3
>>> kwonly(1, 2, 3)
TypeError: kwonly() takes 1 positional argument but 3 were given
>>> kwonly(1)
TypeError: kwonly() missing 2 required keyword-only arguments: 'b' and 'c'
You can still use defaults for keyword-only arguments, even though
 they appear after the * in the
 function header. In the following code, a may be passed by name or position, and
 b and c are optional but must be passed by keyword
 if used:
>>> def kwonly(a, *, b='spam', c='ham'):
 print(a, b, c)

>>> kwonly(1)
1 spam ham
>>> kwonly(1, c=3)
1 spam 3
>>> kwonly(a=1)
1 spam ham
>>> kwonly(c=3, b=2, a=1)
1 2 3
>>> kwonly(1, 2)
TypeError: kwonly() takes 1 positional argument but 2 were given
In fact, keyword-only arguments with defaults are optional, but
 those without defaults effectively become required
 keywords for the function:
>>> def kwonly(a, *, b, c='spam'):
 print(a, b, c)

>>> kwonly(1, b='eggs')
1 eggs spam
>>> kwonly(1, c='eggs')
TypeError: kwonly() missing 1 required keyword-only argument: 'b'
>>> kwonly(1, 2)
TypeError: kwonly() takes 1 positional argument but 2 were given

>>> def kwonly(a, *, b=1, c, d=2):
 print(a, b, c, d)

>>> kwonly(3, c=4)
3 1 4 2
>>> kwonly(3, c=4, b=5)
3 5 4 2
>>> kwonly(3)
TypeError: kwonly() missing 1 required keyword-only argument: 'c'
>>> kwonly(1, 2, 3)
TypeError: kwonly() takes 1 positional argument but 3 were given
Ordering rules
Finally, note that keyword-only arguments must be specified
 after a single star, not two—named arguments cannot appear after the
 **args arbitrary keywords form, and
 a ** can’t appear by itself in the
 arguments list. Both attempts generate a syntax error:
>>> def kwonly(a, **pargs, b, c):
SyntaxError: invalid syntax
>>> def kwonly(a, **, b, c):
SyntaxError: invalid syntax
This means that in a function header,
 keyword-only arguments must be coded before the **args arbitrary keywords form and after the
 *args arbitrary positional form,
 when both are present. Whenever an argument name appears before
 *args, it is a possibly default
 positional argument, not keyword-only:
>>> def f(a, *b, **d, c=6): print(a, b, c, d) # Keyword-only before **!
SyntaxError: invalid syntax

>>> def f(a, *b, c=6, **d): print(a, b, c, d) # Collect args in header

>>> f(1, 2, 3, x=4, y=5) # Default used
1 (2, 3) 6 {'y': 5, 'x': 4}

>>> f(1, 2, 3, x=4, y=5, c=7) # Override default
1 (2, 3) 7 {'y': 5, 'x': 4}

>>> f(1, 2, 3, c=7, x=4, y=5) # Anywhere in keywords
1 (2, 3) 7 {'y': 5, 'x': 4}

>>> def f(a, c=6, *b, **d): print(a, b, c, d) # c is not keyword-only here!

>>> f(1, 2, 3, x=4)
1 (3,) 2 {'x': 4}
In fact, similar ordering rules hold true in function
 calls: when keyword-only arguments are passed,
 they must appear before a **args
 form. The keyword-only argument can be coded either before or after
 the *args, though, and may be
 included in **args:
>>> def f(a, *b, c=6, **d): print(a, b, c, d) # KW-only between * and **

>>> f(1, *(2, 3), **dict(x=4, y=5)) # Unpack args at call
1 (2, 3) 6 {'y': 5, 'x': 4}

>>> f(1, *(2, 3), **dict(x=4, y=5), c=7) # Keywords before **args!
SyntaxError: invalid syntax

>>> f(1, *(2, 3), c=7, **dict(x=4, y=5)) # Override default
1 (2, 3) 7 {'y': 5, 'x': 4}

>>> f(1, c=7, *(2, 3), **dict(x=4, y=5)) # After or before *
1 (2, 3) 7 {'y': 5, 'x': 4}

>>> f(1, *(2, 3), **dict(x=4, y=5, c=7)) # Keyword-only in **
1 (2, 3) 7 {'y': 5, 'x': 4}
Trace through these cases on your own, in conjunction with the
 general argument-ordering rules described formally earlier. They may
 appear to be worst cases in the artificial examples here, but they can
 come up in real practice, especially for people who write libraries
 and tools for other Python programmers to use.

Why keyword-only arguments?
So why care about keyword-only arguments? In short, they make it
 easier to allow a function to accept both any number of positional
 arguments to be processed, and configuration options passed as
 keywords. While their use is optional, without keyword-only arguments
 extra work may be required to provide defaults for such options and to
 verify that no superfluous keywords were passed.
Imagine a function that processes a set of passed-in objects and
 allows a tracing flag to be passed:
process(X, Y, Z) # Use flag's default
process(X, Y, notify=True) # Override flag default
Without keyword-only arguments we have to use both *args and
 **args and manually inspect the
 keywords, but with keyword-only arguments less code is required. The
 following guarantees that no positional argument will be incorrectly
 matched against notify and requires
 that it be a keyword if passed:
def process(*args, notify=False): ...
Since we’re going to see a more realistic example of this later
 in this chapter, in “Emulating the Python 3.X print Function,” I’ll
 postpone the rest of this story until then. For an additional example
 of keyword-only arguments in action, see the iteration options timing
 case study in Chapter 21. And for
 additional function definition enhancements in Python 3.X, stay tuned
 for the discussion of function annotation syntax in Chapter 19.

The min Wakeup Call!
OK—it’s time for something more realistic. To make this chapter’s concepts
 more concrete, let’s work through an exercise that demonstrates a
 practical application of argument-matching tools.
Suppose you want to code a function that is able to compute the
 minimum value from an arbitrary set of arguments and an arbitrary set of
 object data types. That is, the function should accept zero or more
 arguments, as many as you wish to pass. Moreover, the function should work
 for all kinds of Python object types: numbers, strings, lists, lists of
 dictionaries, files, and even None. (To
 be fair, Python 3.X users don’t need to support dictionaries, because
 their dictionaries don’t support direct comparisons; see Chapters 8 and
 9.)
The first requirement provides a natural example of how the * feature can be put to good use—we can collect
 arguments into a tuple and step over each of them in turn with a simple
 for loop. The second part of the
 problem definition is easy: because every object type supports
 comparisons, we don’t have to specialize the function per type (an
 application of polymorphism); we can simply compare
 objects blindly and let Python worry about what sort of comparison to
 perform according to the objects being compared.
Full Credit
The following file shows three ways to code this operation, at
 least one of which was suggested by a student in one of my courses (this
 example is often a group exercise to circumvent dozing after
 lunch):
	The first function fetches the first argument (args is a tuple) and traverses the rest by
 slicing off the first (there’s no point in comparing an object to
 itself, especially if it might be a large structure).

	The second version lets Python pick off the first and rest of
 the arguments automatically, and so avoids an index and
 slice.

	The third converts from a tuple to a list with the built-in
 list call and employs the list
 sort method.

The sort method is coded in C,
 so it can be quicker than the other approaches at times, but the linear
 scans of the first two techniques may make them faster much of the
 time.1 The file mins.py
 contains the code for all three solutions:
def min1(*args):
 res = args[0]
 for arg in args[1:]:
 if arg < res:
 res = arg
 return res

def min2(first, *rest):
 for arg in rest:
 if arg < first:
 first = arg
 return first

def min3(*args):
 tmp = list(args) # Or, in Python 2.4+: return sorted(args)[0]
 tmp.sort()
 return tmp[0]

print(min1(3, 4, 1, 2))
print(min2("bb", "aa"))
print(min3([2,2], [1,1], [3,3]))
All three solutions produce the same result when the file is run.
 Try typing a few calls interactively to experiment with these on your
 own:
% python mins.py
1
aa
[1, 1]
Notice that none of these three variants tests for the case where
 no arguments are passed in. They could, but there’s no point in doing so
 here—in all three solutions, Python will automatically raise an
 exception if no arguments are passed in. The first variant raises an
 exception when we try to fetch item 0, the second when Python detects an
 argument list mismatch, and the third when we try to return item 0 at
 the end.
This is exactly what we want to happen—because these functions
 support any data type, there is no valid sentinel value that we could
 pass back to designate an error, so we may as well let the exception be
 raised. There are exceptions to this rule (e.g., you might test for
 errors yourself if you’d rather avoid actions run before reaching the
 code that triggers an error automatically), but in general it’s better
 to assume that arguments will work in your functions’ code and let
 Python raise errors for you when they do not.

Bonus Points
You can get bonus points here for changing these functions to
 compute the maximum, rather than minimum, values.
 This one’s easy: the first two versions only require changing < to >, and the third simply requires that we
 return tmp[−1] instead of tmp[0]. For an extra point, be sure to set the
 function name to “max” as well (though this part is strictly
 optional).
It’s also possible to generalize a single function to compute
 either a minimum or a maximum value, by evaluating
 comparison expression strings with a tool like the eval built-in function (see the library
 manual, and various appearances here, especially in Chapter 10) or passing in an arbitrary
 comparison function. The file minmax.py shows how to implement the latter
 scheme:
def minmax(test, *args):
 res = args[0]
 for arg in args[1:]:
 if test(arg, res):
 res = arg
 return res

def lessthan(x, y): return x < y # See also: lambda, eval
def grtrthan(x, y): return x > y

print(minmax(lessthan, 4, 2, 1, 5, 6, 3)) # Self-test code
print(minmax(grtrthan, 4, 2, 1, 5, 6, 3))

% python minmax.py
1
6
Functions are another kind of object that can be passed into a
 function like this one. To make this a max (or other) function, for example, we
 simply pass in the right sort of test
 function. This may seem like extra work, but the main point of
 generalizing functions this way—instead of cutting and pasting to change
 just a single character—is that we’ll only have one version to change in
 the future, not two.

The Punch Line...
Of course, all this was just a coding exercise. There’s really no
 reason to code min or max functions, because both are built-ins in
 Python! We met them briefly in Chapter 5 in
 conjunction with numeric tools, and again in Chapter 14 when exploring iteration
 contexts. The built-in versions work almost exactly like ours, but
 they’re coded in C for optimal speed and accept either a single iterable
 or multiple arguments. Still, though it’s superfluous in this context,
 the general coding pattern we used here might be useful in other
 scenarios.

Generalized Set Functions
Let’s look at a more useful example of special argument-matching modes at work.
 At the end of Chapter 16, we wrote a function that
 returned the intersection of two sequences (it picked out items that
 appeared in both). Here is a version that intersects an arbitrary number
 of sequences (one or more) by using the varargs matching form *args to collect all the passed-in arguments.
 Because the arguments come in as a tuple, we can process them in a simple
 for loop. Just for fun, we’ll code a
 union function that also accepts an
 arbitrary number of arguments to collect items that appear in any of the
 operands:
def intersect(*args):
 res = []
 for x in args[0]: # Scan first sequence
 if x in res: continue # Skip duplicates
 for other in args[1:]: # For all other args
 if x not in other: break # Item in each one?
 else: # No: break out of loop
 res.append(x) # Yes: add items to end
 return res

def union(*args):
 res = []
 for seq in args: # For all args
 for x in seq: # For all nodes
 if not x in res:
 res.append(x) # Add new items to result
 return res
Because these are tools potentially worth reusing (and they’re too
 big to retype interactively), we’ll store the functions in a module file
 called inter2.py (if you’ve forgotten
 how modules and imports work, see the introduction in Chapter 3, or stay tuned for in-depth coverage in
 Part V). In both functions, the arguments
 passed in at the call come in as the args tuple. As in the original intersect, both work on any kind of sequence.
 Here, they are processing strings, mixed types, and more than two
 sequences:
% python
>>> from inter2 import intersect, union
>>> s1, s2, s3 = "SPAM", "SCAM", "SLAM"

>>> intersect(s1, s2), union(s1, s2) # Two operands
(['S', 'A', 'M'], ['S', 'P', 'A', 'M', 'C'])

>>> intersect([1, 2, 3], (1, 4)) # Mixed types
[1]

>>> intersect(s1, s2, s3) # Three operands
['S', 'A', 'M']

>>> union(s1, s2, s3)
['S', 'P', 'A', 'M', 'C', 'L']
To test more thoroughly, the following codes a function to apply the
 two tools to arguments in different orders using a simple shuffling
 technique that we saw in Chapter 13—it slices
 to move the first to the end on each loop, uses a * to unpack arguments, and sorts so results are
 comparable:
>>> def tester(func, items, trace=True):
 for i in range(len(items)):
 items = items[1:] + items[:1]
 if trace: print(items)
 print(sorted(func(*items)))

>>> tester(intersect, ('a', 'abcdefg', 'abdst', 'albmcnd'))
('abcdefg', 'abdst', 'albmcnd', 'a')
['a']
('abdst', 'albmcnd', 'a', 'abcdefg')
['a']
('albmcnd', 'a', 'abcdefg', 'abdst')
['a']
('a', 'abcdefg', 'abdst', 'albmcnd')
['a']

>>> tester(union, ('a', 'abcdefg', 'abdst', 'albmcnd'), False)
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'l', 'm', 'n', 's', 't']
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'l', 'm', 'n', 's', 't']
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'l', 'm', 'n', 's', 't']
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'l', 'm', 'n', 's', 't']

>>> tester(intersect, ('ba', 'abcdefg', 'abdst', 'albmcnd'), False)
['a', 'b']
['a', 'b']
['a', 'b']
['a', 'b']
The argument scrambling here doesn’t generate all possible argument
 orders (that would require a full permutation, and 24 orderings for 4
 arguments), but suffices to check if argument order impacts results here.
 If you test these further, you’ll notice that
 duplicates won’t appear in either intersection or
 union results, which qualify them as set operations from a mathematical
 perspective:
>>> intersect([1, 2, 1, 3], (1, 1, 4))
[1]
>>> union([1, 2, 1, 3], (1, 1, 4))
[1, 2, 3, 4]
>>> tester(intersect, ('ababa', 'abcdefga', 'aaaab'), False)
['a', 'b']
['a', 'b']
['a', 'b']
These are still far from optimal from an algorithmic perspective,
 but due to the following note, we’ll leave further improvements to this
 code as suggested exercise. Also notice that the argument scrambling in
 our tester function might be a generally useful tool, and the tester would
 be simpler if we delegated this to another function, one that would be
 free to create or generate argument combinations as it saw fit:
>>> def tester(func, items, trace=True):
 for args in scramble(items):
 ...use args...
In fact we will—watch for this example to be revised in Chapter 20 to address this last point,
 after we’ve learned how to code user-defined
 generators. We’ll also recode the set operations one
 last time in Chapter 32 and a solution to a
 Part VI exercise as
 classes that extend the list object with methods.
Note
Because Python now has a set object type
 (described in Chapter 5), none of the
 set-processing examples in this book are strictly required anymore; they
 are included just as demonstrations of coding techniques, and are today
 instructional only. Because it’s constantly improving and growing,
 Python has an uncanny way of conspiring to make my book examples
 obsolete over time!

Emulating the Python 3.X print Function
To round out the chapter, let’s look at one last example of argument matching at work.
 The code you’ll see here is intended for use in Python 2.X or earlier (it
 works in 3.X, too, but is pointless there): it uses both the *args arbitrary positional tuple and the
 **args arbitrary keyword-arguments
 dictionary to simulate most of what the Python 3.X print function does. Python might have offered
 code like this as an option in 3.X rather than
 removing the 2.X print entirely, but
 3.X chose a clean break with the past instead.
As we learned in Chapter 11, this isn’t actually
 required, because 2.X programmers can always enable the 3.X print function with an import of this form
 (available in 2.6 and 2.7):
from __future__ import print_function
To demonstrate argument matching in general, though, the following
 file, print3.py, does the same job in
 a small amount of reusable code, by building up the print string and
 routing it per configuration arguments:
#!python
"""
Emulate most of the 3.X print function for use in 2.X (and 3.X).
Call signature: print3(*args, sep=' ', end='\n', file=sys.stdout)
"""
import sys

def print3(*args, **kargs):
 sep = kargs.get('sep', ' ') # Keyword arg defaults
 end = kargs.get('end', '\n')
 file = kargs.get('file', sys.stdout)
 output = ''
 first = True
 for arg in args:
 output += ('' if first else sep) + str(arg)
 first = False
 file.write(output + end)
To test it, import this into another file or the interactive prompt,
 and use it like the 3.X print function.
 Here is a test script, testprint3.py
 (notice that the function must be called “print3”, because “print” is a
 reserved word in 2.X):
from print3 import print3
print3(1, 2, 3)
print3(1, 2, 3, sep='') # Suppress separator
print3(1, 2, 3, sep='...')
print3(1, [2], (3,), sep='...') # Various object types

print3(4, 5, 6, sep='', end='') # Suppress newline
print3(7, 8, 9)
print3() # Add newline (or blank line)

import sys
print3(1, 2, 3, sep='??', end='.\n', file=sys.stderr) # Redirect to file
When this is run under 2.X, we get the same results as 3.X’s
 print function:
C:\code> c:\python27\python testprint3.py
1 2 3
123
1...2...3
1...[2]...(3,)
4567 8 9

1??2??3.
Although pointless in 3.X, the results are identical when run there.
 As usual, the generality of Python’s design allows us to prototype or
 develop concepts in the Python language itself. In this case,
 argument-matching tools are as flexible in Python code as they are in
 Python’s internal implementation.
Using Keyword-Only Arguments
It’s interesting to notice that this example could be coded with Python 3.X
 keyword-only arguments, described earlier in this chapter, to
 automatically validate configuration arguments. The following variant,
 in the file print3_alt1.py,
 illustrates:
#!python3
"Use 3.X only keyword-only args"
import sys

def print3(*args, sep=' ', end='\n', file=sys.stdout):
 output = ''
 first = True
 for arg in args:
 output += ('' if first else sep) + str(arg)
 first = False
 file.write(output + end)
This version works the same as the original, and it’s a prime
 example of how keyword-only arguments come in handy. The original
 version assumes that all positional arguments are to be printed, and all
 keywords are for options only. That’s almost sufficient, but any extra
 keyword arguments are silently ignored. A call like the following, for
 instance, will generate an exception correctly with the keyword-only
 form:
>>> print3(99, name='bob')
TypeError: print3() got an unexpected keyword argument 'name'
but will silently ignore the name argument in the original version. To
 detect superfluous keywords manually, we could use dict.pop() to
 delete fetched entries, and check if the dictionary is not empty. The
 following version, in the file print3_alt2.py, is equivalent to the
 keyword-only version—it triggers a built-in exception with a raise statement,
 which works just as though Python had done so (we’ll study this in more
 detail in Part VII):
#!python
"Use 2.X/3.X keyword args deletion with defaults"
import sys

def print3(*args, **kargs):
 sep = kargs.pop('sep', ' ')
 end = kargs.pop('end', '\n')
 file = kargs.pop('file', sys.stdout)
 if kargs: raise TypeError('extra keywords: %s' % kargs)
 output = ''
 first = True
 for arg in args:
 output += ('' if first else sep) + str(arg)
 first = False
 file.write(output + end)
This works as before, but it now catches extraneous keyword
 arguments, too:
>>> print3(99, name='bob')
TypeError: extra keywords: {'name': 'bob'}
This version of the function runs under Python 2.X, but it
 requires four more lines of code than the keyword-only version.
 Unfortunately, the extra code is unavoidable in this case—the
 keyword-only version works on 3.X only, which negates most of the reason
 that I wrote this example in the first place: a 3.X emulator that only
 works on 3.X isn’t incredibly useful! In programs written to run on 3.X
 only, though, keyword-only arguments can simplify a specific category of
 functions that accept both arguments and options. For another example of
 3.X keyword-only arguments, be sure to see the iteration timing
 case study in Chapter 21.
Why You Will Care: Keyword Arguments
As you can probably tell, advanced argument-matching modes can
 be complex. They are also largely optional in your code; you can get
 by with just simple positional matching, and it’s probably a good idea
 to do so when you’re starting out. However, because some Python tools
 make use of them, some general knowledge of these modes is
 important.
For example, keyword arguments play an important role in tkinter, the
 de facto standard GUI API for Python (this module’s name is Tkinter in Python 2.X). We touch on tkinter only briefly at various points in
 this book, but in terms of its call patterns, keyword arguments set
 configuration options when GUI components are built. For instance, a
 call of the form:
from tkinter import *
widget = Button(text="Press me", command=someFunction)
creates a new button and specifies its text and callback
 function, using the text and
 command keyword arguments. Since
 the number of configuration options for a widget can be large, keyword
 arguments let you pick and choose which to apply. Without them, you
 might have to either list all the possible options by position or hope
 for a judicious positional argument defaults protocol that would
 handle every possible option arrangement.
Many built-in functions in Python expect us to use keywords for
 usage-mode options as well, which may or may not have defaults. As we
 learned in Chapter 8, for instance,
 the sorted built-in:
sorted(iterable, key=None, reverse=False)
expects us to pass an iterable object to be sorted, but also
 allows us to pass in optional keyword arguments to specify a
 dictionary sort key function and a reversal flag, which default to
 None and False, respectively. Since we normally don’t
 use these options, they may be omitted to use defaults.
As we’ve also seen, the dict,
 str.format, and 3.X print calls accept keywords as well—other
 usages we had to introduce in earlier chapters because of their
 forward dependence on argument-passing modes we’ve studied here (alas,
 those who change Python already know Python!).

Chapter Summary
In this chapter, we studied the second of two key concepts related
 to functions: arguments—how objects are passed into a
 function. As we learned, arguments are passed into a function by
 assignment, which means by object reference (which really means by
 pointer). We also studied some more advanced extensions, including default
 and keyword arguments, tools for using arbitrarily many arguments, and
 keyword-only arguments in 3.X. Finally, we saw how mutable arguments can
 exhibit the same behavior as other shared references to objects—unless the
 object is explicitly copied when it’s sent in, changing a passed-in
 mutable in a function can impact the caller.
The next chapter continues our look at functions by exploring some
 more advanced function-related ideas: function annotations, recursion,
 lambdas, and functional tools such as
 map and filter. Many of these concepts stem from the
 fact that functions are normal objects in Python, and so support some
 advanced and very flexible processing modes. Before diving into those
 topics, however, take this chapter’s quiz to review the argument ideas
 we’ve studied here.

Test Your Knowledge: Quiz
In most of this quiz’s questions, results may vary slightly in 2.X—with
 enclosing parentheses and commas when multiple values are printed. To
 match the 3.X answers exactly in 2.X, import print_function from __future__ before starting.
	What is the output of the following code, and why?
>>> def func(a, b=4, c=5):
 print(a, b, c)

>>> func(1, 2)

	What is the output of this code, and why?
>>> def func(a, b, c=5):
 print(a, b, c)

>>> func(1, c=3, b=2)

	How about this code: what is its output, and why?
>>> def func(a, *pargs):
 print(a, pargs)

>>> func(1, 2, 3)

	What does this code print, and why?
>>> def func(a, **kargs):
 print(a, kargs)

>>> func(a=1, c=3, b=2)

	What gets printed by this, and why?
>>> def func(a, b, c=3, d=4): print(a, b, c, d)

>>> func(1, *(5, 6))

	One last time: what is the output of this code, and why?
>>> def func(a, b, c): a = 2; b[0] = 'x'; c['a'] = 'y'

>>> l=1; m=[1]; n={'a':0}
>>> func(l, m, n)
>>> l, m, n

Test Your Knowledge: Answers
	The output here is 1 2 5,
 because 1 and 2 are passed to a and b
 by position, and c is omitted in
 the call and defaults to 5.

	The output this time is 1 2
 3: 1 is passed to
 a by position, and b and c
 are passed 2 and 3 by name (the left-to-right order doesn’t
 matter when keyword arguments are used like this).

	This code prints 1 (2, 3),
 because 1 is passed to a and the *pargs collects the remaining positional
 arguments into a new tuple object. We can step through the extra
 positional arguments tuple with any iteration tool (e.g., for arg in pargs: ...).

	This time the code prints 1 {'b': 2,
 'c': 3}, because 1 is
 passed to a by name and the
 **kargs collects the remaining
 keyword arguments into a dictionary. We could step through the extra
 keyword arguments dictionary by key with any iteration tool (e.g.,
 for key in kargs: ...). Note that
 the order of the dictionary’s keys may vary per Python and other
 variables.

	The output here is 1 5 6 4:
 the 1 matches a by position, 5 and 6
 match b and c by *name positionals (6 overrides c’s default), and d defaults to 4 because it was not passed a value.

	This displays (1, ['x'], {'a':
 'y'})—the first assignment in the function doesn’t impact
 the caller, but the second two do because they change passed-in
 mutable objects in place.

1 Actually, this is fairly complicated. The Python sort routine is coded in C and uses a
 highly optimized algorithm that attempts to take advantage of
 partial ordering in the items to be sorted. It’s named “timsort”
 after Tim Peters, its creator, and in its documentation it claims to
 have “supernatural performance” at times (pretty good, for a sort!).
 Still, sorting is an inherently exponential operation (it must chop
 up the sequence and put it back together many times), and the other
 versions simply perform one linear left-to-right scan. The net
 effect is that sorting is quicker if the arguments are partially
 ordered, but is likely to be slower otherwise (this still holds true
 in test runs in 3.3). Even so, Python performance can change over
 time, and the fact that sorting is implemented in the C language can
 help greatly; for an exact analysis, you should time the
 alternatives with the time or
 timeit modules—we’ll see how in
 Chapter 21.

Chapter 19. Advanced Function Topics
This chapter introduces a collection of more advanced function-related
 topics: recursive functions, function attributes and annotations, the
 lambda expression, and functional
 programming tools such as map and
 filter. These are all somewhat advanced
 tools that, depending on your job description, you may not encounter on a
 regular basis. Because of their roles in some domains, though, a basic
 understanding can be useful; lambdas, for
 instance, are regular customers in GUIs, and functional programming
 techniques are increasingly common in Python code.
Part of the art of using functions lies in the interfaces between
 them, so we will also explore some general function design principles here.
 The next chapter continues this advanced theme with an exploration of
 generator functions and expressions and a revival of list comprehensions in
 the context of the functional tools we will study here.
Function Design Concepts
Now that we’ve had a chance to study function basics in Python, let’s begin this
 chapter with a few words of context. When you start using functions in
 earnest, you’re faced with choices about how to glue components
 together—for instance, how to decompose a task into purposeful functions
 (known as cohesion), how your functions should communicate (called
 coupling), and so on. You also need to take into account concepts
 such as the size of your functions, because they directly impact code
 usability. Some of this falls into the category of structured analysis and
 design, but it applies to Python code as to any other.
We introduced some ideas related to function and module coupling in
 Chapter 17 when studying scopes, but here is a review of a
 few general guidelines for readers new to function design
 principles:
	Coupling: use arguments for inputs
 and return for outputs. Generally, you should strive to
 make a function independent of things outside of it. Arguments and
 return statements are often the
 best ways to isolate external dependencies to a small number of
 well-known places in your code.

	Coupling: use global variables only when
 truly necessary. Global variables (i.e., names in the
 enclosing module) are usually a poor way for functions to communicate.
 They can create dependencies and timing issues that make programs
 difficult to debug, change, and reuse.

	Coupling: don’t change mutable arguments
 unless the caller expects it. Functions can change parts of
 passed-in mutable objects, but (as with global variables) this creates
 a tight coupling between the caller and callee, which can make a
 function too specific and brittle.

	Cohesion: each function should have a
 single, unified purpose. When designed well, each of your
 functions should do one thing—something you can summarize in a simple
 declarative sentence. If that sentence is very broad (e.g., “this
 function implements my whole program”), or contains lots of
 conjunctions (e.g., “this function gives employee raises
 and submits a pizza order”), you might want to
 think about splitting it into separate and simpler functions.
 Otherwise, there is no way to reuse the code behind the steps mixed
 together in the function.

	Size: each function should be relatively
 small. This naturally follows from the preceding goal, but
 if your functions start spanning multiple pages on your display, it’s
 probably time to split them. Especially given that Python code is so
 concise to begin with, a long or deeply nested function is often a
 symptom of design problems. Keep it simple, and keep it short.

	Coupling: avoid changing variables in
 another module file directly. We introduced this concept in
 Chapter 17, and we’ll revisit it in the next part of
 the book when we focus on modules. For reference, though, remember
 that changing variables across file boundaries sets up a coupling
 between modules similar to how global variables couple functions—the
 modules become difficult to understand and reuse. Use accessor functions whenever possible, instead of direct
 assignment statements.

Figure 19-1
 summarizes the ways functions can talk to the outside world; inputs may
 come from items on the left side, and results may be sent out in any of
 the forms on the right. Good function designers prefer to use only
 arguments for inputs and return
 statements for outputs, whenever possible.
Figure 19-1. Function execution environment. Functions may obtain input and
 produce output in a variety of ways, though functions are usually easier
 to understand and maintain if you use arguments for input and return
 statements and anticipated mutable argument changes for output. In
 Python 3.X only, outputs may also take the form of declared nonlocal
 names that exist in an enclosing function scope.

Of course, there are plenty of exceptions to the preceding design
 rules, including some related to Python’s OOP support. As you’ll see in Part VI, Python classes depend
 on changing a passed-in mutable object—class functions set attributes of
 an automatically passed-in argument called self to change per-object state information (e.g., self.name='bob'). Moreover, if classes are not
 used, global variables are often the most straightforward way for
 functions in modules to retain single-copy state between calls. Side
 effects are usually dangerous only if they’re unexpected.
In general though, you should strive to minimize external
 dependencies in functions and other program components. The more
 self-contained a function is, the easier it will be
 to understand, reuse, and modify.

Recursive Functions
We mentioned recursion in relation to comparisons of core types in Chapter 9. While discussing
 scope rules near the start of Chapter 17, we also briefly
 noted that Python supports recursive
 functions—functions that call themselves either directly or
 indirectly in order to loop. In this section, we’ll explore what this
 looks like in our functions’ code.
Recursion is a somewhat advanced topic, and it’s relatively rare to
 see in Python, partly because Python’s procedural statements include
 simpler looping structures. Still, it’s a useful technique to know about,
 as it allows programs to traverse structures that have arbitrary and
 unpredictable shapes and depths—planning travel routes, analyzing
 language, and crawling links on the Web, for example. Recursion is even an
 alternative to simple loops and iterations, though not necessarily the
 simplest or most efficient one.
Summation with Recursion
Let’s look at some examples. To sum a list (or other sequence) of numbers, we can either
 use the built-in sum function or
 write a more custom version of our own. Here’s what a custom summing
 function might look like when coded with recursion:
>>> def mysum(L):
 if not L:
 return 0
 else:
 return L[0] + mysum(L[1:]) # Call myself recursively

>>> mysum([1, 2, 3, 4, 5])
15
At each level, this function calls itself recursively to compute
 the sum of the rest of the list, which is later
 added to the item at the front. The recursive loop
 ends and zero is returned when the list becomes empty. When using
 recursion like this, each open level of call to the function has its own
 copy of the function’s local scope on the runtime call stack—here, that
 means L is different in each
 level.
If this is difficult to understand (and it often is for new
 programmers), try adding a print of
 L to the function and run it again,
 to trace the current list at each call level:
>>> def mysum(L):
 print(L) # Trace recursive levels
 if not L: # L shorter at each level
 return 0
 else:
 return L[0] + mysum(L[1:])

>>> mysum([1, 2, 3, 4, 5])
[1, 2, 3, 4, 5]
[2, 3, 4, 5]
[3, 4, 5]
[4, 5]
[5]
[]
15
As you can see, the list to be summed grows smaller at each
 recursive level, until it becomes empty—the termination of the recursive
 loop. The sum is computed as the recursive calls unwind on
 returns.

Coding Alternatives
Interestingly, we can use Python’s if/else ternary expression (described in Chapter 12) to save some code real estate
 here. We can also generalize for any summable type (which is easier if
 we assume at least one item in the input, as we did in Chapter 18’s minimum value example) and use Python 3.X’s
 extended sequence assignment to make the first/rest unpacking simpler
 (as covered in Chapter 11):
def mysum(L):
 return 0 if not L else L[0] + mysum(L[1:]) # Use ternary expression

def mysum(L):
 return L[0] if len(L) == 1 else L[0] + mysum(L[1:]) # Any type, assume one

def mysum(L):
 first, *rest = L
 return first if not rest else first + mysum(rest) # Use 3.X ext seq assign
The latter two of these fail for empty lists but allow for
 sequences of any object type that supports +, not just numbers:
>>> mysum([1]) # mysum([]) fails in last 2
1
>>> mysum([1, 2, 3, 4, 5])
15
>>> mysum(('s', 'p', 'a', 'm')) # But various types now work
'spam'
>>> mysum(['spam', 'ham', 'eggs'])
'spamhameggs'
Run these on your own for more insight. If you study these three
 variants, you’ll find that:
	The latter two also work on a single string argument (e.g.,
 mysum('spam')), because strings
 are sequences of one-character strings.

	The third variant works on arbitrary iterables, including open
 input files (mysum(open(name))), but the others do not because they
 index (Chapter 14 illustrates
 extended sequence assignment on files).

	The function header def mysum(first,
 *rest), although similar to the third variant, wouldn’t
 work at all, because it expects individual arguments, not a single
 iterable.

Keep in mind that recursion can be direct, as in the examples so
 far, or indirect, as in the following (a function
 that calls another function, which calls back to its caller). The net
 effect is the same, though there are two function calls at each level
 instead of one:
>>> def mysum(L):
 if not L: return 0
 return nonempty(L) # Call a function that calls me

>>> def nonempty(L):
 return L[0] + mysum(L[1:]) # Indirectly recursive

>>> mysum([1.1, 2.2, 3.3, 4.4])
11.0

Loop Statements Versus Recursion
Though recursion works for summing in the prior sections’ examples, it’s probably
 overkill in this context. In fact, recursion is not used nearly as often
 in Python as in more esoteric languages like Prolog or Lisp, because
 Python emphasizes simpler procedural statements like loops, which are
 usually more natural. The while, for example,
 often makes things a bit more concrete, and it doesn’t require that a
 function be defined to allow recursive calls:
>>> L = [1, 2, 3, 4, 5]
>>> sum = 0
>>> while L:
 sum += L[0]
 L = L[1:]

>>> sum
15
Better yet, for loops iterate
 for us automatically, making recursion largely extraneous in many
 cases (and, in all likelihood, less efficient in terms of memory space
 and execution time):
>>> L = [1, 2, 3, 4, 5]
>>> sum = 0
>>> for x in L: sum += x

>>> sum
15
With looping statements, we don’t require a fresh copy of a local
 scope on the call stack for each iteration, and we avoid the speed costs
 associated with function calls in general. (Stay tuned for Chapter 21’s timer case study for ways to
 compare the execution times of alternatives like these.)

Handling Arbitrary Structures
On the other hand, recursion—or equivalent explicit stack-based algorithms
 we’ll meet shortly—can be required to traverse arbitrarily shaped
 structures. As a simple example of recursion’s role in this context,
 consider the task of computing the sum of all the numbers in a nested
 sublists structure like this:
[1, [2, [3, 4], 5], 6, [7, 8]] # Arbitrarily nested sublists
Simple looping statements won’t work here because this is not a
 linear iteration. Nested looping statements do not suffice either,
 because the sublists may be nested to arbitrary depth and in an
 arbitrary shape—there’s no way to know how many nested loops to code to
 handle all cases. Instead, the following code accommodates such general
 nesting by using recursion to visit sublists along the way:
file sumtree.py

def sumtree(L):
 tot = 0
 for x in L: # For each item at this level
 if not isinstance(x, list):
 tot += x # Add numbers directly
 else:
 tot += sumtree(x) # Recur for sublists
 return tot

L = [1, [2, [3, 4], 5], 6, [7, 8]] # Arbitrary nesting
print(sumtree(L)) # Prints 36

Pathological cases
print(sumtree([1, [2, [3, [4, [5]]]]])) # Prints 15 (right-heavy)
print(sumtree([[[[[1], 2], 3], 4], 5])) # Prints 15 (left-heavy)
Trace through the test cases at the bottom of this script to see
 how recursion traverses their nested lists.
Recursion versus queues and stacks
It sometimes helps to understand that internally, Python implements
 recursion by pushing information on a call stack at each recursive
 call, so it remembers where it must return and continue later. In
 fact, it’s generally possible to implement recursive-style procedures
 without recursive calls, by using an explicit stack or queue of your
 own to keep track of remaining steps.
For instance, the following computes the same sums as the prior
 example, but uses an explicit list to schedule when it will visit
 items in the subject, instead of issuing recursive calls; the item at
 the front of the list is always the next to be processed and
 summed:
def sumtree(L): # Breadth-first, explicit queue
 tot = 0
 items = list(L) # Start with copy of top level
 while items:
 front = items.pop(0) # Fetch/delete front item
 if not isinstance(front, list):
 tot += front # Add numbers directly
 else:
 items.extend(front) # <== Append all in nested list
 return tot
Technically, this code traverses the list in
 breadth-first fashion by levels, because it adds
 nested lists’ contents to the end of the list, forming a
 first-in-first-out queue. To emulate the traversal of the recursive call version
 more closely, we can change it to perform
 depth-first traversal simply by adding the
 content of nested lists to the front of the list, forming a last-in-first-out
 stack:
def sumtree(L): # Depth-first, explicit stack
 tot = 0
 items = list(L) # Start with copy of top level
 while items:
 front = items.pop(0) # Fetch/delete front item
 if not isinstance(front, list):
 tot += front # Add numbers directly
 else:
 items[:0] = front # <== Prepend all in nested list
 return tot
For more on the last two examples (and another variant), see
 file sumtree2.py in the book’s
 examples. It adds items list tracing so you can watch it grow in both
 schemes, and can show numbers as they are visited so you see the
 search order. For instance, the breadth-first and depth-first variants
 visit items in the same three test lists used for the recursive
 version in the following orders, respectively (sums are shown
 last):
c:\code> sumtree2.py
1, 6, 2, 5, 7, 8, 3, 4, 36
1, 2, 3, 4, 5, 15
5, 4, 3, 2, 1, 15
--
1, 2, 3, 4, 5, 6, 7, 8, 36
1, 2, 3, 4, 5, 15
1, 2, 3, 4, 5, 15
--
In general, though, once you get the hang of recursive calls,
 they are more natural than the explicit scheduling lists they
 automate, and are generally preferred unless you need to traverse
 structure in specialized ways. Some programs, for example, perform a
 best-first search that requires an explicit
 search queue ordered by relevance or other criteria. If you
 think of a web crawler that scores pages visited by content, the
 applications may start to become clearer.

Cycles, paths, and stack limits
As is, these programs suffice for our example, but larger
 recursive applications can sometimes require a bit more infrastructure
 than shown here: they may need to avoid cycles or repeats, record
 paths taken for later use, and expand stack space when using recursive
 calls instead of explicit queues or stacks.
For instance, neither the recursive call nor the explicit queue/stack
 examples in this section do anything about avoiding
 cycles—visiting a location already visited.
 That’s not required here, because we’re traversing strictly
 hierarchical list object trees. If data can be a cyclic graph, though,
 both these schemes will fail: the recursive call version will fall
 into an infinite recursive loop (and may run out of call-stack space),
 and the others will fall into simple infinite loops, re-adding the
 same items to their lists (and may or may not run out of general
 memory). Some programs also need to avoid repeated processing for a
 state reached more than once, even if that wouldn’t lead to a
 loop.
To do better, the recursive call version could simply keep and
 pass a set, dictionary, or list of states visited so far and check for
 repeats as it goes. We will use this scheme in later recursive
 examples in this book:
 if state not in visited:
 visited.add(state) # x.add(state), x[state]=True, or x.append(state)
 ...proceed...
The nonrecursive alternatives could similarly avoid adding
 states already visited with code like the following.
 Note that checking for duplicates already on the items list would
 avoid scheduling a state twice, but would not prevent revisiting a
 state traversed earlier and hence removed from that list:
 visited.add(front)
 ...proceed...
 items.extend([x for x in front if x not in visited])
This model doesn’t quite apply to this section’s use case that
 simply adds numbers in lists, but larger applications will be able to
 identify repeated states—a URL of a previously visited web page, for
 instance. In fact, we’ll use such techniques to avoid cycles and
 repeats in later examples listed in the next section.
Some programs may also need to record complete paths for each state
 followed so they can report solutions when finished. In such cases,
 each item in the nonrecursive scheme’s stack or queue may be a full
 path list that suffices for a record of states visited, and contains
 the next item to explore at either end.
Also note that standard Python limits the
 depth of its runtime call stack—crucial to recursive call programs—to
 trap infinite recursion errors. To expand it, use the sys
 module:
>>> sys.getrecursionlimit() # 1000 calls deep default
1000
>>> sys.setrecursionlimit(10000) # Allow deeper nesting
>>> help(sys.setrecursionlimit) # Read more about it
The maximum allowed setting can vary per platform. This isn’t
 required for programs that use stacks or queues to avoid recursive
 calls and gain more control over the traversal process.

More recursion examples
Although this section’s example is artificial, it is representative
 of a larger class of programs; inheritance trees and module import
 chains, for example, can exhibit similarly general structures, and
 computing structures such as permutations can require arbitrarily many
 nested loops. In fact, we will use recursion again in such roles in
 more realistic examples later in this book:
	In Chapter 20’s
 permute.py, to shuffle
 arbitrary sequences

	In Chapter 25’s reloadall.py, to traverse import
 chains

	In Chapter 29’s classtree.py, to traverse class
 inheritance trees

	In Chapter 31’s lister.py, to traverse class
 inheritance trees again

	In Appendix
 D’s solutions to two exercises at the end of this part of
 the book: countdowns and factorials

The second and third of these will also detect states already
 visited to avoid cycles and repeats. Although simple loops should
 generally be preferred to recursion for linear iterations on the
 grounds of simplicity and efficiency, we’ll find that recursion is
 essential in scenarios like those in these later examples.
Moreover, you sometimes need to be aware of the potential of
 unintended recursion in your programs. As you’ll
 also see later in the book, some operator overloading methods in
 classes such as __setattr__ and
 __getattribute__ and even __repr__ have the potential to recursively
 loop if used incorrectly. Recursion is a powerful tool, but it tends
 to be best when both understood and expected!

Function Objects: Attributes and Annotations
Python functions are more flexible than you might think. As we’ve
 seen in this part of the book, functions in Python are much more than
 code-generation specifications for a compiler—Python functions are
 full-blown objects, stored in pieces of memory all
 their own. As such, they can be freely passed around a program and called
 indirectly. They also support operations that have little to do with calls
 at all—attribute storage and annotation.
Indirect Function Calls: “First Class” Objects
Because Python functions are objects, you can write programs that process them
 generically. Function objects may be assigned to other names, passed to
 other functions, embedded in data structures, returned from one function
 to another, and more, as if they were simple numbers or strings.
 Function objects also happen to support a special operation: they can be
 called by listing arguments in parentheses after a function expression.
 Still, functions belong to the same general category as other
 objects.
This is usually called a first-class object
 model; it’s ubiquitous in Python, and a necessary part of
 functional programming. We’ll explore this programming mode more fully
 in this and the next chapter; because its motif is founded on the notion
 of applying functions, functions must be treated as data.
We’ve seen some of these generic use cases for functions in
 earlier examples, but a quick review helps to underscore the object
 model. For example, there’s really nothing special about the name used
 in a def statement: it’s just a
 variable assigned in the current scope, as if it had appeared on the
 left of an = sign. After a def runs, the function name is simply a
 reference to an object—you can reassign that object
 to other names freely and call it through any reference:
>>> def echo(message): # Name echo assigned to function object
 print(message)

>>> echo('Direct call') # Call object through original name
Direct call

>>> x = echo # Now x references the function too
>>> x('Indirect call!') # Call object through name by adding ()
Indirect call!
Because arguments are passed by assigning objects, it’s just as
 easy to pass functions to other functions as
 arguments. The callee may then call the passed-in function just by
 adding arguments in parentheses:
>>> def indirect(func, arg):
 func(arg) # Call the passed-in object by adding ()

>>> indirect(echo, 'Argument call!') # Pass the function to another function
Argument call!
You can even stuff function objects into data structures, as
 though they were integers or strings. The following, for example,
 embeds the function twice in a list of tuples, as a
 sort of actions table. Because Python compound types like these can
 contain any sort of object, there’s no special case here, either:
>>> schedule = [(echo, 'Spam!'), (echo, 'Ham!')]
>>> for (func, arg) in schedule:
 func(arg) # Call functions embedded in containers

Spam!
Ham!
This code simply steps through the schedule list, calling the echo function with one argument each time
 through (notice the tuple-unpacking assignment in the for loop header, introduced in Chapter 13). As we saw in Chapter 17’s examples, functions can also be created and
 returned for use elsewhere—the
 closure created in this mode also retains state
 from the enclosing scope:
>>> def make(label): # Make a function but don't call it
 def echo(message):
 print(label + ':' + message)
 return echo

>>> F = make('Spam') # Label in enclosing scope is retained
>>> F('Ham!') # Call the function that make returned
Spam:Ham!
>>> F('Eggs!')
Spam:Eggs!
Python’s universal first-class object model and lack of type
 declarations make for an incredibly flexible programming
 language.

Function Introspection
Because they are objects, we can also process functions with normal object
 tools. In fact, functions are more flexible than you might expect. For
 instance, once we make a function, we can call it as usual:
>>> def func(a):
 b = 'spam'
 return b * a

>>> func(8)
'spamspamspamspamspamspamspamspam'
But the call expression is just one operation defined to work on
 function objects. We can also inspect their attributes generically (the
 following is run in Python 3.3, but 2.X results are similar):
>>> func.__name__
'func'
>>> dir(func)
['__annotations__', '__call__', '__class__', '__closure__', '__code__',
...more omitted: 34 total...
'__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']
Introspection tools allow us to explore implementation details
 too—functions have attached code objects, for
 example, which provide details on aspects such as the functions’ local
 variables and arguments:
>>> func.__code__
<code object func at 0x00000000021A6030, file "<stdin>", line 1>

>>> dir(func.__code__)
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__',
...more omitted: 37 total...
'co_argcount', 'co_cellvars', 'co_code', 'co_consts', 'co_filename',
'co_firstlineno', 'co_flags', 'co_freevars', 'co_kwonlyargcount', 'co_lnotab',
'co_name', 'co_names', 'co_nlocals', 'co_stacksize', 'co_varnames']

>>> func.__code__.co_varnames
('a', 'b')
>>> func.__code__.co_argcount
1
Tool writers can make use of such information to manage functions
 (in fact, we will too in Chapter 39, to implement
 validation of function arguments in decorators).

Function Attributes
Function objects are not limited to the system-defined attributes listed in the
 prior section, though. As we learned in Chapter 17, it’s
 been possible to attach arbitrary user-defined
 attributes to them as well since Python 2.1:
>>> func
<function func at 0x000000000296A1E0>
>>> func.count = 0
>>> func.count += 1
>>> func.count
1
>>> func.handles = 'Button-Press'
>>> func.handles
'Button-Press'
>>> dir(func)
['__annotations__', '__call__', '__class__', '__closure__', '__code__',
...and more: in 3.X all others have double underscores so your names won't clash...
__str__', '__subclasshook__', 'count', 'handles']
Python’s own implementation-related data stored on functions
 follows naming conventions that prevent them from clashing with the more
 arbitrary attribute names you might assign yourself. In 3.X, all
 function internals’ names have leading and trailing double underscores
 (“__X__”); 2.X follows the same scheme, but also assigns some names that
 begin with “func_X”:
c:\code> py −3
>>> def f(): pass

>>> dir(f)
...run on your own to see...
>>> len(dir(f))
34
>>> [x for x in dir(f) if not x.startswith('__')]
[]

c:\code> py −2
>>> def f(): pass

>>> dir(f)
...run on your own to see...
>>> len(dir(f))
31
>>> [x for x in dir(f) if not x.startswith('__')]
['func_closure', 'func_code', 'func_defaults', 'func_dict', 'func_doc',
'func_globals', 'func_name']
If you’re careful not to name attributes the same way, you can
 safely use the function’s namespace as though it were your own namespace
 or scope.
As we saw in that chapter, such attributes can be used to
 attach state information to function
 objects directly, instead of using other techniques such as globals,
 nonlocals, and classes. Unlike nonlocals, such attributes are accessible
 anywhere the function itself is, even from outside its code.
In a sense, this is also a way to emulate “static locals” in other
 languages—variables whose names are local to a function, but whose
 values are retained after a function exits. Attributes are related to
 objects instead of scopes (and must be referenced through the function
 name within its code), but the net effect is similar.
Moreover, as we learned in Chapter 17, when
 attributes are attached to functions generated by other
 factory functions, they also support multiple copy,
 per-call, and writeable state retention, much like nonlocal closures and
 class instance attributes.

Function Annotations in 3.X
In Python 3.X (but not 2.X), it’s also possible to attach annotation
 information—arbitrary user-defined data about a function’s
 arguments and result—to a function object. Python provides special
 syntax for specifying annotations, but it doesn’t do anything with them
 itself; annotations are completely optional, and when present are simply
 attached to the function object’s __annotations__ attribute for use by other tools. For instance, such a tool might
 use annotations in the context of error testing.
We met Python 3.X’s keyword-only arguments in the preceding
 chapter; annotations generalize function header syntax further. Consider
 the following nonannotated function, which is coded with three arguments
 and returns a result:
>>> def func(a, b, c):
 return a + b + c

>>> func(1, 2, 3)
6
Syntactically, function annotations are coded in def header lines, as arbitrary expressions
 associated with arguments and return values. For arguments, they appear
 after a colon immediately following the argument’s name; for return
 values, they are written after a -> following the arguments list. This code,
 for example, annotates all three of the prior function’s arguments, as
 well as its return value:
>>> def func(a: 'spam', b: (1, 10), c: float) -> int:
 return a + b + c

>>> func(1, 2, 3)
6
Calls to an annotated function work as usual, but when annotations
 are present Python collects them in a dictionary
 and attaches it to the function object itself. Argument names become
 keys, the return value annotation is stored under key “return” if coded
 (which suffices because this reserved word can’t be used as an argument
 name), and the values of annotation keys are assigned to the results of
 the annotation expressions:
>>> func.__annotations__
{'c': <class 'float'>, 'b': (1, 10), 'a': 'spam', 'return': <class 'int'>}
Because they are just Python objects attached to a Python object,
 annotations are straightforward to process. The following annotates just
 two of three arguments and steps through the attached annotations
 generically:
>>> def func(a: 'spam', b, c: 99):
 return a + b + c

>>> func(1, 2, 3)
6
>>> func.__annotations__
{'c': 99, 'a': 'spam'}

>>> for arg in func.__annotations__:
 print(arg, '=>', func.__annotations__[arg])

c => 99
a => spam
There are two fine points to note here. First, you can still use
 defaults for arguments if you code annotations—the
 annotation (and its : character)
 appear before the default (and its =
 character). In the following, for example, a:
 'spam' = 4 means that argument a defaults to 4 and is annotated with the string 'spam':
>>> def func(a: 'spam' = 4, b: (1, 10) = 5, c: float = 6) -> int:
 return a + b + c

>>> func(1, 2, 3)
6
>>> func() # 4 + 5 + 6 (all defaults)
15
>>> func(1, c=10) # 1 + 5 + 10 (keywords work normally)
16
>>> func.__annotations__
{'c': <class 'float'>, 'b': (1, 10), 'a': 'spam', 'return': <class 'int'>}
Second, note that the blank spaces in the
 prior example are all optional—you can use spaces between components in
 function headers or not, but omitting them might degrade your code’s
 readability to some observers (and probably improve it to
 others!):
>>> def func(a:'spam'=4, b:(1,10)=5, c:float=6)->int:
 return a + b + c

>>> func(1, 2) # 1 + 2 + 6
9
>>> func.__annotations__
{'c': <class 'float'>, 'b': (1, 10), 'a': 'spam', 'return': <class 'int'>}
Annotations are a new feature in 3.X, and some of their potential
 uses remain to be uncovered. It’s easy to imagine annotations being used
 to specify constraints for argument types or values, though, and larger
 APIs might use this feature as a way to register function interface
 information.
In fact, we’ll see a potential application in Chapter 39, where we’ll look at annotations as an
 alternative to function decorator arguments—a more
 general concept in which information is coded outside the function
 header and so is not limited to a single role. Like Python itself,
 annotation is a tool whose roles are shaped by your imagination.
Finally, note that annotations work only in def statements, not lambda expressions, because lambda’s syntax already limits the utility of
 the functions it defines. Coincidentally, this brings us to our next
 topic.

Anonymous Functions: lambda
Besides the def statement,
 Python also provides an expression form that generates
 function objects. Because of its similarity to a tool in the Lisp
 language, it’s called lambda.1 Like def, this expression
 creates a function to be called later, but it returns the function instead
 of assigning it to a name. This is why lambdas are sometimes known as
 anonymous (i.e., unnamed) functions. In practice,
 they are often used as a way to inline a function definition, or to defer
 execution of a piece of code.
lambda Basics
The lambda’s general form is
 the keyword lambda, followed by one
 or more arguments (exactly like the arguments list you enclose in
 parentheses in a def header),
 followed by an expression after a colon:
lambda argument1, argument2,... argumentN : expression using arguments
Function objects returned by running lambda expressions work exactly the same as
 those created and assigned by defs,
 but there are a few differences that make lambdas useful in specialized roles:
	lambda is an expression, not a statement. Because
 of this, a lambda can appear in
 places a def is not allowed by
 Python’s syntax—inside a list literal or a function call’s
 arguments, for example. With def,
 functions can be referenced by name but must be created elsewhere.
 As an expression, lambda returns
 a value (a new function) that can optionally be assigned a name. In
 contrast, the def statement
 always assigns the new function to the name in the header, instead
 of returning it as a result.

	lambda’s body is a single expression, not a block of
 statements. The lambda’s body is similar to what you’d put
 in a def body’s return statement; you simply type the
 result as a naked expression, instead of explicitly returning it.
 Because it is limited to an expression, a lambda is less general than a def—you can only squeeze so much logic
 into a lambda body without using
 statements such as if. This is by
 design, to limit program nesting: lambda is designed for coding simple
 functions, and def handles larger
 tasks.

Apart from those distinctions, defs and lambdas do the same sort of work. For
 instance, we’ve seen how to make a function with a def statement:
>>> def func(x, y, z): return x + y + z

>>> func(2, 3, 4)
9
But you can achieve the same effect with a lambda expression by explicitly assigning its
 result to a name through which you can later call the function:
>>> f = lambda x, y, z: x + y + z
>>> f(2, 3, 4)
9
Here, f is assigned the
 function object the lambda expression
 creates; this is how def works, too,
 but its assignment is automatic.
Defaults work on lambda
 arguments, just like in a def:
>>> x = (lambda a="fee", b="fie", c="foe": a + b + c)
>>> x("wee")
'weefiefoe'
The code in a lambda body also
 follows the same scope lookup rules as code inside a def. lambda
 expressions introduce a local scope much like a nested def, which automatically sees names in
 enclosing functions, the module, and the built-in scope (via the LEGB
 rule, and per Chapter 17):
>>> def knights():
 title = 'Sir'
 action = (lambda x: title + ' ' + x) # Title in enclosing def scope
 return action # Return a function object

>>> act = knights()
>>> msg = act('robin') # 'robin' passed to x
>>> msg
'Sir robin'

>>> act # act: a function, not its result
<function knights.<locals>.<lambda> at 0x00000000029CA488>
In this example, prior to Release 2.2, the value for the name
 title would typically have been
 passed in as a default argument value instead; flip back to the scopes
 coverage in Chapter 17 if you’ve forgotten why.

Why Use lambda?
Generally speaking, lambda
 comes in handy as a sort of function shorthand that allows you to embed
 a function’s definition within the code that uses it. They are entirely
 optional—you can always use def
 instead, and should if your function requires the
 power of full statements that the lambda’s expression cannot easily provide—but
 they tend to be simpler coding constructs in scenarios where you just
 need to embed small bits of executable code inline at the place it is to
 be used.
For instance, we’ll see later that callback handlers are
 frequently coded as inline lambda
 expressions embedded directly in a registration call’s arguments list,
 instead of being defined with a def
 elsewhere in a file and referenced by name (see the sidebar “Why You Will Care: lambda Callbacks” for an
 example).
lambda is also commonly used to
 code jump tables, which are lists or
 dictionaries of actions to be performed on demand. For example:
L = [lambda x: x ** 2, # Inline function definition
 lambda x: x ** 3,
 lambda x: x ** 4] # A list of three callable functions

for f in L:
 print(f(2)) # Prints 4, 8, 16

print(L[0](3)) # Prints 9
The lambda expression is most
 useful as a shorthand for def, when
 you need to stuff small pieces of executable code into places where
 statements are illegal syntactically. The preceding code snippet, for
 example, builds up a list of three functions by embedding lambda expressions inside a list literal; a
 def won’t work inside a list literal
 like this because it is a statement, not an expression. The equivalent
 def coding would require temporary
 function names (which might clash with others) and function definitions
 outside the context of intended use (which might be hundreds of lines
 away):
def f1(x): return x ** 2
def f2(x): return x ** 3 # Define named functions
def f3(x): return x ** 4

L = [f1, f2, f3] # Reference by name

for f in L:
 print(f(2)) # Prints 4, 8, 16

print(L[0](3)) # Prints 9
Multiway branch switches: The finale
In fact, you can do the same sort of thing with dictionaries and
 other data structures in Python to build up more general sorts of
 action tables. Here’s another example to illustrate, at the interactive prompt:
>>> key = 'got'
>>> {'already': (lambda: 2 + 2),
 'got': (lambda: 2 * 4),
 'one': (lambda: 2 ** 6)}[key]()
8
Here, when Python makes the temporary dictionary, each of the
 nested lambdas generates and leaves
 behind a function to be called later. Indexing by key fetches one of
 those functions, and parentheses force the fetched function to be
 called. When coded this way, a dictionary becomes a more general
 multiway branching tool than what I could fully show you in Chapter 12’s coverage of if statements.
To make this work without lambda, you’d need to instead code three
 def statements somewhere else in
 your file, outside the dictionary in which the functions are to be
 used, and reference the functions by name:
>>> def f1(): return 2 + 2

>>> def f2(): return 2 * 4

>>> def f3(): return 2 ** 6

>>> key = 'one'
>>> {'already': f1, 'got': f2, 'one': f3}[key]()
64
This works, too, but your defs may be arbitrarily far away in your
 file, even if they are just little bits of code. The code
 proximity that lambdas
 provide is especially useful for functions that will only be used in a
 single context—if the three functions here are not useful anywhere
 else, it makes sense to embed their definitions within the dictionary
 as lambdas. Moreover, the def form requires you to make up names for
 these little functions that may clash with other names in this file
 (perhaps unlikely, but always possible).2
lambdas also come in handy in
 function-call argument lists as a way to inline temporary function
 definitions not used anywhere else in your program; we’ll see some
 examples of such other uses later in this chapter, when we study
 map.

How (Not) to Obfuscate Your Python Code
The fact that the body of a lambda has to be a single expression (not a series of statements) would
 seem to place severe limits on how much logic you can pack into a
 lambda. If you know what you’re
 doing, though, you can code most statements in Python as
 expression-based equivalents.
For example, if you want to print from the
 body of a lambda function, simply say print(X) in Python 3.X where this becomes a
 call expression instead of a statement, or say sys.stdout.write(str(X)+'\n') in either Python
 2.X or 3.X to make sure it’s an expression portably (recall from Chapter 11 that this is what
 print really does). Similarly, to
 nest selection logic in a lambda, you can use the if/else
 ternary expression introduced in Chapter 12, or the equivalent but trickier
 and/or combination also described there. As you
 learned earlier, the following statement:
if a:
 b
else:
 c
can be emulated by either of these roughly equivalent
 expressions:
b if a else c
((a and b) or c)
Because expressions like these can be placed inside a lambda, they may be used to implement
 selection logic within a lambda
 function:
>>> lower = (lambda x, y: x if x < y else y)
>>> lower('bb', 'aa')
'aa'
>>> lower('aa', 'bb')
'aa'
Furthermore, if you need to perform loops
 within a lambda, you can also embed
 things like map calls and list
 comprehension expressions—tools we met in earlier chapters and will
 revisit in this and the next chapter:
>>> import sys
>>> showall = lambda x: list(map(sys.stdout.write, x)) # 3.X: must use list
>>> t = showall(['spam\n', 'toast\n', 'eggs\n']) # 3.X: can use print
spam
toast
eggs
>>> showall = lambda x: [sys.stdout.write(line) for line in x]
>>> t = showall(('bright\n', 'side\n', 'of\n', 'life\n'))
bright
side
of
life
>>> showall = lambda x: [print(line, end='') for line in x] # Same: 3.X only
>>> showall = lambda x: print(*x, sep='', end='') # Same: 3.X only
There is a limit to emulating statements with expressions: you
 can’t directly achieve an assignment statement’s effect, for instance,
 though tools like the setattr
 built-in, the __dict__ of
 namespaces, and methods that change mutable objects in place can
 sometimes stand in, and functional programming techniques can take you
 deep into the dark realm of convoluted expression.
Now that I’ve shown you these tricks, I am required to ask you to
 please only use them as a last resort. Without due care, they can lead
 to unreadable (a.k.a. obfuscated) Python code. In
 general, simple is better than complex, explicit is better than
 implicit, and full statements are better than arcane expressions. That’s
 why lambda is limited to expressions.
 If you have larger logic to code, use def; lambda
 is for small pieces of inline code. On the other hand, you may find
 these techniques useful in moderation.

Scopes: lambdas Can Be Nested Too
lambdas are the main beneficiaries of nested function scope lookup (the
 E in the LEGB scope rule we studied in Chapter 17). As a review, in the following the lambda appears inside a def—the typical case—and so can access the
 value that the name x had in the
 enclosing function’s scope at the time that the enclosing function was
 called:
>>> def action(x):
 return (lambda y: x + y) # Make and return function, remember x

>>> act = action(99)
>>> act
<function action.<locals>.<lambda> at 0x00000000029CA2F0>
>>> act(2) # Call what action returned
101
What wasn’t illustrated in the prior discussion of nested function
 scopes is that a lambda also has
 access to the names in any enclosing lambda. This case is somewhat obscure, but
 imagine if we recoded the prior def
 with a lambda:
>>> action = (lambda x: (lambda y: x + y))
>>> act = action(99)
>>> act(3)
102
>>> ((lambda x: (lambda y: x + y))(99))(4)
103
Here, the nested lambda
 structure makes a function that makes a function when called. In both
 cases, the nested lambda’s code has
 access to the variable x in the
 enclosing lambda. This works, but it
 seems fairly convoluted code; in the interest of readability, nested
 lambdas are generally best avoided.
Why You Will Care: lambda Callbacks
Another very common application of lambda
 is to define inline callback functions for Python’s tkinter GUI API (this module is named Tkinter in Python 2.X). For example, the
 following creates a button that prints a message on the console when
 pressed, assuming tkinter is
 available on your computer (it is by default on Windows, Mac, Linux,
 and other OSs):
import sys
from tkinter import Button, mainloop # Tkinter in 2.X
x = Button(
 text='Press me',
 command=(lambda:sys.stdout.write('Spam\n'))) # 3.X: print()
x.pack()
mainloop() # This may be optional in console mode
Here, we register the callback handler by passing a function
 generated with a lambda to the
 command keyword argument. The
 advantage of lambda over def here is that the code that handles a
 button press is right here, embedded in the button-creation
 call.
In effect, the lambda
 defers execution of the handler until the event
 occurs: the write call happens on
 button presses, not when the button is created, and effectively
 “knows” the string it should write when the event occurs.
Because the nested function scope rules apply to lambdas as well, they are also easier to use
 as callback handlers, as of Python 2.2—they automatically see names in
 the functions in which they are coded and no longer require passed-in
 defaults in most cases. This is especially handy for accessing the
 special self instance argument that is a local variable in enclosing class
 method functions (more on classes in Part VI):
class MyGui:
 def makewidgets(self):
 Button(command=(lambda: self.onPress("spam")))
 def onPress(self, message):
 ...use message...
In early versions of Python, even self had to be passed in to a lambda with defaults. As we’ll see later,
 class objects with __call__ and
 bound methods often serve in callback roles
 too—watch for coverage of these in Chapter 30 and Chapter 31.

Functional Programming Tools
By most definitions, today’s Python blends support for multiple programming
 paradigms: procedural (with its basic statements), object-oriented (with
 its classes), and functional. For the latter of these, Python includes a
 set of built-ins used for functional
 programming—tools that apply functions to sequences and other
 iterables. This set includes tools that call functions on an iterable’s
 items (map); filter out items based on
 a test function (filter); and apply
 functions to pairs of items and running results (reduce).
Though the boundaries are sometimes a bit grey, by most definitions
 Python’s functional programming arsenal also includes the first-class object model
 explored earlier, the nested scope closures and
 anonymous function lambdas we met earlier in this
 part of the book, the generators and
 comprehensions we’ll be expanding on in the next
 chapter, and perhaps the function and class
 decorators of this book’s final part. For our
 purposes here, let’s wrap up this chapter with a quick survey of built-in
 functions that apply other functions to iterables automatically.
Mapping Functions over Iterables: map
One of the more common things programs do with lists and other sequences
 is apply an operation to each item and collect the results—selecting
 columns in database tables, incrementing pay fields of employees in a
 company, parsing email attachments, and so on. Python has multiple tools
 that make such collection-wide operations easy to code. For instance,
 updating all the counters in a list can be done easily with a for loop:
>>> counters = [1, 2, 3, 4]
>>>
>>> updated = []
>>> for x in counters:
 updated.append(x + 10) # Add 10 to each item

>>> updated
[11, 12, 13, 14]
But because this is such a common operation, Python also provides
 built-ins that do most of the work for you. The map function applies a passed-in function to
 each item in an iterable object and returns a list containing all the
 function call results. For example:
>>> def inc(x): return x + 10 # Function to be run

>>> list(map(inc, counters)) # Collect results
[11, 12, 13, 14]
We met map briefly in Chapter 13 and Chapter 14, as a way to apply a built-in
 function to items in an iterable. Here, we make more general use of it
 by passing in a user-defined function to be applied
 to each item in the list—map calls
 inc on each list item and collects
 all the return values into a new list. Remember that map is an iterable in Python 3.X, so a
 list call is used to force it to
 produce all its results for display here; this isn’t necessary in 2.X
 (see Chapter 14 if you’ve
 forgotten this requirement).
Because map expects a function
 to be passed in and applied, it also happens to be one of the places
 where lambda commonly appears:
>>> list(map((lambda x: x + 3), counters)) # Function expression
[4, 5, 6, 7]
Here, the function adds 3 to each item in the counters list; as this little function isn’t
 needed elsewhere, it was written inline as a lambda. Because such uses of map are equivalent to for loops, with a little extra code you can
 always code a general mapping utility yourself:
>>> def mymap(func, seq):
 res = []
 for x in seq: res.append(func(x))
 return res
Assuming the function inc is
 still as it was when it was shown previously, we can map it across a
 sequence (or other iterable) with either the built-in or our
 equivalent:
>>> list(map(inc, [1, 2, 3])) # Built-in is an iterable
[11, 12, 13]
>>> mymap(inc, [1, 2, 3]) # Ours builds a list (see generators)
[11, 12, 13]
However, as map is a built-in,
 it’s always available, always works the same way, and has some
 performance benefits (as we’ll prove in Chapter 21, it’s faster than a manually
 coded for loop in some usage modes).
 Moreover, map can be used in more
 advanced ways than shown here. For instance, given multiple sequence
 arguments, it sends items taken from sequences in parallel as distinct
 arguments to the function:
>>> pow(3, 4) # 3**4
81
>>> list(map(pow, [1, 2, 3], [2, 3, 4])) # 1**2, 2**3, 3**4
[1, 8, 81]
With multiple sequences, map
 expects an N-argument function for N sequences. Here, the pow function takes two arguments on each
 call—one from each sequence passed to map. It’s not much extra work to simulate this
 multiple-sequence generality in code, too, but we’ll postpone doing so
 until later in the next chapter, after we’ve met some additional
 iteration tools.
The map call is similar to the
 list comprehension expressions we studied in Chapter 14 and will revisit in the next
 chapter from a functional perspective:
>>> list(map(inc, [1, 2, 3, 4]))
[11, 12, 13, 14]
>>> [inc(x) for x in [1, 2, 3, 4]] # Use () parens to generate items instead
[11, 12, 13, 14]
In some cases, map may be
 faster to run than a list comprehension (e.g., when mapping a built-in
 function), and it may also require less coding. On the other hand,
 because map applies a
 function call to each item instead of an arbitrary
 expression, it is a somewhat less general tool, and
 often requires extra helper functions or lambdas. Moreover, wrapping a comprehension in
 parentheses instead of square brackets creates an object that
 generates values on request to save memory and
 increase responsiveness, much like map in 3.X—a topic we’ll take up in the next
 chapter.

Selecting Items in Iterables: filter
The map function is a
 primary and relatively straightforward representative of
 Python’s functional programming toolset. Its close relatives, filter and reduce, select an iterable’s items based on a
 test function and apply functions to item pairs, respectively.
Because it also returns an iterable, filter (like range) requires a list call to display all its results in 3.X.
 For example, the following filter
 call picks out items in a sequence that are greater than zero:
>>> list(range(−5, 5)) # An iterable in 3.X
[−5, −4, −3, −2, −1, 0, 1, 2, 3, 4]

>>> list(filter((lambda x: x > 0), range(−5, 5))) # An iterable in 3.X
[1, 2, 3, 4]
We met filter briefly earlier
 in a Chapter 12 sidebar, and while
 exploring 3.X iterables in Chapter 14. Items in the sequence or
 iterable for which the function returns a true result are added to the
 result list. Like map, this function
 is roughly equivalent to a for loop,
 but it is built-in, concise, and often fast:
>>> res = []
>>> for x in range(−5, 5): # The statement equivalent
 if x > 0:
 res.append(x)

>>> res
[1, 2, 3, 4]
Also like map, filter can be emulated by list
 comprehension syntax with often-simpler results (especially
 when it can avoid creating a new function), and with a similar
 generator expression when delayed production of
 results is desired—though we’ll save the rest of this story for the next
 chapter:
>>> [x for x in range(−5, 5) if x > 0] # Use () to generate items
[1, 2, 3, 4]

Combining Items in Iterables: reduce
The functional reduce call,
 which is a simple built-in function in 2.X but lives in
 the functools module in
 3.X, is more complex. It accepts an iterable to process, but it’s not an
 iterable itself—it returns a single result. Here are two reduce calls that compute the sum and product
 of the items in a list:
>>> from functools import reduce # Import in 3.X, not in 2.X
>>> reduce((lambda x, y: x + y), [1, 2, 3, 4])
10
>>> reduce((lambda x, y: x * y), [1, 2, 3, 4])
24
At each step, reduce passes the
 current sum or product, along with the next item from the list, to the
 passed-in lambda function. By
 default, the first item in the sequence initializes the starting value.
 To illustrate, here’s the for loop
 equivalent to the first of these calls, with the addition hardcoded
 inside the loop:
>>> L = [1,2,3,4]
>>> res = L[0]
>>> for x in L[1:]:
 res = res + x

>>> res
10
Coding your own version of reduce is actually fairly straightforward. The
 following function emulates most of the built-in’s behavior and helps
 demystify its operation in general:
>>> def myreduce(function, sequence):
 tally = sequence[0]
 for next in sequence[1:]:
 tally = function(tally, next)
 return tally

>>> myreduce((lambda x, y: x + y), [1, 2, 3, 4, 5])
15
>>> myreduce((lambda x, y: x * y), [1, 2, 3, 4, 5])
120
The built-in reduce also allows
 an optional third argument, effectively placed before the items in the
 sequence to serve as an initial value and a default result when the
 sequence is empty, but we’ll leave this extension as a suggested
 exercise.
If this coding technique has sparked your interest, you might also
 be interested in the standard library operator
 module, which provides functions that correspond to built-in expressions
 and so comes in handy for some uses of functional tools (see Python’s
 library manual for more details on this module):
>>> import operator, functools
>>> functools.reduce(operator.add, [2, 4, 6]) # Function-based +
12
>>> functools.reduce((lambda x, y: x + y), [2, 4, 6])
12
Together, map, filter, and reduce support powerful functional programming
 techniques. As mentioned, many observers would also extend the
 functional programming toolset in Python to include nested function
 scope closures (a.k.a. factory functions) and the anonymous function
 lambda—both discussed earlier—as well
 as generators and
 comprehensions, topics we will return to in the
 next chapter.

Chapter Summary
This chapter took us on a tour of advanced function-related
 concepts: recursive functions; function annotations; lambda expression functions; functional tools
 such as map, filter, and reduce; and general function design ideas. The
 next chapter continues the advanced topics motif with a look at generators
 and a reprisal of iterables and list comprehensions—tools that are just as
 related to functional programming as to looping statements. Before you
 move on, though, make sure you’ve mastered the concepts covered here by
 working through this chapter’s quiz.

Test Your Knowledge: Quiz
	How are lambda
 expressions and def statements
 related?

	What’s the point of using lambda?

	Compare and contrast map,
 filter, and reduce.

	What are function annotations, and how are they used?

	What are recursive functions, and how are they used?

	What are some general design guidelines for coding
 functions?

	Name three or more ways that functions can communicate results
 to a caller.

Test Your Knowledge: Answers
	Both lambda and def create function objects to be called
 later. Because lambda is an
 expression, though, it returns a function object instead of assigning
 it to a name, and it can be used to nest a function definition in
 places where a def will not work
 syntactically. A lambda allows for
 only a single implicit return value expression, though; because it
 does not support a block of statements, it is not ideal for larger
 functions.

	lambdas allow us to “inline”
 small units of executable code, defer its execution, and provide it
 with state in the form of default arguments and enclosing scope
 variables. Using a lambda is never
 required; you can always code a def
 instead and reference the function by name. lambdas come in handy, though, to embed
 small pieces of deferred code that are unlikely to be used elsewhere
 in a program. They commonly appear in callback-based programs such as
 GUIs, and they have a natural affinity with functional tools like
 map and filter that expect a processing
 function.

	These three built-in functions all apply another function to
 items in a sequence (or other iterable) object and collect results.
 map passes each item to the
 function and collects all results, filter collects items for which the function
 returns a True value, and reduce computes a single value by applying
 the function to an accumulator and successive items. Unlike the other
 two, reduce is available in the
 functools module in 3.X, not the
 built-in scope; reduce is a
 built-in in 2.X.

	Function annotations, available in 3.X (3.0 and later), are
 syntactic embellishments of a function’s arguments and result, which
 are collected into a dictionary assigned to the function’s __annotations__ attribute. Python places no
 semantic meaning on these annotations, but simply packages them for
 potential use by other tools.

	Recursive functions call themselves either directly or
 indirectly in order to loop. They may be used to traverse arbitrarily
 shaped structures, but they can also be used for iteration in general
 (though the latter role is often more simply and efficiently coded
 with looping statements). Recursion can often be simulated or replaced
 by code that uses explicit stacks or queues to have more control over
 traversals.

	Functions should generally be small and as self-contained as
 possible, have a single unified purpose, and communicate with other
 components through input arguments and return values. They may use
 mutable arguments to communicate results too if changes are expected,
 and some types of programs imply other communication
 mechanisms.

	Functions can send back results with return statements, by changing passed-in
 mutable arguments, and by setting global variables. Globals are
 generally frowned upon (except for very special cases, like
 multithreaded programs) because they can make code more difficult to
 understand and use. return
 statements are usually best, but changing mutables is fine (and even
 useful), if expected. Functions may also communicate results with
 system devices such as files and sockets, but these are beyond our
 scope here.

1 The lambda tends to
 intimidate people more than it should. This reaction seems to stem
 from the name “lambda” itself—a name that comes from the Lisp
 language, which got it from lambda calculus, which is a form of
 symbolic logic. In Python, though, it’s really just a keyword that
 introduces the expression syntactically. Obscure mathematical heritage
 aside, lambda is simpler to use
 than you may think: it’s simply an alternative way to code a function,
 albeit without full statements, decorators, or 3.X annotations.
2 A student once noted that you could skip the dispatch table
 dictionary in such code if the function name is the same as its
 string lookup key—run an eval(funcname)() to kick off the call. While true in
 this case and sometimes useful, as we saw earlier (e.g., Chapter 10), eval is relatively slow (it must compile
 and run code), and insecure (you must trust the string’s source).
 More fundamentally, jump tables are generally subsumed by
 polymorphic method dispatch in Python: calling a method does the
 “right thing” based on the type of object. To see why, stay tuned
 for Part VI.

Chapter 20. Comprehensions and Generations
This chapter continues the advanced function topics theme, with a
 reprisal of the comprehension and iteration concepts previewed in Chapter 4 and introduced in Chapter 14. Because
 comprehensions are as much related to the prior
 chapter’s functional tools (e.g., map and filter)
 as they are to for loops, we’ll revisit
 them in this context here. We’ll also take a second look at iterables in
 order to study generator functions and their
 generator expression relatives—user-defined ways to
 produce results on demand.
Iteration in Python also encompasses user-defined
 classes, but we’ll defer that final part of this story
 until Part VI, when we study operator
 overloading. As this is the last pass we’ll make over built-in iteration
 tools, though, we will summarize the various tools we’ve met thus far. The
 next chapter continues this thread by timing the relative performance of
 these tools as a larger case study. Before that, though, let’s continue the
 comprehensions and iterations story, and extend it to include value
 generators.
List Comprehensions and Functional Tools
As mentioned early in this book, Python supports the procedural, object-oriented, and
 function programming paradigms. In fact, Python has a host of tools that
 most would consider functional in nature, which we
 enumerated in the preceding chapter—closures, generators, lambdas,
 comprehensions, maps, decorators, function objects, and more. These tools
 allow us to apply and combine functions in powerful ways, and often offer
 state retention and coding solutions that are alternatives to classes and
 OOP.
For instance, the prior chapter explored tools such as map and filter—key members of Python’s early functional
 programming toolset inspired by the Lisp language—that map operations over
 iterables and collect results. Because this is such a common task in
 Python coding, Python eventually sprouted a new expression—the list comprehension—that is even
 more flexible than the tools we just studied.
Per Python history, list comprehensions were originally inspired by
 a similar tool in the functional programming language Haskell, around the
 time of Python 2.0. In short, list comprehensions apply an arbitrary
 expression to items in an iterable, rather than
 applying a function. Accordingly, they can be more general tools. In later
 releases, the comprehension was extended to other roles—sets,
 dictionaries, and even the value generator expressions we’ll explore in
 this chapter. It’s not just for lists anymore.
We first met list comprehensions in Chapter 4’s preview, and studied them
 further in Chapter 14, in
 conjunction with looping statements. Because they’re also related to
 functional programming tools like the map and filter calls, though, we’ll resurrect the topic
 here for one last look. Technically, this feature is not tied to
 functions—as we’ll see, list comprehensions can be a more general tool
 than map and filter—but it is sometimes best understood by
 analogy to function-based alternatives.
List Comprehensions Versus map
Let’s work through an example that demonstrates the basics. As we saw in Chapter 7, Python’s built-in ord function returns the integer code point of a single character (the
 chr built-in is the converse—it returns the character for an integer code
 point). These happen to be ASCII codes if your characters fall into the ASCII
 character set’s 7-bit code point range:
>>> ord('s')
115
Now, suppose we wish to collect the ASCII codes of
 all characters in an entire string. Perhaps the
 most straightforward approach is to use a simple for loop and append the results to a
 list:
>>> res = []
>>> for x in 'spam':
 res.append(ord(x)) # Manual results collection

>>> res
[115, 112, 97, 109]
Now that we know about map,
 though, we can achieve similar results with a single function call
 without having to manage list construction in the code:
>>> res = list(map(ord, 'spam')) # Apply function to sequence (or other)
>>> res
[115, 112, 97, 109]
However, we can get the same results from a list comprehension
 expression—while map maps a
 function over an iterable, list comprehensions map
 an expression over a sequence or other
 iterable:
>>> res = [ord(x) for x in 'spam'] # Apply expression to sequence (or other)
>>> res
[115, 112, 97, 109]
List comprehensions collect the results of applying an arbitrary
 expression to an iterable of values and return them in a new list.
 Syntactically, list comprehensions are enclosed in square brackets—to
 remind you that they construct lists. In their simple form, within the
 brackets you code an expression that names a variable followed by what
 looks like a for loop header that
 names the same variable. Python then collects the expression’s results
 for each iteration of the implied loop.
The effect of the preceding example is similar to that of the
 manual for loop and the map call. List comprehensions become more
 convenient, though, when we wish to apply an arbitrary expression to an
 iterable instead of a function:
>>> [x ** 2 for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
Here, we’ve collected the squares of the numbers 0 through 9
 (we’re just letting the interactive prompt print the resulting list
 object; assign it to a variable if you need to retain it). To do similar
 work with a map call, we would
 probably need to invent a little function to implement the square
 operation. Because we won’t need this function elsewhere, we’d typically
 (but not necessarily) code it inline, with a lambda, instead of using a def statement elsewhere:
>>> list(map((lambda x: x ** 2), range(10)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
This does the same job, and it’s only a few keystrokes longer than
 the equivalent list comprehension. It’s also only marginally more
 complex (at least, once you understand the lambda). For more advanced kinds of
 expressions, though, list comprehensions will often require considerably
 less typing. The next section shows why.

Adding Tests and Nested Loops: filter
List comprehensions are even more general than shown so far. For instance, as we learned in
 Chapter 14, you can code an
 if clause after the for to add selection logic. List
 comprehensions with if clauses can be
 thought of as analogous to the filter
 built-in discussed in the preceding chapter—they skip an iterable’s
 items for which the if clause is not
 true.
To demonstrate, following are both schemes picking up even numbers
 from 0 to 4; like the map list
 comprehension alternative of the prior section, the filter version here must invent a little
 lambda function for the test
 expression. For comparison, the equivalent for loop is shown here as well:
>>> [x for x in range(5) if x % 2 == 0]
[0, 2, 4]

>>> list(filter((lambda x: x % 2 == 0), range(5)))
[0, 2, 4]

>>> res = []
>>> for x in range(5):
 if x % 2 == 0:
 res.append(x)

>>> res
[0, 2, 4]
All of these use the modulus (remainder of division) operator,
 %, to detect even numbers: if there
 is no remainder after dividing a number by 2, it must be even. The
 filter call here is not much longer
 than the list comprehension either. However, we can combine an if clause and an arbitrary expression in our
 list comprehension, to give it the effect of a filter and a map, in a single expression:
>>> [x ** 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
This time, we collect the squares of the even numbers from 0
 through 9: the for loop skips numbers
 for which the attached if clause on
 the right is false, and the expression on the left computes the squares.
 The equivalent map call would require
 a lot more work on our part—we would have to combine filter selections with map iteration, making for a noticeably more
 complex expression:
>>> list(map((lambda x: x**2), filter((lambda x: x % 2 == 0), range(10))))
[0, 4, 16, 36, 64]
Formal comprehension syntax
In fact, list comprehensions are more general still. In their
 simplest form, you must always code an accumulation expression and a
 single for clause:
[expression for target in iterable]
Though all other parts are optional, they allow richer
 iterations to be expressed—you can code any number of nested for loops in a list comprehension, and each
 may have an optional associated if
 test to act as a filter. The general structure of list comprehensions
 looks like this:
[expression for target1 in iterable1 if condition1
 for target2 in iterable2 if condition2 ...
 for targetN in iterableN if conditionN]
This same syntax is inherited by set and
 dictionary comprehensions as well as the
 generator expressions coming up, though these use
 different enclosing characters (curly braces or often-optional
 parentheses), and the dictionary comprehension begins with two
 expressions separated by a colon (for key and value).
We experimented with the if
 filter clause in the previous section. When for clauses are nested
 within a list comprehension, they work like equivalent nested for loop statements. For example:
>>> res = [x + y for x in [0, 1, 2] for y in [100, 200, 300]]
>>> res
[100, 200, 300, 101, 201, 301, 102, 202, 302]
This has the same effect as this substantially more verbose
 equivalent:
>>> res = []
>>> for x in [0, 1, 2]:
 for y in [100, 200, 300]:
 res.append(x + y)

>>> res
[100, 200, 300, 101, 201, 301, 102, 202, 302]
Although list comprehensions construct list results, remember
 that they can iterate over any sequence or other iterable type. Here’s
 a similar bit of code that traverses strings instead of lists of
 numbers, and so collects concatenation results:
>>> [x + y for x in 'spam' for y in 'SPAM']
['sS', 'sP', 'sA', 'sM', 'pS', 'pP', 'pA', 'pM',
'aS', 'aP', 'aA', 'aM', 'mS', 'mP', 'mA', 'mM']
Each for clause can have an
 associated if filter, no matter how
 deeply the loops are nested—though use cases for the following sort of
 code, apart from perhaps multidimensional arrays, start to become more
 and more difficult to imagine at this level:
>>> [x + y for x in 'spam' if x in 'sm' for y in 'SPAM' if y in ('P', 'A')]
['sP', 'sA', 'mP', 'mA']

>>> [x + y + z for x in 'spam' if x in 'sm'
 for y in 'SPAM' if y in ('P', 'A')
 for z in '123' if z > '1']
['sP2', 'sP3', 'sA2', 'sA3', 'mP2', 'mP3', 'mA2', 'mA3']
Finally, here is a similar list comprehension that illustrates
 the effect of attached if
 selections on nested for clauses
 applied to numeric objects rather than strings:
>>> [(x, y) for x in range(5) if x % 2 == 0 for y in range(5) if y % 2 == 1]
[(0, 1), (0, 3), (2, 1), (2, 3), (4, 1), (4, 3)]
This expression combines even numbers from 0 through 4 with odd
 numbers from 0 through 4. The if
 clauses filter out items in each iteration. Here is the equivalent
 statement-based code:
>>> res = []
>>> for x in range(5):
 if x % 2 == 0:
 for y in range(5):
 if y % 2 == 1:
 res.append((x, y))

>>> res
[(0, 1), (0, 3), (2, 1), (2, 3), (4, 1), (4, 3)]
Recall that if you’re confused about what a complex list
 comprehension does, you can always nest the list comprehension’s
 for and if clauses inside each other like
 this—indenting each clause successively further to the right—to derive
 the equivalent statements. The result is longer, but perhaps clearer
 in intent to some human readers on first glance, especially those more
 familiar with basic statements.
The map and filter equivalent of this last example would
 be wildly complex and deeply nested, so I won’t even try showing it
 here. I’ll leave its coding as an exercise for Zen masters, ex–Lisp
 programmers, and the criminally insane!

Example: List Comprehensions and Matrixes
Not all list comprehensions are so artificial, of course. Let’s look at one more
 application to stretch a few synapses. As we saw in Chapter 4 and Chapter 8, one basic way to code matrixes
 (a.k.a. multidimensional arrays) in Python is with nested list
 structures. The following, for example, defines two 3 × 3 matrixes as
 lists of nested lists:
>>> M = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]

>>> N = [[2, 2, 2],
 [3, 3, 3],
 [4, 4, 4]]
Given this structure, we can always index rows, and columns within
 rows, using normal index operations:
>>> M[1] # Row 2
[4, 5, 6]

>>> M[1][2] # Row 2, item 3
6
List comprehensions are powerful tools for processing such
 structures, though, because they automatically scan rows and columns for
 us. For instance, although this structure stores the matrix by rows, to
 collect the second column we can simply iterate
 across the rows and pull out the desired column, or iterate through
 positions in the rows and index as we go:
>>> [row[1] for row in M] # Column 2
[2, 5, 8]

>>> [M[row][1] for row in (0, 1, 2)] # Using offsets
[2, 5, 8]
Given positions, we can also easily perform tasks such as pulling
 out a diagonal. The first of the following
 expressions uses range to generate
 the list of offsets and then indexes with the row and column the same,
 picking out M[0][0], then M[1][1], and so on. The second scales the
 column index to fetch M[0][2],
 M[1][1], etc. (we assume the matrix
 has the same number of rows and columns):
>>> [M[i][i] for i in range(len(M))] # Diagonals
[1, 5, 9]
>>> [M[i][len(M)-1-i] for i in range(len(M))]
[3, 5, 7]
Changing such a matrix in place requires
 assignment to offsets (use range
 twice if shapes differ):
>>> L = [[1, 2, 3], [4, 5, 6]]
>>> for i in range(len(L)):
 for j in range(len(L[i])): # Update in place
 L[i][j] += 10

>>> L
[[11, 12, 13], [14, 15, 16]]
We can’t really do the same with list comprehensions, as they make
 new lists, but we could always assign their results
 to the original name for a similar effect. For example, we can apply an
 operation to every item in a matrix, producing results in either a
 simple vector or a matrix of the same shape:
>>> [col + 10 for row in M for col in row] # Assign to M to retain new value
[11, 12, 13, 14, 15, 16, 17, 18, 19]

>>> [[col + 10 for col in row] for row in M]
[[11, 12, 13], [14, 15, 16], [17, 18, 19]]
To understand these, translate to their simple statement form
 equivalents that follow—indent parts that are further to the right in
 the expression (as in the first loop in the following), and make a new
 list when comprehensions are nested on the left (like the second loop in
 the following). As its statement equivalent makes clearer, the second
 expression in the preceding works because the row iteration is an outer
 loop: for each row, it runs the nested column iteration to build up one
 row of the result matrix:
>>> res = []
>>> for row in M: # Statement equivalents
 for col in row: # Indent parts further right
 res.append(col + 10)

>>> res
[11, 12, 13, 14, 15, 16, 17, 18, 19]

>>> res = []
>>> for row in M:
 tmp = [] # Left-nesting starts new list
 for col in row:
 tmp.append(col + 10)
 res.append(tmp)

>>> res
[[11, 12, 13], [14, 15, 16], [17, 18, 19]]
Finally, with a bit of creativity, we can also use list
 comprehensions to combine values of multiple
 matrixes. The following first builds a flat list that
 contains the result of multiplying the matrixes pairwise, and then
 builds a nested list structure having the same values by nesting list
 comprehensions again:
>>> M
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> N
[[2, 2, 2], [3, 3, 3], [4, 4, 4]]

>>> [M[row][col] * N[row][col] for row in range(3) for col in range(3)]
[2, 4, 6, 12, 15, 18, 28, 32, 36]

>>> [[M[row][col] * N[row][col] for col in range(3)] for row in range(3)]
[[2, 4, 6], [12, 15, 18], [28, 32, 36]]
This last expression works because the row iteration is an outer
 loop again; it’s equivalent to this statement-based code:
res = []
for row in range(3):
 tmp = []
 for col in range(3):
 tmp.append(M[row][col] * N[row][col])
 res.append(tmp)
And for more fun, we can use zip to pair items to be multiplied—the
 following comprehension and loop statement forms both produce the same
 list-of-lists pairwise multiplication result as the last preceding
 example (and because zip is a
 generator of values in 3.X, this isn’t as inefficient as it may
 seem):
[[col1 * col2 for (col1, col2) in zip(row1, row2)] for (row1, row2) in zip(M, N)]

res = []
for (row1, row2) in zip(M, N):
 tmp = []
 for (col1, col2) in zip(row1, row2):
 tmp.append(col1 * col2)
 res.append(tmp)
Compared to their statement equivalents, the list comprehension
 versions here require only one line of code, might run substantially
 faster for large matrixes, and just might make your head explode! Which
 brings us to the next section.

Don’t Abuse List Comprehensions: KISS
With such generality, list comprehensions can quickly become, well,
 incomprehensible, especially when nested. Some programming tasks are
 inherently complex, and we can’t sugarcoat them to make them any simpler
 than they are (see the upcoming permutations for a prime example). Tools
 like comprehensions are powerful solutions when used wisely, and there’s
 nothing inherently wrong with using them in your scripts.
At the same time, code like that of the prior section may push the
 complexity envelope more than it should—and, frankly, tends to
 disproportionately pique the interest of those holding the darker and
 misguided assumption that code obfuscation somehow implies talent.
 Because such tools tend to appeal to some people more than they probably
 should, I need to be clear about their scope here.
This book demonstrates advanced comprehensions to teach, but in
 the real world, using complicated and tricky code where not warranted is
 both bad engineering and bad software citizenship. To repurpose a line
 from the first chapter: programming is not about being clever and
 obscure—it’s about how clearly your program communicates its
 purpose.
Or, to quote from Python’s import this
 motto:
Simple is better than complex.

Writing complicated comprehension code may be a fun academic
 recreation, but it doesn’t have a place in programs that others will
 someday need to understand.
Consequently, my advice is to use simple for loops when getting started with Python,
 and comprehensions or map in isolated
 cases where they are easy to apply. The “keep it simple” rule applies
 here as always: code conciseness is a much less important goal than code
 readability. If you have to translate code to statements to understand
 it, it should probably be statements in the first place. In other words,
 the age-old acronym KISS still applies: Keep It
 Simple—followed either by a word that is today too sexist (Sir), or
 another that is too colorful for a family-oriented book like
 this...
On the other hand: performance, conciseness,
 expressiveness
However, in this case, there is currently a substantial performance
 advantage to the extra complexity: based on tests run under Python
 today, map calls can be twice as
 fast as equivalent for loops, and
 list comprehensions are often faster than map calls. This speed difference can vary
 per usage pattern and Python, but is generally due to the fact that
 map and list comprehensions run at
 C language speed inside the interpreter, which is often much faster
 than stepping through Python for
 loop bytecode within the PVM.
In addition, list comprehensions offer a code
 conciseness that’s compelling and even warranted
 when that reduction in size doesn’t also imply a reduction in meaning
 for the next programmer. Moreover, many find the
 expressiveness of comprehensions to be a powerful
 ally. Because map and list
 comprehensions are both expressions, they also can show up
 syntactically in places that for
 loop statements cannot, such as in the bodies of lambda functions, within list and dictionary
 literals, and more.
Because of this, list comprehensions and map calls are worth knowing and using for
 simpler kinds of iterations, especially if your application’s speed is
 an important consideration. Still, because for loops make logic more explicit, they are
 generally recommended on the grounds of simplicity, and often make for
 more straightforward code. When used, you should try to keep your
 map calls and list comprehensions
 simple; for more complex tasks, use full statements instead.
Note
As I’ve stated before, performance
 generalizations like those just given here can depend on call
 patterns, as well as changes and optimizations in Python itself.
 Recent Python releases have sped up the simple for loop statement, for example. On some
 code, though, list comprehensions are still substantially faster
 than for loops and even faster
 than map, though map can still win when the alternatives
 must apply a function call, built-in functions or otherwise. At
 least until this story changes arbitrarily—to time these
 alternatives yourself, see tools in the standard library’s time module or in the newer timeit module added in Release 2.4, or
 stay tuned for the extended coverage of both of these in the next
 chapter, where we’ll prove the prior paragraph’s claims.

Why You Will Care: List Comprehensions and map
Here are some more realistic examples of list comprehensions and map in action. We solved the first with
 list comprehensions in Chapter 14, but we’ll revive it here
 to add map alternatives. Recall
 that the file readlines method
 returns lines with \n end-of-line
 characters at the ends (the following assumes a 3-line text file in
 the current directory):
>>> open('myfile').readlines()
['aaa\n', 'bbb\n', 'ccc\n']
If you don’t want the end-of-line characters, you can slice
 them off all the lines in a single step with a list comprehension or
 a map call (map results are iterables in Python 3.X,
 so we must run them through list
 to display all their results at once):
>>> [line.rstrip() for line in open('myfile').readlines()]
['aaa', 'bbb', 'ccc']

>>> [line.rstrip() for line in open('myfile')]
['aaa', 'bbb', 'ccc']

>>> list(map((lambda line: line.rstrip()), open('myfile')))
['aaa', 'bbb', 'ccc']
The last two of these make use of file iterators; as we saw in
 Chapter 14, this means that
 you don’t need a method call to read lines in iteration contexts
 such as these. The map call is
 slightly longer than the list comprehension, but neither has to
 manage result list construction explicitly.
A list comprehension can also be used as a sort of column
 projection operation. Python’s standard SQL database API returns
 query results as a sequence of sequences like the following—the list
 is the table, tuples are rows, and items in tuples are column
 values:
>>> listoftuple = [('bob', 35, 'mgr'), ('sue', 40, 'dev')]
A for loop could pick up
 all the values from a selected column manually, but map and list comprehensions can do it in a
 single step, and faster:
>>> [age for (name, age, job) in listoftuple]
[35, 40]

>>> list(map((lambda row: row[1]), listoftuple))
[35, 40]
The first of these makes use of tuple
 assignment to unpack row tuples in the list, and the second uses indexing.
 In Python 2.X (but not in 3.X—see the note on 2.X argument unpacking
 in Chapter 18), map can use tuple unpacking on its
 argument, too:
2.X only
>>> list(map((lambda (name, age, job): age), listoftuple))
[35, 40]
See other books and resources for more on Python’s database
 API.
Besides the distinction between running functions versus
 expressions, the biggest difference between map and list comprehensions in Python 3.X
 is that map is an
 iterable, generating results on demand. To
 achieve the same memory economy and execution time division, list
 comprehensions must be coded as generator
 expressions—one of the major topics this chapter turns to
 next.

Generator Functions and Expressions
Python today supports procrastination much more than it did in the past—it
 provides tools that produce results only when needed, instead of all at
 once. We’ve seen this at work in built-in tools: files that read lines on
 request, and functions like map and
 zip that produce items on demand in
 3.X. Such laziness isn’t confined to Python itself, though. In particular,
 two language constructs delay result creation whenever possible in
 user-defined operations:
	Generator functions (available since 2.3)
 are coded as normal def statements,
 but use yield statements to return results one at a time, suspending and resuming
 their state between each.

	Generator expressions (available since 2.4)
 are similar to the list comprehensions of the prior section, but they
 return an object that produces results on demand instead of building a
 result list.

Because neither constructs a result list all at once, they save
 memory space and allow computation time to be split across result
 requests. As we’ll see, both of these ultimately perform their
 delayed-results magic by implementing the iteration
 protocol we studied in Chapter 14.
These features are not new (generator functions were available as an
 option as early as Python 2.2), and are fairly common in Python code
 today. Python’s notion of generators owes much to other programming
 languages, especially Icon. Though they may initially seem unusual if
 you’re accustomed to simpler programming models, you’ll probably find
 generators to be a powerful tool where applicable. Moreover, because they
 are a natural extension to the function, comprehension, and iteration
 ideas we’ve already explored, you already know more about coding
 generators than you might expect.
Generator Functions: yield Versus return
In this part of the book, we’ve learned about coding normal functions that receive input
 parameters and send back a single result immediately. It is also
 possible, however, to write functions that may send back a value and
 later be resumed, picking up where they left off. Such functions,
 available in both Python 2.X and 3.X, are known as generator
 functions because they generate a sequence of values over
 time.
Generator functions are like normal functions in most respects,
 and in fact are coded with normal def
 statements. However, when created, they are compiled specially into an
 object that supports the iteration protocol. And when called, they don’t
 return a result: they return a result generator that can appear in any
 iteration context. We studied iterables in Chapter 14, and Figure 14-1 gave a formal and
 graphic summary of their operation. Here, we’ll revisit them to see how
 they relate to generators.
State suspension
Unlike normal functions that return a value and exit, generator functions
 automatically suspend and resume their execution and state around the
 point of value generation. Because of that, they are often a useful
 alternative to both computing an entire series of values up front and
 manually saving and restoring state in classes. The
 state that generator functions retain when they
 are suspended includes both their code location, and their entire
 local scope. Hence, their local variables retain
 information between results, and make it available when the functions
 are resumed.
The chief code difference between generator and normal functions
 is that a generator yields a value, rather than
 returning one—the yield statement suspends the function and
 sends a value back to the caller, but retains enough state to enable
 the function to resume from where it left off. When resumed, the
 function continues execution immediately after the last yield run. From the function’s perspective,
 this allows its code to produce a series of values over time, rather
 than computing them all at once and sending them back in something
 like a list.

Iteration protocol integration
To truly understand generator functions, you need to know that they are
 closely bound up with the notion of the iteration protocol in Python.
 As we’ve seen, iterator objects define a __next__ method (next in 2.X), which either returns the next
 item in the iteration, or raises the special StopIteration exception to end the
 iteration. An iterable object’s iterator is fetched initially with the
 iter built-in function, though this
 step is a no-op for objects that are their own iterator.
Python for loops, and all
 other iteration contexts, use this iteration protocol to step through
 a sequence or value generator, if the protocol is supported (if not,
 iteration falls back on repeatedly indexing sequences instead). Any
 object that supports this interface works in all iteration
 tools.
To support this protocol, functions containing a yield statement are compiled specially as
 generators—they are not normal functions, but
 rather are built to return an object with the expected iteration
 protocol methods. When later called, they return a generator object
 that supports the iteration interface with an automatically created
 method named __next__ to start or
 resume execution.
Generator functions may also have a return statement that, along with falling
 off the end of the def block,
 simply terminates the generation of values—technically, by raising
 a StopIteration
 exception after any normal function exit actions. From the caller’s
 perspective, the generator’s __next__
 method resumes the function and runs until either the next
 yield result is returned or a
 StopIteration is raised.
The net effect is that generator functions, coded as def statements containing yield statements, are automatically made to
 support the iteration object protocol and thus may be used in any
 iteration context to produce results over time and on demand.
Note
As noted in Chapter 14,
 in Python 2.X, iterator objects define a method named next instead of __next__. This includes the generator
 objects we are using here. In 3.X this method is renamed to __next__. The next built-in function is provided as a
 convenience and portability tool: next(I) is the same as I.__next__() in 3.X and I.next() in 2.6 and 2.7. Prior to 2.6,
 programs simply call I.next()
 instead to iterate manually.

Generator functions in action
To illustrate generator basics, let’s turn to some code. The
 following code defines a generator function that can be used to
 generate the squares of a series of numbers over time:
>>> def gensquares(N):
 for i in range(N):
 yield i ** 2 # Resume here later
This function yields a value, and so returns to its caller, each
 time through the loop; when it is resumed, its prior state is
 restored, including the last values of its variables i and N,
 and control picks up again immediately after the yield statement. For example, when it’s used
 in the body of a for loop, the
 first iteration starts the function and gets its first result;
 thereafter, control returns to the function after its yield statement each time through the
 loop:
>>> for i in gensquares(5): # Resume the function
 print(i, end=' : ') # Print last yielded value

0 : 1 : 4 : 9 : 16 :
>>>
To end the generation of values, functions either use a return statement with no value or simply
 allow control to fall off the end of the function body.1
To most people, this process seems a bit implicit (if not
 magical) on first encounter. It’s actually quite tangible, though. If
 you really want to see what is going on inside the for, call the generator function
 directly:
>>> x = gensquares(4)
>>> x
<generator object gensquares at 0x000000000292CA68>
You get back a generator object that
 supports the iteration protocol we met in Chapter 14—the generator function was
 compiled to return this automatically. The returned generator object
 in turn has a __next__ method that
 starts the function or resumes it from where it last yielded a value,
 and raises a StopIteration
 exception when the end of the series of values is reached and the
 function returns. For convenience, the next(X) built-in calls an object’s X.__next__() method for us in 3.X (and
 X.next() in 2.X):
>>> next(x) # Same as x.__next__() in 3.X
0
>>> next(x) # Use x.next() or next() in 2.X
1
>>> next(x)
4
>>> next(x)
9
>>> next(x)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
As we learned in Chapter 14, for loops (and other iteration contexts)
 work with generators in the same way—by calling the __next__ method repeatedly, until an
 exception is caught. For a generator, the result is to produce yielded
 values over time. If the object to be iterated over does not support
 this protocol, for loops instead
 use the indexing protocol to iterate.
Notice that the top-level iter call of the iteration protocol isn’t
 required here because generators are their own iterator, supporting
 just one active iteration scan. To put that another way generators
 return themselves for iter, because
 they support next directly. This
 also holds true in the generator expressions we’ll meet later in this
 chapter (more on this ahead):
>>> y = gensquares(5) # Returns a generator which is its own iterator
>>> iter(y) is y # iter() is not required: a no-op here
True
>>> next(y) # Can run next()immediately
0

Why generator functions?
Given the simple examples we’re using to illustrate
 fundamentals, you might be wondering just why you’d ever care to code
 a generator at all. In this section’s example, for instance, we could
 also simply build the list of yielded values all at once:
>>> def buildsquares(n):
 res = []
 for i in range(n): res.append(i ** 2)
 return res

>>> for x in buildsquares(5): print(x, end=' : ')

0 : 1 : 4 : 9 : 16 :
For that matter, we could use any of the for loop, map, or list comprehension
 techniques:
>>> for x in [n ** 2 for n in range(5)]:
 print(x, end=' : ')

0 : 1 : 4 : 9 : 16 :

>>> for x in map((lambda n: n ** 2), range(5)):
 print(x, end=' : ')

0 : 1 : 4 : 9 : 16 :
However, generators can be better in terms of both memory use
 and performance in larger programs. They allow functions to avoid
 doing all the work up front, which is especially useful when the
 result lists are large or when it takes a lot of computation to
 produce each value. Generators distribute the time required to produce
 the series of values among loop iterations.
Moreover, for more advanced uses, generators can provide a
 simpler alternative to manually saving the state between iterations in
 class objects—with generators, variables accessible in the function’s
 scopes are saved and restored automatically.2 We’ll discuss class-based iterables in more detail in
 Part VI.
Generator functions are also much more broadly focused than
 implied so far. They can operate on and return any type of object, and
 as iterables may appear in any of Chapter 14’s iteration
 contexts, including tuple calls,
 enumerations, and dictionary comprehensions:
>>> def ups(line):
 for sub in line.split(','): # Substring generator
 yield sub.upper()

>>> tuple(ups('aaa,bbb,ccc')) # All iteration contexts
('AAA', 'BBB', 'CCC')

>>> {i: s for (i, s) in enumerate(ups('aaa,bbb,ccc'))}
{0: 'AAA', 1: 'BBB', 2: 'CCC'}
In a moment we’ll see the same assets for generator
 expressions—a tool that trades function flexibility for comprehension
 conciseness. Later in this chapter we’ll also see that generators can
 sometimes make the impossible possible, by producing components of
 result sets that would be far too large to create all at once. First,
 though, let’s explore some advanced generator function
 features.

Extended generator function protocol: send versus next
In Python 2.5, a send method
 was added to the generator function protocol. The send method advances to the next item in the series of results, just
 like __next__, but also provides a
 way for the caller to communicate with the generator, to affect its
 operation.
Technically, yield is now an
 expression form that returns the item passed to send, not a statement (though it can be
 called either way—as yield X, or
 A = (yield X)). The expression must
 be enclosed in parentheses unless it’s the only item on the right side
 of the assignment statement. For example, X =
 yield Y is OK, as is X = (yield Y)
 + 42.
When this extra protocol is used, values are sent into a
 generator G by calling G.send(value). The generator’s code is then resumed, and
 the yield expression in the
 generator returns the value passed to send. If the regular G.__next__() method (or its next(G) equivalent) is called to advance,
 the yield simply returns None. For example:
>>> def gen():
 for i in range(10):
 X = yield i
 print(X)

>>> G = gen()
>>> next(G) # Must call next() first, to start generator
0
>>> G.send(77) # Advance, and send value to yield expression
77
1
>>> G.send(88)
88
2
>>> next(G) # next() and X.__next__() send None
None
3
The send method can be used,
 for example, to code a generator that its caller can terminate by
 sending a termination code, or redirect by passing a new position in
 data being processed inside the generator.
In addition, generators in 2.5 and later also support a throw(type) method to raise an exception inside the
 generator at the latest yield, and
 a close method that raises a
 special GeneratorExit exception
 inside the generator to terminate the iteration entirely. These are
 advanced features that we won’t delve into in more detail here; see
 reference texts and Python’s standard manuals for more information,
 and watch for more on exceptions in Part VII.
Note that while Python 3.X provides a next(X) convenience built-in that calls the
 X.__next__() method of an object,
 other generator methods, like send,
 must be called as methods of generator objects directly (e.g.,
 G.send(X)). This makes sense if you
 realize that these extra methods are implemented on built-in generator
 objects only, whereas the __next__
 method applies to all iterable objects—both built-in types and
 user-defined classes.
Also note that Python 3.3 introduces an extension to yield—a from clause—that allows generators to
 delegate to nested generators. Since this is an extension to what is
 already a fairly advanced topic, we’ll delegate this topic itself to a
 sidebar, and move on here to a tool that’s close enough to be called a
 twin.

Generator Expressions: Iterables Meet Comprehensions
Because the delayed evaluation of generator functions was so useful, it
 eventually spread to other tools. In both Python 2.X and 3.X, the
 notions of iterables and list comprehensions are combined in a new tool:
 generator expressions. Syntactically, generator
 expressions are just like normal list comprehensions, and support all
 their syntax—including if filters and
 loop nesting—but they are enclosed in parentheses instead of square
 brackets (like tuples, their enclosing parentheses are often
 optional):
>>> [x ** 2 for x in range(4)] # List comprehension: build a list
[0, 1, 4, 9]

>>> (x ** 2 for x in range(4)) # Generator expression: make an iterable
<generator object <genexpr> at 0x00000000029A8288>
In fact, at least on a functionality basis, coding a list
 comprehension is essentially the same as wrapping a generator expression
 in a list built-in call to force it
 to produce all its results in a list at once:
>>> list(x ** 2 for x in range(4)) # List comprehension equivalence
[0, 1, 4, 9]
Operationally, however, generator expressions are very different:
 instead of building the result list in memory, they return a
 generator object—an automatically created iterable.
 This iterable object in turn supports the iteration
 protocol to yield one piece of the result list at a time in
 any iteration context. The iterable object also retains generator state
 while active—the variable x in the
 preceding expressions, along with the generator’s code location.
The net effect is much like that of generator functions, but in
 the context of a comprehension expression: we get
 back an object that remembers where it left off after each part of its
 result is returned. Also like generator functions, looking under the
 hood at the protocol that these objects automatically support can help
 demystify them; the iter call is
 again not required at the top here, for reasons we’ll expand on
 ahead:
>>> G = (x ** 2 for x in range(4))
>>> iter(G) is G # iter(G) optional: __iter__ returns self
True
>>> next(G) # Generator objects: automatic methods
0
>>> next(G)
1
>>> next(G)
4
>>> next(G)
9
>>> next(G)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

>>> G
<generator object <genexpr> at 0x00000000029A8318>
Again, we don’t typically see the next iterator machinery under the hood of a
 generator expression like this because for loops trigger it for us
 automatically:
>>> for num in (x ** 2 for x in range(4)): # Calls next() automatically
 print('%s, %s' % (num, num / 2.0))

0, 0.0
1, 0.5
4, 2.0
9, 4.5
As we’ve already learned, every iteration context does
 this—including for loops; the
 sum, map, and sorted built-in functions; list
 comprehensions; and other iteration contexts we learned about in Chapter 14, such as the any, all,
 and list built-in functions. As
 iterables, generator expressions can appear in any
 of these iteration contexts, just like the result of a generator
 function call.
For example, the following deploys generator expressions in the
 string join method call and tuple
 assignment, iteration contexts both. In the first test here, join runs the generator and joins the substrings it produces with nothing
 between—to simply concatenate:
>>> ''.join(x.upper() for x in 'aaa,bbb,ccc'.split(','))
'AAABBBCCC'

>>> a, b, c = (x + '\n' for x in 'aaa,bbb,ccc'.split(','))
>>> a, c
('aaa\n', 'ccc\n')
Notice how the join call in the
 preceding doesn’t require extra parentheses around
 the generator. Syntactically, parentheses are not
 required around a generator expression that is the sole item
 already enclosed in parentheses used for other purposes—like those of a
 function call. Parentheses are required in all other cases, however,
 even if they seem extra, as in the second call to sorted that follows:
>>> sum(x ** 2 for x in range(4)) # Parens optional
14
>>> sorted(x ** 2 for x in range(4)) # Parens optional
[0, 1, 4, 9]
>>> sorted((x ** 2 for x in range(4)), reverse=True) # Parens required
[9, 4, 1, 0]
Like the often-optional parentheses in tuples, there is no widely
 accepted rule on this, though a generator expression does not have as
 clear a role as a fixed collection of other objects as a tuple, making
 extra parentheses seem perhaps more spurious here.
Why generator expressions?
Just like generator functions, generator expressions are a memory-space
 optimization—they do not require the entire result list to be
 constructed all at once, as the square-bracketed list comprehension
 does. Also like generator functions, they divide the work of results
 production into smaller time slices—they yield
 results in piecemeal fashion, instead of making the caller wait for
 the full set to be created in a single call.
On the other hand, generator expressions may also run slightly
 slower than list comprehensions in practice, so
 they are probably best used only for very large result sets, or
 applications that cannot wait for full results generation. A more
 authoritative statement about performance, though, will have to await
 the timing scripts we’ll code in the next chapter.
Though more subjective, generator expressions offer
 coding advantages too—as the next sections
 show.

Generator expressions versus map
One way to see the coding benefits of generator expressions is to compare
 them to other functional tools, as we did for list comprehensions. For
 example, generator expressions often are equivalent to 3.X map calls, because both generate result
 items on request. Like list comprehensions, though, generator
 expressions may be simpler to code when the operation applied is not a
 function call. In 2.X, map makes
 temporary lists and generator expressions do not, but the same coding
 comparisons apply:
>>> list(map(abs, (−1, −2, 3, 4))) # Map function on tuple
[1, 2, 3, 4]
>>> list(abs(x) for x in (−1, −2, 3, 4)) # Generator expression
[1, 2, 3, 4]

>>> list(map(lambda x: x * 2, (1, 2, 3, 4))) # Nonfunction case
[2, 4, 6, 8]
>>> list(x * 2 for x in (1, 2, 3, 4)) # Simpler as generator?
[2, 4, 6, 8]
The same holds true for text-processing use cases like the
 join call we saw earlier—a list
 comprehension makes an extra temporary list of results, which is
 completely pointless in this context because the
 list is not retained, and map loses
 simplicity points compared to generator expression syntax when the
 operation being applied is not a call:
>>> line = 'aaa,bbb,ccc'
>>> ''.join([x.upper() for x in line.split(',')]) # Makes a pointless list
'AAABBBCCC'

>>> ''.join(x.upper() for x in line.split(',')) # Generates results
'AAABBBCCC'
>>> ''.join(map(str.upper, line.split(','))) # Generates results
'AAABBBCCC'

>>> ''.join(x * 2 for x in line.split(',')) # Simpler as generator?
'aaaaaabbbbbbcccccc'
>>> ''.join(map(lambda x: x * 2, line.split(',')))
'aaaaaabbbbbbcccccc'
Both map and generator
 expressions can also be arbitrarily nested, which
 supports general use in programs, and requires a list call or other iteration context to
 start the process of producing results. For example, the list
 comprehension in the following produces the same result as the 3.X
 map and generator equivalents that
 follow it, but makes two physical lists; the others generate just one
 integer at a time with nested generators, and the generator expression
 form may more clearly reflect its intent:
>>> [x * 2 for x in [abs(x) for x in (−1, −2, 3, 4)]] # Nested comprehensions
[2, 4, 6, 8]

>>> list(map(lambda x: x * 2, map(abs, (−1, −2, 3, 4)))) # Nested maps
[2, 4, 6, 8]

>>> list(x * 2 for x in (abs(x) for x in (−1, −2, 3, 4))) # Nested generators
[2, 4, 6, 8]
Although the effect of all three of these is to combine
 operations, the generators do so without making multiple temporary
 lists. In 3.X, the next example both nests and
 combines generators—the nested generator expression is activated by
 map, which in turn is only
 activated by list.
>>> import math
>>> list(map(math.sqrt, (x ** 2 for x in range(4)))) # Nested combinations
[0.0, 1.0, 2.0, 3.0]
Technically speaking, the range on the right in the preceding is a
 value generator in 3.X too, activated by the generator expression
 itself—three levels of value generation, which
 produce individual values from inner to outer only on request, and
 which “just works” because of Python’s iteration tools and protocol.
 In fact, generator nestings can be arbitrarily mixed and deep, though
 some may be more valid than others:
>>> list(map(abs, map(abs, map(abs, (−1, 0, 1))))) # Nesting gone bad?
[1, 0, 1]
>>> list(abs(x) for x in (abs(x) for x in (abs(x) for x in (−1, 0, 1))))
[1, 0, 1]
These last examples illustrate how general generators can be,
 but are also coded in an intentionally complex form to underscore that
 generator expressions have the same potential for abuse as the list
 comprehensions discussed earlier—as usual, you should keep them simple
 unless they must be complex, a theme we’ll revisit later in this
 chapter.
When used well, though, generator expressions combine the
 expressiveness of list comprehensions with the space and time benefits
 of other iterables. Here, for example, nonnested
 approaches provide simpler solutions but still leverage generators’
 strengths—per a Python motto, flat is generally better than nested:
>>> list(abs(x) * 2 for x in (−1, −2, 3, 4)) # Unnested equivalents
[2, 4, 6, 8]
>>> list(math.sqrt(x ** 2) for x in range(4)) # Flat is often better
[0.0, 1.0, 2.0, 3.0]
>>> list(abs(x) for x in (−1, 0, 1))
[1, 0, 1]

Generator expressions versus filter
Generator expressions also support all the usual list comprehension
 syntax—including if clauses, which
 work like the filter call we met
 earlier. Because filter is an
 iterable in 3.X that generates its results on request, a generator
 expression with an if clause is
 operationally equivalent (in 2.X, filter produces a temporary list that the
 generator does not, but the code comparisons again apply). Again, the
 join in the following suffices to
 force all forms to produce their results:
>>> line = 'aa bbb c'
>>> ''.join(x for x in line.split() if len(x) > 1) # Generator with 'if'
'aabbb'
>>> ''.join(filter(lambda x: len(x) > 1, line.split())) # Similar to filter
'aabbb'
The generator seems marginally simpler than the filter here. As for list comprehensions,
 though, adding processing steps to filter results requires a map too, which makes filter noticeably more complex than a
 generator expression:
>>> ''.join(x.upper() for x in line.split() if len(x) > 1)
'AABBB'
>>> ''.join(map(str.upper, filter(lambda x: len(x) > 1, line.split())))
'AABBB'
In effect, generator expressions do for 3.X iterables like
 map and filter what list comprehensions do for the
 2.X list-builder flavors of these calls—they provide more general
 coding structures that do not rely on functions, but still delay
 results production. Also like list comprehensions, there is always a
 statement-based equivalent to a generator expression, though it
 sometimes renders substantially more code:
>>> ''.join(x.upper() for x in line.split() if len(x) > 1)
'AABBB'

>>> res = ''
>>> for x in line.split(): # Statement equivalent?
 if len(x) > 1: # This is also a join
 res += x.upper()

>>> res
'AABBB'
In this case, though, the statement form isn’t quite the same—it
 cannot produce items one at a time, and it’s also emulating the effect
 of the join that forces results to
 be produced all at once. The true equivalent to a generator expression
 would be a generator function with a yield, as the next section shows.

Generator Functions Versus Generator Expressions
Let’s recap what we’ve covered so far in this section:
	Generator functions
	A function def statement
 that contains a yield
 statement is turned into a generator function. When called, it
 returns a new generator object with automatic
 retention of local scope and code position; an automatically
 created __iter__ method that
 simply returns itself; and an automatically created __next__ method (next in 2.X) that starts the function or
 resumes it where it last left off, and raises StopIteration when finished producing
 results.

	Generator expressions
	A comprehension expression enclosed in parentheses is known
 as a generator expression. When run, it returns a new
 generator object with the same automatically
 created method interface and state retention as a generator
 function call’s results—with an __iter__ method that simply returns
 itself; and a _next__ method
 (next in 2.X) that starts the
 implied loop or resumes it where it last left off, and raises
 StopIteration when finished
 producing results.

The net effect is to produce results on demand in iteration
 contexts that employ these interfaces automatically.
As implied by some of the preceding sections, the same iteration
 can often be coded with either a generator function
 or a generator expression. The following generator expression, for
 example, repeats each character in a string four times:
>>> G = (c * 4 for c in 'SPAM') # Generator expression
>>> list(G) # Force generator to produce all results
['SSSS', 'PPPP', 'AAAA', 'MMMM']
The equivalent generator function requires slightly more code, but
 as a multiple-statement function it will be able to code more logic and
 use more state information if needed. In fact, this is essentially the
 same as the prior chapter’s tradeoff between lambda and def—expression conciseness versus statement
 power:
>>> def timesfour(S): # Generator function
 for c in S:
 yield c * 4

>>> G = timesfour('spam')
>>> list(G) # Iterate automatically
['ssss', 'pppp', 'aaaa', 'mmmm']
To clients, the two are more similar than different. Both
 expressions and functions support both automatic and manual
 iteration—the prior list call
 iterates automatically, and the following iterate manually:
>>> G = (c * 4 for c in 'SPAM')
>>> I = iter(G) # Iterate manually (expression)
>>> next(I)
'SSSS'
>>> next(I)
'PPPP'

>>> G = timesfour('spam')
>>> I = iter(G) # Iterate manually (function)
>>> next(I)
'ssss'
>>> next(I)
'pppp'
In either case, Python automatically creates a generator object,
 which has both the methods required by the iteration protocol, and state
 retention for variables in the generator’s code and its current code
 location. Notice how we make new generators here to iterate again—as
 explained in the next section, generators are one-shot iterators.
First, though, here’s the true statement-based equivalent of
 expression at the end of the prior section: a function that yields
 values—though the difference is irrelevant if the code using it produces
 all results with a tool like join:
>>> line = 'aa bbb c'

>>> ''.join(x.upper() for x in line.split() if len(x) > 1) # Expression
'AABBB'

>>> def gensub(line): # Function
 for x in line.split():
 if len(x) > 1:
 yield x.upper()

>>> ''.join(gensub(line)) # But why generate?
'AABBB'
Though generators have valid roles, in cases like this the use of
 generators over the simple statement equivalent shown earlier may be
 difficult to justify, except on stylistic grounds. On the other hand,
 trading four lines for one may to many seem fairly compelling stylistic
 grounds!

Generators Are Single-Iteration Objects
A subtle but important point: both generator functions and generator expressions
 are their own iterators and thus support just one active
 iteration—unlike some built-in types, you can’t have multiple
 iterators of either positioned at different locations in the set of
 results. Because of this, a generator’s iterator is the generator
 itself; in fact, as suggested earlier, calling iter on a generator expression or function is
 an optional no-op:
>>> G = (c * 4 for c in 'SPAM')
>>> iter(G) is G # My iterator is myself: G has __next__
True
If you iterate over the results stream manually with multiple
 iterators, they will all point to the same position:
>>> G = (c * 4 for c in 'SPAM') # Make a new generator
>>> I1 = iter(G) # Iterate manually
>>> next(I1)
'SSSS'
>>> next(I1)
'PPPP'
>>> I2 = iter(G) # Second iterator at same position!
>>> next(I2)
'AAAA'
Moreover, once any iteration runs to completion, all are
 exhausted—we have to make a new generator to start again:
>>> list(I1) # Collect the rest of I1's items
['MMMM']
>>> next(I2) # Other iterators exhausted too
StopIteration

>>> I3 = iter(G) # Ditto for new iterators
>>> next(I3)
StopIteration

>>> I3 = iter(c * 4 for c in 'SPAM') # New generator to start over
>>> next(I3)
'SSSS'
The same holds true for generator functions—the following def statement-based equivalent supports just
 one active iterator and is exhausted after one pass:
>>> def timesfour(S):
 for c in S:
 yield c * 4

>>> G = timesfour('spam') # Generator functions work the same way
>>> iter(G) is G
True
>>> I1, I2 = iter(G), iter(G)
>>> next(I1)
'ssss'
>>> next(I1)
'pppp'
>>> next(I2) # I2 at same position as I1
'aaaa'
This is different from the behavior of some built-in types, which
 support multiple iterators and passes and reflect their in-place changes
 in active iterators:
>>> L = [1, 2, 3, 4]
>>> I1, I2 = iter(L), iter(L)
>>> next(I1)
1
>>> next(I1)
2
>>> next(I2) # Lists support multiple iterators
1
>>> del L[2:] # Changes reflected in iterators
>>> next(I1)
StopIteration
Though not readily apparent in these simple examples, this can
 matter in your code: if you wish to scan a generator’s values multiple
 times, you must either create a new generator for each scan or build a
 rescannable list out of its values—a single generator’s values will be
 consumed and exhausted after a single pass. See this chapter’s sidebar
 “Why You Will Care: One-Shot Iterations” for a prime
 example of the sort of code that must accommodate this generator
 property.
When we begin coding class-based iterables in Part VI, we’ll also see that it’s up to us to
 decide how many iterations we wish to support for our objects, if any.
 In general, objects that wish to support multiple scans will return
 supplemental class objects instead of themselves. The next section
 previews more of this model.
The Python 3.3 yield from Extension
Python 3.3 introduces extended syntax for the yield statement that allows delegation to a
 subgenerator with a from
 generator clause. In simple cases, it’s the
 equivalent to a yielding for
 loop—the list here in the following
 forces the generator to produce all its values, and the comprehension
 in parentheses is a generator expression, covered in this
 chapter:
>>> def both(N):
 for i in range(N): yield i
 for i in (x ** 2 for x in range(N)): yield i

>>> list(both(5))
[0, 1, 2, 3, 4, 0, 1, 4, 9, 16]
The new 3.3 syntax makes this arguably more concise and
 explicit, and supports all the usual generator usage contexts:
>>> def both(N):
 yield from range(N)
 yield from (x ** 2 for x in range(N))

>>> list(both(5))
[0, 1, 2, 3, 4, 0, 1, 4, 9, 16]

>>> ' : '.join(str(i) for i in both(5))
'0 : 1 : 2 : 3 : 4 : 0 : 1 : 4 : 9 : 16'
In more advanced roles, however, this extension allows
 subgenerators to receive sent and
 thrown values directly from the calling scope,
 and return a final value to the outer generator. The net effect is to
 allow such generators to be split into multiple subgenerators much as
 a single function can be split into multiple subfunctions.
Since this is only available in 3.3 and later, and is beyond
 this chapter’s generator coverage in general, we’ll defer to Python
 3.3’s manuals for additional details. For an additional yield from example, also see the solution to
 this part’s Exercise 11 described at the end of Chapter 21.

Generation in Built-in Types, Tools, and Classes
Finally, although we’ve focused on coding value generators ourselves in this section, don’t
 forget that many built-in types behave in similar ways—as we saw in
 Chapter 14, for example,
 dictionaries are iterables with iterators that
 produce keys on each iteration:
>>> D = {'a':1, 'b':2, 'c':3}
>>> x = iter(D)
>>> next(x)
'c'
>>> next(x)
'b'
Like the values produced by handcoded generators, dictionary keys
 may be iterated over both manually and with automatic iteration tools
 including for loops, map calls, list comprehensions, and the many
 other contexts we met in Chapter 14:
>>> for key in D:
 print(key, D[key])

c 3
b 2
a 1
As we’ve also seen, for file iterators,
 Python simply loads lines from the file on demand:
>>> for line in open('temp.txt'):
 print(line, end='')

Tis but
a flesh wound.
While built-in type iterables are bound to a specific type of
 value generation, the concept is similar to the multipurpose generators
 we code with expressions and functions. Iteration contexts like for loops accept any iterable that has the
 expected methods, whether user-defined or built-in.
Generators and library tools: Directory walkers
Though beyond this book’s scope, many Python standard library
 tools generate values today too, including email parsers, and the
 standard directory walker—which at
 each level of a tree yields a tuple of the current directory, its
 subdirectories, and its files:
>>> import os
>>> for (root, subs, files) in os.walk('.'): # Directory walk generator
 for name in files: # A Python 'find' operation
 if name.startswith('call'):
 print(root, name)

. callables.py
.\dualpkg callables.py
In fact, os.walk is coded
 as a recursive function in Python in its os.py standard library file, in C:\Python33\Lib on Windows. Because it uses
 yield (and in 3.3 yield from instead of a for loop) to return results, it’s a normal
 generator function, and hence an iterable object:
>>> G = os.walk(r'C:\code\pkg')
>>> iter(G) is G # Single-scan iterator: iter(G) optional
True
>>> I = iter(G)
>>> next(I)
('C:\\code\\pkg', ['__pycache__'], ['eggs.py', 'eggs.pyc', 'main.py', ...etc...])
>>> next(I)
('C:\\code\\pkg__pycache__', [], ['eggs.cpython-33.pyc', ...etc...])
>>> next(I)
StopIteration
By yielding results as it goes, the walker does not require its
 clients to wait for an entire tree to be scanned. See Python’s manuals
 and follow-up books such as Programming
 Python for more on this tool. Also see Chapter 14 and others for os.popen—a
 related iterable used to run a shell command and read its
 output.

Generators and function application
In Chapter 18, we noted that starred arguments
 can unpack an iterable into individual arguments.
 Now that we’ve seen generators, we can also see what this means in
 code. In both 3.X and 2.X (though 2.X’s range is a list):
>>> def f(a, b, c): print('%s, %s, and %s' % (a, b, c))

>>> f(0, 1, 2) # Normal positionals
0, 1, and 2
>>> f(*range(3)) # Unpack range values: iterable in 3.X
0, 1, and 2
>>> f(*(i for i in range(3))) # Unpack generator expression values
0, 1, and 2
This applies to dictionaries and views too (though dict.values
 is also a list in 2.X, and order is arbitrary when passing values by
 position):
>>> D = dict(a='Bob', b='dev', c=40.5); D
{'b': 'dev', 'c': 40.5, 'a': 'Bob'}
>>> f(a='Bob', b='dev', c=40.5) # Normal keywords
Bob, dev, and 40.5
>>> f(**D) # Unpack dict: key=value
Bob, dev, and 40.5
>>> f(*D) # Unpack keys iterator
b, c, and a
>>> f(*D.values()) # Unpack view iterator: iterable in 3.X
dev, 40.5, and Bob
Because the built-in print
 function in 3.X prints all its variable number of arguments, this also
 makes the following three forms equivalent—the latter using a * to unpack the results forced from a
 generator expression (though the second also creates a list of return
 values, and the first may leave your cursor at the end of the output
 line in some shells, but not in the IDLE GUI):
>>> for x in 'spam': print(x.upper(), end=' ')
S P A M

>>> list(print(x.upper(), end=' ') for x in 'spam')
S P A M [None, None, None, None]

>>> print(*(x.upper() for x in 'spam'))
S P A M
See Chapter 14 for an
 additional example that unpacks a file’s lines by iterator into
 arguments.

Preview: User-defined iterables in classes
Although beyond the scope of this chapter, it is also possible
 to implement arbitrary user-defined generator objects with
 classes that conform to the iteration protocol.
 Such classes define a special __iter__
 method run by the iter built-in
 function, which in turn returns an object having a __next__ method (next in 2.X) run by the next built-in function:
class SomeIterable:
 def __iter__(...): ... # On iter(): return self or supplemental object
 def __next__(...): ... # On next(): coded here, or in another class
As the prior section suggested, these classes usually return
 their objects directly for single-iteration behavior, or a
 supplemental object with scan-specific state for multiple-scan
 support.
Alternatively, a user-defined iterable class’s method functions
 can sometimes use yield to
 transform themselves into generators, with an automatically created
 __next__ method—a common
 application of yield we’ll meet in
 Chapter 30 that is both wildly
 implicit and potentially useful! A __getitem__ indexing method is also available as a fallback option for
 iteration, though this is often not as flexible as the __iter__ and __next__ scheme (but has advantages for
 coding sequences).
The instance objects created from such a class are considered
 iterable and may be used in for
 loops and all other iteration contexts. With classes, though, we have
 access to richer logic and data structuring options, such as
 inheritance, that other generator constructs cannot offer by
 themselves. By coding methods, classes also can make iteration
 behavior much more explicit than the “magic”
 generator objects associated with built-in types and generator
 functions and expressions (though classes wield some magic of their
 own).
Hence, the iterator and generator story won’t really be complete
 until we’ve seen how it maps to classes, too. For now, we’ll have to
 settle for postponing its conclusion—and its final sequel—until we
 study class-based iterables in Chapter 30.

Example: Generating Scrambled Sequences
To demonstrate the power of iteration tools in action, let’s turn to some more
 complete use case examples. In Chapter 18, we wrote a
 testing function that scrambled the order of arguments used to test
 generalized intersection and union functions. There, I noted that this
 might be better coded as a generator of values. Now that we’ve learned
 how to write generators, this serves to illustrate a practical
 application.
One note up front: because they slice and concatenate objects, all
 the examples in the section (including the permutations at the end) work
 only on sequences like strings and lists, not on
 arbitrary iterables like files, maps, and other
 generators. That is, some of these examples will be
 generators themselves, producing values on request, but they cannot
 process generators as their inputs. Generalization for broader
 categories is left as an open issue, though the code here will suffice
 unchanged if you wrap nonsequence generators in list calls before passing them in.
Scrambling sequences
As coded in Chapter 18, we can reorder a
 sequence with slicing and concatenation, moving the front item to the
 end on each loop; slicing instead of indexing the
 item allows + to work for arbitrary
 sequence types:
>>> L, S = [1, 2, 3], 'spam'
>>> for i in range(len(S)): # For repeat counts 0..3
 S = S[1:] + S[:1] # Move front item to the end
 print(S, end=' ')

pams amsp mspa spam

>>> for i in range(len(L)):
 L = L[1:] + L[:1] # Slice so any sequence type works
 print(L, end=' ')

[2, 3, 1] [3, 1, 2] [1, 2, 3]
Alternatively, as we saw in Chapter 13, we get the same results by moving an
 entire front section to the end, though the order of the results
 varies slightly:
>>> for i in range(len(S)): # For positions 0..3
 X = S[i:] + S[:i] # Rear part + front part (same effect)
 print(X, end=' ')

spam pams amsp mspa

Simple functions
As is, this code works on specific named variables only. To
 generalize, we can turn it into a simple function
 to work on any object passed to its argument and return a result;
 since the first of these exhibits the classic list comprehension
 pattern, we can save some work by coding it as such in the
 second:
>>> def scramble(seq):
 res = []
 for i in range(len(seq)):
 res.append(seq[i:] + seq[:i])
 return res

>>> scramble('spam')
['spam', 'pams', 'amsp', 'mspa']

>>> def scramble(seq):
 return [seq[i:] + seq[:i] for i in range(len(seq))]

>>> scramble('spam')
['spam', 'pams', 'amsp', 'mspa']

>>> for x in scramble((1, 2, 3)):
 print(x, end=' ')

(1, 2, 3) (2, 3, 1) (3, 1, 2)
We could use recursion here as well, but it’s probably overkill
 in this context.

Generator functions
The preceding section’s simple approach works, but must build an
 entire result list in memory all at once (not great on memory usage if
 it’s massive), and requires the caller to wait until the entire list
 is complete (less than ideal if this takes a substantial amount of
 time). We can do better on both fronts by translating this to a
 generator function that yields one result at a
 time, using either coding scheme:
>>> def scramble(seq):
 for i in range(len(seq)):
 seq = seq[1:] + seq[:1] # Generator function
 yield seq # Assignments work here

>>> def scramble(seq):
 for i in range(len(seq)): # Generator function
 yield seq[i:] + seq[:i] # Yield one item per iteration

>>> list(scramble('spam')) # list() generates all results
['spam', 'pams', 'amsp', 'mspa']
>>> list(scramble((1, 2, 3))) # Any sequence type works
[(1, 2, 3), (2, 3, 1), (3, 1, 2)]
>>>
>>> for x in scramble((1, 2, 3)): # for loops generate results
 print(x, end=' ')

(1, 2, 3) (2, 3, 1) (3, 1, 2)
Generator functions retain their local scope state while active,
 minimize memory space requirements, and divide the work into shorter
 time slices. As full functions, they are also very general.
 Importantly, for loops and other
 iteration tools work the same whether stepping through a real list or
 a generator of values—the function can select between the two schemes
 freely, and even change strategies in the future.

Generator expressions
As we’ve seen, generator
 expressions—comprehensions in parentheses instead of square
 brackets—also generate values on request and retain their local state.
 They’re not as flexible as full functions, but because they yield
 their values automatically, expressions can often be more concise in
 specific use cases like this:
>>> S
'spam'
>>> G = (S[i:] + S[:i] for i in range(len(S))) # Generator expression equivalent
>>> list(G)
['spam', 'pams', 'amsp', 'mspa']
Notice that we can’t use the assignment statement of the first
 generator function version here, because generator expressions cannot
 contain statements. This makes them a bit narrower in scope; in many
 cases, though, expressions can do similar work, as shown here. To
 generalize a generator expression for an arbitrary subject, wrap it in
 a simple function that takes an argument and
 returns a generator that uses it:
>>> F = lambda seq: (seq[i:] + seq[:i] for i in range(len(seq)))
>>> F(S)
<generator object <genexpr> at 0x00000000029883F0>
>>>
>>> list(F(S))
['spam', 'pams', 'amsp', 'mspa']
>>> list(F([1, 2, 3]))
[[1, 2, 3], [2, 3, 1], [3, 1, 2]]

>>> for x in F((1, 2, 3)):
 print(x, end=' ')

(1, 2, 3) (2, 3, 1) (3, 1, 2)

Tester client
Finally, we can use either the generator function or its
 expression equivalent in Chapter 18’s
 tester to produce scrambled arguments—the
 sequence scrambling function becomes a tool we can use in other
 contexts:
file scramble.py

def scramble(seq):
 for i in range(len(seq)): # Generator function
 yield seq[i:] + seq[:i] # Yield one item per iteration

scramble2 = lambda seq: (seq[i:] + seq[:i] for i in range(len(seq)))
And by moving the values generation out to an external tool, the
 tester becomes simpler:
>>> from scramble import scramble
>>> from inter2 import intersect, union
>>>
>>> def tester(func, items, trace=True):
 for args in scramble(items): # Use generator (or: scramble2(items))
 if trace: print(args)
 print(sorted(func(*args)))

>>> tester(intersect, ('aab', 'abcde', 'ababab'))
('aab', 'abcde', 'ababab')
['a', 'b']
('abcde', 'ababab', 'aab')
['a', 'b']
('ababab', 'aab', 'abcde')
['a', 'b']

>>> tester(intersect, ([1, 2], [2, 3, 4], [1, 6, 2, 7, 3]), False)
[2]
[2]
[2]

Permutations: All possible combinations
These techniques have many other real-world
 applications—consider generating attachments in an email message or
 points to be plotted in a GUI. Moreover, other types of sequence
 scrambles serve central roles in other applications, from searches to
 mathematics. As is, our sequence scrambler is a simple reordering, but
 some programs warrant the more exhaustive set of all possible
 orderings we get from permutations—produced using
 recursive functions in both list-builder and generator forms by the
 following module file:
File permute.py

def permute1(seq):
 if not seq: # Shuffle any sequence: list
 return [seq] # Empty sequence
 else:
 res = []
 for i in range(len(seq)):
 rest = seq[:i] + seq[i+1:] # Delete current node
 for x in permute1(rest): # Permute the others
 res.append(seq[i:i+1] + x) # Add node at front
 return res

def permute2(seq):
 if not seq: # Shuffle any sequence: generator
 yield seq # Empty sequence
 else:
 for i in range(len(seq)):
 rest = seq[:i] + seq[i+1:] # Delete current node
 for x in permute2(rest): # Permute the others
 yield seq[i:i+1] + x # Add node at front
Both of these functions produce the same results, though the
 second defers much of its work until it is asked for a result. This
 code is a bit advanced, especially the second of these functions (and
 to some Python newcomers might even be categorized as cruel and
 inhumane punishment!). Still, as I’ll explain in a moment, there are
 cases where the generator approach can be highly useful.
Study and test this code for more insight, and add prints to
 trace if it helps. If it’s still a mystery, try to make sense of the
 first version first; remember that generator functions simply return
 objects with methods that handle next operations run by for loops at each level, and don’t produce
 any results until iterated; and trace through some of the following
 examples to see how they’re handled by this code.
Permutations produce more orderings than the original
 shuffler—for N items, we get N! (factorial) results instead of just N
 (24 for 4: 4 * 3 * 2 * 1). In fact, that’s why we need
 recursion here: the number of nested loops is
 arbitrary, and depends on the length of the sequence permuted:
>>> from scramble import scramble
>>> from permute import permute1, permute2

>>> list(scramble('abc')) # Simple scrambles: N
['abc', 'bca', 'cab']

>>> permute1('abc') # Permutations larger: N!
['abc', 'acb', 'bac', 'bca', 'cab', 'cba']
>>> list(permute2('abc')) # Generate all combinations
['abc', 'acb', 'bac', 'bca', 'cab', 'cba']

>>> G = permute2('abc') # Iterate (iter() not needed)
>>> next(G)
'abc'
>>> next(G)
'acb'
>>> for x in permute2('abc'): print(x) # Automatic iteration
...prints six lines...
The list and generator versions’ results are the same, though
 the generator minimizes both space usage and delays for results. For
 larger items, the set of all permutations is much larger than the
 simpler scrambler’s:
>>> permute1('spam') == list(permute2('spam'))
True
>>> len(list(permute2('spam'))), len(list(scramble('spam')))
(24, 4)

>>> list(scramble('spam'))
['spam', 'pams', 'amsp', 'mspa']
>>> list(permute2('spam'))
['spam', 'spma', 'sapm', 'samp', 'smpa', 'smap', 'psam', 'psma', 'pasm', 'pams',
 'pmsa', 'pmas', 'aspm', 'asmp', 'apsm', 'apms', 'amsp', 'amps', 'mspa', 'msap',
 'mpsa', 'mpas', 'masp', 'maps']
Per Chapter 19, there are
 nonrecursive alternatives here too, using explicit stacks or queues,
 and other sequence orderings are common (e.g., fixed-size subsets and
 combinations that filter out duplicates of differing order), but these
 require coding extensions we’ll forgo here. See the book Programming
 Python for more on this theme, or experiment further on your
 own.

Don’t Abuse Generators: EIBTI
Generators are a somewhat advanced tool, and might be better treated as an optional
 topic, but for the fact that they permeate the Python language,
 especially in 3.X. In fact, they seem less optional to this book’s
 audience than Unicode (which was exiled to Part VIII). As we’ve seen, fundamental built-in tools
 such as range, map, dictionary keys, and even files are now generators, so
 you must be familiar with the concept even if you don’t write new
 generators of your own. Moreover, user-defined generators are
 increasingly common in Python code that you might come across today—in
 the Python standard library, for instance.
In general, the same cautions I gave for list comprehensions apply
 here as well: don’t complicate your code with user-defined generators if
 they are not warranted. Especially for smaller programs and data sets,
 there may be no good reason to use these tools. In such cases, simple
 lists of results will suffice, will be easier to understand, will be
 garbage-collected automatically, and may be produced quicker (and they
 are today: see the next chapter). Advanced tools like generators that
 rely on implicit “magic” can be fun to experiment with, but they have no
 place in real code that must be used by others except when clearly
 justified.
Or, to quote from Python’s import
 this motto again:
Explicit is better than implicit.

The acronym for this, EIBTI, is one of
 Python’s core guidelines, and for good reason: the more explicit your
 code is about its behavior, the more likely it is that the next
 programmer will be able to understand it. This applies directly to
 generators, whose implicit behavior may very well be more difficult for
 some to grasp than less obscure alternatives. Always: keep it simple
 unless it must be complicated!
On the other hand: Space and time, conciseness,
 expressiveness
That being said, there are specific use cases that generators
 can address well. They can reduce memory footprint in some programs,
 reduce delays in others, and can occasionally make the impossible
 possible. Consider, for example, a program that must produce all
 possible permutations of a nontrivial sequence. Since the number of
 combinations is a factorial that explodes
 exponentially, the preceding permute1 recursive list-builder function
 will either introduce a noticeable and perhaps interminable pause or
 fail completely due to memory requirements, whereas the permute2 recursive generator will not—it
 returns each individual result quickly, and can handle very large
 result sets:
>>> import math
>>> math.factorial(10) # 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
3628800
>>> from permute import permute1, permute2
>>> seq = list(range(10))
>>> p1 = permute1(seq) # 37 seconds on a 2GHz quad-core machine
 # Creates a list of 3.6M numbers
>>> len(p1), p1[0], p1[1]
(3628800, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 9, 8])
In this case, the list builder pauses for 37 seconds on my
 computer to build a 3.6-million-item list, but the generator can begin
 returning results immediately:
>>> p2 = permute2(seq) # Returns generator immediately
>>> next(p2) # And produces each result quickly on request
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> next(p2)
[0, 1, 2, 3, 4, 5, 6, 7, 9, 8]

>>> p2 = list(permute2(seq)) # About 28 seconds, though still impractical
>>> p1 == p2 # Same set of results generated
True
Naturally, we might be able to optimize the list builder’s code
 to run quicker (e.g., an explicit stack instead of recursion might
 change its performance), but for larger sequences, it’s not an option
 at all—at just 50 items, the number of permutations precludes building
 a results list, and would take far too long for mere mortals like us
 (and larger values will overflow the preset recursion stack depth
 limit: see the preceding chapter). The generator, however, is still
 viable—it is able to produce individual results immediately:
>>> math.factorial(50)
30414093201713378043612608166064768844377641568960512000000000000
>>> p3 = permute2(list(range(50)))
>>> next(p3) # permute1 is not an option here!
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49]
For more fun—and to yield results that are more variable and
 less obviously deterministic—we could also use Python’s random
 module of Chapter 5 to randomly shuffle the
 sequence to be permuted before the permuter begins its work. (In fact,
 we might be able to use the random shuffler as a permutation generator
 in general, as long as we either can assume that it won’t repeat
 shuffles during the time we consume them, or test its results against
 prior shuffles to avoid repeats—and hope that we do not live in the
 strange universe where a random sequence repeats the same result an
 infinite number of times!). In the following, each permute2 and next call returns immediately as before, but
 a permute1 hangs:
>>> import random
>>> math.factorial(20) # permute1 is not an option here
2432902008176640000
>>> seq = list(range(20))

>>> random.shuffle(seq) # Shuffle sequence randomly first
>>> p = permute2(seq)
>>> next(p)
[10, 17, 4, 14, 11, 3, 16, 19, 12, 8, 6, 5, 2, 15, 18, 7, 1, 0, 13, 9]
>>> next(p)
[10, 17, 4, 14, 11, 3, 16, 19, 12, 8, 6, 5, 2, 15, 18, 7, 1, 0, 9, 13]

>>> random.shuffle(seq)
>>> p = permute2(seq)
>>> next(p)
[16, 1, 5, 14, 15, 12, 0, 2, 6, 19, 10, 17, 11, 18, 13, 7, 4, 9, 8, 3]
>>> next(p)
[16, 1, 5, 14, 15, 12, 0, 2, 6, 19, 10, 17, 11, 18, 13, 7, 4, 9, 3, 8]
The main point here is that generators can sometimes produce
 results from large solution sets when list builders cannot. Then
 again, it’s not clear how common such use cases may be in the real
 world, and this doesn’t necessarily justify the
 implicit flavor of value generation that we get
 with generator functions and expressions. As we’ll see in Part VI, value generation can also be coded as
 iterable objects with classes. Class-based
 iterables can produce items on request too, and are far more
 explicit than the magic objects and methods
 produced for generator functions and expressions.
Part of programming is finding a balance among tradeoffs like
 these, and there are no absolute rules here. While the benefits of
 generators may sometimes justify their use, maintainability should
 always be a top priority too. Like comprehensions, generators also
 offer an expressiveness and code
 economy that’s hard to resist if you understand how they
 work—but you’ll want to weigh this against the frustration of
 coworkers who might not.

Example: Emulating zip and map with Iteration Tools
To help you evaluate their roles further, let’s take a quick look at one more example
 of generators in action that illustrates just how expressive they can
 be. Once you know about comprehensions, generators, and other iteration
 tools, it turns out that emulating many of Python’s functional built-ins
 is both straightforward and instructive. For example, we’ve already seen
 how the built-in zip and map functions combine iterables and project
 functions across them, respectively. With multiple iterable arguments,
 map projects the function across
 items taken from each iterable in much the same way that zip pairs them up (3.X’s
 map truncates shorter iterables; 2.X pads them with
 None):
>>> S1 = 'abc'
>>> S2 = 'xyz123'
>>> list(zip(S1, S2)) # zip pairs items from iterables
[('a', 'x'), ('b', 'y'), ('c', 'z')]

zip pairs items, truncates at shortest
>>> list(zip([−2, −1, 0, 1, 2])) # Single sequence: 1-ary tuples
[(−2,), (−1,), (0,), (1,), (2,)]
>>> list(zip([1, 2, 3], [2, 3, 4, 5])) # N sequences: N-ary tuples
[(1, 2), (2, 3), (3, 4)]

map passes paired items to function, truncates
>>> list(map(abs, [−2, −1, 0, 1, 2])) # Single sequence: 1-ary function
[2, 1, 0, 1, 2]
>>> list(map(pow, [1, 2, 3], [2, 3, 4, 5])) # N sequences: N-ary function, 3.X
[1, 8, 81]

map and zip accept arbitrary iterables
>>> list(map(lambda x, y: x + y, open('script2.py'), open('script2.py')))
['import sys\nimport sys\n', 'print(sys.path)\nprint(sys.path)\n', ...etc...]

>>> [x + y for (x, y) in zip(open('script2.py'), open('script2.py'))]
['import sys\nimport sys\n', 'print(sys.path)\nprint(sys.path)\n', ...etc...]
Though they’re being used for different purposes, if you study
 these examples long enough, you might notice a relationship between
 zip results and mapped function
 arguments that our next example can exploit.
Coding your own map(func, ...)
Although the map and zip built-ins are fast and convenient, it’s
 always possible to emulate them in code of our own. In the preceding
 chapter, for example, we saw a function that emulated the map built-in for a single sequence (or other
 iterable) argument. It doesn’t take much more work to allow for
 multiple sequences, as the built-in does:
map(func, seqs...) workalike with zip

def mymap(func, *seqs):
 res = []
 for args in zip(*seqs):
 res.append(func(*args))
 return res

print(mymap(abs, [-2, −1, 0, 1, 2]))
print(mymap(pow, [1, 2, 3], [2, 3, 4, 5]))
This version relies heavily upon the special *args argument-passing syntax—it collects
 multiple sequence (really, iterable) arguments, unpacks them as
 zip arguments to combine, and then
 unpacks the paired zip results as
 arguments to the passed-in function. That is, we’re using the fact
 that the zipping is essentially a nested operation in mapping. The
 test code at the bottom applies this to both one and two sequences to
 produce this output—the same we would get with the built-in map (this code is in file mymap.py in the book’s examples if you want
 to run it live):
[2, 1, 0, 1, 2]
[1, 8, 81]
Really, though, the prior version exhibits the classic
 list comprehension pattern, building a list of
 operation results within a for
 loop. We can code our map more concisely as an equivalent one-line
 list comprehension:
Using a list comprehension

def mymap(func, *seqs):
 return [func(*args) for args in zip(*seqs)]

print(mymap(abs, [−2, −1, 0, 1, 2]))
print(mymap(pow, [1, 2, 3], [2, 3, 4, 5]))
When this is run the result is the same as before, but the code
 is more concise and might run faster (more on performance in the
 section “Timing Iteration Alternatives”). Both of the
 preceding mymap versions build
 result lists all at once, though, and this can waste memory for larger
 lists. Now that we know about generator functions and
 expressions, it’s simple to recode both these alternatives
 to produce results on demand instead:
Using generators: yield and (...)

def mymap(func, *seqs):
 for args in zip(*seqs):
 yield func(*args)

def mymap(func, *seqs):
 return (func(*args) for args in zip(*seqs))
These versions produce the same results but return generators
 designed to support the iteration protocol—the first yields one result
 at a time, and the second returns a generator expression’s result to
 do the same. They produce the same results if we wrap them in list calls to force them to produce their
 values all at once:
print(list(mymap(abs, [−2, −1, 0, 1, 2])))
print(list(mymap(pow, [1, 2, 3], [2, 3, 4, 5])))
No work is really done here until the list calls force the generators to run, by
 activating the iteration protocol. The generators returned by these
 functions themselves, as well as that returned by the Python 3.X
 flavor of the zip built-in they
 use, produce results only on demand.

Coding your own zip(...) and map(None, ...)
Of course, much of the magic in the examples shown so far lies
 in their use of the zip built-in to
 pair arguments from multiple sequences or iterables. Our map workalikes are also really emulating the
 behavior of the Python 3.X map—they
 truncate at the length of the shortest argument, and they do not
 support the notion of padding results when lengths differ, as map does in Python 2.X with a None argument:
C:code> c:\python27\python
>>> map(None, [1, 2, 3], [2, 3, 4, 5])
[(1, 2), (2, 3), (3, 4), (None, 5)]
>>> map(None, 'abc', 'xyz123')
[('a', 'x'), ('b', 'y'), ('c', 'z'), (None, '1'), (None, '2'), (None, '3')]
Using iteration tools, we can code workalikes that emulate both
 truncating zip and 2.X’s padding
 map—these turn out to be nearly the
 same in code:
zip(seqs...) and 2.X map(None, seqs...) workalikes

def myzip(*seqs):
 seqs = [list(S) for S in seqs]
 res = []
 while all(seqs):
 res.append(tuple(S.pop(0) for S in seqs))
 return res

def mymapPad(*seqs, pad=None):
 seqs = [list(S) for S in seqs]
 res = []
 while any(seqs):
 res.append(tuple((S.pop(0) if S else pad) for S in seqs))
 return res

S1, S2 = 'abc', 'xyz123'
print(myzip(S1, S2))
print(mymapPad(S1, S2))
print(mymapPad(S1, S2, pad=99))
Both of the functions coded here work on any type of
 iterable object, because they run their arguments
 through the list built-in to force
 result generation (e.g., files would work as arguments, in addition to
 sequences like strings). Notice the use of the all and any built-ins here—these return True if all and any items in an iterable are
 True (or equivalently, nonempty),
 respectively. These built-ins are used to stop looping when any or all
 of the listified arguments become empty after deletions.
Also note the use of the Python 3.X
 keyword-only argument, pad; unlike the 2.X map, our version will allow any pad object
 to be specified (if you’re using 2.X, use a **kargs form to support this option instead; see Chapter 18 for details). When these functions are run, the
 following results are printed—a zip, and two padding maps:
[('a', 'x'), ('b', 'y'), ('c', 'z')]
[('a', 'x'), ('b', 'y'), ('c', 'z'), (None, '1'), (None, '2'), (None, '3')]
[('a', 'x'), ('b', 'y'), ('c', 'z'), (99, '1'), (99, '2'), (99, '3')]
These functions aren’t amenable to list comprehension
 translation because their loops are too specific. As before, though,
 while our zip and map workalikes currently build and return
 result lists, it’s just as easy to turn them into
 generators with yield so that they each return one piece of
 their result set at a time. The results are the same as before, but we
 need to use list again to force the
 generators to yield their values for display:
Using generators: yield

def myzip(*seqs):
 seqs = [list(S) for S in seqs]
 while all(seqs):
 yield tuple(S.pop(0) for S in seqs)

def mymapPad(*seqs, pad=None):
 seqs = [list(S) for S in seqs]
 while any(seqs):
 yield tuple((S.pop(0) if S else pad) for S in seqs)

S1, S2 = 'abc', 'xyz123'
print(list(myzip(S1, S2)))
print(list(mymapPad(S1, S2)))
print(list(mymapPad(S1, S2, pad=99)))
Finally, here’s an alternative implementation of our zip and map emulators—rather than deleting arguments
 from lists with the pop method, the
 following versions do their job by calculating the minimum and
 maximum argument lengths. Armed
 with these lengths, it’s easy to code nested list comprehensions to
 step through argument index ranges:
Alternate implementation with lengths

def myzip(*seqs):
 minlen = min(len(S) for S in seqs)
 return [tuple(S[i] for S in seqs) for i in range(minlen)]

def mymapPad(*seqs, pad=None):
 maxlen = max(len(S) for S in seqs)
 index = range(maxlen)
 return [tuple((S[i] if len(S) > i else pad) for S in seqs) for i in index]

S1, S2 = 'abc', 'xyz123'
print(myzip(S1, S2))
print(mymapPad(S1, S2))
print(mymapPad(S1, S2, pad=99))
Because these use len and
 indexing, they assume that arguments are
 sequences or similar, not arbitrary iterables,
 much like our earlier sequence scramblers and permuters. The outer
 comprehensions here step through argument index ranges, and the inner
 comprehensions (passed to tuple)
 step through the passed-in sequences to pull out arguments in
 parallel. When they’re run, the results are as before.
Most strikingly, generators and iterators seem to run rampant in
 this example. The arguments passed to min and max are generator expressions, which run to
 completion before the nested comprehensions begin iterating. Moreover,
 the nested list comprehensions employ two levels of delayed
 evaluation—the Python 3.X range
 built-in is an iterable, as is the generator expression argument to
 tuple.
In fact, no results are produced here until the square brackets
 of the list comprehensions request values to place in the result
 list—they force the comprehensions and generators to run. To turn
 these functions themselves into generators instead of list builders,
 use parentheses instead of square brackets again. Here’s the case for
 our zip:
Using generators: (...)

def myzip(*seqs):
 minlen = min(len(S) for S in seqs)
 return (tuple(S[i] for S in seqs) for i in range(minlen))

S1, S2 = 'abc', 'xyz123'
print(list(myzip(S1, S2))) # Go!... [('a', 'x'), ('b', 'y'), ('c', 'z')]
In this case, it takes a list
 call to activate the generators and other iterables to produce their
 results. Experiment with these on your own for more details.
 Developing further coding alternatives is left as a suggested exercise
 (see also the sidebar “Why You Will Care: One-Shot Iterations” for investigation
 of one such option).
Note
Watch for more yield
 examples in Chapter 30, where we’ll
 use it in conjunction with the __iter__ operator overloading method to
 implement user-defined iterable objects in an automated fashion. The
 state retention of local variables in this role serves as an
 alternative to class attributes in the same spirit as the closure
 functions of Chapter 17; as we’ll see, though, this
 technique combines classes and functional tools
 instead of posing a paradigm alternative.

Why You Will Care: One-Shot Iterations
In Chapter 14, we
 saw how some built-ins (like map) support only a single traversal and
 are empty after it occurs, and I promised to show you an example of
 how that can become subtle but important in practice. Now that we’ve
 studied a few more iteration topics, I can make good on this
 promise. Consider the following clever alternative coding for this
 chapter’s zip emulation examples,
 adapted from one in Python’s manuals at the time I wrote these
 words:
def myzip(*args):
 iters = map(iter, args)
 while iters:
 res = [next(i) for i in iters]
 yield tuple(res)
Because this code uses iter
 and next, it works on any type of
 iterable. Note that there is no reason to catch the StopIteration raised by the next(i) inside the comprehension here when
 any one of the arguments’ iterators is exhausted—allowing it to pass
 ends this generator function and has the same effect that a return statement would. The while iters: suffices to loop if at least
 one argument is passed, and avoids an infinite loop otherwise (the
 list comprehension would always return an empty list).
This code works fine in Python 2.X as is:
>>> list(myzip('abc', 'lmnop'))
[('a', 'l'), ('b', 'm'), ('c', 'n')]
But it falls into an infinite loop and fails in Python 3.X,
 because the 3.X map returns a
 one-shot iterable object instead of a list as in 2.X. In 3.X, as
 soon as we’ve run the list comprehension inside the loop once,
 iters will be exhausted but still
 True (and res will be []) forever. To make this work in 3.X, we
 need to use the list built-in
 function to create an object that can support multiple
 iterations:
def myzip(*args):
 iters = list(map(iter, args)) # Allow multiple scans
 ...rest as is...
Run this on your own to trace its operation. The lesson here:
 wrapping map calls in list calls in 3.X is not just for
 display!

Comprehension Syntax Summary
We’ve been focusing on list comprehensions and generators in this chapter, but keep in
 mind that there are two other comprehension expression forms available in
 both 3.X and 2.7: set and dictionary comprehensions. We met these briefly
 in Chapter 5 and Chapter 8, but with our new knowledge of
 comprehensions and generators, you should now be able to grasp these
 extensions in full:
	For sets, the new literal form {1, 3, 2} is equivalent to set([1, 3, 2]), and the new set
 comprehension syntax {f(x) for x in S if
 P(x)} is like the generator expression set(f(x) for x in S if P(x)), where f(x) is an arbitrary expression.

	For dictionaries, the new dictionary
 comprehension syntax {key: val for (key, val)
 in zip(keys, vals)} works like the form dict(zip(keys, vals)), and {x: f(x) for x in items} is like the
 generator expression dict((x, f(x)) for x in
 items).

Here’s a summary of all the comprehension alternatives in 3.X and
 2.7. The last two are new and are not available in 2.6 and earlier:
>>> [x * x for x in range(10)] # List comprehension: builds list
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81] # Like list(generator expr)

>>> (x * x for x in range(10)) # Generator expression: produces items
<generator object at 0x009E7328> # Parens are often optional

>>> {x * x for x in range(10)} # Set comprehension, 3.X and 2.7
{0, 1, 4, 81, 64, 9, 16, 49, 25, 36} # {x, y} is a set in these versions too

>>> {x: x * x for x in range(10)} # Dictionary comprehension, 3.X and 2.7
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
Scopes and Comprehension Variables
Now that we’ve seen all comprehension forms, be sure to also review Chapter 17’s overview of the localization of loop variables in
 these expressions. Python 3.X localizes loop
 variables in all four forms—temporary loop variable names in generator,
 set, dictionary, and list comprehensions are local to the expression.
 They don’t clash with names outside, but are also not available there,
 and work differently than the for
 loop iteration statement:
c:\code> py −3
>>> (X for X in range(5))
<generator object <genexpr> at 0x00000000028E4798>
>>> X
NameError: name 'X' is not defined

>>> X = 99
>>> [X for X in range(5)] # 3.X: generator, set, dict, and list localize
[0, 1, 2, 3, 4]
>>> X
99

>>> Y = 99
>>> for Y in range(5): pass # But loop statements do not localize names

>>> Y
4
As mentioned in Chapter 17, 3.X variables assigned
 in a comprehension are really a further nested special-case scope; other
 names referenced within these expressions follow the usual LEGB rules.
 In the following generator, for example, Z is localized in the comprehension, but
 Y and X are found in the enclosing local and global
 scopes as usual:
>>> X = 'aaa'
>>> def func():
 Y = 'bbb'
 print(''.join(Z for Z in X + Y)) # Z comprehension, Y local, X global

>>> func()
aaabbb
Python 2.X is the same in this regard, except
 that list comprehension variables are not
 localized—they work just like for
 loops and keep their last iteration values, but are also open to
 unexpected clashes with outside names. Generator, set, and dictionary
 forms localize names as in 3.X:
c:\code> py −2
>>> (X for X in range(5))
<generator object <genexpr> at 0x0000000002147EE8>
>>> X
NameError: name 'X' is not defined

>>> X = 99
>>> [X for X in range(5)] # 2.X: List does not localize its names, like for
[0, 1, 2, 3, 4]
>>> X
4

>>> Y = 99
>>> for Y in range(5): pass # for loops do not localize names in 2.X or 3.X

>>> Y
4
If you care about version portability, and symmetry with the
 for loop statement, use unique
 names for variables in comprehension expressions as a rule of thumb. The
 2.X behavior makes sense given that a generator object is discarded
 after it finishes producing results, but a list comprehension is
 equivalent to a for loop—though this
 analogy doesn’t hold for the set and dictionary forms that localize
 their names in both Pythons, and are, somewhat coincidentally, the topic
 of the next section.

Comprehending Set and Dictionary Comprehensions
In a sense, set and dictionary comprehensions are just syntactic sugar for
 passing generator expressions to the type names. Because both accept any
 iterable, a generator works well here:
>>> {x * x for x in range(10)} # Comprehension
{0, 1, 4, 81, 64, 9, 16, 49, 25, 36}
>>> set(x * x for x in range(10)) # Generator and type name
{0, 1, 4, 81, 64, 9, 16, 49, 25, 36}

>>> {x: x * x for x in range(10)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
>>> dict((x, x * x) for x in range(10))
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

>>> x # Loop variable localized in 2.X + 3.X
NameError: name 'x' is not defined
As for list comprehensions, though, we can always build the result
 objects with manual code, too. Here are statement-based equivalents of
 the last two comprehensions (though they differ in that name
 localization, per the prior section):
>>> res = set()
>>> for x in range(10): # Set comprehension equivalent
 res.add(x * x)

>>> res
{0, 1, 4, 81, 64, 9, 16, 49, 25, 36}

>>> res = {}
>>> for x in range(10): # Dict comprehension equivalent
 res[x] = x * x

>>> res
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

>>> x # Localized in comprehension expressions, but not in loop statements
9
Notice that although both set and dictionary comprehensions accept
 and scan iterables, they have no notion of
 generating results on demand—both forms build
 complete objects all at once. If you mean to produce keys and values
 upon request, a generator expression is more appropriate:
>>> G = ((x, x * x) for x in range(10))
>>> next(G)
(0, 0)
>>> next(G)
(1, 1)

Extended Comprehension Syntax for Sets and Dictionaries
Like list comprehensions and generator expressions, both set and
 dictionary comprehensions support nested associated if clauses to filter items out of the
 result—the following collect squares of even items (i.e., items having
 no remainder for division by 2) in a range:
>>> [x * x for x in range(10) if x % 2 == 0] # Lists are ordered
[0, 4, 16, 36, 64]
>>> {x * x for x in range(10) if x % 2 == 0} # But sets are not
{0, 16, 4, 64, 36}
>>> {x: x * x for x in range(10) if x % 2 == 0} # Neither are dict keys
{0: 0, 8: 64, 2: 4, 4: 16, 6: 36}
Nested for loops work as well,
 though the unordered and no-duplicates nature of both types of objects
 can make the results a bit less straightforward to decipher:
>>> [x + y for x in [1, 2, 3] for y in [4, 5, 6]] # Lists keep duplicates
[5, 6, 7, 6, 7, 8, 7, 8, 9]
>>> {x + y for x in [1, 2, 3] for y in [4, 5, 6]} # But sets do not
{8, 9, 5, 6, 7}
>>> {x: y for x in [1, 2, 3] for y in [4, 5, 6]} # Neither do dict keys
{1: 6, 2: 6, 3: 6}
Like list comprehensions, the set and dictionary varieties can
 also iterate over any type of iterable—lists, strings, files, ranges,
 and anything else that supports the iteration protocol:
>>> {x + y for x in 'ab' for y in 'cd'}
{'ac', 'bd', 'bc', 'ad'}

>>> {x + y: (ord(x), ord(y)) for x in 'ab' for y in 'cd'}
{'ac': (97, 99), 'bd': (98, 100), 'bc': (98, 99), 'ad': (97, 100)}

>>> {k * 2 for k in ['spam', 'ham', 'sausage'] if k[0] == 's'}
{'sausagesausage', 'spamspam'}

>>> {k.upper(): k * 2 for k in ['spam', 'ham', 'sausage'] if k[0] == 's'}
{'SAUSAGE': 'sausagesausage', 'SPAM': 'spamspam'}
For more details, experiment with these tools on your own. They
 may or may not have a performance advantage over the generator or
 for loop alternatives, but we would
 have to time their performance explicitly to be sure—which seems a
 natural segue to the next chapter.

Chapter Summary
This chapter wrapped up our coverage of built-in comprehension and
 iteration tools. It explored list comprehensions in the context of
 functional tools, and presented generator functions and expressions as
 additional iteration protocol tools. As a finale, we also summarized the
 four forms of comprehension in Python today—list, generator, set, and
 dictionary. Though we’ve now seen all the built-in iteration tools, the
 subject will resurface when we study user-defined iterable class objects
 in Chapter 30.
The next chapter is something of a continuation of the theme of this
 one—it rounds out this part of the book with a case study that times the
 performance of the tools we’ve studied here, and serves as a more
 realistic example at the midpoint in this book. Before we move ahead to
 benchmarking comprehensions and generators, though, this chapter’s quizzes
 give you a chance to review what you’ve learned about them here.

Test Your Knowledge: Quiz
	What is the difference between enclosing a list comprehension in
 square brackets and parentheses?

	How are generators and iterators related?

	How can you tell if a function is a generator function?

	What does a yield statement
 do?

	How are map calls and list
 comprehensions related? Compare and contrast the two.

Test Your Knowledge: Answers
	List comprehensions in square brackets produce the result list
 all at once in memory. When they are enclosed in parentheses instead,
 they are actually generator expressions—they have a similar meaning
 but do not produce the result list all at once. Instead, generator
 expressions return a generator object, which yields one item in the
 result at a time when used in an iteration context.

	Generators are iterable objects that support the iteration
 protocol automatically—they have an iterator with a __next__ method (next in 2.X) that repeatedly advances to the
 next item in a series of results and raises an exception at the end of
 the series. In Python, we can code generator functions with def and yield, generator expressions with
 parenthesized comprehensions, and generator objects with classes that
 define a special method named __iter__ (discussed later in the
 book).

	A generator function has a yield statement somewhere in its code.
 Generator functions are otherwise identical to normal functions
 syntactically, but they are compiled specially by Python so as to
 return an iterable generator object when called. That object retains
 state and code location between values.

	When present, this statement makes Python compile the function
 specially as a generator; when called, the function returns a
 generator object that supports the iteration protocol. When the
 yield statement is run, it sends a
 result back to the caller and suspends the function’s state; the
 function can then be resumed after the last yield statement, in response to a next built-in or __next__ method call issued by the caller.
 In more advanced roles, the generator send method similarly resumes the generator,
 but can also pass a value that shows up as the yield expression’s value. Generator
 functions may also have a return
 statement, which terminates the generator.

	The map call is similar to a
 list comprehension—both produce a series of values, by collecting the
 results of applying an operation to each item in a sequence or other
 iterable, one item at a time. The primary difference is that map applies a function call to each item,
 and list comprehensions apply arbitrary expressions. Because of this,
 list comprehensions are more general; they can apply a function call
 expression like map, but map requires a function to apply other kinds
 of expressions. List comprehensions also support extended syntax such
 as nested for loops and if clauses that subsume the filter built-in. In Python 3.X, map also differs in that it produces a
 generator of values; the list comprehension
 materializes the result list in memory all at once. In 2.X, both tools
 create result lists.

1 Technically, Python treats return statement values in
 generator functions as syntax errors in 2.X, and in all 3.X prior
 to 3.3. As of 3.3, a return statement value is allowed and
 attached to the StopIteration object, but the
 value is ignored in automatic iterations contexts, and using this
 makes code incompatible with all prior releases.
2 Interestingly, generator functions are also something of a
 “poor man’s” multithreading device—they
 interleave a function’s work with that of its caller, by dividing
 its operation into steps run between yields. Generators are not threads,
 though: the program is explicitly directed to and from the
 function within a single thread of control. In one sense,
 threading is more general (producers can run truly independently
 and post results to a queue), but generators may be simpler to
 code. See the footnote in Chapter 17 for a brief
 introduction to Python multithreading tools. Note that because
 control is routed explicitly at yield and next calls, generators are also not
 backtracking, but are more strongly related
 to coroutines—formal concepts that are both
 beyond this chapter’s scope.

Chapter 21. The Benchmarking Interlude
Now that we know about coding functions and iteration tools, we’re
 going to take a short side trip to put both of them to work. This chapter
 closes out the function part of this book with a larger case study that
 times the relative performance of the iteration tools we’ve met so
 far.
Along the way, this case study surveys Python’s code timing tools,
 discusses benchmarking techniques in general, and allows us to explore code
 that’s a bit more realistic and useful than most of what we’ve seen up to
 this point. We’ll also measure the speed of current Python implementations—a
 data point that may or may not be significant, depending on the type of code
 you write.
Finally, because this is the last chapter in this part of the book,
 we’ll close with the usual sets of “gotchas” and exercises to help you start
 coding the ideas you’ve read about. First, though, let’s have some fun with
 a tangible Python application.
Timing Iteration Alternatives
We’ve met quite a few iteration alternatives in this book. Like much in
 programming, they represent tradeoffs—in terms of both subjective factors
 like expressiveness, and more objective criteria such as performance. Part
 of your job as a programmer and engineer is selecting tools based on
 factors like these.
In terms of performance, I’ve mentioned a few times that list
 comprehensions sometimes have a speed advantage over for loop statements, and that map calls can be faster or slower than both
 depending on call patterns. The generator functions and expressions of the
 preceding chapter tend to be slightly slower than list comprehensions,
 though they minimize memory space requirements and don’t delay the caller
 for result generation when there are many results to generate.
All that is generally true today, but relative performance can vary
 over time because Python’s internals are constantly being changed and
 optimized, and code structure can influence speed arbitrarily. If you want
 to verify their performance for yourself, you need to time these
 alternatives on your own computer and your own version of Python.
Timing Module: Homegrown
Luckily, Python makes it easy to time code. For example, to get
 the total time taken to run multiple calls to a function with arbitrary
 positional arguments, the following first-cut function might
 suffice:
File timer0.py
import time
def timer(func, *args): # Simplistic timing function
 start = time.clock()
 for i in range(1000):
 func(*args)
 return time.clock() - start # Total elapsed time in seconds
This works—it fetches time values from Python’s time module, and subtracts the system start time from the stop time
 after running 1,000 calls to the passed-in function with the passed-in
 arguments. On my computer in Python 3.3:
>>> from timer0 import timer
>>> timer(pow, 2, 1000) # Time to call pow(2, 1000) 1000 times
0.00296260674205626
>>> timer(str.upper, 'spam') # Time to call 'spam'.upper() 1000 times
0.0005165746166859719
Though simple, this timer is also fairly limited, and deliberately
 exhibits some classic mistakes in both function design and benchmarking.
 Among these, it:
	Doesn’t support keyword arguments in the
 tested function call

	Hardcodes the repetitions count

	Charges the cost of range
 to the tested function’s time

	Always uses time.clock,
 which might not be best outside Windows

	Doesn’t give callers a way to verify that the tested function
 actually worked

	Only gives total time, which might
 fluctuate on some heavily loaded machines

In other words, timing code is more complex than you might expect!
 To be more general and accurate, let’s expand this into still simple but
 more useful timer utility functions we can use both to see how iteration
 alternative options stack up now, and apply to other timing needs in the
 future. These functions are coded in a module file so they can be used
 in a variety of programs, and have docstrings giving some basic details
 that PyDoc can display on request—see Figure 15-2 in Chapter 15 for a screenshot of the
 documentation pages rendered for the timing modules we’re coding
 here:
File timer.py
"""
Homegrown timing tools for function calls.
Does total time, best-of time, and best-of-totals time
"""

import time, sys
timer = time.clock if sys.platform[:3] == 'win' else time.time

def total(reps, func, *pargs, **kargs):
 """
 Total time to run func() reps times.
 Returns (total time, last result)
 """
 repslist = list(range(reps)) # Hoist out, equalize 2.x, 3.x
 start = timer() # Or perf_counter/other in 3.3+
 for i in repslist:
 ret = func(*pargs, **kargs)
 elapsed = timer() - start
 return (elapsed, ret)

def bestof(reps, func, *pargs, **kargs):
 """
 Quickest func() among reps runs.
 Returns (best time, last result)
 """
 best = 2 ** 32 # 136 years seems large enough
 for i in range(reps): # range usage not timed here
 start = timer()
 ret = func(*pargs, **kargs)
 elapsed = timer() - start # Or call total() with reps=1
 if elapsed < best: best = elapsed # Or add to list and take min()
 return (best, ret)

def bestoftotal(reps1, reps2, func, *pargs, **kargs):
 """
 Best of totals:
 (best of reps1 runs of (total of reps2 runs of func))
 """
 return bestof(reps1, total, reps2, func, *pargs, **kargs)
Operationally, this module implements both
 total time and best time
 calls, and a nested best of totals that combines
 the other two. In each, it times a call to any function with any
 positional and keyword arguments passed individually, by fetching the
 start time, calling the function, and subtracting the start time from
 the stop time. Points to notice about how this version addresses the
 shortcomings of its predecessor:
	Python’s time module gives
 access to the current time, with precision that varies per platform.
 On Windows its clock function
 is claimed to give microsecond granularity and so is very accurate.
 Because the time function
 may be better on Unix, this script selects between them
 automatically based on the platform string in the sys module; it starts with “win” if running in Windows. See also
 the sidebar “New Timer Calls in 3.3” on other
 time options in 3.3 and later not
 used here for portability; we will also be timing Python 2.X where
 these newer calls are not available, and their results on Windows
 appear similar in 3.3 in any event.

	The range call is hoisted
 out of the timing loop in the total function, so its construction cost
 is not charged to the timed function in Python 2.X. In 3.X range is an iterable, so this step is
 neither required nor harmful, but we still run the result through
 list so its traversal cost is the
 same in both 2.X and 3.X. This doesn’t apply to the bestof function, since no range factors are charged to the test’s
 time.

	The reps count is passed in
 as an argument, before the test function and its arguments, to allow
 repetition to vary per call.

	Any number of both positional and keyword
 arguments are collected with
 starred-argument syntax, so they must be sent
 individually, not in a sequence or dictionary. If needed, callers
 can unpack argument collections into individual arguments with stars
 in the call, as done by the bestoftotal function at the end. See Chapter 18 for a refresher if this code doesn’t make
 sense.

	The first function in this module returns
 total elapsed time for all calls in a tuple,
 along with the timed function’s final return value so callers can
 verify its operation.

	The second function does similar, but returns the
 best (minimum) time among all calls instead of
 the total—more useful if you wish to filter out the impacts of other
 activity on your computer, but less for tests that run too quickly
 to produce substantial runtimes.

	To address the prior point, the last function in this file
 runs nested total tests within a best-of test, to get the
 best-of-totals time. The nested total operation
 can make runtimes more useful, but we still get the best-of filter.
 This function’s code may be easier to understand if you remember
 that every function is a passable object, even the testing functions
 themselves.

From a larger perspective, because these functions are coded in a
 module file, they become generally useful tools anywhere we wish to
 import them. Modules and imports were introduced in Chapter 3, and you’ll learn more about them in
 the next part of this book; for now, simply import the module and call
 the function to use one of this file’s timers. In simple usage, this
 module is similar to its predecessor, but will be more robust in larger
 contexts. In Python 3.3 again:
>>> import timer
>>> timer.total(1000, pow, 2, 1000)[0] # Compare to timer0 results above
0.0029542985410557776
>>> timer.total(1000, str.upper, 'spam') # Returns (time, last call's result)
(0.000504845391709686, 'SPAM')

>>> timer.bestof(1000, str.upper, 'spam') # 1/1000 as long as total time
(4.887177027512735e-07, 'SPAM')
>>> timer.bestof(1000, pow, 2, 1000000)[0]
0.00393515497972885

>>> timer.bestof(50, timer.total, 1000, str.upper, 'spam')
(0.0005468751145372153, (0.0005004469323637295, 'SPAM'))
>>> timer.bestoftotal(50, 1000, str.upper, 'spam')
(0.000566912540591602, (0.0005195069228989269, 'SPAM'))
The last two calls here calculate the
 best-of-totals times—the lowest time among 50 runs,
 each of which computes the total time to call str.upper 1,000
 times (roughly corresponding to the total times at the start of this
 listing). The function used in the last call is really just a
 convenience that maps to the call form preceding it; both return the
 best-of tuple, which embeds the last total call’s result tuple.
Compare these last two results to the following generator-based
 alternative:
>>> min(timer.total(1000, str.upper, 'spam') for i in range(50))
(0.0005155971812769167, 'SPAM')
Taking the min of an iteration of total results this way has a similar effect
 because the times in the result tuples dominate comparisons made by
 min (they are leftmost in the tuple).
 We could use this in our module too (and will in later variations); it
 varies slightly by omitting a very small overhead in the best-of
 function’s code and not nesting result tuples, though either result
 suffices for relative comparisons. As is, the best-of function must pick
 a high initial lowest time value—though 136 years is probably longer
 than most of the tests you’re likely to run!
>>> ((((2 ** 32) / 60) / 60) / 24) / 365 # Plus a few extra days
136.19251953323186
>>> ((((2 ** 32) // 60) // 60) // 24) // 365 # Floor: see Chapter 5
136
New Timer Calls in 3.3
This section uses the time
 module’s clock and time calls because they apply to all readers
 of this book. Python 3.3 introduces new interfaces in this module that
 are designed to be more portable. Specifically, the behavior of this
 module’s clock and time calls varies per platform, but its new
 perf_counter and process_time functions have well-defined and
 platform-neutral semantics:
	time.perf_counter()
 returns the value in fractional seconds of a performance
 counter, defined as a clock with the highest available resolution
 to measure a short duration. It includes time elapsed during sleep
 states and is system-wide.

	time.process_time()
 returns the value in fractional seconds of the sum of the system
 and user CPU time of the current process. It does not include time
 elapsed during sleep, and is process-wide by definition.

For both of these calls, the reference point of the returned
 value is undefined, so that only the difference
 between the results of consecutive calls is valid. The perf_counter call can be thought of as wall
 time, and as of Python 3.3 is used by default for benchmarking in the
 timeit module discussed ahead;
 process_time gives CPU time
 portably.
The time.clock call is still
 usable on Windows today, as shown in this book. It is documented as
 being deprecated in 3.3’s manuals, but issues no warning when used
 there—meaning it may or may not become officially deprecated in later
 releases. If needed, you can detect a Python 3.3 or later with code
 like this, which I opted to not use for the sake of brevity and timer
 comparability:
if sys.version_info[0] >= 3 and sys.version_info[1] >= 3:
 timer = time.perf_counter # or process_time
else:
 timer = time.clock if sys.platform[:3] == 'win' else time.time
Alternatively, the following code would also add portability and
 insulate you from future deprecations, though it depends on exception
 topics we haven’t studied in full yet, and its choices may also make
 cross-version speed comparisons invalid—timers may differ in
 resolution!
try:
 timer = time.perf_counter # or process_time
except AttributeError:
 timer = time.clock if sys.platform[:3] == 'win' else time.time
If I were writing this book for Python 3.3+ readers only, I’d
 use the new and apparently improved calls here, and you should in your
 work too if they apply to you. The newer calls won’t work for users of
 any other Pythons, though, and that’s still the majority of the Python
 world today. It would be easier to pretend that the past doesn’t
 matter, but that would not only be evasive of reality, it might also
 be just plain rude.

Timing Script
Now, to time iteration tool speed (our original goal), run the following script—it
 uses the timer module we wrote to time the relative speeds of the list
 construction techniques we’ve studied:
File timeseqs.py
"Test the relative speed of iteration tool alternatives."

import sys, timer # Import timer functions
reps = 10000
repslist = list(range(reps)) # Hoist out, list in both 2.X/3.X

def forLoop():
 res = []
 for x in repslist:
 res.append(abs(x))
 return res

def listComp():
 return [abs(x) for x in repslist]

def mapCall():
 return list(map(abs, repslist)) # Use list() here in 3.X only!
 # return map(abs, repslist)

def genExpr():
 return list(abs(x) for x in repslist) # list() required to force results

def genFunc():
 def gen():
 for x in repslist:
 yield abs(x)
 return list(gen()) # list() required to force results

print(sys.version)
for test in (forLoop, listComp, mapCall, genExpr, genFunc):
 (bestof, (total, result)) = timer.bestoftotal(5, 1000, test)
 print ('%-9s: %.5f => [%s...%s]' %
 (test.__name__, bestof, result[0], result[-1]))
This script tests five alternative ways to build lists of results.
 As shown, its reported times reflect on the order of 10 million steps
 for each of the five test functions—each builds a list of 10,000 items
 1,000 times. This process is repeated 5 times to get the best-of time
 for each of the 5 test functions, yielding a whopping 250 million total
 steps for the script at large (impressive but reasonable on most
 machines these days).
Notice how we have to run the results of the generator expression
 and function through the built-in list call to force them to yield all of their
 values; if we did not, in both 2.X and 3.X we would just produce
 generators that never do any real work. In Python 3.X only we must do
 the same for the map result, since it
 is now an iterable object as well; for 2.X, the list around map must be removed manually to avoid charging
 an extra list construction overhead per test (though its impact seems
 negligible in most tests).
In a similar way, the inner loops’ range result is hoisted out to the top of the
 module to remove its construction cost from total time, and wrapped in a
 list call so that its traversal cost
 isn’t skewed by being a generator in 3.X only (much as we did in the
 timer module too). This may be overshadowed by the cost of the inner
 iterations loop, but it’s best to remove as many variables as we
 can.
Also notice how the code at the bottom steps through a tuple of
 five function objects and prints the __name__ of each: as we’ve seen, this is a
 built-in attribute that gives a function’s name.1

Timing Results
When the script of the prior section is run under Python 3.3, I get these results
 on my Windows 7 laptop—map is
 slightly faster than list comprehensions, both are quicker than for loops, and generator expressions and
 functions place in the middle (times here are total time in
 seconds):
C:\code> c:\python33\python timeseqs.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
forLoop : 1.33290 => [0...9999]
listComp : 0.69658 => [0...9999]
mapCall : 0.56483 => [0...9999]
genExpr : 1.08457 => [0...9999]
genFunc : 1.07623 => [0...9999]
If you study this code and its output long enough, you’ll notice
 that generator expressions run slower than list comprehensions today.
 Although wrapping a generator expression in a list call makes it
 functionally equivalent to a square-bracketed list
 comprehension, the internal implementations of the
 two expressions appear to differ (though we’re also effectively timing
 the list call for the generator
 test):
return [abs(x) for x in repslist] # 0.69 seconds
return list(abs(x) for x in repslist) # 1.08 seconds: differs internally
Though the exact cause would require deeper analysis (and possibly
 source code study), this seems to make sense given that the generator
 expression must do extra work to save and restore its state during value
 production; the list comprehension does not, and runs quicker by a small
 constant here and in later tests.
Interestingly, when I ran this on Windows Vista under Python 3.0
 for the fourth edition of this book, and on Windows XP with Python 2.5
 for the third, the results were relatively similar—list comprehensions
 were nearly twice as fast as equivalent for loop statements, and map was slightly quicker than list
 comprehensions when mapping a function such as the abs (absolute value) built-in this way. Python
 2.5’s absolute times were roughly four to five times slower than the
 current 3.3 output, but this likely reflects quicker laptops much more
 than any improvements in Python.
In fact, most of the Python 2.7 results for
 this script are slightly quicker than 3.3 on this same machine today—I
 removed the list call from the
 map test in the following to avoid
 creating the results list twice in that test, though it adds only a very
 small constant time if left in:
c:\code> c:\python27\python timeseqs.py
2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMD64)]
forLoop : 1.24902 => [0...9999]
listComp : 0.66970 => [0...9999]
mapCall : 0.57018 => [0...9999]
genExpr : 0.90339 => [0...9999]
genFunc : 0.90542 => [0...9999]
For comparison, following are the same tests’ speed results under
 the current PyPy, the optimized Python
 implementation discussed in Chapter 2,
 whose current 1.9 release implements the Python 2.7 language. PyPy is
 roughly 10X (an order of magnitude) quicker here; it will do even better
 when we revisit Python version comparisons later in this chapter using
 tools with different code structures (though it will lose on a few other
 tests as well):
c:\code> c:\PyPy\pypy-1.9\pypy.exe timeseqs.py
2.7.2 (341e1e3821ff, Jun 07 2012, 15:43:00)
[PyPy 1.9.0 with MSC v.1500 32 bit]
forLoop : 0.10106 => [0...9999]
listComp : 0.05629 => [0...9999]
mapCall : 0.10022 => [0...9999]
genExpr : 0.17234 => [0...9999]
genFunc : 0.17519 => [0...9999]
On PyPy alone, list comprehensions beat map in this test, but the fact that all of
 PyPy’s results are so much quicker today seems the larger point here. On
 CPython, map is still quickest so
 far.
The impact of function calls: map
Watch what happens, though, if we change this script to perform
 an inline operation on each iteration, such as addition, instead of
 calling a built-in function like abs (the omitted parts of the following file
 are the same as before, and I put list back in around map for testing on 3.3 only):
File timeseqs2.py (differing parts)
...
def forLoop():
 res = []
 for x in repslist:
 res.append(x + 10)
 return res

def listComp():
 return [x + 10 for x in repslist]

def mapCall():
 return list(map((lambda x: x + 10), repslist)) # list() in 3.X only

def genExpr():
 return list(x + 10 for x in repslist) # list() in 2.X + 3.X

def genFunc():
 def gen():
 for x in repslist:
 yield x + 10
 return list(gen()) # list in 2.X + 3.X
...
Now the need to call a user-defined function for the map call makes it slower than the for loop statements, despite the fact that
 the looping statements version is larger in terms of code—or
 equivalently, the removal of function calls may make the others
 quicker (more on this in an upcoming note). On Python 3.3:
c:\code> c:\python33\python timeseqs2.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
forLoop : 1.35136 => [10...10009]
listComp : 0.73730 => [10...10009]
mapCall : 1.68588 => [10...10009]
genExpr : 1.10963 => [10...10009]
genFunc : 1.11074 => [10...10009]
These results have also been consistent in CPython. The prior
 edition’s Python 3.0 results on a slower machine were again relatively
 similar, though about twice as slow due to test machine differences
 (Python 2.5 results on an even slower machine were again four to five
 times as slow as the current results).
Because the interpreter optimizes so much internally,
 performance analysis of Python code like this is a very tricky affair.
 Without numbers, though, it’s virtually impossible to guess which
 method will perform the best—the best you can do is time your own
 code, on your computer, with your version of Python.
In this case, what we can say for certain is that on this
 Python, using a user-defined function in map calls seems to slow performance
 substantially (though + may also be
 slower than a trivial abs), and
 that list comprehensions run quickest in this case (though slower than
 map in some others). List
 comprehensions seem consistently twice as fast as for loops, but even this must be
 qualified—the list comprehension’s relative speed might be affected by
 its extra syntax (e.g., if
 filters), Python changes, and usage modes we did not time here.
As I’ve mentioned before, however, performance should not be
 your primary concern when writing Python code—the first thing you
 should do to optimize Python code is to not optimize Python code!
 Write for readability and simplicity first, then
 optimize later, if and only if needed. It could very well be that any
 of the five alternatives is quick enough for the data sets your
 program needs to process; if so, program clarity should be the chief
 goal.
Note
For deeper truth, change this code to apply a simple
 user-defined function in all five iteration techniques timed. For
 instance (from timeseqs2B.py of
 the book’s examples):
def F(x): return x
def listComp():
 return [F(x) for x in repslist]
def mapCall():
 return list(map(F, repslist))
The results, in file timeseqs-results.txt, are then relatively
 similar to using a built-in function like abs—at least in CPython, map is quickest. More generally, among the
 five iteration techniques, map is
 fastest today if all five call any function,
 built in or not, but slowest when the others do not.
That is, map appears to be
 slower simply because it requires function
 calls, and function calls are relatively slow in general.
 Since map can’t avoid calling
 functions, it can lose simply by association! The other iteration
 tools win because they can operate without function calls. We’ll
 prove this finding in tests run under the timeit module ahead.

Timing Module Alternatives
The timing module of the preceding section works, but it could be
 a bit more user-friendly. Most obviously, its functions require passing
 in a repetitions count as a first argument, and provide no default for
 it—a minor point, perhaps, but less than ideal in a general-purpose
 tool. We could also leverage the min
 technique we saw earlier to simplify the return value slightly and
 remove a minor overhead charge.
The following implements an alternative timer module that
 addresses these points, allowing the repeat count to be passed in as a
 keyword argument named _reps:
File timer2.py (2.X and 3.X)
"""
total(spam, 1, 2, a=3, b=4, _reps=1000) calls and times spam(1, 2, a=3, b=4)
_reps times, and returns total time for all runs, with final result.

bestof(spam, 1, 2, a=3, b=4, _reps=5) runs best-of-N timer to attempt to
filter out system load variation, and returns best time among _reps tests.

bestoftotal(spam, 1, 2, a=3, b=4, _reps1=5, _reps=1000) runs best-of-totals
test, which takes the best among _reps1 runs of (the total of _reps runs);
"""

import time, sys
timer = time.clock if sys.platform[:3] == 'win' else time.time

def total(func, *pargs, **kargs):
 _reps = kargs.pop('_reps', 1000) # Passed-in or default reps
 repslist = list(range(_reps)) # Hoist range out for 2.X lists
 start = timer()
 for i in repslist:
 ret = func(*pargs, **kargs)
 elapsed = timer() - start
 return (elapsed, ret)

def bestof(func, *pargs, **kargs):
 _reps = kargs.pop('_reps', 5)
 best = 2 ** 32
 for i in range(_reps):
 start = timer()
 ret = func(*pargs, **kargs)
 elapsed = timer() - start
 if elapsed < best: best = elapsed
 return (best, ret)

def bestoftotal(func, *pargs, **kargs):
 _reps1 = kargs.pop('_reps1', 5)
 return min(total(func, *pargs, **kargs) for i in range(_reps1))
This module’s docstring at the top of the file describes its
 intended usage. It uses dictionary pop operations to remove the _reps argument from arguments intended for the
 test function and provide it with a default (it has an unusual name to
 avoid clashing with real keyword arguments meant for the function being
 timed).
Notice how the best of totals here uses the min and generator scheme we saw earlier
 instead of nested calls, in part because this simplifies results and
 avoids a minor time overhead in the prior version (whose code fetches
 best of time after total time has been computed),
 but also because it must support two distinct
 repetition keywords with defaults—total and bestof can’t both use the same argument name.
 Add argument prints in the code if it would help to trace its
 operation.
To test with this new timer module, you can change the timing
 scripts as follows, or use the precoded version in the book’s examples
 file timeseqs_timer2.py; the
 results are essentially the same as before (this is primarily just an
 API change), so I won’t list them again here:
import sys, timer2
...
for test in (forLoop, listComp, mapCall, genExpr, genFunc):
 (total, result) = timer2.bestoftotal(test, _reps1=5, _reps=1000)

Or:
(total, result) = timer2.bestoftotal(test)
(total, result) = timer2.bestof(test, _reps=5)
(total, result) = timer2.total(test, _reps=1000)
(bestof, (total, result)) = timer2.bestof(timer2.total, test, _reps=5)

 print ('%-9s: %.5f => [%s...%s]' %
 (test.__name__, total, result[0], result[-1]))
You can also run a few interactive tests as we did for the
 original version—the results are again essentially the same as before,
 but we pass in the repetition counts as keywords that provide defaults
 if omitted; in Python 3.3:
>>> from timer2 import total, bestof, bestoftotal
>>> total(pow, 2, 1000)[0] # 2 ** 1000, 1K dflt reps
0.0029562534118596773
>>> total(pow, 2, 1000, _reps=1000)[0] # 2 ** 1000, 1K reps
0.0029733585316193967
>>> total(pow, 2, 1000, _reps=1000000)[0] # 2 ** 1000, 1M reps
1.2451676814889865

>>> bestof(pow, 2, 100000)[0] # 2 ** 100K, 5 dflt reps
0.0007550688578703557
>>> bestof(pow, 2, 1000000, _reps=30)[0] # 2 ** 1M, best of 30
0.004040229286800923

>>> bestoftotal(str.upper, 'spam', _reps1=30, _reps=1000) # Best of 30, tot of 1K
(0.0004945823198454491, 'SPAM')
>>> bestof(total, str.upper, 'spam', _reps=30) # Nested calls work too
(0.0005463863968202531, (0.0004994694969298052, 'SPAM'))
To see how keywords are supported now, define a function with more
 arguments and pass some by name:
>>> def spam(a, b, c, d): return a + b + c + d

>>> total(spam, 1, 2, c=3, d=4, _reps=1000)
(0.0009730369554290519, 10)
>>> bestof(spam, 1, 2, c=3, d=4, _reps=1000)
(9.774353202374186e-07, 10)
>>> bestoftotal(spam, 1, 2, c=3, d=4, _reps1=1000, _reps=1000)
(0.00037289161070930277, 10)
>>> bestoftotal(spam, *(1, 2), _reps1=1000, _reps=1000, **dict(c=3, d=4))
(0.00037289161070930277, 10)
Using keyword-only arguments in 3.X
One last point on this thread: we can also make use of Python 3.X
 keyword-only arguments here to simplify the timer
 module’s code. As we learned in Chapter 18,
 keyword-only arguments are ideal for configuration options such as our
 functions’ _reps argument. They
 must be coded after a * and before
 a ** in the function
 header, and in a function
 call they must be passed by keyword and appear
 before the ** if used. The
 following is a keyword-only-based alternative to the prior module.
 Though simpler, it compiles and runs under Python 3.X only, not
 2.X:
File timer3.py (3.X only)
"""
Same usage as timer2.py, but uses 3.X keyword-only default arguments
instead of dict pops for simpler code. No need to hoist range() out
of tests in 3.X: always a generator in 3.X, and this can't run on 2.X.
"""
import time, sys
timer = time.clock if sys.platform[:3] == 'win' else time.time

def total(func, *pargs, _reps=1000, **kargs):
 start = timer()
 for i in range(_reps):
 ret = func(*pargs, **kargs)
 elapsed = timer() - start
 return (elapsed, ret)

def bestof(func, *pargs, _reps=5, **kargs):
 best = 2 ** 32
 for i in range(_reps):
 start = timer()
 ret = func(*pargs, **kargs)
 elapsed = timer() - start
 if elapsed < best: best = elapsed
 return (best, ret)

def bestoftotal(func, *pargs, _reps1=5, **kargs):
 return min(total(func, *pargs, **kargs) for i in range(_reps1))
This version is used the same way as the prior version and
 produces identical results, so I won’t relist its outputs on the same
 tests here; experiment on your own as you wish. If you do, pay
 attention to the argument ordering rules in calls. A former bestof that ran total, for instance, called like
 this:
 (elapsed, ret) = total(func, *pargs, _reps=1, **kargs)
See Chapter 18 for more on keyword-only
 arguments in 3.X; they can simplify code for configurable tools like
 this one but are not backward compatible with 2.X Pythons. If you want
 to compare 2.X and 3.X speed, or support programmers using either
 Python line, the prior version is likely a better choice.
Also keep in mind that for trivial functions like some of those
 tested for the prior version, the costs of the timer’s code may
 sometimes be as significant as those of a simple timed function, so
 you should not take timer results too absolutely. The timer’s results
 can help you judge relative speeds of coding
 alternatives, though, and may be more meaningful for operations that
 run longer or are repeated often.

Other Suggestions
For more insight, try modifying the repetition counts used by
 these modules, or explore the alternative timeit
 module in Python’s standard library, which automates timing of code,
 supports command-line usage modes, and finesses some platform-specific
 issues—in fact, we’ll put it to work in the next section.
You might also want to look at the profile standard library module for a complete source code profiler tool.
 We’ll learn more about it in Chapter 36 in the context of development
 tools for large projects. In general, you should profile code to isolate
 bottlenecks before recoding and timing alternatives as we’ve done
 here.
You might try modifying or emulating the timing script to measure
 the speed of the 3.X and 2.7 set and dictionary
 comprehensions shown in the preceding chapter, and their
 for loop equivalents. Using them is
 less common in Python programs than building lists of results, so we’ll
 leave this task in the suggested exercise column (please, no
 wagering...); the next section will partly spoil the surprise.
Finally, keep the timing module we wrote here filed away for
 future reference—we’ll repurpose it to measure performance of
 alternative numeric square root operations in an
 exercise at the end of this chapter. If you’re
 interested in pursuing this topic further, we’ll also experiment with
 techniques for timing dictionary comprehensions versus for loops interactively in the exercises.

Timing Iterations and Pythons with timeit
The preceding section used homegrown timing functions to compare code speed. As
 mentioned there, the standard library also ships with a module named
 timeit that can be used in similar
 ways, but offers added flexibility and may better insulate clients from
 some platform differences.
As usual in Python, it’s important to understand fundamental
 principles like those illustrated in the prior section. Python’s
 “batteries included” approach means you’ll usually find precoded options
 as well, though you still need to know the ideas underlying them to use
 them properly. Indeed, this module is a prime example of this—it seems to
 have had a history of being misused by people who don’t yet understand the
 principles it embodies. Now that we’ve learned the basics, though, let’s
 move ahead to a tool that can automate much of our work.
Basic timeit Usage
Let’s start with this module’s fundamentals before leveraging them
 in larger scripts. With timeit, tests
 are specified by either callable objects or
 statement strings; the latter can hold multiple
 statements if they use ; separators
 or \n characters for line breaks, and
 spaces or tabs to indent statements in nested blocks (e.g., \n\t). Tests may also give setup actions, and
 can be launched from both command lines and
 API calls, and from both scripts and the
 interactive prompt.
Interactive usage and API calls
For example, the timeit
 module’s repeat call returns a list giving the total time taken to run a test
 a number of times, for each of
 repeat runs—the min of this list yields the best time among
 the runs, and helps filter out system load fluctuations that can
 otherwise skew timing results artificially high.
The following shows this call in action, timing a list
 comprehension on two versions of CPython and the
 optimized PyPy implementation of Python described
 in Chapter 2 (it currently supports
 Python 2.7 code). The results here give the best total time in seconds
 among 5 runs that each execute the code string 1,000 times; the code
 string itself constructs a 1,000-item list of integers each time
 through (see Appendix B for
 the Windows launcher used for variety in the first two of these
 commands):
c:\code> py −3
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit...
>>> import timeit
>>> min(timeit.repeat(stmt="[x ** 2 for x in range(1000)]", number=1000, repeat=5))
0.5062382371756811

c:\code> py −2
Python 2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMD64)] on win32
>>> import timeit
>>> min(timeit.repeat(stmt="[x ** 2 for x in range(1000)]", number=1000, repeat=5))
0.0708020004193198

c:\code> c:\pypy\pypy-1.9\pypy.exe
Python 2.7.2 (341e1e3821ff, Jun 07 2012, 15:43:00)
[PyPy 1.9.0 with MSC v.1500 32 bit] on win32
>>>> import timeit
>>>> min(timeit.repeat(stmt="[x ** 2 for x in range(1000)]", number=1000, repeat=5))
0.0059330329674303905
You’ll notice that PyPy checks in at 10X faster than CPython 2.7
 here, and a whopping 100X faster than CPython 3.3, despite the fact
 that PyPy is a potentially slower 32-bit build. This is a small
 artificial benchmark, of course, but seems arguably stunning
 nonetheless, and reflects a relative speed ranking that is generally
 supported by other tests run in this book (though as we’ll see,
 CPython still beats PyPy on some types of code).
This particular test measures the speed of both a list
 comprehension and integer math. The latter varies between lines:
 CPython 3.X has a single integer type, and CPython 2.X has both short
 and long integers. This may explain part of the
 size of the difference, but the results are valid
 nonetheless. Noninteger tests yield similar rankings (e.g., a
 floating-point test in the solutions to this part’s exercises), and
 integer math matters—the one and two order of magnitude (power of 10)
 speedups here will be realized by many real programs, because integers
 and iterations are ubiquitous in Python code.
These results also differ from the preceding section’s relative
 version speeds, where CPython 2.7 was slightly quicker than 3.3, and
 PyPy was 10X quicker overall, a figure affirmed by most other tests in
 this book too. Apart from the different type of code being timed here,
 the different coding structure inside timeit may have an effect too—for code
 strings like those tested here, timeit builds, compiles, and executes a
 function def statement string that
 embeds the test string, thereby avoiding a function call per inner
 loop. As we’ll see in the next section, though, this appears
 irrelevant from a relative-speed perspective.

Command-line usage
The timeit module has
 reasonable defaults and can be also run as a script, either by explicit
 filename or automatically located on the module search path with
 Python’s –m flag (see Appendix A). All the following run
 Python (a.k.a. CPython) 3.3. In this mode timeit reports the average time for a
 single –n
 loop, in either microseconds (labeled “usec”), milliseconds (“msec”),
 or seconds (“sec”); to compare results here to the total time values
 reported by other tests, multiply by the number of loops run—500 usec
 here * 1,000 loops is 500 msec, or half a second in total time:
c:\code> C:\python33\Lib\timeit.py -n 1000 "[x ** 2 for x in range(1000)]"
1000 loops, best of 3: 506 usec per loop

c:\code> python -m timeit -n 1000 "[x ** 2 for x in range(1000)]"
1000 loops, best of 3: 504 usec per loop

c:\code> py −3 -m timeit -n 1000 -r 5 "[x ** 2 for x in range(1000)]"
1000 loops, best of 5: 505 usec per loop
As an example, we can use command lines to verify that choice of
 timer call doesn’t impact cross-version speed comparisons run in this
 chapter so far—3.3 uses its new calls by default, and that might
 matter if timer precision differs widely. To prove that this is
 irrelevant, the following uses the -c flag to force timeit to use time.clock in all versions, an option that 3.3’s manuals call deprecated,
 but required to even the score with prior versions (I’m setting my
 system path to include PyPy here for command brevity):
c:\code> set PATH=%PATH%;C:\pypy\pypy-1.9

c:\code> py −3 -m timeit -n 1000 -r 5 -c "[x ** 2 for x in range(1000)]"
1000 loops, best of 5: 502 usec per loop
c:\code> py −2 -m timeit -n 1000 -r 5 -c "[x ** 2 for x in range(1000)]"
1000 loops, best of 5: 70.6 usec per loop
c:\code> pypy -m timeit -n 1000 -r 5 -c "[x ** 2 for x in range(1000)]"
1000 loops, best of 5: 5.44 usec per loop

C:\code> py −3 -m timeit -n 1000 -r 5 -c "[abs(x) for x in range(10000)]"
1000 loops, best of 5: 815 usec per loop
C:\code> py −2 -m timeit -n 1000 -r 5 -c "[abs(x) for x in range(10000)]"
1000 loops, best of 5: 700 usec per loop
C:\code> pypy -m timeit -n 1000 -r 5 -c "[abs(x) for x in range(10000)]"
1000 loops, best of 5: 61.7 usec per loop
These results are essentially the same as those for earlier
 tests in this chapter on the same types of code. When applying
 x ** 2, CPython 2.7 and PyPy are
 again 10X and 100X faster than CPython 3.3, respectively, showing that
 timer choice isn’t a factor. For the abs(x) we timed under the homegrown timer
 earlier (timeseqs.py), these two
 Pythons are faster than 3.3 by a small constant and 10X just as
 before, implying that timeit’s
 different code structure doesn’t impact relative comparisons—the type
 of code being tested fully determines the size of speed
 differences.
Subtle point: notice that the results of the last three of these
 tests, which mimic tests run for the homegrown timer earlier, are
 basically the same as before, but seem to incur a small net overhead
 for range usage differences—it was
 a prebuilt list formerly, but here is either a 3.X generator or a 2.X
 list built anew on each inner total loop. In other words, we’re not
 timing the exact same thing, but the relative speeds of the Pythons
 tested are the same.

Timing multiline statements
To time larger multiline sections of code in API call mode,
 use line breaks and tabs or spaces to satisfy Python’s syntax; code
 read from a source file already will. Because you pass Python string
 objects to a Python function in this mode, there are no shell
 considerations, though be careful to escape nested quotes if needed.
 The following, for instance, times Chapter 13 loop alternatives in Python 3.3; you
 can use the same pattern to time the file-line-reader alternatives in
 Chapter 14:
c:\code> py −3
>>> import timeit
>>> min(timeit.repeat(number=10000, repeat=3,
 stmt="L = [1, 2, 3, 4, 5]\nfor i in range(len(L)): L[i] += 1"))
0.01397292797131814

>>> min(timeit.repeat(number=10000, repeat=3,
 stmt="L = [1, 2, 3, 4, 5]\ni=0\nwhile i < len(L):\n\tL[i] += 1\n\ti += 1"))
0.015452276471516813

>>> min(timeit.repeat(number=10000, repeat=3,
 stmt="L = [1, 2, 3, 4, 5]\nM = [x + 1 for x in L]"))
0.009464995838568635
To run multiline statements like these in
 command-line mode, appease your shell by passing
 each statement line as a separate argument, with whitespace for
 indentation—timeit concatenates all
 the lines together with a newline character between them, and later
 reindents for its own statement nesting purposes. Leading spaces may
 work better for indentation than tabs in this mode, and be sure to
 quote the code arguments if required by your shell:
c:\code> py −3 -m timeit -n 1000 -r 3 "L = [1,2,3,4,5]" "i=0" "while i < len(L):"
 " L[i] += 1" " i += 1"
1000 loops, best of 3: 1.54 usec per loop

c:\code> py −3 -m timeit -n 1000 -r 3 "L = [1,2,3,4,5]" "M = [x + 1 for x in L]"
1000 loops, best of 3: 0.959 usec per loop

Other usage modes: Setup, totals, and objects
The timeit module also allows
 you to provide setup code that is
 run in the main statement’s scope, but whose time is not charged to
 the main statement’s total—potentially useful for initialization code
 you wish to exclude from total time, such as imports of required
 modules, test function definition, and test data creation. Because
 they’re run in the same scope, any names created by setup code are
 available to the main test statement; names defined in the interactive
 shell generally are not.
To specify setup code, use a –s in command-line mode (or many of these
 for multiline setups) and a setup
 argument string in API call mode. This can focus tests more sharply,
 as in the following, which splits list initialization off to a setup
 statement to time just iteration. As a rule of thumb, though, the more
 code you include in a test statement, the more applicable its results
 will generally be to realistic code:
c:\code> python -m timeit -n 1000 -r 3 "L = [1,2,3,4,5]" "M = [x + 1 for x in L]"
1000 loops, best of 3: 0.956 usec per loop

c:\code> python -m timeit -n 1000 -r 3 -s "L = [1,2,3,4,5]" "M = [x + 1 for x in L]"
1000 loops, best of 3: 0.775 usec per loop
Here’s a setup example in API call mode: I used the following
 type of code to time the sort-based option in Chapter 18’s minimum value example—ordered ranges sort
 much faster than random numbers, and are faster sorted than scanned
 linearly in the example’s code under 3.3 (adjacent strings are
 concatenated here):
>>> from timeit import repeat

>>> min(repeat(number=1000, repeat=3,
setup='from mins import min1, min2, min3\n'
 'vals=list(range(1000))',
stmt= 'min3(*vals)'))
0.0387865921275079

>>> min(repeat(number=1000, repeat=3,
setup='from mins import min1, min2, min3\n'
 'import random\nvals=[random.random() for i in range(1000)]',
stmt= 'min3(*vals)'))
0.275656482278373
With timeit, you can also ask
 for just total time, use the module’s class API, time callable objects
 instead of strings, accept automatic loop counts, and use class-based
 techniques and additional command-line switches and API argument
 options we don’t have space to show here—consult Python’s library
 manual for more details:
c:\code> py −3
>>> import timeit
>>> timeit.timeit(stmt='[x ** 2 for x in range(1000)]', number=1000) # Total time
0.5238125259325834

>>> timeit.Timer(stmt='[x ** 2 for x in range(1000)]').timeit(1000) # Class API
0.5282652329644009

>>> timeit.repeat(stmt='[x ** 2 for x in range(1000)]', number=1000, repeat=3)
[0.5299034147194845, 0.5082454007998365, 0.5095136232504416]

>>> def testcase():
 y = [x ** 2 for x in range(1000)] # Callable objects or code strings

>>> min(timeit.repeat(stmt=testcase, number=1000, repeat=3))
0.5073828140463377

Benchmark Module and Script: timeit
Rather than go into more details on this module, let’s study a program that deploys it to time both
 coding alternatives and Python versions. The following file, pybench.py, is set up to time a set of
 statements coded in scripts that import and use it, under either the
 version running its code or all Python versions named in a list. It uses
 some application-level tools described ahead. Because it mostly applies
 ideas we’ve already learned and is amply documented, though, I’m going
 to list this as mostly self-study material, and an exercise in reading
 Python code.
"""
pybench.py: Test speed of one or more Pythons on a set of simple
code-string benchmarks. A function, to allow stmts to vary.
This system itself runs on both 2.X and 3.X, and may spawn both.

Uses timeit to test either the Python running this script by API
calls, or a set of Pythons by reading spawned command-line outputs
(os.popen) with Python's -m flag to find timeit on module search path.

Replaces $listif3 with a list() around generators for 3.X and an
empty string for 2.X, so 3.X does same work as 2.X. In command-line
mode only, must split multiline statements into one separate quoted
argument per line so all will be run (else might run/time first line
only), and replace all \t in indentation with 4 spaces for uniformity.

Caveats: command-line mode (only) may fail if test stmt embeds double
quotes, quoted stmt string is incompatible with shell in general, or
command line exceeds a length limit on platform's shell--use API call
mode or homegrown timer; does not yet support a setup statement: as is,
time of all statements in the test stmt are charged to the total time.
"""

import sys, os, timeit
defnum, defrep= 1000, 5 # May vary per stmt

def runner(stmts, pythons=None, tracecmd=False):
 """
 Main logic: run tests per input lists, caller handles usage modes.
 stmts: [(number?, repeat?, stmt-string)], replaces $listif3 in stmt
 pythons: None=this python only, or [(ispy3?, python-executable-path)]
 """
 print(sys.version)
 for (number, repeat, stmt) in stmts:
 number = number or defnum
 repeat = repeat or defrep # 0=default

 if not pythons:
 # Run stmt on this python: API call
 # No need to split lines or quote here
 ispy3 = sys.version[0] == '3'
 stmt = stmt.replace('$listif3', 'list' if ispy3 else '')
 best = min(timeit.repeat(stmt=stmt, number=number, repeat=repeat))
 print('%.4f [%r]' % (best, stmt[:70]))

 else:
 # Run stmt on all pythons: command line
 # Split lines into quoted arguments
 print('-' * 80)
 print('[%r]' % stmt)
 for (ispy3, python) in pythons:
 stmt1 = stmt.replace('$listif3', 'list' if ispy3 else '')
 stmt1 = stmt1.replace('\t', ' ' * 4)
 lines = stmt1.split('\n')
 args = ' '.join('"%s"' % line for line in lines)
 cmd = '%s -m timeit -n %s -r %s %s' % (python, number, repeat, args)
 print(python)
 if tracecmd: print(cmd)
 print('\t' + os.popen(cmd).read().rstrip())
This file is really only half the picture, though. Testing scripts
 use this module’s function, passing in concrete though variable lists of
 statements and Pythons to be tested, as appropriate for the usage mode
 desired. For example, the following script, pybench_cases.py, tests a handful of
 statements and Pythons, and allows command-line arguments to determine
 part of its operation: –a tests all
 listed Pythons instead of just one, and an added –t traces constructed command lines so you can
 see how multiline statements and indentation are handled per the
 command-line formats shown earlier (see both files’ docstrings for
 details):
"""
pybench_cases.py: Run pybench on a set of pythons and statements.

Select modes by editing this script or using command-line arguments (in
sys.argv): e.g., run a "C:\python27\python pybench_cases.py" to test just
one specific version on stmts, "pybench_cases.py -a" to test all pythons
listed, or a "py −3 pybench_cases.py -a -t" to trace command lines too.
"""

import pybench, sys

pythons = [# (ispy3?, path)
 (1, 'C:\python33\python'),
 (0, 'C:\python27\python'),
 (0, 'C:\pypy\pypy-1.9\pypy')
]

stmts = [# (num,rpt,stmt)
 (0, 0, "[x ** 2 for x in range(1000)]"), # Iterations
 (0, 0, "res=[]\nfor x in range(1000): res.append(x ** 2)"), # \n=multistmt
 (0, 0, "$listif3(map(lambda x: x ** 2, range(1000)))"), # \n\t=indent
 (0, 0, "list(x ** 2 for x in range(1000))"), # $=list or ''
 (0, 0, "s = 'spam' * 2500\nx = [s[i] for i in range(10000)]"), # String ops
 (0, 0, "s = '?'\nfor i in range(10000): s += '?'"),
]

tracecmd = '-t' in sys.argv # -t: trace command lines?
pythons = pythons if '-a' in sys.argv else None # -a: all in list, else one?
pybench.runner(stmts, pythons, tracecmd)

Benchmark Script Results
Here is this script’s output when run to test a specific
 version (the Python running the script)—this mode uses direct
 API calls, not command lines, with total time listed in the left column,
 and the statement tested on the right. I’m again using the 3.3 Windows
 launcher in the first two of these tests to time
 CPython 3.3 and 2.7, and am running release 1.9 of
 the PyPy implementation in the third:
c:\code> py −3 pybench_cases.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
0.5015 ['[x ** 2 for x in range(1000)]']
0.5655 ['res=[]\nfor x in range(1000): res.append(x ** 2)']
0.6044 ['list(map(lambda x: x ** 2, range(1000)))']
0.5425 ['list(x ** 2 for x in range(1000))']
0.8746 ["s = 'spam' * 2500\nx = [s[i] for i in range(10000)]"]
2.8060 ["s = '?'\nfor i in range(10000): s += '?'"]

c:\code> py −2 pybench_cases.py
2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMD64)]
0.0696 ['[x ** 2 for x in range(1000)]']
0.1285 ['res=[]\nfor x in range(1000): res.append(x ** 2)']
0.1636 ['(map(lambda x: x ** 2, range(1000)))']
0.0952 ['list(x ** 2 for x in range(1000))']
0.6143 ["s = 'spam' * 2500\nx = [s[i] for i in range(10000)]"]
2.0657 ["s = '?'\nfor i in range(10000): s += '?'"]

c:\code> c:\pypy\pypy-1.9\pypy pybench_cases.py
2.7.2 (341e1e3821ff, Jun 07 2012, 15:43:00)
[PyPy 1.9.0 with MSC v.1500 32 bit]
0.0059 ['[x ** 2 for x in range(1000)]']
0.0102 ['res=[]\nfor x in range(1000): res.append(x ** 2)']
0.0099 ['(map(lambda x: x ** 2, range(1000)))']
0.0156 ['list(x ** 2 for x in range(1000))']
0.1298 ["s = 'spam' * 2500\nx = [s[i] for i in range(10000)]"]
5.5242 ["s = '?'\nfor i in range(10000): s += '?'"]
The following shows this script’s output when run to test
 multiple Python versions for each statement string.
 In this mode the script itself is run by Python 3.3, but it launches
 shell command lines that start other Pythons to run the
 timeit module on the test statement
 strings. This mode must split, format, and quote multiline statements
 for use in command lines according to timeit expectations and shell
 requirements.
This mode also relies on the -m
 Python command-line flag to locate timeit on the module search path and run it as
 a script, and the os.popen and
 sys.argv standard library tools to run a shell command and inspect
 command-line arguments, respectively. See Python manuals and other
 sources for more on these calls; os.popen is also mentioned briefly in the
 files coverage of Chapter 9, and demonstrated
 in the loops coverage in Chapter 13. Run
 with a –t flag to watch the command
 lines run:
c:\code> py −3 pybench_cases.py -a
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
--
['[x ** 2 for x in range(1000)]']
C:\python33\python
 1000 loops, best of 5: 499 usec per loop
C:\python27\python
 1000 loops, best of 5: 71.4 usec per loop
C:\pypy\pypy-1.9\pypy
 1000 loops, best of 5: 5.71 usec per loop
--
['res=[]\nfor x in range(1000): res.append(x ** 2)']
C:\python33\python
 1000 loops, best of 5: 562 usec per loop
C:\python27\python
 1000 loops, best of 5: 130 usec per loop
C:\pypy\pypy-1.9\pypy
 1000 loops, best of 5: 9.81 usec per loop
--
['$listif3(map(lambda x: x ** 2, range(1000)))']
C:\python33\python
 1000 loops, best of 5: 599 usec per loop
C:\python27\python
 1000 loops, best of 5: 161 usec per loop
C:\pypy\pypy-1.9\pypy
 1000 loops, best of 5: 9.45 usec per loop
--
['list(x ** 2 for x in range(1000))']
C:\python33\python
 1000 loops, best of 5: 540 usec per loop
C:\python27\python
 1000 loops, best of 5: 92.3 usec per loop
C:\pypy\pypy-1.9\pypy
 1000 loops, best of 5: 15.1 usec per loop
--
["s = 'spam' * 2500\nx = [s[i] for i in range(10000)]"]
C:\python33\python
 1000 loops, best of 5: 873 usec per loop
C:\python27\python
 1000 loops, best of 5: 614 usec per loop
C:\pypy\pypy-1.9\pypy
 1000 loops, best of 5: 118 usec per loop
--
["s = '?'\nfor i in range(10000): s += '?'"]
C:\python33\python
 1000 loops, best of 5: 2.81 msec per loop
C:\python27\python
 1000 loops, best of 5: 1.94 msec per loop
C:\pypy\pypy-1.9\pypy
 1000 loops, best of 5: 5.68 msec per loop
As you can see, in most of these tests, CPython 2.7 is still
 quicker than CPython 3.3, and PyPy is noticeably faster than both of
 them—except on the last test where PyPy is twice as slow as CPython,
 presumably due to memory management differences. On the other hand,
 timing results are often relative at best. In addition to other general
 timing caveats mentioned in this chapter:
	timeit may skew results in
 ways beyond our scope to explore here (e.g., garbage
 collection).

	There is a baseline overhead, which differs per Python
 version, that is ignored here (but appears trivial).

	This script runs very small statements that may or may not
 reflect real-world code (but are still valid).

	Results may occasionally vary in ways that seem random (using
 process time may help here).

	All results here are highly prone to change over time (in each
 new Python release, in fact!).

In other words, you should draw your own conclusions from these
 numbers, and run these tests on your Pythons and machines for results
 more relevant to your needs. To time the baseline overhead of each
 Python, run timeit with no statement
 argument, or equivalently, with a pass
 statement.

More Fun with Benchmarks
For more insight, try running the script on other Python versions and other
 statement test strings. The file pybench_cases2.py in this book’s examples
 distribution adds more tests to see how CPython 3.3 compares to 3.2, how
 PyPy’s 2.0 beta stacks up against its current release, and how
 additional use cases fare.
A win for map and a rare loss for PyPy
For example, the following tests in pybench_cases2.py measure the impact of
 charging other iteration operations with a function call, which
 improves map’s chances of winning
 the day per this chapter’s earlier note—map usually loses by its association with
 function calls in general:
pybench_cases2.py

pythons += [
 (1, 'C:\python32\python'),
 (0, 'C:\pypy\pypy-2.0-beta1\pypy')]

stmts += [
Use function calls: map wins
 (0, 0, "[ord(x) for x in 'spam' * 2500]"),
 (0, 0, "res=[]\nfor x in 'spam' * 2500: res.append(ord(x))"),
 (0, 0, "$listif3(map(ord, 'spam' * 2500))"),
 (0, 0, "list(ord(x) for x in 'spam' * 2500)"),
Set and dicts
 (0, 0, "{x ** 2 for x in range(1000)}"),
 (0, 0, "s=set()\nfor x in range(1000): s.add(x ** 2)"),
 (0, 0, "{x: x ** 2 for x in range(1000)}"),
 (0, 0, "d={}\nfor x in range(1000): d[x] = x ** 2"),
Pathological: 300k digits
 (1, 1, "len(str(2**1000000))")] # Pypy loses on this today
Here is the script’s results on these statement tests on CPython
 3.X, showing how map is quickest
 when function calls level the playing field (it lost earlier when the
 other tests ran an inline x **
 2):
c:\code> py −3 pybench_cases2.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
0.7237 ["[ord(x) for x in 'spam' * 2500]"]
1.3471 ["res=[]\nfor x in 'spam' * 2500: res.append(ord(x))"]
0.6160 ["list(map(ord, 'spam' * 2500))"]
1.1244 ["list(ord(x) for x in 'spam' * 2500)"]
0.5446 ['{x ** 2 for x in range(1000)}']
0.6053 ['s=set()\nfor x in range(1000): s.add(x ** 2)']
0.5278 ['{x: x ** 2 for x in range(1000)}']
0.5414 ['d={}\nfor x in range(1000): d[x] = x ** 2']
1.8933 ['len(str(2**1000000))']
As before, on these tests today 2.X clocks in faster than 3.X
 and PyPy is faster still on all of these tests but the last—which it
 loses by a full order of magnitude (10X), though it wins all the other
 tests here by the same degree. However, if you run file tests precoded
 in pybench_cases2.py you’ll see
 that PyPy also loses to CPython when reading files line by line, as
 for the following test tuple on the stmts list:
 (0, 0, "f=open('C:/Python33/Lib/pdb.py')\nfor line in f: x=line\nf.close()"),
This test opens and reads a 60K, 1,675-line text file line by
 line using file iterators. Its input loop presumably dominates overall
 test time. On this test, CPython 2.7 is twice as fast as 3.3, but PyPy
 is again an order of magnitude slower than CPython in general. You can
 find this case in the pybench_cases2 results files, or verify
 interactively or by command line (this is just what pybench does internally):
c:\code> py −3 -m timeit -n 1000 -r 5 "f=open('C:/Python33/Lib/pdb.py')"
 "for line in f: x=line" "f.close()"

>>> import timeit
>>> min(timeit.repeat(number=1000, repeat=5,
 stmt="f=open('C:/Python33/Lib/pdb.py')\nfor line in f: x=line\nf.close()"))
For another example that measures both list comprehensions and
 PyPy’s current file speed, see the file listcomp-speed.txt in the book examples
 package; it uses direct PyPy command lines to run code from Chapter 14 with similar results:
 PyPy’s line input is slower today by roughly a factor of 10.
I’ll omit other Pythons’ output here both for space and because
 these findings could very well change by the time you read these
 words. As usual, different types of code can exhibit different types
 of performance. While PyPy may optimize much algorithmic code, it may
 or may not optimize yours. You can find additional results in the
 book’s examples package, but you may be better served by running these
 tests on your own to verify these findings today or observe their
 possibly different results in the future.

The impact of function calls revisited
As suggested earlier, map
 also wins for added user-defined functions—the
 following tests prove the earlier note’s claim that map wins the race in CPython if
 any function must be applied by its
 alternatives:
stmts = [
 (0, 0, "def f(x): return x\n[f(x) for x in 'spam' * 2500]"),
 (0, 0, "def f(x): return x\nres=[]\nfor x in 'spam' * 2500: res.append(f(x))"),
 (0, 0, "def f(x): return x\n$listif3(map(f, 'spam' * 2500))"),
 (0, 0, "def f(x): return x\nlist(f(x) for x in 'spam' * 2500)")]

c:\code> py −3 pybench_cases2.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
1.5400 ["def f(x): return x\n[f(x) for x in 'spam' * 2500]"]
2.0506 ["def f(x): return x\nres=[]\nfor x in 'spam' * 2500: res.append(f(x))"]
1.2489 ["def f(x): return x\nlist(map(f, 'spam' * 2500))"]
1.6526 ["def f(x): return x\nlist(f(x) for x in 'spam' * 2500)"]
Compare this with the preceding section’s ord tests; though user-defined functions may
 be slower than built-ins, the larger speed hit today seems to be
 functions in general, whether they are built-in or not. Notice that
 the total time here includes the cost of making a helper function,
 though only one for every 10,000 inner loop repetitions—a negligible
 factor per both common sense and additional tests run.

Comparing techniques: Homegrown versus batteries
For perspective, let’s see how this section’s timeit-based results compare to the
 homegrown-based timer results of the prior section, by running the
 file timeseqs3.py in this book’s
 examples package—it uses the homegrown timer but performs the same
 x ** 2 operation and uses the same
 repetition counts as pybench_cases.py:
c:\code> py −3 timeseqs3.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
forLoop : 0.55022 => [0...998001]
listComp : 0.48787 => [0...998001]
mapCall : 0.59499 => [0...998001]
genExpr : 0.52773 => [0...998001]
genFunc : 0.52603 => [0...998001]

c:\code> py −3 pybench_cases.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
0.5015 ['[x ** 2 for x in range(1000)]']
0.5657 ['res=[]\nfor x in range(1000): res.append(x ** 2)']
0.6025 ['list(map(lambda x: x ** 2, range(1000)))']
0.5404 ['list(x ** 2 for x in range(1000))']
0.8711 ["s = 'spam' * 2500\nx = [s[i] for i in range(10000)]"]
2.8009 ["s = '?'\nfor i in range(10000): s += '?'"]
The homegrown timer results are very similar to the pybench-based results of this section that
 use timeit, though it’s not
 entirely apples-to-apples—the homegrown timer-based timeseqs3.py incurs a function call per its
 middle totals loop and a slight overhead in best of logic of the timer
 itself, but also uses a prebuilt list instead of a 3.X range generator in its inner loop, which
 seems to make it slightly net faster on comparable tests (and I’d call
 this example a “sanity check,” but I’m not sure the term applies in
 benchmarking!).

Room for improvement: Setup
Like most software, this section’s program is open-ended and could be expanded arbitrarily. As one
 example, the files pybench2.py
 and pybench2_cases.py in the
 book’s examples package add support for timeit’s setup
 statement option described earlier, in both API call and command-line
 modes.
This feature was omitted initially for brevity, and frankly,
 because my tests didn’t seem to require it—timing more code gives a
 more complete picture when comparing Pythons, and setup actions cost
 the same when timing alternatives on a single Python. Even so, it’s
 sometimes useful to provide setup code that is run once in the tested
 code’s scope, but whose time is not charged to the statement’s total—a
 module import, object initialization, or helper function definition,
 for example.
I won’t list these two files in whole, but here are their
 important varying bits as an example of software evolution at work—as
 for the test statement, the setup code statement is passed as is in
 API call mode, but is split and space-indented in command-line mode
 and passed with one -s argument per
 line (“$listif3” isn’t used because setup code is not timed):
pybench2.py
...
def runner(stmts, pythons=None, tracecmd=False):
 for (number, repeat, setup, stmt) in stmts:
 if not pythons:
 ...
 best = min(timeit.repeat(
 setup=setup, stmt=stmt, number=number, repeat=repeat))
 else:
 setup = setup.replace('\t', ' ' * 4)
 setup = ' '.join('-s "%s"' % line for line in setup.split('\n'))
 ...
 for (ispy3, python) in pythons:
 ...
 cmd = '%s -m timeit -n %s -r %s %s %s' %
 (python, number, repeat, setup, args)

pybench2_cases.py
import pybench2, sys
...
stmts = [# (num,rpt,setup,stmt)
 (0, 0, "", "[x ** 2 for x in range(1000)]"),
 (0, 0, "", "res=[]\nfor x in range(1000): res.append(x ** 2)"),

 (0, 0, "def f(x):\n\treturn x",
 "[f(x) for x in 'spam' * 2500]"),
 (0, 0, "def f(x):\n\treturn x",
 "res=[]\nfor x in 'spam' * 2500:\n\tres.append(f(x))"),

 (0, 0, "L = [1, 2, 3, 4, 5]", "for i in range(len(L)): L[i] += 1"),
 (0, 0, "L = [1, 2, 3, 4, 5]", "i=0\nwhile i < len(L):\n\tL[i] += 1\n\ti += 1")]
...
pybench2.runner(stmts, pythons, tracecmd)
Run this script with the –a
 and –t command-line flags to see
 how command lines are constructed for setup code. For instance, the
 following test specification tuple generates the command line that
 follows it for 3.3—not nice to look at, perhaps, but sufficient to
 pass lines from Windows to timeit,
 to be concatenated with line breaks between and inserted into a
 generated timing function with appropriate reindentation:
 (0, 0, "def f(x):\n\treturn x",
 "res=[]\nfor x in 'spam' * 2500:\n\tres.append(f(x))")

C:\python33\python -m timeit -n 1000 -r 5 -s "def f(x):" -s " return x" "res=[]"
 "for x in 'spam' * 2500:" " res.append(f(x))"
In API call mode, code strings are passed unchanged, because
 there’s no need to placate a shell, and embedded tabs and end-of-line
 characters suffice. Experiment on your own to uncover more about
 Python code alternatives’ speed. You may eventually run into shell
 limitations for larger sections of code in command-line mode, but both
 our homegrown timer and pybench’s
 timeit-based API call mode support
 more arbitrary code. Benchmarks can be great sport, but we’ll have to
 leave future improvements as suggested exercises.

Other Benchmarking Topics: pystones
This chapter has focused on code timing fundamentals that you can use on your
 own code, that apply to Python benchmarking in general, and that served as
 a common use case for developing larger examples for this book.
 Benchmarking Python is a broader and richer domain than so far implied,
 though. If you’re interested in pursuing this topic further, search the
 Web for links. Among the topics you’ll find:
	pystone.py—a program designed for measuring
 Python speed across a range of code that ships with Python in its
 Lib\test directory

	http://speed.python.org—a project site for coordinating
 work on common Python benchmarks

	http://speed.pypy.org—the PyPy benchmarking site that
 the preceding bullet is partially emulating

The pystone test, for example, is based on a C
 language benchmark program that was translated to Python by Python
 original creator Guido van Rossum. It provides another way to measure the
 relative speeds of Python implementations, and seems to generally support
 our findings here:
c:\Python33\Lib\test> cd C:\python33\lib\test
c:\Python33\Lib\test> py −3 pystone.py
Pystone(1.1) time for 50000 passes = 0.685303
This machine benchmarks at 72960.4 pystones/second

c:\Python33\Lib\test> cd c:\python27\lib\test
c:\Python27\Lib\test> py −2 pystone.py
Pystone(1.1) time for 50000 passes = 0.463547
This machine benchmarks at 107864 pystones/second

c:\Python27\Lib\test> c:\pypy\pypy-1.9\pypy pystone.py
Pystone(1.1) time for 50000 passes = 0.099975
This machine benchmarks at 500125 pystones/second
Since it’s time to wrap up this chapter, this will have to suffice
 as independent confirmation of our tests’ results. Analyzing the meaning
 of pystone’s results is left as suggested exercise; its code is not
 identical across 3.X and 2.X, but appears to differ today only in terms of
 print operations and an initialization of a global. Also keep in mind that
 benchmarking is just one of many aspects of Python code analysis; for
 pointers on options in related domains (e.g., testing), see Chapter 36’s review of Python development
 tools.

Function Gotchas
Now that we’ve reached the end of the function story, let’s review some
 common pitfalls. Functions have some jagged edges that you might not
 expect. They’re all relatively obscure, and a few have started to fall
 away from the language completely in recent releases, but most have been
 known to trip up new users.
Local Names Are Detected Statically
As you know, Python classifies names assigned in a function as
 locals by default; they live in the function’s
 scope and exist only while the function is running. What you may not
 realize is that Python detects locals statically, when it compiles the
 def’s code, rather than by noticing
 assignments as they happen at runtime. This leads to one of the most
 common oddities posted on the Python newsgroup by beginners.
Normally, a name that isn’t assigned in a function is looked up in
 the enclosing module:
>>> X = 99

>>> def selector(): # X used but not assigned
 print(X) # X found in global scope

>>> selector()
99
Here, the X in the function
 resolves to the X in the module. But
 watch what happens if you add an assignment to X after the reference:
>>> def selector():
 print(X) # Does not yet exist!
 X = 88 # X classified as a local name (everywhere)
 # Can also happen for "import X", "def X"...
>>> selector()
UnboundLocalError: local variable 'X' referenced before assignment
You get the name usage error shown here, but the reason is subtle.
 Python reads and compiles this code when it’s typed interactively or
 imported from a module. While compiling, Python sees the assignment to
 X and decides that X will be a local name everywhere in the
 function. But when the function is actually run, because the assignment
 hasn’t yet happened when the print
 executes, Python says you’re using an undefined name. According to its
 name rules, it should say this; the local X is used before being assigned. In fact, any
 assignment in a function body makes a name local. Imports, =, nested defs, nested classes, and so on are all
 susceptible to this behavior.
The problem occurs because assigned names are treated as locals
 everywhere in a function, not just after the statements where they’re
 assigned. Really, the previous example is ambiguous: was the intention
 to print the global X and create a
 local X, or is this a real
 programming error? Because Python treats X as a local everywhere, it’s seen as an
 error; if you mean to print the global X, you need to declare it in a global statement:
>>> def selector():
 global X # Force X to be global (everywhere)
 print(X)
 X = 88

>>> selector()
99
Remember, though, that this means the assignment also changes the
 global X, not a local X. Within a function, you can’t use both local
 and global versions of the same simple name. If you really meant to
 print the global and then set a local of the same name, you’d need to
 import the enclosing module and use module attribute notation to get to
 the global version:
>>> X = 99
>>> def selector():
 import __main__ # Import enclosing module
 print(__main__.X) # Qualify to get to global version of name
 X = 88 # Unqualified X classified as local
 print(X) # Prints local version of name

>>> selector()
99
88
Qualification (the .X part)
 fetches a value from a namespace object. The interactive namespace is a
 module called __main__, so __main__.X reaches the global version of
 X. If that isn’t clear, check out
 Chapter 17.
In recent versions Python has improved on this story somewhat by
 issuing for this case the more specific “unbound local” error message
 shown in the example listing (it used to simply raise a generic name
 error); this gotcha is still present in general, though.

Defaults and Mutable Objects
As noted briefly in Chapter 17 and Chapter 18, mutable values for default arguments can retain state
 between calls, though this is often unexpected. In general, default
 argument values are evaluated and saved once when a def statement is run, not each time the
 resulting function is later called. Internally, Python saves one object
 per default argument attached to the function itself.
That’s usually what you want—because defaults are evaluated at
 def time, it lets you save values
 from the enclosing scope, if needed (functions defined within loops by
 factories may even depend on this behavior—see ahead). But because a
 default retains an object between calls, you have to be careful about
 changing mutable defaults. For instance, the following function uses an
 empty list as a default value, and then changes it in place each time
 the function is called:
>>> def saver(x=[]): # Saves away a list object
 x.append(1) # Changes same object each time!
 print(x)

>>> saver([2]) # Default not used
[2, 1]
>>> saver() # Default used
[1]
>>> saver() # Grows on each call!
[1, 1]
>>> saver()
[1, 1, 1]
Some see this behavior as a feature—because mutable default
 arguments retain their state between function calls, they can serve some
 of the same roles as static local function
 variables in the C language. In a sense, they work much like global
 variables, but their names are local to the functions and so will not
 clash with names elsewhere in a program.
To other observers, though, this seems like a gotcha, especially
 the first time they run into it. There are better ways to retain state
 between calls in Python (e.g., using the nested scope closures we met in
 this part and the classes we will study in Part VI).
Moreover, mutable defaults are tricky to remember (and to
 understand at all). They depend upon the timing of default object
 construction. In the prior example, there is just one list object for
 the default value—the one created when the def is executed. You don’t get a new list
 every time the function is called, so the list grows with each new
 append; it is not reset to empty on each call.
If that’s not the behavior you want, simply make a copy of the
 default at the start of the function body, or move the default value
 expression into the function body. As long as the value resides in code
 that’s actually executed each time the function runs, you’ll get a new
 object each time through:
>>> def saver(x=None):
 if x is None: # No argument passed?
 x = [] # Run code to make a new list each time
 x.append(1) # Changes new list object
 print(x)

>>> saver([2])
[2, 1]
>>> saver() # Doesn't grow here
[1]
>>> saver()
[1]
By the way, the if statement in
 this example could almost be replaced by the
 assignment x = x or [], which takes
 advantage of the fact that Python’s or returns one of its operand objects: if no
 argument was passed, x would default
 to None, so the or would return the new empty list on the
 right.
However, this isn’t exactly the same. If an empty list were passed
 in, the or expression would cause the
 function to extend and return a newly created list, rather than
 extending and returning the passed-in list like the if version. (The expression becomes [] or [], which evaluates to the new empty
 list on the right; see the section “Truth Tests” if you don’t recall
 why.) Real program requirements may call for either behavior.
Today, another way to achieve the value retention effect of
 mutable defaults in a possibly less confusing way is to use the
 function attributes we discussed in Chapter 19:
>>> def saver():
 saver.x.append(1)
 print(saver.x)

>>> saver.x = []
>>> saver()
[1]
>>> saver()
[1, 1]
>>> saver()
[1, 1, 1]
The function name is global to the function itself, but it need
 not be declared because it isn’t changed directly within the function.
 This isn’t used in exactly the same way, but when coded like this, the
 attachment of an object to the function is much more explicit (and
 arguably less magical).

Functions Without returns
In Python functions, return
 (and yield) statements are optional. When a function doesn’t return a value
 explicitly, the function exits when control falls off the end of the
 function body. Technically, all functions return a value; if you don’t
 provide a return statement, your
 function returns the None object
 automatically:
>>> def proc(x):
 print(x) # No return is a None return

>>> x = proc('testing 123...')
testing 123...
>>> print(x)
None
Functions such as this without a return are Python’s equivalent of what are
 called “procedures” in some languages. They’re usually invoked as
 statements, and the None results are
 ignored, as they do their business without computing a useful
 result.
This is worth knowing, because Python won’t tell you if you try to
 use the result of a function that doesn’t return one. As we noted in
 Chapter 11, for
 instance, assigning the result of a list append method won’t raise an error, but you’ll
 get back None, not the modified
 list:
>>> list = [1, 2, 3]
>>> list = list.append(4) # append is a "procedure"
>>> print(list) # append changes list in place
None
Chapter 15’s section “Common Coding Gotchas” discusses this more broadly. In
 general, any functions that do their business as a side effect are
 usually designed to be run as statements, not expressions.

Miscellaneous Function Gotchas
Here are two additional function-related gotchas—mostly reviews,
 but common enough to reiterate.
Enclosing scopes and loop variables: Factory functions
We described this gotcha in Chapter 17’s discussion of
 enclosing function scopes, but as a reminder: when coding factory
 functions (a.k.a. closures), be careful about relying on enclosing
 function scope lookup for variables that are changed by enclosing
 loops—when a generated function is later called, all such references
 will remember the value of the last loop
 iteration in the enclosing function’s scope. In this case, you must
 use defaults to save loop variable values instead of relying on
 automatic lookup in enclosing scopes. See “Loop variables may require defaults, not scopes” in Chapter 17 for more details on this topic.

Hiding built-ins by assignment: Shadowing
Also in Chapter 17, we saw how it’s possible to reassign built-in names in a closer
 local or global scope; the reassignment effectively hides and replaces
 that built-in’s name for the remainder of the scope where the
 assignment occurs. This means you won’t be able to use the original
 built-in value for the name. As long as you don’t need the built-in
 value of the name you’re assigning, this isn’t an issue—many names are
 built in, and they may be freely reused. However, if you reassign a
 built-in name your code relies on, you may have problems. So either
 don’t do that, or use tools like PyChecker that
 can warn you if you do. The good news is that the
 built-ins you commonly use will soon become second nature, and
 Python’s error trapping will alert you early in testing if your
 built-in name is not what you think it is.

Chapter Summary
This chapter rounded out our look at functions and built-in
 iteration tools with a larger case study that measured the performance of
 iteration alternatives and Pythons, and closed with a review of common
 function-related mistakes to help you avoid pitfalls. The iteration story
 has one last sequel in Part VI, where we’ll
 learn how to code user-defined iterable objects that generate values with
 classes and __iter__, in Chapter 30’s operator overloading
 coverage.
This concludes the functions part of this book. In the next part, we
 will expand on what we already know about
 modules—files of tools that form the topmost
 organizational unit in Python, and the structure in which our functions
 always live. After that, we will explore classes, tools that are largely
 packages of functions with special first arguments. As we’ll see,
 user-defined classes can implement objects that tap into the iteration
 protocol, just like the generators and iterables we met here. In fact,
 everything we have learned in this part of the book will apply when
 functions pop up later in the context of class methods.
Before moving on to modules, though, be sure to work through this
 chapter’s quiz and the exercises for this part of the book, to practice
 what we’ve learned about functions here.

Test Your Knowledge: Quiz
	What conclusions can you draw from this chapter about the
 relative speed of Python iteration tools?

	What conclusions can you draw from this chapter about the
 relative speed of the Pythons timed?

Test Your Knowledge: Answers
	In general, list comprehensions are usually the quickest of the
 bunch; map beats list
 comprehensions in Python only when all tools must call functions;
 for loops tend to be slower than
 comprehensions; and generator functions and expressions are slower
 than comprehensions by a constant factor. Under PyPy, some of these
 findings differ; map often turns in
 a different relative performance, for example, and list comprehensions
 seem always quickest, perhaps due to function-level
 optimizations.
At least that’s the case today on the
 Python versions tested, on the test machine used, and for the type of
 code timed—these results may vary if any of these three variables
 differ. Use the homegrown timer or
 standard library timeit to test
 your use cases for more relevant results. Also keep in mind that
 iteration is just one component of a program’s time: more code gives a
 more complete picture.

	In general, PyPy 1.9 (implementing Python 2.7) is typically
 faster than CPython 2.7, and CPython 2.7 is often faster than CPython
 3.3. In most cases timed, PyPy is some 10X faster than CPython, and
 CPython 2.7 is often a small constant faster than CPython 3.3. In
 cases that use integer math, CPython 2.7 can be 10X faster than
 CPython 3.3, and PyPy can be 100X faster than 3.3. In other cases
 (e.g., string operations and file iterators), PyPy can be slower than
 CPython by 10X, though timeit and
 memory management differences may influence some results. The
 pystone benchmark confirms these relative
 rankings, though the sizes of the differences it reports differ due to
 the code timed.
At least that’s the case today on the
 Python versions tested, on the test machine used, and for the type of
 code timed—these results may vary if any of these three variables
 differ. Use the homegrown timer or
 standard library timeit to test
 your use cases for more relevant results. This is especially true when
 timing Python implementations, which may be arbitrarily optimized in
 each new release.

Test Your Knowledge: Part IV Exercises
In these exercises, you’re going to start coding more sophisticated programs. Be
 sure to check the solutions in “Part IV, Functions and Generators” in Appendix D, and be sure to start
 writing your code in module files. You won’t want to retype these
 exercises if you make a mistake.
	The basics. At the Python interactive
 prompt, write a function that prints its single argument to the screen
 and call it interactively, passing a variety of object types: string,
 integer, list, dictionary. Then, try calling it without passing any
 argument. What happens? What happens when you pass two
 arguments?

	Arguments. Write a function called adder in a Python module file. The function
 should accept two arguments and return the sum (or concatenation) of
 the two. Then, add code at the bottom of the file to call the adder function with a variety of object
 types (two strings, two lists, two floating points), and run this file
 as a script from the system command line. Do you have to print the
 call statement results to see results on your screen?

	varargs. Generalize the adder function you wrote in the last
 exercise to compute the sum of an arbitrary number of arguments, and
 change the calls to pass more or fewer than two arguments. What type
 is the return value sum? (Hints: a slice such as S[:0] returns an empty sequence of the same
 type as S, and the type built-in function can test types; but
 see the manually coded min examples
 in Chapter 18 for a simpler approach.) What happens
 if you pass in arguments of different types? What about passing in
 dictionaries?

	Keywords. Change the adder function from exercise 2 to accept and
 sum/concatenate three arguments: def
 adder(good, bad, ugly). Now, provide default values for each
 argument, and experiment with calling the function interactively. Try
 passing one, two, three, and four arguments. Then, try passing keyword
 arguments. Does the call adder(ugly=1,
 good=2) work? Why? Finally, generalize the new adder to accept and sum/concatenate an
 arbitrary number of keyword arguments. This is
 similar to what you did in exercise 3, but you’ll need to iterate over
 a dictionary, not a tuple. (Hint: the dict.keys method returns a list you can step
 through with a for or while, but be sure to wrap it in a list call to index it in 3.X; dict.values may help here too.)

	Dictionary tools. Write a function called
 copyDict(dict) that copies its
 dictionary argument. It should return a new dictionary containing all
 the items in its argument. Use the dictionary keys method to iterate (or, in Python 2.2
 and later, step over a dictionary’s keys without calling keys). Copying sequences is easy (X[:] makes a top-level copy); does this work
 for dictionaries, too? As explained in this exercise’s solution,
 because dictionaries now come with similar tools, this and the next
 exercise are just coding exercises but still serve as representative
 function examples.

	Dictionary tools. Write a function called
 addDict(dict1, dict2) that computes
 the union of two dictionaries. It should return a new dictionary
 containing all the items in both its arguments (which are assumed to
 be dictionaries). If the same key appears in both arguments, feel free
 to pick a value from either. Test your function by writing it in a
 file and running the file as a script. What happens if you pass lists
 instead of dictionaries? How could you generalize your function to
 handle this case, too? (Hint: see the type built-in function used earlier.) Does
 the order of the arguments passed in matter?

	More argument-matching examples. First,
 define the following six functions (either interactively or in a
 module file that can be imported):
def f1(a, b): print(a, b) # Normal args
def f2(a, *b): print(a, b) # Positional varargs

def f3(a, **b): print(a, b) # Keyword varargs

def f4(a, *b, **c): print(a, b, c) # Mixed modes

def f5(a, b=2, c=3): print(a, b, c) # Defaults

def f6(a, b=2, *c): print(a, b, c) # Defaults and positional varargs
Now, test the following calls interactively, and try to explain
 each result; in some cases, you’ll probably need to fall back on the
 matching algorithm shown in Chapter 18. Do you think
 mixing matching modes is a good idea in general? Can you think of
 cases where it would be useful?
>>> f1(1, 2)
>>> f1(b=2, a=1)

>>> f2(1, 2, 3)
>>> f3(1, x=2, y=3)
>>> f4(1, 2, 3, x=2, y=3)

>>> f5(1)
>>> f5(1, 4)

>>> f6(1)
>>> f6(1, 3, 4)

	Primes revisited. Recall the following code
 snippet from Chapter 13, which
 simplistically determines whether a positive integer is prime:
x = y // 2 # For some y > 1
while x > 1:
 if y % x == 0: # Remainder
 print(y, 'has factor', x)
 break # Skip else
 x -= 1
else: # Normal exit
 print(y, 'is prime')
Package this code as a reusable function in a module file
 (y should be a passed-in argument),
 and add some calls to the function at the bottom of your file. While
 you’re at it, experiment with replacing the first line’s // operator with / to see how true division changes the
 / operator in Python 3.X and breaks
 this code (refer back to Chapter 5 if you need
 a reminder). What can you do about negatives, and the values 0 and 1?
 How about speeding this up? Your outputs should look something like
 this:
13 is prime
13.0 is prime
15 has factor 5
15.0 has factor 5.0

	Iterations and comprehensions. Write code
 to build a new list containing the square roots of all the numbers in
 this list: [2, 4, 9, 16, 25]. Code
 this as a for loop first, then as a
 map call, then as a list
 comprehension, and finally as a generator expression. Use the sqrt function in the built-in math module to do the calculation (i.e.,
 import math and say math.sqrt(x)). Of the four, which approach
 do you like best?

	Timing tools. In Chapter 5, we saw three ways to compute square roots:
 math.sqrt(X), X ** .5, and pow(X,
 .5). If your programs run a lot of these, their relative
 performance might become important. To see which is quickest,
 repurpose the timeseqs.py script
 we wrote in this chapter to time each of these three tools. Use the
 bestof or bestoftotal functions in one of this
 chapter’s timer modules to test
 (you can use either the original, the 3.X-only keyword-only variant,
 or the 2.X/3.X version, and may use Python’s timeit module as well). You might also want
 to repackage the testing code in this script for better reusability—by
 passing a test functions tuple to a general tester function, for
 example (for this exercise a copy-and-modify approach is fine). Which
 of the three square root tools seems to run fastest on your machine
 and Python in general? Finally, how might you go about interactively
 timing the speed of dictionary comprehensions versus for loops?

	Recursive functions. Write a simple
 recursion function named countdown
 that prints numbers as it counts down to zero. For example, a call
 countdown(5) will print: 5 4 3 2 1 stop. There’s no obvious reason to
 code this with an explicit stack or queue, but what about a
 nonfunction approach? Would a generator make sense here?

	Computing factorials. Finally, a computer science classic (but demonstrative
 nonetheless). We employed the notion of factorials in Chapter 20’s coverage of
 permutations: N!, computed as
 N*(N-1)*(N-2)*...1. For instance,
 6! is 6*5*4*3*2*1, or 720. Code and time four functions that, for
 a call fact(N), each return
 N!. Code these four functions (1)
 as a recursive countdown per Chapter 19; (2) using the functional
 reduce call per Chapter 19; (3) with a simple iterative
 counter loop per Chapter 13; and (4) using
 the math.factorial library tool per
 Chapter 20. Use Chapter 21’s timeit to time each of your functions. What
 conclusions can you draw from your results?

1 A preview: notice how we must pass functions into the timer
 manually here. In Chapter 39 and Chapter 40 we’ll see
 decorator-based timer alternatives with which
 timed functions are called normally, but require extra “@” syntax
 where defined. Decorators may be more useful to instrument functions
 with timing logic when they are already being used within a larger
 system, and don’t as easily support the more isolated test call
 patterns assumed here—when decorated, every
 call to the function runs the timing logic, which is either a plus
 or minus depending on your goals.

Part V. Modules and Packages

Chapter 22. Modules: The Big Picture
This chapter begins our in-depth look at the Python module—the
 highest-level program organization unit, which packages program code and
 data for reuse, and provides self-contained namespaces that minimize
 variable name clashes across your programs. In concrete terms, modules
 typically correspond to Python program files. Each file is a module, and
 modules import other modules to use the names they define. Modules might
 also correspond to extensions coded in external languages such as C, Java,
 or C#, and even to directories in package imports. Modules are processed
 with two statements and one important function:
	import
	Lets a client (importer) fetch a module as a whole

	from
	Allows clients to fetch particular names from a module

	imp.reload (reload in 2.X)
	Provides a way to reload a module’s code without stopping
 Python

Chapter 3 introduced module
 fundamentals, and we’ve been using them ever since. The goal here is to
 expand on the core module concepts you’re already familiar with, and move on
 to explore more advanced module usage. This first chapter reviews module
 basics, and offers a general look at the role of modules in overall program
 structure. In the chapters that follow, we’ll dig into the coding details
 behind the theory.
Along the way, we’ll flesh out module details omitted so far—you’ll
 learn about reloads, the __name__ and
 __all__ attributes, package imports,
 relative import syntax, 3.3 namespace packages, and so on. Because modules
 and classes are really just glorified namespaces, we’ll
 formalize namespace concepts here as well.
Why Use Modules?
In short, modules provide an easy way to organize components into a
 system by serving as self-contained packages of variables known as
 namespaces. All the names defined at the top level of a module file become
 attributes of the imported module object. As we saw in the last part of
 this book, imports give access to names in a module’s global scope. That
 is, the module file’s global scope morphs into the
 module object’s attribute namespace when it is imported. Ultimately,
 Python’s modules allow us to link individual files into a larger program
 system.
More specifically, modules have at least three roles:
	Code reuse
	As discussed in Chapter 3,
 modules let you save code in files permanently. Unlike code you type
 at the Python interactive prompt, which goes away when you exit
 Python, code in module files is persistent—it
 can be reloaded and rerun as many times as needed. Just as
 importantly, modules are a place to define names, known as
 attributes, which may be referenced by multiple
 external clients. When used well, this supports a
 modular program design that groups
 functionality into reusable units.

	System namespace partitioning
	Modules are also the highest-level program organization unit
 in Python. Although they are fundamentally just packages of names,
 these packages are also self-contained—you can
 never see a name in another file, unless you explicitly import that
 file. Much like the local scopes of functions, this helps avoid name
 clashes across your programs. In fact, you can’t avoid this
 feature—everything “lives” in a module, both the code you run and
 the objects you create are always implicitly enclosed in modules.
 Because of that, modules are natural tools for grouping system
 components.

	Implementing shared services or data
	From an operational perspective, modules are also useful for
 implementing components that are shared across a system and hence
 require only a single copy. For instance, if
 you need to provide a global object that’s used by more than one
 function or file, you can code it in a module that can then be
 imported by many clients.

At least that’s the abstract story—for you to truly understand the
 role of modules in a Python system, we need to digress for a moment and
 explore the general structure of a Python program.

Python Program Architecture
So far in this book, I’ve sugarcoated some of the complexity in my descriptions
 of Python programs. In practice, programs usually involve more than just
 one file. For all but the simplest scripts, your programs will take the
 form of multifile systems—as the code timing programs
 of the preceding chapter illustrate. Even if you can get by with coding a
 single file yourself, you will almost certainly wind up using external
 files that someone else has already written.
This section introduces the general
 architecture of Python programs—the way you divide a
 program into a collection of source files (a.k.a. modules) and link the
 parts into a whole. As we’ll see, Python fosters a modular program
 structure that groups functionality into coherent and reusable units, in
 ways that are natural, and almost automatic. Along the way, we’ll also
 explore the central concepts of Python modules, imports, and object
 attributes.
How to Structure a Program
At a base level, a Python program consists of text files
 containing Python statements, with one main
 top-level file, and zero or more supplemental files
 known as modules.
Here’s how this works. The top-level (a.k.a. script) file contains
 the main flow of control of your program—this is the file you run to
 launch your application. The module files are libraries of tools used to
 collect components used by the top-level file, and possibly elsewhere.
 Top-level files use tools defined in module files, and modules use tools
 defined in other modules.
Although they are files of code too, module files generally don’t
 do anything when run directly; rather, they define tools intended for
 use in other files. A file imports a module to gain
 access to the tools it defines, which are known as its attributes—variable names
 attached to objects such as functions. Ultimately, we import modules and
 access their attributes to use their tools.

Imports and Attributes
Let’s make this a bit more concrete. Figure 22-1 sketches the
 structure of a Python program composed of three files: a.py, b.py, and c.py. The file a.py is chosen to be the top-level file; it
 will be a simple text file of statements, which is executed from top to
 bottom when launched. The files b.py and c.py are modules; they are simple text files
 of statements as well, but they are not usually launched directly.
 Instead, as explained previously, modules are normally imported by other
 files that wish to use the tools the modules define.
Figure 22-1. Program architecture in Python. A program is a system of
 modules. It has one top-level script file (launched to run the
 program), and multiple module files (imported libraries of tools).
 Scripts and modules are both text files containing Python statements,
 though the statements in modules usually just create objects to be
 used later. Python’s standard library provides a collection of
 precoded modules.

For instance, suppose the file b.py in Figure 22-1 defines a function
 called spam, for external use. As we
 learned when studying functions in Part IV, b.py will contain a Python def statement to generate the function, which
 you can later run by passing zero or more values in parentheses after
 the function’s name:
def spam(text): # File b.py
 print(text, 'spam')
Now, suppose a.py wants to
 use spam. To this end, it might
 contain Python statements such as the following:
import b # File a.py
b.spam('gumby') # Prints "gumby spam"
The first of these, a Python import statement, gives the file a.py access to everything defined by
 top-level code in the file b.py.
 The code import b roughly
 means:
Load the file b.py (unless
 it’s already loaded), and give me access to all its attributes through
 the name b.

To satisfy such goals, import
 (and, as you’ll see later, from)
 statements execute and load other files on request. More formally, in
 Python, cross-file module linking is not resolved until such import statements are executed at
 runtime; their net effect is to assign module
 names—simple variables like b—to
 loaded module objects. In fact, the module name used in an import statement serves two purposes: it
 identifies the external file to be loaded, but it
 also becomes a variable assigned to the loaded
 module.
Similarly, objects defined by a module are
 also created at runtime, as the import is executing: import literally runs statements in the target
 file one at a time to create its contents. Along the way, every name
 assigned at the top-level of the file becomes an attribute of the
 module, accessible to importers. For example, the second of the
 statements in a.py calls the
 function spam defined in the module
 b—created by running its def statement during the import—using object
 attribute notation. The code b.spam
 means:
Fetch the value of the name spam that lives within the object b.

This happens to be a callable function in our example, so we pass
 a string in parentheses ('gumby'). If
 you actually type these files, save them, and run a.py, the words “gumby spam” will be
 printed.
As we’ve seen, the object.attribute notation appears throughout
 Python code—most objects have useful attributes that are fetched with
 the “.” operator. Some reference callable objects like functions that
 take action (e.g., a salary computer), and others are simple data values
 that denote more static objects and properties (e.g., a person’s
 name).
The notion of importing is also completely general throughout
 Python. Any file can import tools from any other file. For instance, the
 file a.py may import b.py to call its function, but b.py might also import c.py to leverage different tools defined
 there. Import chains can go as deep as you like: in this example, the
 module a can import b, which can import c, which can import b again, and so on.
Besides serving as the highest organizational structure, modules
 (and module packages, described in Chapter 24)
 are also the highest level of code reuse in Python.
 Coding components in module files makes them useful in your original
 program, and in any other programs you may write later. For instance, if
 after coding the program in Figure 22-1 we discover that
 the function b.spam is a
 general-purpose tool, we can reuse it in a completely different program;
 all we have to do is import the file b.py
 again from the other program’s files.

Standard Library Modules
Notice the rightmost portion of Figure 22-1. Some of the
 modules that your programs will import are provided by Python itself and
 are not files you will code.
Python automatically comes with a large collection of utility
 modules known as the standard library. This
 collection, over 200 modules large at last count, contains
 platform-independent support for common programming tasks: operating
 system interfaces, object persistence, text pattern matching, network
 and Internet scripting, GUI construction, and much more. None of these
 tools are part of the Python language itself, but you can use them by
 importing the appropriate modules on any standard Python installation.
 Because they are standard library modules, you can also be reasonably
 sure that they will be available and will work portably on most
 platforms on which you will run Python.
This book’s examples employ a few of the standard library’s
 modules—timeit, sys, and os
 in last chapter’s code, for instance—but we’ll really only scratch the
 surface of the libraries story here. For a complete look, you should
 browse the standard Python library reference manual, available either
 online at http://www.python.org, or with your Python installation
 (via IDLE or Python’s Start button menu on some Windows). The
 PyDoc tool discussed in Chapter 15 is another way to explore
 standard library modules.
Because there are so many modules, this is really the only way to
 get a feel for what tools are available. You can also find tutorials on
 Python library tools in commercial books that cover application-level
 programming, such as O’Reilly’s Programming
 Python, but the manuals are free, viewable in any web browser
 (in HTML format), viewable in other formats (e.g., Windows help), and
 updated each time Python is rereleased. See Chapter 15 for more pointers.

How Imports Work
The prior section talked about importing modules without really explaining
 what happens when you do so. Because imports are at the heart of program
 structure in Python, this section goes into more formal detail on the
 import operation to make this process less abstract.
Some C programmers like to compare the Python module import
 operation to a C #include, but they
 really shouldn’t—in Python, imports are not just textual insertions of one
 file into another. They are really runtime operations that perform three
 distinct steps the first time a program imports a given file:
	Find the module’s file.

	Compile it to byte code (if needed).

	Run the module’s code to build the objects
 it defines.

To better understand module imports, we’ll explore these steps in
 turn. Bear in mind that all three of these steps are carried out only the
 first time a module is imported during a program’s
 execution; later imports of the same module in a program run bypass all of
 these steps and simply fetch the already loaded module object in memory.
 Technically, Python does this by storing loaded modules in a table named
 sys.modules and checking there at the
 start of an import operation. If the module is not present, a three-step
 process begins.
1. Find It
First, Python must locate the module file referenced by an
 import statement. Notice that the
 import statement in the prior
 section’s example names the file without a .py extension and without its directory path:
 it just says import b, instead of
 something like import c:\dir1\b.py.
 Path and extension details are omitted on purpose; instead, Python uses
 a standard module search path and known file types
 to locate the module file corresponding to an import statement.1 Because this is the main part of the import operation that
 programmers must know about, we’ll return to this topic in a
 moment.

2. Compile It (Maybe)
After finding a source code file that matches an import statement by traversing the module
 search path, Python next compiles it to byte code, if necessary. We
 discussed byte code briefly in Chapter 2, but it’s a bit richer than
 explained there. During an import operation Python checks both file
 modification times and the byte code’s Python version number to decide
 how to proceed. The former uses file “timestamps,” and the latter uses
 either a “magic” number embedded in the byte code or a filename,
 depending on the Python release being used. This step chooses an action
 as follows:
	Compile
	If the byte code file is older than the
 source file (i.e., if you’ve changed the source) or was created by
 a different Python version, Python
 automatically regenerates the byte code when the program is
 run.
As discussed ahead, this model is modified somewhat in
 Python 3.2 and later—byte code files are segregated in a __pycache__ subdirectory and named with
 their Python version to avoid contention and recompiles when
 multiple Pythons are installed. This obviates the need to check
 version numbers in the byte code, but the timestamp check is still
 used to detect changes in the source.

	Don’t compile
	If, on the other hand, Python finds a .pyc byte
 code file that is not older than the
 corresponding .py source file and was created by the
 same Python version, it skips the source-to-byte-code compile
 step.
In addition, if Python finds only a byte code file on the
 search path and no source, it simply loads the byte code directly;
 this means you can ship a program as just byte code files and
 avoid sending source. In other words, the compile step is
 bypassed if possible to speed program
 startup.

Notice that compilation happens when a file is being imported.
 Because of this, you will not usually see a .pyc byte code file for the
 top-level file of your program, unless it is also
 imported elsewhere—only imported files leave behind .pyc files on your machine. The byte code of
 top-level files is used internally and discarded; byte code of imported
 files is saved in files to speed future imports.
Top-level files are often designed to be executed directly and not
 imported at all. Later, we’ll see that it is possible to design a file
 that serves both as the top-level code of a program and as a module of
 tools to be imported. Such a file may be both executed and imported, and
 thus does generate a .pyc. To learn
 how this works, watch for the discussion of the special __name__ attribute and __main__ in Chapter 25.

3. Run It
The final step of an import operation executes the byte code of
 the module. All statements in the file are run in turn, from top to
 bottom, and any assignments made to names during this step generate
 attributes of the resulting module object. This is how the tools defined
 by the module’s code are created. For instance, def statements in a file are run at import
 time to create functions and assign attributes within the module to
 those functions. The functions can then be called later in the program
 by the file’s importers.
Because this last import step actually runs the file’s code, if
 any top-level code in a module file does real work, you’ll see its
 results at import time. For example, top-level print statements in a module show output when
 the file is imported. Function def
 statements simply define objects for later use.
As you can see, import operations involve quite a bit of work—they
 search for files, possibly run a compiler, and run Python code. Because
 of this, any given module is imported only once per
 process by default. Future imports skip all three import steps and reuse
 the already loaded module in memory. If you need to import a file again
 after it has already been loaded (for example, to support dynamic
 end-user customizations), you have to force the issue with an imp.reload call—a tool we’ll meet in the next
 chapter.2

Byte Code Files: __pycache__ in Python 3.2+
As mentioned briefly, the way that Python stores files to retain the byte code
 that results from compiling your source has changed in Python 3.2 and
 later. First of all, if Python cannot write a file to save this on your
 computer for any reason, your program still runs fine—Python simply
 creates and uses the byte code in memory and discards it on exit. To speed
 startups, though, it will try to save byte code in a file in order to skip
 the compile step next time around. The way it does this varies per Python
 version:
	In Python 3.1 and earlier (including all of Python 2.X)
	Byte code is stored in files in the same
 directory as the corresponding source files, normally with the filename extension .pyc (e.g., module.pyc). Byte code files are also
 stamped internally with the version of Python that created them
 (known as a “magic” field to developers) so Python knows to
 recompile when this differs in the version of
 Python running your program. For instance, if you upgrade to a new
 Python whose byte code differs, all your byte code files will be
 recompiled automatically due to a version number mismatch, even if
 you haven’t changed your source code.

	In Python 3.2 and later
	Byte code is instead stored in files in a subdirectory named
 __pycache__, which Python
 creates if needed, and which is located in the directory containing
 the corresponding source files. This helps avoid
 clutter in your source directories by
 segregating the byte code files in their own directory. In addition,
 although byte code files still get the .pyc extension as before, they are given
 more descriptive names that include text identifying the
 version of Python that created them (e.g.,
 module.cpython-32.pyc). This
 avoids contention and recompiles: because each
 version of Python installed can have its own uniquely named version
 of byte code files in the __pycache__ subdirectory, running under a
 given version doesn’t overwrite the byte code of another, and
 doesn’t require recompiles. Technically, byte code filenames also
 include the name of the Python that created
 them, so CPython, Jython, and other implementations mentioned in the
 preface and Chapter 2 can coexist
 on the same machine without stepping on each other’s work (once they
 support this model).

In both models, Python always recreates the
 byte code file if you’ve changed the source code file since the last
 compile, but version differences are handled differently—by magic numbers
 and replacement prior to 3.2, and by filenames that allow for multiple
 copies in 3.2 and later.
Byte Code File Models in Action
The following is a quick example of these two models in action
 under 2.X and 3.3. I’ve omitted much of the text displayed by the
 dir directory listing on Windows here
 to save space, and the script used here isn’t listed because it is not
 relevant to this discussion (it’s from Chapter 2, and simply prints two values).
 Prior to 3.2, byte code files show up alongside
 their source files after being created by import operations:
c:\code\py2x> dir
10/31/2012 10:58 AM 39 script0.py

c:\code\py2x> C:\python27\python
>>> import script0
hello world
1267650600228229401496703205376
>>> ^Z

c:\code\py2x> dir
10/31/2012 10:58 AM 39 script0.py
10/31/2012 11:00 AM 154 script0.pyc
However, in 3.2 and later byte code files are
 saved in the __pycache__
 subdirectory and include versions and Python implementation details in
 their names to avoid clutter and contention among the Pythons on your
 computer:
c:\code\py2x> cd ..\py3x
c:\code\py3x> dir
10/31/2012 10:58 AM 39 script0.py

c:\code\py3x> C:\python33\python
>>> import script0
hello world
1267650600228229401496703205376
>>> ^Z

c:\code\py3x> dir
10/31/2012 10:58 AM 39 script0.py
10/31/2012 11:00 AM <DIR> __pycache__

c:\code\py3x> dir __pycache__
10/31/2012 11:00 AM 184 script0.cpython-33.pyc
Crucially, under the model used in 3.2 and later, importing the
 same file with a different Python creates a
 different byte code file, instead of overwriting
 the single file as done by the pre-3.2 model—in the
 newer model, each Python version and implementation has its own byte
 code files, ready to be loaded on the next program run (earlier Pythons
 will happily continue using their scheme on the same machine):
c:\code\py3x> C:\python32\python
>>> import script0
hello world
1267650600228229401496703205376
>>> ^Z

c:\code\py3x> dir __pycache__
10/31/2012 12:28 PM 178 script0.cpython-32.pyc
10/31/2012 11:00 AM 184 script0.cpython-33.pyc
Python 3.2’s newer byte code file model is probably superior, as
 it avoids recompiles when there is more than one Python on your
 machine—a common case in today’s mixed 2.X/3.X world. On the other hand,
 it is not without potential incompatibilities in programs that rely on
 the prior file and directory structure. This may be a compatibility
 issue in some tools programs, for instance, though most well-behaved
 tools should work as before. See Python 3.2’s “What’s New?” document for
 details on potential impacts.
Also keep in mind that this process is completely
 automatic—it’s a side effect of running
 programs—and most programmers probably won’t care about or even notice
 the difference, apart from faster startups due to fewer recompiles.

The Module Search Path
As mentioned earlier, the part of the import procedure that most programmers
 will need to care about is usually the first—locating
 the file to be imported (the “find it” part). Because you may need to tell
 Python where to look to find files to import, you need to know how to tap
 into its search path in order to extend it.
In many cases, you can rely on the automatic nature of the module
 import search path and won’t need to configure this path at all. If you
 want to be able to import user-defined files across directory boundaries,
 though, you will need to know how the search path works in order to
 customize it. Roughly, Python’s module search path is composed of the
 concatenation of these major components, some of which are preset for you
 and some of which you can tailor to tell Python where to look:
	The home directory of the program

	PYTHONPATH directories (if
 set)

	Standard library directories

	The contents of any .pth
 files (if present)

	The site-packages home of
 third-party extensions

Ultimately, the concatenation of these five components becomes
 sys.path, a mutable list of directory
 name strings that I’ll expand upon later in this section. The first, third, and fifth elements of the search path are defined automatically. Because
 Python searches the concatenation of these components from first to last,
 though, the second and fourth
 elements can be used to extend the path to include your own source code
 directories. Here is how Python uses each of these path components:
	Home directory (automatic)
	Python first looks for the imported file in the home
 directory. The meaning of this entry depends on how you are running
 the code. When you’re running a program, this
 entry is the directory containing your program’s top-level script
 file. When you’re working interactively, this
 entry is the directory in which you are working (i.e., the current
 working directory).
Because this directory is always searched first, if a program
 is located entirely in a single directory, all of its imports will
 work automatically with no path configuration required. On the other
 hand, because this directory is searched first, its files will also
 override modules of the same name in directories elsewhere on the
 path; be careful not to accidentally hide library modules this way
 if you need them in your program, or use package tools we’ll meet
 later that can partially sidestep this issue.

	PYTHONPATH directories
 (configurable)
	Next, Python searches all directories listed in your PYTHONPATH environment variable setting,
 from left to right (assuming you have set this at all: it’s not
 preset for you). In brief, PYTHONPATH is simply a list of
 user-defined and platform-specific names of directories that contain
 Python code files. You can add all the directories from which you
 wish to be able to import, and Python will extend the module search
 path to include all the directories your PYTHONPATH lists.
Because Python searches the home directory first, this setting
 is only important when importing files across directory
 boundaries—that is, if you need to import a file that is stored in a
 different directory from the file that imports
 it. You’ll probably want to set your PYTHONPATH variable once you start writing
 substantial programs, but when you’re first starting out, as long as
 you save all your module files in the directory in which you’re
 working (i.e., the home directory, like the C:\code used in this book) your imports
 will work without you needing to worry about this setting at
 all.

	Standard library directories (automatic)
	Next, Python automatically searches the directories where the
 standard library modules are installed on your machine. Because
 these are always searched, they normally do not need to be added to
 your PYTHONPATH or included in
 path files (discussed next).

	.pth path file directories
 (configurable)
	Next, a lesser-used feature of Python allows users to add
 directories to the module search path by simply listing them, one
 per line, in a text file whose name ends with a .pth suffix (for “path”). These path
 configuration files are a somewhat advanced installation-related
 feature; we won’t cover them fully here, but they provide an
 alternative to PYTHONPATH
 settings.
In short, text files of directory names dropped in an
 appropriate directory can serve roughly the same role as the
 PYTHONPATH environment variable
 setting. For instance, if you’re running Windows and Python 3.3, a
 file named myconfig.pth may be
 placed at the top level of the Python install directory (C:\Python33) or in the site-packages subdirectory of the
 standard library there (C:\Python33\Lib\site-packages) to extend
 the module search path. On Unix-like systems, this file might be
 located in /usr/local/lib/python3.3/site-packages or
 /usr/local/lib/site-python
 instead.
When such a file is present, Python will add the directories
 listed on each line of the file, from first to last, near the end of
 the module search path list—currently, after PYTHONPATH and standard libraries, but
 before the site-packages
 directory where third-party extensions are often installed. In fact,
 Python will collect the directory names in all the .pth path files it finds and will filter
 out any duplicates and nonexistent directories. Because they are
 files rather than shell settings, path files can apply to all users
 of an installation, instead of just one user or shell. Moreover, for
 some users and applications, text files may be simpler to code than
 environment settings.
This feature is more sophisticated than I’ve described here.
 For more details, consult the Python library manual, and especially
 its documentation for the standard library module site—this module allows the locations of
 Python libraries and path files to be configured, and its
 documentation describes the expected locations of path files in
 general. I recommend that beginners use PYTHONPATH or perhaps a single .pth file, and then only if you must
 import across directories. Path files are used more often by
 third-party libraries, which commonly install a path file in
 Python’s site-packages,
 described next.

	The Lib\site-packages
 directory of third-party extensions (automatic)
	Finally, Python automatically adds the site-packages subdirectory of its
 standard library to the module search path. By convention, this is
 the place that most third-party extensions are installed, often
 automatically by the distutils
 utility described in an upcoming sidebar. Because their install
 directory is always part of the module search path, clients can
 import the modules of such extensions without any path
 settings.

Configuring the Search Path
The net effect of all of this is that both the PYTHONPATH and path file components of the
 search path allow you to tailor the places where imports look for files.
 The way you set environment variables and where you store path files
 varies per platform. For instance, on Windows, you might use your
 Control Panel’s System icon to set PYTHONPATH to a list of directories separated
 by semicolons, like this:
c:\pycode\utilities;d:\pycode\package1
Or you might instead create a text file called C:\Python33\pydirs.pth, which looks like
 this:
c:\pycode\utilities
d:\pycode\package1
These settings are analogous on other platforms, but the details
 can vary too widely for us to cover in this chapter. See Appendix A for pointers on extending
 your module search path with PYTHONPATH or .pth files on various platforms.

Search Path Variations
This description of the module search path is accurate, but
 generic; the exact configuration of the search path is prone to changing
 across platforms, Python releases, and even Python implementations.
 Depending on your platform, additional directories may automatically be
 added to the module search path as well.
For instance, some Pythons may add an entry for the
 current working directory—the directory from which
 you launched your program—in the search path before the PYTHONPATH directories. When you’re launching
 from a command line, the current working directory may not be the same
 as the home directory of your top-level file (i.e., the directory where
 your program file resides), which is always added. Because the current
 working directory can vary each time your program runs, you normally
 shouldn’t depend on its value for import purposes. See Chapter 3 for more on launching programs from
 command lines.3
To see how your Python configures the module search path on your
 platform, you can always inspect sys.path—the topic of the next section.

The sys.path List
If you want to see how the module search path is truly configured
 on your machine, you can always inspect the path as Python knows it by
 printing the built-in sys.path list
 (that is, the path
 attribute of the standard library module sys). This list of directory name strings is
 the actual search path within Python; on imports, Python searches each
 directory in this list from left to right, and uses the first file match
 it finds.
Really, sys.path
 is the module search path. Python configures it at program startup, merging the home directory of the top-level file (or an empty string to designate the current working directory), any PYTHONPATH directories, the standard library’s directories, the contents of any .pth files, and the site-packages directory. The result is a list of directory name
 strings that Python searches on each import of a new file.
Python exposes this list for two good reasons. First, it provides
 a way to verify the search path settings you’ve made—if you don’t see
 your settings somewhere in this list, you need to recheck your work. For
 example, here is what my module search path looks like on Windows under
 Python 3.3, with my PYTHONPATH set to
 C:\code and a C:\Python33\mypath.pth path file that lists
 C:\Users\mark. The empty string at
 the front means current directory, and my two settings are merged in;
 the rest are standard library directories and files and the site-packages home for third-party
 extensions:
>>> import sys
>>> sys.path
['', 'C:\\code', 'C:\\Windows\\system32\\python33.zip', 'C:\\Python33\\DLLs',
'C:\\Python33\\lib', 'C:\\Python33', 'C:\\Users\\mark',
'C:\\Python33\\lib\\site-packages']
Second, if you know what you’re doing, this list provides a way
 for scripts to tailor their search paths manually. As you’ll see by
 example later in this part of the book, by
 modifying the sys.path list, you can modify the search path
 for all future imports made in a program’s run. Such changes last only
 for the duration of the script, however; PYTHONPATH and .pth files offer more permanent ways to
 modify the path—the first per user, and the second per
 installation.
On the other hand, some programs really do
 need to change sys.path. Scripts that
 run on web servers, for example, often run as the user “nobody” to limit
 machine access. Because such scripts cannot usually depend on “nobody”
 to have set PYTHONPATH in any
 particular way, they often set sys.path manually to include required source
 directories, prior to running any import statements. A sys.path.append or sys.path.insert will often suffice, though
 will endure for a single program run only.

Module File Selection
Keep in mind that filename extensions (e.g., .py) are omitted from import statements intentionally. Python
 chooses the first file it can find on the search path that matches the
 imported name. In fact, imports are the point of interface to a host of
 external components—source code, multiple flavors of byte code, compiled
 extensions, and more. Python automatically selects any type that matches
 a module’s name.
Module sources
For example, an import
 statement of the form import b
 might today load or resolve to:
	A source code file named b.py

	A byte code file named b.pyc

	An optimized byte code file named b.pyo (a less common format)

	A directory named b,
 for package imports (described in Chapter 24)

	A compiled extension module, coded in C, C++, or another
 language, and dynamically linked when imported (e.g., b.so on Linux, or b.dll or b.pyd on Cygwin and Windows)

	A compiled built-in module coded in C and statically linked
 into Python

	A ZIP file component that is automatically extracted when
 imported

	An in-memory image, for frozen executables

	A Java class, in the Jython version of Python

	A .NET component, in the IronPython version of Python

C extensions, Jython, and package imports all extend imports
 beyond simple files. To importers, though, differences in the loaded
 file type are completely irrelevant, both when importing and when
 fetching module attributes. Saying import
 b gets whatever module b
 is, according to your module search path, and b.attr fetches an item in the module, be it
 a Python variable or a linked-in C function. Some standard modules we
 will use in this book are actually coded in C, not Python; because
 they look just like Python-coded module files, their clients don’t
 have to care.

Selection priorities
If you have both a b.py and
 a b.so in different directories,
 Python will always load the one found in the first (leftmost)
 directory of your module search path during the left-to-right search
 of sys.path. But what happens if it
 finds both a b.py and a b.so in the same
 directory? In this case, Python follows a standard picking order,
 though this order is not guaranteed to stay the same over time or
 across implementations. In general, you should not depend on which
 type of file Python will choose within a given directory—make your
 module names distinct, or configure your module search path to make
 your module selection preferences explicit.

Import hooks and ZIP files
Normally, imports work as described in this section—they find
 and load files on your machine. However, it is possible to redefine
 much of what an import operation does in Python, using what are known
 as import hooks. These hooks can be used to make
 imports do various useful things, such as loading files from archives,
 performing decryption, and so on.
In fact, Python itself makes use of these hooks to enable files
 to be directly imported from ZIP archives: archived files are
 automatically extracted at import time when a .zip file is selected from the module import search path. One of the
 standard library directories in the earlier sys.path display, for example, is a
 .zip file today. For more
 details, see the Python standard library manual’s description of the
 built-in __import__ function,
 the customizable tool that import statements actually run.
Note
Also see Python 3.3’s “What’s New?” document for updates on
 this front that we’ll mostly omit here for space. In short, in this
 version and later, the __import__
 function is now implemented by importlib.__import__, in part to unify and
 more clearly expose its implementation.
The latter of these calls is also wrapped by importlib.import_module—a tool that, per
 Python’s current manuals, is generally preferred over __import__ for direct calls to import by
 name string, a technique discussed in Chapter 25. Both calls still work today,
 though the __import__ function
 supports customizing imports by replacement in the built-in scope
 (see Chapter 17), and other techniques support
 similar roles. See the Python library manuals for more
 details.

Optimized byte code files
Finally, Python also supports the notion of .pyo optimized byte code files, created and run with the -O Python command-line flag, and
 automatically generated by some install tools. Because these run only
 slightly faster than normal .pyc
 files (typically 5 percent faster), however, they are infrequently
 used. The PyPy system (see Chapter 2
 and Chapter 21), for example,
 provides more substantial speedups. See Appendix A and Chapter 36 for more on .pyo
 files.
Third-Party Software: distutils
This chapter’s description of module search path settings is
 targeted mainly at user-defined source code that you write on your
 own. Third-party extensions for Python typically use the distutils tools
 in the standard library to automatically install themselves, so no
 path configuration is required to use their code.
Systems that use distutils
 generally come with a setup.py
 script, which is run to install them; this script imports and uses
 distutils modules to place such
 systems in a directory that is automatically part of the module
 search path (usually in the Lib\site-packages subdirectory of the
 Python install tree, wherever that resides on the target
 machine).
For more details on distributing and installing with distutils, see the Python standard manual
 set; its use is beyond the scope of this book (for instance, it also
 provides ways to automatically compile C-coded extensions on the
 target machine). Also check out the third-party open source
 eggs system, which adds dependency checking for
 installed Python software.
Note: as this fifth edition is being
 written, there is some talk of deprecating distutils and replacing it with a newer
 distutils2 package in the Python
 standard library. The status of this is unclear—it was anticipated
 in 3.3 but did not appear—so be sure to see Python’s “What’s New”
 documents for updates on this front that may emerge after this book
 is released.

Chapter Summary
In this chapter, we covered the basics of modules, attributes, and
 imports and explored the operation of import statements. We learned that imports find
 the designated file on the module search path, compile it to byte code,
 and execute all of its statements to generate its contents. We also
 learned how to configure the search path to be able to import from
 directories other than the home directory and the standard library
 directories, primarily with PYTHONPATH
 settings.
As this chapter demonstrated, the import operation and modules are
 at the heart of program architecture in Python. Larger programs are
 divided into multiple files, which are linked together at runtime by
 imports. Imports in turn use the module search path to locate files, and
 modules define attributes for external use.
Of course, the whole point of imports and modules is to provide a
 structure to your program, which divides its logic into self-contained
 software components. Code in one module is isolated from code in another;
 in fact, no file can ever see the names defined in another, unless
 explicit import statements are run.
 Because of this, modules minimize name collisions between different parts
 of your program.
You’ll see what this all means in terms of actual statements and
 code in the next chapter. Before we move on, though, let’s run through the
 chapter quiz.

Test Your Knowledge: Quiz
	How does a module source code file become a module object?

	Why might you have to set your PYTHONPATH environment variable?

	Name the five major components of the module import search
 path.

	Name four file types that Python might load in response to an
 import operation.

	What is a namespace, and what does a module’s namespace
 contain?

Test Your Knowledge: Answers
	A module’s source code file automatically becomes a module
 object when that module is imported. Technically, the module’s source
 code is run during the import, one statement at a time, and all the
 names assigned in the process become attributes of the module
 object.

	You only need to set PYTHONPATH to import from directories other
 than the one in which you are working (i.e., the current directory
 when working interactively, or the directory containing your top-level
 file). In practice, this will be a common case for nontrivial
 programs.

	The five major components of the module import search path are
 the top-level script’s home directory (the directory containing it),
 all directories listed in the PYTHONPATH environment variable, the
 standard library directories, all directories listed in .pth path files located in standard places,
 and the site-packages root
 directory for third-party extension installs. Of these, programmers
 can customize PYTHONPATH and
 .pth files.

	Python might load a source code (.py) file, a byte code (.pyc or .pyo) file, a C extension module (e.g., a
 .so file on Linux or a .dll or .pyd file on Windows), or a directory of
 the same name for package imports. Imports may also load more exotic
 things such as ZIP file components, Java classes under the Jython
 version of Python, .NET components under IronPython, and statically
 linked C extensions that have no files present at all. In fact, with
 import hooks, imports can load arbitrary items.

	A namespace is a self-contained package of variables, which are
 known as the attributes of the namespace object.
 A module’s namespace contains all the names assigned by code at the
 top level of the module file (i.e., not nested in def or class statements). Technically, a module’s
 global scope morphs into the module object’s
 attributes namespace. A module’s namespace may also be altered by
 assignments from other files that import it, though this is generally
 frowned upon (see Chapter 17 for more on the downsides
 of cross-file changes).

1 It’s syntactically illegal to include path and extension
 details in a standard import.
 However, package imports, which we’ll discuss
 in Chapter 24, allow import statements to include part of the
 directory path leading to a file as a set of period-separated names.
 Package imports, though, still rely on the normal module search path
 to locate the leftmost directory in a package path (i.e., they are
 relative to a directory in the search path). They also cannot make
 use of any platform-specific directory syntax in the import statements; such syntax only works
 on the search path. Also, note that module file search path issues
 are not as relevant when you run frozen
 executables (discussed in Chapter 2), which typically embed byte
 code in the binary image.
2 As described earlier, Python keeps already imported modules in
 the built-in sys.modules
 dictionary so it can keep track of what’s been loaded. In fact, if
 you want to see which modules are loaded, you can import sys and print list(sys.modules.keys()). There’s more on
 other uses for this internal table in Chapter 25.
3 Also watch for Chapter 24’s discussion
 of the new relative import syntax and search
 rules in Python 3.X; they modify the search path for from statements in files inside packages
 when “.” characters are used (e.g., from .
 import string). By default, a package’s own directory is
 not automatically searched by imports in Python 3.X, unless such
 relative imports are used by files in the package itself.

Chapter 23. Module Coding Basics
Now that we’ve looked at the larger ideas behind modules, let’s turn to some examples of
 modules in action. Although some of the early topics in this chapter will be
 review for linear readers who have already applied them in previous
 chapters’ examples, we’ll find that they quickly lead us to further details
 surrounding Python’s modules that we haven’t yet met, such as nesting,
 reloads, scopes, and more.
Python modules are easy to create; they’re just
 files of Python program code created with a text editor. You don’t need to
 write special syntax to tell Python you’re making a module; almost any text
 file will do. Because Python handles all the details of finding and loading
 modules, modules are also easy to use; clients simply
 import a module, or specific names a module defines, and use the objects
 they reference.
Module Creation
To define a module, simply use your text editor to type some Python code into a
 text file, and save it with a “.py” extension; any such file is
 automatically considered a Python module. All the names assigned at the
 top level of the module become its attributes (names
 associated with the module object) and are exported for clients to
 use—they morph from variable to module object attribute
 automatically.
For instance, if you type the following def into a file called module1.py and import it, you create a module
 object with one attribute—the name printer, which happens to be a reference to a
 function object:
def printer(x): # Module attribute
 print(x)
Module Filenames
Before we go on, I should say a few more words about module filenames. You can call
 modules just about anything you like, but module filenames should end in
 a .py suffix if you plan to import
 them. The .py is technically optional for top-level files that will be run
 but not imported, but adding it in all cases makes your files’ types
 more obvious and allows you to import any of your files in the
 future.
Because module names become variable names inside a Python program
 (without the .py), they should also
 follow the normal variable name rules outlined in Chapter 11. For instance, you
 can create a module file named if.py, but you cannot import it because
 if is a reserved word—when you try to
 run import if, you’ll get a syntax
 error. In fact, both the names of module files and
 the names of directories used in package imports
 (discussed in the next chapter) must conform to the rules for variable
 names presented in Chapter 11; they may, for
 instance, contain only letters, digits, and underscores. Package
 directories also cannot contain platform-specific syntax such as spaces
 in their names.
When a module is imported, Python maps the internal module name to
 an external filename by adding a directory path from the module search
 path to the front, and a .py or
 other extension at the end. For instance, a module named M ultimately maps to some external file
 <directory>\M.<extension> that
 contains the module’s code.

Other Kinds of Modules
As mentioned in the preceding chapter, it is also possible to create a Python
 module by writing code in an external language such as C, C++, and
 others (e.g., Java, in the Jython implementation of the language). Such
 modules are called extension modules, and they are
 generally used to wrap up external libraries for use in Python scripts.
 When imported by Python code, extension modules look and feel the same
 as modules coded as Python source code files—they are accessed with
 import statements, and they provide
 functions and objects as module attributes. Extension modules are beyond
 the scope of this book; see Python’s standard manuals or advanced texts
 such as Programming
 Python for more details.

Module Usage
Clients can use the simple module file we just wrote by running an import or from statement. Both statements find, compile,
 and run a module file’s code, if it hasn’t yet been loaded. The chief
 difference is that import fetches the
 module as a whole, so you must qualify to fetch its names; in contrast,
 from fetches (or copies) specific
 names out of the module.
Let’s see what this means in terms of code. All of the following
 examples wind up calling the printer
 function defined in the prior section’s module1.py module file, but in different
 ways.
The import Statement
In the first example, the name module1 serves two
 different purposes—it identifies an external file to be loaded, and it
 becomes a variable in the script, which references the module object
 after the file is loaded:
>>> import module1 # Get module as a whole (one or more)
>>> module1.printer('Hello world!') # Qualify to get names
Hello world!
The import statement simply
 lists one or more names of modules to load, separated by commas. Because
 it gives a name that refers to the whole module
 object, we must go through the module name to fetch its attributes
 (e.g., module1.printer).

The from Statement
By contrast, because from copies
 specific names from one file over to another scope,
 it allows us to use the copied names directly in the script without
 going through the module (e.g., printer):
>>> from module1 import printer # Copy out a variable (one or more)
>>> printer('Hello world!') # No need to qualify name
Hello world!
This form of from allows us to
 list one or more names to be copied out, separated by commas. Here, it
 has the same effect as the prior example, but because the imported name
 is copied into the scope where the from statement appears, using that name in the
 script requires less typing—we can use it directly instead of naming the
 enclosing module. In fact, we must; from doesn’t assign the name of the module
 itself.
As you’ll see in more detail later, the from statement is really just a minor
 extension to the import statement—it
 imports the module file as usual (running the full three-step procedure
 of the preceding chapter), but adds an extra step that copies one or
 more names (not objects) out of the file. The entire file is loaded, but
 you’re given names for more direct access to its parts.

The from * Statement
Finally, the next example uses a special form of from: when we use a * instead of specific names, we get copies of
 all names assigned at the top level of the
 referenced module. Here again, we can then use the copied name printer in our script without going through
 the module name:
>>> from module1 import * # Copy out _all_ variables
>>> printer('Hello world!')
Hello world!
Technically, both import and
 from statements invoke the same
 import operation; the from * form
 simply adds an extra step that copies all the names in the module into
 the importing scope. It essentially collapses one module’s namespace
 into another; again, the net effect is less typing for us. Note that
 only * works in this context; you
 can’t use pattern matching to select a subset of names (though you could
 with more work and a loop through a module’s __dict__, discussed ahead).
And that’s it—modules really are simple to use. To give you a
 better understanding of what really happens when you define and use
 modules, though, let’s move on to look at some of their properties in
 more detail.
Note
In Python 3.X, the from ...*
 statement form described here can be used only at
 the top level of a module file, not within a function. Python 2.X
 allows it to be used within a function, but issues a warning anyhow.
 It’s rare to see this statement used inside a function in practice;
 when present, it makes it impossible for Python to detect variables
 statically, before the function runs. Best practice in all Pythons
 recommends listing all your imports at the top of
 a module file; it’s not required, but makes them easier to
 spot.

Imports Happen Only Once
One of the most common questions people seem to ask when they start using
 modules is, “Why won’t my imports keep working?” They often report that
 the first import works fine, but later imports during an interactive
 session (or program run) seem to have no effect. In fact, they’re not
 supposed to. This section explains why.
Modules are loaded and run on the first import or from, and only the first. This is on
 purpose—because importing is an expensive operation, by default Python
 does it just once per file, per process. Later import operations simply
 fetch the already loaded module object.
Initialization code
As one consequence, because top-level code in a module file is
 usually executed only once, you can use it to initialize variables.
 Consider the file simple.py, for
 example:
print('hello')
spam = 1 # Initialize variable
In this example, the print
 and = statements run the first time
 the module is imported, and the variable spam is initialized at import time:
% python
>>> import simple # First import: loads and runs file's code
hello
>>> simple.spam # Assignment makes an attribute
1
Second and later imports don’t rerun the module’s code; they
 just fetch the already created module object from Python’s internal
 modules table. Thus, the variable spam is not reinitialized:
>>> simple.spam = 2 # Change attribute in module
>>> import simple # Just fetches already loaded module
>>> simple.spam # Code wasn't rerun: attribute unchanged
2
Of course, sometimes you really want a
 module’s code to be rerun on a subsequent import. We’ll see how to do
 this with Python’s reload function
 later in this chapter.

import and from Are Assignments
Just like def, import and from are executable
 statements, not compile-time declarations. They may be nested in
 if tests, to select among options;
 appear in function defs, to be loaded
 only on calls (subject to the preceding note); be used in try statements, to provide defaults; and so
 on. They are not resolved or run until Python reaches them while
 executing your program. In other words, imported modules and names are
 not available until their associated import or from statements run.
Changing mutables in modules
Also, like def, the
 import and from are implicit
 assignments:
	import assigns an entire
 module object to a single name.

	from assigns one or more
 names to objects of the same names in another module.

All the things we’ve already discussed about assignment apply to
 module access, too. For instance, names copied with a from become references to shared objects; as
 with function arguments, reassigning a copied name has no effect on
 the module from which it was copied, but changing a shared
 mutable object through a copied name can also
 change it in the module from which it was imported. To illustrate,
 consider the following file, small.py:
x = 1
y = [1, 2]
When importing with from, we
 copy names to the importer’s scope that initially share objects
 referenced by the module’s names:
% python
>>> from small import x, y # Copy two names out
>>> x = 42 # Changes local x only
>>> y[0] = 42 # Changes shared mutable in place
Here, x is not a shared
 mutable object, but y is. The names
 y in the importer and the importee
 both reference the same list object, so changing it from one place
 changes it in the other:
>>> import small # Get module name (from doesn't)
>>> small.x # Small's x is not my x
1
>>> small.y # But we share a changed mutable
[42, 2]
For more background on this, see Chapter 6. And for a graphical picture
 of what from assignments do with
 references, flip back to Figure 18-1 (function
 argument passing), and mentally replace “caller” and “function” with
 “imported” and “importer.” The effect is the same, except that here
 we’re dealing with names in modules, not functions. Assignment works
 the same everywhere in Python.

Cross-file name changes
Recall from the preceding example that the assignment to
 x in the interactive session
 changed the name x in that scope
 only, not the x in the file—there
 is no link from a name copied with from back to the file it came from. To
 really change a global name in another file, you must use import:
% python
>>> from small import x, y # Copy two names out
>>> x = 42 # Changes my x only

>>> import small # Get module name
>>> small.x = 42 # Changes x in other module
This phenomenon was introduced in Chapter 17.
 Because changing variables in other modules like this is a common
 source of confusion (and often a bad design choice), we’ll revisit
 this technique again later in this part of the book. Note that the
 change to y[0] in the prior session
 is different; it changes an object, not a name,
 and the name in both modules references the same, changed
 object.

import and from Equivalence
Notice in the prior example that we have to execute an import statement after the from to access the small module name at all. from only copies names from one module to
 another; it does not assign the module name itself. At least
 conceptually, a from statement like
 this one:
from module import name1, name2 # Copy these two names out (only)
is equivalent to this statement sequence:
import module # Fetch the module object
name1 = module.name1 # Copy names out by assignment
name2 = module.name2
del module # Get rid of the module name
Like all assignments, the from
 statement creates new variables in the importer, which initially refer
 to objects of the same names in the imported file. Only the
 names are copied out, though, not the objects they
 reference, and not the name of the module itself. When we use the
 from * form of this statement
 (from module import *), the
 equivalence is the same, but all the top-level names in the module are
 copied over to the importing scope this way.
Notice that the first step of the from runs a normal import operation, with all the semantics
 outlined in the preceding chapter. Because of this, the from always imports the
 entire module into memory if it has not yet been
 imported, regardless of how many names it copies out of the file. There
 is no way to load just part of a module file (e.g., just one function),
 but because modules are byte code in Python instead of machine code, the
 performance implications are generally negligible.

Potential Pitfalls of the from Statement
Because the from statement
 makes the location of a variable more implicit and obscure
 (name is less meaningful to the
 reader than module.name), some Python
 users recommend using import instead
 of from most of the time. I’m not
 sure this advice is warranted, though; from is commonly and widely used, without too
 many dire consequences. In practice, in realistic programs, it’s often
 convenient not to have to type a module’s name every time you wish to
 use one of its tools. This is especially true for large modules that
 provide many attributes—the standard library’s tkinter GUI module, for example.
It is true that the from
 statement has the potential to corrupt namespaces, at least in
 principle—if you use it to import variables that happen to have the same
 names as existing variables in your scope, your variables will be
 silently overwritten. This problem doesn’t occur with the simple
 import statement because you must
 always go through a module’s name to get to its contents (module.attr will not clash with a variable
 named attr in your scope). As long as
 you understand and expect that this can happen when using from, though, this isn’t a major concern in
 practice, especially if you list the imported names explicitly (e.g.,
 from module import x, y, z).
On the other hand, the from
 statement has more serious issues when used in conjunction with the
 reload call, as imported names might
 reference prior versions of objects. Moreover, the from module import * form really
 can corrupt namespaces and make names difficult to
 understand, especially when applied to more than one file—in this case,
 there is no way to tell which module a name came from, short of
 searching the external source files. In effect, the from * form collapses one namespace into
 another, and so defeats the namespace partitioning feature of modules.
 We will explore these issues in more detail in the section “Module Gotchas” (see Chapter 25).
Probably the best real-world advice here is to generally prefer
 import to from for simple modules, to explicitly list
 the variables you want in most from
 statements, and to limit the from *
 form to just one import per file. That way, any undefined names can be
 assumed to live in the module referenced with the from *. Some care is required when using the
 from statement, but armed with a
 little knowledge, most programmers find it to be a convenient way to
 access modules.
When import is required
The only time you really must use import instead of from is when you must use the same name
 defined in two different modules. For example, if two files define the
 same name differently:
M.py
def func():
 ...do something...

N.py
def func():
 ...do something else...
and you must use both versions of the name in your program, the
 from statement will fail—you can
 have only one assignment to the name in your scope:
O.py
from M import func
from N import func # This overwrites the one we fetched from M
func() # Calls N.func only!
An import will work here,
 though, because including the name of the enclosing module makes the
 two names unique:
O.py
import M, N # Get the whole modules, not their names
M.func() # We can call both names now
N.func() # The module names make them unique
This case is unusual enough that you’re unlikely to encounter it
 very often in practice. If you do, though, import allows you to avoid the name
 collision. Another way out of this dilemma is using the as extension, which we’ll cover in Chapter 25 but is simple enough to introduce
 here:
O.py
from M import func as mfunc # Rename uniquely with "as"
from N import func as nfunc
mfunc(); nfunc() # Calls one or the other
The as extension works in
 both import and from as a simple renaming tool (it can also
 be used to give a shorter synonym for a long module name in import); more on this form in Chapter 25.

Module Namespaces
Modules are probably best understood as simply packages of names—i.e.,
 places to define names you want to make visible to the rest of a system.
 Technically, modules usually correspond to files, and Python creates a
 module object to contain all the names assigned in a module file. But in
 simple terms, modules are just namespaces (places where names are
 created), and the names that live in a module are called its
 attributes. This section expands on the details
 behind this model.
Files Generate Namespaces
I’ve mentioned that files morph into namespaces, but how
 does this actually happen? The short answer is that every name that is
 assigned a value at the top level of a module file (i.e., not nested in
 a function or class body) becomes an attribute of that module.
For instance, given an assignment statement such as X = 1 at the top level of a module file
 M.py, the name X becomes an attribute of M, which we can refer to from outside the
 module as M.X. The name X also becomes a global variable to other code
 inside M.py, but we need to
 consider the notion of module loading and scopes a bit more formally to
 understand why:
	Module statements run on the first
 import. The first time a module is imported anywhere in a
 system, Python creates an empty module object and executes the
 statements in the module file one after another, from the top of the
 file to the bottom.

	Top-level assignments create module
 attributes. During an import, statements at the top level
 of the file not nested in a def
 or class that assign names (e.g.,
 =, def) create attributes of the module
 object; assigned names are stored in the module’s namespace.

	Module namespaces can be accessed via
 the attribute __dict__ or dir(M). Module namespaces created by
 imports are dictionaries; they may be accessed through the built-in
 __dict__ attribute associated
 with module objects and may be inspected with the dir function.
 The dir function is roughly
 equivalent to the sorted keys list of an object’s __dict__
 attribute, but it includes inherited names for classes, may not be
 complete, and is prone to changing from release to release.

	Modules are a single scope (local is
 global). As we saw in Chapter 17, names at the top
 level of a module follow the same reference/assignment rules as
 names in a function, but the local and global scopes are the
 same—or, more formally, they follow the LEGB scope rule we met in
 Chapter 17, but without the L
 and E lookup layers.
Crucially, though, the module’s global
 scope becomes an attribute dictionary of a
 module object after the module has been loaded.
 Unlike function scopes, where the local namespace exists only while
 the function runs, a module file’s scope becomes a module object’s
 attribute namespace and lives on after the
 import, providing a source of tools to importers.

Here’s a demonstration of these ideas. Suppose we create the
 following module file in a text editor and call it module2.py:
print('starting to load...')
import sys
name = 42

def func(): pass

class klass: pass

print('done loading.')
The first time this module is imported (or run as a program),
 Python executes its statements from top to bottom. Some statements
 create names in the module’s namespace as a side effect, but others do
 actual work while the import is going on. For instance, the two print statements in this file execute at
 import time:
>>> import module2
starting to load...
done loading.
Once the module is loaded, its scope becomes an attribute
 namespace in the module object we get back from import. We can then access attributes in this
 namespace by qualifying them with the name of the enclosing
 module:
>>> module2.sys
<module 'sys' (built-in)>

>>> module2.name
42

>>> module2.func
<function func at 0x000000000222E7B8>

>>> module2.klass
<class 'module2.klass'>
Here, sys, name, func,
 and klass were all assigned while the
 module’s statements were being run, so they are attributes after the
 import. We’ll talk about classes in Part VI,
 but notice the sys attribute—import statements really
 assign module objects to names, and any type of
 assignment to a name at the top level of a file generates a module
 attribute.

Namespace Dictionaries: __dict__
In fact, internally, module namespaces are stored as
 dictionary objects. These are just normal
 dictionaries with all the usual methods. When needed—for instance, to
 write tools that list module content generically as we will in Chapter 25—we can access a module’s namespace
 dictionary through the module’s __dict__
 attribute. Continuing the prior section’s example (remember to wrap this
 in a list call in Python 3.X—it’s a
 view object there, and contents may vary outside 3.3 used here):
>>> list(module2.__dict__.keys())
['__loader__', 'func', 'klass', '__builtins__', '__doc__', '__file__', '__name__',
'name', '__package__', 'sys', '__initializing__', '__cached__']
The names we assigned in the module file become dictionary keys
 internally, so some of the names here reflect top-level assignments in
 our file. However, Python also adds some names in the module’s namespace
 for us; for instance, __file__ gives
 the name of the file the module was loaded from, and __name__ gives its name as known to importers
 (without the .py extension and
 directory path). To see just the names your code assigns, filter out the
 double-underscore names as we’ve done before, in Chapter 15’s dir coverage and Chapter 17’s
 built-in scope coverage:
>>> list(name for name in module2.__dict__.keys() if not name.startswith('__'))
['func', 'klass', 'name', 'sys']
>>> list(name for name in module2.__dict__ if not name.startswith('__'))
['func', 'sys', 'name', 'klass']
This time we’re filtering with a generator
 instead of a list comprehension, and can omit the .keys() because dictionaries generate their
 keys automatically though implicitly; the effect is the same. We’ll see
 similar __dict__ dictionaries on
 class-related objects in Part VI too. In both cases, attribute fetch is
 similar to dictionary indexing, though only the former kicks off
 inheritance in classes:
>>> module2.name, module2.__dict__['name']
(42, 42)

Attribute Name Qualification
Speaking of attribute fetch, now that you’re becoming more familiar
 with modules, we should firm up the notion of name qualification more
 formally too. In Python, you can access the attributes of any object
 that has attributes using the qualification (a.k.a.
 attribute fetch) syntax object.attribute.
Qualification is really an expression that returns the value
 assigned to an attribute name associated with an object. For example,
 the expression module2.sys in the
 previous example fetches the value assigned to sys in module2. Similarly, if we have a built-in list
 object L, L.append returns the append method object associated with that
 list.
It’s important to keep in mind that attribute qualification has
 nothing to do with the scope rules we studied in Chapter 17; it’s an independent concept. When you use
 qualification to access names, you give Python an explicit object from
 which to fetch the specified names. The LEGB scope rule applies only to
 bare, unqualified names—it may be used for the leftmost name in a name
 path, but later names after dots search specific objects instead. Here
 are the rules:
	Simple variables
	X means search for the
 name X in the current scopes
 (following the LEGB rule of Chapter 17).

	Qualification
	X.Y means find X in the current scopes, then search for
 the attribute Y in the object
 X (not in scopes).

	Qualification paths
	X.Y.Z means look up the
 name Y in the object X, then look up Z in the object X.Y.

	Generality
	Qualification works on all objects with attributes: modules,
 classes, C extension types, etc.

In Part VI, we’ll see that attribute
 qualification means a bit more for classes—it’s also the place where
 something called inheritance happens—but in
 general, the rules outlined here apply to all names in Python.

Imports Versus Scopes
As we’ve learned, it is never possible to access names defined in another
 module file without first importing that file. That is, you never
 automatically get to see names in another file, regardless of the
 structure of imports or function calls in your program. A variable’s
 meaning is always determined by the locations of assignments in your
 source code, and attributes are always requested of an object
 explicitly.
For example, consider the following two simple modules. The first,
 moda.py, defines a variable
 X global to code in its file only,
 along with a function that changes the global X in this file:
X = 88 # My X: global to this file only
def f():
 global X # Change this file's X
 X = 99 # Cannot see names in other modules
The second module, modb.py,
 defines its own global variable X and
 imports and calls the function in the first module:
X = 11 # My X: global to this file only

import moda # Gain access to names in moda
moda.f() # Sets moda.X, not this file's X
print(X, moda.X)
When run, moda.f changes the
 X in moda, not the X in modb.
 The global scope for moda.f is always
 the file enclosing it, regardless of which module it is ultimately
 called from:
% python modb.py
11 99
In other words, import operations never give upward visibility to
 code in imported files—an imported file cannot see names in the
 importing file. More formally:
	Functions can never see names in other functions, unless they
 are physically enclosing.

	Module code can never see names in other modules, unless they
 are explicitly imported.

Such behavior is part of the lexical scoping
 notion—in Python, the scopes surrounding a piece of code are completely
 determined by the code’s physical position in your file. Scopes are
 never influenced by function calls or module imports.1

Namespace Nesting
In some sense, although imports do not nest namespaces upward, they do
 nest downward. That is, although an imported module never has direct
 access to names in a file that imports it, using attribute qualification
 paths it is possible to descend into arbitrarily nested modules and
 access their attributes. For example, consider the next three files.
 mod3.py defines a single global
 name and attribute by assignment:
X = 3
mod2.py in turn defines its
 own X, then imports mod3 and uses qualification to access the
 imported module’s attribute:
X = 2
import mod3

print(X, end=' ') # My global X
print(mod3.X) # mod3's X
mod1.py also defines its own
 X, then imports mod2, and fetches attributes in both the first
 and second files:
X = 1
import mod2

print(X, end=' ') # My global X
print(mod2.X, end=' ') # mod2's X
print(mod2.mod3.X) # Nested mod3's X
Really, when mod1 imports
 mod2 here, it sets up a two-level
 namespace nesting. By using the path of names mod2.mod3.X, it can descend into mod3, which is nested in the imported mod2. The net effect is that mod1 can see the Xs in all three files, and hence has access to
 all three global scopes:
% python mod1.py
2 3
1 2 3
The reverse, however, is not true: mod3 cannot see names in mod2, and mod2 cannot see names in mod1. This example may be easier to grasp if
 you don’t think in terms of namespaces and scopes, but instead focus on
 the objects involved. Within mod1,
 mod2 is just a name that refers to an
 object with attributes, some of which may refer to other objects with
 attributes (import is an assignment).
 For paths like mod2.mod3.X, Python
 simply evaluates from left to right, fetching attributes from objects
 along the way.
Note that mod1 can say import mod2, and then mod2.mod3.X, but it cannot say import mod2.mod3—this syntax invokes something
 called package (directory) imports, described in
 the next chapter. Package imports also create module namespace nesting,
 but their import statements are taken
 to reflect directory trees, not simple file import chains.

Reloading Modules
As we’ve seen, a module’s code is run only once per process by default. To
 force a module’s code to be reloaded and rerun, you need to ask Python to
 do so explicitly by calling the reload
 built-in function. In this section, we’ll explore how to use reloads to
 make your systems more dynamic. In a nutshell:
	Imports (via both import and
 from statements) load and run a
 module’s code only the first time the module is imported in a
 process.

	Later imports use the already loaded module object without
 reloading or rerunning the file’s code.

	The reload function forces an
 already loaded module’s code to be reloaded and rerun. Assignments in
 the file’s new code change the existing module object in place.

Why care about reloading modules? In short, dynamic
 customization: the reload
 function allows parts of a program to be changed without stopping the
 whole program. With reload, the effects
 of changes in components can be observed immediately. Reloading doesn’t
 help in every situation, but where it does, it makes for a much shorter
 development cycle. For instance, imagine a database program that must
 connect to a server on startup; because program changes or customizations
 can be tested immediately after reloads, you need to connect only once
 while debugging. Long-running servers can update themselves this way,
 too.
Because Python is interpreted (more or less), it already gets rid of
 the compile/link steps you need to go through to get a C program to run:
 modules are loaded dynamically when imported by a running program.
 Reloading offers a further performance advantage by allowing you to also
 change parts of running programs without stopping.
Though beyond this book’s scope, note that reload currently only works on modules written
 in Python; compiled extension modules coded in a language such as C can be
 dynamically loaded at runtime, too, but they can’t be reloaded (though
 most users probably prefer to code customizations in Python
 anyhow!).
Note
Version skew note: In Python 2.X, reload is available as a built-in function. In
 Python 3.X, it has been moved to the imp standard library module—it’s known as
 imp.reload in 3.X. This simply means
 that an extra import or from statement is required to load this tool
 in 3.X only. Readers using 2.X can ignore these imports in this book’s
 examples, or use them anyhow—2.X also has a reload in its imp module to ease migration to 3.X. Reloading
 works the same regardless of its packaging.

reload Basics
Unlike import and from:
	reload is a function in
 Python, not a statement.

	reload is passed an
 existing module object, not a new name.

	reload lives in a module in
 Python 3.X and must be imported itself.

Because reload expects an
 object, a module must have been previously imported successfully before
 you can reload it (if the import was unsuccessful due to a syntax or
 other error, you may need to repeat it before you can reload the
 module). Furthermore, the syntax of import statements and reload calls differs: as a function reloads
 require parentheses, but import statements do not. Abstractly, reloading
 looks like this:
import module # Initial import
...use module.attributes...
... # Now, go change the module file
...
from imp import reload # Get reload itself (in 3.X)
reload(module) # Get updated exports
...use module.attributes...
The typical usage pattern is that you import a module, then change
 its source code in a text editor, and then reload it. This can occur
 when working interactively, but also in larger programs that reload
 periodically.
When you call reload, Python
 rereads the module file’s source code and reruns its top-level
 statements. Perhaps the most important thing to know about reload is that it changes a module object
 in place; it does not delete and re-create the
 module object. Because of that, every reference to an entire module
 object anywhere in your program is automatically
 affected by a reload. Here are the details:
	reload runs a module file’s new code in the module’s current
 namespace. Rerunning a module file’s code overwrites its
 existing namespace, rather than deleting and re-creating it.

	Top-level assignments in the file
 replace names with new values. For instance, rerunning a
 def statement replaces the prior
 version of the function in the module’s namespace by reassigning the
 function name.

	Reloads impact all clients that
 use import
 to fetch modules. Because clients
 that use import qualify to fetch
 attributes, they’ll find new values in the module object after a
 reload.

	Reloads impact future
 from clients only. Clients that used from to fetch attributes in the past won’t
 be affected by a reload; they’ll still have references to the old
 objects fetched before the reload.

	Reloads apply to a single module
 only. You must run them on each module you wish to
 update, unless you use code or tools that apply reloads
 transitively.

reload Example
To demonstrate, here’s a more concrete example of reload in action. In the following, we’ll
 change and reload a module file without stopping the interactive Python
 session. Reloads are used in many other scenarios, too (see the sidebar
 “Why You Will Care: Module Reloads”), but we’ll
 keep things simple for illustration here. First, in the text editor of
 your choice, write a module file named changer.py with the following
 contents:
message = "First version"
def printer():
 print(message)
This module creates and exports two names—one bound to a string,
 and another to a function. Now, start the Python interpreter, import the
 module, and call the function it exports. The function will print the
 value of the global message
 variable:
% python
>>> import changer
>>> changer.printer()
First version
Keeping the interpreter active, now edit the module file in
 another window:
...modify changer.py without stopping Python...
% notepad changer.py
Change the global message
 variable, as well as the printer
 function body:
message = "After editing"
def printer():
 print('reloaded:', message)
Then, return to the Python window and reload the module to fetch
 the new code. Notice in the following interaction that importing the
 module again has no effect; we get the original message, even though the
 file’s been changed. We have to call reload in order to get the new version:
...back to the Python interpreter...
>>> import changer
>>> changer.printer() # No effect: uses loaded module
First version
>>> from imp import reload
>>> reload(changer) # Forces new code to load/run
<module 'changer' from '.\\changer.py'>
>>> changer.printer() # Runs the new version now
reloaded: After editing
Notice that reload actually
 returns the module object for us—its result is
 usually ignored, but because expression results are printed at the
 interactive prompt, Python shows a default <module 'name'...>
 representation.
Two final notes here: first, if you use reload, you’ll probably want to pair it with
 import instead of from, as the latter isn’t updated by reload
 operations—leaving your names in a state that’s strange enough to
 warrant postponing further elaboration until this part’s “gotchas” at
 the end of Chapter 25. Second, reload by itself updates only a
 single module, but it’s straightforward to code a
 function that applies it transitively to related modules—an extension
 we’ll save for a case study near the end of Chapter 25.
Why You Will Care: Module Reloads
Besides allowing you to reload (and hence rerun) modules at the
 interactive prompt, module reloads are also useful in larger systems,
 especially when the cost of restarting the entire application is
 prohibitive. For instance, game servers and systems that must connect
 to servers over a network on startup are prime candidates for dynamic
 reloads.
They’re also useful in GUI work (a widget’s callback action can
 be changed while the GUI remains active), and when Python is used as
 an embedded language in a C or C++ program (the enclosing program can
 request a reload of the Python code it runs, without having to stop).
 See Programming
 Python for more on reloading GUI callbacks and embedded Python
 code.
More generally, reloads allow programs to provide highly dynamic
 interfaces. For instance, Python is often used as a
 customization language for larger systems—users
 can customize products by coding bits of Python code onsite, without
 having to recompile the entire product (or even having its source code
 at all). In such worlds, the Python code already adds a dynamic flavor
 by itself.
To be even more dynamic, though, such systems can automatically
 reload the Python customization code periodically at runtime. That
 way, users’ changes are picked up while the system is running; there
 is no need to stop and restart each time the Python code is modified.
 Not all systems require such a dynamic approach, but for those that
 do, module reloads provide an easy-to-use dynamic customization
 tool.

Chapter Summary
This chapter delved into the essentials of module coding tools—the
 import and from statements, and the reload call. We learned how the from statement simply adds an extra step that
 copies names out of a file after it has been imported, and how reload forces a file to be imported again
 without stopping and restarting Python. We also surveyed namespace
 concepts, saw what happens when imports are nested, explored the way files
 become module namespaces, and learned about some potential pitfalls of the
 from statement.
Although we’ve already seen enough to handle module files in our
 programs, the next chapter extends our coverage of the import model by
 presenting package imports—a way for our import statements to specify part of the
 directory path leading to the desired module. As we’ll see, package
 imports give us a hierarchy that is useful in larger systems and allow us
 to break conflicts between same-named modules. Before we move on, though,
 here’s a quick quiz on the concepts presented here.

Test Your Knowledge: Quiz
	How do you make a module?

	How is the from statement
 related to the import
 statement?

	How is the reload function
 related to imports?

	When must you use import
 instead of from?

	Name three potential pitfalls of the from statement.

	What...is the airspeed velocity of an unladen swallow?

Test Your Knowledge: Answers
	To create a module, you simply write a text file containing
 Python statements; every source code file is automatically a module,
 and there is no syntax for declaring one. Import operations load
 module files into module objects in memory. You can also make a module
 by writing code in an external language like C or Java, but such
 extension modules are beyond the scope of this book.

	The from statement imports an
 entire module, like the import
 statement, but as an extra step it also copies one or more variables
 from the imported module into the scope where the from appears. This enables you to use the
 imported names directly (name)
 instead of having to go through the module (module.name).

	By default, a module is imported only once per process. The
 reload function forces a module to
 be imported again. It is mostly used to pick up new versions of a
 module’s source code during development, and in dynamic customization
 scenarios.

	You must use import instead
 of from only when you need to
 access the same name in two different modules; because you’ll have to
 specify the names of the enclosing modules, the two names will be
 unique. The as extension can render
 from usable in this context as
 well.

	The from statement can
 obscure the meaning of a variable (which module it is defined in), can
 have problems with the reload call
 (names may reference prior versions of objects), and can corrupt
 namespaces (it might silently overwrite names you are using in your
 scope). The from * form is worse in
 most regards—it can seriously corrupt namespaces and obscure the
 meaning of variables, so it is probably best used sparingly.

	What do you mean? An African or European swallow?

1 Some languages act differently and provide for dynamic scoping,
 where scopes really may depend on runtime calls. This tends to make code trickier,
 though, because the meaning of a variable can differ over time. In Python, scopes more
 simply correspond to the text of your program.

Chapter 24. Module Packages
So far, when we’ve imported modules, we’ve been loading files. This
 represents typical module usage, and it’s probably the technique you’ll use
 for most imports you’ll code early on in your Python career. However, the
 module import story is a bit richer than I have thus far implied.
In addition to a module name, an import can name a directory path. A directory of Python code
 is said to be a package, so such imports are known
 as package imports. In effect, a package
 import turns a directory on your computer into another Python namespace,
 with attributes corresponding to the subdirectories and module files that
 the directory contains.
This is a somewhat advanced feature, but the hierarchy it provides
 turns out to be handy for organizing the files in a large system and tends
 to simplify module search path settings. As we’ll see, package imports are
 also sometimes required to resolve import ambiguities when multiple program
 files of the same name are installed on a single machine.
Because it is relevant to code in packages only, we’ll also
 introduce Python’s recent relative imports model
 and syntax here. As we’ll see, this model modifies search paths in 3.X,
 and extends the from statement
 for imports within packages in both 2.X and 3.X. This model can make such
 intrapackage imports more explicit and succinct, but comes with some
 tradeoffs that can impact your programs.
Finally, for readers using Python 3.3 and later, its new namespace package model—which allows
 packages to span multiple directories and requires no initialization file—is
 also introduced here. This new-style package model is optional and can be
 used in concert with the original (now known as “regular”) package model,
 but it upends some of the original model’s basic ideas and rules. Because of
 that, we’ll explore regular packages here first for all readers, and present
 namespace packages last as an optional topic.
Package Import Basics
At a base level, package imports are straightforward—in the place where you
 have been naming a simple file in your import statements, you can instead list a path of names separated by
 periods:
import dir1.dir2.mod
The same goes for from
 statements:
from dir1.dir2.mod import x
The “dotted” path in these statements is assumed to correspond to a
 path through the directory hierarchy on your computer, leading to the file
 mod.py (or similar; the extension may
 vary). That is, the preceding statements indicate that on your machine
 there is a directory dir1, which has
 a subdirectory dir2, which contains a
 module file mod.py (or
 similar).
Furthermore, these imports imply that dir1 resides within some container directory
 dir0, which is a component of the
 normal Python module search path. In other words, these two import statements imply a directory structure
 that looks something like this (shown with Windows backslash
 separators):
dir0\dir1\dir2\mod.py # Or mod.pyc, mod.so, etc.
The container directory dir0
 needs to be added to your module search path unless it’s the home
 directory of the top-level file, exactly as if dir1 were a simple module file.
More formally, the leftmost component in a package import path is
 still relative to a directory included in the
 sys.path module search path list we
 explored in Chapter 22. From there
 down, though, the import statements in your script explicitly give the
 directory paths leading to modules in packages.
Packages and Search Path Settings
If you use this feature, keep in mind that the directory paths in your import statements
 can be only variables separated by periods. You cannot use any
 platform-specific path syntax in your import statements, such as
 C:\dir1, My
 Documents.dir2, or ../dir1—these do not work syntactically.
 Instead, use any such platform-specific syntax in your module search
 path settings to name the container directories.
For instance, in the prior example, dir0—the directory name you add to your
 module search path—can be an arbitrarily long and platform-specific
 directory path leading up to dir1.
 You cannot use an invalid statement like this:
import C:\mycode\dir1\dir2\mod # Error: illegal syntax
But you can add C:\mycode to
 your PYTHONPATH variable or a .pth file, and
 say this in your script:
import dir1.dir2.mod
In effect, entries on the module search path provide
 platform-specific directory path prefixes, which
 lead to the leftmost names in import
 and from statements. These import
 statements themselves provide the remainder of the directory path in a
 platform-neutral fashion.1
As for simple file imports, you don’t need to add the container
 directory dir0 to your module
 search path if it’s already there—per Chapter 22, it will be if it’s the home
 directory of the top-level file, the directory you’re working in
 interactively, a standard library directory, or the site-packages third-party install root. One
 way or another, though, your module search path must include all the
 directories containing leftmost components in your code’s package import
 statements.

Package __init__.py Files
If you choose to use package imports, there is one more constraint you must follow: at
 least until Python 3.3, each directory named within the path of a
 package import statement must contain a file named __init__.py, or your package imports will
 fail. That is, in the example we’ve been using, both dir1 and dir2 must contain a file called __init__.py; the container directory
 dir0 does not require such a file
 because it’s not listed in the import
 statement itself.
More formally, for a directory structure such as this:
dir0\dir1\dir2\mod.py
and an import statement of the
 form:
import dir1.dir2.mod
the following rules apply:
	dir1 and dir2 both must contain an __init__.py file.

	dir0, the container, does
 not require an __init__.py
 file; this file will simply be ignored if present.

	dir0, not dir0\dir1, must be listed on the module
 search path sys.path.

To satisfy the first two of these rules, package creators must
 create files of the sort we’ll explore here. To satisfy the latter of
 these, dir0 must be an automatic
 path component (the home, libraries, or site-packages directories), or be given in
 PYTHONPATH or .pth file settings or manual sys.path changes.
The net effect is that this example’s directory structure should
 be as follows, with indentation designating directory nesting:
dir0\ # Container on module search path
 dir1\
 __init__.py
 dir2\
 __init__.py
 mod.py
The __init__.py files can
 contain Python code, just like normal module files. Their names are
 special because their code is run automatically the first time a Python
 program imports a directory, and thus serves primarily as a hook for
 performing initialization steps required by the package. These files can
 also be completely empty, though, and sometimes have additional roles—as
 the next section explains.
Note
As we’ll see near the end of this chapter, the requirement of
 packages to have a file named __init__.py has been lifted as of Python
 3.3. In that release and later, directories of modules with no such
 file may be imported as single-directory namespace
 packages, which work the same but run no
 initialization-time code file. Prior to Python 3.3, though, and in all
 of Python 2.X, packages still require __init__.py files. As described ahead, in
 3.3 and later these files also provide a performance advantage when
 used.

Package initialization file roles
In more detail, the __init__.py file serves as a hook for
 package initialization-time actions, declares a directory as a Python
 package, generates a module namespace for a directory, and implements
 the behavior of from * (i.e.,
 from .. import *) statements when
 used with directory imports:
	Package initialization
	The first time a Python program imports through a
 directory, it automatically runs all the code in the directory’s
 __init__.py file. Because
 of that, these files are a natural place to put code to
 initialize the state required by files in a package. For
 instance, a package might use its initialization file to create
 required data files, open connections to databases, and so on.
 Typically, __init__.py
 files are not meant to be useful if executed directly; they are
 run automatically when a package is first accessed.

	Module usability declarations
	Package __init__.py
 files are also partly present to declare that a directory is a
 Python package. In this role, these files serve to prevent
 directories with common names from unintentionally hiding true
 modules that appear later on the module search path. Without
 this safeguard, Python might pick a directory that has nothing
 to do with your code, just because it appears nested in an
 earlier directory on the search path. As we’ll see later, Python
 3.3’s namespace packages obviate much of this role, but achieve
 a similar effect algorithmically by scanning ahead on the path
 to find later files.

	Module namespace initialization
	In the package import model, the directory paths in your
 script become real nested object paths after an import. For
 instance, in the preceding example, after the import the
 expression dir1.dir2 works
 and returns a module object whose namespace contains all the
 names assigned by dir2’s
 __init__.py initialization
 file. Such files provide a namespace for module objects created
 for directories, which would otherwise have no real associated
 module file.

	from * statement
 behavior
	As an advanced feature, you can use __all__
 lists in __init__.py files
 to define what is exported when a directory is imported with the
 from * statement form. In an
 __init__.py file, the
 __all__ list is taken to be
 the list of submodule names that should be automatically
 imported when from * is used
 on the package (directory) name. If __all__ is not set, the from * statement does not
 automatically load submodules nested in the directory; instead,
 it loads just names defined by assignments in the directory’s
 __init__.py file, including
 any submodules explicitly imported by code in this file. For
 instance, the statement from submodule
 import X in a directory’s __init__.py makes the name X available in that directory’s
 namespace. (We’ll see additional roles for __all__ in Chapter 25: it serves to declare
 from * exports of simple
 files as well.)

You can also simply leave these files empty, if their roles are
 beyond your needs (and frankly, they are often empty in practice).
 They must exist, though, for your directory imports to work at
 all.
Note
Don’t confuse package __init__.py files with the class __init__ constructor methods we’ll meet in
 the next part of the book. The former are files of code run when
 imports first step through a package directory in a program run,
 while the latter are called when an instance is created. Both have
 initialization roles, but they are otherwise very different.

Package Import Example
Let’s actually code the example we’ve been talking about to show how initialization
 files and paths come into play. The following three files are coded in a
 directory dir1 and its subdirectory
 dir2—comments give the pathnames of
 these files:
dir1__init__.py
print('dir1 init')
x = 1

dir1\dir2__init__.py
print('dir2 init')
y = 2

dir1\dir2\mod.py
print('in mod.py')
z = 3
Here, dir1 will be either an
 immediate subdirectory of the one we’re working in (i.e., the home
 directory), or an immediate subdirectory of a directory that is listed on
 the module search path (technically, on sys.path). Either way, dir1’s container does not need an __init__.py file.
import statements run each
 directory’s initialization file the first time that directory is
 traversed, as Python descends the path; print statements are included here to trace
 their execution:
C:\code> python # Run in dir1's container directory
>>> import dir1.dir2.mod # First imports run init files
dir1 init
dir2 init
in mod.py
>>>
>>> import dir1.dir2.mod # Later imports do not
Just like module files, an already imported directory may be passed
 to reload to force reexecution of that
 single item. As shown here, reload
 accepts a dotted pathname to reload nested directories and files:
>>> from imp import reload # from needed in 3.X only
>>> reload(dir1)
dir1 init
<module 'dir1' from '.\\dir1__init__.py'>
>>>
>>> reload(dir1.dir2)
dir2 init
<module 'dir1.dir2' from '.\\dir1\\dir2__init__.py'>
Once imported, the path in your import statement becomes a nested
 object path in your script. Here, mod is an object nested in the object dir2, which in turn is nested in the object
 dir1:
>>> dir1
<module 'dir1' from '.\\dir1__init__.py'>
>>> dir1.dir2
<module 'dir1.dir2' from '.\\dir1\\dir2__init__.py'>
>>> dir1.dir2.mod
<module 'dir1.dir2.mod' from '.\\dir1\\dir2\\mod.py'>
In fact, each directory name in the path becomes a variable assigned
 to a module object whose namespace is initialized by all the assignments
 in that directory’s __init__.py file.
 dir1.x refers to the variable x assigned in dir1__init__.py, much as mod.z refers to the variable z assigned in mod.py:
>>> dir1.x
1
>>> dir1.dir2.y
2
>>> dir1.dir2.mod.z
3
from Versus import with Packages
import statements can be somewhat inconvenient to use with packages, because
 you may have to retype the paths frequently in your program. In the
 prior section’s example, for instance, you must retype and rerun the
 full path from dir1 each time you
 want to reach z. If you try to access
 dir2 or mod directly, you’ll get an error:
>>> dir2.mod
NameError: name 'dir2' is not defined
>>> mod.z
NameError: name 'mod' is not defined
It’s often more convenient, therefore, to use the from statement with packages to avoid retyping
 the paths at each access. Perhaps more importantly, if you ever
 restructure your directory tree, the from statement requires just one path update
 in your code, whereas imports may
 require many. The import as
 extension, discussed formally in the next chapter, can also help here by
 providing a shorter synonym for the full path, and a renaming tool when
 the same name appears in multiple modules:
C:\code> python
>>> from dir1.dir2 import mod # Code path here only
dir1 init
dir2 init
in mod.py
>>> mod.z # Don't repeat path
3
>>> from dir1.dir2.mod import z
>>> z
3
>>> import dir1.dir2.mod as mod # Use shorter name (see Chapter 25)
>>> mod.z
3
>>> from dir1.dir2.mod import z as modz # Ditto if names clash (see Chapter 25)
>>> modz
3

Why Use Package Imports?
If you’re new to Python, make sure that you’ve mastered simple modules before
 stepping up to packages, as they are a somewhat more advanced feature.
 They do serve useful roles, though, especially in larger programs: they
 make imports more informative, serve as an organizational tool, simplify
 your module search path, and can resolve ambiguities.
First of all, because package imports give some directory
 information in program files, they both make it easier to locate your
 files and serve as an organizational tool. Without package paths, you must
 often resort to consulting the module search path to find files. Moreover,
 if you organize your files into subdirectories for functional areas,
 package imports make it more obvious what role a module plays, and so make
 your code more readable. For example, a normal import of a file in a
 directory somewhere on the module search path, like this:
import utilities
offers much less information than an import that includes the
 path:
import database.client.utilities
Package imports can also greatly simplify your PYTHONPATH and .pth file search path settings. In fact, if you
 use explicit package imports for all your cross-directory imports, and you
 make those package imports relative to a common root directory where all
 your Python code is stored, you really only need a single entry on your
 search path: the common root. Finally, package imports serve to resolve
 ambiguities by making explicit exactly which files you want to import—and
 resolve conflicts when the same module name appears in more than one
 place. The next section explores this role in more detail.
A Tale of Three Systems
The only time package imports are actually
 required is to resolve ambiguities that may arise
 when multiple programs with same-named files are installed on a single
 machine. This is something of an install issue, but it can also become a
 concern in general practice—especially given the tendency of developers
 to use simple and similar names for module files. Let’s turn to a
 hypothetical scenario to illustrate.
Suppose that a programmer develops a Python program that contains
 a file called utilities.py for
 common utility code, and a top-level file named main.py that users launch to start the
 program. All over this program, its files say import utilities to load and use the common
 code. When the program is shipped, it arrives as a single .tar or .zip file containing all the program’s files,
 and when it is installed, it unpacks all its files into a single
 directory named system1 on the
 target machine:
system1\
 utilities.py # Common utility functions, classes
 main.py # Launch this to start the program
 other.py # Import utilities to load my tools
Now, suppose that a second programmer develops a different program
 with files also called utilities.py
 and main.py, and again uses
 import utilities throughout the
 program to load the common code file. When this second system is fetched
 and installed on the same computer as the first system, its files will
 unpack into a new directory called system2 somewhere on the receiving
 machine—ensuring that they do not overwrite same-named files from the
 first system:
system2\
 utilities.py # Common utilities
 main.py # Launch this to run
 other.py # Imports utilities
So far, there’s no problem: both systems can coexist and run on
 the same computer. In fact, you won’t even need to configure the module
 search path to use these programs on your computer—because Python always
 searches the home directory first (that is, the directory containing the
 top-level file), imports in either system’s files will automatically see
 all the files in that system’s directory. For instance, if you click on
 system1\main.py, all imports will
 search system1 first. Similarly, if
 you launch system2\main.py,
 system2 will be searched first
 instead. Remember, module search path settings are only needed to import
 across directory boundaries.
However, suppose that after you’ve installed these two programs on
 your machine, you decide that you’d like to use some of the code in each
 of the utilities.py files in a
 system of your own. It’s common utility code, after all, and Python code
 by nature “wants” to be reused. In this case, you’d like to be able to
 say the following from code that you’re writing in a third directory to
 load one of the two files:
import utilities
utilities.func('spam')
Now the problem starts to materialize. To make this work at all,
 you’ll have to set the module search path to include the directories
 containing the utilities.py files.
 But which directory do you put first in the path—system1 or system2?
The problem is the linear nature of the
 search path. It is always scanned from left to right, so no matter how
 long you ponder this dilemma, you will always get just one utilities.py—from the directory listed first
 (leftmost) on the search path. As is, you’ll never be able to import it
 from the other directory at all.
You could try changing sys.path
 within your script before each import operation, but that’s both extra
 work and highly error prone. And changing PYTHONPATH before each Python program run is
 too tedious, and won’t allow you to use both versions in a single file
 in an event. By default, you’re stuck.
This is the issue that packages actually fix. Rather than
 installing programs in independent directories listed on the module
 search path individually, you can package and install them as
 subdirectories under a common root. For instance,
 you might organize all the code in this example as an install hierarchy
 that looks like this:
root\
 system1\
 __init__.py
 utilities.py
 main.py
 other.py
 system2\
 __init__.py
 utilities.py
 main.py
 other.py
 system3\ # Here or elsewhere
 __init__.py # Need __init__.py here only if imported elsewhere
 myfile.py # Your new code here
Now, add just the common root directory to your search path. If
 your code’s imports are all relative to this common root, you can import
 either system’s utility file with a package
 import—the enclosing directory name makes the path (and hence, the
 module reference) unique. In fact, you can import
 both utility files in the same module, as long as
 you use an import statement and
 repeat the full path each time you reference the utility modules:
import system1.utilities
import system2.utilities
system1.utilities.function('spam')
system2.utilities.function('eggs')
The names of the enclosing directories here make the module
 references unique.
Note that you have to use import instead of from with packages only if you need to access
 the same attribute name in two or more paths. If
 the name of the called function here were different in each path, you
 could use from statements to avoid
 repeating the full package path whenever you call one of the functions,
 as described earlier; the as
 extension in from can also be used to
 provide unique synonyms.
Also, notice in the install hierarchy shown earlier that __init__.py files were added to the system1 and system2 directories to make this work, but
 not to the root directory. Only
 directories listed within import
 statements in your code require these files; as we’ve seen, they are run
 automatically the first time the Python process imports through a
 package directory.
Technically, in this case the system3 directory doesn’t have to be under
 root—just the packages of code from
 which you will import. However, because you never know when your own
 modules might be useful in other programs, you might as well place them
 under the common root directory as
 well to avoid similar name-collision problems in the future.
Finally, notice that both of the two original systems’ imports
 will keep working unchanged. Because their home
 directories are searched first, the addition of the common root on the
 search path is irrelevant to code in system1 and system2; they can keep saying just import utilities and expect to find their own
 files when run as programs—though not when used as packages in 3.X, as
 the next section explains. If you’re careful to unpack all your Python
 systems under a common root like this, path configuration also becomes
 simple: you’ll only need to add the common root directory once.
Why You Will Care: Module Packages
Because packages are a standard part of Python, it’s common to see larger
 third-party extensions shipped as sets of package directories, rather
 than flat lists of modules. The win32all Windows extensions package for Python, for instance, was one of the first
 to jump on the package bandwagon. Many of its utility modules reside
 in packages imported with paths. For instance, to load client-side COM
 tools, you use a statement like this:
from win32com.client import constants, Dispatch
This line fetches names from the client module of
 the win32com package—an install
 subdirectory.
Package imports are also pervasive in code run under the Jython
 Java-based implementation of Python, because Java libraries are
 organized into hierarchies as well. In recent Python releases, the
 email and XML tools are likewise organized into package subdirectories
 in the standard library, and Python 3.X groups even more related
 modules into packages—including tkinter GUI tools, HTTP networking
 tools, and more. The following imports access various standard library
 tools in 3.X (2.X usage may vary):
from email.message import Message
from tkinter.filedialog import askopenfilename
from http.server import CGIHTTPRequestHandler
Whether you create package directories or not, you will probably
 import from them eventually.

Package Relative Imports
The coverage of package imports so far has focused mostly on importing
 package files from outside the package. Within the
 package itself, imports of same-package files can use the same full path
 syntax as imports from outside the package—and as we’ll see, sometimes
 should. However, package files can also make use of special
 intrapackage search rules to simplify import statements. That is, rather than listing
 package import paths, imports within the package can be
 relative to the package.
The way this works is version-dependent: Python 2.X implicitly
 searches package directories first on imports, while 3.X requires explicit
 relative import syntax in order to import from the package directory. This
 3.X change can enhance code readability by making same-package imports
 more obvious, but it’s also incompatible with 2.X and may break some
 programs.
If you’re starting out in Python with version 3.X, your focus in
 this section will likely be on its new import syntax and model. If you’ve
 used other Python packages in the past, though, you’ll probably also be
 interested in how the 3.X model differs. Let’s begin our tour with the
 latter perspective on this topic.
Note
As we’ll learn in this section, use of package relative imports
 can actually limit your files’ roles. In short,
 they can no longer be used as executable program files in both 2.X and
 3.X. Because of this, normal package import paths may be a better option
 in many cases. Still, this feature has found its way into many a Python
 file, and merits a review by most Python programmers to better
 understand both its tradeoffs and motivation.

Changes in Python 3.X
The way import operations in packages work has changed slightly in Python
 3.X. This change applies only to imports within files when files are
 used as part of a package directory; imports in other usage modes work
 as before. For imports in packages, though, Python
 3.X introduces two changes:
	It modifies the module import search path semantics to skip
 the package’s own directory by default. Imports check only paths on
 the sys.path search path. These
 are known as absolute imports.

	It extends the syntax of from statements to allow them to
 explicitly request that imports search the package’s directory only,
 with leading dots. This is known as relative
 import syntax.

These changes are fully present in Python 3.X. The new from statement relative syntax is also
 available in Python 2.X, but the default absolute search path change
 must be enabled as an option there. Enabling this can break 2.X
 programs, but is available for 3.X forward compatibility.
The impact of this change is that in 3.X (and optionally in 2.X),
 you must generally use special from
 dotted syntax to import modules located in the same
 package as the importer, unless your imports list a complete path
 relative to a package root on sys.path, or your imports are relative to the
 always-searched home directory of the program’s top-level file (which is
 usually the current working directory).
By default, though, your package directory is not automatically
 searched, and intrapackage imports made by files in a directory used as
 a package will fail without the special from syntax. As we’ll see, in 3.X this can
 affect the way you will structure imports or directories for modules
 meant for use in both top-level programs and importable packages. First,
 though, let’s take a more detailed look at how this all works.

Relative Import Basics
In both Python 3.X and 2.X, from statements can now use leading dots (“.”)
 to specify that they require modules located within the same package
 (known as package relative imports), instead of
 modules located elsewhere on the module import search path (called absolute
 imports). That is:
	Imports with dots: In both Python 3.X and
 2.X, you can use leading dots in from statements’ module names to indicate
 that imports should be relative-only to the
 containing package—such imports will search for modules inside the
 package directory only and will not look for same-named modules
 located elsewhere on the import search path (sys.path). The net effect is that package
 modules override outside modules.

	Imports without dots: In Python 2.X,
 normal imports in a package’s code without leading dots currently
 default to a relative-then-absolute search path
 order—that is, they search the package’s own directory first.
 However, in Python 3.X, normal imports within a package are
 absolute-only by default—in the absence of any
 special dot syntax, imports skip the containing package itself and
 look elsewhere on the sys.path
 search path.

For example, in both Python 3.X and 2.X a statement of the
 form:
from . import spam # Relative to this package
instructs Python to import a module named spam located in the same package directory as
 the file in which this statement appears. Similarly, this
 statement:
from .spam import name
means “from a module named spam
 located in the same package as the file that contains this statement,
 import the variable name.”
The behavior of a statement without the
 leading dot depends on which version of Python you use. In 2.X, such an
 import will still default to the original
 relative-then-absolute search path order (i.e., searching the package’s directory first),
 unless a statement of the following form is included at the top of the
 importing file (as its first executable statement):
from __future__ import absolute_import # Use 3.X relative import model in 2.X
If present, this statement enables the Python 3.X
 absolute-only search path change. In 3.X, and in
 2.X when enabled, an import without a leading dot in the module name
 always causes Python to skip the relative components of the module
 import search path and look instead in the absolute directories
 that sys.path contains.
 For instance, in 3.X’s model, a statement of the following form will always find a string module somewhere on sys.path, instead of a module of the same name
 in the package:
import string # Skip this package's version
By contrast, without the from
 __future__ statement in 2.X, if there’s a local string module in the package, it will be
 imported instead. To get the same behavior in 3.X, and in 2.X when the
 absolute import change is enabled, run a statement of the following form
 to force a relative import:
from . import string # Searches this package only
This statement works in both Python 2.X and 3.X today. The only
 difference in the 3.X model is that it is required
 in order to load a module that is located in the same package directory
 as the file in which this appears, when the file is being used as part
 of a package (and unless full package paths are spelled out).
Notice that leading dots can be used to force relative imports
 only with the from statement, not
 with the import statement. In Python
 3.X, the import modname statement is
 always absolute-only, skipping the containing package’s directory. In
 2.X, this statement form still performs relative imports, searching the
 package’s directory first. from
 statements without leading dots behave the same as import statements—absolute-only in 3.X
 (skipping the package directory), and relative-then-absolute in 2.X
 (searching the package directory first).
Other dot-based relative reference patterns are possible, too.
 Within a module file located in a package directory named mypkg, the following alternative import forms
 work as described:
from .string import name1, name2 # Imports names from mypkg.string
from . import string # Imports mypkg.string
from .. import string # Imports string sibling of mypkg
To understand these latter forms better, and to justify all this
 added complexity, we need to take a short detour to explore the
 rationale behind this change.

Why Relative Imports?
Besides making intrapackage imports more explicit, this feature is designed in part to
 allow scripts to resolve ambiguities that can arise when a same-named
 file appears in multiple places on the module search path. Consider the
 following package directory:
mypkg\
 __init__.py
 main.py
 string.py
This defines a package named mypkg containing modules named mypkg.main and mypkg.string. Now, suppose that the main module tries to import a module named
 string. In Python 2.X and earlier,
 Python will first look in the mypkg
 directory to perform a relative import. It will
 find and import the string.py file
 located there, assigning it to the name string in the mypkg.main module’s namespace.
It could be, though, that the intent of this import was to load
 the Python standard library’s string
 module instead. Unfortunately, in these versions of Python, there’s no
 straightforward way to ignore mypkg.string and look for the standard
 library’s string module located on
 the module search path. Moreover, we cannot resolve this with full
 package import paths, because we cannot depend on any extra package
 directory structure above the standard library being present on every
 machine.
In other words, simple imports in packages can be both ambiguous
 and error-prone. Within a package, it’s not clear whether an import spam statement refers to a module
 within or outside the package. As one consequence, a local module or
 package can hide another hanging directly off of sys.path, whether intentionally or not.
In practice, Python users can avoid reusing the names of standard
 library modules they need for modules of their own (if you need the
 standard string, don’t name a new
 module string!). But this doesn’t
 help if a package accidentally hides a standard module; moreover, Python
 might add a new standard library module in the future that has the same
 name as a module of your own. Code that relies on relative imports is
 also less easy to understand, because the reader may be confused about
 which module is intended to be used. It’s better if the resolution can
 be made explicit in code.
The relative imports solution in 3.X
To address this dilemma, imports run within packages have changed in Python 3.X to be
 absolute-only (and can be made so as an option in 2.X). Under this
 model, an import statement of the
 following form in our example file mypkg/main.py will always find a string module outside
 the package, via an absolute import search of sys.path:
import string # Imports string outside package (absolute)
A from import without
 leading-dot syntax is considered absolute as well:
from string import name # Imports name from string outside package
If you really want to import a module from your package without
 giving its full path from the package root, though, relative imports
 are still possible if you use the dot syntax in the from statement:
from . import string # Imports mypkg.string here (relative)
This form imports the string
 module relative to the current package only and is the relative
 equivalent to the prior import
 example’s absolute form (both load a module as a whole). When this
 special relative syntax is used, the package’s directory is the only
 directory searched.
We can also copy specific names from a module with relative
 syntax:
from .string import name1, name2 # Imports names from mypkg.string
This statement again refers to the string module relative to the current
 package. If this code appears in our mypkg.main module, for example, it will
 import name1 and name2 from mypkg.string.
In effect, the “.” in a relative import is taken to stand for
 the package directory containing the file in
 which the import appears. An additional leading dot performs the
 relative import starting from the parent of the
 current package. For example, this statement:
from .. import spam # Imports a sibling of mypkg
will load a sibling of mypkg—i.e., the spam module located in the package’s own
 container directory, next to mypkg.
 More generally, code located in some module A.B.C can use any of these forms:
from . import D # Imports A.B.D (. means A.B)
from .. import E # Imports A.E (.. means A)

from .D import X # Imports A.B.D.X (. means A.B)
from ..E import X # Imports A.E.X (.. means A)

Relative imports versus absolute package paths
Alternatively, a file can sometimes name its own package explicitly in an
 absolute import statement, relative to a directory on sys.path. For example, in the following,
 mypkg will be found in an absolute
 directory on sys.path:
from mypkg import string # Imports mypkg.string (absolute)
However, this relies on both the configuration and the order of
 the module search path settings, while relative import dot syntax does
 not. In fact, this form requires that the directory immediately
 containing mypkg be included in the
 module search path. It probably is if mypkg is the package root (or else the
 package couldn’t be used from the outside in the first place!), but
 this directory may be nested in a much larger package tree. If
 mypkg isn’t the package’s root,
 absolute import statements must list all the directories below the
 package’s root entry in sys.path
 when naming packages explicitly like this:
from system.section.mypkg import string # system container on sys.path only
In large or deep packages, that could be substantially more work
 to code than a dot:
from . import string # Relative import syntax
With this latter form, the containing package is searched
 automatically, regardless of the search path settings, search path
 order, and directory nesting. On the other hand, the full-path
 absolute form will work regardless of how the file is being used—as
 part of a program or package—as we’ll explore ahead.

The Scope of Relative Imports
Relative imports can seem a bit perplexing on first encounter, but it helps
 if you remember a few key points about them:
	Relative imports apply to imports
 within packages only. Keep in mind that this feature’s
 module search path change applies only to import statements within
 module files used as part of a package—that is,
 intrapackage imports. Normal imports in files
 not used as part of a package still work exactly as described
 earlier, automatically searching the directory containing the
 top-level script first.

	Relative imports apply to
 the from statement only. Also remember that this
 feature’s new syntax applies only to from statements, not import statements. It’s detected by the
 fact that the module name in a from begins with one or more dots
 (periods). Module names that contain embedded dots but don’t have a
 leading dot are package imports, not relative imports.

In other words, package relative imports in 3.X really boil down
 to just the removal of 2.X’s inclusive search path behavior for
 packages, along with the addition of special from syntax to explicitly request that
 relative package-only behavior be used. If you coded your package
 imports in the past so that they did not depend upon 2.X’s implicit
 relative lookup (e.g., by always spelling out full paths from a package
 root), this change is largely a moot point. If you didn’t, you’ll need
 to update your package files to use the new from syntax for local package files, or full
 absolute paths.

Module Lookup Rules Summary
With packages and relative imports, the module search story in Python 3.X
 that we have seen so far can be summarized as follows:
	Basic modules with simple names (e.g., A) are located by searching each directory
 on the sys.path list, from left
 to right. This list is constructed from both system defaults and
 user-configurable settings described in Chapter 22.

	Packages are simply directories of Python modules with a
 special __init__.py file, which
 enables A.B.C directory path
 syntax in imports. In an import of A.B.C, for example, the directory named
 A is located relative to the
 normal module import search of sys.path, B is another package subdirectory within
 A, and C is a module or other importable item
 within B.

	Within a package’s files, normal import and from statements use the same sys.path
 search rule as imports elsewhere. Imports in packages using from statements and leading
 dots, however, are relative to the package;
 that is, only the package directory is checked, and the normal
 sys.path lookup is not used. In
 from . import A, for example, the
 module search is restricted to the directory containing the file in
 which this statement appears.

Python 2.X works the same, except that normal imports without dots
 also automatically search the package directory
 first before proceeding on to sys.path.
In sum, Python imports select between
 relative (in the containing directory) and
 absolute (in a directory on sys.path) resolutions as follows:
	Dotted imports: from . import
 m, from .m import x
	Are relative-only in both 2.X and
 3.X

	Nondotted imports: import
 m, from m import
 x
	Are relative-then-absolute in 2.X, and
 absolute-only in 3.X

As we’ll see later, Python 3.3 adds another flavor to modules—namespace packages—which is
 largely disjointed from the package-relative story we’re covering here.
 This newer model supports package-relative imports too, and is simply a
 different way to construct a package. It augments the import search
 procedure to allow package content to be spread across multiple simple
 directories as a last-resort resolution. Thereafter, though, the
 composite package behaves the same in terms of relative import
 rules.

Relative Imports in Action
But enough theory: let’s run some simple code to demonstrate the concepts
 behind relative imports.
Imports outside packages
First of all, as mentioned previously, this feature does not
 impact imports outside a package. Thus, the following finds the
 standard library string module as expected:
C:\code> c:\Python33\python
>>> import string
>>> string
<module 'string' from 'C:\\Python33\\lib\\string.py'>
But if we add a module of the same name in the directory we’re
 working in, it is selected instead, because the first entry on the
 module search path is the current working directory (CWD):
code\string.py
print('string' * 8)

C:\code> c:\Python33\python
>>> import string
stringstringstringstringstringstringstringstring
>>> string
<module 'string' from '.\\string.py'>
In other words, normal imports are still relative to the “home”
 directory (the top-level script’s container, or the directory you’re
 working in). In fact, package relative import syntax is not even
 allowed in code that is not in a file being used as part of a
 package:
>>> from . import string
SystemError: Parent module '' not loaded, cannot perform relative import
In this section, code entered at the interactive prompt behaves
 the same as it would if run in a top-level
 script, because the first entry on sys.path is either the interactive working
 directory or the directory containing the top-level file. The only
 difference is that the start of sys.path is an absolute directory, not an
 empty string:
code\main.py
import string # Same code but in a file
print(string)

C:\code> C:\python33\python main.py # Equivalent results in 2.X
stringstringstringstringstringstringstringstring
<module 'string' from 'c:\\code\\string.py'>
Similarly, a from . import
 string in this nonpackage file fails the same as it does at
 the interactive prompt—programs and packages are different file usage
 modes.

Imports within packages
Now, let’s get rid of the local string module we coded in the CWD and build
 a package directory there with two modules, including the required but
 empty code\pkg__init__.py file.
 Package roots in this section are located in the CWD added
 automatically to sys.path, so we
 don’t need to set PYTHONPATH. I’ll
 also largely omit empty __init__.py files and most error message
 text for space (and non-Windows readers will have to pardon the shell
 commands here, and translate for your platform):
C:\code> del string* # del __pycache__\string* for bytecode in 3.2+
C:\code> mkdir pkg
c:\code> notepad pkg__init__.py

code\pkg\spam.py
import eggs # <== Works in 2.X but not 3.X!
print(eggs.X)

code\pkg\eggs.py
X = 99999
import string
print(string)
The first file in this package tries to import the second with a
 normal import statement. Because
 this is taken to be relative in 2.X but absolute in 3.X, it fails in
 the latter. That is, 2.X searches the containing package first, but
 3.X does not. This is the incompatible behavior
 you have to be aware of in 3.X:
C:\code> c:\Python27\python
>>> import pkg.spam
<module 'string' from 'C:\Python27\lib\string.pyc'>
99999

C:\code> c:\Python33\python
>>> import pkg.spam
ImportError: No module named 'eggs'
To make this work in both 2.X and 3.X,
 change the first file to use the special relative import syntax, so
 that its import searches the package directory in 3.X too:
code\pkg\spam.py
from . import eggs # <== Use package relative import in 2.X or 3.X
print(eggs.X)

code\pkg\eggs.py
X = 99999
import string
print(string)

C:\code> c:\Python27\python
>>> import pkg.spam
<module 'string' from 'C:\Python27\lib\string.pyc'>
99999

C:\code> c:\Python33\python
>>> import pkg.spam
<module 'string' from 'C:\\Python33\\lib\\string.py'>
99999

Imports are still relative to the CWD
Notice in the preceding example that the package modules still have access to
 standard library modules like string—their normal imports are still
 relative to the entries on the module search path. In fact, if you add
 a string module to the CWD again,
 imports in a package will find it there instead of in the standard
 library. Although you can skip the package directory with an absolute
 import in 3.X, you still can’t skip the home directory of the program
 that imports the package:
code\string.py
print('string' * 8)

code\pkg\spam.py
from . import eggs
print(eggs.X)

code\pkg\eggs.py
X = 99999
import string # <== Gets string in CWD, not Python lib!
print(string)

C:\code> c:\Python33\python # Same result in 2.X
>>> import pkg.spam
stringstringstringstringstringstringstringstring
<module 'string' from '.\\string.py'>
99999

Selecting modules with relative and absolute imports
To show how this applies to imports of standard library modules, reset the package
 again. Get rid of the local string
 module, and define a new one inside the package itself:
C:\code> del string* # del __pycache__\string* for bytecode in 3.2+

code\pkg\spam.py
import string # <== Relative in 2.X, absolute in 3.X
print(string)

code\pkg\string.py
print('Ni' * 8)
Now, which version of the string module you get depends on which
 Python you use. As before, 3.X interprets the import in the first file
 as absolute and skips the package, but 2.X does not—another example of
 the incompatible behavior in 3.X:
C:\code> c:\Python33\python
>>> import pkg.spam
<module 'string' from 'C:\\Python33\\lib\\string.py'>

C:\code> c:\Python27\python
>>> import pkg.spam
NiNiNiNiNiNiNiNi
<module 'pkg.string' from 'pkg\string.py'>
Using relative import syntax in 3.X forces the package to be
 searched again, as it is in 2.X—by using absolute or relative import
 syntax in 3.X, you can either skip or select the package directory
 explicitly. In fact, this is the use case that the 3.X model
 addresses:
code\pkg\spam.py
from . import string # <== Relative in both 2.X and 3.X
print(string)

code\pkg\string.py
print('Ni' * 8)

C:\code> c:\Python33\python
>>> import pkg.spam
NiNiNiNiNiNiNiNi
<module 'pkg.string' from '.\\pkg\\string.py'>

C:\code> c:\Python27\python
>>> import pkg.spam
NiNiNiNiNiNiNiNi
<module 'pkg.string' from 'pkg\string.py'>

Relative imports search packages only
It’s also important to note that relative import syntax is
 really a binding declaration, not just a
 preference. If we delete the string.py file and any associated byte code
 in this example now, the relative import in spam.py fails in both
 3.X and 2.X, instead of falling back on the standard library (or any
 other) version of this module:
code\pkg\spam.py
from . import string # <== Fails in both 2.X and 3.X if no string.py here!

C:\code> del pkg\string*

C:\code> C:\python33\python
>>> import pkg.spam
ImportError: cannot import name string

C:\code> C:\python27\python
>>> import pkg.spam
ImportError: cannot import name string
Modules referenced by relative imports must exist in the package
 directory.

Imports are still relative to the CWD, again
Although absolute imports let you skip package modules this way, they still rely on other
 components of sys.path. For one
 last test, let’s define two string
 modules of our own. In the following, there is one module by that name
 in the CWD, one in the package, and another in the standard
 library:
code\string.py
print('string' * 8)

code\pkg\spam.py
from . import string # <== Relative in both 2.X and 3.X
print(string)

code\pkg\string.py
print('Ni' * 8)
When we import the string
 module with relative import syntax like this, we get the version in
 the package in both 2.X and 3.X, as desired:
C:\code> c:\Python33\python # Same result in 2.X
>>> import pkg.spam
NiNiNiNiNiNiNiNi
<module 'pkg.string' from '.\\pkg\\string.py'>
When absolute syntax is used, though, the module we get varies
 per version again. 2.X interprets this as relative to the package
 first, but 3.X makes it “absolute,” which in this case really just
 means it skips the package and loads the version relative to the
 CWD—not the version in the standard library:
code\string.py
print('string' * 8)

code\pkg\spam.py
import string # <== Relative in 2.X, "absolute" in 3.X: CWD!
print(string)

code\pkg\string.py
print('Ni' * 8)

C:\code> c:\Python33\python
>>> import pkg.spam
stringstringstringstringstringstringstringstring
<module 'string' from '.\\string.py'>

C:\code> c:\Python27\python
>>> import pkg.spam
NiNiNiNiNiNiNiNi
<module 'pkg.string' from 'pkg\string.pyc'>
As you can see, although packages can explicitly request modules
 within their own directories with dots, their “absolute” imports are
 otherwise still relative to the rest of the normal module search path.
 In this case, a file in the program using the package hides the
 standard library module the package may want. The change in 3.X simply
 allows package code to select files either inside or outside the
 package (i.e., relatively or absolutely). Because import resolution
 can depend on an enclosing context that may not be foreseen, though,
 absolute imports in 3.X are not a guarantee of finding a module in the
 standard library.
Experiment with these examples on your own for more insight. In
 practice, this is not usually as ad hoc as it might seem: you can
 generally structure your imports, search paths, and module names to
 work the way you wish during development. You should keep in mind,
 though, that imports in larger systems may depend upon context of use,
 and the module import protocol is part of a successful library’s design.

Pitfalls of Package-Relative Imports: Mixed Use
Now that you’ve learned about package-relative imports, you should also
 keep in mind that they may not always be your best option. Absolute
 package imports, with a complete directory path relative to a directory
 on sys.path, are still sometimes
 preferred over both implicit package-relative imports in Python 2.X, and
 explicit package-relative import dot syntax in both Python 2.X and 3.X.
 This issue may seem obscure, but will likely become important fairly
 soon after you start coding packages of your own.
As we’ve seen, Python 3.X’s relative import syntax and absolute
 search rule default make intrapackage imports explicit and thus easier
 to notice and maintain, and allow explicit choice in some name conflict
 scenarios. However, there are also two major ramifications of this model
 that you should be aware of:
	In both Python 3.X and 2.X, use of package-relative import
 statements implicitly binds a file to a package directory and role,
 and precludes it from being used in other ways.

	In Python 3.X, the new relative search rule change means that
 a file can no longer serve as both script and package module as
 easily as it could in 2.X.

These constraint’s causes are a bit subtle, but because the
 following are simultaneously true:
	Python 3.X and 2.X do not allow from
 . relative syntax to be used unless the importer is being
 used as part of a package (i.e., is being imported from somewhere
 else).

	Python 3.X does not search a package module’s own directory
 for imports, unless from .
 relative syntax is used (or the module is in the current working
 directory or main script’s home directory).

Use of relative imports prevents you from creating directories
 that serve as both executable programs and externally importable
 packages in 3.X and 2.X. Moreover, some files can no longer serve as
 both script and package module in 3.X as they could in 2.X. In terms of
 import statements, the rules pan out as follows—the first is for
 package mode only in both Pythons, and the second
 is for program mode only in 3.X:
from . import mod # Not allowed in nonpackage mode in both 2.X and 3.X
import mod # Does not search file's own directory in package mode in 3.X
The net effect is that for files to be used in either 2.X or 3.X,
 you may need to choose a single usage
 mode—package (with relative imports) or
 program (with simple imports), and isolate true
 package module files in a subdirectory apart from top-level script
 files.
Alternatively, you can attempt manual sys.path changes (a generally brittle and
 error-prone task), or always use full package paths in absolute imports
 instead of either package-relative syntax or simple imports, and assume
 the package root is on the module search path:
from system.section.mypkg import mod # Works in both program and package mode
Of all these schemes, the last—full package path imports—may be
 the most portable and functional, but we need to turn to more concrete
 code to see why.
The issue
For example, in Python 2.X it’s common to use the same
 single directory as both program and package,
 using normal undotted imports. This relies on the script’s home
 directory to resolve imports when used as a program, and the 2.X
 relative-then-absolute rule to resolve intrapackage imports when used
 as a package. This won’t quite work in 3.X, though—in package mode,
 plain imports do not load modules in the same directory anymore,
 unless that directory also happens to be the same as the main file’s
 container or the current working directory (and hence, be on sys.path).
Here’s what this looks like in action, stripped to a bare
 minimum of code (for brevity in this section I again omit __init__.py package directory files
 required prior to Python 3.3, and for variety use the 3.3 Windows
 launcher covered in Appendix B):
code\pkg\main.py
import spam

code\pkg\spam.py
import eggs # <== Works if in "." = home of main script file

code\pkg\eggs.py
print('Eggs' * 4) # But won't load this file when used as pkg in 3.X!

c:\code> python pkg\main.py # OK as program, in both 2.X and 3.X
EggsEggsEggsEggs
c:\code> python pkg\spam.py
EggsEggsEggsEggs

c:\code> py −2 # OK as package in 2.X: relative-then-absolute
>>> import pkg.spam # 2.X: plain imports search package directory first
EggsEggsEggsEggs

C:\code> py −3 # But 3.X fails to find file here: absolute only
>>> import pkg.spam # 3.X: plain imports search only CWD plus sys.path
ImportError: No module named 'eggs'
Your next step might be to add the required relative
 import syntax for 3.X use, but it won’t help here. The
 following retains the single directory for both a main top-level
 script and package modules, and adds the required dots—in both 2.X and
 3.X this now works when the directory is imported as a package, but
 fails when it is used as a program directory (including attempts to
 run a module as a script directly):
code\pkg\main.py
import spam

code\pkg\spam.py
from . import eggs # <== Not a package if main file here (even if me)!

code\pkg\eggs.py
print('Eggs' * 4)

c:\code> python # OK as package but not program in both 3.X and 2.X
>>> import pkg.spam
EggsEggsEggsEggs

c:\code> python pkg\main.py
SystemError: ... cannot perform relative import
c:\code> python pkg\spam.py
SystemError: ... cannot perform relative import

Fix 1: Package subdirectories
In a mixed-use case like this, one solution is to isolate all
 but the main files used only by the program in a
 subdirectory—this way, your intrapackage imports
 still work in all Pythons, you can use the top directory as a
 standalone program, and the nested directory still serves as a package
 for use from other programs:
code\pkg\main.py
import sub.spam # <== Works if move modules to pkg below main file

code\pkg\sub\spam.py
from . import eggs # Package relative works now: in subdirectory

code\pkg\sub\eggs.py
print('Eggs' * 4)

c:\code> python pkg\main.py # From main script: same result in 2.X and 3.X
EggsEggsEggsEggs

c:\code> python # From elsewhere: same result in 2.X and 3.X
>>> import pkg.sub.spam
EggsEggsEggsEggs
The potential downside of this scheme is that you won’t be able
 to run package modules directly to test them with embedded self-test
 code, though tests can be coded separately in their parent directory
 instead:
c:\code> py −3 pkg\sub\spam.py # But individual modules can't be run to test
SystemError: ... cannot perform relative import

Fix 2: Full path absolute import
Alternatively, full path package import
 syntax would address this case too—it requires the directory above
 the package root to be in your path, though this is probably not an
 extra requirement for a realistic software
 package. Most Python packages will either require this setting, or
 arrange for it to be handled automatically with install tools (such
 as distutils, which may store a
 package’s code in a directory on the default module search path such
 as the site-packages root; see
 Chapter 22 for more
 details):
code\pkg\main.py
import spam

code\pkg\spam.py
import pkg.eggs # <== Full package paths work in all cases, 2.X+3.X

code\pkg\eggs.py
print('Eggs' * 4)

c:\code> set PYTHONPATH=C:\code
c:\code> python pkg\main.py # From main script: Same result in 2.X and 3.X
EggsEggsEggsEggs

c:\code> python # From elsewhere: Same result in 2.X and 3.X
>>> import pkg.spam
EggsEggsEggsEggs
Unlike the subdirectory fix, full path absolute imports like
 these also allow you to run your modules standalone to test:
c:\code> python pkg\spam.py # Individual modules are runnable too in 2.X and 3.X
EggsEggsEggsEggs

Example: Application to module self-test code (preview)
To summarize, here’s another typical example of the issue and
 its full path resolution. This uses a common technique we’ll expand on
 in the next chapter, but the idea is simple enough to include as a
 preview here (though you may want to review this again later—the
 coverage makes more sense here).
Consider the following two modules in a package directory, the
 second of which includes self-test code. In
 short, a module’s __name__
 attribute is the string “__main__” when it is being run as a
 top-level script, but not when it is being imported, which allows it
 to be used as both module and script:
code\dualpkg\m1.py
def somefunc():
 print('m1.somefunc')

code\dualpkg\m2.py
...import m1 here... # Replace me with a real import statement

def somefunc():
 m1.somefunc()
 print('m2.somefunc')

if __name__ == '__main__':
 somefunc() # Self-test or top-level script usage mode code
The second of these needs to import the first where the
 “...import m1 here...” placeholder appears. Replacing this line with a
 relative import statement works when the file is used as a package,
 but is not allowed in nonpackage mode by either 2.X or 3.X (results
 and error messages are omitted here for space; see the file dualpkg\results.txt in the book’s examples
 for the full listing):
code\dualpkg\m2.py
from . import m1

c:\code> py −3
>>> import dualpkg.m2 # OK
C:\code> py −2
>>> import dualpkg.m2 # OK

c:\code> py −3 dualpkg\m2.py # Fails!
c:\code> py −2 dualpkg\m2.py # Fails!
Conversely, a simple import statement works in nonpackage mode
 in both 2.X and 3.X, but fails in package mode in 3.X only, because
 such statements do not search the package directory in 3.X:
code\dualpkg\m2.py
import m1

c:\code> py −3
>>> import dualpkg.m2 # Fails!
c:\code> py −2
>>> import dualpkg.m2 # OK

c:\code> py −3 dualpkg\m2.py # OK
c:\code> py −2 dualpkg\m2.py # OK
And finally, using full package paths works again in both usage
 modes and Pythons, as long as the package’s root is on the module
 search path (as it must be to be used elsewhere):
code\dualpkg\m2.py
import dualpkg.m1 as m1 # And: set PYTHONPATH=c:\code

c:\code> py −3
>>> import dualpkg.m2 # OK
C:\code> py −2
>>> import dualpkg.m2 # OK

c:\code> py −3 dualpkg\m2.py # OK
c:\code> py −2 dualpkg\m2.py # OK
In sum, unless you’re willing and able to isolate your modules
 in subdirectories below scripts, full package path imports are
 probably preferable to package-relative imports—though they’re more
 typing, they handle all cases, and they work the same in 2.X and 3.X.
 There may be additional workarounds that involve extra tasks (e.g.,
 manually setting sys.path in your
 code), but we’ll skip them here because they are more obscure and rely
 on import semantics, which is error-prone; full package imports rely
 only on the basic package mechanism.
Naturally, the extent to which this may impact your modules can
 vary per package; absolute imports may also require changes when
 directories are reorganized, and relative imports may become invalid
 if a local module is relocated.
Note
Be sure to also watch for future Python changes on this front.
 Although this book covers Python up to 3.3 only, at this writing,
 there is talk in a PEP of possibly addressing some package issues in
 Python 3.4, perhaps even allowing relative
 imports to be used in program mode. On the other hand, this
 initiative’s scope and outcome is uncertain and would work only on
 3.4 and later; the full path solution given here is version-neutral;
 and 3.4 is more than a year away in any event. That is, you can wait
 for a change to a 3.X change that limited functionality, or simply
 use tried-and-true full package paths.

Python 3.3 Namespace Packages
Now that you’ve learned all about package and package-relative
 imports, I need to explain that there’s a new option that modifies some of
 the ideas we just covered. At least abstractly, as of release 3.3 Python
 has four import models. From original to newest:
	Basic module imports: import
 mod, from mod import
 attr
	The original model: imports of files and their contents,
 relative to the sys.path module
 search path

	Package imports: import
 dir1.dir2.mod, from dir1.mod import
 attr
	Imports that give directory path extensions relative to the
 sys.path module search path,
 where each package is contained in a single directory and has an
 initialization file, in Python 2.X and
 3.X

	Package-relative imports: from . import
 mod (relative), import
 mod (absolute)
	The model used for intrapackage imports of the prior section,
 with its relative or absolute lookup schemes for dotted and
 nondotted imports, available but differing in Python 2.X
 and 3.X

	Namespace packages: import
 splitdir.mod
	The new namespace package model that we’ll survey here, which
 allows packages to span multiple directories, and requires no
 initialization file, introduced in Python
 3.3

The first two of these are self-contained, but the third tightens up
 the search order and extends syntax for intrapackage imports, and the
 fourth upends some of the core notions and requirements of the prior
 package model. In fact, Python 3.3 (and later) now has two flavors of
 packages:
	The original model, now known as regular
 packages

	The alternative model, known as namespace
 packages

This is similar in spirit to the “classic” and “new style” class
 model dichotomy we’ll meet in the next part of this book, though the new
 is more an addition to the old here. The original and new package models
 are not mutually exclusive, and can be used simultaneously in the same
 program. In fact, the new namespace package model works as something of a
 fallback option, recognized only if normal modules
 and regular packages of the same name are not present on the module search
 path.
The rationale for namespace packages is rooted
 in package installation goals that may seem obscure
 unless you are responsible for such tasks, and is better addressed by this
 feature’s PEP document. In short, though, they resolve a potential for
 collision of multiple __init__.py
 files when package parts are merged, by removing this file completely.
 Moreover, by providing standard support for packages that can be split
 across multiple directories and located in multiple sys.path entries, namespace packages both
 enhance install flexibility and provide a common mechanism to replace the
 multiple incompatible solutions that have arisen to address this
 goal.
Though too early to judge their uptake, average Python users may
 find namespace packages to be a useful and alternative extension to the
 regular package model—one that does not require initialization files, and
 allows any directory of code to be used as an importable package. To see
 why, let’s move on to the details.
Namespace Package Semantics
A namespace package is not fundamentally different from a regular package; it is
 just a different way of creating packages. Moreover, they are still
 relative to sys.path at the top
 level: the leftmost component of a dotted namespace package path must
 still be located in an entry on the normal module search path.
In terms of physical structure, though, the two can differ
 substantially. Regular packages still must
 have an __init__.py
 file that is run automatically, and reside in a single directory as
 before. By contrast, new-style namespace packages
 cannot contain an __init__.py, and may span multiple
 directories that are collected at import time. In fact,
 none of the directories that make up a namespace
 package can have an __init__.py,
 but the content nested within each of them is treated as a single
 package.
The import algorithm
To truly understand namespace packages, we have to look under
 the hood to see how the import operation works in 3.3. During imports,
 Python still iterates over each directory in the module search
 path—defined by sys.path for the
 leftmost components of absolute imports, and by a package’s location
 for relative imports and components nested in package paths—just as in
 3.2 and earlier. In 3.3, though, while looking for an imported module
 or package named spam, for each
 directory in the module search path, Python
 tests for a wider variety of matching criteria, in the following
 order:
	If directory\spam__init__.py is found, a regular
 package is imported and returned.

	If directory\spam.{py, pyc, or other module
 extension} is found, a simple module is imported and
 returned.

	If directory\spam is found and is a directory, it is
 recorded and the scan continues with the next directory in the
 search path.

	If none of the above was found, the scan continues with the
 next directory in the search path.

If the search path scan completes without returning a module or
 package by steps 1 or 2, and at least one directory was recorded by
 step 3, then a namespace package is
 created.
The creation of the namespace package happens immediately, and
 is not deferred until a sublevel import occurs. The new namespace
 package has a __path__ attribute
 set to an iterable of the directory path strings that were found and
 recorded during the scan by step 3, but does not have a __file__.
The __path__ attribute is
 then used in later, deeper accesses to search all package
 components—each recorded entry on a namespace package’s __path__ is searched whenever further nested
 items are requested, much like the sole directory of a regular
 package.
Viewed another way, the __path__ attribute of a namespace package
 serves the same role for lower-level components that sys.path does at the top for the leftmost
 component of package import paths; it becomes the “parent path” for
 accessing lower items using the same four-step procedure just
 sketched.
The net result is that a namespace package is a sort of
 virtual concatenation of directories located via
 possibly multiple module search path entries. Once a namespace package
 is created, though, there is no functional difference between it and a
 regular package; it supports everything we’ve learned for regular
 packages, including package-relative import syntax.

Impacts on Regular Packages: Optional __init__.py
As one consequence of this new import procedure, as of Python 3.3
 packages no longer require __init__.py files—when a single-directory
 package does not have this file, it will be treated as a
 single-directory namespace package, and no warning will be issued. This
 is a major relaxation of prior rules, but a commonly requested change;
 many packages require no initialization code, and it seemed extraneous
 to have to create an empty initialization file in such cases. This is
 finally no longer required as of 3.3.
At the same time, the original regular package model is still
 fully supported, and automatically runs code in __init__.py as before as an
 initialization hook. Moreover, when it’s known that
 a package will never be a portion of a split namespace package, there is
 a performance advantage to coding it as a regular
 package with an __init__.py.
 Creation and loading of a regular package occurs immediately when it is
 located along the path. With namespace packages, all entries in the path
 must be scanned before the package is created. More formally, regular
 packages stop the prior section’s algorithm at step 1; namespace
 packages do not.
Per this change’s PEP, there is no plan to remove support of
 regular packages—at least, that’s the story today; change is always a
 possibility in open source projects (indeed, the prior edition quoted
 plans on string formatting and relative imports in 2.X that were later
 abandoned), so as usual, be sure to watch for future developments on
 this front. Given the performance advantage and auto-initialization code
 of regular packages, though, it seems unlikely that they would be
 removed altogether.

Namespace Packages in Action
To see how namespace packages work, consider the following two modules and
 nested directory structure—with two subdirectories named sub located in different parent directories,
 dir1 and dir2:
C:\code\ns\dir1\sub\mod1.py
C:\code\ns\dir2\sub\mod2.py
If we add both dir1 and
 dir2 to the module search path,
 sub becomes a namespace package
 spanning both, with the two module files available under that name even
 though they live in separate physical directories. Here’s the files’
 contents and the required path settings on Windows: there are no
 __init__.py files here—in fact
 there cannot be in namespace packages, as this is
 their chief physical differentiation:
c:\code> mkdir ns\dir1\sub # Two dirs of same name in different dirs
c:\code> mkdir ns\dir2\sub # And similar outside Windows

c:\code> type ns\dir1\sub\mod1.py # Module files in different directories
print(r'dir1\sub\mod1')

c:\code> type ns\dir2\sub\mod2.py
print(r'dir2\sub\mod2')

c:\code> set PYTHONPATH=C:\code\ns\dir1;C:\code\ns\dir2
Now, when imported directly in 3.3 and later, the namespace
 package is the virtual concatenation of its
 individual directory components, and allows further nested parts to be
 accessed through its single, composite name with normal imports:
c:\code> C:\Python33\python
>>> import sub
>>> sub # Namespace packages: nested search paths
<module 'sub' (namespace)>
>>> sub.__path__
_NamespacePath(['C:\\code\\ns\\dir1\\sub', 'C:\\code\\ns\\dir2\\sub'])

>>> from sub import mod1
dir1\sub\mod1
>>> import sub.mod2 # Content from two different directories
dir2\sub\mod2

>>> mod1
<module 'sub.mod1' from 'C:\\code\\ns\\dir1\\sub\\mod1.py'>
>>> sub.mod2
<module 'sub.mod2' from 'C:\\code\\ns\\dir2\\sub\\mod2.py'>
This is also true if we import through the namespace package name
 immediately—because the namespace package is made
 when first reached, the timing of path extensions is irrelevant:
c:\code> C:\Python33\python
>>> import sub.mod1
dir1\sub\mod1
>>> import sub.mod2 # One package spanning two directories
dir2\sub\mod2

>>> sub.mod1
<module 'sub.mod1' from 'C:\\code\\ns\\dir1\\sub\\mod1.py'>
>>> sub.mod2
<module 'sub.mod2' from 'C:\\code\\ns\\dir2\\sub\\mod2.py'>

>>> sub
<module 'sub' (namespace)>
>>> sub.__path__
_NamespacePath(['C:\\code\\ns\\dir1\\sub', 'C:\\code\\ns\\dir2\\sub'])
Interestingly, relative imports work in
 namespace packages too—in the following, the relative import statement
 references a file in the package, even though the referenced file
 resides in a different directory:
c:\code> type ns\dir1\sub\mod1.py
from . import mod2 # And "from . import string" still fails
print(r'dir1\sub\mod1')

c:\code> C:\Python33\python
>>> import sub.mod1 # Relative import of mod2 in another dir
dir2\sub\mod2
dir1\sub\mod1
>>> import sub.mod2 # Already imported module not rerun
>>> sub.mod2
<module 'sub.mod2' from 'C:\\code\\ns\\dir2\\sub\\mod2.py'>
As you can see, namespace packages are like ordinary
 single-directory packages in every way, except for having a split
 physical storage—which is why single directory
 namespaces packages without __init__.py files are exactly like regular
 packages, but with no initialization logic to be run.

Namespace Package Nesting
Namespace packages even support arbitrary nesting—once a
 namespace package is created, it serves essentially the same
 role at its level that sys.path does
 at the top, becoming the “parent path” for lower levels. Continuing the
 prior section’s example:
c:\code> mkdir ns\dir2\sub\lower # Further nested components
c:\code> type ns\dir2\sub\lower\mod3.py
print(r'dir2\sub\lower\mod3')

c:\code> C:\Python33\python
>>> import sub.lower.mod3 # Namespace pkg nested in namespace pkg
dir2\sub\lower\mod3

c:\code> C:\Python33\python
>>> import sub # Same effect if accessed incrementally
>>> import sub.mod2
dir2\sub\mod2

>>> import sub.lower.mod3
dir2\sub\lower\mod3

>>> sub.lower # A single-directory namespace pkg
<module 'sub.lower' (namespace)>
>>> sub.lower.__path__
_NamespacePath(['C:\\code\\ns\\dir2\\sub\\lower'])
In the preceding, sub is a
 namespace package split across two directories, and sub.lower is a single-directory namespace
 package nested within the portion of sub physically located in dir2. sub.lower is also the namespace package
 equivalent of a regular package with no __init__.py.
This nesting behavior holds true whether the lower component is a
 module, regular package, or another namespace package—by serving as new
 import search paths, namespace packages allow all three to be nested
 within them freely:
c:\code> mkdir ns\dir1\sub\pkg
C:\code> type ns\dir1\sub\pkg__init__.py
print(r'dir1\sub\pkg__init__.py')

c:\code> C:\Python33\python
>>> import sub.mod2 # Nested module
dir2\sub\mod2
>>> import sub.pkg # Nested regular package
dir1\sub\pkg__init__.py
>>> import sub.lower.mod3 # Nested namespace package
dir2\sub\lower\mod3

>>> sub # Modules, packages,and namespaces
<module 'sub' (namespace)>
>>> sub.mod2
<module 'sub.mod2' from 'C:\\code\\ns\\dir2\\sub\\mod2.py'>
>>> sub.pkg
<module 'sub.pkg' from 'C:\\code\\ns\\dir1\\sub\\pkg__init__.py'>
>>> sub.lower
<module 'sub.lower' (namespace)>
>>> sub.lower.mod3
<module 'sub.lower.mod3' from 'C:\\code\\ns\\dir2\\sub\\lower\\mod3.py'>
Trace through this example’s files and directories for more
 insight. As you can see, namespace packages integrate seamlessly into
 the former import models, and extend it with new functionality.

Files Still Have Precedence over Directories
As explained earlier, part of the purpose of __init__.py files in regular packages is to
 declare the directory as a package—it tells Python to use the directory,
 rather than skipping ahead to a possible file of the same name later on
 the path. This avoids inadvertently choosing a noncode subdirectory that
 accidentally appears early on the path, over a desired module of the
 same name.
Because namespace packages do not require these special files,
 they would seem to invalidate this safeguard. This isn’t the case,
 though—because the namespace algorithm outlined earlier continues
 scanning the path after a namespace directory has been found, files
 later on the path still have priority over earlier directories with no
 __init__.py. For example, consider
 the following directories and modules:
c:\code> mkdir ns2
c:\code> mkdir ns3
c:\code> mkdir ns3\dir
c:\code> notepad ns3\dir\ns2.py
c:\code> type ns3\dir\ns2.py
print(r'ns3\dir\ns2.py!')
The ns2 directory here cannot
 be imported in Python 3.2 and earlier—it’s not a regular package, as it
 lacks an __init__.py initialization
 file. This directory can be imported under 3.3, though—it’s a namespace
 package directory in the current working directory, which is always the
 first item on the sys.path module search path irrespective of
 PYTHONPATH settings:
c:\code> set PYTHONPATH=
c:\code> py −3.2
>>> import ns2
ImportError: No module named ns2

c:\code> py −3.3
>>> import ns2
>>> ns2 # A single-directory namespace package in CWD
<module 'ns2' (namespace)>
>>> ns2.__path__
_NamespacePath(['.\\ns2'])
But watch what happens when the directory containing a file of the
 same name as a namespace directory is added later
 on the search path, via PYTHONPATH
 settings—the file is used instead, because Python keeps searching later
 path entries after a namespace package directory is found. It stops
 searching only when a module or regular package is located, or the path
 has been completely scanned. Namespace packages are returned only if
 nothing else was found along the way:
c:\code> set PYTHONPATH=C:\code\ns3\dir
c:\code> py −3.3
>>> import ns2 # Use later module file, not same-named directory!
ns3\dir\ns2.py!
>>> ns2
<module 'ns2' from 'C:\\code\\ns3\\dir\\ns2.py'>

>>> import sys
>>> sys.path[:2] # First '' means current working directory, CWD
['', 'C:\\code\\ns3\\dir']
In fact, setting the path to include a module works the same as it
 does in earlier Pythons, even if a same-named namespace directory
 appears earlier on the path; namespace packages are used in 3.3 only in
 cases that would be errors in earlier Pythons:
c:\code> py −3.2
>>> import ns2
ns3\dir\ns2.py!
>>> ns2
<module 'ns2' from 'C:\code\ns3\dir\ns2.py'>
This is also why none of the directories in a
 namespace package is allowed to have a __init__.py file: as soon as the import
 algorithm finds one that does, it returns a regular package immediately,
 and abandons the path search and the namespace package. Put more
 formally, the import algorithm chooses a namespace package only at the
 end of the path scan, and stops at steps 1 or 2 if
 either a regular package or module file is found sooner.
The net effect is that both module files and
 regular packages anywhere on the module search path have precedence over
 namespace package directories. In the following, for example, a
 namespace package called sub exists
 as the concatenation of same-named directories under dir1 and dir2 on the path:
c:\code> mkdir ns4\dir1\sub
c:\code> mkdir ns4\dir2\sub
c:\code> set PYTHONPATH=c:\code\ns4\dir1;c:\code\ns4\dir2
c:\code> py −3
>>> import sub
>>> sub
<module 'sub' (namespace)>
>>> sub.__path__
_NamespacePath(['c:\\code\\ns4\\dir1\\sub', 'c:\\code\\ns4\\dir2\\sub'])
Much like a module file, though, a regular
 package added in the rightmost path entry takes priority over
 same-named namespace package directories too—the import path scan starts
 recording a namespace package tentatively in dir1 as before, but abandons it when the
 regular package is detected in dir2:
c:\code> notepad ns4\dir2\sub__init__.py
c:\code> py −3
>>> import sub # Use later reg. package, not same-named directory!
>>> sub
<module 'sub' from 'c:\\code\\ns4\\dir2\\sub__init__.py'>
Though a useful extension, because namespace packages are
 available only to readers using Python 3.3 (and later) I’m going to
 defer to Python’s manuals for more details on the subject. See
 especially this change’s PEP document for this change’s rationale,
 additional details, and more comprehensive examples.

Chapter Summary
This chapter introduced Python’s package import
 model—an optional but useful way to explicitly list part of the directory
 path leading up to your modules. Package imports are still relative to a
 directory on your module import search path, but your script gives the
 rest of the path to the module explicitly.
As we’ve seen, packages not only make imports more meaningful in
 larger systems, but also simplify import search path settings if all
 cross-directory imports are relative to a common root directory, and
 resolve ambiguities when there is more than one module of the same
 name—including the name of the enclosing directory in a package import
 helps distinguish between them.
Because it’s relevant only to code in packages, we also explored the
 newer relative import model here—a way for imports in
 package files to select modules in the same package explicitly using
 leading dots in a from, instead of
 relying on an older and error-prone implicit package search rule. Finally,
 we surveyed Python 3.3 namespace packages, which
 allow a logical package to span multiple physical directories as a
 fallback option of import searches, and remove the initialization file
 requirements of the prior model.
In the next chapter, we will survey a handful of more advanced
 module-related topics, such as the __name__ usage mode variable and name-string
 imports. As usual, though, let’s close out this chapter first with a short
 quiz to review what you’ve learned here.

Test Your Knowledge: Quiz
	What is the purpose of an __init__.py file in a module package
 directory?

	How can you avoid repeating the full package path every time you
 reference a package’s content?

	Which directories require __init__.py files?

	When must you use import
 instead of from with
 packages?

	What is the difference between from
 mypkg import spam and from . import
 spam?

	What is a namespace package?

Test Your Knowledge: Answers
	The __init__.py file serves
 to declare and initialize a regular module package; Python
 automatically runs its code the first time you import through a
 directory in a process. Its assigned variables become the attributes
 of the module object created in memory to correspond to that
 directory. It is also not optional until 3.3 and later—you can’t
 import through a directory with package syntax unless it contains this
 file.

	Use the from statement with a
 package to copy names out of the package directly, or use the as extension with the import statement to rename the path to a
 shorter synonym. In both cases, the path is listed in only one place,
 in the from or import statement.

	In Python 3.2 and earlier, each directory listed in an executed
 import or from statement must contain an __init__.py file. Other directories,
 including the directory that contains the leftmost component of a
 package path, do not need to include this file.

	You must use import instead
 of from with packages only if you
 need to access the same name defined in more than one path. With
 import, the path makes the
 references unique, but from allows
 only one version of any given name (unless you also use the as extension to rename).

	In Python 3.X, from mypkg import
 spam is an absolute import—the search
 for mypkg skips the package
 directory and the module is located in an absolute directory in
 sys.path. A statement from . import spam, on the other hand, is a
 relative import—spam is looked up relative to the package in
 which this statement is contained only. In Python 2.X, the absolute
 import searches the package directory first before proceeding to
 sys.path; relative imports work as
 described.

	A namespace package is an extension to the
 import model, available in Python 3.3 and later, that corresponds to
 one or more directories that do not have __init__.py files. When Python finds these
 during an import search, and does not find a simple module or regular
 package first, it creates a namespace package that is the virtual
 concatenation of all found directories having the requested module
 name. Further nested components are looked up in all the namespace
 package’s directories. The effect is similar to a regular package, but
 content may be split across multiple directories.

1 The dot path syntax was chosen partly for platform neutrality,
 but also because paths in import
 statements become real nested object paths. This syntax also means
 that you may get odd error messages if you forget to omit the
 .py in your import statements. For example, import mod.py is assumed to be a directory
 path import—it loads mod.py,
 then tries to load a mod\py.py,
 and ultimately issues a potentially confusing “No module named py”
 error message. As of Python 3.3 this error message has been improved
 to say “No module named ‘mod.py’; mod is not a package.”

Chapter 25. Advanced Module Topics
This chapter concludes this part of the book with a collection of more
 advanced module-related topics—data hiding, the __future__ module, the __name__ variable, sys.path changes, listing tools, importing modules
 by name string, transitive reloads, and so on—along with the standard set of
 gotchas and exercises related to what we’ve covered in this part of the
 book.
Along the way, we’ll build some larger and more useful tools than we
 have so far that combine functions and modules. Like functions, modules are
 more effective when their interfaces are well defined, so this chapter also
 briefly reviews module design concepts, some of which we have explored in
 prior chapters.
Despite the word “advanced” used in this chapter’s title for symmetry,
 this is mostly a grab-bag assortment of additional module topics. Because
 some of the topics discussed here are widely used—especially the __name__ trick—be sure to browse here before
 moving on to classes in the next part of the book.
Module Design Concepts
Like functions, modules present design tradeoffs: you have to think about which
 functions go in which modules, module communication mechanisms, and so on.
 All of this will become clearer when you start writing bigger Python
 systems, but here are a few general ideas to keep in mind:
	You’re always in a module in
 Python. There’s no way to write code that doesn’t live in
 some module. As mentioned briefly in Chapter 17 and
 Chapter 21, even code typed at the
 interactive prompt really goes in a built-in module called __main__; the only unique things about the
 interactive prompt are that code runs and is discarded immediately,
 and expression results are printed automatically.

	Minimize module coupling: global
 variables. Like functions, modules work best if they’re written to be closed boxes.
 As a rule of thumb, they should be as independent of global variables
 used within other modules as possible, except for functions and
 classes imported from them. The only things a module should share with
 the outside world are the tools it uses, and the tools it
 defines.

	Maximize module cohesion: unified
 purpose. You can minimize a module’s couplings by maximizing its
 cohesion; if all the components of a module share a general purpose,
 you’re less likely to depend on external names.

	Modules should rarely change other
 modules’ variables. We illustrated this with code in Chapter 17, but it’s worth repeating here: it’s perfectly OK
 to use globals defined in another module (that’s how clients import
 services, after all), but changing globals in another module is often
 a symptom of a design problem. There are exceptions, of course, but
 you should try to communicate results through devices such as function
 arguments and return values, not cross-module changes. Otherwise, your
 globals’ values become dependent on the order of arbitrarily remote
 assignments in other files, and your modules become harder to
 understand and reuse.

As a summary, Figure 25-1 sketches the
 environment in which modules operate. Modules contain variables,
 functions, classes, and other modules (if imported). Functions have local
 variables of their own, as do classes—objects that live within modules and
 which we’ll begin studying in the next chapter. As we saw in Part IV, functions can nest, too, but all
 are ultimately contained by modules at the top.
Figure 25-1. Module execution environment. Modules are imported, but modules
 also import and use other modules, which may be coded in Python or
 another language such as C. Modules in turn contain variables,
 functions, and classes to do their work, and their functions and classes
 may contain variables and other items of their own. At the top, though,
 programs are just sets of modules.

Data Hiding in Modules
As we’ve seen, a Python module exports all the names assigned at the top level of its file.
 There is no notion of declaring which names should and shouldn’t be
 visible outside the module. In fact, there’s no way to prevent a client
 from changing names inside a module if it wants to.
In Python, data hiding in modules is a convention, not a syntactical
 constraint. If you want to break a module by trashing its names, you can,
 but fortunately, I’ve yet to meet a programmer for whom this was a life
 goal. Some purists object to this liberal attitude toward data hiding,
 claiming that it means Python can’t implement encapsulation. However,
 encapsulation in Python is more about packaging than about restricting.
 We’ll expand this idea in the next part in relation to classes, which also
 have no privacy syntax but can often emulate its effect in code.
Minimizing from * Damage: _X and __all__
As a special case, you can prefix names with a single underscore (e.g., _X)
 to prevent them from being copied out when a client imports a module’s
 names with a from *
 statement. This really is intended only to minimize namespace pollution;
 because from * copies out all names,
 the importer may get more than it’s bargained for (including names that
 overwrite names in the importer). Underscores aren’t “private”
 declarations: you can still see and change such names with other import
 forms, such as the import
 statement:
unders.py
a, _b, c, _d = 1, 2, 3, 4

>>> from unders import * # Load non _X names only
>>> a, c
(1, 3)
>>> _b
NameError: name '_b' is not defined

>>> import unders # But other importers get every name
>>> unders._b
2
Alternatively, you can achieve a hiding effect similar to
 the _X naming
 convention by assigning a list of variable name strings to the
 variable __all__ at the
 top level of the module. When this feature is used, the from * statement will copy out only those
 names listed in the __all__ list. In
 effect, this is the converse of the _X convention: __all__ identifies names to be copied, while
 _X identifies names
 not to be copied. Python looks for an __all__ list in the module first and copies
 its names irrespective of any underscores; if __all__ is not defined, from * copies all names without a single
 leading underscore:
alls.py
__all__ = ['a', '_c'] # __all__ has precedence over _X
a, b, _c, _d = 1, 2, 3, 4

>>> from alls import * # Load __all__ names only
>>> a, _c
(1, 3)
>>> b
NameError: name 'b' is not defined

>>> from alls import a, b, _c, _d # But other importers get every name
>>> a, b, _c, _d
(1, 2, 3, 4)

>>> import alls
>>> alls.a, alls.b, alls._c, alls._d
(1, 2, 3, 4)
Like the _X convention, the
 __all__ list has meaning only to the
 from * statement form and does not
 amount to a privacy declaration: other import statements can still
 access all names, as the last two tests show. Still, module writers can
 use either technique to implement modules that are well behaved when
 used with from *. See also the
 discussion of __all__ lists in
 package __init__.py files in Chapter 24; there, these lists declare submodules to
 be automatically loaded for a from *
 on their container.

Enabling Future Language Features: __future__
Changes to the language that may potentially break existing code are
 usually introduced gradually in Python. They often initially appear as
 optional extensions, which are disabled by default. To turn on such
 extensions, use a special import
 statement of this form:
from __future__ import featurename
When used in a script, this statement must appear as the first
 executable statement in the file (possibly following a docstring or
 comment), because it enables special compilation of code on a per-module
 basis. It’s also possible to submit this statement at the interactive
 prompt to experiment with upcoming language changes; the feature will then
 be available for the remainder of the interactive session.
For example, in this book we’ve seen how to use this statement in
 Python 2.X to activate 3.X true division in Chapter 5, 3.X print
 calls in Chapter 11, and
 3.X absolute imports for packages in Chapter 24.
 Prior editions of this book used this statement form to demonstrate
 generator functions, which required a keyword that was not yet enabled by
 default (they use a featurename of generators).
All of these changes have the potential to break existing code in
 Python 2.X, so they were phased in gradually or offered as optional
 extensions, enabled with this special import. At the same time, some are
 available to allow you to write code that is forward compatible with later
 releases you may port to someday.
For a list of futurisms you may import and turn on this way, run a
 dir call on the __future__ module after importing it, or see its
 library manual entry. Per its documentation, none of its feature names
 will ever be removed, so it’s safe to leave in a __future__ import even in code run by a version
 of Python where the feature is present normally.

Mixed Usage Modes: __name__ and __main__
Our next module-related trick lets you both import a file as a module and run it as
 a standalone program, and is widely used in Python files. It’s actually so
 simple that some miss the point at first: each module has a built-in
 attribute called __name__, which Python
 creates and assigns automatically as follows:
	If the file is being run as a top-level program file, __name__ is set to the string "__main__" when it starts.

	If the file is being imported instead, __name__ is set to the module’s name as
 known by its clients.

The upshot is that a module can test its own __name__ to determine whether it’s being run or
 imported. For example, suppose we create the following module file, named
 runme.py, to export a single function
 called tester:
def tester():
 print("It's Christmas in Heaven...")

if __name__ == '__main__': # Only when run
 tester() # Not when imported
This module defines a function for clients to import and use as
 usual:
c:\code> python
>>> import runme
>>> runme.tester()
It's Christmas in Heaven...
But the module also includes code at the bottom that is set up to
 call the function automatically when this file is run as a program:
c:\code> python runme.py
It's Christmas in Heaven...
In effect, a module’s __name__
 variable serves as a usage mode flag, allowing its
 code to be leveraged as both an importable library
 and a top-level script. Though simple, you’ll see this hook used in the
 majority of the Python program files you are likely to encounter in the
 wild—both for testing and dual usage.
For instance, perhaps the most common way you’ll see the __name__ test applied is for
 self-test code. In short, you can package code that
 tests a module’s exports in the module itself by wrapping it in a __name__ test at the bottom of the file. This
 way, you can use the file in clients by importing it,
 but also test its logic by running it from the system
 shell or via another launching scheme.
Coding self-test code at the bottom of a file under the __name__ test is probably the most common and
 simplest unit-testing protocol in Python. It’s much more convenient than
 retyping all your tests at the interactive prompt. (Chapter 36 will discuss other commonly used
 options for testing Python code—as you’ll see, the unittest and doctest standard library modules provide more
 advanced testing tools.)
In addition, the __name__ trick
 is also commonly used when you’re writing files that can be used both as
 command-line utilities and as tool libraries. For instance, suppose you
 write a file-finder script in Python. You can get more mileage out of your
 code if you package it in functions and add a __name__ test in the file to automatically call
 those functions when the file is run standalone. That way, the script’s
 code becomes reusable in other programs.
Unit Tests with __name__
In fact, we’ve already seen a prime example in this book of an instance where the
 __name__ check could be useful. In
 the section on arguments in Chapter 18, we coded a
 script that computed the minimum value from the set of arguments sent in
 (this was the file minmax.py in
 “The min Wakeup Call!”):
def minmax(test, *args):
 res = args[0]
 for arg in args[1:]:
 if test(arg, res):
 res = arg
 return res

def lessthan(x, y): return x < y
def grtrthan(x, y): return x > y

print(minmax(lessthan, 4, 2, 1, 5, 6, 3)) # Self-test code
print(minmax(grtrthan, 4, 2, 1, 5, 6, 3))
This script includes self-test code at the bottom, so we can test
 it without having to retype everything at the interactive command line
 each time we run it. The problem with the way it is currently coded,
 however, is that the output of the self-test call will appear every time
 this file is imported from another file to be used as a tool—not exactly
 a user-friendly feature! To improve it, we can wrap up the self-test
 call in a __name__ check, so that it
 will be launched only when the file is run as a top-level script, not
 when it is imported (this new version of the module file is renamed
 minmax2.py here):
print('I am:', __name__)

def minmax(test, *args):
 res = args[0]
 for arg in args[1:]:
 if test(arg, res):
 res = arg
 return res

def lessthan(x, y): return x < y
def grtrthan(x, y): return x > y

if __name__ == '__main__':
 print(minmax(lessthan, 4, 2, 1, 5, 6, 3)) # Self-test code
 print(minmax(grtrthan, 4, 2, 1, 5, 6, 3))
We’re also printing the value of __name__ at the top here to trace its value.
 Python creates and assigns this usage-mode variable as soon as it starts
 loading a file. When we run this file as a top-level script, its name is
 set to __main__, so its self-test
 code kicks in automatically:
c:\code> python minmax2.py
I am: __main__
1
6
If we import the file, though, its name is not __main__, so we must explicitly call the
 function to make it run:
c:\code> python
>>> import minmax2
I am: minmax2
>>> minmax2.minmax(minmax2.lessthan, 's', 'p', 'a', 'a')
'a'
Again, regardless of whether this is used for testing, the net
 effect is that we get to use our code in two different
 roles—as a library module of tools, or as an executable
 program.
Note
Per Chapter 24’s discussion of package
 relative imports, this section’s technique can also have some
 implications for imports run by files that are also used as package
 components in 3.X, but can still be leveraged with absolute package
 path imports and other techniques. See the prior chapter’s discussion
 and example for more details.

Example: Dual Mode Code
Here’s a more substantial module example that demonstrates another way
 that the prior section’s __name__ trick
 is commonly employed. The following module, formats.py, defines string formatting utilities
 for importers, but also checks its name to see if it is being run as a
 top-level script; if so, it tests and uses arguments listed on the system
 command line to run a canned or passed-in test. In Python, the sys.argv list contains command-line arguments—it
 is a list of strings reflecting words typed on the command
 line, where the first item is always the name of the script being run. We
 used this in Chapter 21’s benchmark
 tool as switches, but leverage it as a general input mechanism
 here:
#!python
"""
File: formats.py (2.X and 3.X)
Various specialized string display formatting utilities.
Test me with canned self-test or command-line arguments.
To do: add parens for negative money, add more features.
"""

def commas(N):
 """
 Format positive integer-like N for display with
 commas between digit groupings: "xxx,yyy,zzz".
 """
 digits = str(N)
 assert digits.isdigit()
 result = ''
 while digits:
 digits, last3 = digits[:-3], digits[-3:]
 result = (last3 + ',' + result) if result else last3
 return result

def money(N, numwidth=0, currency='$'):
 """
 Format number N for display with commas, 2 decimal digits,
 leading $ and sign, and optional padding: "$ -xxx,yyy.zz".
 numwidth=0 for no space padding, currency='' to omit symbol,
 and non-ASCII for others (e.g., pound=u'\xA3' or u'\u00A3').
 """
 sign = '-' if N < 0 else ''
 N = abs(N)
 whole = commas(int(N))
 fract = ('%.2f' % N)[-2:]
 number = '%s%s.%s' % (sign, whole, fract)
 return '%s%*s' % (currency, numwidth, number)

if __name__ == '__main__':
 def selftest():
 tests = 0, 1 # fails: −1, 1.23
 tests += 12, 123, 1234, 12345, 123456, 1234567
 tests += 2 ** 32, 2 ** 100
 for test in tests:
 print(commas(test))

 print('')
 tests = 0, 1, −1, 1.23, 1., 1.2, 3.14159
 tests += 12.34, 12.344, 12.345, 12.346
 tests += 2 ** 32, (2 ** 32 + .2345)
 tests += 1.2345, 1.2, 0.2345
 tests += −1.2345, −1.2, −0.2345
 tests += −(2 ** 32), −(2**32 + .2345)
 tests += (2 ** 100), −(2 ** 100)
 for test in tests:
 print('%s [%s]' % (money(test, 17), test))

 import sys
 if len(sys.argv) == 1:
 selftest()
 else:
 print(money(float(sys.argv[1]), int(sys.argv[2])))
This file works identically in Python 2.X and 3.X. When run
 directly, it tests itself as before, but it uses options on the command
 line to control the test behavior. Run this file directly with no
 command-line arguments on your own to see what its self-test code
 prints—it’s too extensive to list in full here:
c:\code> python formats.py
0
1
12
123
1,234
12,345
123,456
1,234,567
...etc...
To test specific strings, pass them in on the command line along
 with a minimum field width; the script’s __main__ code passes them on to its money function, which in turn runs commas:
C:\code> python formats.py 999999999 0
$999,999,999.00
C:\code> python formats.py −999999999 0
$-999,999,999.00

C:\code> python formats.py 123456789012345 0
$123,456,789,012,345.00
C:\code> python formats.py −123456789012345 25
$ −123,456,789,012,345.00

C:\code> python formats.py 123.456 0
$123.46
C:\code> python formats.py −123.454 0
$-123.45
As before, because this code is instrumented for dual-mode usage, we
 can also import its tools normally to reuse them as library components in
 scripts, modules, and the interactive prompt:
>>> from formats import money, commas
>>> money(123.456)
'$123.46'
>>> money(-9999999.99, 15)
'$ −9,999,999.99'
>>> X = 99999999999999999999
>>> '%s (%s)' % (commas(X), X)
'99,999,999,999,999,999,999 (99999999999999999999)'
You can use command-line arguments in ways similar to this example
 to provide general inputs to scripts that may also package their code as
 functions and classes for reuse by importers. For more advanced
 command-line processing, see “Python Command-Line Arguments” in Appendix A, and the getopt, optparse, and argparse modules’ documentation in Python’s
 standard library manual. In some scenarios, you might also use the
 built-in input function,
 used in Chapter 3 and Chapter 10, to prompt the shell user for
 test inputs instead of pulling them from the command line. For more on the
 assert statement used here, see Chapter 34.
Note
Also see Chapter 7’s discussion of
 the new {,d} string format method
 syntax added in Python 2.7 and 3.1; this formatting extension separates
 thousands groups with commas much like the code here. The module listed
 here, though, adds money formatting, can be changed, and serves as a
 manual alternative for comma insertions in earlier Pythons.

Currency Symbols: Unicode in Action
This module’s money function
 defaults to dollars, but supports other currency symbols
 by allowing you to pass in non-ASCII Unicode characters. The Unicode
 ordinal with hexadecimal value 00A3, for example, is the pound symbol,
 and 00A5 is the yen. You can code these in a variety of forms,
 as:
	The character’s decoded Unicode code point ordinal (integer)
 in a text string, with either Unicode or hex
 escapes (for 2.X compatibility, use a leading u in such string literals in Python
 3.3)

	The character’s raw encoded form in a byte
 string that is decoded before passed, with hex escapes
 (for 3.X compatibility, use a leading b in such string literals in Python
 2.X)

	The actual character itself in your program’s text, along with
 a source code encoding declaration

We previewed Unicode in Chapter 4 and will get into more
 details in Chapter 37, but its basic
 requirements here are fairly simple, and serve as a decent use case. To
 test alternative currencies, I typed the following in a file, formats_currency.py, because it was too much
 to reenter interactively on changes:
from __future__ import print_function # 2.X
from formats import money
X = 54321.987

print(money(X), money(X, 0, ''))
print(money(X, currency=u'\xA3'), money(X, currency=u'\u00A5'))
print(money(X, currency=b'\xA3'.decode('latin-1')))

print(money(X, currency=u'\u20AC'), money(X, 0, b'\xA4'.decode('iso-8859-15')))
print(money(X, currency=b'\xA4'.decode('latin-1')))
The following gives this test file’s output in Python 3.3 in IDLE,
 and in other contexts configured properly. It works the same in 2.X
 because it prints and codes strings portably. Per Chapter 11, a __future__ import enables 3.X print calls in 2.X. And as introduced in Chapter 4, 3.X b'...' bytes literals are taken as simple
 strings in 2.X, and 2.X u'...'
 Unicode literals as treated as normal strings in 3.X as of 3.3.
$54,321.99 54,321.99
£54,321.99 ¥54,321.99
£54,321.99
€54,321.99 €54,321.99
¤54,321.99
If this works on your computer, you can probably skip the next few
 paragraphs. Depending on your interface and system settings, though,
 getting this to run and display properly may require additional steps.
 On my machine, it behaves correctly when Python and the display medium
 are in sync, but the euro and generic currency symbols in the last two
 lines fail with errors in a basic Command Prompt on Windows.
Specifically, this test script always runs and produces the output
 shown in the IDLE GUI in both 3.X and 2.X, because
 Unicode-to-glyph mappings are handled well. It also works as advertised
 in 3.X on Windows if you redirect the output to a
 file and open it with Notepad, because 3.X encodes content on this
 platform in a default Windows format that Notepad understands:
c:\code> formats_currency.py > temp
c:\code> notepad temp
However, this doesn’t work in 2.X, because Python tries to encode
 printed text as ASCII by default. To show all the non-ASCII characters
 in a Windows Command Prompt window directly, on some computers you may
 need to change the Windows code page (used to
 render characters) as well as Python’s PYTHONIOENCODING environment variable (used as
 the encoding of text in standard streams, including the translation of
 characters to bytes when they are printed) to a common Unicode format
 such as UTF-8:
c:\code> chcp 65001 # Console matches Python
c:\code> set PYTHONIOENCODING=utf-8 # Python matches console
c:\code> formats_currency.py > temp # Both 3.X and 2.X write UTF-8 text
c:\code> type temp # Console displays it properly
c:\code> notepad temp # Notepad recognizes UTF-8 too
You may not need to take these steps on some platforms and even on
 some Windows distributions. I did because my laptop’s code page is set
 to 437 (U.S. characters), but your code pages may vary.
Subtly, the only reason this test works on Python 2.X at all is
 because 2.X allows normal and Unicode strings to be
 mixed, as long as the normal string is all 7-bit
 ASCII characters. On 3.3, the 2.X u'...' Unicode literal is supported for
 compatibility, but taken the same as normal '...' strings, which are always Unicode
 (removing the leading u makes the
 test work in 3.0 through 3.2 too, but breaks 2.X compatibility):
c:\code> py −2
>>> print u'\xA5' + '1', '%s2' % u'\u00A3' # 2.X: unicode/str mix for ASCII str
¥1 £2

c:\code> py −3
>>> print(u'\xA5' + '1', '%s2' % u'\u00A3') # 3.X: str is Unicode, u'' optional
¥1 £2
>>> print('\xA5' + '1', '%s2' % '\u00A3')
¥1 £2
Again, there’s much more on Unicode in Chapter 37—a topic many see as peripheral,
 but which can crop up even in relatively simple contexts like this! The
 takeaway point here is that, operational issues aside, a carefully coded
 script can often manage to support Unicode in both 3.X and 2.X.

Docstrings: Module Documentation at Work
Finally, because this example’s main file uses the docstring feature introduced
 in Chapter 15, we can use the
 help function or PyDoc’s GUI/browser
 modes to explore its tools as well—modules are almost automatically
 general-purpose tools. Here’s help at
 work; Figure 25-2 gives
 the PyDoc view on our file.
>>> import formats
>>> help(formats)
Help on module formats:

NAME
 formats

DESCRIPTION
 File: formats.py (2.X and 3.X)
 Various specialized string display formatting utilities.
 Test me with canned self-test or command-line arguments.
 To do: add parens for negative money, add more features.

FUNCTIONS
 commas(N)
 Format positive integer-like N for display with
 commas between digit groupings: "xxx,yyy,zzz".

 money(N, numwidth=0, currency='$')
 Format number N for display with commas, 2 decimal digits,
 leading $ and sign, and optional padding: "$ -xxx,yyy.zz".
 numwidth=0 for no space padding, currency='' to omit symbol,
 and non-ASCII for others (e.g., pound=u'£' or u'£').

FILE
 c:\code\formats.py
Figure 25-2. PyDoc’s view of formats.py, obtained by running a “py −3 -m
 pydoc –b” command line in 3.2 and later and clicking on the file’s
 index entry (see Chapter 15)

Changing the Module Search Path
Let’s return to more general module topics. In Chapter 22, we learned that the module
 search path is a list of directories that can be customized via the
 environment variable PYTHONPATH, and
 possibly via .pth files. What I
 haven’t shown you until now is how a Python program itself can actually
 change the search path by changing the built-in sys.path list.
 Per Chapter 22, sys.path is initialized on startup, but
 thereafter you can delete, append, and reset its components however you
 like:
>>> import sys
>>> sys.path
['', 'c:\\temp', 'C:\\Windows\\system32\\python33.zip', ...more deleted...]

>>> sys.path.append('C:\\sourcedir') # Extend module search path
>>> import string # All imports search the new dir last
Once you’ve made such a change, it will impact all future imports
 anywhere while a Python program runs, as all importers share the same
 single sys.path list (there’s only one
 copy of a given module in memory during a program’s run—that’s why
 reload exists). In fact, this list may
 be changed arbitrarily:
>>> sys.path = [r'd:\temp'] # Change module search path
>>> sys.path.append('c:\\lp5e\\examples') # For this run (process) only
>>> sys.path.insert(0, '..')
>>> sys.path
['..', 'd:\\temp', 'c:\\lp5e\\examples']
>>> import string
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named 'string'
Thus, you can use this technique to dynamically configure a search
 path inside a Python program. Be careful, though: if you delete a critical
 directory from the path, you may lose access to critical utilities. In the
 prior example, for instance, we no longer have access to the string module because we deleted the Python
 source library’s directory from the path!
Also, remember that such sys.path
 settings endure for only as long as the Python session or program
 (technically, process) that made them runs; they are
 not retained after Python exits. By contrast, PYTHONPATH and .pth file path configurations live in the
 operating system instead of a running Python program, and so are more
 global: they are picked up by every program on your machine and live on
 after a program completes. On some systems, the former can be per-user and
 the latter can be installation-wide.

The as Extension for import and from
Both the import and from statements were eventually extended to allow an imported name to be
 given a different name in your script. We’ve used this extension earlier,
 but here are some additional details: the following import statement:
import modulename as name # And use name, not modulename
is equivalent to the following, which renames the module in the
 importer’s scope only (it’s still known by its original name to other
 files):
import modulename
name = modulename
del modulename # Don't keep original name
After such an import, you can—and
 in fact must—use the name listed after the as to refer to the module. This works in a
 from statement, too, to assign a name
 imported from a file to a different name in the importer’s scope; as
 before you get only the new name you provide, not its original:
from modulename import attrname as name # And use name, not attrname
As discussed in Chapter 23, this
 extension is commonly used to provide short synonyms
 for longer names, and to avoid name clashes when you
 are already using a name in your script that would otherwise be
 overwritten by a normal import
 statement:
import reallylongmodulename as name # Use shorter nickname
name.func()

from module1 import utility as util1 # Can have only 1 "utility"
from module2 import utility as util2
util1(); util2()
It also comes in handy for providing a short, simple name for an
 entire directory path and avoiding name collisions when using the
 package import feature described in Chapter 24:
import dir1.dir2.mod as mod # Only list full path once
mod.func()

from dir1.dir2.mod import func as modfunc # Rename to make unique if needed
modfunc()
This is also something of a hedge against name changes: if a new
 release of a library renames a module or tool your code uses extensively,
 or provides a new alternative you’d rather use instead, you can simply
 rename it to its prior name on import to avoid breaking your code:
import newname as oldname
from library import newname as oldname
...and keep happily using oldname until you have time to update all your code...
For example, this approach can address some 3.X library changes
 (e.g., 3.X’s tkinter versus 2.X’s
 Tkinter), though they’re often
 substantially more than just a new name!

Example: Modules Are Objects
Because modules expose most of their interesting properties as
 built-in attributes, it’s easy to write programs that manage other
 programs. We usually call such manager programs metaprograms because they work
 on top of other systems. This is also referred to as
 introspection, because programs can see and process
 object internals. Introspection is a somewhat advanced feature, but it can
 be useful for building programming tools.
For instance, to get to an attribute called name in a module called M, we can use attribute qualification or index
 the module’s attribute dictionary, exposed in the built-in __dict__ attribute we met in Chapter 23. Python
 also exports the list of all loaded modules as the sys.modules dictionary and provides a built-in called getattr that lets us fetch attributes from their
 string names—it’s like saying object.attr, but attr is an expression that yields a string at runtime. Because of that, all the following
 expressions reach the same attribute and object:1
M.name # Qualify object by attribute
M.__dict__['name'] # Index namespace dictionary manually
sys.modules['M'].name # Index loaded-modules table manually
getattr(M, 'name') # Call built-in fetch function
By exposing module internals like this, Python helps you build
 programs about programs. For example, here is a module named mydir.py that puts these ideas to work to
 implement a customized version of the built-in dir function. It defines and exports a function called listing, which takes a module object as an
 argument and prints a formatted listing of the module’s namespace sorted
 by name:
#!python
"""
mydir.py: a module that lists the namespaces of other modules
"""
from __future__ import print_function # 2.X compatibility

seplen = 60
sepchr = '-'

def listing(module, verbose=True):
 sepline = sepchr * seplen
 if verbose:
 print(sepline)
 print('name:', module.__name__, 'file:', module.__file__)
 print(sepline)

 count = 0
 for attr in sorted(module.__dict__): # Scan namespace keys (or enumerate)
 print('%02d) %s' % (count, attr), end = ' ')
 if attr.startswith('__'):
 print('<built-in name>') # Skip __file__, etc.
 else:
 print(getattr(module, attr)) # Same as .__dict__[attr]
 count += 1

 if verbose:
 print(sepline)
 print(module.__name__, 'has %d names' % count)
 print(sepline)

if __name__ == '__main__':
 import mydir
 listing(mydir) # Self-test code: list myself
Notice the docstring at the top; as in the prior formats.py example, because we may want to use
 this as a general tool, the docstring provides functional information
 accessible via help and GUI/browser
 mode of PyDoc—a tool that uses similar introspection tools to do its job.
 A self-test is also provided at the bottom of this
 module, which narcissistically imports and lists itself. Here’s the sort
 of output produced in Python 3.3; this script works on 2.X too (where it
 may list fewer names) because it prints from the __future__:
c:\code> py −3 mydir.py
--
name: mydir file: c:\code\mydir.py
--
00) __builtins__ <built-in name>
01) __cached__ <built-in name>
02) __doc__ <built-in name>
03) __file__ <built-in name>
04) __initializing__ <built-in name>
05) __loader__ <built-in name>
06) __name__ <built-in name>
07) __package__ <built-in name>
08) listing <function listing at 0x000000000295B488>
09) print_function _Feature((2, 6, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 65536)
10) sepchr -
11) seplen 60
--
mydir has 12 names
--
To use this as a tool for listing other modules, simply pass the
 modules in as objects to this file’s function. Here it is listing
 attributes in the tkinter GUI module in
 the standard library (a.k.a. Tkinter in
 Python 2.X); it will technically work on any object with __name__, __file__, and __dict__ attributes:
>>> import mydir
>>> import tkinter
>>> mydir.listing(tkinter)
--
name: tkinter file: C:\Python33\lib\tkinter__init__.py
--
00) ACTIVE active
01) ALL all
02) ANCHOR anchor
03) ARC arc
04) At <function At at 0x0000000002BD41E0>
...many more names omitted...
156) image_types <function image_types at 0x0000000002BE2378>
157) mainloop <function mainloop at 0x0000000002BCBBF8>
158) sys <module 'sys' (built-in)>
159) wantobjects 1
160) warnings <module 'warnings' from 'C:\\Python33\\lib\\warnings.py'>
--
tkinter has 161 names
--
We’ll meet getattr and its
 relatives again later. The point to notice here is that mydir is a program that lets you browse other
 programs. Because Python exposes its internals, you can process objects
 generically.2

Importing Modules by Name String
The module name in an import
 or from statement is a hardcoded
 variable name. Sometimes, though, your program will get the name of a
 module to be imported as a string at runtime—from a user selection in a
 GUI, or a parse of an XML document, for instance. Unfortunately, you can’t
 use import statements directly to load
 a module given its name as a string—Python expects a variable name that’s
 taken literally and not evaluated, not a string or expression. For
 instance:
>>> import 'string'
 File "<stdin>", line 1
 import "string"
 ^
SyntaxError: invalid syntax
It also won’t work to simply assign the string to a variable
 name:
x = 'string'
import x
Here, Python will try to import a file x.py, not the string module—the name in an import statement both becomes a variable
 assigned to the loaded module and identifies the external file
 literally.
Running Code Strings
To get around this, you need to use special tools to load a module
 dynamically from a string that is generated at runtime. The most general
 approach is to construct an import
 statement as a string of Python code and pass it to the exec built-in function to run (exec is a statement in Python 2.X, but it can
 be used exactly as shown here—the parentheses are simply
 ignored):
>>> modname = 'string'
>>> exec('import ' + modname) # Run a string of code
>>> string # Imported in this namespace
<module 'string' from 'C:\\Python33\\lib\\string.py'>
We met the exec function (and
 its cousin for expressions, eval)
 earlier, in Chapter 3 and Chapter 10. It compiles a string of code
 and passes it to the Python interpreter to be executed. In Python, the
 byte code compiler is available at runtime, so you can write programs
 that construct and run other programs like this. By default, exec runs the code in the current scope, but
 you can get more specific by passing in optional namespace dictionaries
 if needed. It also has security issues noted earlier in the book, which
 may be minor in a code string you are building yourself.

Direct Calls: Two Options
The only real drawback to exec
 here is that it must compile the import statement each time it runs, and
 compiling can be slow. Precompiling to byte code with the compile built-in
 may help for code strings run many times, but in most cases it’s
 probably simpler and may run quicker to use the built-in __import__ function to load from a name string instead, as noted in Chapter 22. The effect is similar, but
 __import__ returns the module object,
 so assign it to a name here to keep it:
>>> modname = 'string'
>>> string = __import__(modname)
>>> string
<module 'string' from 'C:\\Python33\\lib\\string.py'>
As also noted in Chapter 22,
 the newer call importlib.import_module does the same work,
 and is generally preferred in more recent Pythons for direct calls to
 import by name string—at least per the current “official” policy stated
 in Python’s manuals:
>>> import importlib
>>> modname = 'string'
>>> string = importlib.import_module(modname)
>>> string
<module 'string' from 'C:\\Python33\\lib\\string.py'>
The import_module call takes a
 module name string, and an optional second argument that gives the
 package used as the anchor point for resolving
 relative imports, which defaults to None. This call works the same as __import__ in its basic roles, but see
 Python’s manuals for more details.
Though both calls still work, in Pythons where both are available,
 the original __import__ is generally
 intended for customizing import operations by reassignment in the
 built-in scope (and any future changes in “official” policy are beyond
 the scope of this book!).

Example: Transitive Module Reloads
This section develops a module tool that ties together and applies some earlier
 topics, and serves as a larger case study to close out this chapter and
 part. We studied module reloads in Chapter 23, as a way to pick up changes in code
 without stopping and restarting a program. When you reload a module,
 though, Python reloads only that particular module’s file; it doesn’t
 automatically reload modules that the file being reloaded happens to
 import.
For example, if you reload some module A, and A
 imports modules B and C, the reload applies only to A, not to B
 and C. The statements inside A that import B and C are
 rerun during the reload, but they just fetch the already loaded B and C
 module objects (assuming they’ve been imported before). In actual yet
 abstract code, here’s the file A.py:
A.py
import B # Not reloaded when A is!
import C # Just an import of an already loaded module: no-ops

% python
>>> . . .
>>> from imp import reload
>>> reload(A)
By default, this means that you cannot depend on reloads to pick up
 changes in all the modules in your program transitively—instead, you must
 use multiple reload calls to update the
 subcomponents independently. This can require substantial work for large
 systems you’re testing interactively. You can design your systems to
 reload their subcomponents automatically by adding reload calls in parent modules like A, but this complicates the modules’
 code.
A Recursive Reloader
A better approach is to write a general tool to do transitive reloads
 automatically by scanning modules’ __dict__ namespace attributes and checking
 each item’s type to find nested
 modules to reload. Such a utility function could call itself
 recursively to navigate arbitrarily shaped and deep
 import dependency chains. Module __dict__ attributes were introduced in Chapter 23 and employed earlier in this chapter,
 and the type call was presented in
 Chapter 9; we just need
 to combine the two tools.
The module reloadall.py
 listed next defines a reload_all
 function that automatically reloads a module, every module that the
 module imports, and so on, all the way to the bottom of each import
 chain. It uses a dictionary to keep track of already reloaded modules,
 recursion to walk the import chains, and the standard library’s types module,
 which simply predefines type results
 for built-in types. The visited
 dictionary technique works to avoid cycles here when imports are
 recursive or redundant, because module objects are immutable and so can
 be dictionary keys; as we learned in Chapter 5
 and Chapter 8, a
 set would offer similar functionality if we use
 visited.add(module) to insert:
#!python
"""
reloadall.py: transitively reload nested modules (2.X + 3.X).
Call reload_all with one or more imported module objects.
"""

import types
from imp import reload # from required in 3.X

def status(module):
 print('reloading ' + module.__name__)

def tryreload(module):
 try:
 reload(module) # 3.3 (only?) fails on some
 except:
 print('FAILED: %s' % module)

def transitive_reload(module, visited):
 if not module in visited: # Trap cycles, duplicates
 status(module) # Reload this module
 tryreload(module) # And visit children
 visited[module] = True
 for attrobj in module.__dict__.values(): # For all attrs
 if type(attrobj) == types.ModuleType: # Recur if module
 transitive_reload(attrobj, visited)

def reload_all(*args):
 visited = {} # Main entry point
 for arg in args: # For all passed in
 if type(arg) == types.ModuleType:
 transitive_reload(arg, visited)

def tester(reloader, modname): # Self-test code
 import importlib, sys # Import on tests only
 if len(sys.argv) > 1: modname = sys.argv[1] # command line (or passed)
 module = importlib.import_module(modname) # Import by name string
 reloader(module) # Test passed-in reloader

if __name__ == '__main__':
 tester(reload_all, 'reloadall') # Test: reload myself?
Besides namespace dictionaries, this script makes use of other
 tools we’ve studied here: it includes a __name__ test to launch self-test code when
 run as a top-level script only, and its tester function uses sys.argv to inspect command-line arguments and
 importlib to import a module by name
 string passed in as a function or command-line argument. One curious
 bit: notice how this code must wrap the basic reload call in a try statement to catch exceptions—in Python
 3.3, reloads sometimes fail due to a rewrite of the import machinery.
 The try was previewed in Chapter 10, and is covered in full in
 Part VII.
Testing recursive reloads
Now, to leverage this utility for normal use, import its
 reload_all function and pass it an
 already loaded module object—just as you would for the built-in
 reload function. When the file runs
 standalone, its self-test code calls reload_all automatically, reloading its own
 module by default if no command-line arguments are used. In this mode,
 the module must import itself because its own name is not defined in
 the file without an import. This code works in both 3.X and 2.X
 because we’ve used + and % instead of a comma in the prints, though
 the set of modules used and thus reloaded may vary across
 lines:
C:\code> c:\Python33\python reloadall.py
reloading reloadall
reloading types

c:\code> C:\Python27\python reloadall.py
reloading reloadall
reloading types
With a command-line argument, the tester instead reloads the
 given module by its name string—here, the benchmark module we coded in
 Chapter 21. Note that we give a
 module name in this mode, not a filename (as for import statements,
 don’t include the .py extension);
 the script ultimately imports the module using the module search path
 as usual:
c:\code> reloadall.py pybench
reloading pybench
reloading timeit
reloading itertools
reloading sys
reloading time
reloading gc
reloading os
reloading errno
reloading ntpath
reloading stat
reloading genericpath
reloading copyreg
Perhaps most commonly, we can also deploy this module at the
 interactive prompt—here, in 3.3 for some standard
 library modules. Notice how os is
 imported by tkinter, but tkinter reaches sys before os can (if you want to test this on Python
 2.X, substitute Tkinter for
 tkinter):
>>> from reloadall import reload_all
>>> import os, tkinter
>>> reload_all(os) # Normal usage mode
reloading os
reloading ntpath
reloading stat
reloading sys
reloading genericpath
reloading errno
reloading copyreg

>>> reload_all(tkinter)
reloading tkinter
reloading _tkinter
reloading warnings
reloading sys
reloading linecache
reloading tokenize
reloading builtins
FAILED: <module 'builtins'>
reloading re
...etc...
reloading os
reloading ntpath
reloading stat
reloading genericpath
reloading errno
...etc...
And finally here is a session that shows the effect of normal
 versus transitive reloads—changes made to the two nested files are not
 picked up by reloads, unless the transitive utility is used:
import b # File a.py
X = 1

import c # File b.py
Y = 2

Z = 3 # File c.py

C:\code> py −3
>>> import a
>>> a.X, a.b.Y, a.b.c.Z
(1, 2, 3)

Without stopping Python, change all three files' assignment values and save

>>> from imp import reload
>>> reload(a) # Built-in reload is top level only
<module 'a' from '.\\a.py'>
>>> a.X, a.b.Y, a.b.c.Z
(111, 2, 3)

>>> from reloadall import reload_all
>>> reload_all(a) # Normal usage mode
reloading a
reloading b
reloading c
>>> a.X, a.b.Y, a.b.c.Z # Reloads all nested modules too
(111, 222, 333)
Study the reloader’s code and results for more on its operation.
 The next section exercises its tools further.

Alternative Codings
For all the recursion fans in the audience, the following lists an
 alternative recursive coding for the function in
 the prior section—it uses a set instead of a
 dictionary to detect cycles, is marginally more
 direct because it eliminates a top-level loop, and
 serves to illustrate recursive function techniques in general (compare
 with the original to see how this differs). This version also gets some
 of its work for free from the original, though the order in which it
 reloads modules might vary if namespace dictionary order does
 too:
"""
reloadall2.py: transitively reload nested modules (alternative coding)
"""

import types
from imp import reload # from required in 3.X
from reloadall import status, tryreload, tester

def transitive_reload(objects, visited):
 for obj in objects:
 if type(obj) == types.ModuleType and obj not in visited:
 status(obj)
 tryreload(obj) # Reload this, recur to attrs
 visited.add(obj)
 transitive_reload(obj.__dict__.values(), visited)

def reload_all(*args):
 transitive_reload(args, set())

if __name__ == '__main__':
 tester(reload_all, 'reloadall2') # Test code: reload myself?
As we saw in Chapter 19, there is
 usually an explicit stack or queue equivalent to
 most recursive functions, which may be preferable in some
 contexts. The following is one such transitive reloader; it uses a
 generator expression to filter out nonmodules and modules already
 visited in the current module’s namespace. Because it both pops and adds
 items at the end of its list, it is stack based, though the order of
 both pushes and dictionary values influences the order in which it
 reaches and reloads modules—it visits submodules in namespace
 dictionaries from right to left, unlike the left-to-right order of the
 recursive versions (trace through the code to see how). We could change
 this, but dictionary order is arbitrary anyhow.
"""
reloadall3.py: transitively reload nested modules (explicit stack)
"""

import types
from imp import reload # from required in 3.X
from reloadall import status, tryreload, tester

def transitive_reload(modules, visited):
 while modules:
 next = modules.pop() # Delete next item at end
 if (type(next) == types.ModuleType # Valid module object?
 and next not in visited): # Not already reloaded?
 status(next) # Reload this, push attrs
 tryreload(next)
 visited.add(next)
 modules.extend(next.__dict__.values())

def reload_all(*modules):
 transitive_reload(list(modules), set())

if __name__ == '__main__':
 tester(reload_all, 'reloadall3') # Test code: reload myself?
If the recursion and nonrecursion used in this example is
 confusing, see the discussion of recursive functions in Chapter 19 for background on the
 subject.
Testing reload variants
To prove that these work the same, let’s test all three of our
 reloader variants. Thanks to their common testing function, we can run
 all three from a command line both with no arguments to test the
 module reloading itself, and with the name of a module to be reloaded
 listed on the command line (in sys.argv):
c:\code> reloadall.py
reloading reloadall
reloading types

c:\code> reloadall2.py
reloading reloadall2
reloading types

c:\code> reloadall3.py
reloading reloadall3
reloading types
Though it’s hard to see here, we really are testing the
 individual reloader alternatives—each of these tests shares a common
 tester function, but passes it the
 reload_all from its own file. Here
 are the variants reloading the 3.X tkinter GUI module and all the modules its
 imports reach:
c:\code> reloadall.py tkinter
reloading tkinter
reloading _tkinter
reloading tkinter._fix
...etc...
c:\code> reloadall2.py tkinter
reloading tkinter
reloading tkinter.constants
reloading tkinter._fix
...etc...
c:\code> reloadall3.py tkinter
reloading tkinter
reloading sys
reloading tkinter.constants
...etc...
All three work on both Python 3.X and 2.X too—they’re careful to
 unify prints with formatting, and avoid using version-specific tools
 (though you must use 2.X module names like Tkinter, and I’m using the 3.3 Windows
 launcher here to run per Appendix B):
c:\code> py −2 reloadall.py
reloading reloadall
reloading types

c:\code> py −2 reloadall2.py Tkinter
reloading Tkinter
reloading _tkinter
reloading FixTk
...etc...
As usual we can test interactively, too, by importing and
 calling either a module’s main reload entry point with a module
 object, or the testing function with a reloader function and module
 name string:
C:\code> py −3
>>> import reloadall, reloadall2, reloadall3
>>> import tkinter
>>> reloadall.reload_all(tkinter) # Normal use case
reloading tkinter
reloading tkinter._fix
reloading os
...etc...
>>> reloadall.tester(reloadall2.reload_all, 'tkinter') # Testing utility
reloading tkinter
reloading tkinter._fix
reloading os
...etc...
>>> reloadall.tester(reloadall3.reload_all, 'reloadall3') # Mimic self-test code
reloading reloadall3
reloading types
Finally, if you look at the output of tkinter reloads earlier, you may notice that
 each of the three variants may produce results in a different
 order; they all depend on namespace dictionary
 ordering, and the last also relies on the order in which items are
 added to its stack. In fact, under Python 3.3, the reload order for a
 given reloader can vary from run to run. To ensure that all three are
 reloading the same modules irrespective of the order in which they do
 so, we can use sets (or sorts) to test for order-neutral equality of
 their printed messages—obtained here by running shell commands with the os.popen utility we met in Chapter 13 and used in Chapter 21:
>>> import os
>>> res1 = os.popen('reloadall.py tkinter').readlines()
>>> res2 = os.popen('reloadall2.py tkinter').readlines()
>>> res3 = os.popen('reloadall3.py tkinter').readlines()
>>> res1[:3]
['reloading tkinter\n', 'reloading sys\n', 'reloading tkinter._fix\n']

>>> res1 == res2, res2 == res3
(False, False)
>>> set(res1) == set(res2), set(res2) == set(res3)
(True, True)
Run these scripts, study their code, and experiment on your own
 for more insight; these are the sort of importable tools you might
 want to add to your own source code library. Watch for a similar
 testing technique in the coverage of class tree listers in Chapter 31, where we’ll apply it to passed
 class objects and extend it further.
Also keep in mind that all three variants reload only modules
 that were loaded with import
 statements—since names copied with from statements do not cause a module to be
 nested and referenced in the importer’s namespace, their containing
 module is not reloaded. More fundamentally, the transitive reloaders
 rely on the fact that module reloads update module objects
 in place, such that all references to those
 modules in any scope will see the updated version automatically.
 Because they copy names out, from
 importers are not updated by reloads—transitive or not—and supporting
 this may require either source code analysis, or customization of the
 import operation (see Chapter 22
 for pointers).
Tool impacts like this are perhaps another reason to prefer
 import to from—which brings us to the end of this
 chapter and part, and the standard set of warnings for this part’s topic.

Module Gotchas
In this section, we’ll take a look at the usual collection of boundary cases
 that can make life interesting for Python beginners. Some are review here,
 and a few are so obscure that coming up with representative examples can
 be a challenge, but most illustrate something important about the
 language.
Module Name Clashes: Package and Package-Relative Imports
If you have two modules of the same name, you may only be able to import one of them—by
 default, the one whose directory is leftmost in the sys.path module search path will always be
 chosen. This isn’t an issue if the module you prefer is in your
 top-level script’s directory; since that is always first in the module
 path, its contents will be located first automatically. For
 cross-directory imports, however, the linear nature of the module search
 path means that same-named files can clash.
To fix, either avoid same-named files or use
 the package imports feature of Chapter 24. If
 you need to get to both same-named files, structure your source files in
 subdirectories, such that package import directory names make the module
 references unique. As long as the enclosing package directory names are
 unique, you’ll be able to access either or both of the same-named
 modules.
Note that this issue can also crop up if you accidentally use a
 name for a module of your own that happens to be the same as a standard
 library module you need—your local module in the program’s home
 directory (or another directory early in the module path) can hide and
 replace the library module.
To fix, either avoid using the same name as
 another module you need or store your modules in a package directory and
 use Python 3.X’s package-relative import model, available in 2.X as an
 option. In this model, normal imports skip the package directory (so
 you’ll get the library’s version), but special dotted import statements
 can still select the local version of the module if needed.

Statement Order Matters in Top-Level Code
As we’ve seen, when a module is first imported (or reloaded), Python executes
 its statements one by one, from the top of the file to the bottom. This
 has a few subtle implications regarding forward references that are
 worth underscoring here:
	Code at the top level of a module file
 (not nested in a function) runs as soon as Python reaches it during
 an import; because of that, it cannot reference names assigned
 lower in the file.

	Code inside a function body doesn’t run
 until the function is called; because names in a function aren’t
 resolved until the function actually runs, they can usually
 reference names anywhere in the file.

Generally, forward references are only a concern in top-level
 module code that executes immediately; functions can reference names
 arbitrarily. Here’s a file that illustrates forward reference dos and
 don’ts:
func1() # Error: "func1" not yet assigned

def func1():
 print(func2()) # OK: "func2" looked up later

func1() # Error: "func2" not yet assigned

def func2():
 return "Hello"

func1() # OK: "func1" and "func2" assigned
When this file is imported (or run as a standalone program),
 Python executes its statements from top to bottom. The first call to
 func1 fails because the func1 def hasn’t run yet. The call to func2 inside func1 works as long as func2’s def
 has been reached by the time func1 is
 called—and it hasn’t when the second top-level func1 call is run. The last call to func1 at the bottom of the file works because
 func1 and func2 have both been assigned.
Mixing defs with top-level code
 is not only difficult to read, it’s also dependent on statement
 ordering. As a rule of thumb, if you need to mix immediate code with
 defs, put your defs at the top of the file and your top-level
 code at the bottom. That way, your functions are guaranteed to be
 defined and assigned by the time Python runs the code that uses
 them.

from Copies Names but Doesn’t Link
Although it’s commonly used, the from statement is the source of a variety of potential gotchas in Python.
 As we’ve learned, the from statement
 is really an assignment to names in the importer’s scope—a name-copy
 operation, not a name aliasing. The implications of this are the same as
 for all assignments in Python, but they’re subtle, especially given that
 the code that shares the objects lives in different files. For instance,
 suppose we define the following module, nested1.py:
nested1.py
X = 99
def printer(): print(X)
If we import its two names using from in another module, nested2.py, we get copies of those names, not
 links to them. Changing a name in the importer resets only the binding
 of the local version of that name, not the name in nested1.py:
nested2.py
from nested1 import X, printer # Copy names out
X = 88 # Changes my "X" only!
printer() # nested1's X is still 99

% python nested2.py
99
If we use import to get the
 whole module and then assign to a qualified name, however, we change the
 name in nested1.py. Attribute
 qualification directs Python to a name in the module object, rather than
 a name in the importer, nested3.py:
nested3.py
import nested1 # Get module as a whole
nested1.X = 88 # OK: change nested1's X
nested1.printer()

% python nested3.py
88

from * Can Obscure the Meaning of Variables
I mentioned this earlier but saved the details for here. Because you don’t
 list the variables you want when using the from
 module import * statement form, it can accidentally overwrite
 names you’re already using in your scope. Worse, it can make it
 difficult to determine where a variable comes from. This is especially
 true if the from * form is used on
 more than one imported file.
For example, if you use from *
 on three modules in the following, you’ll have no way of knowing what a
 raw function call really means, short of searching all three external
 module files—all of which may be in other directories:
>>> from module1 import * # Bad: may overwrite my names silently
>>> from module2 import * # Worse: no way to tell what we get!
>>> from module3 import *
>>> . . .

>>> func() # Huh???
The solution again is not to do this: try to explicitly list the
 attributes you want in your from
 statements, and restrict the from *
 form to at most one imported module per file. That way, any undefined
 names must by deduction be in the module named in the single from *. You can avoid the issue altogether if
 you always use import instead of
 from, but that advice is too harsh;
 like much else in programming, from
 is a convenient tool if used wisely. Even this example isn’t an absolute
 evil—it’s OK for a program to use this technique to collect names in a
 single space for convenience, as long as it’s well known.

reload May Not Impact from Imports
Here’s another from-related
 gotcha: as discussed previously, because from copies (assigns) names when run, there’s
 no link back to the modules where the names came from. Names imported
 with from simply become references to
 objects, which happen to have been referenced by the same names in the
 importee when the from ran.
Because of this behavior, reloading the importee has no effect on
 clients that import its names using from. That is, the client’s names will still
 reference the original objects fetched with from, even if the names in the original module
 are later reset:
from module import X # X may not reflect any module reloads!
 . . .
from imp import reload
reload(module) # Changes module, but not my names
X # Still references old object
To make reloads more effective, use import and name qualification instead of
 from. Because qualifications always
 go back to the module, they will find the new bindings of module names
 after reloading has updated the module’s content in
 place:
import module # Get module, not names
 . . .
from imp import reload
reload(module) # Changes module in place
module.X # Get current X: reflects module reloads
As a related consequence, our transitive reloader earlier in this
 chapter doesn’t apply to names fetched with from, only import; again, if you’re going to use reloads,
 you’re probably better off with import.

reload, from, and Interactive Testing
In fact, the prior gotcha is even more subtle than it appears. Chapter 3 warned that it’s usually better not to
 launch programs with imports and reloads because of the complexities
 involved. Things get even worse when from is brought into the mix. Python beginners
 most often stumble onto its issues in scenarios like this—imagine that
 after opening a module file in a text edit window, you launch an
 interactive session to load and test your module with from:
from module import function
function(1, 2, 3)
Finding a bug, you jump back to the edit window, make a change,
 and try to reload the module this way:
from imp import reload
reload(module)
This doesn’t work, because the from statement assigned only the name function, not module. To refer to the module in a reload, you have to first bind its name with
 an import statement at least
 once:
from imp import reload
import module
reload(module)
function(1, 2, 3)
However, this doesn’t quite work either—reload updates the module object in place, but
 as discussed in the preceding section, names like function that were copied out of the module in
 the past still refer to the old objects; in this
 instance, function is still the
 original version of the function. To really get the new function, you
 must refer to it as module.function
 after the reload, or rerun the
 from:
from imp import reload
import module
reload(module)
from module import function # Or give up and use module.function()
function(1, 2, 3)
Now, the new version of the function will finally run, but it
 seems an awful lot of work to get there.
As you can see, there are problems inherent in using reload with from: not only do you have to remember to
 reload after imports, but you also have to remember to rerun your
 from statements after reloads. This
 is complex enough to trip up even an expert once in a while. In fact,
 the situation has gotten even worse in Python 3.X, because you must also
 remember to import reload
 itself!
The short story is that you should not expect reload and from to play together nicely. Again, the best
 policy is not to combine them at all—use reload with import, or launch your programs other ways, as
 suggested in Chapter 3: using the Run→Run
 Module menu option in IDLE, file icon clicks, system command lines, or
 the exec built-in function.

Recursive from Imports May Not Work
I saved the most bizarre (and, thankfully, obscure) gotcha for last.
 Because imports execute a file’s statements from top to bottom, you need
 to be careful when using modules that import each other. This is often
 called recursive imports, but the recursion doesn’t
 really occur (in fact, circular may be a better
 term here)—such imports won’t get stuck in infinite importing loops.
 Still, because the statements in a module may not all have been run when
 it imports another module, some of its names may not yet exist.
If you use import to fetch the
 module as a whole, this probably doesn’t matter; the module’s names
 won’t be accessed until you later use qualification to fetch their
 values, and by that time the module is likely complete. But if you use
 from to fetch specific names, you
 must bear in mind that you will only have access to names in that module
 that have already been assigned when a recursive import is kicked
 off.
For instance, consider the following modules, recur1 and recur2. recur1 assigns a name X, and then imports recur2 before assigning the name Y. At this point, recur2 can fetch recur1 as a whole with an import—it already exists in Python’s internal
 modules table, which makes it importable, and also prevents the imports
 from looping. But if recur2 uses
 from, it will be able to see only the
 name X; the name Y, which is assigned below the import in recur1, doesn’t yet exist, so you get an
 error:
recur1.py
X = 1
import recur2 # Run recur2 now if it doesn't exist
Y = 2

recur2.py
from recur1 import X # OK: "X" already assigned
from recur1 import Y # Error: "Y" not yet assigned

C:\code> py −3
>>> import recur1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File ".\recur1.py", line 2, in <module>
 import recur2
 File ".\recur2.py", line 2, in <module>
 from recur1 import Y
ImportError: cannot import name Y
Python avoids rerunning recur1’s statements when they are imported
 recursively from recur2 (otherwise
 the imports would send the script into an infinite loop that might
 require a Ctrl-C solution or worse), but recur1’s namespace is incomplete when it’s
 imported by recur2.
The solution? Don’t use from in
 recursive imports (no, really!). Python won’t get stuck in a cycle if
 you do, but your programs will once again be dependent on the order of
 the statements in the modules. In fact, there are two ways out of this
 gotcha:
	You can usually eliminate import cycles like this by careful
 design—maximizing cohesion and minimizing coupling are good first
 steps.

	If you can’t break the cycles completely, postpone module name
 accesses by using import and
 attribute qualification (instead of from and direct names), or by running your
 froms either inside functions
 (instead of at the top level of the module) or near the bottom of
 your file to defer their execution.

There is additional perspective on this issue in the exercises at
 the end of this chapter—which we’ve officially reached.

Chapter Summary
This chapter surveyed some more advanced module-related concepts. We
 studied data hiding techniques, enabling new language features with the
 __future__ module, the __name__ usage mode variable, transitive
 reloads, importing by name strings, and more. We also explored and
 summarized module design issues, wrote some more substantial programs, and
 looked at common mistakes related to modules to help you avoid them in
 your code.
The next chapter begins our look at Python’s
 class—its object-oriented programming tool. Much of
 what we’ve covered in the last few chapters will apply there, too: classes
 live in modules and are namespaces as well, but they add an extra
 component to attribute lookup called inheritance
 search. As this is the last chapter in this part of the book,
 however, before we dive into that topic, be sure to work through this
 part’s set of lab exercises. And before that, here is this chapter’s quiz
 to review the topics covered here.

Test Your Knowledge: Quiz
	What is significant about variables at the top level of a module
 whose names begin with a single underscore?

	What does it mean when a module’s __name__ variable is the string "__main__"?

	If the user interactively types the name of a module to test,
 how can your code import it?

	How is changing sys.path
 different from setting PYTHONPATH
 to modify the module search path?

	If the module __future__
 allows us to import from the future, can we also import from the
 past?

Test Your Knowledge: Answers
	Variables at the top level of a module whose names begin with a
 single underscore are not copied out to the
 importing scope when the from *
 statement form is used. They can still be accessed by an import or the normal from statement form, though. The __all__ list is similar, but the logical
 converse; its contents are the only names that
 are copied out on a from
 *.

	If a module’s __name__
 variable is the string "__main__",
 it means that the file is being executed as a top-level script instead
 of being imported from another file in the program. That is, the file
 is being used as a program, not a library. This usage mode variable
 supports dual-mode code and tests.

	User input usually comes into a script as a string; to import
 the referenced module given its string name, you can build and run an
 import statement with exec, or pass the string name in a call to
 the __import__ or importlib.import_module.

	Changing sys.path only
 affects one running program (process), and is temporary—the change
 goes away when the program ends. PYTHONPATH settings live in the operating
 system—they are picked up globally by all your programs on a machine,
 and changes to these settings endure after programs exit.

	No, we can’t import from the past in Python. We can install (or
 stubbornly use) an older version of the language, but the latest
 Python is generally the best Python (at least within lines—see 2.X
 longevity!).

Test Your Knowledge: Part V Exercises
See “Part V, Modules and Packages” in Appendix D for the solutions.
	Import basics. Write a program that counts the lines and characters in
 a file (similar in spirit to part of what wc does on Unix). With your text editor,
 code a Python module called mymod.py that exports three top-level
 names:
	A countLines(name)
 function that reads an input file and counts the number of lines
 in it (hint: file.readlines
 does most of the work for you, and len does the rest, though you could
 count with for and file
 iterators to support massive files too).

	A countChars(name)
 function that reads an input file and counts the number of
 characters in it (hint: file.read returns a single string, which
 may be used in similar ways).

	A test(name) function
 that calls both counting functions with a given input filename.
 Such a filename generally might be passed in, hardcoded, input
 with the input built-in
 function, or pulled from a command line via the sys.argv list shown in this chapter’s
 formats.py and reloadall.py examples; for now, you can
 assume it’s a passed-in function argument.

All three mymod functions
 should expect a filename string to be passed in. If you type more than
 two or three lines per function, you’re working much too hard—use the
 hints I just gave!
Next, test your module interactively, using import and attribute references to fetch
 your exports. Does your PYTHONPATH
 need to include the directory where you created mymod.py? Try running your module on
 itself: for example, test("mymod.py"). Note that test opens the file twice; if you’re feeling
 ambitious, you may be able to improve this by passing an open file
 object into the two count functions (hint: file.seek(0) is a file rewind).

	from/from *. Test your
 mymod module from exercise 1
 interactively by using from to load
 the exports directly, first by name, then using the from * variant to fetch everything.

	__main__. Add a line in your mymod module that calls the test function automatically only when the
 module is run as a script, not when it is imported. The line you add
 will probably test the value of __name__ for the string "__main__", as shown in this chapter. Try
 running your module from the system command line; then, import the
 module and test its functions interactively. Does it still work in
 both modes?

	Nested imports. Write a second module,
 myclient.py, that imports
 mymod and tests its functions; then
 run myclient from the system
 command line. If myclient uses
 from to fetch from mymod, will mymod’s functions be accessible from the top
 level of myclient? What if it
 imports with import instead? Try
 coding both variations in myclient
 and test interactively by importing myclient and inspecting its __dict__ attribute.

	Package imports. Import your file from a
 package. Create a subdirectory called mypkg nested in a directory on your module
 import search path, copy or move the mymod.py module file you created in
 exercise 1 or 3 into the new directory, and try to import it with a
 package import of the form import
 mypkg.mymod and call its functions. Try to fetch your
 counter functions with a from
 too.
You’ll need to add an __init__.py file in the directory your
 module was moved to make this go, but it should work on all major
 Python platforms (that’s part of the reason Python uses “.” as a path
 separator). The package directory you create can be simply a
 subdirectory of the one you’re working in; if it is, it will be found
 via the home directory component of the search path, and you won’t
 have to configure your path. Add some code to your __init__.py, and see if it runs on each
 import.

	Reloads. Experiment with module reloads:
 perform the tests in Chapter 23’s
 changer.py example, changing the
 called function’s message and/or behavior repeatedly, without stopping
 the Python interpreter. Depending on your system, you might be able to
 edit changer in another window, or
 suspend the Python interpreter and edit in the same window (on Unix, a
 Ctrl-Z key combination usually suspends the current process, and an
 fg command later resumes it, though
 a text edit window probably works just as well).

	Circular imports. In the section on
 recursive (a.k.a. circular) import gotchas, importing recur1 raised an error. But if you restart
 Python and import recur2
 interactively, the error doesn’t occur—test this and see for yourself.
 Why do you think it works to import recur2, but not recur1? (Hint: Python stores new modules in
 the built-in sys.modules table—a
 dictionary—before running their code; later imports fetch the module
 from this table first, whether the module is “complete” yet or not.)
 Now, try running recur1 as a
 top-level script file: python
 recur1.py. Do you get the same error that occurs when
 recur1 is imported interactively?
 Why? (Hint: when modules are run as programs, they aren’t imported, so
 this case has the same effect as importing recur2 interactively; recur2 is the first module imported.) What
 happens when you run recur2 as a
 script? Circular imports are uncommon and rarely this bizarre in
 practice. On the other hand, if you can understand why they are a
 potential problem, you know a lot about Python’s import semantics.

1 As we saw briefly in “Other Ways to Access Globals” in Chapter 17, because a function can access its enclosing
 module by going through the sys.modules table like this, it can also be
 used to emulate the effect of the global statement. For instance, the effect
 of global X; X=0 can be simulated
 (albeit with much more typing!) by saying this inside a function:
 import sys; glob=sys.modules[__name__];
 glob.X=0. Remember, each module gets a __name__ attribute for free; it’s visible as
 a global name inside the functions within the module. This trick
 provides another way to change both local and global variables of the
 same name inside a function.
2 You can preload tools such as mydir.listing and the reloader we’ll meet in
 a moment into the interactive namespace by importing them in the file
 referenced by the PYTHONSTARTUP
 environment variable. Because code in the startup file runs in the
 interactive namespace (module __main__), importing common tools in the
 startup file can save you some typing. See Appendix A for more details.

Part VI. Classes and OOP

Chapter 26. OOP: The Big Picture
So far in this book, we’ve been using the term “object” generically.
 Really, the code written up to this point has been
 object-based—we’ve passed objects around our scripts,
 used them in expressions, called their methods, and so on. For our code to
 qualify as being truly object-oriented (OO), though,
 our objects will generally need to also participate in something called an
 inheritance hierarchy.
This chapter begins our exploration of the Python
 class—a coding structure and device used to implement
 new kinds of objects in Python that support inheritance. Classes are
 Python’s main object-oriented programming (OOP) tool, so we’ll also look at
 OOP basics along the way in this part of the book. OOP offers a different
 and often more effective way of programming, in which we factor code to
 minimize redundancy, and write new programs by
 customizing existing code instead of changing it in
 place.
In Python, classes are created with a new statement: the class. As you’ll see, the objects defined with
 classes can look a lot like the built-in types we studied earlier in the
 book. In fact, classes really just apply and extend the ideas we’ve already
 covered; roughly, they are packages of functions that use and process
 built-in object types. Classes, though, are designed to create and manage
 new objects, and support inheritance—a mechanism of code
 customization and reuse above and beyond anything we’ve seen so far.
One note up front: in Python, OOP is entirely optional, and you don’t
 need to use classes just to get started. You can get plenty of work done
 with simpler constructs such as functions, or even simple top-level script
 code. Because using classes well requires some up-front planning, they tend
 to be of more interest to people who work in strategic
 mode (doing long-term product development) than to people who work in
 tactical mode (where time is in very short
 supply).
Still, as you’ll see in this part of the book, classes turn out to be
 one of the most useful tools Python provides. When used well, classes can
 actually cut development time radically. They’re also employed in popular
 Python tools like the tkinter GUI API, so most Python programmers will
 usually find at least a working knowledge of class basics helpful.
Why Use Classes?
Remember when I told you that programs “do things with stuff” in Chapter 4 and Chapter 10? In simple terms, classes are
 just a way to define new sorts of stuff, reflecting
 real objects in a program’s domain. For instance, suppose we decide to
 implement that hypothetical pizza-making robot we used as an example in
 Chapter 16. If we implement it using classes, we
 can model more of its real-world structure and relationships. Two aspects
 of OOP prove useful here:
	Inheritance
	Pizza-making robots are kinds of robots, so they possess the
 usual robot-y properties. In OOP terms, we say they “inherit”
 properties from the general category of all robots. These common
 properties need to be implemented only once for the general case and
 can be reused in part or in full by all types of robots we may build
 in the future.

	Composition
	Pizza-making robots are really collections of components that work
 together as a team. For instance, for our robot to be successful, it
 might need arms to roll dough, motors to maneuver to the oven, and
 so on. In OOP parlance, our robot is an example of composition; it
 contains other objects that it activates to do its bidding. Each
 component might be coded as a class, which defines its own behavior
 and relationships.

General OOP ideas like inheritance and composition apply to any
 application that can be decomposed into a set of objects. For example, in
 typical GUI systems, interfaces are written as collections of
 widgets—buttons, labels, and so on—which are all drawn when their
 container is drawn (composition). Moreover, we may be
 able to write our own custom widgets—buttons with unique fonts, labels
 with new color schemes, and the like—which are specialized versions of
 more general interface devices (inheritance).
From a more concrete programming perspective, classes are Python
 program units, just like functions and modules: they are another
 compartment for packaging logic and data. In fact, classes also define new
 namespaces, much like modules. But, compared to other program units we’ve
 already seen, classes have three critical distinctions that make them more
 useful when it comes to building new objects:
	Multiple instances
	Classes are essentially factories for generating one or more
 objects. Every time we call a class, we generate a new object with a
 distinct namespace. Each object generated from a class has access to
 the class’s attributes and gets a namespace of
 its own for data that varies per object. This is similar to the
 per-call state retention of Chapter 17’s closure
 functions, but is explicit and natural in classes, and is just one
 of the things that classes do. Classes offer a complete programming
 solution.

	Customization via inheritance
	Classes also support the OOP notion of inheritance; we can
 extend a class by redefining its attributes outside the class itself
 in new software components coded as subclasses. More generally,
 classes can build up namespace hierarchies, which define names to be
 used by objects created from classes in the hierarchy. This supports
 multiple customizable behaviors more directly than other
 tools.

	Operator overloading
	By providing special protocol methods, classes can define objects that
 respond to the sorts of operations we saw at work on built-in types.
 For instance, objects made with classes can be sliced, concatenated,
 indexed, and so on. Python provides hooks that classes can use to
 intercept and implement any built-in type operation.

At its base, the mechanism of OOP in Python is largely just
 two bits of magic: a special first argument in
 functions (to receive the subject of a call) and inheritance attribute
 search (to support programming by customization). Other than this, the
 model is largely just functions that ultimately process built-in types.
 While not radically new, though, OOP adds an extra layer of structure that
 supports better programming than flat procedural models. Along with the
 functional tools we met earlier, it represents a major abstraction step
 above computer hardware that helps us build more sophisticated
 programs.

OOP from 30,000 Feet
Before we see what this all means in terms of code, I’d like to say
 a few words about the general ideas behind OOP. If you’ve never done
 anything object-oriented in your life before now, some of the terminology
 in this chapter may seem a bit perplexing on the first pass. Moreover, the
 motivation for these terms may be elusive until you’ve had a chance to
 study the ways that programmers apply them in larger systems. OOP is as
 much an experience as a technology.
Attribute Inheritance Search
The good news is that OOP is much simpler to understand and use in Python than in other
 languages, such as C++ or Java. As a dynamically typed scripting
 language, Python removes much of the syntactic clutter and complexity
 that clouds OOP in other tools. In fact, much of the OOP story in Python
 boils down to this expression:
object.attribute
We’ve been using this expression throughout the book to access
 module attributes, call methods of objects, and so on. When we say this
 to an object that is derived from a class statement, however, the expression kicks
 off a search in Python—it searches a tree of linked
 objects, looking for the first appearance of
 attribute that it can find. When classes are
 involved, the preceding Python expression effectively translates to the
 following in natural language:
Find the first occurrence of
 attribute by looking in
 object, then in all classes above it, from
 bottom to top and left to right.

In other words, attribute fetches are simply tree searches. The
 term inheritance is applied because objects lower
 in a tree inherit attributes attached to objects higher in that tree. As
 the search proceeds from the bottom up, in a sense, the objects linked
 into a tree are the union of all the attributes defined in all their
 tree parents, all the way up the tree.
In Python, this is all very literal: we really do build up trees
 of linked objects with code, and Python really does climb this tree at
 runtime searching for attributes every time we use the
 object.attribute
 expression. To make this more concrete, Figure 26-1 sketches an
 example of one of these trees.
Figure 26-1. A class tree, with two instances at the bottom (I1 and I2), a
 class above them (C1), and two superclasses at the top (C2 and C3).
 All of these objects are namespaces (packages of variables), and the
 inheritance search is simply a search of the tree from bottom to top
 looking for the lowest occurrence of an attribute name. Code implies
 the shape of such trees.

In this figure, there is a tree of five objects labeled with
 variables, all of which have attached attributes, ready to be searched.
 More specifically, this tree links together three class
 objects (the ovals C1,
 C2, and C3) and two instance
 objects (the rectangles I1
 and I2) into an inheritance search
 tree. Notice that in the Python object model, classes and the instances
 you generate from them are two distinct object types:
	Classes
	Serve as instance factories. Their attributes provide
 behavior—data and functions—that is inherited by all the instances
 generated from them (e.g., a function to compute an employee’s
 salary from pay and hours).

	Instances
	Represent the concrete items in a program’s domain. Their
 attributes record data that varies per specific object (e.g., an
 employee’s Social Security number).

In terms of search trees, an instance inherits attributes from its
 class, and a class inherits attributes from all classes above it in the
 tree.
In Figure 26-1, we
 can further categorize the ovals by their relative positions in the
 tree. We usually call classes higher in the tree (like C2 and C3)
 superclasses; classes lower in the tree (like C1) are known as
 subclasses. These terms refer to both relative tree positions and roles.
 Superclasses provide behavior shared by all their subclasses, but
 because the search proceeds from the bottom up, subclasses may override
 behavior defined in their superclasses by redefining superclass names
 lower in the tree.1
As these last few words are really the crux of the matter of
 software customization in OOP, let’s expand on this concept. Suppose we
 build up the tree in Figure 26-1, and then say
 this:
I2.w
Right away, this code invokes inheritance. Because this is an
 object.attribute
 expression, it triggers a search of the tree in Figure 26-1—Python will search
 for the attribute w by looking in
 I2 and above. Specifically, it will
 search the linked objects in this order:
I2, C1, C2, C3
and stop at the first attached w it finds (or raise an error if w isn’t found at all). In this case, w won’t be found until C3 is searched because it appears only in that
 object. In other words, I2.w resolves
 to C3.w by virtue of the automatic
 search. In OOP terminology, I2
 “inherits” the attribute w from
 C3.
Ultimately, the two instances inherit four attributes from their
 classes: w, x, y, and
 z. Other attribute references will
 wind up following different paths in the tree. For example:
	I1.x and I2.x both find x in C1
 and stop because C1 is lower than
 C2.

	I1.y and I2.y both find y in C1
 because that’s the only place y
 appears.

	I1.z and I2.z both find z in C2
 because C2 is further to the left
 than C3.

	I2.name finds name in I2 without climbing the tree at
 all.

Trace these searches through the tree in Figure 26-1 to get a feel for
 how inheritance searches work in Python.
The first item in the preceding list is perhaps the most important
 to notice—because C1 redefines the
 attribute x lower in the tree, it
 effectively replaces the version above it in
 C2. As you’ll see in a moment, such
 redefinitions are at the heart of software customization in OOP—by
 redefining and replacing the attribute, C1 effectively customizes what it inherits
 from its superclasses.

Classes and Instances
Although they are technically two separate object types in the Python model, the classes
 and instances we put in these trees are almost identical—each type’s
 main purpose is to serve as another kind of namespace—a package of variables,
 and a place where we can attach attributes. If classes and instances
 therefore sound like modules, they should; however, the objects in class
 trees also have automatically searched links to other namespace objects,
 and classes correspond to statements, not entire files.
The primary difference between classes and instances is that
 classes are a kind of factory for generating
 instances. For example, in a realistic application, we might have an
 Employee class that defines what it
 means to be an employee; from that class, we generate actual Employee instances. This is another difference
 between classes and modules—we only ever have one instance of a given
 module in memory (that’s why we have to reload a module to get its new
 code), but with classes, we can make as many instances as we
 need.
Operationally, classes will usually have functions attached to them (e.g., computeSalary), and the instances will have
 more basic data items used by the class’s functions (e.g., hoursWorked). In fact, the object-oriented
 model is not that different from the classic data-processing model of
 programs plus records—in OOP,
 instances are like records with “data,” and classes are the “programs”
 for processing those records. In OOP, though, we also have the notion of
 an inheritance hierarchy, which supports software customization better
 than earlier models.

Method Calls
In the prior section, we saw how the attribute reference I2.w in our example class tree was translated
 to C3.w by the inheritance search
 procedure in Python. Perhaps just as important to understand as the
 inheritance of attributes, though, is what happens when we try to
 call methods—functions attached to
 classes as attributes.
If this I2.w reference is a
 function call, what it really means is “call the
 C3.w function to process I2.” That is, Python will automatically map
 the call I2.w() into the call
 C3.w(I2), passing in the instance as
 the first argument to the inherited function.
In fact, whenever we call a function attached to a class in this fashion, an instance
 of the class is always implied. This implied subject or context is part
 of the reason we refer to this as an
 object-oriented model—there is always a subject
 object when an operation is run. In a more realistic example, we might
 invoke a method called giveRaise
 attached as an attribute to an Employee class; such a call has no meaning
 unless qualified with the employee to whom the raise should be
 given.
As we’ll see later, Python passes in the implied instance to a
 special first argument in the method, called self by convention. Methods go through this
 argument to process the subject of the call. As we’ll also learn,
 methods can be called through either an instance—bob.giveRaise()—or a class—Employee.giveRaise(bob)—and both forms serve
 purposes in our scripts. These calls also illustrate both of the key
 ideas in OOP: to run a bob.giveRaise() method call, Python:
	Looks up giveRaise from
 bob, by inheritance search

	Passes bob to the located
 giveRaise function, in the
 special self argument

When you call Employee.giveRaise(bob), you’re just
 performing both steps yourself. This description is technically the
 default case (Python has additional method types we’ll meet later), but
 it applies to the vast majority of the OOP code written in the language.
 To see how methods receive their subjects, though, we need to move on to
 some code.

Coding Class Trees
Although we are speaking in the abstract here, there is tangible code behind all these ideas, of
 course. We construct trees and their objects with class statements and class calls, which we’ll
 meet in more detail later. In short:
	Each class statement
 generates a new class object.

	Each time a class is called, it generates a new instance
 object.

	Instances are automatically linked to the classes from which
 they are created.

	Classes are automatically linked to their superclasses
 according to the way we list them in parentheses in a class header line; the left-to-right order
 there gives the order in the tree.

To build the tree in Figure 26-1, for example, we
 would run Python code of the following form. Like function definition,
 classes are normally coded in module files and are run during an import
 (I’ve omitted the guts of the class
 statements here for brevity):
class C2: ... # Make class objects (ovals)
class C3: ...
class C1(C2, C3): ... # Linked to superclasses (in this order)

I1 = C1() # Make instance objects (rectangles)
I2 = C1() # Linked to their classes
Here, we build the three class objects by running three class statements, and make the two instance
 objects by calling the class C1
 twice, as though it were a function. The instances remember the class
 they were made from, and the class C1
 remembers its listed superclasses.
Technically, this example is using something called multiple
 inheritance, which simply means that a class has more than
 one superclass above it in the class tree—a useful technique when you
 wish to combine multiple tools. In Python, if there is more than one
 superclass listed in parentheses in a class statement (like C1’s here), their left-to-right order gives
 the order in which those superclasses will be searched for attributes by
 inheritance. The leftmost version of a name is used by default, though
 you can always choose a name by asking for it from the class it lives in
 (e.g., C3.z).
Because of the way inheritance searches proceed, the object to
 which you attach an attribute turns out to be crucial—it determines the
 name’s scope. Attributes attached to instances pertain only to those
 single instances, but attributes attached to classes are shared by all
 their subclasses and instances. Later, we’ll study the code that hangs
 attributes on these objects in depth. As we’ll find:
	Attributes are usually attached to classes by assignments made
 at the top level in class
 statement blocks, and not nested inside function def statements there.

	Attributes are usually attached to instances by assignments to
 the special argument passed to functions coded inside classes,
 called self.

For example, classes provide behavior for their instances with
 method functions we create by coding def statements inside class statements. Because such nested defs assign names within the class, they wind
 up attaching attributes to the class object that will be inherited by
 all instances and subclasses:
class C2: ... # Make superclass objects
class C3: ...

class C1(C2, C3): # Make and link class C1
 def setname(self, who): # Assign name: C1.setname
 self.name = who # Self is either I1 or I2

I1 = C1() # Make two instances
I2 = C1()
I1.setname('bob') # Sets I1.name to 'bob'
I2.setname('sue') # Sets I2.name to 'sue'
print(I1.name) # Prints 'bob'
There’s nothing syntactically unique about def in this context. Operationally, though,
 when a def appears
 inside a class like this, it is
 usually known as a method, and it automatically
 receives a special first argument—called self by convention—that provides a handle back
 to the instance to be processed. Any values you pass to the method
 yourself go to arguments after self
 (here, to who).2
Because classes are factories for multiple instances, their
 methods usually go through this automatically passed-in self argument whenever they need to fetch or
 set attributes of the particular instance being processed by a method
 call. In the preceding code, self is
 used to store a name in one of two instances.
Like simple variables, attributes of classes and instances are not
 declared ahead of time, but spring into existence the first time they
 are assigned values. When a method assigns to a self attribute, it creates or changes an
 attribute in an instance at the bottom of the class tree (i.e., one of
 the rectangles in Figure 26-1) because self automatically refers to the instance
 being processed—the subject of the call.
In fact, because all the objects in class trees are just namespace
 objects, we can fetch or set any of their attributes by going through
 the appropriate names. Saying C1.setname is as valid as saying I1.setname, as long as the names C1 and I1
 are in your code’s scopes.

Operator Overloading
As currently coded, our C1
 class doesn’t attach a name
 attribute to an instance until the setname method is called. Indeed, referencing
 I1.name before calling I1.setname would produce an undefined name
 error. If a class wants to guarantee that an attribute like name is always set in its instances, it more
 typically will fill out the attribute at construction time, like
 this:
class C2: ... # Make superclass objects
class C3: ...

class C1(C2, C3):
 def __init__(self, who): # Set name when constructed
 self.name = who # Self is either I1 or I2

I1 = C1('bob') # Sets I1.name to 'bob'
I2 = C1('sue') # Sets I2.name to 'sue'
print(I1.name) # Prints 'bob'
If it’s coded or inherited, Python automatically calls a method
 named __init__ each time an instance
 is generated from a class. The new instance is passed in to the self argument of __init__ as usual, and any values listed in
 parentheses in the class call go to arguments two and beyond. The effect
 here is to initialize instances when they are made, without requiring
 extra method calls.
The __init__ method is
 known as the constructor because of
 when it is run. It’s the most commonly used representative of a larger
 class of methods called operator overloading
 methods, which we’ll discuss in more detail in the chapters
 that follow. Such methods are inherited in class trees as usual and have
 double underscores at the start and end of their names to make them
 distinct. Python runs them automatically when instances that support
 them appear in the corresponding operations, and they are mostly an
 alternative to using simple method calls. They’re also optional: if
 omitted, the operations are not supported. If no __init__ is present, class calls return an
 empty instance, without initializing it.
For example, to implement set intersection, a class might either
 provide a method named intersect, or
 overload the & expression
 operator to dispatch to the required logic by coding a method named
 __and__. Because the operator scheme
 makes instances look and feel more like built-in types, it allows some
 classes to provide a consistent and natural interface, and be compatible
 with code that expects a built-in type. Still, apart from the __init__ constructor—which appears in most
 realistic classes—many programs may be better off with simpler named
 methods unless their objects are similar to built-ins. A giveRaise may make sense for an Employee, but a & might not.

OOP Is About Code Reuse
And that, along with a few syntax details, is most of the OOP story in Python. Of course,
 there’s a bit more to it than just inheritance. For example, operator
 overloading is much more general than I’ve described so far—classes may
 also provide their own implementations of operations such as indexing,
 fetching attributes, printing, and more. By and large, though, OOP is
 about looking up attributes in trees with a special first argument in
 functions.
So why would we be interested in building and searching trees of
 objects? Although it takes some experience to see how, when used well,
 classes support code reuse in ways that other
 Python program components cannot. In fact, this is their highest
 purpose. With classes, we code by customizing existing software, instead
 of either changing existing code in place or starting from scratch for
 each new project. This turns out to be a powerful paradigm in realistic
 programming.
At a fundamental level, classes are really just packages of
 functions and other names, much like modules. However, the automatic
 attribute inheritance search that we get with classes supports
 customization of software above and beyond what we can do with modules
 and functions. Moreover, classes provide a natural structure for code
 that packages and localizes logic and names, and so aids in
 debugging.
For instance, because methods are simply functions with a special
 first argument, we can mimic some of their behavior by manually passing
 objects to be processed to simple functions. The participation of
 methods in class inheritance, though, allows us to naturally customize
 existing software by coding subclasses with new method definitions,
 rather than changing existing code in place. There is really no such
 concept with modules and functions.
Polymorphism and classes
As an example, suppose you’re assigned the task of implementing an employee
 database application. As a Python OOP programmer, you might begin by
 coding a general superclass that defines default behaviors common to
 all the kinds of employees in your organization:
class Employee: # General superclass
 def computeSalary(self): ... # Common or default behaviors
 def giveRaise(self): ...
 def promote(self): ...
 def retire(self): ...
Once you’ve coded this general behavior, you can specialize it
 for each specific kind of employee to reflect how the various types
 differ from the norm. That is, you can code subclasses that customize
 just the bits of behavior that differ per employee type; the rest of
 the employee types’ behavior will be inherited from the more general
 class. For example, if engineers have a unique salary computation rule
 (perhaps it’s not hours times rate), you can replace just that one
 method in a subclass:
class Engineer(Employee): # Specialized subclass
 def computeSalary(self): ... # Something custom here
Because the computeSalary
 version here appears lower in the class tree, it will replace
 (override) the general version in Employee. You then create instances of the
 kinds of employee classes that the real employees belong to, to get
 the correct behavior:
bob = Employee() # Default behavior
sue = Employee() # Default behavior
tom = Engineer() # Custom salary calculator
Notice that you can make instances of any class in a tree, not
 just the ones at the bottom—the class you make an instance from
 determines the level at which the attribute search will begin, and
 thus which versions of the methods it will employ.
Ultimately, these three instance objects might wind up embedded
 in a larger container object—for instance, a list, or an instance of
 another class—that represents a department or company using the
 composition idea mentioned at the start of this chapter. When you
 later ask for these employees’ salaries, they will be computed
 according to the classes from which the objects were made, due to the
 principles of the inheritance search:
company = [bob, sue, tom] # A composite object
for emp in company:
 print(emp.computeSalary()) # Run this object's version: default or custom
This is yet another instance of the idea of
 polymorphism introduced in Chapter 4 and expanded in Chapter 16. Recall that polymorphism means that the
 meaning of an operation depends on the object being operated on. That
 is, code shouldn’t care about what an object is,
 only about what it does. Here, the method
 computeSalary is located by
 inheritance search in each object before it is called. The net effect
 is that we automatically run the correct version for the object being processed.
 Trace the code to see why.3
In other applications, polymorphism might also be used to
 hide (i.e., encapsulate) interface
 differences. For example, a program that processes data streams might
 be coded to expect objects with input and output methods, without
 caring what those methods actually do:
def processor(reader, converter, writer):
 while True:
 data = reader.read()
 if not data: break
 data = converter(data)
 writer.write(data)
By passing in instances of subclasses that specialize the
 required read and write method interfaces for various data
 sources, we can reuse the processor
 function for any data source we need to use, both now and in the
 future:
class Reader:
 def read(self): ... # Default behavior and tools
 def other(self): ...
class FileReader(Reader):
 def read(self): ... # Read from a local file
class SocketReader(Reader):
 def read(self): ... # Read from a network socket
...
processor(FileReader(...), Converter, FileWriter(...))
processor(SocketReader(...), Converter, TapeWriter(...))
processor(FtpReader(...), Converter, XmlWriter(...))
Moreover, because the internal implementations of those read and write methods have been factored into single
 locations, they can be changed without impacting code such as this
 that uses them. The processor
 function might even be a class itself to allow the conversion logic of
 converter to be filled in by
 inheritance, and to allow readers and writers to be embedded by
 composition (we’ll see how this works later in this part of the
 book).

Programming by customization
Once you get used to programming this way (by software
 customization), you’ll find that when it’s time to write a new
 program, much of your work may already be done—your task largely
 becomes one of mixing together existing superclasses that already
 implement the behavior required by your program. For example, someone
 else might have written the Employee, Reader, and Writer classes in this section’s examples
 for use in completely different programs. If so, you get all of that
 person’s code “for free.”
In fact, in many application domains, you can fetch or purchase
 collections of superclasses, known as frameworks,
 that implement common programming tasks as classes, ready to be mixed
 into your applications. These frameworks might provide database
 interfaces, testing protocols, GUI toolkits, and so on. With
 frameworks, you often simply code a subclass that fills in an expected
 method or two; the framework classes higher in the tree do most of the
 work for you. Programming in such an OOP world is just a matter of
 combining and specializing already debugged code by writing subclasses
 of your own.
Of course, it takes a while to learn how to leverage classes to
 achieve such OOP utopia. In practice, object-oriented work also
 entails substantial design work to fully realize the code reuse
 benefits of classes—to this end, programmers have begun cataloging
 common OOP structures, known as design patterns,
 to help with design issues. The actual code you write to do OOP in
 Python, though, is so simple that it will not in itself pose an
 additional obstacle to your OOP quest. To see why, you’ll have to
 move on to Chapter 27.

Chapter Summary
We took an abstract look at classes and OOP in this chapter, taking
 in the big picture before we dive into syntax details. As we’ve seen, OOP
 is mostly about an argument named self,
 and a search for attributes in trees of linked objects called inheritance.
 Objects at the bottom of the tree inherit attributes from objects higher
 up in the tree—a feature that enables us to program by customizing code,
 rather than changing it or starting from scratch. When used well, this
 model of programming can cut development time radically.
The next chapter will begin to fill in the coding details behind the
 picture painted here. As we get deeper into Python classes, though, keep
 in mind that the OOP model in Python is very simple; as we’ve seen here,
 it’s really just about looking up attributes in object trees and a special
 function argument. Before we move on, here’s a quick quiz to review what
 we’ve covered here.

Test Your Knowledge: Quiz
	What is the main point of OOP in Python?

	Where does an inheritance search look for an attribute?

	What is the difference between a class object and an instance
 object?

	Why is the first argument in a class’s method function
 special?

	What is the __init__ method
 used for?

	How do you create a class instance?

	How do you create a class?

	How do you specify a class’s superclasses?

Test Your Knowledge: Answers
	OOP is about code reuse—you factor code to minimize redundancy
 and program by customizing what already exists instead of changing
 code in place or starting from scratch.

	An inheritance search looks for an attribute first in the
 instance object, then in the class the instance was created from, then
 in all higher superclasses, progressing from the bottom to the top of
 the object tree, and from left to right (by default). The search stops
 at the first place the attribute is found. Because the lowest version
 of a name found along the way wins, class hierarchies naturally
 support customization by extension in new subclasses.

	Both class and instance objects are namespaces (packages of
 variables that appear as attributes). The main difference between them
 is that classes are a kind of factory for creating multiple instances.
 Classes also support operator overloading methods, which instances
 inherit, and treat any functions nested in the class as methods for
 processing instances.

	The first argument in a class’s method function is special
 because it always receives the instance object that is the implied
 subject of the method call. It’s usually called self by convention. Because method functions
 always have this implied subject and object context by default, we say
 they are “object-oriented” (i.e., designed to process or change
 objects).

	If the __init__ method is
 coded or inherited in a class, Python calls it automatically each time
 an instance of that class is created. It’s known as the constructor
 method; it is passed the new instance implicitly, as well as any
 arguments passed explicitly to the class name. It’s also the most
 commonly used operator overloading method. If no __init__ method is present, instances simply
 begin life as empty namespaces.

	You create a class instance by calling the class name as though
 it were a function; any arguments passed into the class name show up
 as arguments two and beyond in the __init__ constructor method. The new
 instance remembers the class it was created from for inheritance
 purposes.

	You create a class by running a class statement; like function definitions,
 these statements normally run when the enclosing module file is
 imported (more on this in the next chapter).

	You specify a class’s superclasses by listing them in
 parentheses in the class statement,
 after the new class’s name. The left-to-right order in which the
 classes are listed in the parentheses gives the left-to-right
 inheritance search order in the class tree.

1 In other literature and circles, you may also occasionally see
 the terms base classes and derived
 classes used to describe superclasses and subclasses,
 respectively. Python people and this book tend to use the latter
 terms.
2 If you’ve ever used C++ or Java, you’ll recognize that
 Python’s self is the same as the
 this pointer, but
 self is always explicit in both headers and
 bodies of Python methods to make attribute accesses more obvious: a
 name has fewer possible meanings.
3 The company list in this
 example could be a database if stored in a file with Python object
 pickling, introduced in Chapter 9, to make the
 employees persistent. Python also comes with a module named
 shelve, which allows the
 pickled representation of class instances to be stored in an
 access-by-key filesystem; we’ll deploy it in Chapter 28.

Chapter 27. Class Coding Basics
Now that we’ve talked about OOP in the abstract, it’s time to see how this translates to
 actual code. This chapter begins to fill in the syntax details behind the
 class model in Python.
If you’ve never been exposed to OOP in the past, classes can seem
 somewhat complicated if taken in a single dose. To make class coding easier
 to absorb, we’ll begin our detailed exploration of OOP by taking a first
 look at some basic classes in action in this chapter. We’ll expand on the
 details introduced here in later chapters of this part of the book, but in
 their basic form, Python classes are easy to understand.
In fact, classes have just three primary distinctions. At a base
 level, they are mostly just namespaces, much like the modules we studied in
 Part V. Unlike modules, though, classes
 also have support for generating multiple objects, for namespace
 inheritance, and for operator overloading. Let’s begin our class statement tour by exploring each of these
 three distinctions in turn.
Classes Generate Multiple Instance Objects
To understand how the multiple objects idea works, you have to first understand
 that there are two kinds of objects in Python’s OOP model:
 class objects and instance
 objects. Class objects provide default behavior and serve as factories for
 instance objects. Instance objects are the real objects your programs
 process—each is a namespace in its own right, but inherits (i.e., has
 automatic access to) names in the class from which it was created. Class
 objects come from statements, and instances come from calls; each time you
 call a class, you get a new instance of that class.
This object-generation concept is very different from most of the
 other program constructs we’ve seen so far in this book. In effect,
 classes are essentially factories for generating
 multiple instances. By contrast, only one copy of each module is ever
 imported into a single program. In fact, this is why reload works as it does, updating a
 single-instance shared object in place. With classes, each instance can
 have its own, independent data, supporting multiple versions of the object
 that the class models.
In this role, class instances are similar to the per-call state of
 the closure (a.k.a. factory) functions of Chapter 17, but this is a natural part of the class model, and
 state in classes is explicit attributes instead of implicit scope
 references. Moreover, this is just part of what classes do—they also
 support customization by inheritance, operator overloading, and multiple
 behaviors via methods. Generally speaking, classes are a more complete
 programming tool, though OOP and function programming are not
 mutually exclusive paradigms. We may combine them by using functional
 tools in methods, by coding methods that are themselves generators, by
 writing user-defined iterators (as we’ll see in Chapter 30), and so on.
The following is a quick summary of the bare essentials of Python
 OOP in terms of its two object types. As you’ll see, Python classes are in
 some ways similar to both defs and
 modules, but they may be quite different from what you’re used to in other
 languages.
Class Objects Provide Default Behavior
When we run a class statement,
 we get a class object. Here’s a rundown of the main properties of Python
 classes:
	The class statement
 creates a class object and assigns it a
 name. Just like the function def statement, the Python class statement is an
 executable statement. When reached and run, it
 generates a new class object and assigns it to the name in the
 class header. Also, like defs, class statements typically run when the
 files they are coded in are first imported.

	Assignments inside
 class statements make class attributes. Just like
 in module files, top-level assignments within a class statement (not nested in a def) generate attributes in a class
 object. Technically, the class
 statement defines a local scope that morphs
 into the attribute namespace of the class object, just like a
 module’s global scope. After running a class statement, class attributes are
 accessed by name qualification:
 object.name.

	Class attributes provide object state
 and behavior. Attributes of a class object record state information and behavior to
 be shared by all instances created from the class; function def statements nested inside a class generate
 methods, which process instances.

Instance Objects Are Concrete Items
When we call a class object, we get an instance object. Here’s an
 overview of the key points behind class instances:
	Calling a class object like a function
 makes a new instance object. Each time a class is called, it creates and returns a new
 instance object. Instances represent concrete items in your
 program’s domain.

	Each instance object inherits class
 attributes and gets its own namespace. Instance objects created from classes are new
 namespaces; they start out empty but inherit attributes that live in
 the class objects from which they were generated.

	Assignments to attributes
 of self in methods make per-instance attributes.
 Inside a class’s method functions, the first argument (called
 self by convention) references
 the instance object being processed; assignments to attributes of
 self create or change data in the
 instance, not the class.

The end result is that classes define common, shared data and
 behavior, and generate instances. Instances reflect concrete application
 entities, and record per-instance data that may vary per object.

A First Example
Let’s turn to a real example to show how these ideas work in practice. To
 begin, let’s define a class named FirstClass by running a Python class statement interactively:
>>> class FirstClass: # Define a class object
 def setdata(self, value): # Define class's methods
 self.data = value # self is the instance
 def display(self):
 print(self.data) # self.data: per instance
We’re working interactively here, but typically, such a statement would
 be run when the module file it is coded in is imported. Like functions
 created with defs, this class won’t
 even exist until Python reaches and runs this statement.
Like all compound statements, the class starts with a header line that lists the
 class name, followed by a body of one or more nested and (usually)
 indented statements. Here, the nested statements are defs; they define functions that implement the
 behavior the class means to export.
As we learned in Part IV,
 def is really an assignment. Here, it
 assigns function objects to the names setdata and display in the class statement’s scope, and so generates
 attributes attached to the class—FirstClass.setdata and FirstClass.display. In fact, any name assigned
 at the top level of the class’s nested block becomes an attribute of the
 class.
Functions inside a class are usually called methods. They’re coded with
 normal defs, and they support
 everything we’ve learned about functions already (they can have
 defaults, return values, yield items on request, and so on). But in a
 method function, the first argument automatically receives an implied
 instance object when called—the subject of the call. We need to create a
 couple of instances to see how this works:
>>> x = FirstClass() # Make two instances
>>> y = FirstClass() # Each is a new namespace
By calling the class this way (notice the
 parentheses), we generate instance objects, which are just namespaces
 that have access to their classes’ attributes. Properly speaking, at
 this point, we have three objects: two instances and a class. Really, we
 have three linked namespaces, as sketched in Figure 27-1. In OOP terms, we
 say that x “is a” FirstClass, as is y—they both inherit names attached to the
 class.
Figure 27-1. Classes and instances are linked namespace objects in a class
 tree that is searched by inheritance. Here, the “data” attribute is
 found in instances, but “setdata” and “display” are in the class above
 them.

The two instances start out empty but have links back to the class
 from which they were generated. If we qualify an instance with the name
 of an attribute that lives in the class object, Python fetches the name
 from the class by inheritance search (unless it also lives in the
 instance):
>>> x.setdata("King Arthur") # Call methods: self is x
>>> y.setdata(3.14159) # Runs: FirstClass.setdata(y, 3.14159)
Neither x nor y
 has a setdata attribute of its own, so to find it, Python
 follows the link from instance to class. And that’s about all there is to inheritance in
 Python: it happens at attribute qualification time, and it just involves looking up names in
 linked objects—here, by following the is-a links in Figure 27-1.
In the setdata function inside
 FirstClass, the value passed in is
 assigned to self.data. Within a
 method, self—the name given to the
 leftmost argument by convention—automatically refers to the instance
 being processed (x or y), so the assignments store values in the
 instances’ namespaces, not the class’s; that’s how the data names in Figure 27-1 are
 created.
Because classes can generate multiple instances, methods must go
 through the self argument to get to
 the instance to be processed. When we call the class’s display method to print self.data, we see that it’s different in each
 instance; on the other hand, the name display itself is the same in x and y, as
 it comes (is inherited) from the class:
>>> x.display() # self.data differs in each instance
King Arthur
>>> y.display() # Runs: FirstClass.display(y)
3.14159
Notice that we stored different object types in the data member in each instance—a string and a
 floating-point number. As with everything else in Python, there are no
 declarations for instance attributes (sometimes called
 members); they spring into existence the first time
 they are assigned values, just like simple variables. In fact, if we
 were to call display on one of our
 instances before calling setdata, we would trigger an undefined name
 error—the attribute named data
 doesn’t even exist in memory until it is assigned within the setdata method.
As another way to appreciate how dynamic this model is, consider
 that we can change instance attributes in the class itself, by assigning
 to self in methods, or
 outside the class, by assigning to an explicit
 instance object:
>>> x.data = "New value" # Can get/set attributes
>>> x.display() # Outside the class too
New value
Although less common, we could even generate an entirely
 new attribute in the instance’s namespace by
 assigning to its name outside the class’s method functions:
>>> x.anothername = "spam" # Can set new attributes here too!
This would attach a new attribute called anothername, which may or may not be used by
 any of the class’s methods, to the instance object x. Classes usually create all of the
 instance’s attributes by assignment to the self argument, but they don’t have to—programs
 can fetch, change, or create attributes on any objects to which they
 have references.
It usually doesn’t make sense to add data that the class cannot
 use, and it’s possible to prevent this with extra “privacy” code based
 on attribute access operator overloading, as we’ll discuss later in this
 book (see Chapter 30 and Chapter 39). Still, free attribute access translates to
 less syntax, and there are cases where it’s even useful—for example, in
 coding data records of the sort we’ll see later in this chapter.

Classes Are Customized by Inheritance
Let’s move on to the second major distinction of classes. Besides serving as
 factories for generating multiple instance objects, classes also allow us
 to make changes by introducing new components (called
 subclasses), instead of changing existing components
 in place.
As we’ve seen, instance objects generated from a class inherit the
 class’s attributes. Python also allows classes to inherit from other
 classes, opening the door to coding hierarchies of
 classes that specialize behavior—by redefining attributes in subclasses
 that appear lower in the hierarchy, we override the more general
 definitions of those attributes higher in the tree. In effect, the further
 down the hierarchy we go, the more specific the software becomes. Here,
 too, there is no parallel with modules, whose attributes live in a single,
 flat namespace that is not as amenable to customization.
In Python, instances inherit from classes, and classes inherit from
 superclasses. Here are the key ideas behind the machinery of attribute
 inheritance:
	Superclasses are listed in parentheses
 in a class header. To make a class inherit attributes from another class, just
 list the other class in parentheses in the new class statement’s header line. The class
 that inherits is usually called a subclass, and
 the class that is inherited from is its
 superclass.

	Classes inherit attributes from their
 superclasses. Just as instances inherit the attribute names defined in their
 classes, classes inherit all of the attribute names defined in their
 superclasses; Python finds them automatically when they’re accessed,
 if they don’t exist in the subclasses.

	Instances inherit attributes from all
 accessible classes. Each instance gets names from the class it’s generated from, as well
 as all of that class’s superclasses. When looking for a name, Python
 checks the instance, then its class, then all superclasses.

	Each object.attribute
 reference invokes a new, independent
 search. Python performs an independent search of the class
 tree for each attribute fetch expression. This includes references to
 instances and classes made outside class statements (e.g., X.attr), as well
 as references to attributes of the self instance argument in a class’s method
 functions. Each self.attr
 expression in a method invokes a new search for
 attr in self and above.

	Logic changes are made by subclassing,
 not by changing superclasses. By redefining superclass names in subclasses lower in the
 hierarchy (class tree), subclasses replace and thus customize
 inherited behavior.

The net effect—and the main purpose of all this searching—is that
 classes support factoring and customization of code better than any other
 language tool we’ve seen so far. On the one hand, they allow us to
 minimize code redundancy (and so reduce maintenance costs) by factoring
 operations into a single, shared implementation; on the other, they allow
 us to program by customizing what already exists, rather than changing it
 in place or starting from scratch.
Note
Strictly speaking, Python’s inheritance is a
 bit richer than described here, when we factor in new-style descriptors
 and metaclasses—advanced topics we’ll study later—but we can safely
 restrict our scope to instances and their classes, both at this point in
 the book and in most Python application code. We’ll define inheritance
 formally in Chapter 40.

A Second Example
To illustrate the role of inheritance, this next example builds on the previous one.
 First, we’ll define a new class, SecondClass, that inherits all of FirstClass’s names and provides one of its
 own:
>>> class SecondClass(FirstClass): # Inherits setdata
 def display(self): # Changes display
 print('Current value = "%s"' % self.data)
SecondClass defines the
 display method to print with a
 different format. By defining an attribute with the same name as an
 attribute in FirstClass, SecondClass effectively replaces the display attribute in its superclass.
Recall that inheritance searches proceed upward from instances to
 subclasses to superclasses, stopping at the first appearance of the
 attribute name that it finds. In this case, since the display name in SecondClass will be found before the one in
 FirstClass, we say that SecondClass overrides
 FirstClass’s display. Sometimes we call this act of
 replacing attributes by redefining them lower in the tree
 overloading.
The net effect here is that SecondClass specializes FirstClass by changing the behavior of the
 display method. On the other hand,
 SecondClass (and any instances
 created from it) still inherits the setdata method in FirstClass verbatim. Let’s make an instance to
 demonstrate:
>>> z = SecondClass()
>>> z.setdata(42) # Finds setdata in FirstClass
>>> z.display() # Finds overridden method in SecondClass
Current value = "42"
As before, we make a SecondClass instance object by calling it. The
 setdata call still runs the version
 in FirstClass, but this time the
 display attribute comes from SecondClass and prints a custom message. Figure 27-2 sketches the
 namespaces involved.
Now, here’s a crucial thing to notice about OOP: the
 specialization introduced in SecondClass is completely
 external to FirstClass. That is, it doesn’t affect
 existing or future FirstClass
 objects, like the x from the prior
 example:
>>> x.display() # x is still a FirstClass instance (old message)
New value
Figure 27-2. Specialization: overriding inherited names by redefining them
 in extensions lower in the class tree. Here, SecondClass redefines and
 so customizes the “display” method for its instances.

Rather than changing FirstClass, we customized
 it. Naturally, this is an artificial example, but as a rule, because
 inheritance allows us to make changes like this in external components
 (i.e., in subclasses), classes often support extension and reuse better
 than functions or modules can.

Classes Are Attributes in Modules
Before we move on, remember that there’s nothing magic about a class name.
 It’s just a variable assigned to an object when the class statement runs, and the object can be
 referenced with any normal expression. For instance, if our FirstClass were coded in a module file instead
 of being typed interactively, we could import it and use its name
 normally in a class header
 line:
from modulename import FirstClass # Copy name into my scope
class SecondClass(FirstClass): # Use class name directly
 def display(self): ...
Or, equivalently:
import modulename # Access the whole module
class SecondClass(modulename.FirstClass): # Qualify to reference
 def display(self): ...
Like everything else, class names always live within a module, so
 they must follow all the rules we studied in Part V. For example, more than one class can
 be coded in a single module file—like other statements in a module,
 class statements are run during
 imports to define names, and these names become distinct module
 attributes. More generally, each module may arbitrarily mix any number
 of variables, functions, and classes, and all names in a module behave
 the same way. The file food.py
 demonstrates:
food.py
var = 1 # food.var
def func(): ... # food.func
class spam: ... # food.spam
class ham: ... # food.ham
class eggs: ... # food.eggs
This holds true even if the module and class happen to have the
 same name. For example, given the following file, person.py:
class person: ...
we need to go through the module to fetch the class as
 usual:
import person # Import module
x = person.person() # Class within module
Although this path may look redundant, it’s required: person.person refers to the person class inside the person module. Saying just person gets the module, not the class, unless
 the from statement is used:
from person import person # Get class from module
x = person() # Use class name
As with any other variable, we can never see a class in a file
 without first importing and somehow fetching it from its enclosing file.
 If this seems confusing, don’t use the same name for a module and a
 class within it. In fact, common convention in Python dictates that
 class names should begin with an uppercase letter,
 to help make them more distinct:
import person # Lowercase for modules
x = person.Person() # Uppercase for classes
Also, keep in mind that although classes and modules are both
 namespaces for attaching attributes, they correspond to very different
 source code structures: a module reflects an entire
 file, but a class is a
 statement within a file. We’ll say more about such
 distinctions later in this part of the book.

Classes Can Intercept Python Operators
Let’s move on to the third and final major difference between classes
 and modules: operator overloading. In simple terms, operator
 overloading lets objects coded with classes intercept and
 respond to operations that work on built-in types: addition, slicing,
 printing, qualification, and so on. It’s mostly just an automatic dispatch
 mechanism—expressions and other built-in operations route control to
 implementations in classes. Here, too, there is nothing similar in
 modules: modules can implement function calls, but not the behavior of
 expressions.
Although we could implement all class behavior as method functions,
 operator overloading lets objects be more tightly integrated with Python’s
 object model. Moreover, because operator overloading makes our own objects
 act like built-ins, it tends to foster object interfaces that are more
 consistent and easier to learn, and it allows class-based objects to be
 processed by code written to expect a built-in type’s interface. Here is a
 quick rundown of the main ideas behind overloading operators:
	Methods named with double underscores
 (__X__) are special
 hooks. In Python classes we implement operator overloading by
 providing specially named methods to intercept operations. The Python
 language defines a fixed and unchangeable mapping from each of these
 operations to a specially named method.

	Such methods are called automatically
 when instances appear in built-in operations. For instance,
 if an instance object inherits an __add__ method, that method is called
 whenever the object appears in a +
 expression. The method’s return value becomes the result of the
 corresponding expression.

	Classes may override most built-in type
 operations. There are dozens of special operator
 overloading method names for intercepting and implementing nearly
 every operation available for built-in types. This includes
 expressions, but also basic operations like printing and object
 creation.

	There are no defaults for operator
 overloading methods, and none are required. If a class does
 not define or inherit an operator overloading method, it just means
 that the corresponding operation is not supported for the class’s
 instances. If there is no __add__,
 for example, + expressions raise
 exceptions.

	New-style classes have some defaults,
 but not for common operations. In Python 3.X, and so-called
 “new style” classes in 2.X that we’ll define later, a root class named
 object does provide defaults for
 some __X__ methods, but not for many, and not for
 most commonly used operations.

	Operators allow classes to integrate
 with Python’s object model. By overloading type operations,
 the user-defined objects we implement with classes can act just like
 built-ins, and so provide consistency as well as compatibility with
 expected interfaces.

Operator overloading is an optional feature; it’s used primarily by
 people developing tools for other Python programmers, not by application
 developers. And, candidly, you probably shouldn’t use
 it just because it seems clever or “cool.” Unless a class needs to mimic
 built-in type interfaces, it should usually stick to simpler named
 methods. Why would an employee database application support expressions
 like * and +, for example? Named methods like giveRaise and promote would usually make more sense.
Because of this, we won’t go into details on every operator
 overloading method available in Python in this book. Still, there is one
 operator overloading method you are likely to see in almost every
 realistic Python class: the __init__
 method, which is known as the constructor method and
 is used to initialize objects’ state. You should pay special attention to
 this method, because __init__, along
 with the self argument, turns out to be
 a key requirement to reading and understanding most OOP code in
 Python.
A Third Example
On to another example. This time, we’ll define a subclass of the prior section’s
 SecondClass that implements three
 specially named attributes that Python will call automatically:
	__init__ is run when a new
 instance object is created: self
 is the new ThirdClass
 object.1

	__add__ is run when a
 ThirdClass instance appears in a
 + expression.

	__str__ is run when an
 object is printed (technically, when it’s converted to its print
 string by the str built-in
 function or its Python internals equivalent).

Our new subclass also defines a normally named method called
 mul, which changes the instance
 object in place. Here’s the new subclass:
>>> class ThirdClass(SecondClass): # Inherit from SecondClass
 def __init__(self, value): # On "ThirdClass(value)"
 self.data = value
 def __add__(self, other): # On "self + other"
 return ThirdClass(self.data + other)
 def __str__(self): # On "print(self)", "str()"
 return '[ThirdClass: %s]' % self.data
 def mul(self, other): # In-place change: named
 self.data *= other

>>> a = ThirdClass('abc') # __init__ called
>>> a.display() # Inherited method called
Current value = "abc"
>>> print(a) # __str__: returns display string
[ThirdClass: abc]

>>> b = a + 'xyz' # __add__: makes a new instance
>>> b.display() # b has all ThirdClass methods
Current value = "abcxyz"
>>> print(b) # __str__: returns display string
[ThirdClass: abcxyz]

>>> a.mul(3) # mul: changes instance in place
>>> print(a)
[ThirdClass: abcabcabc]
ThirdClass “is a” SecondClass, so its instances inherit the
 customized display method from
 SecondClass of the preceding section.
 This time, though, ThirdClass
 creation calls pass an argument (e.g., “abc”). This argument is passed
 to the value argument in the __init__ constructor and assigned to self.data there. The net effect is that
 ThirdClass arranges to set the
 data attribute automatically at
 construction time, instead of requiring setdata calls after the fact.
Further, ThirdClass objects can
 now show up in + expressions and
 print calls. For +, Python passes the instance object on the
 left to the self argument in __add__ and the value on the right to other, as illustrated in Figure 27-3; whatever __add__ returns becomes the result of the
 + expression (more on its result in a
 moment).
Figure 27-3. In operator overloading, expression operators and other
 built-in operations performed on class instances are mapped back to
 specially named methods in the class. These special methods are
 optional and may be inherited as usual. Here, a + expression triggers
 the __add__ method.

For print, Python passes the
 object being printed to self in
 __str__; whatever string this method
 returns is taken to be the print string for the object. With __str__ (or its more broadly relevant twin
 __repr__, which we’ll meet and use in
 the next chapter), we can use a normal print to display objects of this class,
 instead of calling the special display method.
Specially named methods such as __init__, __add__, and __str__ are inherited by subclasses and
 instances, just like any other names assigned in a class. If they’re not coded in a class, Python
 looks for such names in all its superclasses, as usual. Operator
 overloading method names are also not built-in or reserved words; they
 are just attributes that Python looks for when objects appear in various
 contexts. Python usually calls them automatically, but they may
 occasionally be called by your code as well. For example, the __init__ method is often called manually to
 trigger initialization steps in a superclass, as we’ll see in the next
 chapter.
Returning results, or not
Some operator overloading methods like __str__ require results, but others are more
 flexible. For example, notice how the __add__ method makes and returns a
 new instance object of its class, by calling
 ThirdClass with the result
 value—which in turn triggers __init__ to initialize the result. This is a
 common convention, and explains why b in the listing has a display method; it’s a ThirdClass object too, because that’s what
 + returns for this class’s objects.
 This essentially propagates the type.
By contrast, mul
 changes the current instance object in place, by
 reassigning the self attribute. We
 could overload the * expression to
 do the latter, but this would be too different from the behavior of
 * for built-in types such as
 numbers and strings, for which it always makes new objects. Common
 practice dictates that overloaded operators should work the same way
 that built-in operator implementations do. Because operator
 overloading is really just an expression-to-method dispatch mechanism,
 though, you can interpret operators any way you like in your own
 class objects.

Why Use Operator Overloading?
As a class designer, you can choose to use operator overloading or
 not. Your choice simply depends on how much you want your object to look
 and feel like built-in types. As mentioned earlier, if you omit an
 operator overloading method and do not inherit it from a superclass, the
 corresponding operation will not be supported for your instances; if
 it’s attempted, an exception will be raised (or, in some cases like
 printing, a standard default will be used).
Frankly, many operator overloading methods tend to be used only
 when you are implementing objects that are mathematical in nature; a
 vector or matrix class may overload the addition operator, for example,
 but an employee class likely would not. For simpler classes, you might
 not use overloading at all, and would rely instead on explicit method
 calls to implement your objects’ behavior.
On the other hand, you might decide to use operator overloading if
 you need to pass a user-defined object to a function that was coded to
 expect the operators available on a built-in type like a list or a
 dictionary. Implementing the same operator set in your class will ensure
 that your objects support the same expected object interface and so are
 compatible with the function. Although we won’t cover every operator
 overloading method in this book, we’ll survey additional common operator
 overloading techniques in action in Chapter 30.
One overloading method we will use often here is the __init__ constructor method, used to
 initialize newly created instance objects, and present in almost every
 realistic class. Because it allows classes to fill out the attributes in
 their new instances immediately, the constructor is useful for almost
 every kind of class you might code. In fact, even though instance
 attributes are not declared in Python, you can usually find out which
 attributes an instance will have by inspecting its class’s __init__ method.
Of course, there’s nothing wrong with experimenting with
 interesting language tools, but they don’t always translate to
 production code. With time and experience, you’ll find these programming
 patterns and guidelines to be natural and nearly automatic.

The World’s Simplest Python Class
We’ve begun studying class statement
 syntax in detail in this chapter, but I’d again like to remind you that
 the basic inheritance model that classes produce is very simple—all it
 really involves is searching for attributes in trees of linked objects. In
 fact, we can create a class with nothing in it at all. The following
 statement makes a class with no attributes attached, an empty namespace
 object:
>>> class rec: pass # Empty namespace object
We need the no-operation pass
 placeholder statement (discussed in Chapter 13) here because we don’t have any methods
 to code. After we make the class by running this statement interactively,
 we can start attaching attributes to the class by assigning names to it
 completely outside of the original class statement:
>>> rec.name = 'Bob' # Just objects with attributes
>>> rec.age = 40
And, after we’ve created these attributes by assignment, we can
 fetch them with the usual syntax. When used this way, a class is roughly
 similar to a “struct” in C, or a “record” in Pascal. It’s basically an
 object with field names attached to it (as we’ll see ahead, doing similar
 with dictionary keys requires extra characters):
>>> print(rec.name) # Like a C struct or a record
Bob
Notice that this works even though there are no
 instances of the class yet; classes are objects in their own
 right, even without instances. In fact, they are just self-contained
 namespaces; as long as we have a reference to a class, we can set or
 change its attributes anytime we wish. Watch what happens when we do
 create two instances, though:
>>> x = rec() # Instances inherit class names
>>> y = rec()
These instances begin their lives as completely empty namespace
 objects. Because they remember the class from which they were made,
 though, they will obtain the attributes we attached to the class by
 inheritance:
>>> x.name, y.name # name is stored on the class only
('Bob', 'Bob')
Really, these instances have no attributes of their own; they simply
 fetch the name attribute from the class
 object where it is stored. If we do assign an attribute to an instance,
 though, it creates (or changes) the attribute in that object, and no
 other—crucially, attribute references kick off
 inheritance searches, but attribute assignments
 affect only the objects in which the assignments are made. Here, this
 means that x gets its own name, but y
 still inherits the name attached to the
 class above it:
>>> x.name = 'Sue' # But assignment changes x only
>>> rec.name, x.name, y.name
('Bob', 'Sue', 'Bob')
In fact, as we’ll explore in more detail in Chapter 29, the attributes of a namespace object
 are usually implemented as dictionaries, and class inheritance trees are
 (generally speaking) just dictionaries with links to other dictionaries.
 If you know where to look, you can see this explicitly.
For example, the __dict__
 attribute is the namespace dictionary for most class-based objects. Some
 classes may also (or instead) define attributes in __slots__, an advanced and seldom-used feature
 that we’ll note in Chapter 28, but
 largely postpone until Chapter 31 and Chapter 32. Normally, __dict__ literally is an instance’s attribute
 namespace.
To illustrate, the following was run in Python 3.3; the order of
 names and set of __X__ internal names present can vary from release
 to release, and we filter out built-ins with a generator expression as
 we’ve done before, but the names we assigned are present in all:
>>> list(rec.__dict__.keys())
['age', '__module__', '__qualname__', '__weakref__', 'name', '__dict__', '__doc__']

>>> list(name for name in rec.__dict__ if not name.startswith('__'))
['age', 'name']
>>> list(x.__dict__.keys())
['name']
>>> list(y.__dict__.keys()) # list() not required in Python 2.X
[]
Here, the class’s namespace dictionary shows the name and age
 attributes we assigned to it, x has its
 own name, and y is still empty. Because of this model, an
 attribute can often be fetched by either dictionary
 indexing or attribute notation, but only if it’s present on the object in
 question—attribute notation kicks off inheritance search, but indexing
 looks in the single object only (as we’ll see later,
 both have valid roles):
>>> x.name, x.__dict__['name'] # Attributes present here are dict keys
('Sue', 'Sue')
>>> x.age # But attribute fetch checks classes too
40
>>> x.__dict__['age'] # Indexing dict does not do inheritance
KeyError: 'age'
To facilitate inheritance search on attribute fetches, each instance
 has a link to its class that Python creates for us—it’s called __class__, if you want to inspect it:
>>> x.__class__ # Instance to class link
<class '__main__.rec'>
Classes also have a __bases__ attribute,
 which is a tuple of references to their superclass objects—in this example
 just the implied object root class in
 Python 3.X we’ll explore later (you’ll get an empty tuple in 2.X
 instead):
>>> rec.__bases__ # Class to superclasses link, () in 2.X
(<class 'object'>,)
These two attributes are how class trees are literally represented
 in memory by Python. Internal details like these are not required
 knowledge—class trees are implied by the code you run, and their search is
 normally automatic—but they can often help demystify the model.
The main point to take away from this look under the hood is that
 Python’s class model is extremely dynamic. Classes and instances are just
 namespace objects, with attributes created on the fly by assignment. Those
 assignments usually happen within the class statements you code, but they can occur
 anywhere you have a reference to one of the objects in the tree.
Even methods, normally created by a def nested in a class, can be created completely independently
 of any class object. The following, for example, defines a simple function
 outside of any class that takes one argument:
>>> def uppername(obj):
 return obj.name.upper() # Still needs a self argument (obj)
There is nothing about a class here yet—it’s a simple function, and
 it can be called as such at this point, provided we pass in an object
 obj with a name attribute, whose value in turn has an
 upper method—our class instances happen
 to fit the expected interface, and kick off string uppercase
 conversion:
>>> uppername(x) # Call as a simple function
'SUE'
If we assign this simple function to an attribute of our class,
 though, it becomes a method, callable through any
 instance, as well as through the class name itself as long as we pass in
 an instance manually—a technique we’ll leverage further in the
 next chapter:2
>>> rec.method = uppername # Now it's a class's method!

>>> x.method() # Run method to process x
'SUE'

>>> y.method() # Same, but pass y to self
'BOB'

>>> rec.method(x) # Can call through instance or class
'SUE'
Normally, classes are filled out by class statements, and instance attributes are
 created by assignments to self
 attributes in method functions. The point again, though, is that they
 don’t have to be; OOP in Python really is mostly about looking up
 attributes in linked namespace objects.
Records Revisited: Classes Versus Dictionaries
Although the simple classes of the prior section are meant to illustrate class
 model basics, the techniques they employ can also be used for real work.
 For example, Chapter 8 and Chapter 9 showed how to use
 dictionaries, tuples, and lists to record properties of entities in our
 programs, generically called records. It turns out
 that classes can often serve better in this role—they package
 information like dictionaries, but can also bundle processing logic in
 the form of methods. For reference, here is an example for tuple- and
 dictionary-based records we used earlier in the book (using one of many
 dictionary coding techniques):
>>> rec = ('Bob', 40.5, ['dev', 'mgr']) # Tuple-based record
>>> print(rec[0])
Bob

>>> rec = {}
>>> rec['name'] = 'Bob' # Dictionary-based record
>>> rec['age'] = 40.5 # Or {...}, dict(n=v), etc.
>>> rec['jobs'] = ['dev', 'mgr']
>>>
>>> print(rec['name'])
Bob
This code emulates tools like records in other languages. As we
 just saw, though, there are also multiple ways to do the same with
 classes. Perhaps the simplest is this—trading keys for
 attributes:
>>> class rec: pass

>>> rec.name = 'Bob' # Class-based record
>>> rec.age = 40.5
>>> rec.jobs = ['dev', 'mgr']
>>>
>>> print(rec.name)
Bob
This code has substantially less syntax than the dictionary
 equivalent. It uses an empty class
 statement to generate an empty namespace object. Once we make the empty
 class, we fill it out by assigning class attributes over time, as
 before.
This works, but a new class
 statement will be required for each distinct record we will need.
 Perhaps more typically, we can instead generate
 instances of an empty class to represent each
 distinct entity:
>>> class rec: pass

>>> pers1 = rec() # Instance-based records
>>> pers1.name = 'Bob'
>>> pers1.jobs = ['dev', 'mgr']
>>> pers1.age = 40.5
>>>
>>> pers2 = rec()
>>> pers2.name = 'Sue'
>>> pers2.jobs = ['dev', 'cto']
>>>
>>> pers1.name, pers2.name
('Bob', 'Sue')
Here, we make two records from the same class. Instances start out
 life empty, just like classes. We then fill in the records by assigning
 to attributes. This time, though, there are two separate objects, and
 hence two separate name attributes.
 In fact, instances of the same class don’t even have to have the same
 set of attribute names; in this example, one has a unique age name. Instances really are distinct
 namespaces, so each has a distinct attribute dictionary. Although they
 are normally filled out consistently by a class’s methods, they are more
 flexible than you might expect.
Finally, we might instead code a more full-blown class to
 implement the record and its processing—something
 that data-oriented dictionaries do not directly support:
>>> class Person:
 def __init__(self, name, jobs, age=None): # class = data + logic
 self.name = name
 self.jobs = jobs
 self.age = age
 def info(self):
 return (self.name, self.jobs)

>>> rec1 = Person('Bob', ['dev', 'mgr'], 40.5) # Construction calls
>>> rec2 = Person('Sue', ['dev', 'cto'])
>>>
>>> rec1.jobs, rec2.info() # Attributes + methods
(['dev', 'mgr'], ('Sue', ['dev', 'cto']))
This scheme also makes multiple instances, but the class is not
 empty this time: we’ve added logic (methods) to
 initialize instances at construction time and collect attributes into a
 tuple on request. The constructor imposes some consistency on instances
 here by always setting the name,
 job, and age attributes, even though the latter can be
 omitted when an object is made. Together, the class’s methods and
 instance attributes create a package, which
 combines both data and
 logic.
We could further extend this code by adding logic to compute
 salaries, parse names, and so on. Ultimately, we might link the class
 into a larger hierarchy to inherit and customize an existing set of
 methods via the automatic attribute search of classes, or perhaps even
 store instances of the class in a file with Python object pickling to
 make them persistent. In fact, we will—in the next
 chapter, we’ll expand on this analogy between classes and records with a
 more realistic running example that demonstrates class basics in
 action.
To be fair to other tools, in this form, the two class
 construction calls above more closely resemble dictionaries made all at
 once, but still seem less cluttered and provide extra processing
 methods. In fact, the class’s construction calls more closely resemble
 Chapter 9’s
 named tuples—which makes sense, given that named
 tuples really are classes with extra logic to map
 attributes to tuple offsets:
>>> rec = dict(name='Bob', age=40.5, jobs=['dev', 'mgr']) # Dictionaries

>>> rec = {'name': 'Bob', 'age': 40.5, 'jobs': ['dev', 'mgr']}

>>> rec = Rec('Bob', 40.5, ['dev', 'mgr']) # Named tuples
In the end, although types like dictionaries and tuples are
 flexible, classes allow us to add behavior to objects in ways that
 built-in types and simple functions do not directly support. Although we
 can store functions in dictionaries, too, using them to process implied
 instances is nowhere near as natural and structured as it is in classes.
 To see this more clearly, let’s move ahead to the next chapter.

Chapter Summary
This chapter introduced the basics of coding classes in Python. We
 studied the syntax of the class
 statement, and we saw how to use it to build up a class inheritance tree.
 We also studied how Python automatically fills in the first argument in
 method functions, how attributes are attached to objects in a class tree
 by simple assignment, and how specially named operator overloading methods
 intercept and implement built-in operations for our instances (e.g.,
 expressions and printing).
Now that we’ve learned all about the mechanics of coding classes in
 Python, the next chapter turns to a larger and more realistic example that
 ties together much of what we’ve learned about OOP so far, and introduces
 some new topics. After that, we’ll continue our look at class coding,
 taking a second pass over the model to fill in some of the details that
 were omitted here to keep things simple. First, though, let’s work through
 a quiz to review the basics we’ve covered so far.

Test Your Knowledge: Quiz
	How are classes related to modules?

	How are instances and classes created?

	Where and how are class attributes created?

	Where and how are instance attributes created?

	What does self mean in a
 Python class?

	How is operator overloading coded in a Python class?

	When might you want to support operator overloading in your
 classes?

	Which operator overloading method is most commonly used?

	What are two key concepts required to understand Python OOP
 code?

Test Your Knowledge: Answers
	Classes are always nested inside a module; they are attributes
 of a module object. Classes and modules are both namespaces, but
 classes correspond to statements (not entire files) and support the
 OOP notions of multiple instances, inheritance, and operator
 overloading (modules do not). In a sense, a module is like a
 single-instance class, without inheritance, which corresponds to an
 entire file of code.

	Classes are made by running class statements; instances are created by
 calling a class as though it were a function.

	Class attributes are created by assigning attributes to a class
 object. They are normally generated by top-level assignments nested in
 a class statement—each name
 assigned in the class statement
 block becomes an attribute of the class object (technically, the
 class statement’s local scope
 morphs into the class object’s attribute namespace, much like a
 module). Class attributes can also be created, though, by assigning
 attributes to the class anywhere a reference to the class object
 exists—even outside the class
 statement.

	Instance attributes are created by assigning attributes to an
 instance object. They are normally created within a class’s method
 functions coded inside the class
 statement, by assigning attributes to the self argument (which is always the implied
 instance). Again, though, they may be created by assignment anywhere a
 reference to the instance appears, even outside the class statement. Normally, all instance
 attributes are initialized in the __init__ constructor method; that way, later
 method calls can assume the attributes already exist.

	self is the name commonly given to the first
 (leftmost) argument in a class’s method function; Python automatically fills it in with
 the instance object that is the implied subject of the method call. This argument need not
 be called self (though this is a very strong
 convention); its position is what is significant. (Ex-C++ or Java programmers might prefer to call it this because in those languages that name reflects the same idea; in Python,
 though, this argument must always be explicit.)

	Operator overloading is coded in a Python class with specially
 named methods; they all begin and end with double underscores to make
 them unique. These are not built-in or reserved names; Python just
 runs them automatically when an instance appears in the corresponding
 operation. Python itself defines the mappings from operations to
 special method names.

	Operator overloading is useful to implement objects that
 resemble built-in types (e.g., sequences or numeric objects such as
 matrixes), and to mimic the built-in type interface expected by a
 piece of code. Mimicking built-in type interfaces enables you to pass
 in class instances that also have state information (i.e., attributes
 that remember data between operation calls). You shouldn’t use
 operator overloading when a simple named method will suffice,
 though.

	The __init__ constructor
 method is the most commonly used; almost every class uses this method
 to set initial values for instance attributes and perform other
 startup tasks.

	The special self argument in method functions and
 the __init__ constructor method are the two
 cornerstones of OOP code in Python; if you get these, you should be able to read the text
 of most OOP Python code—apart from these, it’s largely just packages of functions. The
 inheritance search matters too, of course, but self
 represents the automatic object argument, and __init__ is
 widespread.

1 Not to be confused with the __init__.py files in module packages!
 The method here is a class constructor function used to
 initialize the newly created instance, not a module package. See
 Chapter 24 for more details.
2 In fact, this is one of the reasons the self argument must
 always be explicit in Python methods—because methods can be created as
 simple functions independent of a class, they need to make the implied
 instance argument explicit. They can be called as either functions or
 methods, and Python can neither guess nor assume that a simple
 function might eventually become a class’s method. The main reason for
 the explicit self argument, though,
 is to make the meanings of names more obvious: names not referenced
 through self are simple variables
 mapped to scopes, while names referenced through self with attribute notation are obviously
 instance attributes.

Chapter 28. A More Realistic Example
We’ll dig into more class syntax details in the next chapter. Before
 we do, though, I’d like to show you a more realistic example of classes in action that’s more practical
 than what we’ve seen so far. In this chapter, we’re going to build a set of
 classes that do something more concrete—recording and processing information
 about people. As you’ll see, what we call instances and
 classes in Python programming can often serve the same
 roles as records and programs in
 more traditional terms.
Specifically, in this chapter we’re going to code two classes:
	Person—a class that creates and
 processes information about people

	Manager—a customization of
 Person that modifies inherited
 behavior

Along the way, we’ll make instances of both classes and test out their
 functionality. When we’re done, I’ll show you a nice example use case for
 classes—we’ll store our instances in a shelve
 object-oriented database, to make them permanent. That way, you can use this
 code as a template for fleshing out a full-blown personal database written
 entirely in Python.
Besides actual utility, though, our aim here is also
 educational: this chapter provides a tutorial on
 object-oriented programming in Python. Often, people grasp the last
 chapter’s class syntax on paper, but have trouble seeing how to get started
 when confronted with having to code a new class from scratch. Toward this
 end, we’ll take it one step at a time here, to help you learn the basics;
 we’ll build up the classes gradually, so you can see how their features come
 together in complete programs.
In the end, our classes will still be relatively small in terms of
 code, but they will demonstrate all of the main ideas
 in Python’s OOP model. Despite its syntax details, Python’s class system
 really is largely just a matter of searching for an attribute in a tree of
 objects, along with a special first argument for functions.
Step 1: Making Instances
OK, so much for the design phase—let’s move on to implementation. Our first task
 is to start coding the main class, Person. In your favorite text editor, open a new
 file for the code we’ll be writing. It’s a fairly strong convention in
 Python to begin module names with a lowercase letter and class names with
 an uppercase letter; like the name of self arguments in methods, this is not required
 by the language, but it’s so common that deviating might be confusing to
 people who later read your code. To conform, we’ll call our new module
 file person.py and our class within
 it Person, like this:
File person.py (start)

class Person: # Start a class
All our work will be done in this file until later in this chapter.
 We can code any number of functions and classes in a single module file in
 Python, and this one’s person.py name
 might not make much sense if we add unrelated components to it later. For
 now, we’ll assume everything in it will be Person-related. It probably should be anyhow—as
 we’ve learned, modules tend to work best when they have a single,
 cohesive purpose.
Coding Constructors
Now, the first thing we want to do with our Person class is record basic information about
 people—to fill out record fields, if you will. Of course, these are
 known as instance object attributes in
 Python-speak, and they generally are created by assignment to self attributes in a class’s method functions.
 The normal way to give instance attributes their first values is to
 assign them to self in the __init__
 constructor method, which contains code run
 automatically by Python each time an instance is created. Let’s add one
 to our class:
Add record field initialization

class Person:
 def __init__(self, name, job, pay): # Constructor takes three arguments
 self.name = name # Fill out fields when created
 self.job = job # self is the new instance object
 self.pay = pay
This is a very common coding pattern: we pass in the data to be
 attached to an instance as arguments to the constructor method and
 assign them to self to retain them
 permanently. In OO terms, self is the
 newly created instance object, and name, job,
 and pay become state
 information—descriptive data saved on an object for later
 use. Although other techniques (such as enclosing scope reference
 closures) can save details, too, instance attributes make this very
 explicit and easy to understand.
Notice that the argument names appear twice
 here. This code might even seem a bit redundant at first, but it’s not.
 The job argument, for example, is a
 local variable in the scope of the __init__ function, but self.job is an attribute of the instance
 that’s the implied subject of the method call. They are two different
 variables, which happen to have the same name. By assigning the job local to the self.job attribute with self.job=job, we save the passed-in job on the instance for later use. As usual in
 Python, where a name is assigned, or what object it is assigned to,
 determines what it means.
Speaking of arguments, there’s really nothing magical about
 __init__, apart from the fact that
 it’s called automatically when an instance is made and has a special
 first argument. Despite its weird name, it’s a normal function and
 supports all the features of functions we’ve already covered. We can,
 for example, provide defaults for some of its
 arguments, so they need not be provided in cases where their values
 aren’t available or useful.
To demonstrate, let’s make the job argument optional—it will default to
 None, meaning the person being
 created is not (currently) employed. If job defaults to None, we’ll probably want to default pay to 0,
 too, for consistency (unless some of the people you know manage to get
 paid without having jobs!). In fact, we have to specify a default for
 pay because according to Python’s
 syntax rules and Chapter 18, any arguments in a
 function’s header after the first default must all have defaults,
 too:
Add defaults for constructor arguments

class Person:
 def __init__(self, name, job=None, pay=0): # Normal function args
 self.name = name
 self.job = job
 self.pay = pay
What this code means is that we’ll need to pass in a name when
 making Persons, but job and pay
 are now optional; they’ll default to None and 0
 if omitted. The self argument, as
 usual, is filled in by Python automatically to refer to the instance
 object—assigning values to attributes of self attaches them to the new instance.

Testing As You Go
This class doesn’t do much yet—it essentially just fills out the fields of a new
 record—but it’s a real working class. At this point we could add more
 code to it for more features, but we won’t do that yet. As you’ve
 probably begun to appreciate already, programming in Python is really a
 matter of incremental prototyping—you write some
 code, test it, write more code, test again, and so on. Because Python
 provides both an interactive session and nearly immediate turnaround
 after code changes, it’s more natural to test as you go than to write a
 huge amount of code to test all at once.
Before adding more features, then, let’s test what we’ve got so
 far by making a few instances of our class and displaying their
 attributes as created by the constructor. We could do this
 interactively, but as you’ve also probably surmised by now, interactive
 testing has its limits—it gets tedious to have to reimport modules and
 retype test cases each time you start a new testing session. More
 commonly, Python programmers use the interactive prompt for simple
 one-off tests but do more substantial testing by writing code at the
 bottom of the file that contains the objects to be tested, like
 this:
Add incremental self-test code

class Person:
 def __init__(self, name, job=None, pay=0):
 self.name = name
 self.job = job
 self.pay = pay

bob = Person('Bob Smith') # Test the class
sue = Person('Sue Jones', job='dev', pay=100000) # Runs __init__ automatically
print(bob.name, bob.pay) # Fetch attached attributes
print(sue.name, sue.pay) # sue's and bob's attrs differ
Notice here that the bob object
 accepts the defaults for job and
 pay, but sue provides values explicitly. Also note
 how we use keyword arguments when
 making sue; we could pass by position
 instead, but the keywords may help remind us later what the data is, and
 they allow us to pass the arguments in any left-to-right order we like.
 Again, despite its unusual name, __init__ is a normal function, supporting
 everything you already know about functions—including both defaults and
 pass-by-name keyword arguments.
When this file runs as a script, the test code at the bottom makes
 two instances of our class and prints two attributes of each (name and pay):
C:\code> person.py
Bob Smith 0
Sue Jones 100000
You can also type this file’s test code at Python’s interactive
 prompt (assuming you import the Person class there first), but coding canned
 tests inside the module file like this makes it much easier to rerun
 them in the future.
Although this is fairly simple code, it’s already demonstrating
 something important. Notice that bob’s name
 is not sue’s, and sue’s pay
 is not bob’s. Each is an independent
 record of information. Technically, bob and sue
 are both namespace objects—like all class
 instances, they each have their own independent copy of the state
 information created by the class. Because each instance of a class has
 its own set of self attributes,
 classes are a natural for recording information for multiple objects
 this way; just like built-in types such as lists and dictionaries,
 classes serve as a sort of object factory.
Other Python program structures, such as functions and modules,
 have no such concept. Chapter 17’s closure functions come
 close in terms of per-call state, but don’t have the multiple methods,
 inheritance, and larger structure we get from classes.

Using Code Two Ways
As is, the test code at the bottom of the file works, but there’s
 a big catch—its top-level print
 statements run both when the file is run as a script and when it is
 imported as a module. This means if we ever decide to import the class
 in this file in order to use it somewhere else (and we will soon in this
 chapter), we’ll see the output of its test code every time the file is
 imported. That’s not very good software citizenship, though: client
 programs probably don’t care about our internal tests and won’t want to
 see our output mixed in with their own.
Although we could split the test code off into a separate file,
 it’s often more convenient to code tests in the same file as the items
 to be tested. It would be better to arrange to run the test statements
 at the bottom only when the file is run for
 testing, not when the file is imported. That’s exactly what the module
 __name__ check is designed for, as you learned in the preceding part of
 this book. Here’s what this addition looks like—add the required test
 and indent your self-test code:
Allow this file to be imported as well as run/tested

class Person:
 def __init__(self, name, job=None, pay=0):
 self.name = name
 self.job = job
 self.pay = pay

if __name__ == '__main__': # When run for testing only
 # self-test code
 bob = Person('Bob Smith')
 sue = Person('Sue Jones', job='dev', pay=100000)
 print(bob.name, bob.pay)
 print(sue.name, sue.pay)
Now, we get exactly the behavior we’re after—running the file as a
 top-level script tests it because its __name__ is __main__, but importing it as a library of
 classes later does not:
C:\code> person.py
Bob Smith 0
Sue Jones 100000

C:\code> python
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) ...
>>> import person
>>>
When imported, the file now defines the class, but does not use
 it. When run directly, this file creates two instances of our class as
 before, and prints two attributes of each; again, because each instance
 is an independent namespace object, the values of their attributes
 differ.
Version Portability: Prints
All of this chapter’s code works on both Python 2.X and 3.X, but I’m running it
 under Python 3.X, and a few of its outputs use 3.X print function calls with multiple
 arguments. As explained in Chapter 11, this means that
 some of its outputs may vary slightly under Python 2.X. If you run
 under 2.X the code will work as is, but you’ll notice parentheses
 around some output lines because the extra parentheses in a print turn multiple items into a tuple in
 2.X only:
C:\code> c:\python27\python person.py
('Bob Smith', 0)
('Sue Jones', 100000)
If this difference is the sort of detail that might keep you
 awake at nights, simply remove the parentheses to use 2.X print statements, or add an import of Python
 3.X’s print function at the top of your script, as shown in Chapter 11 (I’d add this
 everywhere here, but it’s a bit distracting):
from __future__ import print_function
You can also avoid the extra parentheses portably by using
 formatting to yield a single object to print. Either of the following
 works in both 2.X and 3.X, though the method form is newer:
print('{0} {1}'.format(bob.name, bob.pay)) # Format method
print('%s %s' % (bob.name, bob.pay)) # Format expression
As also described in Chapter 11, such formatting
 may be required in some cases, because objects
 nested in a tuple may print differently than
 those printed as top-level objects—the former prints with __repr__ and the latter with __str__ (operator overloading methods
 discussed further in this chapter as well as Chapter 30).
To sidestep this issue, this edition codes displays with
 __repr__ (the fallback in all
 cases, including nesting and the interactive prompt) instead of
 __str__ (the default for prints) so
 that all object appearances print the same in 3.X and 2.X, even those
 in superfluous tuple parentheses!

Step 2: Adding Behavior Methods
Everything looks good so far—at this point, our class is essentially a record
 factory; it creates and fills out fields of records
 (attributes of instances, in more Pythonic terms). Even as limited as it
 is, though, we can still run some operations on its objects. Although
 classes add an extra layer of structure, they ultimately do most of their
 work by embedding and processing basic core data
 types like lists and strings. In other words, if you already
 know how to use Python’s simple core types, you already know much of the
 Python class story; classes are really just a minor structural
 extension.
For example, the name field of
 our objects is a simple string, so we can extract last names from our
 objects by splitting on spaces and indexing. These are all core data type
 operations, which work whether their subjects are embedded in class
 instances or not:
>>> name = 'Bob Smith' # Simple string, outside class
>>> name.split() # Extract last name
['Bob', 'Smith']
>>> name.split()[-1] # Or [1], if always just two parts
'Smith'
Similarly, we can give an object a pay raise by updating its
 pay field—that is, by changing its
 state information in place with an assignment. This task also involves
 basic operations that work on Python’s core objects, regardless of whether
 they are standalone or embedded in a class structure (I’m formatting the
 result in the following to mask the fact that different Pythons print a
 different number of decimal digits):
>>> pay = 100000 # Simple variable, outside class
>>> pay *= 1.10 # Give a 10% raise
>>> print('%.2f' % pay) # Or: pay = pay * 1.10, if you like to type
110000.00 # Or: pay = pay + (pay * .10), if you _really_ do!
To apply these operations to the Person objects created by our script, simply do
 to bob.name and sue.pay what we just did to name and pay.
 The operations are the same, but the subjects are attached as attributes
 to objects created from our class:
Process embedded built-in types: strings, mutability

class Person:
 def __init__(self, name, job=None, pay=0):
 self.name = name
 self.job = job
 self.pay = pay

if __name__ == '__main__':
 bob = Person('Bob Smith')
 sue = Person('Sue Jones', job='dev', pay=100000)
 print(bob.name, bob.pay)
 print(sue.name, sue.pay)
 print(bob.name.split()[-1]) # Extract object's last name
 sue.pay *= 1.10 # Give this object a raise
 print('%.2f' % sue.pay)
We’ve added the last three lines here; when they’re run, we extract
 bob’s last name by using basic string
 and list operations on his name field, and give sue a pay raise by modifying her pay attribute in place with basic number
 operations. In a sense, sue is also a
 mutable object—her state changes in place just like a
 list after an append call. Here’s the
 new version’s output:
Bob Smith 0
Sue Jones 100000
Smith
110000.00
The preceding code works as planned, but if you show it to a veteran
 software developer he or she will probably tell you that its general
 approach is not a great idea in practice. Hardcoding operations like these
 outside of the class can lead to maintenance problems
 in the future.
For example, what if you’ve hardcoded the last-name-extraction
 formula at many different places in your program? If you ever need to
 change the way it works (to support a new name structure, for instance),
 you’ll need to hunt down and update every occurrence.
 Similarly, if the pay-raise code ever changes (e.g., to require approval
 or database updates), you may have multiple copies to modify. Just finding
 all the appearances of such code may be problematic in larger
 programs—they may be scattered across many files, split into individual
 steps, and so on. In a prototype like this, frequent change is almost
 guaranteed.
Coding Methods
What we really want to do here is employ a software design concept known
 as encapsulation—wrapping up operation logic behind
 interfaces, such that each operation is coded only once in our program.
 That way, if our needs change in the future, there is just one copy to
 update. Moreover, we’re free to change the single copy’s internals
 almost arbitrarily, without breaking the code that uses it.
In Python terms, we want to code operations on objects in a
 class’s methods, instead of littering them
 throughout our program. In fact, this is one of the things that classes
 are very good at—factoring code to remove
 redundancy and thus optimize maintainability. As an
 added bonus, turning operations into methods enables them to be applied
 to any instance of the class, not just those that they’ve been hardcoded
 to process.
This is all simpler in code than it may sound in theory. The
 following achieves encapsulation by moving the two operations from code
 outside the class to methods inside the class. While we’re at it, let’s
 change our self-test code at the bottom to use the new methods we’re
 creating, instead of hardcoding operations:
Add methods to encapsulate operations for maintainability

class Person:
 def __init__(self, name, job=None, pay=0):
 self.name = name
 self.job = job
 self.pay = pay
 def lastName(self): # Behavior methods
 return self.name.split()[-1] # self is implied subject
 def giveRaise(self, percent):
 self.pay = int(self.pay * (1 + percent)) # Must change here only

if __name__ == '__main__':
 bob = Person('Bob Smith')
 sue = Person('Sue Jones', job='dev', pay=100000)
 print(bob.name, bob.pay)
 print(sue.name, sue.pay)
 print(bob.lastName(), sue.lastName()) # Use the new methods
 sue.giveRaise(.10) # instead of hardcoding
 print(sue.pay)
As we’ve learned, methods are simply normal
 functions that are attached to classes and designed to process instances
 of those classes. The instance is the subject of the method call and is
 passed to the method’s self argument
 automatically.
The transformation to the methods in this version is
 straightforward. The new lastName
 method, for example, simply does to self what the previous version hardcoded for
 bob, because self is the implied subject when the method is
 called. lastName also returns the
 result, because this operation is a called function now; it computes a
 value for its caller to use arbitrarily, even if it is just to be
 printed. Similarly, the new giveRaise method just does to
 self what we did to sue before.
When run now, our file’s output is similar to before—we’ve mostly
 just refactored the code to allow for easier
 changes in the future, not altered its behavior:
Bob Smith 0
Sue Jones 100000
Smith Jones
110000
A few coding details are worth pointing out here. First, notice
 that sue’s pay is now still an
 integer after a pay raise—we convert the math
 result back to an integer by calling the int built-in within the method. Changing the
 value to either int or float is probably not a significant concern
 for this demo: integer and floating-point objects have the same
 interfaces and can be mixed within expressions. Still, we may need to
 address truncation and rounding issues in a real system—money probably
 is significant to Persons!
As we learned in Chapter 5, we might handle
 this by using the round(N, 2)
 built-in to round and retain cents, using the decimal type to fix precision, or storing
 monetary values as full floating-point numbers and displaying them with
 a %.2f or {0:.2f} formatting string to show cents as we
 did earlier. For now, we’ll simply truncate any cents with int. For another idea, also see the money function in the formats.py module of Chapter 25; you could import this tool to show
 pay with commas, cents, and currency signs.
Second, notice that we’re also printing sue’s last name this time—because the
 last-name logic has been encapsulated in a method, we get to use it on
 any instance of the class. As we’ve seen, Python
 tells a method which instance to process by automatically passing it in
 to the first argument, usually called self. Specifically:
	In the first call, bob.lastName(), bob is the implied subject passed to
 self.

	In the second call, sue.lastName(), sue goes to self instead.

Trace through these calls to see how the instance winds up in
 self—it’s a key concept. The net
 effect is that the method fetches the name of the implied subject each
 time. The same happens for giveRaise.
 We could, for example, give bob a
 raise by calling giveRaise for both
 instances this way, too. Unfortunately for bob, though, his zero starting pay will
 prevent him from getting a raise as the program is currently
 coded—nothing times anything is nothing, something we may want to
 address in a future 2.0 release of our software.
Finally, notice that the giveRaise method assumes that percent is passed in as a floating-point
 number between zero and one. That may be too radical an assumption in
 the real world (a 1000% raise would probably be a bug for most of us!);
 we’ll let it pass for this prototype, but we might want to test or at
 least document this in a future iteration of this code. Stay tuned for a
 rehash of this idea in a later chapter in this book, where we’ll code
 something called function decorators and explore
 Python’s assert
 statement—alternatives that can do the validity test for us
 automatically during development. In Chapter 39, for
 example, we’ll write a tool that lets us validate with strange
 incantations like the following:
 @rangetest(percent=(0.0, 1.0)) # Use decorator to validate
 def giveRaise(self, percent):
 self.pay = int(self.pay * (1 + percent))

Step 3: Operator Overloading
At this point, we have a fairly full-featured class that generates and
 initializes instances, along with two new bits of behavior for processing
 instances in the form of methods. So far, so good.
As it stands, though, testing is still a bit less convenient than it
 needs to be—to trace our objects, we have to manually fetch and print
 individual attributes (e.g., bob.name, sue.pay). It would be nice if displaying an
 instance all at once actually gave us some useful information.
 Unfortunately, the default display format for an instance object isn’t
 very good—it displays the object’s class name, and its address in memory
 (which is essentially useless in Python, except as a unique
 identifier).
To see this, change the last line in the script to print(sue) so it displays the object as a whole.
 Here’s what you’ll get—the output says that sue is an “object” in 3.X, and an “instance” in
 2.X as coded:
Bob Smith 0
Sue Jones 100000
Smith Jones
<__main__.Person object at 0x00000000029A0668>
Providing Print Displays
Fortunately, it’s easy to do better by employing operator
 overloading—coding methods in a class that intercept and
 process built-in operations when run on the class’s instances.
 Specifically, we can make use of what are probably the second most
 commonly used operator overloading methods in Python, after __init__: the
 __repr__ method we’ll deploy here,
 and its __str__ twin introduced in
 the preceding chapter.
These methods are run automatically every time an instance is
 converted to its print string. Because that’s what printing an object
 does, the net transitive effect is that printing an object displays
 whatever is returned by the object’s __str__ or __repr__ method, if the object either defines
 one itself or inherits one from a superclass. Double-underscored names
 are inherited just like any other.
Technically, __str__ is
 preferred by print and str, and __repr__ is used as a fallback for these roles
 and in all other contexts. Although the two can be used to implement
 different displays in different contexts, coding just __repr__ alone suffices to give a single
 display in all cases—prints, nested appearances, and interactive echoes.
 This still allows clients to provide an alternative display with
 __str__, but for limited contexts
 only; since this is a self-contained example, this is a moot point
 here.
The __init__ constructor method
 we’ve already coded is, strictly speaking, operator overloading too—it
 is run automatically at construction time to initialize a newly created
 instance. Constructors are so common, though, that they almost seem like
 a special case. More focused methods like __repr__ allow us to tap into specific
 operations and provide specialized behavior when
 our objects are used in those contexts.
Let’s put this into code. The following extends our class to give
 a custom display that lists attributes when our class’s instances are
 displayed as a whole, instead of relying on the less useful default
 display:
Add __repr__ overload method for printing objects

class Person:
 def __init__(self, name, job=None, pay=0):
 self.name = name
 self.job = job
 self.pay = pay
 def lastName(self):
 return self.name.split()[-1]
 def giveRaise(self, percent):
 self.pay = int(self.pay * (1 + percent))
 def __repr__(self): # Added method
 return '[Person: %s, %s]' % (self.name, self.pay) # String to print

if __name__ == '__main__':
 bob = Person('Bob Smith')
 sue = Person('Sue Jones', job='dev', pay=100000)
 print(bob)
 print(sue)
 print(bob.lastName(), sue.lastName())
 sue.giveRaise(.10)
 print(sue)
Notice that we’re doing string % formatting to build the display string in
 __repr__ here; at the bottom, classes
 use built-in type objects and operations like these to get their work
 done. Again, everything you’ve already learned about both built-in types
 and functions applies to class-based code. Classes largely just add an
 additional layer of structure that packages
 functions and data together and supports extensions.
We’ve also changed our self-test code to print objects directly,
 instead of printing individual attributes. When run, the output is more
 coherent and meaningful now; the “[...]” lines are returned by our new
 __repr__, run automatically by print
 operations:
[Person: Bob Smith, 0]
[Person: Sue Jones, 100000]
Smith Jones
[Person: Sue Jones, 110000]
Design note: as we’ll learn in Chapter 30, the __repr__ method is often used to provide an
 as-code low-level display of an object when present, and __str__ is reserved for more user-friendly
 informational displays like ours here. Sometimes classes provide both a
 __str__ for user-friendly displays
 and a __repr__ with extra details for
 developers to view. Because printing runs __str__ and the interactive prompt echoes
 results with __repr__, this can
 provide both target audiences with an appropriate display.
Since __repr__ applies to more
 display cases, including nested appearances, and because we’re not
 interested in displaying two different formats, the all-inclusive
 __repr__ is sufficient for our class.
 Here, this also means that our custom display will be used in 2.X if we
 list both bob and sue in a 3.X print call—a technically nested appearance,
 per the sidebar in “Version Portability: Prints”.

Step 4: Customizing Behavior by Subclassing
At this point, our class captures much of the OOP machinery in Python: it makes
 instances, provides behavior in methods, and even does a bit of operator
 overloading now to intercept print operations in __repr__. It effectively packages our data and
 logic together into a single, self-contained software
 component, making it easy to locate code and straightforward to
 change it in the future. By allowing us to encapsulate behavior, it also
 allows us to factor that code to avoid redundancy and its associated
 maintenance headaches.
The only major OOP concept it does not yet capture is
 customization by inheritance. In some sense, we’re
 already doing inheritance, because instances inherit methods from their
 classes. To demonstrate the real power of OOP, though, we need to define a
 superclass/subclass relationship that allows us to extend our software and
 replace bits of inherited behavior. That’s the main idea behind OOP, after
 all; by fostering a coding model based upon customization of work already
 done, it can dramatically cut development time.
Coding Subclasses
As a next step, then, let’s put OOP’s methodology to use and customize our
 Person class by extending our
 software hierarchy. For the purpose of this tutorial, we’ll define a
 subclass of Person called Manager that replaces the inherited giveRaise method with a more specialized
 version. Our new class begins as follows:
class Manager(Person): # Define a subclass of Person
This code means that we’re defining a new class named Manager, which inherits from and may add
 customizations to the superclass Person. In plain terms, a Manager is almost like a Person (admittedly, a very long journey for a
 very small joke...), but Manager has
 a custom way to give raises.
For the sake of argument, let’s assume that when a Manager gets a raise, it receives the
 passed-in percentage as usual, but also gets an extra bonus that
 defaults to 10%. For instance, if a Manager’s raise is specified as 10%, it will
 really get 20%. (Any relation to Persons living or dead is, of course, strictly
 coincidental.) Our new method begins as follows; because this
 redefinition of giveRaise will be
 closer in the class tree to Manager
 instances than the original version in Person, it effectively replaces, and thereby
 customizes, the operation. Recall that according to the inheritance
 search rules, the lowest version of the name
 wins:1
class Manager(Person): # Inherit Person attrs
 def giveRaise(self, percent, bonus=.10): # Redefine to customize

Augmenting Methods: The Bad Way
Now, there are two ways we might code this Manager
 customization: a good way and a bad way. Let’s start with the
 bad way, since it might be a bit easier to
 understand. The bad way is to cut and paste the code of giveRaise in Person and modify it for Manager, like this:
class Manager(Person):
 def giveRaise(self, percent, bonus=.10):
 self.pay = int(self.pay * (1 + percent + bonus)) # Bad: cut and paste
This works as advertised—when we later call the giveRaise method of a Manager instance, it will run this custom
 version, which tacks on the extra bonus. So what’s wrong with something
 that runs correctly?
The problem here is a very general one: anytime you copy code with
 cut and paste, you essentially double your
 maintenance effort in the future. Think about it: because we copied the
 original version, if we ever have to change the way raises are given
 (and we probably will), we’ll have to change the code in
 two places, not one. Although this is a small and
 artificial example, it’s also representative of a universal
 issue—anytime you’re tempted to program by copying code this way, you
 probably want to look for a better approach.

Augmenting Methods: The Good Way
What we really want to do here is somehow
 augment the original giveRaise, instead of replacing it altogether.
 The good way to do that in Python is by calling to
 the original version directly, with augmented arguments, like
 this:
class Manager(Person):
 def giveRaise(self, percent, bonus=.10):
 Person.giveRaise(self, percent + bonus) # Good: augment original
This code leverages the fact that a class’s method can always be
 called either through an instance (the usual way,
 where Python sends the instance to the self argument automatically) or through the
 class (the less common scheme, where you must pass
 the instance manually). In more symbolic terms, recall that a normal
 method call of this form:
instance.method(args...)
is automatically translated by Python into this equivalent
 form:
class.method(instance, args...)
where the class containing the method to be run is determined by
 the inheritance search rule applied to the method’s name. You can code
 either form in your script, but there is a slight
 asymmetry between the two—you must remember to pass along the instance
 manually if you call through the class directly. The method always needs
 a subject instance one way or another, and Python provides it
 automatically only for calls made through an instance. For calls through
 the class name, you need to send an instance to self yourself; for code inside a method like
 giveRaise, self already is the
 subject of the call, and hence the instance to pass along.
Calling through the class directly effectively subverts
 inheritance and kicks the call higher up the class tree to run a
 specific version. In our case, we can use this technique to invoke the
 default giveRaise in Person, even though it’s been redefined at the
 Manager level. In some sense, we
 must call through Person this way, because a self.giveRaise() inside Manager’s giveRaise code would loop—since self already is a Manager, self.giveRaise() would resolve again to
 Manager.giveRaise, and so on and so
 forth recursively until available memory is
 exhausted.
This “good” version may seem like a small difference in code, but
 it can make a huge difference for future code
 maintenance—because the giveRaise logic lives in just one place now
 (Person’s method), we have only one
 version to change in the future as needs evolve. And really, this form
 captures our intent more directly anyhow—we want to perform the standard
 giveRaise operation, but simply tack
 on an extra bonus. Here’s our entire module file with this step
 applied:
Add customization of one behavior in a subclass

class Person:
 def __init__(self, name, job=None, pay=0):
 self.name = name
 self.job = job
 self.pay = pay
 def lastName(self):
 return self.name.split()[-1]
 def giveRaise(self, percent):
 self.pay = int(self.pay * (1 + percent))
 def __repr__(self):
 return '[Person: %s, %s]' % (self.name, self.pay)

class Manager(Person):
 def giveRaise(self, percent, bonus=.10): # Redefine at this level
 Person.giveRaise(self, percent + bonus) # Call Person's version

if __name__ == '__main__':
 bob = Person('Bob Smith')
 sue = Person('Sue Jones', job='dev', pay=100000)
 print(bob)
 print(sue)
 print(bob.lastName(), sue.lastName())
 sue.giveRaise(.10)
 print(sue)
 tom = Manager('Tom Jones', 'mgr', 50000) # Make a Manager: __init__
 tom.giveRaise(.10) # Runs custom version
 print(tom.lastName()) # Runs inherited method
 print(tom) # Runs inherited __repr__
To test our Manager subclass
 customization, we’ve also added self-test code that makes a Manager, calls its methods, and prints it.
 When we make a Manager, we pass in a
 name, and an optional job and pay as before—because Manager had no __init__ constructor, it inherits that in
 Person. Here’s the new version’s
 output:
[Person: Bob Smith, 0]
[Person: Sue Jones, 100000]
Smith Jones
[Person: Sue Jones, 110000]
Jones
[Person: Tom Jones, 60000]
Everything looks good here: bob
 and sue are as before, and when
 tom the Manager is given a 10% raise, he really gets
 20% (his pay goes from $50K to $60K), because the customized giveRaise in Manager is run for him only. Also notice how
 printing tom as a whole at the end of
 the test code displays the nice format defined in Person’s __repr__: Manager objects get this, lastName, and the __init__ constructor method’s code “for free”
 from Person, by inheritance.
What About super?
To extend inherited methods, the examples in this chapter simply call the original
 through the superclass name: Person.giveRaise(...). This is the
 traditional and simplest scheme in Python, and the one used in most of
 this book.
Java programmers may especially be interested to know that
 Python also has a super built-in
 function that allows calling back to a superclass’s methods more
 generically—but it’s cumbersome to use in 2.X; differs in form between
 2.X and 3.X; relies on unusual semantics in 3.X; works unevenly with
 Python’s operator overloading; and does not always mesh well with
 traditionally coded multiple inheritance, where a single superclass
 call won’t suffice.
In its defense, the super
 call has a valid use case too—cooperative same-named method dispatch
 in multiple inheritance trees—but it relies on the “MRO” ordering of
 classes, which many find esoteric and artificial;
 unrealistically assumes universal deployment to be used reliably; does
 not fully support method replacement and varying argument lists; and
 to many observers seems an obscure solution to a use case that is rare
 in real Python code.
Because of these downsides, this book prefers to call
 superclasses by explicit name instead of super, recommends the same policy for
 newcomers, and defers presenting super until Chapter 32. It’s usually best judged after you
 learn the simpler, and generally more traditional and “Pythonic” ways
 of achieving the same goals, especially if you’re new to OOP. Topics
 like MROs and cooperative multiple inheritance dispatch seem a lot to
 ask of beginners—and others.
And to any Java programmers in the audience: I suggest resisting
 the temptation to use Python’s super until you’ve had a chance to study its
 subtle implications. Once you step up to multiple inheritance, it’s
 not what you think it is, and more than you probably expect. The class
 it invokes may not be the superclass at all, and can even vary per
 context. Or to paraphrase a movie line: Python’s super is like a box of
 chocolates—you never know what you’re going to
 get!

Polymorphism in Action
To make this acquisition of inherited behavior even more striking, we can add the
 following code at the end of our file temporarily:
if __name__ == '__main__':
 ...
 print('--All three--')
 for obj in (bob, sue, tom): # Process objects generically
 obj.giveRaise(.10) # Run this object's giveRaise
 print(obj) # Run the common __repr__
Here’s the resulting output, with its new parts highlighted in
 bold:
[Person: Bob Smith, 0]
[Person: Sue Jones, 100000]
Smith Jones
[Person: Sue Jones, 110000]
Jones
[Person: Tom Jones, 60000]
--All three--
[Person: Bob Smith, 0]
[Person: Sue Jones, 121000]
[Person: Tom Jones, 72000]
In the added code, object is
 either a Person
 or a Manager, and Python runs the
 appropriate giveRaise
 automatically—our original version in Person for bob and sue, and our customized version in Manager for tom. Trace the method calls yourself to see
 how Python selects the right giveRaise method for each object.
This is just Python’s notion of polymorphism,
 which we met earlier in the book, at work again—what giveRaise does depends on what you do it to.
 Here, it’s made all the more obvious when it selects from code we’ve
 written ourselves in classes. The practical effect in this code is that
 sue gets another 10% but tom gets another 20%, because giveRaise is dispatched based upon
 the object’s type. As we’ve learned, polymorphism is at the heart of
 Python’s flexibility. Passing any of our three objects to a function
 that calls a giveRaise method, for
 example, would have the same effect: the appropriate version would be
 run automatically, depending on which type of object was passed.
On the other hand, printing runs the same
 __repr__ for all three objects,
 because it’s coded just once in Person. Manager both specializes and applies the code
 we originally wrote in Person.
 Although this example is small, it’s already leveraging OOP’s talent for
 code customization and reuse; with classes, this almost seems automatic
 at times.

Inherit, Customize, and Extend
In fact, classes can be even more flexible than our example implies. In general,
 classes can inherit,
 customize, or extend existing
 code in superclasses. For example, although we’re focused on
 customization here, we can also add unique methods to Manager that are not present in Person, if Managers require something completely
 different (Python namesake reference intended). The following snippet
 illustrates. Here, giveRaise
 redefines a superclass’s method to customize it, but someThingElse defines something new to
 extend:
class Person:
 def lastName(self): ...
 def giveRaise(self): ...
 def __repr__(self): ...

class Manager(Person): # Inherit
 def giveRaise(self, ...): ... # Customize
 def someThingElse(self, ...): ... # Extend

tom = Manager()
tom.lastName() # Inherited verbatim
tom.giveRaise() # Customized version
tom.someThingElse() # Extension here
print(tom) # Inherited overload method
Extra methods like this code’s someThingElse extend the
 existing software and are available on Manager objects only, not on Persons. For the purposes of this tutorial,
 however, we’ll limit our scope to customizing some of Person’s behavior by redefining it, not adding
 to it.

OOP: The Big Idea
As is, our code may be small, but it’s fairly functional. And really, it
 already illustrates the main point behind OOP in general: in OOP, we
 program by customizing what has already been done,
 rather than copying or changing existing code. This isn’t always an
 obvious win to newcomers at first glance, especially given the extra
 coding requirements of classes. But overall, the programming style
 implied by classes can cut development time radically compared to other
 approaches.
For instance, in our example we could theoretically have
 implemented a custom giveRaise
 operation without subclassing, but none of the other options yield code
 as optimal as ours:
	Although we could have simply coded Manager from scratch
 as new, independent code, we would have had to reimplement all the
 behaviors in Person that are the
 same for Managers.

	Although we could have simply changed the
 existing Person class in place
 for the requirements of Manager’s
 giveRaise, doing so would
 probably break the places where we still need the original Person behavior.

	Although we could have simply copied the
 Person class in its entirety,
 renamed the copy to Manager, and
 changed its giveRaise, doing so
 would introduce code redundancy that would double our work in the
 future—changes made to Person in
 the future would not be picked up automatically, but would have to
 be manually propagated to Manager’s code. As usual, the
 cut-and-paste approach may seem quick now, but it doubles your work
 in the future.

The customizable hierarchies we can build
 with classes provide a much better solution for software that will
 evolve over time. No other tools in Python support this development
 mode. Because we can tailor and extend our prior work by coding new
 subclasses, we can leverage what we’ve already done, rather than
 starting from scratch each time, breaking what already works, or
 introducing multiple copies of code that may all have to be updated in
 the future. When done right, OOP is a powerful programmer’s ally.

Step 5: Customizing Constructors, Too
Our code works as it is, but if you study the current version closely, you may
 be struck by something a bit odd—it seems pointless to have to provide a
 mgr job name for Manager objects when we create them: this is
 already implied by the class itself. It would be better if we could
 somehow fill in this value automatically when a Manager is made.
The trick we need to improve on this turns out to be the
 same as the one we employed in the prior section: we
 want to customize the constructor logic for Managers in such a way as to provide a job name
 automatically. In terms of code, we want to redefine an __init__ method in Manager that provides the mgr string for us. And as in giveRaise customization, we also want to run the
 original __init__ in Person by calling through the class name, so it
 still initializes our objects’ state information attributes.
The following extension to person.py will do the job—we’ve coded the new
 Manager constructor and changed the
 call that creates tom to not pass in
 the mgr job name:
File person.py
Add customization of constructor in a subclass

class Person:
 def __init__(self, name, job=None, pay=0):
 self.name = name
 self.job = job
 self.pay = pay
 def lastName(self):
 return self.name.split()[-1]
 def giveRaise(self, percent):
 self.pay = int(self.pay * (1 + percent))
 def __repr__(self):
 return '[Person: %s, %s]' % (self.name, self.pay)

class Manager(Person):
 def __init__(self, name, pay): # Redefine constructor
 Person.__init__(self, name, 'mgr', pay) # Run original with 'mgr'
 def giveRaise(self, percent, bonus=.10):
 Person.giveRaise(self, percent + bonus)

if __name__ == '__main__':
 bob = Person('Bob Smith')
 sue = Person('Sue Jones', job='dev', pay=100000)
 print(bob)
 print(sue)
 print(bob.lastName(), sue.lastName())
 sue.giveRaise(.10)
 print(sue)
 tom = Manager('Tom Jones', 50000) # Job name not needed:
 tom.giveRaise(.10) # Implied/set by class
 print(tom.lastName())
 print(tom)
Again, we’re using the same technique to augment the __init__ constructor here that we used for
 giveRaise earlier—running the
 superclass version by calling through the class name directly and passing
 the self instance along explicitly.
 Although the constructor has a strange name, the effect is identical.
 Because we need Person’s construction
 logic to run too (to initialize instance attributes), we really have to
 call it this way; otherwise, instances would not have any attributes
 attached.
Calling superclass constructors from redefinitions this way turns
 out to be a very common coding pattern in Python. By itself, Python uses
 inheritance to look for and call only one __init__ method at construction time—the
 lowest one in the class tree. If you need higher
 __init__ methods to be run at
 construction time (and you usually do), you must call them manually, and
 usually through the superclass’s name. The upside to this is that you can
 be explicit about which argument to pass up to the superclass’s
 constructor and can choose to not call it at all: not
 calling the superclass constructor allows you to replace its logic
 altogether, rather than augmenting it.
The output of this file’s self-test code is the same as before—we
 haven’t changed what it does, we’ve simply restructured to get rid of some
 logical redundancy:
[Person: Bob Smith, 0]
[Person: Sue Jones, 100000]
Smith Jones
[Person: Sue Jones, 110000]
Jones
[Person: Tom Jones, 60000]
OOP Is Simpler Than You May Think
In this complete form, and despite their relatively small sizes, our classes
 capture nearly all the important concepts in Python’s OOP
 machinery:
	Instance creation—filling out instance attributes

	Behavior methods—encapsulating logic in a class’s
 methods

	Operator overloading—providing behavior for built-in
 operations like printing

	Customizing behavior—redefining methods in subclasses to
 specialize them

	Customizing constructors—adding initialization logic to
 superclass steps

Most of these concepts are based upon just three simple ideas: the
 inheritance search for attributes in object trees, the special self argument in methods, and operator
 overloading’s automatic dispatch to methods.
Along the way, we’ve also made our code easy to change in the
 future, by harnessing the class’s propensity for factoring code to
 reduce redundancy. For example, we wrapped up logic
 in methods and called back to superclass methods from extensions to
 avoid having multiple copies of the same code. Most of these steps were
 a natural outgrowth of the structuring power of classes.
By and large, that’s all there is to OOP in Python. Classes
 certainly can become larger than this, and there are some more advanced
 class concepts, such as decorators and metaclasses, which we will meet
 in later chapters. In terms of the basics, though, our classes already
 do it all. In fact, if you’ve grasped the workings of the classes we’ve
 written, most OOP Python code should now be within your reach.

Other Ways to Combine Classes
Having said that, I should also tell you that although the basic mechanics of OOP are
 simple in Python, some of the art in larger programs lies in the way
 that classes are put together. We’re focusing on
 inheritance in this tutorial because that’s the
 mechanism the Python language provides, but programmers sometimes
 combine classes in other ways, too.
For example, a common coding pattern involves nesting objects
 inside each other to build up composites. We’ll
 explore this pattern in more detail in Chapter 31, which is really more about design
 than about Python. As a quick example, though, we could use this
 composition idea to code our Manager
 extension by embedding a Person, instead of inheriting from it.
The following alternative, coded in file person-composite.py, does so by using
 the __getattr__
 operator overloading method to intercept undefined attribute fetches and
 delegate them to the embedded object with the getattr built-in.
 The getattr call was introduced in
 Chapter 25—it’s the same as X.Y attribute fetch notation and thus performs
 inheritance, but the attribute name Y
 is a runtime string—and __getattr__
 is covered in full in Chapter 30, but
 its basic usage is simple enough to leverage here.
By combining these tools, the giveRaise method here still achieves
 customization, by changing the argument passed along to the embedded
 object. In effect, Manager becomes a
 controller layer that passes calls down to the
 embedded object, rather than up to superclass
 methods:
File person-composite.py
Embedding-based Manager alternative

class Person:
 ...same...

class Manager:
 def __init__(self, name, pay):
 self.person = Person(name, 'mgr', pay) # Embed a Person object
 def giveRaise(self, percent, bonus=.10):
 self.person.giveRaise(percent + bonus) # Intercept and delegate
 def __getattr__(self, attr):
 return getattr(self.person, attr) # Delegate all other attrs
 def __repr__(self):
 return str(self.person) # Must overload again (in 3.X)

if __name__ == '__main__':
 ...same...
The output of this version is the same as the prior, so I won’t
 list it again. The more important point here is that this Manager alternative is representative of a
 general coding pattern usually known as
 delegation—a composite-based structure that manages
 a wrapped object and propagates method calls to it.
This pattern works in our example, but it requires about twice as
 much code and is less well suited than inheritance to the kinds of
 direct customizations we meant to express (in fact, no reasonable Python
 programmer would code this example this way in practice, except perhaps
 those writing general tutorials!). Manager isn’t really a Person here, so we need extra code to manually
 dispatch method calls to the embedded object; operator overloading
 methods like __repr__ must be
 redefined (in 3.X, at least, as noted in the upcoming sidebar “Catching Built-in Attributes in 3.X”); and adding new
 Manager behavior is less
 straightforward since state information is one level removed.
Still, object embedding, and design patterns
 based upon it, can be a very good fit when embedded objects require more
 limited interaction with the container than direct customization
 implies. A controller layer, or proxy, like this
 alternative Manager, for example,
 might come in handy if we want to adapt a class to an expected interface
 it does not support, or trace or validate calls to another object’s
 methods (indeed, we will use a nearly identical coding pattern when we
 study class decorators later in the book).
Moreover, a hypothetical Department class like the following could
 aggregate other objects in order to treat them as a
 set. Replace the self-test code at the bottom of the person.py file temporarily to try this on
 your own; the file person-department.py in the book’s examples
 does:
File person-department.py
Aggregate embedded objects into a composite

class Person:
 ...same...

class Manager(Person):
 ...same...

class Department:
 def __init__(self, *args):
 self.members = list(args)
 def addMember(self, person):
 self.members.append(person)
 def giveRaises(self, percent):
 for person in self.members:
 person.giveRaise(percent)
 def showAll(self):
 for person in self.members:
 print(person)

if __name__ == '__main__':
 bob = Person('Bob Smith')
 sue = Person('Sue Jones', job='dev', pay=100000)
 tom = Manager('Tom Jones', 50000)

 development = Department(bob, sue) # Embed objects in a composite
 development.addMember(tom)
 development.giveRaises(.10) # Runs embedded objects' giveRaise
 development.showAll() # Runs embedded objects' __repr__
When run, the department’s showAll method lists all of its contained
 objects after updating their state in true polymorphic fashion with
 giveRaises:
[Person: Bob Smith, 0]
[Person: Sue Jones, 110000]
[Person: Tom Jones, 60000]
Interestingly, this code uses both inheritance
 and composition—Department is a composite that embeds and
 controls other objects to aggregate, but the embedded Person and Manager objects themselves use inheritance to
 customize. As another example, a GUI might similarly use
 inheritance to customize the behavior or appearance
 of labels and buttons, but also composition to
 build up larger packages of embedded widgets, such as input forms,
 calculators, and text editors. The class structure to use depends on the
 objects you are trying to model—in fact, the ability to model real-world
 entities this way is one of OOP’s strengths.
Design issues like composition are explored in Chapter 31, so we’ll postpone further
 investigations for now. But again, in terms of the basic mechanics of
 OOP in Python, our Person and
 Manager classes already tell the
 entire story. Now that you’ve mastered the basics of OOP, though,
 developing general tools for applying it more easily in your scripts is
 often a natural next step—and the topic of the next section.
Catching Built-in Attributes in 3.X
An implementation note: in Python 3.X—and in 2.X when 3.X’s “new style” classes are
 enabled—the alternative delegation-based Manager class of the file person-composite.py that we coded in this
 chapter will not be able to intercept and delegate operator
 overloading method attributes like __repr__ without redefining them itself.
 Although we know that __repr__ is
 the only such name used in our specific example, this is a general
 issue for delegation-based classes.
Recall that built-in operations like printing and addition
 implicitly invoke operator overloading methods such as __repr__ and __add__. In 3.X’s new-style classes,
 built-in operations like these do not route their implicit attribute fetches through generic attribute managers:
 neither __getattr__ (run for
 undefined attributes) nor its cousin __getattribute__ (run for all attributes) is invoked. This is why we have to
 redefine __repr__ redundantly in
 the alternative Manager, in order
 to ensure that printing is routed to the embedded Person object in 3.X.
Comment out this method to see this live—the Manager instance prints with a default in
 3.X, but still uses Person’s
 __repr__ in 2.X. In fact, the
 __repr__ in Manager isn’t required in 2.X at all, as
 it’s coded to use 2.X normal and default (a.k.a.
 “classic”) classes:
c:\code> py −3 person-composite.py
[Person: Bob Smith, 0]
...etc...
<__main__.Manager object at 0x00000000029AA8D0>

c:\code> py −2 person-composite.py
[Person: Bob Smith, 0]
...etc...
[Person: Tom Jones, 60000]
Technically, this happens because built-in operations begin
 their implicit search for method names at the
 instance in 2.X’s default
 classic classes, but start at the
 class in 3.X’s mandated
 new-style classes, skipping the instance
 entirely. By contrast, explicit by-name attribute fetches are always
 routed to the instance first in both models. In 2.X classic classes,
 built-ins route attributes this way too—printing, for example, routes
 __repr__ through __getattr__. This is why commenting out
 Manager’s __repr__ has no effect in 2.X: the call is
 delegated to Person. New-style
 classes also inherit a default for __repr__ from their automatic object superclass that would foil __getattr__, but the new-style __getattribute__ doesn’t intercept the name
 either.
This is a change, but isn’t a show-stopper—delegation-based
 new-style classes can generally redefine operator overloading methods
 to delegate them to wrapped objects, either manually or via tools or
 superclasses. This topic is too advanced to explore further in this
 tutorial, though, so don’t sweat the details too much here. Watch for
 it to be revisited in Chapter 31 and
 Chapter 32 (the latter of which defines
 new-style classes more formally); to impact examples again in the
 attribute management coverage of Chapter 38
 and the Private class decorator in
 Chapter 39 (the last of these also codes
 workarounds); and to be a special-case factor in a nearly formal
 inheritance definition in Chapter 40. In a language like Python that supports both
 attribute interception and operator overloading, the impacts of this
 change can be as broad as this spread implies!

Step 6: Using Introspection Tools
Let’s make one final tweak before we throw our objects onto a database. As they are,
 our classes are complete and demonstrate most of the basics of OOP in
 Python. They still have two remaining issues we probably should iron out,
 though, before we go live with them:
	First, if you look at the display of the objects as they are
 right now, you’ll notice that when you print tom the Manager, the display labels him as a
 Person. That’s not technically
 incorrect, since Manager is a kind
 of customized and specialized Person. Still, it would be more accurate to
 display an object with the most specific (that is,
 lowest) class possible: the one an object is made
 from.

	Second, and perhaps more importantly, the current display format
 shows only the attributes we include in our
 __repr__, and that might not
 account for future goals. For example, we can’t yet verify that
 tom’s job name has been set to
 mgr correctly by Manager’s constructor, because the __repr__ we coded for Person does not print this field. Worse, if
 we ever expand or otherwise change the set of attributes assigned to
 our objects in __init__, we’ll have
 to remember to also update __repr__
 for new names to be displayed, or it will become out of sync over
 time.

The last point means that, yet again, we’ve made potential extra
 work for ourselves in the future by introducing
 redundancy in our code. Because any disparity in
 __repr__ will be reflected in the
 program’s output, this redundancy may be more obvious than the other forms
 we addressed earlier; still, avoiding extra work in the future is
 generally a good thing.
Special Class Attributes
We can address both issues with Python’s introspection
 tools—special attributes and functions that give us access to
 some of the internals of objects’ implementations. These tools are
 somewhat advanced and generally used more by people writing tools for
 other programmers to use than by programmers developing applications.
 Even so, a basic knowledge of some of these tools is useful because they
 allow us to write code that processes classes in generic ways. In our
 code, for example, there are two hooks that can help us out, both of
 which were introduced near the end of the preceding chapter and used in
 earlier examples:
	The built-in instance.__class__ attribute provides a link from an instance to the class from
 which it was created. Classes in turn have a __name__, just like modules, and a
 __bases__ sequence that provides
 access to superclasses. We can use these here to print the name of
 the class from which an instance is made rather than one we’ve
 hardcoded.

	The built-in object.__dict__ attribute provides a dictionary with one key/value pair for
 every attribute attached to a namespace object (including modules,
 classes, and instances). Because it is a dictionary, we can fetch
 its keys list, index by key, iterate over its keys, and so on, to
 process all attributes generically. We can use this here to print
 every attribute in any instance, not just those we hardcode in
 custom displays, much as we did in Chapter 25’s module tools.

We met the first of these categories in the prior chapter, but
 here’s a quick review at Python’s interactive prompt with the latest
 versions of our person.py classes.
 Notice how we load Person at the
 interactive prompt with a from
 statement here—class names live in and are imported from modules,
 exactly like function names and other variables:
>>> from person import Person
>>> bob = Person('Bob Smith')
>>> bob # Show bob's __repr__ (not __str__)
[Person: Bob Smith, 0]
>>> print(bob) # Ditto: print => __str__ or __repr__
[Person: Bob Smith, 0]

>>> bob.__class__ # Show bob's class and its name
<class 'person.Person'>
>>> bob.__class__.__name__
'Person'

>>> list(bob.__dict__.keys()) # Attributes are really dict keys
['pay', 'job', 'name'] # Use list to force list in 3.X

>>> for key in bob.__dict__:
 print(key, '=>', bob.__dict__[key]) # Index manually

pay => 0
job => None
name => Bob Smith

>>> for key in bob.__dict__:
 print(key, '=>', getattr(bob, key)) # obj.attr, but attr is a var

pay => 0
job => None
name => Bob Smith
As noted briefly in the prior chapter, some attributes accessible
 from an instance might not be stored in the __dict__ dictionary if the instance’s class
 defines __slots__: an optional and
 relatively obscure feature of new-style classes (and hence all classes
 in Python 3.X) that stores attributes sequentially in the instance; may
 preclude an instance __dict__
 altogether; and which we won’t study in full until Chapter 31 and Chapter 32. Since slots really belong to classes
 instead of instances, and since they are rarely used in any event, we
 can reasonably ignore them here and focus on the normal __dict__.
As we do, though, keep in mind that some programs may need to
 catch exceptions for a missing __dict__, or use hasattr to test or getattr with a default if its users might
 deploy slots. As we’ll see in Chapter 32,
 the next section’s code won’t fail if used by a class with slots (its
 lack of them is enough to guarantee a __dict__) but slots—and other “virtual”
 attributes—won’t be reported as instance data.

A Generic Display Tool
We can put these interfaces to work in a superclass that displays accurate
 class names and formats all attributes of an instance of any class. Open
 a new file in your text editor to code the following—it’s a new,
 independent module named classtools.py that implements just such a
 class. Because its __repr__ display
 overload uses generic introspection tools, it will work on any
 instance, regardless of the instance’s attributes set. And
 because this is a class, it automatically becomes a general formatting
 tool: thanks to inheritance, it can be mixed into any
 class that wishes to use its display format. As an added
 bonus, if we ever want to change how instances are displayed we need
 only change this class, as every class that inherits its __repr__ will automatically pick up the new format when it’s next
 run:
File classtools.py (new)
"Assorted class utilities and tools"

class AttrDisplay:
 """
 Provides an inheritable display overload method that shows
 instances with their class names and a name=value pair for
 each attribute stored on the instance itself (but not attrs
 inherited from its classes). Can be mixed into any class,
 and will work on any instance.
 """
 def gatherAttrs(self):
 attrs = []
 for key in sorted(self.__dict__):
 attrs.append('%s=%s' % (key, getattr(self, key)))
 return ', '.join(attrs)

 def __repr__(self):
 return '[%s: %s]' % (self.__class__.__name__, self.gatherAttrs())

if __name__ == '__main__':

 class TopTest(AttrDisplay):
 count = 0
 def __init__(self):
 self.attr1 = TopTest.count
 self.attr2 = TopTest.count+1
 TopTest.count += 2

 class SubTest(TopTest):
 pass

 X, Y = TopTest(), SubTest() # Make two instances
 print(X) # Show all instance attrs
 print(Y) # Show lowest class name
Notice the docstrings here—because this is a general-purpose tool,
 we want to add some functional documentation for potential users to
 read. As we saw in Chapter 15,
 docstrings can be placed at the top of simple functions and modules, and
 also at the start of classes and any of their methods; the help function and the PyDoc tool extract and
 display these automatically. We’ll revisit docstrings for classes in
 Chapter 29.
When run directly, this module’s self-test makes two instances and
 prints them; the __repr__ defined
 here shows the instance’s class, and all its attributes’ names and
 values, in sorted attribute name order. This output is the same in
 Python 3.X and 2.X because each object’s display is a single constructed
 string:
C:\code> classtools.py
[TopTest: attr1=0, attr2=1]
[SubTest: attr1=2, attr2=3]
Another design note here: because this class uses __repr__ instead of __str__ its displays are used in all contexts,
 but its clients also won’t have the option of providing an alternative
 low-level display—they can still add a __str__, but this applies to print and str only. In a more general tool, using
 __str__ instead limits a display’s scope, but leaves clients the option of
 adding a __repr__ for a secondary
 display at interactive prompts and nested appearances. We’ll follow this
 alternative policy when we code expanded versions of this class in Chapter 31; for this demo, we’ll stick with the
 all-inclusive __repr__.

Instance Versus Class Attributes
If you study the classtools
 module’s self-test code long enough, you’ll notice that its class
 displays only instance attributes, attached to the
 self object at the bottom of the
 inheritance tree; that’s what self’s __dict__ contains. As an intended consequence,
 we don’t see attributes inherited by the instance from classes above it
 in the tree (e.g., count in this
 file’s self-test code—a class attribute used as an instance counter). Inherited
 class attributes are attached to the class only, not copied down to
 instances.
If you ever do wish to include inherited attributes too, you can
 climb the __class__
 link to the instance’s class, use the __dict__ there to fetch class attributes, and
 then iterate through the class’s __bases__
 attribute to climb to even higher superclasses, repeating as necessary.
 If you’re a fan of simple code, running a built-in dir call on
 the instance instead of using __dict__ and climbing would have much the same
 effect, since dir results include
 inherited names in the sorted results list. In Python 2.7:
>>> from person import Person # 2.X: keys is list, dir shows less
>>> bob = Person('Bob Smith')

>>> bob.__dict__.keys() # Instance attrs only
['pay', 'job', 'name']

>>> dir(bob) # Plus inherited attrs in classes
['__doc__', '__init__', '__module__', '__repr__', 'giveRaise', 'job', 'lastName',
'name', 'pay']
If you’re using Python 3.X, your output will vary, and may be more
 than you bargained for; here’s the 3.3 result for the last two
 statements (keys list order can vary per run):
>>> list(bob.__dict__.keys()) # 3.X keys is a view, not a list
['name', 'job', 'pay']

>>> dir(bob) # 3.X includes class type methods
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__',
...more omitted: 31 attrs...
'__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__',
'giveRaise', 'job', 'lastName', 'name', 'pay']
The code and output here varies between Python 2.X and 3.X,
 because 3.X’s dict.keys is not a
 list, and 3.X’s dir returns extra
 class-type implementation attributes. Technically, dir returns more in 3.X because classes are
 all “new style” and inherit a large set of operator overloading names
 from the class type. In fact, as usual you’ll probably want to filter
 out most of the __X__ names in the 3.X dir result, since they are internal
 implementation details and not something you’d normally want to
 display:
>>> len(dir(bob))
31
>>> list(name for name in dir(bob) if not name.startswith('__'))
['giveRaise', 'job', 'lastName', 'name', 'pay']
In the interest of space, we’ll leave optional display of
 inherited class attributes with either tree climbs or dir as suggested experiments for now. For more
 hints on this front, though, watch for the classtree.py inheritance tree climber we will
 write in Chapter 29, and the lister.py attribute listers and climbers
 we’ll code in Chapter 31.

Name Considerations in Tool Classes
One last subtlety here: because our AttrDisplay class in the classtools module is a general tool designed
 to be mixed into other arbitrary classes, we have to be aware of the
 potential for unintended name collisions with
 client classes. As is, I’ve assumed that client subclasses may want to
 use both its __repr__ and gatherAttrs, but the latter of these may be
 more than a subclass expects—if a subclass innocently defines a gatherAttrs name of its own, it will likely
 break our class, because the lower version in the subclass will be used
 instead of ours.
To see this for yourself, add a gatherAttrs to TopTest in the file’s self-test code; unless
 the new method is identical, or intentionally customizes the original,
 our tool class will no longer work as planned—self.gatherAttrs within AttrDisplay searches anew from the TopTest instance:
 class TopTest(AttrDisplay):

 def gatherAttrs(self): # Replaces method in AttrDisplay!
 return 'Spam'
This isn’t necessarily bad—sometimes we want other methods to be
 available to subclasses, either for direct calls or for customization
 this way. If we really meant to provide a __repr__ only, though, this is less than
 ideal.
To minimize the chances of name collisions like this, Python
 programmers often prefix methods not meant for external use with
 a single underscore: _gatherAttrs in our case. This isn’t foolproof
 (what if another class defines _gatherAttrs, too?), but it’s usually
 sufficient, and it’s a common Python naming convention for methods
 internal to a class.
A better and less commonly used solution would be to use
 two underscores at the front of the method name
 only: __gatherAttrs for us. Python
 automatically expands such names to include the enclosing class’s name,
 which makes them truly unique when looked up by the inheritance search.
 This is a feature usually called pseudoprivate class
 attributes, which we’ll expand on in Chapter 31 and deploy in an expanded version of
 this class there. For now, we’ll make both our methods available.

Our Classes’ Final Form
Now, to use this generic tool in our classes, all we need to do is import
 it from its module, mix it in by inheritance in our top-level class, and
 get rid of the more specific __repr__
 we coded before. The new display overload method will be inherited by
 instances of Person, as well as
 Manager; Manager gets __repr__ from Person, which now obtains it from the AttrDisplay coded in another module. Here is
 the final version of our person.py
 file with these changes applied:
File classtools.py (new)
...as listed earlier...

File person.py (final)
"""
Record and process information about people.
Run this file directly to test its classes.
"""
from classtools import AttrDisplay # Use generic display tool

class Person(AttrDisplay): # Mix in a repr at this level
 """
 Create and process person records
 """
 def __init__(self, name, job=None, pay=0):
 self.name = name
 self.job = job
 self.pay = pay

 def lastName(self): # Assumes last is last
 return self.name.split()[-1]

 def giveRaise(self, percent): # Percent must be 0..1
 self.pay = int(self.pay * (1 + percent))

class Manager(Person):
 """
 A customized Person with special requirements
 """
 def __init__(self, name, pay):
 Person.__init__(self, name, 'mgr', pay) # Job name is implied

 def giveRaise(self, percent, bonus=.10):
 Person.giveRaise(self, percent + bonus)

if __name__ == '__main__':
 bob = Person('Bob Smith')
 sue = Person('Sue Jones', job='dev', pay=100000)
 print(bob)
 print(sue)
 print(bob.lastName(), sue.lastName())
 sue.giveRaise(.10)
 print(sue)
 tom = Manager('Tom Jones', 50000)
 tom.giveRaise(.10)
 print(tom.lastName())
 print(tom)
As this is the final revision, we’ve added a few
 comments here to document our work—docstrings for
 functional descriptions and # for
 smaller notes, per best-practice conventions, as well as blank
 lines between methods for readability—a generally good style
 choice when classes or methods grow large, which I resisted earlier for
 these small classes, in part to save space and keep the code more
 compact.
When we run this code now, we see all the attributes of our
 objects, not just the ones we hardcoded in the original __repr__. And our final issue is resolved:
 because AttrDisplay takes class names
 off the self instance directly, each
 object is shown with the name of its closest (lowest) class—tom displays as a Manager now, not a Person, and we can finally verify that his job
 name has been correctly filled in by the Manager constructor:
C:\code> person.py
[Person: job=None, name=Bob Smith, pay=0]
[Person: job=dev, name=Sue Jones, pay=100000]
Smith Jones
[Person: job=dev, name=Sue Jones, pay=110000]
Jones
[Manager: job=mgr, name=Tom Jones, pay=60000]
This is the more useful display we were after. From a larger
 perspective, though, our attribute display class has become a
 general tool, which we can mix into any class by
 inheritance to leverage the display format it defines. Further, all its
 clients will automatically pick up future changes in our tool. Later in
 the book, we’ll meet even more powerful class tool concepts, such as
 decorators and metaclasses; along with Python’s many introspection
 tools, they allow us to write code that augments and manages classes in
 structured and maintainable ways.

Step 7 (Final): Storing Objects in a Database
At this point, our work is almost complete. We now have a two-module
 system that not only implements our original design goals for
 representing people, but also provides a general attribute display tool we
 can use in other programs in the future. By coding functions and classes
 in module files, we’ve ensured that they naturally support reuse. And by
 coding our software as classes, we’ve ensured that it naturally supports
 extension.
Although our classes work as planned, though, the objects they
 create are not real database records. That is, if we kill Python, our
 instances will disappear—they’re transient objects in memory and are not
 stored in a more permanent medium like a file, so they won’t be available
 in future program runs. It turns out that it’s easy to make instance
 objects more permanent, with a Python feature called object persistence—making
 objects live on after the program that creates them exits. As a final step
 in this tutorial, let’s make our objects permanent.
Pickles and Shelves
Object persistence is implemented by three standard library modules, available
 in every Python:
	pickle
	Serializes arbitrary Python objects to and from a string of
 bytes

	dbm (named anydbm in Python 2.X)
	Implements an access-by-key filesystem for storing strings

	shelve
	Uses the other two modules to store Python objects on a file by
 key

We met these modules very briefly in Chapter 9 when we studied
 file basics. They provide powerful data storage options. Although we
 can’t do them complete justice in this tutorial or book, they are simple
 enough that a brief introduction is enough to get you started.
The pickle module
The pickle module is a sort
 of super-general object formatting and deformatting tool: given a
 nearly arbitrary Python object in memory, it’s clever enough to
 convert the object to a string of bytes, which it can use later to
 reconstruct the original object in memory. The pickle module can handle almost any object
 you can create—lists, dictionaries, nested combinations thereof, and
 class instances. The latter are especially useful things to pickle,
 because they provide both data (attributes) and behavior (methods); in
 fact, the combination is roughly equivalent to “records” and
 “programs.” Because pickle is so
 general, it can replace extra code you might otherwise write to create
 and parse custom text file representations for your objects. By
 storing an object’s pickle string on a file, you effectively make it
 permanent and persistent: simply load and unpickle it later to
 re-create the original object.

The shelve module
Although it’s easy to use pickle by itself to store objects in simple
 flat files and load them from there later, the shelve module provides an extra layer of
 structure that allows you to store pickled objects by
 key. shelve
 translates an object to its pickled string with pickle and stores that string under a key in
 a dbm file; when later loading,
 shelve fetches the pickled string
 by key and re-creates the original object in memory with pickle. This is all quite a trick, but to
 your script a shelve2 of pickled objects looks just like a
 dictionary—you index by key to fetch, assign to keys to store, and use dictionary tools such
 as len, in, and dict.keys to get information. Shelves
 automatically map dictionary operations to objects stored in a
 file.
In fact, to your script the only coding difference between a
 shelve and a normal dictionary is that you must
 open shelves initially and must
 close them after making changes. The net effect
 is that a shelve provides a simple database for storing and fetching
 native Python objects by keys, and thus makes them persistent across
 program runs. It does not support query tools such as SQL, and it
 lacks some advanced features found in enterprise-level databases (such
 as true transaction processing), but native Python objects stored on a
 shelve may be processed with the full power of the Python language
 once they are fetched back by key.

Storing Objects on a Shelve Database
Pickling and shelves are somewhat advanced topics, and we won’t go into
 all their details here; you can read more about them in the standard
 library manuals, as well as application-focused books such as the Programming
 Python follow-up text. This is all simpler in Python than in
 English, though, so let’s jump into some code.
Let’s write a new script that throws objects of our classes onto a
 shelve. In your text editor, open a new file we’ll call makedb.py. Since this is a new file, we’ll
 need to import our classes in order to create a few instances to store.
 We used from to load a class at the
 interactive prompt earlier, but really, as with functions and other
 variables, there are two ways to load a class from a file (class names
 are variables like any other, and not at all magic in this
 context):
import person # Load class with import
bob = person.Person(...) # Go through module name

from person import Person # Load class with from
bob = Person(...) # Use name directly
We’ll use from to load in our
 script, just because it’s a bit less to type. To keep this simple, copy
 or retype in our new script the self-test lines from person.py that make instances of our classes,
 so we have something to store (this is a simple demo, so we won’t worry
 about the test-code redundancy here). Once we have some instances, it’s
 almost trivial to store them on a shelve. We simply import the shelve module, open a new shelve with an
 external filename, assign the objects to keys in the shelve, and close
 the shelve when we’re done because we’ve made changes:
File makedb.py: store Person objects on a shelve database

from person import Person, Manager # Load our classes
bob = Person('Bob Smith') # Re-create objects to be stored
sue = Person('Sue Jones', job='dev', pay=100000)
tom = Manager('Tom Jones', 50000)

import shelve
db = shelve.open('persondb') # Filename where objects are stored
for obj in (bob, sue, tom): # Use object's name attr as key
 db[obj.name] = obj # Store object on shelve by key
db.close() # Close after making changes
Notice how we assign objects to the shelve using their own names
 as keys. This is just for convenience; in a shelve, the
 key can be any string, including one we might
 create to be unique using tools such as process IDs and timestamps
 (available in the os and time standard library modules). The only rule
 is that the keys must be strings and should be unique, since we can
 store just one object per key, though that object can be a list,
 dictionary, or other object containing many objects itself.
In fact, the values we store under keys can
 be Python objects of almost any sort—built-in types like strings, lists,
 and dictionaries, as well as user-defined class instances, and nested
 combinations of all of these and more. For example, the name and job attributes of our objects could be nested
 dictionaries and lists as in earlier incarnations in this book (though
 this would require a bit of redesign to the current code).
That’s all there is to it—if this script has no output when run,
 it means it probably worked; we’re not printing anything, just creating
 and storing objects in a file-based database.
C:\code> makedb.py

Exploring Shelves Interactively
At this point, there are one or more real files in the current directory whose
 names all start with “persondb”. The actual files created can vary per
 platform, and just as in the built-in open function, the filename in shelve.open() is
 relative to the current working directory unless it includes a directory
 path. Wherever they are stored, these files implement a keyed-access
 file that contains the pickled representation of our three Python
 objects. Don’t delete these files—they are your database, and are what
 you’ll need to copy or transfer when you back up or move your
 storage.
You can look at the shelve’s files if you want to, either from
 Windows Explorer or the Python shell, but they are binary hash files,
 and most of their content makes little sense outside the context of the
 shelve module. With Python 3.X and no
 extra software installed, our database is stored in three files (in 2.X,
 it’s just one file, persondb,
 because the bsddb extension
 module is preinstalled with Python for shelves; in 3.X,
 bsddb is an optional third-party open
 source add-on).
For example, Python’s standard library glob module allows us to get directory
 listings in Python code to verify the files here, and we can open the
 files in text or binary mode to explore strings and bytes:
>>> import glob
>>> glob.glob('person*')
['person-composite.py', 'person-department.py', 'person.py', 'person.pyc',
'persondb.bak', 'persondb.dat', 'persondb.dir']

>>> print(open('persondb.dir').read())
'Sue Jones', (512, 92)
'Tom Jones', (1024, 91)
'Bob Smith', (0, 80)

>>> print(open('persondb.dat','rb').read())
b'\x80\x03cperson\nPerson\nq\x00)\x81q\x01}q\x02(X\x03\x00\x00\x00jobq\x03NX\x03\x00
...more omitted...
This content isn’t impossible to decipher, but it can vary on
 different platforms and doesn’t exactly qualify as a user-friendly
 database interface! To verify our work better, we can write another
 script, or poke around our shelve at the interactive prompt. Because
 shelves are Python objects containing Python objects, we can process
 them with normal Python syntax and development modes. Here, the
 interactive prompt effectively becomes a database
 client:
>>> import shelve
>>> db = shelve.open('persondb') # Reopen the shelve

>>> len(db) # Three 'records' stored
3
>>> list(db.keys()) # keys is the index
['Sue Jones', 'Tom Jones', 'Bob Smith'] # list() to make a list in 3.X

>>> bob = db['Bob Smith'] # Fetch bob by key
>>> bob # Runs __repr__ from AttrDisplay
[Person: job=None, name=Bob Smith, pay=0]

>>> bob.lastName() # Runs lastName from Person
'Smith'

>>> for key in db: # Iterate, fetch, print
 print(key, '=>', db[key])

Sue Jones => [Person: job=dev, name=Sue Jones, pay=100000]
Tom Jones => [Manager: job=mgr, name=Tom Jones, pay=50000]
Bob Smith => [Person: job=None, name=Bob Smith, pay=0]

>>> for key in sorted(db):
 print(key, '=>', db[key]) # Iterate by sorted keys

Bob Smith => [Person: job=None, name=Bob Smith, pay=0]
Sue Jones => [Person: job=dev, name=Sue Jones, pay=100000]
Tom Jones => [Manager: job=mgr, name=Tom Jones, pay=50000]
Notice that we don’t have to import our Person or Manager classes here in order to load or use
 our stored objects. For example, we can call bob’s lastName method freely, and get his custom
 print display format automatically, even though we don’t have his
 Person class in our scope here. This
 works because when Python pickles a class instance, it records its
 self instance attributes, along with
 the name of the class it was created from and the module where the class
 lives. When bob is later fetched from
 the shelve and unpickled, Python will automatically reimport the class
 and link bob to it.
The upshot of this scheme is that class instances automatically
 acquire all their class behavior when they are loaded in the future. We
 have to import our classes only to make new instances, not to process
 existing ones. Although a deliberate feature, this scheme has somewhat
 mixed consequences:
	The downside is that classes and their
 module’s files must be importable when an
 instance is later loaded. More formally, pickleable classes must be
 coded at the top level of a module file accessible from a directory
 listed on the sys.path module
 search path (and shouldn’t live in the topmost script files’ module
 __main__ unless they’re always in that module when used). Because of
 this external module file requirement, some applications choose to
 pickle simpler objects such as dictionaries or lists, especially if
 they are to be transferred across the Internet.

	The upside is that changes in a class’s
 source code file are automatically picked up when instances of the
 class are loaded again; there is often no need to update stored
 objects themselves, since updating their class’s code changes their
 behavior.

Shelves also have well-known limitations (the database suggestions
 at the end of this chapter mention a few of these). For simple object
 storage, though, shelves and pickles are remarkably easy-to-use
 tools.

Updating Objects on a Shelve
Now for one last script: let’s write a program that updates an instance
 (record) each time it runs, to prove the point that our objects really
 are persistent—that their current values are
 available every time a Python program runs. The following file,
 updatedb.py, prints the database
 and gives a raise to one of our stored objects each time. If you trace
 through what’s going on here, you’ll notice that we’re getting a lot of
 utility “for free”—printing our objects automatically employs the
 general __repr__ overloading method,
 and we give raises by calling the giveRaise method we wrote earlier. This all
 “just works” for objects based on OOP’s inheritance model, even when
 they live in a file:
File updatedb.py: update Person object on database

import shelve
db = shelve.open('persondb') # Reopen shelve with same filename

for key in sorted(db): # Iterate to display database objects
 print(key, '\t=>', db[key]) # Prints with custom format

sue = db['Sue Jones'] # Index by key to fetch
sue.giveRaise(.10) # Update in memory using class's method
db['Sue Jones'] = sue # Assign to key to update in shelve
db.close() # Close after making changes
Because this script prints the database when it starts up, we have
 to run it at least twice to see our objects change. Here it is in
 action, displaying all records and increasing sue’s pay each time it is run (it’s a pretty
 good script for sue...something to
 schedule to run regularly as a cron
 job perhaps?):
C:\code> updatedb.py
Bob Smith => [Person: job=None, name=Bob Smith, pay=0]
Sue Jones => [Person: job=dev, name=Sue Jones, pay=100000]
Tom Jones => [Manager: job=mgr, name=Tom Jones, pay=50000]

C:\code> updatedb.py
Bob Smith => [Person: job=None, name=Bob Smith, pay=0]
Sue Jones => [Person: job=dev, name=Sue Jones, pay=110000]
Tom Jones => [Manager: job=mgr, name=Tom Jones, pay=50000]

C:\code> updatedb.py
Bob Smith => [Person: job=None, name=Bob Smith, pay=0]
Sue Jones => [Person: job=dev, name=Sue Jones, pay=121000]
Tom Jones => [Manager: job=mgr, name=Tom Jones, pay=50000]

C:\code> updatedb.py
Bob Smith => [Person: job=None, name=Bob Smith, pay=0]
Sue Jones => [Person: job=dev, name=Sue Jones, pay=133100]
Tom Jones => [Manager: job=mgr, name=Tom Jones, pay=50000]
Again, what we see here is a product of the shelve and pickle tools we get from Python, and of the
 behavior we coded in our classes ourselves. And once again, we can
 verify our script’s work at the interactive prompt—the shelve’s
 equivalent of a database client:
C:\code> python
>>> import shelve
>>> db = shelve.open('persondb') # Reopen database
>>> rec = db['Sue Jones'] # Fetch object by key
>>> rec
[Person: job=dev, name=Sue Jones, pay=146410]
>>> rec.lastName()
'Jones'
>>> rec.pay
146410
For another example of object persistence in this book, see the
 sidebar in Chapter 31 titled “Why You Will Care: Classes and Persistence”. It stores a
 somewhat larger composite object in a flat file with pickle instead of shelve, but the effect is similar. For more
 details and examples for both pickles and shelves, see also Chapter 9 (file basics) and
 Chapter 37 (3.X string tool changes),
 other books, and Python’s manuals.

Future Directions
And that’s a wrap for this tutorial. At this point, you’ve seen all the basics of
 Python’s OOP machinery in action, and you’ve learned ways to avoid
 redundancy and its associated maintenance issues in your code. You’ve
 built full-featured classes that do real work. As an added bonus, you’ve
 made them real database records by storing them in a Python shelve, so
 their information lives on persistently.
There is much more we could explore here, of course. For example, we
 could extend our classes to make them more realistic, add new kinds of
 behavior to them, and so on. Giving a raise, for instance, should in
 practice verify that pay increase rates are between zero and one—an
 extension we’ll add when we meet decorators later in this book. You might
 also mutate this example into a personal contacts database, by changing
 the state information stored on objects, as well as the classes’ methods
 used to process it. We’ll leave this a suggested exercise open to your
 imagination.
We could also expand our scope to use tools that either come with
 Python or are freely available in the open source world:
	GUIs
	As is, we can only process our database with the interactive
 prompt’s command-based interface, and scripts. We could also work on
 expanding our object database’s usability by adding a desktop
 graphical user interface for browsing and updating its records. GUIs
 can be built portably with either Python’s tkinter (Tkinter in 2.X) standard library support,
 or third-party toolkits such as WxPython and PyQt. tkinter ships with Python, lets you build
 simple GUIs quickly, and is ideal for learning GUI programming
 techniques; WxPython and PyQt tend to be more complex to use but
 often produce higher-grade GUIs in the end.

	Websites
	Although GUIs are convenient and fast, the Web is hard to beat in terms
 of accessibility. We might also implement a website for browsing and
 updating records, instead of or in addition to GUIs and the
 interactive prompt. Websites can be constructed with either basic
 CGI scripting tools that come with Python, or full-featured
 third-party web frameworks such as Django, TurboGears, Pylons,
 web2Py, Zope, or Google’s App Engine. On the Web, your data can
 still be stored in a shelve, pickle file, or other Python-based
 medium; the scripts that process it are simply run automatically on
 a server in response to requests from web browsers and other
 clients, and they produce HTML to interact with a user, either
 directly or by interfacing with framework APIs. Rich Internet
 application (RIA) systems such as Silverlight and pyjamas also
 attempt to combine GUI-like interactivity with web-based
 deployment.

	Web services
	Although web clients can often parse information in the
 replies from websites (a technique colorfully known as “screen scraping”), we might go
 further and provide a more direct way to fetch records on the Web
 via a web services interface such as SOAP or XML-RPC calls—APIs
 supported by either Python itself or the third-party open source
 domain, which generally map data to and from XML format for
 transmission. To Python scripts, such APIs return data more directly
 than text embedded in the HTML of a reply page.

	Databases
	If our database becomes higher-volume or critical, we might
 eventually move it from shelves to a more full-featured storage
 mechanism such as the open source ZODB object-oriented database system (OODB), or a more
 traditional SQL-based relational database system such as MySQL,
 Oracle, or PostgreSQL. Python itself comes with the in-process
 SQLite database system built-in, but other open source options are
 freely available on the Web. ZODB, for example, is similar to
 Python’s shelve but addresses
 many of its limitations, better supporting larger databases,
 concurrent updates, transaction processing, and automatic
 write-through on in-memory changes (shelves can cache objects and
 flush to disk at close time with their writeback option, but this has
 limitations: see other resources). SQL-based systems like MySQL
 offer enterprise-level tools for database storage and may be
 directly used from a Python script. As we saw in Chapter 9, MongoDB offers
 an alternative approach that stores JSON documents, which closely
 parallel Python dictionaries and lists, and are language neutral,
 unlike pickle data.

	ORMs
	If we do migrate to a relational database system for storage,
 we don’t have to sacrifice Python’s OOP tools. Object-relational
 mappers (ORMs) like SQLObject and SQLAlchemy can automatically map
 relational tables and rows to and from Python classes and instances,
 such that we can process the stored data using normal Python class
 syntax. This approach provides an alternative to OODBs like shelve and ZODB and leverages the power of
 both relational databases and Python’s class model.

While I hope this introduction whets your appetite for future
 exploration, all of these topics are of course far beyond the scope of
 this tutorial and this book at large. If you want to explore any of them
 on your own, see the Web, Python’s standard library manuals, and
 application-focused books such as Programming
 Python. In the latter I pick up this example where we’ve stopped
 here, showing how to add both a GUI and a website on top of the database
 to allow for browsing and updating instance records. I hope to see you
 there eventually, but first, let’s return to class fundamentals and finish
 up the rest of the core Python language story.

Chapter Summary
In this chapter, we explored all the fundamentals of Python classes
 and OOP in action, by building upon a simple but real example, step by
 step. We added constructors, methods, operator overloading, customization
 with subclasses, and introspection-based tools, and we met other concepts
 such as composition, delegation, and polymorphism along the way.
In the end, we took objects created by our classes and made them
 persistent by storing them on a shelve object database—an easy-to-use
 system for saving and retrieving native Python objects by key. While
 exploring class basics, we also encountered multiple ways to factor our
 code to reduce redundancy and minimize future maintenance costs. Finally,
 we briefly previewed ways to extend our code with application-programming
 tools such as GUIs and databases, covered in follow-up books.
In the next chapters of this part of the book, we’ll return to our
 study of the details behind Python’s class model and investigate its
 application to some of the design concepts used to combine classes in
 larger programs. Before we move ahead, though, let’s work through this
 chapter’s quiz to review what we covered here. Since we’ve already done a
 lot of hands-on work in this chapter, we’ll close with a set of mostly
 theory-oriented questions designed to make you trace through some of the
 code and ponder some of the bigger ideas behind it.

Test Your Knowledge: Quiz
	When we fetch a Manager
 object from the shelve and print it, where does the display format
 logic come from?

	When we fetch a Person object
 from a shelve without importing its module, how does the object know
 that it has a giveRaise method that
 we can call?

	Why is it so important to move processing into methods, instead
 of hardcoding it outside the class?

	Why is it better to customize by subclassing rather than copying
 the original and modifying?

	Why is it better to call back to a superclass method to run
 default actions, instead of copying and modifying its code in a
 subclass?

	Why is it better to use tools like __dict__ that allow objects to be processed
 generically than to write more custom code for each type of
 class?

	In general terms, when might you choose to use object embedding
 and composition instead of inheritance?

	What would you have to change if the objects coded in this
 chapter used a dictionary for names and a list for jobs, as in similar
 examples earlier in this book?

	How might you modify the classes in this chapter to implement a
 personal contacts database in Python?

Test Your Knowledge: Answers
	In the final version of our classes, Manager ultimately inherits its __repr__ printing method from AttrDisplay in the separate classtools module and two levels up in the
 class tree. Manager doesn’t have
 one itself, so the inheritance search climbs to its Person superclass; because there is no
 __repr__ there either, the search
 climbs higher and finds it in AttrDisplay. The class names listed in
 parentheses in a class statement’s
 header line provide the links to higher superclasses.

	Shelves (really, the pickle
 module they use) automatically relink an instance to the class it was
 created from when that instance is later loaded back into memory.
 Python reimports the class from its module internally, creates an
 instance with its stored attributes, and sets the instance’s __class__ link to point to its original
 class. This way, loaded instances automatically obtain all their
 original methods (like lastName,
 giveRaise, and __repr__), even if we have not imported the
 instance’s class into our scope.

	It’s important to move processing into methods so that there is
 only one copy to change in the future, and so that the methods can be
 run on any instance. This is Python’s notion of
 encapsulation—wrapping up logic behind
 interfaces, to better support future code maintenance. If you don’t do
 so, you create code redundancy that can multiply your work effort as
 the code evolves in the future.

	Customizing with subclasses reduces development effort. In OOP,
 we code by customizing what has already been
 done, rather than copying or changing existing code. This is the real
 “big idea” in OOP—because we can easily extend our prior work by
 coding new subclasses, we can leverage what we’ve already done. This
 is much better than either starting from scratch each time, or
 introducing multiple redundant copies of code that may all have to be
 updated in the future.

	Copying and modifying code doubles your
 potential work effort in the future, regardless of the context. If a
 subclass needs to perform default actions coded in a superclass
 method, it’s much better to call back to the original through the
 superclass’s name than to copy its code. This also holds true for
 superclass constructors. Again, copying code creates redundancy, which
 is a major issue as code evolves.

	Generic tools can avoid hardcoded solutions that must be kept in
 sync with the rest of the class as it evolves over time. A generic
 __repr__ print method, for example,
 need not be updated each time a new attribute is added to instances in
 an __init__ constructor. In
 addition, a generic print method
 inherited by all classes appears and need be modified in only one
 place—changes in the generic version are picked up by all classes that
 inherit from the generic class. Again, eliminating code
 redundancy cuts future development effort; that’s
 one of the primary assets classes bring to the table.

	Inheritance is best at coding extensions based on direct
 customization (like our Manager
 specialization of Person).
 Composition is well suited to scenarios where multiple objects are
 aggregated into a whole and directed by a controller layer class.
 Inheritance passes calls up to reuse, and
 composition passes down to delegate. Inheritance
 and composition are not mutually exclusive; often, the objects
 embedded in a controller are themselves customizations based upon
 inheritance.

	Not much since this was really a first-cut prototype, but the
 lastName method would need to be
 updated for the new name format; the Person constructor would have to change the
 job default to an empty list; and the Manager class would probably need to pass
 along a job list in its constructor instead of a single string
 (self-test code would change as well, of course). The good news is
 that these changes would need to be made in just one place—in our
 classes, where such details are encapsulated. The database scripts
 should work as is, as shelves support arbitrarily nested data.

	The classes in this chapter could be used as boilerplate
 “template” code to implement a variety of types of databases.
 Essentially, you can repurpose them by modifying the constructors to
 record different attributes and providing whatever methods are
 appropriate for the target application. For instance, you might use
 attributes such as name, address, birthday, phone, email, and so on for a contacts database,
 and methods appropriate for this purpose. A method named sendmail, for example, might use Python’s
 standard library smtplib module to
 send an email to one of the contacts automatically when called (see
 Python’s manuals or application-level books for more details on such
 tools). The AttrDisplay tool we
 wrote here could be used verbatim to print your objects, because it is
 intentionally generic. Most of the shelve database code here can be
 used to store your objects, too, with minor changes.

1 And no offense to any managers in the audience, of course. I
 once taught a Python class in New Jersey, and nobody laughed at this
 joke, among others. The organizers later told me it was a group of
 managers evaluating Python.
2 Yes, we use “shelve” as a noun in Python, much to the
 chagrin of a variety of editors I’ve worked with over the years,
 both electronic and human.

Chapter 29. Class Coding Details
If you haven’t quite gotten all of Python OOP yet, don’t worry; now that we’ve had a first tour, we’re going to
 dig a bit deeper and study the concepts introduced earlier in further
 detail. In this and the following chapter, we’ll take another look at class
 mechanics. Here, we’re going to study classes, methods, and inheritance,
 formalizing and expanding on some of the coding ideas introduced in Chapter 27. Because the class is our last namespace
 tool, we’ll summarize Python’s namespace and scope concepts as well.
The next chapter continues this in-depth second pass over class
 mechanics by covering one specific aspect: operator overloading. Besides
 presenting additional details, this chapter and the next also give us an
 opportunity to explore some larger classes than those we have studied so
 far.
Content note: if you’ve been reading linearly, some of this chapter
 will be review and summary of topics introduced in the preceding chapter’s
 case study, revisited here by language topics with smaller and more
 self-contained examples for readers new to OOP. Others may be tempted to
 skip some of this chapter, but be sure to see the namespace coverage here,
 as it explains some subtleties in Python’s class model.
The class Statement
Although the Python class statement
 may seem similar to tools in other OOP languages on the surface, on closer
 inspection, it is quite different from what some programmers are used to.
 For example, as in C++, the class
 statement is Python’s main OOP tool, but unlike in C++, Python’s class is
 not a declaration. Like a def, a
 class statement is an object builder,
 and an implicit assignment—when run, it generates a class object and
 stores a reference to it in the name used in the header. Also like a
 def, a class statement is true executable code—your
 class doesn’t exist until Python reaches and runs the class statement that defines it. This typically
 occurs while importing the module it is coded in, but not before.
General Form
class is a compound statement, with a body of statements typically indented
 appearing under the header. In the header, superclasses are listed in
 parentheses after the class name, separated by commas. Listing more than
 one superclass leads to multiple inheritance, which we’ll discuss more
 formally in Chapter 31. Here is the
 statement’s general form:
class name(superclass,...): # Assign to name
 attr = value # Shared class data
 def method(self,...): # Methods
 self.attr = value # Per-instance data
Within the class statement, any
 assignments generate class attributes, and specially named methods
 overload operators; for instance, a function called __init__ is called at instance object
 construction time, if defined.

Example
As we’ve seen, classes are mostly just
 namespaces—that is, tools for defining names (i.e.,
 attributes) that export data and logic to clients. A class statement effectively defines a
 namespace. Just as in a module file, the statements nested in a class statement body create its attributes.
 When Python executes a class
 statement (not a call to a class), it runs all the statements in its
 body, from top to bottom. Assignments that happen during this process
 create names in the class’s local scope, which become attributes in the
 associated class object. Because of this, classes resemble both modules and
 functions:
	Like functions, class
 statements are local scopes where names created by nested
 assignments live.

	Like names in a module, names assigned in a class statement become attributes in a
 class object.

The main distinction for classes is that their namespaces are also
 the basis of inheritance in Python; reference
 attributes that are not found in a class or instance object are fetched
 from other classes.
Because class is a compound
 statement, any sort of statement can be nested inside its body—print, assignments, if, def,
 and so on. All the statements inside the class statement run when the class statement itself runs (not when the
 class is later called to make an instance). Typically, assignment
 statements inside the class statement
 make data attributes, and nested defs
 make method attributes. In general, though, any type of name assignment
 at the top level of a class statement
 creates a same-named attribute of the resulting class object.
For example, assignments of simple nonfunction objects to class
 attributes produce data attributes, shared by
 all instances:
>>> class SharedData:
 spam = 42 # Generates a class data attribute

>>> x = SharedData() # Make two instances
>>> y = SharedData()
>>> x.spam, y.spam # They inherit and share 'spam' (a.k.a. SharedData.spam)
(42, 42)
Here, because the name spam is
 assigned at the top level of a class
 statement, it is attached to the class and so will be shared by all
 instances. We can change it by going through the class name, and we can refer to it through either
 instances or the class:1
>>> SharedData.spam = 99
>>> x.spam, y.spam, SharedData.spam
(99, 99, 99)
Such class attributes can be used to manage information that spans
 all the instances—a counter of the number of instances generated, for
 example (we’ll expand on this idea by example in Chapter 32). Now, watch what happens if we
 assign the name spam through an
 instance instead of the class:
>>> x.spam = 88
>>> x.spam, y.spam, SharedData.spam
(88, 99, 99)
Assignments to instance attributes create or change the names in the
 instance, rather than in the shared class. More generally, inheritance
 searches occur only on attribute references, not on
 assignment: assigning to an object’s attribute always changes that
 object, and no other.2 For example, y.spam is
 looked up in the class by inheritance, but the assignment to x.spam attaches a name to x itself.
Here’s a more comprehensive example of this behavior that stores
 the same name in two places. Suppose we run the following class:
class MixedNames: # Define class
 data = 'spam' # Assign class attr
 def __init__(self, value): # Assign method name
 self.data = value # Assign instance attr
 def display(self):
 print(self.data, MixedNames.data) # Instance attr, class attr
This class contains two defs,
 which bind class attributes to method functions. It also contains an
 = assignment statement; because this
 assignment assigns the name data
 inside the class, it lives in the
 class’s local scope and becomes an attribute of the class object. Like
 all class attributes, this data is
 inherited and shared by all instances of the class that don’t have
 data attributes of their own.
When we make instances of this class, the name data is attached to those instances by the
 assignment to self.data in the
 constructor method:
>>> x = MixedNames(1) # Make two instance objects
>>> y = MixedNames(2) # Each has its own data
>>> x.display(); y.display() # self.data differs, MixedNames.data is the same
1 spam
2 spam
The net result is that data
 lives in two places: in the instance objects (created by the self.data assignment in __init__), and in the class from which they
 inherit names (created by the data
 assignment in the class). The class’s
 display method prints both versions,
 by first qualifying the self
 instance, and then the class.
By using these techniques to store attributes in different
 objects, we determine their scope of visibility. When attached to
 classes, names are shared; in instances, names record per-instance data,
 not shared behavior or data. Although inheritance searches look up names
 for us, we can always get to an attribute anywhere in a tree by
 accessing the desired object directly.
In the preceding example, for instance, specifying x.data or self.data will return an instance name, which
 normally hides the same name in the class; however, MixedNames.data grabs the class’s version of
 the name explicitly. The next section describes one of the most common
 roles for such coding patterns, and explains more about the way we
 deployed it in the prior chapter.

Methods
Because you already know about functions, you also know about methods in classes. Methods
 are just function objects created by def statements nested in a class statement’s body. From an abstract
 perspective, methods provide behavior for instance objects to inherit.
 From a programming perspective, methods work in exactly the same way as
 simple functions, with one crucial exception: a method’s first argument
 always receives the instance object that is the implied subject of the
 method call.
In other words, Python automatically maps instance method calls to a
 class’s method functions as follows. Method calls made through an
 instance, like this:
instance.method(args...)
are automatically translated to class method function calls of this
 form:
class.method(instance, args...)
where Python determines the class by locating the method name using
 the inheritance search procedure. In fact, both call forms are valid in
 Python.
Besides the normal inheritance of method attribute names, the
 special first argument is the only real magic behind method calls. In a
 class’s method, the first argument is usually called self by convention (technically, only its
 position is significant, not its name). This argument provides methods
 with a hook back to the instance that is the subject of the call—because
 classes generate many instance objects, they need to use this argument to
 manage data that varies per instance.
C++ programmers may recognize Python’s self argument as being similar to C++’s this pointer. In Python, though, self is always explicit in your code: methods
 must always go through self to fetch or
 change attributes of the instance being processed by the current method
 call. This explicit nature of self is
 by design—the presence of this name makes it obvious that you are using
 instance attribute names in your script, not names in the local or global
 scope.
Method Example
To clarify these concepts, let’s turn to an example. Suppose we define the
 following class:
class NextClass: # Define class
 def printer(self, text): # Define method
 self.message = text # Change instance
 print(self.message) # Access instance
The name printer references a
 function object; because it’s assigned in the class statement’s scope, it becomes a class
 object attribute and is inherited by every instance made from the class.
 Normally, because methods like printer are designed to process instances, we
 call them through instances:
>>> x = NextClass() # Make instance
>>> x.printer('instance call') # Call its method
instance call
>>> x.message # Instance changed
'instance call'
When we call the method by qualifying an instance like this,
 printer is first located by
 inheritance, and then its self
 argument is automatically assigned the instance object (x); the text argument gets the string passed at the
 call ('instance call'). Notice that
 because Python automatically passes the first argument to self for us, we only actually have to pass in
 one argument. Inside printer, the
 name self is used to access or set
 per-instance data because it refers back to the instance currently being
 processed.
As we’ve seen, though, methods may be called in one of two
 ways—through an instance, or through the class itself. For example, we
 can also call printer by going
 through the class name, provided we pass an instance to the self argument explicitly:
>>> NextClass.printer(x, 'class call') # Direct class call
class call
>>> x.message # Instance changed again
'class call'
Calls routed through the instance and the class have the exact
 same effect, as long as we pass the same instance object ourselves in
 the class form. By default, in fact, you get an error message if you try
 to call a method without any instance:
>>> NextClass.printer('bad call')
TypeError: unbound method printer() must be called with NextClass instance...

Calling Superclass Constructors
Methods are normally called through instances. Calls to methods through a
 class, though, do show up in a variety of special roles. One common
 scenario involves the constructor method. The __init__ method, like all attributes, is looked up by inheritance. This
 means that at construction time, Python locates and calls just
 one __init__. If
 subclass constructors need to guarantee that superclass
 construction-time logic runs, too, they generally must call the
 superclass’s __init__ method
 explicitly through the class:
class Super:
 def __init__(self, x):
 ...default code...

class Sub(Super):
 def __init__(self, x, y):
 Super.__init__(self, x) # Run superclass __init__
 ...custom code... # Do my init actions

I = Sub(1, 2)
This is one of the few contexts in which your code is likely to
 call an operator overloading method directly. Naturally, you should call
 the superclass constructor this way only if you really
 want it to run—without the call, the subclass
 replaces it completely. For a more realistic illustration of this
 technique in action, see the Manager
 class example in the prior chapter’s tutorial.3

Other Method Call Possibilities
This pattern of calling methods through a class is the general
 basis of extending—instead of completely replacing—inherited method
 behavior. It requires an explicit instance to be passed because all
 methods do by default. Technically, this is because methods are instance methods in the
 absence of any special code.
In Chapter 32, we’ll also meet a
 newer option added in Python 2.2, static methods, that
 allow you to code methods that do not expect instance objects in their
 first arguments. Such methods can act like simple instanceless
 functions, with names that are local to the classes in which they are
 coded, and may be used to manage class data. A related concept we’ll
 meet in the same chapter, the class method,
 receives a class when called instead of an instance and can be used to
 manage per-class data, and is implied in metaclasses.
These are both advanced and usually optional extensions, though.
 Normally, an instance must always be passed to a method—whether
 automatically when it is called through an instance, or manually when
 you call through a class.
Note
Per the sidebar “What About super?” in
 Chapter 28, Python also has a
 super built-in function that allows
 calling back to a superclass’s methods more generically, but we’ll
 defer its presentation until Chapter 32
 due to its downsides and complexities. See the aforementioned sidebar
 for more details; this call has well-known tradeoffs in basic usage,
 and an esoteric advanced use case that requires universal deployment
 to be most effective. Because of these issues, this book prefers to
 call superclasses by explicit name instead of super as a policy; if you’re new to Python,
 I recommend the same approach for now, especially for your first pass
 over OOP. Learn the simple way now, so you can compare it to others
 later.

Inheritance
Of course, the whole point of the namespace created by the class statement is to support name inheritance.
 This section expands on some of the mechanisms and roles of attribute
 inheritance in Python.
As we’ve seen, in Python, inheritance happens when an object is
 qualified, and it involves searching an attribute definition tree—one or
 more namespaces. Every time you use an expression of the form
 object.attr where
 object is an instance or class object, Python
 searches the namespace tree from bottom to top, beginning with
 object, looking for the first
 attr it can find. This includes references to
 self attributes in your methods.
 Because lower definitions in the tree override higher ones, inheritance
 forms the basis of specialization.
Attribute Tree Construction
Figure 29-1
 summarizes the way namespace trees are constructed and populated with names.
 Generally:
	Instance attributes are generated by assignments to self attributes in methods.

	Class attributes are created by statements (assignments) in class statements.

	Superclass links are made by listing classes in parentheses in
 a class statement header.

Figure 29-1. Program code creates a tree of objects in memory to be searched
 by attribute inheritance. Calling a class creates a new instance that
 remembers its class, running a class statement creates a new class,
 and superclasses are listed in parentheses in the class statement
 header. Each attribute reference triggers a new bottom-up tree
 search—even references to self attributes within a class’s
 methods.

The net result is a tree of attribute namespaces that leads from
 an instance, to the class it was generated from, to all the superclasses
 listed in the class header. Python
 searches upward in this tree, from instances to superclasses, each time
 you use qualification to fetch an attribute name from an instance
 object.4

Specializing Inherited Methods
The tree-searching model of inheritance just described turns out to be a
 great way to specialize systems. Because inheritance finds names in
 subclasses before it checks superclasses, subclasses can
 replace default behavior by redefining their superclasses’ attributes.
 In fact, you can build entire systems as hierarchies of classes, which
 you extend by adding new external subclasses rather than changing
 existing logic in place.
The idea of redefining inherited names leads to a variety of
 specialization techniques. For instance, subclasses may
 replace inherited attributes completely,
 provide attributes that a superclass expects to
 find, and extend superclass methods by calling back
 to the superclass from an overridden method. We’ve already seen some of
 these patterns in action; here’s a self-contained example of extension
 at work:
>>> class Super:
 def method(self):
 print('in Super.method')

>>> class Sub(Super):
 def method(self): # Override method
 print('starting Sub.method') # Add actions here
 Super.method(self) # Run default action
 print('ending Sub.method')
Direct superclass method calls are the crux of the matter here.
 The Sub class replaces Super’s method function with its own specialized
 version, but within the replacement, Sub calls back to the version exported by
 Super to carry out the default
 behavior. In other words, Sub.method
 just extends Super.method’s behavior,
 rather than replacing it completely:
>>> x = Super() # Make a Super instance
>>> x.method() # Runs Super.method
in Super.method

>>> x = Sub() # Make a Sub instance
>>> x.method() # Runs Sub.method, calls Super.method
starting Sub.method
in Super.method
ending Sub.method
This extension coding pattern is also commonly used with
 constructors; see the section “Methods” for an
 example.

Class Interface Techniques
Extension is only one way to interface with a superclass. The file shown in
 this section, specialize.py,
 defines multiple classes that illustrate a variety of common
 techniques:
	Super
	Defines a method function
 and a delegate that expects an
 action in a subclass.

	Inheritor
	Doesn’t provide any new names, so it gets everything defined
 in Super.

	Replacer
	Overrides Super’s
 method with a version of its
 own.

	Extender
	Customizes Super’s
 method by overriding and
 calling back to run the default.

	Provider
	Implements the action
 method expected by Super’s
 delegate method.

Study each of these subclasses to get a feel for the various ways
 they customize their common superclass. Here’s the file:
class Super:
 def method(self):
 print('in Super.method') # Default behavior
 def delegate(self):
 self.action() # Expected to be defined

class Inheritor(Super): # Inherit method verbatim
 pass

class Replacer(Super): # Replace method completely
 def method(self):
 print('in Replacer.method')

class Extender(Super): # Extend method behavior
 def method(self):
 print('starting Extender.method')
 Super.method(self)
 print('ending Extender.method')

class Provider(Super): # Fill in a required method
 def action(self):
 print('in Provider.action')

if __name__ == '__main__':
 for klass in (Inheritor, Replacer, Extender):
 print('\n' + klass.__name__ + '...')
 klass().method()
 print('\nProvider...')
 x = Provider()
 x.delegate()
A few things are worth pointing out here. First, notice how the
 self-test code at the end of this example creates instances of three
 different classes in a for loop.
 Because classes are objects, you can store them in a tuple and create
 instances generically with no extra syntax (more on this idea later).
 Classes also have the special __name__
 attribute, like modules; it’s preset to a string containing the name in
 the class header. Here’s what happens when we run the file:
% python specialize.py

Inheritor...
in Super.method

Replacer...
in Replacer.method

Extender...
starting Extender.method
in Super.method
ending Extender.method

Provider...
in Provider.action

Abstract Superclasses
Of the prior example’s classes, Provider may be the most crucial to
 understand. When we call the delegate
 method through a Provider instance,
 two independent inheritance searches occur:
	On the initial x.delegate
 call, Python finds the delegate
 method in Super by searching the
 Provider instance and above. The
 instance x is passed into the
 method’s self argument as
 usual.

	Inside the Super.delegate
 method, self.action invokes a
 new, independent inheritance search of self and above. Because self references a Provider instance, the action method is located in the Provider subclass.

This “filling in the blanks” sort of coding structure is typical
 of OOP frameworks. In a more realistic context, the method filled in
 this way might handle an event in a GUI, provide data to be rendered as
 part of a web page, process a tag’s text in an XML file, and so on—your
 subclass provides specific actions, but the framework handles the rest
 of the overall job.
At least in terms of the delegate method, the superclass in this
 example is what is sometimes called an abstract
 superclass—a class that expects parts of its behavior to be
 provided by its subclasses. If an expected method is not defined in a
 subclass, Python raises an undefined name exception when the inheritance
 search fails.
Class coders sometimes make such subclass requirements more
 obvious with assert statements, or by
 raising the built-in NotImplementedError exception with raise statements.
 We’ll study statements that may trigger exceptions in depth in the next
 part of this book; as a quick preview, here’s the assert scheme in action:
class Super:
 def delegate(self):
 self.action()
 def action(self):
 assert False, 'action must be defined!' # If this version is called

>>> X = Super()
>>> X.delegate()
AssertionError: action must be defined!
We’ll meet assert in Chapter 33 and Chapter 34; in short, if its first expression
 evaluates to false, it raises an exception with the provided error
 message. Here, the expression is always false so as to trigger an error
 message if a method is not redefined, and inheritance locates the
 version here. Alternatively, some classes simply raise a NotImplementedError exception directly in such
 method stubs to signal the mistake:
class Super:
 def delegate(self):
 self.action()
 def action(self):
 raise NotImplementedError('action must be defined!')

>>> X = Super()
>>> X.delegate()
NotImplementedError: action must be defined!
For instances of subclasses, we still get the exception unless the
 subclass provides the expected method to replace the default in the
 superclass:
>>> class Sub(Super): pass

>>> X = Sub()
>>> X.delegate()
NotImplementedError: action must be defined!

>>> class Sub(Super):
 def action(self): print('spam')

>>> X = Sub()
>>> X.delegate()
spam
For a somewhat more realistic example of this section’s concepts
 in action, see the “Zoo animal hierarchy” exercise (Exercise 8) at the
 end of Chapter 32, and its solution in
 “Part VI, Classes and OOP” in Appendix D. Such taxonomies are a
 traditional way to introduce OOP, but they’re a bit removed from most
 developers’ job descriptions (with apologies to any readers who happen
 to work at the zoo!).
Abstract superclasses in Python 3.X and 2.6+: Preview
As of Python 2.6 and 3.0, the prior section’s abstract superclasses (a.k.a.
 “abstract base classes”), which require methods to be filled in by
 subclasses, may also be implemented with special class syntax. The way
 we code this varies slightly depending on the version. In Python 3.X,
 we use a keyword argument in a class header, along with special @ decorator
 syntax, both of which we’ll study in detail later in this book:
from abc import ABCMeta, abstractmethod

class Super(metaclass=ABCMeta):
 @abstractmethod
 def method(self, ...):
 pass
But in Python 2.6 and 2.7, we use a class attribute instead:
class Super:
 __metaclass__ = ABCMeta
 @abstractmethod
 def method(self, ...):
 pass
Either way, the effect is the same—we can’t make an instance
 unless the method is defined lower in the class tree. In 3.X, for
 example, here is the special syntax equivalent of the prior section’s
 example:
>>> from abc import ABCMeta, abstractmethod
>>>
>>> class Super(metaclass=ABCMeta):
 def delegate(self):
 self.action()
 @abstractmethod
 def action(self):
 pass

>>> X = Super()
TypeError: Can't instantiate abstract class Super with abstract methods action

>>> class Sub(Super): pass

>>> X = Sub()
TypeError: Can't instantiate abstract class Sub with abstract methods action

>>> class Sub(Super):
 def action(self): print('spam')

>>> X = Sub()
>>> X.delegate()
spam
Coded this way, a class with an abstract method cannot be
 instantiated (that is, we cannot create an instance by calling it)
 unless all of its abstract methods have been defined in subclasses.
 Although this requires more code and extra knowledge, the potential
 advantage of this approach is that errors for missing methods are
 issued when we attempt to make an instance of the class, not later
 when we try to call a missing method. This feature may also be used to
 define an expected interface, automatically verified in client
 classes.
Unfortunately, this scheme also relies on two advanced language
 tools we have not met yet—function decorators,
 introduced in Chapter 32 and covered in
 depth in Chapter 39, as well as metaclass
 declarations, mentioned in Chapter 32 and covered in Chapter 40—so we will finesse other facets of this
 option here. See Python’s standard manuals for more on this, as well
 as precoded abstract superclasses Python provides.

Namespaces: The Conclusion
Now that we’ve examined class and instance objects, the Python namespace story is complete.
 For reference, I’ll quickly summarize all the rules used to resolve names
 here. The first things you need to remember are that qualified and
 unqualified names are treated differently, and that some scopes serve to
 initialize object namespaces:
	Unqualified names (e.g., X)
 deal with scopes.

	Qualified attribute names (e.g.,
 object.X) use object namespaces.

	Some scopes initialize object namespaces (for modules and
 classes).

These concepts sometimes interact—in
 object.X,
 for example, object is looked up per
 scopes, and then X is looked up in the
 result objects. Since scopes and namespaces are essential to understanding
 Python code, let’s summarize the rules in more detail.
Simple Names: Global Unless Assigned
As we’ve learned, unqualified simple names follow the LEGB lexical scoping rule outlined when we explored
 functions in Chapter 17:
	Assignment (X =
 value)
	Makes names local by default: creates or changes the name
 X in the current local scope,
 unless declared global (or nonlocal in 3.X).

	Reference (X)
	Looks for the name X in
 the current local scope, then any and all enclosing functions,
 then the current global scope, then the built-in scope, per the
 LEGB rule. Enclosing classes are not searched: class names are
 fetched as object attributes instead.

Also per Chapter 17, some special-case constructs
 localize names further (e.g., variables in some comprehensions and
 try statement clauses), but the vast
 majority of names follow the LEGB rule.

Attribute Names: Object Namespaces
We’ve also seen that qualified attribute names refer to attributes of specific objects
 and obey the rules for modules and classes. For class and instance
 objects, the reference rules are augmented to include the inheritance
 search procedure:
	Assignment (object.X =
 value)
	Creates or alters the attribute name X in the namespace of the
 object being qualified, and none other.
 Inheritance-tree climbing happens only on attribute reference, not
 on attribute assignment.

	Reference (object.X)
	For class-based objects, searches for the attribute name
 X in
 object, then in all accessible classes
 above it, using the inheritance search procedure. For nonclass
 objects such as modules, fetches X from object
 directly.

As noted earlier, the preceding captures the normal and typical
 case. These attribute rules can vary in classes that utilize more
 advanced tools, especially for new-style classes—an option in 2.X and
 the standard in 3.X, which we’ll explore in Chapter 32. For example, reference inheritance
 can be richer than implied here when metaclasses are deployed, and
 classes which leverage attribute management tools such as properties,
 descriptors, and __setattr__ can intercept and route
 attribute assignments arbitrarily.
In fact, some inheritance is run on
 assignment too, to locate descriptors with a __set__
 method in new-style classes; such tools override the normal rules for
 both reference and assignment. We’ll explore attribute management tools
 in depth in Chapter 38, and formalize
 inheritance and its use of descriptors in Chapter 40. For now, most readers should focus on the
 normal rules given here, which cover most Python application
 code.

The “Zen” of Namespaces: Assignments Classify Names
With distinct search procedures for qualified and unqualified names, and
 multiple lookup layers for both, it can sometimes be difficult to tell
 where a name will wind up going. In Python, the place where you
 assign a name is crucial—it fully determines the
 scope or object in which a name will reside. The file manynames.py illustrates how this principle
 translates to code and summarizes the namespace ideas we have seen
 throughout this book (sans obscure special-case scopes like
 comprehensions):
File manynames.py

X = 11 # Global (module) name/attribute (X, or manynames.X)

def f():
 print(X) # Access global X (11)

def g():
 X = 22 # Local (function) variable (X, hides module X)
 print(X)

class C:
 X = 33 # Class attribute (C.X)
 def m(self):
 X = 44 # Local variable in method (X)
 self.X = 55 # Instance attribute (instance.X)
This file assigns the same name, X, five times—illustrative, though not exactly
 best practice! Because this name is assigned in five different
 locations, though, all five Xs in
 this program are completely different variables. From top to bottom, the
 assignments to X here generate: a
 module attribute (11), a local
 variable in a function (22), a class
 attribute (33), a local variable in a
 method (44), and an instance
 attribute (55). Although all five are
 named X, the fact that they are all
 assigned at different places in the source code or to different objects
 makes all of these unique variables.
You should take the time to study this example carefully because
 it collects ideas we’ve been exploring throughout the last few parts of
 this book. When it makes sense to you, you will have achieved Python
 namespace enlightenment. Or, you can run the code and see what
 happens—here’s the remainder of this source file, which makes an
 instance and prints all the Xs that
 it can fetch:
manynames.py, continued

if __name__ == '__main__':
 print(X) # 11: module (a.k.a. manynames.X outside file)
 f() # 11: global
 g() # 22: local
 print(X) # 11: module name unchanged

 obj = C() # Make instance
 print(obj.X) # 33: class name inherited by instance

 obj.m() # Attach attribute name X to instance now
 print(obj.X) # 55: instance
 print(C.X) # 33: class (a.k.a. obj.X if no X in instance)

 #print(C.m.X) # FAILS: only visible in method
 #print(g.X) # FAILS: only visible in function
The outputs that are printed when the file is run are noted in the
 comments in the code; trace through them to see which variable named
 X is being accessed each time. Notice
 in particular that we can go through the class to fetch its attribute
 (C.X), but we can never fetch local
 variables in functions or methods from outside their def statements. Locals are visible only to
 other code within the def, and in
 fact only live in memory while a call to the function or method is
 executing.
Some of the names defined by this file are visible
 outside the file to other modules too, but recall
 that we must always import before we can access names in another
 file—name segregation is the main point of modules, after all:
otherfile.py

import manynames

X = 66
print(X) # 66: the global here
print(manynames.X) # 11: globals become attributes after imports

manynames.f() # 11: manynames's X, not the one here!
manynames.g() # 22: local in other file's function

print(manynames.C.X) # 33: attribute of class in other module
I = manynames.C()
print(I.X) # 33: still from class here
I.m()
print(I.X) # 55: now from instance!
Notice here how manynames.f()
 prints the X in manynames, not the X assigned in this file—scopes are always
 determined by the position of assignments in your source code (i.e.,
 lexically) and are never influenced by what imports what or who imports
 whom. Also, notice that the instance’s own X is not created until we call I.m()—attributes, like all variables, spring
 into existence when assigned, and not before. Normally we create
 instance attributes by assigning them in class __init__ constructor methods, but this isn’t
 the only option.
Finally, as we learned in Chapter 17, it’s also
 possible for a function to change names outside
 itself, with global and (in Python
 3.X) nonlocal statements—these
 statements provide write access, but also modify assignment’s namespace
 binding rules:
X = 11 # Global in module

def g1():
 print(X) # Reference global in module (11)

def g2():
 global X
 X = 22 # Change global in module

def h1():
 X = 33 # Local in function
 def nested():
 print(X) # Reference local in enclosing scope (33)

def h2():
 X = 33 # Local in function
 def nested():
 nonlocal X # Python 3.X statement
 X = 44 # Change local in enclosing scope
Of course, you generally shouldn’t use the same name for every
 variable in your script—but as this example demonstrates, even if you
 do, Python’s namespaces will work to keep names used in one context from
 accidentally clashing with those used in another.

Nested Classes: The LEGB Scopes Rule Revisited
The preceding example summarized the effect of nested functions on
 scopes, which we studied in Chapter 17. It turns out that
 classes can be nested too—a useful coding pattern in some types of
 programs, with scope implications that follow naturally from what you
 already know, but that may not be obvious on first encounter. This
 section illustrates the concept by example.
Though they are normally coded at the top level of a module,
 classes also sometimes appear nested in functions that generate them—a
 variation on the “factory function” (a.k.a.
 closure) theme in Chapter 17, with
 similar state retention roles. There we noted that class statements introduce new local scopes
 much like function def statements,
 which follow the same LEGB scope lookup rule as function
 definitions.
This rule applies both to the top level of the class itself, as
 well as to the top level of method functions nested within it. Both form
 the L layer in this rule—they are normal local
 scopes, with access to their names, names in any enclosing functions,
 globals in the enclosing module, and built-ins. Like modules, the
 class’s local scope morphs into an attribute
 namespace after the class statement
 is run.
Although classes have access to enclosing functions’ scopes,
 though, they do not act as enclosing scopes to code nested within the
 class: Python searches enclosing functions for referenced names, but
 never any enclosing classes. That is, a class
 is a local scope and has access
 to enclosing local scopes, but it does not
 serve as an enclosing local scope to further nested
 code. Because the search for names used in method functions skips the
 enclosing class, class attributes must be fetched as object attributes
 using inheritance.
For example, in the following nester function, all references to X are routed to the global scope except the
 last, which picks up a local scope redefinition (the section’s code is
 in file classscope.py, and the
 output of each example is described in its last two comments):
X = 1

def nester():
 print(X) # Global: 1
 class C:
 print(X) # Global: 1
 def method1(self):
 print(X) # Global: 1
 def method2(self):
 X = 3 # Hides global
 print(X) # Local: 3
 I = C()
 I.method1()
 I.method2()

print(X) # Global: 1
nester() # Rest: 1, 1, 1, 3
print('-'*40)
Watch what happens, though, when we reassign the same name in
 nested function layers: the redefinitions of X create locals that hide those in enclosing
 scopes, just as for simple nested functions; the enclosing class layer
 does not change this rule, and in fact is irrelevant to it:
X = 1

def nester():
 X = 2 # Hides global
 print(X) # Local: 2
 class C:
 print(X) # In enclosing def (nester): 2
 def method1(self):
 print(X) # In enclosing def (nester): 2
 def method2(self):
 X = 3 # Hides enclosing (nester)
 print(X) # Local: 3
 I = C()
 I.method1()
 I.method2()

print(X) # Global: 1
nester() # Rest: 2, 2, 2, 3
print('-'*40)
And here’s what happens when we reassign the same name at multiple
 stops along the way: assignments in the local scopes of both functions
 and classes hide globals or enclosing function locals of the same name,
 regardless of the nesting involved:
X = 1

def nester():
 X = 2 # Hides global
 print(X) # Local: 2
 class C:
 X = 3 # Class local hides nester's: C.X or I.X (not scoped)
 print(X) # Local: 3
 def method1(self):
 print(X) # In enclosing def (not 3 in class!): 2
 print(self.X) # Inherited class local: 3
 def method2(self):
 X = 4 # Hides enclosing (nester, not class)
 print(X) # Local: 4
 self.X = 5 # Hides class
 print(self.X) # Located in instance: 5
 I = C()
 I.method1()
 I.method2()

print(X) # Global: 1
nester() # Rest: 2, 3, 2, 3, 4, 5
print('-'*40)
Most importantly, the lookup rules for simple names like X never search enclosing class statements—just defs, modules, and built-ins (it’s the LEGB
 rule, not CLEGB!). In method1, for
 example, X is found in a def outside the enclosing class that has the
 same name in its local scope. To get to names assigned in the class
 (e.g., methods), we must fetch them as class or instance object
 attributes, via self.X in this
 case.
Believe it or not, we’ll see use cases for this nested classes
 coding pattern later in this book, especially in some of Chapter 39’s decorators. In this role,
 the enclosing function usually both serves as a class factory and
 provides retained state for later use in the enclosed class or its methods.

Namespace Dictionaries: Review
In Chapter 23, we learned that module
 namespaces have a concrete implementation as dictionaries, exposed
 with the built-in __dict__ attribute.
 In Chapter 27 and Chapter 28, we learned that the same holds
 true for class and instance objects—attribute qualification is mostly a
 dictionary indexing operation internally, and attribute inheritance is
 largely a matter of searching linked dictionaries. In fact, within
 Python, instance and class objects are mostly just dictionaries with
 links between them. Python exposes these dictionaries, as well as their
 links, for use in advanced roles (e.g., for coding tools).
We put some of these tools to work in the prior chapter, but to
 summarize and help you better understand how attributes work internally,
 let’s work through an interactive session that traces the way namespace
 dictionaries grow when classes are involved. Now that we know more about
 methods and superclasses, we can also embellish the coverage here for a
 better look. First, let’s define a superclass and a subclass with
 methods that will store data in their instances:
>>> class Super:
 def hello(self):
 self.data1 = 'spam'

>>> class Sub(Super):
 def hola(self):
 self.data2 = 'eggs'
When we make an instance of the subclass, the instance starts out with an
 empty namespace dictionary, but it has links back to the class for the
 inheritance search to follow. In fact, the inheritance tree is
 explicitly available in special attributes, which you can inspect.
 Instances have a __class__ attribute
 that links to their class, and classes have a __bases__
 attribute that is a tuple containing links to higher superclasses (I’m
 running this on Python 3.3; your name formats, internal attributes, and
 key orders may vary):
>>> X = Sub()
>>> X.__dict__ # Instance namespace dict
{}
>>> X.__class__ # Class of instance
<class '__main__.Sub'>
>>> Sub.__bases__ # Superclasses of class
(<class '__main__.Super'>,)
>>> Super.__bases__ # () empty tuple in Python 2.X
(<class 'object'>,)
As classes assign to self
 attributes, they populate the instance objects—that is, attributes wind
 up in the instances’ attribute namespace dictionaries, not in the
 classes’. An instance object’s namespace records data that can vary from
 instance to instance, and self is a
 hook into that namespace:
>>> Y = Sub()

>>> X.hello()
>>> X.__dict__
{'data1': 'spam'}

>>> X.hola()
>>> X.__dict__
{'data2': 'eggs', 'data1': 'spam'}

>>> list(Sub.__dict__.keys())
['__qualname__', '__module__', '__doc__', 'hola']
>>> list(Super.__dict__.keys())
['__module__', 'hello', '__dict__', '__qualname__', '__doc__', '__weakref__']

>>> Y.__dict__
{}
Notice the extra underscore names in the class dictionaries;
 Python sets these automatically, and we can filter them out with the
 generator expressions we saw in Chapter 27
 and Chapter 28 that we won’t repeat
 here. Most are not used in typical programs, but there are tools that
 use some of them (e.g., __doc__
 holds the docstrings discussed in Chapter 15).
Also, observe that Y, a second
 instance made at the start of this series, still has an empty namespace
 dictionary at the end, even though X’s dictionary has been populated by
 assignments in methods. Again, each instance has an independent
 namespace dictionary, which starts out empty and can record completely
 different attributes than those recorded by the namespace dictionaries
 of other instances of the same class.
Because attributes are actually dictionary keys inside Python,
 there are really two ways to fetch and assign their values—by
 qualification, or by key indexing:
>>> X.data1, X.__dict__['data1']
('spam', 'spam')

>>> X.data3 = 'toast'
>>> X.__dict__
{'data2': 'eggs', 'data3': 'toast', 'data1': 'spam'}

>>> X.__dict__['data3'] = 'ham'
>>> X.data3
'ham'
This equivalence applies only to attributes actually attached to
 the instance, though. Because attribute fetch
 qualification also performs an inheritance search, it can access
 inherited attributes that namespace dictionary
 indexing cannot. The inherited attribute X.hello, for instance, cannot be accessed by
 X.__dict__['hello'].
Experiment with these special attributes on your own to get a
 better feel for how namespaces actually do their attribute business.
 Also try running these objects through the dir function we met in the prior two
 chapters—dir(X) is similar to
 X.__dict__.keys(), but dir sorts its list and includes some inherited
 and built-in attributes. Even if you will never use these in the kinds
 of programs you write, seeing that they are just normal dictionaries can
 help solidify namespaces in general.
Note
In Chapter 32, we’ll learn also
 about slots, a somewhat advanced new-style class
 feature that stores attributes in instances, but not in their
 namespace dictionaries. It’s tempting to treat these as class
 attributes, and indeed, they appear in class namespaces where they
 manage the per-instance values. As we’ll see, though, slots may
 prevent a __dict__ from being
 created in the instance entirely—a potential that generic tools must
 sometimes account for by using storage-neutral tools such as dir and getattr.

Namespace Links: A Tree Climber
The prior section demonstrated the special __class__ and __bases__ instance and class attributes,
 without really explaining why you might care about them. In short, these
 attributes allow you to inspect inheritance hierarchies within your own
 code. For example, they can be used to display a class tree, as in the
 following Python 3.X and 2.X example:
#!python
"""
classtree.py: Climb inheritance trees using namespace links,
displaying higher superclasses with indentation for height
"""

def classtree(cls, indent):
 print('.' * indent + cls.__name__) # Print class name here
 for supercls in cls.__bases__: # Recur to all superclasses
 classtree(supercls, indent+3) # May visit super > once

def instancetree(inst):
 print('Tree of %s' % inst) # Show instance
 classtree(inst.__class__, 3) # Climb to its class

def selftest():
 class A: pass
 class B(A): pass
 class C(A): pass
 class D(B,C): pass
 class E: pass
 class F(D,E): pass
 instancetree(B())
 instancetree(F())

if __name__ == '__main__': selftest()
The classtree function in
 this script is recursive—it prints a
 class’s name using __name__, then
 climbs up to the superclasses by calling itself. This
 allows the function to traverse arbitrarily shaped class trees; the
 recursion climbs to the top, and stops at root superclasses that have
 empty __bases__ attributes. When
 using recursion, each active level of a function gets its own copy of
 the local scope; here, this means that cls and indent are different at each classtree level.
Most of this file is self-test code. When run standalone in Python
 2.X, it builds an empty class tree, makes two instances from it, and
 prints their class tree structures:
C:\code> c:\python27\python classtree.py
Tree of <__main__.B instance at 0x00000000022C3A88>
...B
......A
Tree of <__main__.F instance at 0x00000000022C3A88>
...F
......D
.........B
............A
.........C
............A
......E
When run by Python 3.X, the tree includes the implied object
 superclass that is automatically added above standalone root (i.e.,
 topmost) classes, because all classes are “new style” in 3.X—more on
 this change in Chapter 32:
C:\code> c:\python33\python classtree.py
Tree of <__main__.selftest.<locals>.B object at 0x00000000029216A0>
...B
......A
.........object
Tree of <__main__.selftest.<locals>.F object at 0x00000000029216A0>
...F
......D
.........B
............A
...............object
.........C
............A
...............object
......E
.........object
Here, indentation marked by periods is used to denote class tree
 height. Of course, we could improve on this output format, and perhaps
 even sketch it in a GUI display. Even as is, though, we can import these
 functions anywhere we want a quick display of a physical class
 tree:
C:\code> c:\python33\python
>>> class Emp: pass

>>> class Person(Emp): pass

>>> bob = Person()

>>> import classtree
>>> classtree.instancetree(bob)
Tree of <__main__.Person object at 0x000000000298B6D8>
...Person
......Emp
.........object
Regardless of whether you will ever code or use such tools, this
 example demonstrates one of the many ways that you can make use of
 special attributes that expose interpreter internals. You’ll see another
 when we code the lister.py
 general-purpose class display tools in Chapter 31’s section “Multiple Inheritance: “Mix-in” Classes”—there, we will
 extend this technique to also display attributes in each object in a
 class tree and function as a common superclass.
In the last part of this book, we’ll revisit such tools in the
 context of Python tool building at large, to code tools that implement
 attribute privacy, argument validation, and more. While not in every
 Python programmer’s job description, access to internals enables
 powerful development tools.

Documentation Strings Revisited
The last section’s example includes a docstring for its module, but
 remember that docstrings can be used for class components as well.
 Docstrings, which we covered in detail in Chapter 15, are string literals that show up
 at the top of various structures and are automatically saved by Python in
 the corresponding objects’ __doc__
 attributes. This works for module files, function defs, and classes and methods.
Now that we know more about classes and methods, the following file,
 docstr.py, provides a quick but
 comprehensive example that summarizes the places where docstrings can show
 up in your code. All of these can be triple-quoted blocks or simpler
 one-liner literals like those here:
"I am: docstr.__doc__"

def func(args):
 "I am: docstr.func.__doc__"
 pass

class spam:
 "I am: spam.__doc__ or docstr.spam.__doc__ or self.__doc__"
 def method(self):
 "I am: spam.method.__doc__ or self.method.__doc__"
 print(self.__doc__)
 print(self.method.__doc__)
The main advantage of documentation strings is that they stick
 around at runtime. Thus, if it’s been coded as a docstring, you can
 qualify an object with its __doc__
 attribute to fetch its documentation (printing the result interprets line
 breaks if it’s a multiline string):
>>> import docstr
>>> docstr.__doc__
'I am: docstr.__doc__'
>>> docstr.func.__doc__
'I am: docstr.func.__doc__'
>>> docstr.spam.__doc__
'I am: spam.__doc__ or docstr.spam.__doc__ or self.__doc__'
>>> docstr.spam.method.__doc__
'I am: spam.method.__doc__ or self.method.__doc__'

>>> x = docstr.spam()
>>> x.method()
I am: spam.__doc__ or docstr.spam.__doc__ or self.__doc__
I am: spam.method.__doc__ or self.method.__doc__
A discussion of the PyDoc tool, which knows how to format all these strings in reports and
 web pages, appears in Chapter 15. Here
 it is running its help function on our
 code under Python 2.X (Python 3.X shows additional attributes inherited
 from the implied object superclass in
 the new-style class model—run this on your own to see the 3.X extras, and
 watch for more about this difference in Chapter 32):
>>> help(docstr)
Help on module docstr:

NAME
 docstr - I am: docstr.__doc__

FILE
 c:\code\docstr.py

CLASSES
 spam

 class spam
 | I am: spam.__doc__ or docstr.spam.__doc__ or self.__doc__
 |
 | Methods defined here:
 |
 | method(self)
 | I am: spam.method.__doc__ or self.method.__doc__

FUNCTIONS
 func(args)
 I am: docstr.func.__doc__
Documentation strings are available at runtime, but they are less
 flexible syntactically than # comments,
 which can appear anywhere in a program. Both forms are useful tools, and
 any program documentation is good (as long as it’s accurate, of course!).
 As stated before, the Python “best practice” rule of thumb is to use
 docstrings for functional documentation (what your objects do) and
 hash-mark comments for more micro-level documentation (how arcane bits of
 code work).

Classes Versus Modules
Finally, let’s wrap up this chapter by briefly comparing the topics of this
 book’s last two parts: modules and classes. Because they’re both about
 namespaces, the distinction can be confusing. In short:
	Modules
	Implement data/logic packages

	Are created with Python files or other-language
 extensions

	Are used by being imported

	Form the top-level in Python program structure

	Classes
	Implement new full-featured objects

	Are created with class
 statements

	Are used by being called

	Always live within a module

Classes also support extra features that modules don’t, such as
 operator overloading, multiple instance generation, and inheritance.
 Although both classes and modules are namespaces, you should be able to
 tell by now that they are very different things. We need to move ahead to
 see just how different classes can be.

Chapter Summary
This chapter took us on a second, more in-depth tour of the OOP
 mechanisms of the Python language. We learned more about classes, methods,
 and inheritance, and we wrapped up the namespaces and scopes story in
 Python by extending it to cover its application to classes. Along the way,
 we looked at some more advanced concepts, such as abstract superclasses,
 class data attributes, namespace dictionaries and links, and manual calls
 to superclass methods and constructors.
Now that we’ve learned all about the mechanics of coding classes in
 Python, Chapter 30 turns to a specific
 facet of those mechanics: operator overloading. After
 that we’ll explore common design patterns, looking at some of the ways
 that classes are commonly used and combined to optimize code reuse. Before
 you read ahead, though, be sure to work through the usual chapter quiz to
 review what we’ve covered here.

Test Your Knowledge: Quiz
	What is an abstract superclass?

	What happens when a simple assignment statement appears at the
 top level of a class
 statement?

	Why might a class need to manually call the __init__ method in a superclass?

	How can you augment, instead of completely replacing, an
 inherited method?

	How does a class’s local scope differ from that of a
 function?

	What...was the capital of Assyria?

Test Your Knowledge: Answers
	An abstract superclass is a class that calls a method, but does
 not inherit or define it—it expects the method to be filled in by a
 subclass. This is often used as a way to generalize classes when
 behavior cannot be predicted until a more specific subclass is coded.
 OOP frameworks also use this as a way to dispatch to client-defined,
 customizable operations.

	When a simple assignment statement (X =
 Y) appears at the top level of a class statement, it attaches a data
 attribute to the class (Class.X). Like all class attributes, this will be
 shared by all instances; data attributes are not callable method
 functions, though.

	A class must manually call the __init__ method in a superclass if it
 defines an __init__ constructor of
 its own and still wants the superclass’s construction code to run.
 Python itself automatically runs just one
 constructor—the lowest one in the tree. Superclass constructors are
 usually called through the class name, passing in the self instance manually:
 Superclass.__init__(self, ...).

	To augment instead of completely replacing an inherited method,
 redefine it in a subclass, but call back to the superclass’s version
 of the method manually from the new version of the method in the
 subclass. That is, pass the self
 instance to the superclass’s version of the method manually:
 Superclass.method(self, ...).

	A class is a local scope and has access to enclosing local
 scopes, but it does not serve as an enclosing local scope to further
 nested code. Like modules, the class local scope morphs into an
 attribute namespace after the class
 statement is run.

	Ashur (or Qalat Sherqat), Calah (or Nimrud), the short-lived Dur
 Sharrukin (or Khorsabad), and finally Nineveh.

1 If you’ve used C++ you may recognize this as similar to the
 notion of C++’s “static” data members—members that are stored in the
 class, independent of instances. In Python, it’s nothing special:
 all class attributes are just names assigned in the class statement, whether they happen to
 reference functions (C++’s
 “methods”) or something else (C++’s “members”). In Chapter 32, we’ll also meet Python static
 methods (akin to those in C++), which are just self-less functions that usually process
 class attributes.
2 Unless the class has redefined the attribute assignment
 operation to do something unique with the __setattr__ operator overloading method
 (discussed in Chapter 30), or uses
 advanced attribute tools such as properties and
 descriptors (discussed in Chapter 32 and Chapter 38). Much of this chapter presents the
 normal case, which suffices at this point in the book, but as we’ll
 see later, Python hooks allow programs to deviate from the norm
 often.
3 On a related note, you can also code multiple __init__ methods within the same class,
 but only the last definition will be used; see Chapter 31 for more details on multiple
 method definitions.
4 Two fine points here: first, this description isn’t 100%
 complete, because we can also create instance and class attributes
 by assigning them to objects outside class statements—but that’s a much less
 common and sometimes more error-prone approach (changes aren’t
 isolated to class statements). In
 Python, all attributes are always accessible by default. We’ll talk
 more about attribute name privacy in Chapter 30 when we study __setattr__, in Chapter 31 when we meet __X names, and
 again in Chapter 39, where we’ll implement it
 with a class decorator.

Second, as also noted in Chapter 27, the full
 inheritance story grows more convoluted when
 advanced topics such as metaclasses and
 descriptors are added to the mix—and we’re
 deferring a formal definition until Chapter 40
 for this reason. In common usage, though, it’s simply a way to
 redefine, and hence customize, behavior coded in classes.

Chapter 30. Operator Overloading
This chapter continues our in-depth survey of class mechanics by focusing on operator overloading. We looked
 briefly at operator overloading in prior chapters; here, we’ll fill in more
 details and look at a handful of commonly used overloading methods. Although
 we won’t demonstrate each of the many operator overloading methods
 available, those we will code here are a representative sample large enough
 to uncover the possibilities of this Python class feature.
The Basics
Really “operator overloading” simply means
 intercepting built-in operations in a class’s methods—Python automatically invokes
 your methods when instances of the class appear in built-in operations,
 and your method’s return value becomes the result of the corresponding
 operation. Here’s a review of the key ideas behind overloading:
	Operator overloading lets classes intercept normal Python
 operations.

	Classes can overload all Python expression operators.

	Classes can also overload built-in operations such as printing,
 function calls, attribute access, etc.

	Overloading makes class instances act more like built-in
 types.

	Overloading is implemented by providing specially named methods
 in a class.

In other words, when certain specially named methods are provided in
 a class, Python automatically calls them when instances of the class
 appear in their associated expressions. Your class provides the behavior
 of the corresponding operation for instance objects created from
 it.
As we’ve learned, operator overloading methods are never required
 and generally don’t have defaults (apart from a handful that some classes
 get from object); if you don’t code or
 inherit one, it just means that your class does not support the
 corresponding operation. When used, though, these methods allow classes to
 emulate the interfaces of built-in objects, and so appear more
 consistent.
Constructors and Expressions: __init__ and __sub__
As a review, consider the following simple example: its Number class, coded in the file number.py, provides a method to intercept
 instance construction (__init__), as
 well as one for catching subtraction expressions (__sub__).
 Special methods such as these are the hooks that let you tie into
 built-in operations:
File number.py

class Number:
 def __init__(self, start): # On Number(start)
 self.data = start
 def __sub__(self, other): # On instance - other
 return Number(self.data - other) # Result is a new instance

>>> from number import Number # Fetch class from module
>>> X = Number(5) # Number.__init__(X, 5)
>>> Y = X - 2 # Number.__sub__(X, 2)
>>> Y.data # Y is new Number instance
3
As we’ve already learned, the __init__ constructor method seen in this code
 is the most commonly used operator overloading method in Python; it’s
 present in most classes, and used to initialize the newly created
 instance object using any arguments passed to the class name. The
 __sub__ method plays the binary
 operator role that __add__ did in
 Chapter 27’s introduction, intercepting
 subtraction expressions and returning a new instance of the class as its
 result (and running __init__ along
 the way).
Note
Technically, instance creation first triggers the __new__ method, which creates and returns
 the new instance object, which is then passed into __init__ for initialization. Since __new__ has a built-in implementation and is
 redefined in only very limited roles, though, nearly all Python
 classes initialize by defining an __init__ method. We’ll see one use case for
 __new__ when we study
 metaclasses in Chapter 40;
 though rare, it is sometimes also used to customize creation of
 instances of immutable types.

We’ve already studied __init__
 and basic binary operators like __sub__ in some depth, so we won’t rehash
 their usage further here. In this chapter, we will tour some of the
 other tools available in this domain and look at example code that
 applies them in common use cases.

Common Operator Overloading Methods
Just about everything you can do to built-in objects such as integers and lists
 has a corresponding specially named method for overloading in classes.
 Table 30-1 lists a few
 of the most common; there are many more. In fact, many overloading
 methods come in multiple versions (e.g., __add__, __radd__, and __iadd__ for addition), which is one reason
 there are so many. See other Python books, or the Python language
 reference manual, for an exhaustive list of the special method names
 available.
Table 30-1. Common operator overloading methods	Method	Implements	Called
 for
	__init__
	Constructor
	Object creation: X = Class(args)

	__del__
	Destructor
	Object reclamation of X

	__add__
	Operator +
	X + Y, X += Y if no __iadd__

	__or__
	Operator | (bitwise OR)
	X | Y, X |= Y if no __ior__

	__repr__, __str__
	Printing, conversions
	print(X), repr(X), str(X)

	__call__
	Function calls
	X(*args, **kargs)

	__getattr__
	Attribute fetch
	X.undefined

	__setattr__
	Attribute assignment
	X.any = value

	__delattr__
	Attribute deletion
	del X.any

	__getattribute__
	Attribute fetch
	X.any

	__getitem__
	Indexing, slicing, iteration
	X[key], X[i:j], for loops and other iterations if no
 __iter__

	__setitem__
	Index and slice assignment
	X[key] = value, X[i:j] = iterable

	__delitem__
	Index and slice deletion
	del X[key], del X[i:j]

	__len__
	Length
	len(X), truth tests if no __bool__

	__bool__
	Boolean tests
	bool(X), truth tests (named __nonzero__ in 2.X)

	__lt__, __gt__,
__le__, __ge__,
__eq__, __ne__
	Comparisons
	X < Y, X > Y, X <= Y, X >= Y, X == Y,
X != Y (or else __cmp__ in 2.X only)

	__radd__
	Right-side operators
	Other + X

	__iadd__
	In-place augmented operators
	X += Y (or else __add__)

	__iter__, __next__
	Iteration contexts
	I=iter(X), next(I); for loops, in if no __contains__, all comprehensions,
 map(F,X), others (__next__ is named next in 2.X)

	__contains__
	Membership test
	item in X (any
 iterable)

	__index__
	Integer value
	hex(X), bin(X), oct(X), O[X], O[X:] (replaces 2.X __oct__, __hex__)

	__enter__, __exit__
	Context manager (Chapter 34)
	with obj as var:

	__get__, __set__, __delete__
	Descriptor attributes (Chapter 38)
	X.attr, X.attr = value, del X.attr

	__new__
	Creation (Chapter 40)
	Object creation, before
 __init__

All overloading methods have names that start and end with two
 underscores to keep them distinct from other names you define in your
 classes. The mappings from special method names to expressions or
 operations are predefined by the Python language, and documented in full
 in the standard language manual and other reference resources. For
 example, the name __add__ always maps
 to + expressions by Python language
 definition, regardless of what an __add__ method’s code actually does.
Note
Although expressions trigger operator methods, be careful not to
 assume that there is a speed advantage to cutting out the middleman
 and calling the operator method directly. In fact, calling the
 operator method directly might be twice as slow,
 presumably because of the overhead of a function call, which Python
 avoids or optimizes in built-in cases.
Here’s the story for len and
 __len__ using Appendix B’s Windows launcher and
 Chapter 21’s timing techniques on
 Python 3.3 and 2.7: in both, calling __len__ directly takes twice as long:
c:\code> py −3 -m timeit -n 1000 -r 5
 -s "L = list(range(100))" "x = L.__len__()"
1000 loops, best of 5: 0.134 usec per loop

c:\code> py −3 -m timeit -n 1000 -r 5
 -s "L = list(range(100))" "x = len(L)"
1000 loops, best of 5: 0.063 usec per loop

c:\code> py −2 -m timeit -n 1000 -r 5
 -s "L = list(range(100))" "x = L.__len__()"
1000 loops, best of 5: 0.117 usec per loop

c:\code> py −2 -m timeit -n 1000 -r 5
 -s "L = list(range(100))" "x = len(L)"
1000 loops, best of 5: 0.0596 usec per loop
This is not as artificial as it may seem—I’ve actually come
 across recommendations for using the slower alternative in the name of
 speed at a noted research institution!

Operator overloading methods may be inherited from superclasses if
 not defined, just like any other methods. Operator overloading methods
 are also all optional—if you don’t code or inherit one, that operation
 is simply unsupported by your class, and attempting it will raise an
 exception. Some built-in operations, like printing, have defaults
 (inherited from the implied object
 class in Python 3.X), but most built-ins fail for class instances if no
 corresponding operator overloading method is present.
Most overloading methods are used only in advanced programs that
 require objects to behave like built-ins, though the __init__ constructor we’ve already met tends
 to appear in most classes. Let’s explore some of the additional methods
 in Table 30-1 by example.

Indexing and Slicing: __getitem__ and __setitem__
Our first method set allows your classes to mimic some of the behaviors of
 sequences and mappings. If defined in a class (or inherited by it), the
 __getitem__ method is called
 automatically for instance-indexing operations. When an instance X appears in an indexing expression like
 X[i], Python calls the __getitem__ method inherited by the instance,
 passing X to the first argument and the
 index in brackets to the second argument.
For example, the following class returns the square of an index
 value—atypical perhaps, but illustrative of the mechanism in
 general:
>>> class Indexer:
 def __getitem__(self, index):
 return index ** 2

>>> X = Indexer()
>>> X[2] # X[i] calls X.__getitem__(i)
4

>>> for i in range(5):
 print(X[i], end=' ') # Runs __getitem__(X, i) each time

0 1 4 9 16
Intercepting Slices
Interestingly, in addition to indexing, __getitem__
 is also called for slice expressions—always in 3.X,
 and conditionally in 2.X if you don’t provide more specific slicing
 methods. Formally speaking, built-in types handle slicing the same way.
 Here, for example, is slicing at work on a built-in list, using upper
 and lower bounds and a stride (see Chapter 7 if you need a refresher on
 slicing):
>>> L = [5, 6, 7, 8, 9]
>>> L[2:4] # Slice with slice syntax: 2..(4-1)
[7, 8]
>>> L[1:]
[6, 7, 8, 9]
>>> L[:-1]
[5, 6, 7, 8]
>>> L[::2]
[5, 7, 9]
Really, though, slicing bounds are bundled up into a slice object and passed to the
 list’s implementation of indexing. In fact, you can always pass a slice
 object manually—slice syntax is mostly syntactic sugar for indexing with
 a slice object:
>>> L[slice(2, 4)] # Slice with slice objects
[7, 8]
>>> L[slice(1, None)]
[6, 7, 8, 9]
>>> L[slice(None, −1)]
[5, 6, 7, 8]
>>> L[slice(None, None, 2)]
[5, 7, 9]
This matters in classes with a __getitem__ method—in 3.X, the method will be
 called both for basic indexing (with an index) and for slicing (with a
 slice object). Our previous class won’t handle slicing because its math
 assumes integer indexes are passed, but the following class will. When
 called for indexing, the argument is an integer as
 before:
>>> class Indexer:
 data = [5, 6, 7, 8, 9]
 def __getitem__(self, index): # Called for index or slice
 print('getitem:', index)
 return self.data[index] # Perform index or slice

>>> X = Indexer()
>>> X[0] # Indexing sends __getitem__ an integer
getitem: 0
5
>>> X[1]
getitem: 1
6
>>> X[-1]
getitem: −1
9
When called for slicing, though, the method
 receives a slice object, which is simply passed along to the embedded
 list indexer in a new index expression:
>>> X[2:4] # Slicing sends __getitem__ a slice object
getitem: slice(2, 4, None)
[7, 8]
>>> X[1:]
getitem: slice(1, None, None)
[6, 7, 8, 9]
>>> X[:-1]
getitem: slice(None, −1, None)
[5, 6, 7, 8]
>>> X[::2]
getitem: slice(None, None, 2)
[5, 7, 9]
Where needed, __getitem__ can
 test the type of its argument, and extract slice object bounds—slice
 objects have attributes start,
 stop, and step, any of which can be None if omitted:
>>> class Indexer:
 def __getitem__(self, index):
 if isinstance(index, int): # Test usage mode
 print('indexing', index)
 else:
 print('slicing', index.start, index.stop, index.step)

>>> X = Indexer()
>>> X[99]
indexing 99
>>> X[1:99:2]
slicing 1 99 2
>>> X[1:]
slicing 1 None None
If used, the __setitem__ index
 assignment method similarly intercepts both index and slice
 assignments—in 3.X (and usually in 2.X) it receives a slice object for
 the latter, which may be passed along in another index assignment or
 used directly in the same way:
class IndexSetter:
 def __setitem__(self, index, value): # Intercept index or slice assignment
 ...
 self.data[index] = value # Assign index or slice
In fact, __getitem__ may be
 called automatically in even more contexts than indexing and
 slicing—it’s also an iteration fallback option, as
 we’ll see in a moment. First, though, let’s take a quick look at 2.X’s
 flavor of these operations for 2.X readers, and clarify a potential
 point of confusion in this category.

Slicing and Indexing in Python 2.X
In Python 2.X only, classes can also define __getslice__ and __setslice__ methods to intercept slice
 fetches and assignments specifically. If defined, these methods are
 passed the bounds of the slice expression, and are preferred over
 __getitem__ and __setitem__ for two-limit slices. In all other
 cases, though, this context works the same as in 3.X; for example, a
 slice object is still created and passed to __getitem__ if no __getslice__ is found or a three-limit
 extended slice form is used:
C:\code> c:\python27\python
>>> class Slicer:
 def __getitem__(self, index): print index
 def __getslice__(self, i, j): print i, j
 def __setslice__(self, i, j,seq): print i, j,seq

>>> Slicer()[1] # Runs __getitem__ with int, like 3.X
1
>>> Slicer()[1:9] # Runs __getslice__ if present, else __getitem__
1 9
>>> Slicer()[1:9:2] # Runs __getitem__ with slice(), like 3.X!
slice(1, 9, 2)
These slice-specific methods are removed in
 3.X, so even in 2.X you should generally use __getitem__ and __setitem__ instead and allow for both indexes
 and slice objects as arguments—both for forward compatibility, and to
 avoid having to handle two- and three-limit slices differently. In most
 classes, this works without any special code, because indexing methods
 can manually pass along the slice object in the square brackets of
 another index expression, as in the prior section’s example. See the
 section “Membership: __contains__, __iter__, and __getitem__” for
 another example of slice interception at work.

But 3.X’s __index__ Is Not Indexing!
On a related note, don’t confuse the (perhaps unfortunately named) __index__ method in Python 3.X for index
 interception—this method returns an integer value
 for an instance when needed and is used by built-ins that convert to
 digit strings (and in retrospect, might have been better named
 __asindex__):
>>> class C:
 def __index__(self):
 return 255

>>> X = C()
>>> hex(X) # Integer value
'0xff'
>>> bin(X)
'0b11111111'
>>> oct(X)
'0o377'
Although this method does not intercept instance indexing like
 __getitem__, it is also used in
 contexts that require an integer—including
 indexing:
>>> ('C' * 256)[255]
'C'
>>> ('C' * 256)[X] # As index (not X[i])
'C'
>>> ('C' * 256)[X:] # As index (not X[i:])
'C'
This method works the same way in Python 2.X, except that it is
 not called for the hex and oct built-in functions; use __hex__ and
 __oct__ in 2.X (only) instead to
 intercept these calls.

Index Iteration: __getitem__
Here’s a hook that isn’t always obvious to beginners, but turns out to be
 surprisingly useful. In the absence of more-specific iteration methods
 we’ll get to in the next section, the for statement works by repeatedly indexing a
 sequence from zero to higher indexes, until an out-of-bounds IndexError exception is detected. Because of
 that, __getitem__ also turns out to be
 one way to overload iteration in Python—if this method is defined,
 for loops call the class’s __getitem__ each time through, with successively
 higher offsets.
It’s a case of “code one, get one free”—any built-in or user-defined
 object that responds to indexing also responds to for loop iteration:
>>> class StepperIndex:
 def __getitem__(self, i):
 return self.data[i]

>>> X = StepperIndex() # X is a StepperIndex object
>>> X.data = "Spam"
>>>
>>> X[1] # Indexing calls __getitem__
'p'
>>> for item in X: # for loops call __getitem__
 print(item, end=' ') # for indexes items 0..N

S p a m
In fact, it’s really a case of “code one, get a bunch free.” Any
 class that supports for loops
 automatically supports all iteration contexts in
 Python, many of which we’ve seen in earlier chapters (iteration contexts
 were presented in Chapter 14). For
 example, the in membership test, list
 comprehensions, the map built-in, list
 and tuple assignments, and type constructors will also call __getitem__ automatically, if it’s
 defined:
>>> 'p' in X # All call __getitem__ too
True

>>> [c for c in X] # List comprehension
['S', 'p', 'a', 'm']

>>> list(map(str.upper, X)) # map calls (use list() in 3.X)
['S', 'P', 'A', 'M']

>>> (a, b, c, d) = X # Sequence assignments
>>> a, c, d
('S', 'a', 'm')

>>> list(X), tuple(X), ''.join(X) # And so on...
(['S', 'p', 'a', 'm'], ('S', 'p', 'a', 'm'), 'Spam')

>>> X
<__main__.StepperIndex object at 0x000000000297B630>
In practice, this technique can be used to create objects that
 provide a sequence interface and to add logic to built-in sequence type
 operations; we’ll revisit this idea when extending built-in types in Chapter 32.

Iterable Objects: __iter__ and __next__
Although the __getitem__
 technique of the prior section works, it’s really just a fallback for
 iteration. Today, all iteration contexts in Python will try the __iter__ method first, before trying __getitem__. That is, they prefer the
 iteration protocol we learned about in Chapter 14 to repeatedly indexing an
 object; only if the object does not support the iteration protocol is
 indexing attempted instead. Generally speaking, you should prefer __iter__ too—it supports general iteration
 contexts better than __getitem__
 can.
Technically, iteration contexts work by passing an iterable object
 to the iter built-in function to invoke
 an __iter__ method, which is expected
 to return an iterator object. If it’s provided, Python then repeatedly
 calls this iterator object’s __next__
 method to produce items until a StopIteration exception is raised. A next built-in function is also available as a
 convenience for manual iterations—next(I) is the same as I.__next__(). For a review of this model’s
 essentials, see Figure 14-1 in Chapter 14.
This iterable object interface is given priority and attempted
 first. Only if no such __iter__ method
 is found, Python falls back on the __getitem__ scheme and repeatedly indexes by
 offsets as before, until an IndexError exception
 is raised.
Note
Version skew note: As described in Chapter 14, if you are using Python 2.X,
 the I.__next__() iterator method just
 described is named I.next() in your
 Python, and the next(I) built-in is
 present for portability—it calls I.next() in 2.X and I.__next__() in 3.X. Iteration works the same
 in 2.X in all other respects.

User-Defined Iterables
In the __iter__ scheme, classes
 implement user-defined iterables by simply implementing the iteration
 protocol introduced in Chapter 14
 and elaborated in Chapter 20. For
 example, the following file uses a class to define a user-defined
 iterable that generates squares on demand, instead of all at once (per
 the preceding note, in Python 2.X define next instead of __next__, and print with a trailing comma as
 usual):
File squares.py

class Squares:
 def __init__(self, start, stop): # Save state when created
 self.value = start - 1
 self.stop = stop
 def __iter__(self): # Get iterator object on iter
 return self
 def __next__(self): # Return a square on each iteration
 if self.value == self.stop: # Also called by next built-in
 raise StopIteration
 self.value += 1
 return self.value ** 2
When imported, its instances can appear in iteration contexts just
 like built-ins:
% python
>>> from squares import Squares
>>> for i in Squares(1, 5): # for calls iter, which calls __iter__
 print(i, end=' ') # Each iteration calls __next__

1 4 9 16 25
Here, the iterator object returned by __iter__ is simply the instance self, because the __next__ method is part of this class itself.
 In more complex scenarios, the iterator object may be defined as a
 separate class and object with its own state information to support
 multiple active iterations over the same data (we’ll see an example of
 this in a moment). The end of the iteration is signaled with a
 Python raise
 statement—introduced in Chapter 29 and
 covered in full in the next part of this book, but which simply raises
 an exception as if Python itself had done so. Manual iterations work the
 same on user-defined iterables as they do on built-in types as
 well:
>>> X = Squares(1, 5) # Iterate manually: what loops do
>>> I = iter(X) # iter calls __iter__
>>> next(I) # next calls __next__ (in 3.X)
1
>>> next(I)
4
...more omitted...
>>> next(I)
25
>>> next(I) # Can catch this in try statement
StopIteration
An equivalent coding of this iterable with __getitem__ might be less natural, because the
 for would then iterate through all
 offsets zero and higher; the offsets passed in would be only indirectly
 related to the range of values produced (0..N would need to map to start..stop). Because __iter__ objects retain explicitly managed
 state between next calls, they can be
 more general than __getitem__.
On the other hand, iterables based on __iter__ can sometimes be more complex and
 less functional than those based on __getitem__. They are really designed for
 iteration, not random indexing—in fact, they don’t overload the indexing
 expression at all, though you can collect their items in a sequence such
 as a list to enable other operations:
>>> X = Squares(1, 5)
>>> X[1]
TypeError: 'Squares' object does not support indexing
>>> list(X)[1]
4
Single versus multiple scans
The __iter__ scheme is also
 the implementation for all the other iteration contexts we saw in
 action for the __getitem__
 method—membership tests, type constructors, sequence assignment, and
 so on. Unlike our prior __getitem__
 example, though, we also need to be aware that a class’s __iter__ may be designed for a
 single traversal only, not many. Classes choose
 scan behavior explicitly in their code.
For example, because the current Squares class’s __iter__ always returns self with just one copy of iteration state,
 it is a one-shot iteration; once you’ve iterated over an instance of
 that class, it’s empty. Calling __iter__ again on the same instance returns
 self again, in whatever state it
 may have been left. You generally need to make a new iterable instance
 object for each new iteration:
>>> X = Squares(1, 5) # Make an iterable with state
>>> [n for n in X] # Exhausts items: __iter__ returns self
[1, 4, 9, 16, 25]
>>> [n for n in X] # Now it's empty: __iter__ returns same self
[]

>>> [n for n in Squares(1, 5)] # Make a new iterable object
[1, 4, 9, 16, 25]
>>> list(Squares(1, 3)) # A new object for each new __iter__ call
[1, 4, 9]
To support multiple iterations more directly, we could also
 recode this example with an extra class or other technique, as we will
 in a moment. As is, though, by creating a new
 instance for each iteration, you get a fresh copy of
 iteration state:
>>> 36 in Squares(1, 10) # Other iteration contexts
True
>>> a, b, c = Squares(1, 3) # Each calls __iter__ and then __next__
>>> a, b, c
(1, 4, 9)
>>> ':'.join(map(str, Squares(1, 5)))
'1:4:9:16:25'
Just like single-scan built-ins such as map, converting to a
 list supports multiple scans as well, but adds
 time and space performance costs, which may or may not be significant
 to a given program:
>>> X = Squares(1, 5)
>>> tuple(X), tuple(X) # Iterator exhausted in second tuple()
((1, 4, 9, 16, 25), ())

>>> X = list(Squares(1, 5))
>>> tuple(X), tuple(X)
((1, 4, 9, 16, 25), (1, 4, 9, 16, 25))
We’ll improve this to support multiple scans more directly
 ahead, after a bit of compare-and-contrast.

Classes versus generators
Notice that the preceding example would probably be simpler if it was coded with
 generator functions or expressions—tools
 introduced in Chapter 20 that
 automatically produce iterable objects and retain local variable state
 between iterations:
>>> def gsquares(start, stop):
 for i in range(start, stop + 1):
 yield i ** 2

>>> for i in gsquares(1, 5):
 print(i, end=' ')

1 4 9 16 25

>>> for i in (x ** 2 for x in range(1, 6)):
 print(i, end=' ')

1 4 9 16 25
Unlike classes, generator functions and expressions implicitly
 save their state and create the methods required to conform to the
 iteration protocol—with obvious advantages in code conciseness for
 simpler examples like these. On the other hand, the class’s more
 explicit attributes and methods, extra structure, inheritance
 hierarchies, and support for multiple behaviors may be better suited
 for richer use cases.
Of course, for this artificial example, you could in fact skip
 both techniques and simply use a for loop, map, or a list comprehension to build the
 list all at once. Barring performance data to the contrary, the best
 and fastest way to accomplish a task in Python is often also the
 simplest:
>>> [x ** 2 for x in range(1, 6)]
[1, 4, 9, 16, 25]
However, classes may be better at modeling more complex
 iterations, especially when they can benefit from the assets of
 classes in general. An iterable that produces items in a complex
 database or web service result, for example, might be able to take
 fuller advantage of classes. The next section explores another use
 case for classes in user-defined iterables.

Multiple Iterators on One Object
Earlier, I mentioned that the iterator object (with a __next__) produced by an iterable may be
 defined as a separate class with its own state information to more
 directly support multiple active iterations over the same data. Consider
 what happens when we step across a built-in type like a string:
>>> S = 'ace'
>>> for x in S:
 for y in S:
 print(x + y, end=' ')

aa ac ae ca cc ce ea ec ee
Here, the outer loop grabs an iterator from the string by calling
 iter, and each nested loop does the
 same to get an independent iterator. Because each active iterator has
 its own state information, each loop can maintain its own position in
 the string, regardless of any other active loops. Moreover, we’re not
 required to make a new string or convert to a list each time; the single
 string object itself supports multiple scans.
We saw related examples earlier, in Chapter 14 and Chapter 20. For instance, generator
 functions and expressions, as well as built-ins like map and zip, proved to be single-iterator objects,
 thus supporting a single active scan. By contrast, the range built-in, and other built-in types like
 lists, support multiple active iterators with independent
 positions.
When we code user-defined iterables with classes, it’s up to us to
 decide whether we will support a single active iteration or many. To
 achieve the multiple-iterator effect, __iter__ simply needs to define a new stateful
 object for the iterator, instead of returning self for each iterator request.
The following SkipObject class,
 for example, defines an iterable object that skips every other item on
 iterations. Because its iterator object is created anew from a
 supplemental class for each iteration, it supports multiple active loops
 directly (this is file skipper.py
 in the book’s examples):
#!python3
File skipper.py

class SkipObject:
 def __init__(self, wrapped): # Save item to be used
 self.wrapped = wrapped
 def __iter__(self):
 return SkipIterator(self.wrapped) # New iterator each time

class SkipIterator:
 def __init__(self, wrapped):
 self.wrapped = wrapped # Iterator state information
 self.offset = 0
 def __next__(self):
 if self.offset >= len(self.wrapped): # Terminate iterations
 raise StopIteration
 else:
 item = self.wrapped[self.offset] # else return and skip
 self.offset += 2
 return item

if __name__ == '__main__':
 alpha = 'abcdef'
 skipper = SkipObject(alpha) # Make container object
 I = iter(skipper) # Make an iterator on it
 print(next(I), next(I), next(I)) # Visit offsets 0, 2, 4

 for x in skipper: # for calls __iter__ automatically
 for y in skipper: # Nested fors call __iter__ again each time
 print(x + y, end=' ') # Each iterator has its own state, offset
A quick portability note: as is, this is 3.X-only code. To make it
 2.X compatible, import the 3.X print
 function, and either use next instead
 of __next__ for 2.X-only use, or
 alias the two names in the class’s scope for dual 2.X/3.X usage (file
 skipper_2x.py in the book’s
 examples does):
#!python
from __future__ import print_function # 2.X/3.X compatibility
...
class SkipIterator:
 ...
 def __next__(self):
 ...
 next = __next__ # 2.X/3.X compatibility
When the appropriate version is run in either Python, this example
 works like the nested loops with built-in strings. Each active loop has
 its own position in the string because each obtains an independent
 iterator object that records its own state information:
% python skipper.py
a c e
aa ac ae ca cc ce ea ec ee
By contrast, our earlier Squares example supports just one active
 iteration, unless we call Squares
 again in nested loops to obtain new objects. Here, there is just one
 SkipObject iterable, with multiple
 iterator objects created from it.
Classes versus slices
As before, we could achieve similar results with built-in
 tools—for example, slicing with a third bound to skip items:
>>> S = 'abcdef'
>>> for x in S[::2]:
 for y in S[::2]: # New objects on each iteration
 print(x + y, end=' ')

aa ac ae ca cc ce ea ec ee
This isn’t quite the same, though, for two reasons. First, each
 slice expression here will physically store the
 result list all at once in memory; iterables, on the other hand,
 produce just one value at a time, which can save substantial space for
 large result lists. Second, slices produce new
 objects, so we’re not really iterating over the same object
 in multiple places here. To be closer to the class, we would need to
 make a single object to step across by slicing ahead of time:
>>> S = 'abcdef'
>>> S = S[::2]
>>> S
'ace'
>>> for x in S:
 for y in S: # Same object, new iterators
 print(x + y, end=' ')

aa ac ae ca cc ce ea ec ee
This is more similar to our class-based solution, but it still
 stores the slice result in memory all at once (there is no generator
 form of built-in slicing today), and it’s only equivalent for this
 particular case of skipping every other item.
Because user-defined iterables coded with classes can do
 anything a class can do, they are much more general than this example
 may imply. Though such generality is not required in all applications,
 user-defined iterables are a powerful tool—they allow us to make
 arbitrary objects look and feel like the other sequences and iterables
 we have met in this book. We could use this technique with a database
 object, for example, to support iterations over large database
 fetches, with multiple cursors into the same query result.

Coding Alternative: __iter__ plus yield
And now, for something completely
 implicit—but potentially useful nonetheless. In some applications, it’s
 possible to minimize coding requirements for user-defined iterables by
 combining the __iter__ method we’re exploring here and the
 yield generator function statement we
 studied in Chapter 20. Because
 generator functions automatically save local
 variable state and create required iterator methods, they fit this role
 well, and complement the state retention and other utility we get from
 classes.
As a review, recall that any function that contains a yield statement is turned into a generator
 function. When called, it returns a new generator
 object with automatic retention of local scope and code
 position, an automatically created __iter__ method that simply returns itself,
 and an automatically created __next__
 method (next in 2.X) that starts the
 function or resumes it where it last left off:
>>> def gen(x):
 for i in range(x): yield i ** 2

>>> G = gen(5) # Create a generator with __iter__ and __next__
>>> G.__iter__() == G # Both methods exist on the same object
True
>>> I = iter(G) # Runs __iter__: generator returns itself
>>> next(I), next(I) # Runs __next__ (next in 2.X)
(0, 1)
>>> list(gen(5)) # Iteration contexts automatically run iter and next
[0, 1, 4, 9, 16]
This is still true even if the generator function with a yield happens to be a method named __iter__: whenever invoked by an iteration
 context tool, such a method will return a new generator object with the
 requisite __next__. As an added
 bonus, generator functions coded as methods in classes have access to
 saved state in both instance attributes and local
 scope variables.
For example, the following class is equivalent to the initial
 Squares user-defined iterable we
 coded earlier in squares.py.
File squares_yield.py

class Squares: # __iter__ + yield generator
 def __init__(self, start, stop): # __next__ is automatic/implied
 self.start = start
 self.stop = stop
 def __iter__(self):
 for value in range(self.start, self.stop + 1):
 yield value ** 2
There’s no need to alias next
 to __next__ for 2.X compatibility
 here, because this method is now automated and implied by the use of
 yield. As before, for loops and other iteration tools iterate
 through instances of this class automatically:
% python
>>> from squares_yield import Squares
>>> for i in Squares(1, 5): print(i, end=' ')

1 4 9 16 25
And as usual, we can look under the hood to see how this actually
 works in iteration contexts. Running our class instance through iter obtains the result of calling __iter__ as usual, but in this case the result
 is a generator object with an automatically created __next__ of the same sort we always get when
 calling a generator function that contains a yield. The only difference here is that the
 generator function is automatically called on iter. Invoking the result object’s next interface produces results on
 demand:
>>> S = Squares(1, 5) # Runs __init__: class saves instance state
>>> S
<squares_yield.Squares object at 0x000000000294B630>

>>> I = iter(S) # Runs __iter__: returns a generator
>>> I
<generator object __iter__ at 0x00000000029A8CF0>
>>> next(I)
1
>>> next(I) # Runs generator's __next__
4
...etc...
>>> next(I) # Generator has both instance and local scope state
StopIteration
It may also help to notice that we could name the generator method
 something other than __iter__ and
 call manually to iterate—Squares(1,5).gen(), for example. Using the
 __iter__ name invoked automatically
 by iteration tools simply skips a manual attribute fetch and call
 step:
class Squares: # Non __iter__ equivalent (squares_manual.py)
 def __init__(...):
 ...
 def gen(self):
 for value in range(self.start, self.stop + 1):
 yield value ** 2

% python
>>> from squares_manual import Squares
>>> for i in Squares(1, 5).gen(): print(i, end=' ')
...same results...

>>> S = Squares(1, 5)
>>> I = iter(S.gen()) # Call generator manually for iterable/iterator
>>> next(I)
...same results...
Coding the generator as __iter__ instead cuts out the middleman in
 your code, though both schemes ultimately wind up creating a new
 generator object for each iteration:
	With __iter__, iteration
 triggers __iter__, which returns
 a new generator with __next__.

	Without __iter__, your code
 calls to make a generator, which returns itself for __iter__.

See Chapter 20 for more on
 yield and generators if this is
 puzzling, and compare it with the more explicit __next__ version in squares.py earlier. You’ll notice that this
 new squares_yield.py version is 4
 lines shorter (7 versus 11). In a sense, this scheme reduces class
 coding requirements much like the closure functions of Chapter 17, but in this case does so with a
 combination of functional and OOP techniques,
 instead of an alternative to classes. For example, the generator method
 still leverages self
 attributes.
This may also very well seem like one too many levels of
 magic to some observers—it relies on both the
 iteration protocol and the object creation of generators, both of which
 are highly implicit (in contradiction of longstanding Python themes: see
 import this). Opinions aside, it’s
 important to understand the non-yield
 flavor of class iterables too, because it’s explicit, general, and
 sometimes broader in scope.
Still, the __iter__/yield technique may prove effective in cases
 where it applies. It also comes with a substantial advantage—as the next
 section explains.
Multiple iterators with yield
Besides its code conciseness, the user-defined class iterable of
 the prior section based upon the __iter__/yield combination has an important added
 bonus—it also supports multiple active iterators
 automatically. This naturally follows from the fact that each call to
 __iter__ is a call to a generator
 function, which returns a new generator with its own copy of the local
 scope for state retention:
% python
>>> from squares_yield import Squares # Using the __iter__/yield Squares
>>> S = Squares(1, 5)
>>> I = iter(S)
>>> next(I); next(I)
1
4
>>> J = iter(S) # With yield, multiple iterators automatic
>>> next(J)
1
>>> next(I) # I is independent of J: own local state
9
Although generator functions are single-scan iterables, the
 implicit calls to __iter__ in
 iteration contexts make new generators supporting new independent
 scans:
>>> S = Squares(1, 3)
>>> for i in S: # Each for calls __iter__
 for j in S:
 print('%s:%s' % (i, j), end=' ')

1:1 1:4 1:9 4:1 4:4 4:9 9:1 9:4 9:9
To do the same without yield
 requires a supplemental class that stores iterator state explicitly
 and manually, using techniques of the preceding section (and grows to
 15 lines: 8 more than with yield):
File squares_nonyield.py

class Squares:
 def __init__(self, start, stop): # Non-yield generator
 self.start = start # Multiscans: extra object
 self.stop = stop
 def __iter__(self):
 return SquaresIter(self.start, self.stop)

class SquaresIter:
 def __init__(self, start, stop):
 self.value = start - 1
 self.stop = stop
 def __next__(self):
 if self.value == self.stop:
 raise StopIteration
 self.value += 1
 return self.value ** 2
This works the same as the yield multiscan version, but with more, and
 more explicit, code:
% python
>>> from squares_nonyield import Squares
>>> for i in Squares(1, 5): print(i, end=' ')

1 4 9 16 25
>>>
>>> S = Squares(1, 5)
>>> I = iter(S)
>>> next(I); next(I)
1
4
>>> J = iter(S) # Multiple iterators without yield
>>> next(J)
1
>>> next(I)
9

>>> S = Squares(1, 3)
>>> for i in S: # Each for calls __iter__
 for j in S:
 print('%s:%s' % (i, j), end=' ')

1:1 1:4 1:9 4:1 4:4 4:9 9:1 9:4 9:9
Finally, the generator-based approach could similarly remove the
 need for an extra iterator class in the prior item-skipper example of
 file skipper.py, thanks to its
 automatic methods and local variable state retention (and checks in at
 9 lines versus the original’s 16):
File skipper_yield.py

class SkipObject: # Another __iter__ + yield generator
 def __init__(self, wrapped): # Instance scope retained normally
 self.wrapped = wrapped # Local scope state saved auto
 def __iter__(self):
 offset = 0
 while offset < len(self.wrapped):
 item = self.wrapped[offset]
 offset += 2
 yield item
This works the same as the non-yield multiscan version, but with less, and
 less explicit, code:
% python
>>> from skipper_yield import SkipObject
>>> skipper = SkipObject('abcdef')
>>> I = iter(skipper)
>>> next(I); next(I); next(I)
'a'
'c'
'e'
>>> for x in skipper: # Each for calls __iter__: new auto generator
 for y in skipper:
 print(x + y, end=' ')

aa ac ae ca cc ce ea ec ee
Of course, these are all artificial examples that could be
 replaced with simpler tools like comprehensions, and their code may or
 may not scale up in kind to more realistic tasks. Study these
 alternatives to see how they compare. As so often in programming, the
 best tool for the job will likely be the best tool for your job!

Membership: __contains__, __iter__, and __getitem__
The iteration story is even richer than we’ve seen thus far. Operator overloading is
 often layered: classes may provide specific methods,
 or more general alternatives used as fallback options. For example:
	Comparisons in Python 2.X use specific methods such as __lt__ for “less than” if present, or else
 the general __cmp__. Python 3.X
 uses only specific methods, not __cmp__, as discussed later in this
 chapter.

	Boolean tests similarly try a specific __bool__ first (to give an explicit True/False result), and if it’s absent fall back
 on the more general __len__ (a
 nonzero length means True). As
 we’ll also see later in this chapter, Python 2.X works the same but
 uses the name __nonzero__ instead
 of __bool__.

In the iterations domain, classes can implement the in membership operator as an iteration, using
 either the __iter__ or __getitem__ methods. To support more specific
 membership, though, classes may code a __contains__ method—when present, this method is
 preferred over __iter__, which is
 preferred over __getitem__. The
 __contains__ method should define
 membership as applying to keys for a mapping (and can
 use quick lookups), and as a search for
 sequences.
Consider the following class, whose file has been instrumented for
 dual 2.X/3.X usage using the techniques described earlier. It codes all
 three methods and tests membership and various iteration contexts applied
 to an instance. Its methods print trace messages when called:
File contains.py
from __future__ import print_function # 2.X/3.X compatibility

class Iters:
 def __init__(self, value):
 self.data = value

 def __getitem__(self, i): # Fallback for iteration
 print('get[%s]:' % i, end='') # Also for index, slice
 return self.data[i]

 def __iter__(self): # Preferred for iteration
 print('iter=> ', end='') # Allows only one active iterator
 self.ix = 0
 return self

 def __next__(self):
 print('next:', end='')
 if self.ix == len(self.data): raise StopIteration
 item = self.data[self.ix]
 self.ix += 1
 return item

 def __contains__(self, x): # Preferred for 'in'
 print('contains: ', end='')
 return x in self.data
 next = __next__ # 2.X/3.X compatibility

if __name__ == '__main__':
 X = Iters([1, 2, 3, 4, 5]) # Make instance
 print(3 in X) # Membership
 for i in X: # for loops
 print(i, end=' | ')

 print()
 print([i ** 2 for i in X]) # Other iteration contexts
 print(list(map(bin, X)))

 I = iter(X) # Manual iteration (what other contexts do)
 while True:
 try:
 print(next(I), end=' @ ')
 except StopIteration:
 break
As is, the class in this file has an __iter__ that supports multiple scans, but only
 a single scan can be active at any point in time (e.g., nested loops won’t
 work), because each iteration attempt resets the scan cursor to the front.
 Now that you know about yield in
 iteration methods, you should be able to tell that the following is
 equivalent but allows multiple active scans—and judge for yourself whether
 its more implicit nature is worth the nested-scan support and six lines
 shaved (this is in file contains_yield.py):
class Iters:
 def __init__(self, value):
 self.data = value

 def __getitem__(self, i): # Fallback for iteration
 print('get[%s]:' % i, end='') # Also for index, slice
 return self.data[i]

 def __iter__(self): # Preferred for iteration
 print('iter=> next:', end='') # Allows multiple active iterators
 for x in self.data: # no __next__ to alias to next
 yield x
 print('next:', end='')

 def __contains__(self, x): # Preferred for 'in'
 print('contains: ', end='')
 return x in self.data
On both Python 3.X and 2.X, when either version of this file runs
 its output is as follows—the specific __contains__ intercepts membership, the general
 __iter__ catches other iteration
 contexts such that __next__ (whether
 explicitly coded or implied by yield)
 is called repeatedly, and __getitem__
 is never called:
contains: True
iter=> next:1 | next:2 | next:3 | next:4 | next:5 | next:
iter=> next:next:next:next:next:next:[1, 4, 9, 16, 25]
iter=> next:next:next:next:next:next:['0b1', '0b10', '0b11', '0b100', '0b101']
iter=> next:1 @ next:2 @ next:3 @ next:4 @ next:5 @ next:
Watch what happens to this code’s output if we comment out its
 __contains__ method, though—membership
 is now routed to the general __iter__
 instead:
iter=> next:next:next:True
iter=> next:1 | next:2 | next:3 | next:4 | next:5 | next:
iter=> next:next:next:next:next:next:[1, 4, 9, 16, 25]
iter=> next:next:next:next:next:next:['0b1', '0b10', '0b11', '0b100', '0b101']
iter=> next:1 @ next:2 @ next:3 @ next:4 @ next:5 @ next:
And finally, here is the output if both __contains__ and __iter__ are commented out—the indexing __getitem__ fallback is called with successively
 higher indexes until it raises IndexError, for membership and other iteration
 contexts:
get[0]:get[1]:get[2]:True
get[0]:1 | get[1]:2 | get[2]:3 | get[3]:4 | get[4]:5 | get[5]:
get[0]:get[1]:get[2]:get[3]:get[4]:get[5]:[1, 4, 9, 16, 25]
get[0]:get[1]:get[2]:get[3]:get[4]:get[5]:['0b1', '0b10', '0b11', '0b100','0b101']
get[0]:1 @ get[1]:2 @ get[2]:3 @ get[3]:4 @ get[4]:5 @ get[5]:
As we’ve seen, the __getitem__
 method is even more general: besides iterations, it also intercepts
 explicit indexing as well as slicing. Slice expressions trigger __getitem__ with a slice object containing
 bounds, both for built-in types and user-defined classes, so slicing is
 automatic in our class:
>>> from contains import Iters
>>> X = Iters('spam') # Indexing
>>> X[0] # __getitem__(0)
get[0]:'s'

>>> 'spam'[1:] # Slice syntax
'pam'
>>> 'spam'[slice(1, None)] # Slice object
'pam'

>>> X[1:] # __getitem__(slice(..))
get[slice(1, None, None)]:'pam'
>>> X[:-1]
get[slice(None, −1, None)]:'spa'

>>> list(X) # And iteration too!
iter=> next:next:next:next:next:['s', 'p', 'a', 'm']
In more realistic iteration use cases that are not
 sequence-oriented, though, the __iter__
 method may be easier to write since it must not manage an integer index,
 and __contains__ allows for membership
 optimization as a special case.

Attribute Access: __getattr__ and __setattr__
In Python, classes can also intercept basic attribute access (a.k.a.
 qualification) when needed or useful. Specifically, for an
 object created from a class, the dot operator
 expression object.attribute can be
 implemented by your code too, for reference, assignment, and deletion
 contexts. We saw a limited example in this category in Chapter 28, but will review and expand on the
 topic here.
Attribute Reference
The __getattr__ method
 intercepts attribute references. It’s called with the attribute name
 as a string whenever you try to qualify an instance with an
 undefined (nonexistent) attribute name. It is
 not called if Python can find the attribute using
 its inheritance tree search procedure.
Because of its behavior, __getattr__ is useful as a hook for responding
 to attribute requests in a generic fashion. It’s commonly used to
 delegate calls to embedded (or “wrapped”) objects from a proxy
 controller object—of the sort introduced in Chapter 28’s introduction to
 delegation. This method can also be used to adapt
 classes to an interface, or add accessors for data
 attributes after the fact—logic in a method that validates or computes
 an attribute after it’s already being used with simple dot
 notation.
The basic mechanism underlying these goals is straightforward—the
 following class catches attribute references, computing the value for
 one dynamically, and triggering an error for others unsupported with the
 raise statement described earlier in
 this chapter for iterators (and fully covered in Part VII):
>>> class Empty:
 def __getattr__(self, attrname): # On self.undefined
 if attrname == 'age':
 return 40
 else:
 raise AttributeError(attrname)

>>> X = Empty()
>>> X.age
40
>>> X.name
...error text omitted...
AttributeError: name
Here, the Empty class and its
 instance X have no real attributes of
 their own, so the access to X.age
 gets routed to the __getattr__
 method; self is assigned the instance
 (X), and attrname is assigned the undefined attribute
 name string ('age'). The class makes
 age look like a real attribute by
 returning a real value as the result of the X.age qualification expression (40). In effect, age becomes a dynamically
 computed attribute—its value is formed by running code, not
 fetching an object.
For attributes that the class doesn’t know how to handle, __getattr__ raises the built-in AttributeError
 exception to tell Python that these are bona fide undefined names;
 asking for X.name triggers the error.
 You’ll see __getattr__ again when we
 see delegation and properties at work in the next two chapters; let’s
 move on to related tools here.

Attribute Assignment and Deletion
In the same department, the __setattr__ intercepts
 all attribute assignments. If this method is
 defined or inherited, self.attr = value becomes
 self.__setattr__('attr', value). Like __getattr__, this allows your class to catch
 attribute changes, and validate or transform as desired.
This method is a bit trickier to use, though, because assigning to
 any self attributes within __setattr__ calls __setattr__ again, potentially causing an
 infinite recursion loop (and a fairly quick stack
 overflow exception!). In fact, this applies to all self attribute assignments anywhere in the
 class—all are routed to __setattr__,
 even those in other methods, and those to names other than that which
 may have triggered __setattr__ in the
 first place. Remember, this catches all attribute
 assignments.
If you wish to use this method, you can avoid loops by coding
 instance attribute assignments as assignments to attribute dictionary
 keys. That is, use self.__dict__['name'] =
 x, not self.name = x;
 because you’re not assigning to __dict__ itself, this avoids the loop:
>>> class Accesscontrol:
 def __setattr__(self, attr, value):
 if attr == 'age':
 self.__dict__[attr] = value + 10 # Not self.name=val or setattr
 else:
 raise AttributeError(attr + ' not allowed')

>>> X = Accesscontrol()
>>> X.age = 40 # Calls __setattr__
>>> X.age
50
>>> X.name = 'Bob'
...text omitted...
AttributeError: name not allowed
If you change the __dict__
 assignment in this to either of the following, it triggers the infinite
 recursion loop and exception—both dot notation and its setattr built-in function equivalent (the
 assignment analog of getattr) fail
 when age is assigned outside the
 class:
self.age = value + 10 # Loops
setattr(self, attr, value + 10) # Loops (attr is 'age')
An assignment to another name within the class triggers a
 recursive __setattr__ call too,
 though in this class ends less dramatically in the manual AttributeError exception:
self.other = 99 # Recurs but doesn't loop: fails
It’s also possible to avoid recursive loops in a class that uses
 __setattr__ by routing any attribute
 assignments to a higher superclass with a call, instead of assigning
 keys in __dict__:
self.__dict__[attr] = value + 10 # OK: doesn't loop
object.__setattr__(self, attr, value + 10) # OK: doesn't loop (new-style only)
Because the object form
 requires use of new-style classes in 2.X, though, we’ll postpone details
 on this form until Chapter 38’s deeper look
 at attribute management at large.
A third attribute management method, __delattr__, is passed the attribute name
 string and invoked on all attribute deletions (i.e., del object.attr). Like __setattr__, it must avoid recursive loops by
 routing attribute deletions with the using class through __dict__ or a superclass.
Note
As we’ll learn in Chapter 32,
 attributes implemented with new-style class features such as
 slots and properties are not
 physically stored in the instance’s __dict__ namespace dictionary (and slots may
 even preclude its existence entirely!). Because of this, code that
 wishes to support such attributes should code __setattr__ to assign with the object.__setattr__ scheme shown here, not by
 self.__dict__ indexing unless it’s
 known that subject classes store all their data in the instance
 itself. In Chapter 38 we’ll also see that
 the new-style __getattribute__ has
 similar requirements. This change is mandated in Python 3.X, but also
 applies to 2.X if new-style classes are used.

Other Attribute Management Tools
These three attribute-access overloading methods allow you to control or specialize
 access to attributes in your objects. They tend to play highly
 specialized roles, some of which we’ll explore later in this book. For
 another example of __getattr__ at
 work, see Chapter 28’s person-composite.py. And for future
 reference, keep in mind that there are other ways to manage attribute
 access in Python:
	The __getattribute__ method
 intercepts all attribute fetches,
 not just those that are undefined, but when using it you must be
 more cautious than with __getattr__ to avoid loops.

	The property built-in
 function allows us to associate methods with fetch and set
 operations on a specific class
 attribute.

	Descriptors provide a protocol for
 associating __get__
 and __set__ methods of a class with accesses to a
 specific class attribute.

	Slots attributes are declared in classes but create implicit storage in
 each instance.

Because these are somewhat advanced tools not of interest to every
 Python programmer, we’ll defer a look at properties until Chapter 32 and detailed coverage of all the
 attribute management techniques until Chapter 38.

Emulating Privacy for Instance Attributes: Part 1
As another use case for such tools, the following code—file private0.py—generalizes the previous example,
 to allow each subclass to have its own list of private names that cannot
 be assigned to its instances (and uses a
 user-defined exception class, which you’ll have to take on faith until
 Part VII):
class PrivateExc(Exception): pass # More on exceptions in Part VII

class Privacy:
 def __setattr__(self, attrname, value): # On self.attrname = value
 if attrname in self.privates:
 raise PrivateExc(attrname, self) # Make, raise user-define except
 else:
 self.__dict__[attrname] = value # Avoid loops by using dict key

class Test1(Privacy):
 privates = ['age']

class Test2(Privacy):
 privates = ['name', 'pay']
 def __init__(self):
 self.__dict__['name'] = 'Tom' # To do better, see Chapter 39!

if __name__ == '__main__':
 x = Test1()
 y = Test2()

 x.name = 'Bob' # Works
 #y.name = 'Sue' # Fails
 print(x.name)

 y.age = 30 # Works
 #x.age = 40 # Fails
 print(y.age)
In fact, this is a first-cut solution for an implementation
 of attribute privacy in
 Python—disallowing changes to attribute names outside a class. Although
 Python doesn’t support private declarations per se, techniques like this
 can emulate much of their purpose.
This is a partial—and even clumsy—solution, though; to make it
 more effective, we must augment it to allow classes to set their private
 attributes more naturally, without having to go through __dict__ each time, as the constructor must do
 here to avoid triggering __setattr__
 and an exception. A better and more complete approach might require a
 wrapper (“proxy”) class to check for private attribute accesses made
 outside the class only, and a __getattr__ to validate attribute fetches
 too.
We’ll postpone a more complete solution to attribute privacy until
 Chapter 39, where we’ll use class
 decorators to intercept and validate attributes more
 generally. Even though privacy can be emulated this way, though, it
 almost never is in practice. Python programmers are able to write large
 OOP frameworks and applications without private declarations—an
 interesting finding about access controls in general that is beyond the
 scope of our purposes here.
Still, catching attribute references and assignments is generally
 a useful technique; it supports delegation, a
 design technique that allows controller objects to wrap up embedded
 objects, add new behaviors, and route other operations back to the
 wrapped objects. Because they involve design topics, we’ll revisit
 delegation and wrapper classes in the next chapter.

String Representation: __repr__ and __str__
Our next methods deal with display formats—a topic we’ve already explored in
 prior chapters, but will summarize and formalize here. As a review, the
 following code exercises the __init__
 constructor and the __add__ overload
 method, both of which we’ve already seen (+ is an in-place operation here, just to show
 that it can be; per Chapter 27, a named method
 may be preferred). As we’ve learned, the default display of instance
 objects for a class like this is neither generally useful nor
 aesthetically pretty:
>>> class adder:
 def __init__(self, value=0):
 self.data = value # Initialize data
 def __add__(self, other):
 self.data += other # Add other in place (bad form?)

>>> x = adder() # Default displays
>>> print(x)
<__main__.adder object at 0x00000000029736D8>
>>> x
<__main__.adder object at 0x00000000029736D8>
But coding or inheriting string representation methods allows us to
 customize the display—as in the following, which defines a __repr__ method in a subclass that returns a
 string representation for its instances.
>>> class addrepr(adder): # Inherit __init__, __add__
 def __repr__(self): # Add string representation
 return 'addrepr(%s)' % self.data # Convert to as-code string

>>> x = addrepr(2) # Runs __init__
>>> x + 1 # Runs __add__ (x.add() better?)
>>> x # Runs __repr__
addrepr(3)
>>> print(x) # Runs __repr__
addrepr(3)
>>> str(x), repr(x) # Runs __repr__ for both
('addrepr(3)', 'addrepr(3)')
If defined, __repr__ (or its
 close relative, __str__) is called
 automatically when class instances are printed or converted to strings.
 These methods allow you to define a better display format for your objects
 than the default instance display. Here, __repr__ uses basic string formatting to convert
 the managed self.data object to a more
 human-friendly string for display.
Why Two Display Methods?
So far, what we’ve seen is largely review. But while these methods
 are generally straightforward to use, their roles and behavior have some
 subtle implications both for design and coding. In particular, Python
 provides two display methods to support alternative displays for
 different audiences:
	__str__ is tried first for
 the print operation and the
 str built-in function (the
 internal equivalent of which print runs). It generally should return a
 user-friendly display.

	__repr__ is used in all
 other contexts: for interactive echoes, the repr function, and nested appearances, as
 well as by print and str if no __str__ is present. It should generally
 return an as-code string that could be used to re-create the object,
 or a detailed display for developers.

That is, __repr__ is used
 everywhere, except by print and
 str when a __str__ is defined. This means you can code a
 __repr__ to define a single display
 format used everywhere, and may code a __str__ to either support print and str exclusively, or to provide an alternative
 display for them.
As noted in Chapter 28, general
 tools may also prefer __str__ to
 leave other classes the option of adding an alternative __repr__ display for use in other contexts, as
 long as print and str displays suffice for the tool. Conversely,
 a general tool that codes a __repr__
 still leaves clients the option of adding alternative displays with a
 __str__ for print and str. In other words, if you code either, the
 other is available for an additional display. In cases where the choice
 isn’t clear, __str__ is generally
 preferred for larger user-friendly displays, and __repr__ for lower-level or as-code displays
 and all-inclusive roles.
Let’s write some code to illustrate these two methods’
 distinctions in more concrete terms. The prior example in this section
 showed how __repr__ is used as the
 fallback option in many contexts. However, while printing falls back on
 __repr__ if no __str__ is defined, the inverse is not
 true—other contexts, such as interactive echoes, use __repr__ only and don’t try __str__ at all:
>>> class addstr(adder):
 def __str__(self): # __str__ but no __repr__
 return '[Value: %s]' % self.data # Convert to nice string

>>> x = addstr(3)
>>> x + 1
>>> x # Default __repr__
<__main__.addstr object at 0x00000000029738D0>
>>> print(x) # Runs __str__
[Value: 4]
>>> str(x), repr(x)
('[Value: 4]', '<__main__.addstr object at 0x00000000029738D0>')
Because of this, __repr__ may
 be best if you want a single display for all
 contexts. By defining both methods, though, you can support different
 displays in different contexts—for example, an end-user display with
 __str__, and a low-level display for
 programmers to use during development with __repr__. In effect, __str__ simply overrides __repr__ for more user-friendly display
 contexts:
>>> class addboth(adder):
 def __str__(self):
 return '[Value: %s]' % self.data # User-friendly string
 def __repr__(self):
 return 'addboth(%s)' % self.data # As-code string

>>> x = addboth(4)
>>> x + 1
>>> x # Runs __repr__
addboth(5)
>>> print(x) # Runs __str__
[Value: 5]
>>> str(x), repr(x)
('[Value: 5]', 'addboth(5)')

Display Usage Notes
Though generally simple to use, I should mention three usage notes
 regarding these methods here. First, keep in mind that __str__ and __repr__ must both return
 strings; other result types are not converted and
 raise errors, so be sure to run them through a to-string converter
 (e.g., str or %) if needed.
Second, depending on a container’s string-conversion logic, the
 user-friendly display of __str__
 might only apply when objects appear at the top level of a print
 operation; objects nested in larger objects might
 still print with their __repr__ or
 its default. The following illustrates both of these points:
>>> class Printer:
 def __init__(self, val):
 self.val = val
 def __str__(self): # Used for instance itself
 return str(self.val) # Convert to a string result

>>> objs = [Printer(2), Printer(3)]
>>> for x in objs: print(x) # __str__ run when instance printed
 # But not when instance is in a list!
2
3
>>> print(objs)
[<__main__.Printer object at 0x000000000297AB38>, <__main__.Printer obj...etc...>]
>>> objs
[<__main__.Printer object at 0x000000000297AB38>, <__main__.Printer obj...etc...>]
To ensure that a custom display is run in all contexts regardless
 of the container, code __repr__, not
 __str__; the former is run in all
 cases if the latter doesn’t apply, including nested appearances:
>>> class Printer:
 def __init__(self, val):
 self.val = val
 def __repr__(self): # __repr__ used by print if no __str__
 return str(self.val) # __repr__ used if echoed or nested

>>> objs = [Printer(2), Printer(3)]
>>> for x in objs: print(x) # No __str__: runs __repr__

2
3
>>> print(objs) # Runs __repr__, not __str__
[2, 3]
>>> objs
[2, 3]
Third, and perhaps most subtle, the display methods also have the
 potential to trigger infinite recursion loops in
 rare contexts—because some objects’ displays include displays of other
 objects, it’s not impossible that a display may trigger a display of an
 object being displayed, and thus loop. This is rare and obscure enough
 to skip here, but watch for an example of this looping potential to
 appear for these methods in a note near the end of the next chapter in
 its listinherited.py example’s
 class, where __repr__ can
 loop.
In practice, __str__, and its
 more inclusive relative __repr__,
 seem to be the second most commonly used operator overloading methods in
 Python scripts, behind __init__.
 Anytime you can print an object and see a custom display, one of these
 two tools is probably in use. For additional examples of these tools at
 work and the design tradeoffs they imply, see Chapter 28’s case study and Chapter 31’s class lister mix-ins, as well as
 their role in Chapter 35’s exception classes,
 where __str__ is required over __repr__.

Right-Side and In-Place Uses: __radd__ and __iadd__
Our next group of overloading methods extends the functionality of binary
 operator methods such as __add__ and
 __sub__ (called for + and -),
 which we’ve already seen. As mentioned earlier, part of the reason there
 are so many operator overloading methods is because they come in multiple
 flavors—for every binary expression, we can implement a
 left, right, and
 in-place variant. Though defaults are also applied if
 you don’t code all three, your objects’ roles dictate how many variants
 you’ll need to code.
Right-Side Addition
For instance, the __add__
 methods coded so far technically do not support the use of instance
 objects on the right side of the +
 operator:
>>> class Adder:
 def __init__(self, value=0):
 self.data = value
 def __add__(self, other):
 return self.data + other

>>> x = Adder(5)
>>> x + 2
7
>>> 2 + x
TypeError: unsupported operand type(s) for +: 'int' and 'Adder'
To implement more general expressions, and hence support
 commutative-style operators, code the __radd__ method as well. Python calls __radd__ only when the object on the right
 side of the + is your class instance,
 but the object on the left is not an instance of your class. The
 __add__ method for the object on the
 left is called instead in all other cases (all of this section’s five
 Commuter classes are coded in file
 commuter.py in the book’s examples, along with a
 self-test):
class Commuter1:
 def __init__(self, val):
 self.val = val
 def __add__(self, other):
 print('add', self.val, other)
 return self.val + other
 def __radd__(self, other):
 print('radd', self.val, other)
 return other + self.val

>>> from commuter import Commuter1
>>> x = Commuter1(88)
>>> y = Commuter1(99)

>>> x + 1 # __add__: instance + noninstance
add 88 1
89
>>> 1 + y # __radd__: noninstance + instance
radd 99 1
100
>>> x + y # __add__: instance + instance, triggers __radd__
add 88 <commuter.Commuter1 object at 0x00000000029B39E8>
radd 99 88
187
Notice how the order is reversed in __radd__: self is really on the right of the +, and other is on the left. Also note that x and y are
 instances of the same class here; when instances of different classes
 appear mixed in an expression, Python prefers the class of the one on
 the left. When we add the two instances together, Python runs __add__, which in turn triggers __radd__ by simplifying the left
 operand.
Reusing __add__ in __radd__
For truly commutative operations that do not require special-casing by
 position, it is also sometimes sufficient to reuse __add__ for __radd__: either by calling __add__ directly; by swapping order and
 re-adding to trigger __add__
 indirectly; or by simply assigning __radd__ to be an alias for __add__ at the top level of the class statement (i.e., in the class’s
 scope). The following alternatives implement all three of these
 schemes, and return the same results as the original—though the last
 saves an extra call or dispatch and hence may be quicker (in all,
 __radd__ is run when self is on the right side of a +):
class Commuter2:
 def __init__(self, val):
 self.val = val
 def __add__(self, other):
 print('add', self.val, other)
 return self.val + other
 def __radd__(self, other):
 return self.__add__(other) # Call __add__ explicitly

class Commuter3:
 def __init__(self, val):
 self.val = val
 def __add__(self, other):
 print('add', self.val, other)
 return self.val + other
 def __radd__(self, other):
 return self + other # Swap order and re-add

class Commuter4:
 def __init__(self, val):
 self.val = val
 def __add__(self, other):
 print('add', self.val, other)
 return self.val + other
 __radd__ = __add__ # Alias: cut out the middleman
In all these, right-side instance appearances trigger the
 single, shared __add__ method,
 passing the right operand to self,
 to be treated the same as a left-side appearance. Run these on your
 own for more insight; their returned values are the same as the
 original.

Propagating class type
In more realistic classes where the class type may need to be
 propagated in results, things can become trickier: type testing may be
 required to tell whether it’s safe to convert and thus avoid nesting.
 For instance, without the isinstance test in the following, we could
 wind up with a Commuter5 whose
 val is another Commuter5 when two instances are added and
 __add__ triggers __radd__:
class Commuter5: # Propagate class type in results
 def __init__(self, val):
 self.val = val
 def __add__(self, other):
 if isinstance(other, Commuter5): # Type test to avoid object nesting
 other = other.val
 return Commuter5(self.val + other) # Else + result is another Commuter
 def __radd__(self, other):
 return Commuter5(other + self.val)
 def __str__(self):
 return '<Commuter5: %s>' % self.val

>>> from commuter import Commuter5
>>> x = Commuter5(88)
>>> y = Commuter5(99)
>>> print(x + 10) # Result is another Commuter instance
<Commuter5: 98>
>>> print(10 + y)
<Commuter5: 109>

>>> z = x + y # Not nested: doesn't recur to __radd__
>>> print(z)
<Commuter5: 187>
>>> print(z + 10)
<Commuter5: 197>
>>> print(z + z)
<Commuter5: 374>
>>> print(z + z + 1)
<Commuter5: 375>
The need for the isinstance
 type test here is very subtle—uncomment, run, and trace to see why
 it’s required. If you do, you’ll see that the last part of the
 preceding test winds up differing and nesting objects—which still do
 the math correctly, but kick off pointless recursive calls to simplify
 their values, and extra constructor calls build results:
>>> z = x + y # With isinstance test commented-out
>>> print(z)
<Commuter5: <Commuter5: 187>>
>>> print(z + 10)
<Commuter5: <Commuter5: 197>>
>>> print(z + z)
<Commuter5: <Commuter5: <Commuter5: <Commuter5: 374>>>>
>>> print(z + z + 1)
<Commuter5: <Commuter5: <Commuter5: <Commuter5: 375>>>>
To test, the rest of commuter.py looks and runs like
 this—classes can appear in tuples naturally:
#!python
from __future__ import print_function # 2.X/3.X compatibility
...classes defined here...

if __name__ == '__main__':
 for klass in (Commuter1, Commuter2, Commuter3, Commuter4, Commuter5):
 print('-' * 60)
 x = klass(88)
 y = klass(99)
 print(x + 1)
 print(1 + y)
 print(x + y)

c:\code> commuter.py
--
add 88 1
89
radd 99 1
100
add 88 <__main__.Commuter1 object at 0x000000000297F2B0>
radd 99 88
187
--
...etc...
There are too many coding variations to explore here, so
 experiment with these classes on your own for more insight; aliasing
 __radd__ to __add__ in Commuter5, for example, saves a line, but
 doesn’t prevent object nesting without isinstance. See also Python’s manuals for a
 discussion of other options in this domain; for example, classes may
 also return the special NotImplemented object for unsupported
 operands to influence method selection (this is treated as though the
 method were not defined).

In-Place Addition
To also implement += in-place
 augmented addition, code either an __iadd__ or an __add__. The latter is used if the former is
 absent. In fact, the prior section’s Commuter classes already support += for this reason—Python runs __add__ and assigns the result manually. The
 __iadd__ method, though, allows for
 more efficient in-place changes to be coded where applicable:
>>> class Number:
 def __init__(self, val):
 self.val = val
 def __iadd__(self, other): # __iadd__ explicit: x += y
 self.val += other # Usually returns self
 return self

>>> x = Number(5)
>>> x += 1
>>> x += 1
>>> x.val
7
For mutable objects, this method can often specialize for quicker
 in-place changes:
>>> y = Number([1]) # In-place change faster than +
>>> y += [2]
>>> y += [3]
>>> y.val
[1, 2, 3]
The normal __add__ method is
 run as a fallback, but may not be able optimize in-place cases:
>>> class Number:
 def __init__(self, val):
 self.val = val
 def __add__(self, other): # __add__ fallback: x = (x + y)
 return Number(self.val + other) # Propagates class type

>>> x = Number(5)
>>> x += 1
>>> x += 1 # And += does concatenation here
>>> x.val
7
Though we’ve focused on + here,
 keep in mind that every binary operator has similar
 right-side and in-place overloading methods that work the same (e.g.,
 __mul__, __rmul__, and __imul__). Still, right-side methods are an
 advanced topic and tend to be fairly uncommon in practice; you only code
 them when you need operators to be commutative, and then only if you
 need to support such operators at all. For instance, a Vector class may use these tools, but an
 Employee or Button class probably would not.

Call Expressions: __call__
On to our next overloading method: the __call__ method is called when your instance is
 called. No, this isn’t a circular definition—if defined, Python runs a
 __call__ method for function call
 expressions applied to your instances, passing along whatever positional
 or keyword arguments were sent. This allows instances to conform to a
 function-based API:
>>> class Callee:
 def __call__(self, *pargs, **kargs): # Intercept instance calls
 print('Called:', pargs, kargs) # Accept arbitrary arguments

>>> C = Callee()
>>> C(1, 2, 3) # C is a callable object
Called: (1, 2, 3) {}
>>> C(1, 2, 3, x=4, y=5)
Called: (1, 2, 3) {'y': 5, 'x': 4}
More formally, all the argument-passing modes we explored in Chapter 18 are supported by the __call__ method—whatever is passed to the
 instance is passed to this method, along with the usual implied instance
 argument. For example, the method definitions:
class C:
 def __call__(self, a, b, c=5, d=6): ... # Normals and defaults

class C:
 def __call__(self, *pargs, **kargs): ... # Collect arbitrary arguments

class C:
 def __call__(self, *pargs, d=6, **kargs): ... # 3.X keyword-only argument
all match all the following instance calls:
X = C()
X(1, 2) # Omit defaults
X(1, 2, 3, 4) # Positionals
X(a=1, b=2, d=4) # Keywords
X(*[1, 2], **dict(c=3, d=4)) # Unpack arbitrary arguments
X(1, *(2,), c=3, **dict(d=4)) # Mixed modes
See Chapter 18 for a refresher on function
 arguments. The net effect is that classes and instances with a __call__ support the exact same argument syntax
 and semantics as normal functions and methods.
Intercepting call expression like this allows class instances to
 emulate the look and feel of things like functions, but also retain state
 information for use during calls. We saw an example similar to the
 following while exploring scopes in Chapter 17, but you
 should now be familiar enough with operator overloading to understand this
 pattern better:
>>> class Prod:
 def __init__(self, value): # Accept just one argument
 self.value = value
 def __call__(self, other):
 return self.value * other

>>> x = Prod(2) # "Remembers" 2 in state
>>> x(3) # 3 (passed) * 2 (state)
6
>>> x(4)
8
In this example, the __call__ may
 seem a bit gratuitous at first glance. A simple method can provide similar
 utility:
>>> class Prod:
 def __init__(self, value):
 self.value = value
 def comp(self, other):
 return self.value * other

>>> x = Prod(3)
>>> x.comp(3)
9
>>> x.comp(4)
12
However, __call__ can become more
 useful when interfacing with APIs (i.e., libraries) that expect
 functions—it allows us to code objects that conform to an expected
 function call interface, but also retain state information, and other
 class assets such as inheritance. In fact, it may be the third most
 commonly used operator overloading method, behind the __init__ constructor and the __str__ and __repr__ display-format alternatives.
Function Interfaces and Callback-Based Code
As an example, the tkinter GUI toolkit
 (named Tkinter in Python 2.X) allows
 you to register functions as event handlers (a.k.a.
 callbacks)—when events occur, tkinter calls the registered objects. If you
 want an event handler to retain state between events, you can register
 either a class’s bound method, or an
 instance that conforms to the expected interface
 with __call__.
In the prior section’s code, for example, both x.comp from the second example and x from the first can pass as function-like
 objects this way. Chapter 17’s closure
 functions with state in enclosing scopes can achieve similar
 effects, but don’t provide as much support for multiple operations or
 customization.
I’ll have more to say about bound methods in the next chapter, but
 for now, here’s a hypothetical example of __call__ applied to the GUI domain. The
 following class defines an object that supports a function-call
 interface, but also has state information that remembers the color a
 button should change to when it is later pressed:
class Callback:
 def __init__(self, color): # Function + state information
 self.color = color
 def __call__(self): # Support calls with no arguments
 print('turn', self.color)
Now, in the context of a GUI, we can register instances of this
 class as event handlers for buttons, even though the GUI expects to be
 able to invoke event handlers as simple functions with no
 arguments:
Handlers
cb1 = Callback('blue') # Remember blue
cb2 = Callback('green') # Remember green

B1 = Button(command=cb1) # Register handlers
B2 = Button(command=cb2)
When the button is later pressed, the instance object is called as
 a simple function with no arguments, exactly like in the following
 calls. Because it retains state as instance attributes, though, it
 remembers what to do—it becomes a stateful function
 object:
Events
cb1() # Prints 'turn blue'
cb2() # Prints 'turn green'
In fact, many consider such classes to be the best way to retain
 state information in the Python language (per generally accepted
 Pythonic principles, at least). With OOP, the state remembered is made
 explicit with attribute assignments. This is different than other state
 retention techniques (e.g., global variables, enclosing function scope
 references, and default mutable arguments), which rely on more limited
 or implicit behavior. Moreover, the added structure and customization in
 classes goes beyond state retention.
On the other hand, tools such as closure functions are useful in
 basic state retention roles too, and 3.X’s nonlocal statement makes enclosing scopes a viable alternative in more
 programs. We’ll revisit such tradeoffs when we start coding substantial
 decorators in Chapter 39, but here’s a quick
 closure equivalent:
def callback(color): # Enclosing scope versus attrs
 def oncall():
 print('turn', color)
 return oncall

cb3 = callback('yellow') # Handler to be registered
cb3() # On event: prints 'turn yellow'
Before we move on, there are two other ways that Python
 programmers sometimes tie information to a callback function like this.
 One option is to use default arguments in lambda
 functions:
cb4 = (lambda color='red': 'turn ' + color) # Defaults retain state too
print(cb4())
The other is to use bound methods of a class—
 a bit of a preview, but simple enough to introduce here. A bound method
 object is a kind of object that remembers both the self instance and the referenced function.
 This object may therefore be called later as a simple function without
 an instance:
class Callback:
 def __init__(self, color): # Class with state information
 self.color = color
 def changeColor(self): # A normal named method
 print('turn', self.color)

cb1 = Callback('blue')
cb2 = Callback('yellow')

B1 = Button(command=cb1.changeColor) # Bound method: reference, don't call
B2 = Button(command=cb2.changeColor) # Remembers function + self pair
In this case, when this button is later pressed it’s as if the GUI
 does this, which invokes the instance’s changeColor method to process the object’s
 state information, instead of the instance itself:
cb1 = Callback('blue')
obj = cb1.changeColor # Registered event handler
obj() # On event prints 'turn blue'
Note that a lambda is not
 required here, because a bound method reference by itself already defers
 a call until later. This technique is simpler, but perhaps less general
 than overloading calls with __call__.
 Again, watch for more about bound methods in the next chapter.
You’ll also see another __call__ example in Chapter 32, where we will use it to implement
 something known as a function decorator—a callable
 object often used to add a layer of logic on top of an embedded
 function. Because __call__ allows us
 to attach state information to a callable object, it’s a natural
 implementation technique for a function that must remember to call
 another function when called itself. For more __call__ examples, see the state retention
 preview examples in Chapter 17, and the more advanced
 decorators and metaclasses of Chapter 39 and Chapter 40.

Comparisons: __lt__, __gt__, and Others
Our next batch of overloading methods supports comparisons. As suggested in
 Table 30-1, classes can
 define methods to catch all six comparison operators: <, >,
 <=, >=, ==,
 and !=. These methods are generally
 straightforward to use, but keep the following qualifications in
 mind:
	Unlike the __add__/__radd__ pairings discussed earlier, there
 are no right-side variants of comparison methods. Instead, reflective
 methods are used when only one operand supports comparison (e.g., __lt__ and __gt__ are each other’s reflection).

	There are no implicit relationships among the comparison
 operators. The truth of == does not
 imply that != is false, for
 example, so both __eq__ and
 __ne__ should be defined to ensure
 that both operators behave correctly.

	In Python 2.X, a __cmp__
 method is used by all comparisons if no more specific
 comparison methods are defined; it returns a number that is less than,
 equal to, or greater than zero, to signal less than, equal, and
 greater than results for the comparison of its two arguments (self and another operand). This method often
 uses the cmp(x, y) built-in to
 compute its result. Both the __cmp__ method and the cmp built-in function are removed in Python
 3.X: use the more specific methods instead.

We don’t have space for an in-depth exploration of comparison
 methods, but as a quick introduction, consider the following class and
 test code:
class C:
 data = 'spam'
 def __gt__(self, other): # 3.X and 2.X version
 return self.data > other
 def __lt__(self, other):
 return self.data < other

X = C()
print(X > 'ham') # True (runs __gt__)
print(X < 'ham') # False (runs __lt__)
When run under Python 3.X or 2.X, the prints at the end display the
 expected results noted in their comments, because the class’s methods
 intercept and implement comparison expressions. Consult Python’s manuals
 and other reference resources for more details in this category; for
 example, __lt__ is used for sorts in
 Python3.X, and as for binary expression operators, these methods can also
 return NotImplemented for unsupported
 arguments.
The __cmp__ Method in Python 2.X
In Python 2.X only, the __cmp__
 method is used as a fallback if more specific methods are not defined:
 its integer result is used to evaluate the operator being run. The
 following produces the same result as the prior section’s code under
 2.X, for example, but fails in 3.X because __cmp__ is no longer used:
class C:
 data = 'spam' # 2.X only
 def __cmp__(self, other): # __cmp__ not used in 3.X
 return cmp(self.data, other) # cmp not defined in 3.X

X = C()
print(X > 'ham') # True (runs __cmp__)
print(X < 'ham') # False (runs __cmp__)
Notice that this fails in 3.X because __cmp__ is no longer special, not because the
 cmp built-in function is no longer
 present. If we change the prior class to the following to try to
 simulate the cmp call, the code still
 works in 2.X but fails in 3.X:
class C:
 data = 'spam'
 def __cmp__(self, other):
 return (self.data > other) - (self.data < other)
So why, you might be asking, did I just show you a comparison
 method that is no longer supported in 3.X? While it would be easier to
 erase history entirely, this book is designed to support both 2.X and
 3.X readers. Because __cmp__ may
 appear in code 2.X readers must reuse or maintain, it’s fair game in
 this book. Moreover, __cmp__ was
 removed more abruptly than the __getslice__ method described earlier, and so may endure longer. If you use
 3.X, though, or care about running your code under 3.X in the future,
 don’t use __cmp__ anymore: use the
 more specific comparison methods instead.

Boolean Tests: __bool__ and __len__
The next set of methods is truly useful (yes, pun intended!). As we’ve
 learned, every object is inherently true or false in Python. When you code
 classes, you can define what this means for your objects by coding methods
 that give the True or False values of instances on request. The names
 of these methods differ per Python line; this section starts with the 3.X
 story, then shows 2.X’s equivalent.
As mentioned briefly earlier, in Boolean contexts, Python first
 tries __bool__ to obtain a direct
 Boolean value; if that method is missing, Python tries __len__ to infer a truth value from the object’s
 length. The first of these generally uses object state or other
 information to produce a Boolean result. In 3.X:
>>> class Truth:
 def __bool__(self): return True

>>> X = Truth()
>>> if X: print('yes!')

yes!

>>> class Truth:
 def __bool__(self): return False

>>> X = Truth()
>>> bool(X)
False
If this method is missing, Python falls back on length because a
 nonempty object is considered true (i.e., a nonzero length is taken to
 mean the object is true, and a zero length means it is false):
>>> class Truth:
 def __len__(self): return 0

>>> X = Truth()
>>> if not X: print('no!')

no!
If both methods are present Python prefers
 __bool__ over __len__, because it is more specific:
>>> class Truth:
 def __bool__(self): return True # 3.X tries __bool__ first
 def __len__(self): return 0 # 2.X tries __len__ first

>>> X = Truth()
>>> if X: print('yes!')

yes!
If neither truth method is defined, the object is vacuously
 considered true (though any potential implications for more metaphysically
 inclined readers are strictly coincidental):
>>> class Truth:
 pass

>>> X = Truth()
>>> bool(X)
True
At least that’s the Truth in 3.X.
 These examples won’t generate exceptions in 2.X, but some of their results
 there may look a bit odd (and trigger an existential crisis or two) unless
 you read the next section.
Boolean Methods in Python 2.X
Alas, it’s not nearly as dramatic as billed—Python 2.X users simply use __nonzero__ instead of __bool__ in all of the preceding section’s
 code. Python 3.X renamed the 2.X __nonzero__ method to __bool__, but Boolean tests work the same
 otherwise; both 3.X and 2.X use __len__ as a fallback.
Subtly, if you don’t use the 2.X name, the first test in the prior
 section will work the same for you anyhow, but only because __bool__ is not recognized as a special method
 name in 2.X, and objects are considered true by default! To witness this
 version difference live, you need to return False:
C:\code> c:\python33\python
>>> class C:
 def __bool__(self):
 print('in bool')
 return False

>>> X = C()
>>> bool(X)
in bool
False
>>> if X: print(99)

in bool
This works as advertised in 3.X. In 2.X, though, __bool__ is ignored and the object is always
 considered true by default:
C:\code> c:\python27\python
>>> class C:
 def __bool__(self):
 print('in bool')
 return False

>>> X = C()
>>> bool(X)
True
>>> if X: print(99)

99
The short story here: in 2.X, use __nonzero__ for Boolean values, or return
 0 from the __len__ fallback method to designate
 false:
C:\code> c:\python27\python
>>> class C:
 def __nonzero__(self):
 print('in nonzero')
 return False # Returns int (or True/False, same as 1/0)

>>> X = C()
>>> bool(X)
in nonzero
False
>>> if X: print(99)

in nonzero
But keep in mind that __nonzero__ works in 2.X only; if used in 3.X
 it will be silently ignored and the object will be classified as true by
 default—just like using 3.X’s __bool__ in 2.X!
And now that we’ve managed to cross over into the realm of
 philosophy, let’s move on to look at one last overloading context: object demise.

Object Destruction: __del__
It’s time to close out this chapter—and learn how to do the same for our
 class objects. We’ve seen how the __init__ constructor is
 called whenever an instance is generated (and noted how __new__ is run first to make the object). Its counterpart, the
 destructor method __del__, is run automatically when an instance’s
 space is being reclaimed (i.e., at “garbage collection” time):
>>> class Life:
 def __init__(self, name='unknown'):
 print('Hello ' + name)
 self.name = name
 def live(self):
 print(self.name)
 def __del__(self):
 print('Goodbye ' + self.name)

>>> brian = Life('Brian')
Hello Brian
>>> brian.live()
Brian
>>> brian = 'loretta'
Goodbye Brian
Here, when brian is assigned a
 string, we lose the last reference to the Life instance and so trigger its destructor
 method. This works, and it may be useful for implementing some cleanup
 activities, such as terminating a server connection. However, destructors
 are not as commonly used in Python as in some OOP languages, for a number
 of reasons that the next section describes.
Destructor Usage Notes
The destructor method works as documented, but it has some
 well-known caveats and a few outright dark corners that make it somewhat
 rare to see in Python code:
	Need: For one thing, destructors may not
 be as useful in Python as they are in some other OOP languages.
 Because Python automatically reclaims all memory
 space held by an instance when the instance is reclaimed,
 destructors are not necessary for space management. In the current
 CPython implementation of Python, you also don’t need to close
 file objects held by the instance in
 destructors because they are automatically closed when reclaimed. As
 mentioned in Chapter 9, though, it’s
 still sometimes best to run file close methods anyhow, because this
 autoclose behavior may vary in alternative Python implementations
 (e.g., Jython).

	Predictability: For another, you cannot
 always easily predict when an instance will be reclaimed. In some
 cases, there may be lingering references to your objects in system
 tables that prevent destructors from running when your program
 expects them to be triggered. Python also does not guarantee that
 destructor methods will be called for objects that still exist when
 the interpreter exits.

	Exceptions: In fact, __del__ can be tricky to use for even more
 subtle reasons. Exceptions raised within it, for example, simply
 print a warning message to sys.stderr (the
 standard error stream) rather than triggering an exception event, because of
 the unpredictable context under which it is run by the garbage
 collector—it’s not always possible to know where such an exception
 should be delivered.

	Cycles: In addition, cyclic (a.k.a.
 circular) references among objects may prevent garbage collection
 from happening when you expect it to. An optional cycle detector,
 enabled by default, can automatically collect such objects
 eventually, but only if they do not have __del__ methods. Since this is relatively
 obscure, we’ll ignore further details here; see Python’s standard
 manuals’ coverage of both __del__
 and the gc garbage collector
 module for more information.

Because of these downsides, it’s often better to code termination
 activities in an explicitly called method (e.g., shutdown). As described in the next part of
 the book, the try/finally statement also supports termination
 actions, as does the with statement
 for objects that support its context manager model.

Chapter Summary
That’s as many overloading examples as we have space for here. Most
 of the other operator overloading methods work similarly to the ones we’ve
 explored, and all are just hooks for intercepting built-in type
 operations. Some overloading methods, for example, have unique argument
 lists or return values, but the general usage pattern is the same. We’ll
 see a few others in action later in the book:
	Chapter 34 uses __enter__ and __exit__ in with statement context managers.

	Chapter 38 uses the __get__ and __set__ class descriptor fetch/set
 methods.

	Chapter 40 uses the __new__ object creation method in the
 context of metaclasses.

In addition, some of the methods we’ve studied here, such as
 __call__ and __str__, will be employed by later examples in
 this book. For complete coverage, though, I’ll defer to other
 documentation sources—see Python’s standard language manual or reference
 books for details on additional overloading methods.
In the next chapter, we leave the realm of class mechanics behind to
 explore common design patterns—the ways that classes are commonly used and
 combined to optimize code reuse. After that, we’ll survey a handful of
 advanced topics and move on to exceptions, the last core subject of this
 book. Before you read on, though, take a moment to work through the
 chapter quiz below to review the concepts we’ve covered.

Test Your Knowledge: Quiz
	What two operator overloading methods can you use to support
 iteration in your classes?

	What two operator overloading methods handle printing, and in
 what contexts?

	How can you intercept slice operations in a class?

	How can you catch in-place addition in a class?

	When should you provide operator overloading?

Test Your Knowledge: Answers
	Classes can support iteration by defining (or inheriting)
 __getitem__ or __iter__. In all iteration contexts, Python
 tries to use __iter__ first, which
 returns an object that supports the iteration protocol with a __next__ method: if no __iter__ is found by inheritance search,
 Python falls back on the __getitem__ indexing method, which is called
 repeatedly, with successively higher indexes. If used, the yield statement can create the __next__ method automatically.

	The __str__ and __repr__ methods implement object print
 displays. The former is called by the print and str built-in functions; the latter is called
 by print and str if there is no __str__, and always by the repr built-in, interactive echoes, and
 nested appearances. That is, __repr__ is used everywhere, except by
 print and str when a __str__ is defined. A __str__ is usually used for user-friendly
 displays; __repr__ gives extra
 details or the object’s as-code form.

	Slicing is caught by the __getitem__ indexing method: it is called
 with a slice object, instead of a simple integer index, and slice
 objects may be passed on or inspected as needed. In Python 2.X,
 __getslice__ (defunct in 3.X) may
 be used for two-limit slices as well.

	In-place addition tries __iadd__ first, and __add__ with an assignment second. The same
 pattern holds true for all binary operators. The __radd__ method is also available for
 right-side addition.

	When a class naturally matches, or needs to emulate, a built-in
 type’s interfaces. For example, collections might imitate sequence or
 mapping interfaces, and callables might be coded for use with an API
 that expects a function. You generally shouldn’t implement expression
 operators if they don’t naturally map to your objects naturally and
 logically, though—use normally named methods instead.

Chapter 31. Designing with Classes
So far in this part of the book, we’ve concentrated on using Python’s
 OOP tool, the class. But OOP is also about design
 issues—that is, how to use classes to model useful objects. This
 chapter will touch on a few core OOP ideas and present some additional
 examples that are more realistic than many shown so far.
Along the way, we’ll code some common OOP design patterns in Python,
 such as inheritance, composition, delegation, and factories. We’ll also
 investigate some design-focused class concepts, such as pseudoprivate
 attributes, multiple inheritance, and bound methods.
One note up front: some of the design terms mentioned here require
 more explanation than I can provide in this book. If this material sparks
 your curiosity, I suggest exploring a text on OOP design or design patterns
 as a next step. As we’ll see, the good news is that Python makes many
 traditional design patterns trivial.
Python and OOP
Let’s begin with a review—Python’s implementation of OOP can be summarized by three
 ideas:
	Inheritance
	Inheritance is based on attribute lookup in Python (in X.name expressions).

	Polymorphism
	In X.method, the meaning of method
 depends on the type (class) of subject object X.

	Encapsulation
	Methods and operators implement behavior, though data hiding is a convention
 by default.

By now, you should have a good feel for what inheritance is all
 about in Python. We’ve also talked about Python’s polymorphism a few times
 already; it flows from Python’s lack of type declarations. Because
 attributes are always resolved at runtime, objects that implement the same
 interfaces are automatically interchangeable; clients don’t need to know
 what sorts of objects are implementing the methods they call.
Encapsulation means packaging in Python—that is, hiding
 implementation details behind an object’s interface. It does not mean
 enforced privacy, though that can be implemented with code, as we’ll see
 in Chapter 39. Encapsulation is available and useful in
 Python nonetheless: it allows the implementation of an object’s interface
 to be changed without impacting the users of that object.
Polymorphism Means Interfaces, Not Call Signatures
Some OOP languages also define polymorphism to mean overloading functions
 based on the type signatures of their arguments—the number passed and/or
 their types. Because there are no type declarations in Python, this
 concept doesn’t really apply; as we’ve seen, polymorphism in Python is
 based on object interfaces, not types.
If you’re pining for your C++ days, you can try to overload
 methods by their argument lists, like this:
class C:
 def meth(self, x):
 ...
 def meth(self, x, y, z):
 ...
This code will run, but because the def simply assigns an object to a name in the
 class’s scope, the last definition of the method
 function is the only one that will be retained. Put another way, it’s
 just as if you say X = 1 and then
 X = 2; X will be 2. Hence, there can be only one definition of
 a method name.
If they are truly required, you can always code type-based
 selections using the type-testing ideas we met in Chapter 4 and Chapter 9, or the argument
 list tools introduced in Chapter 18:
class C:
 def meth(self, *args):
 if len(args) == 1: # Branch on number arguments
 ...
 elif type(arg[0]) == int: # Branch on argument types (or isinstance())
 ...
You normally shouldn’t do this, though—it’s not the Python way. As
 described in Chapter 16, you should write your
 code to expect only an object interface, not a
 specific data type. That way, it will be useful for
 a broader category of types and applications, both now and in the
 future:
class C:
 def meth(self, x):
 x.operation() # Assume x does the right thing
It’s also generally considered better to use distinct method
 names for distinct operations, rather than relying
 on call signatures (no matter what language you code in).
Although Python’s object model is straightforward, much of the art
 in OOP is in the way we combine classes to achieve a program’s goals.
 The next section begins a tour of some of the ways larger programs use
 classes to their advantage.

OOP and Inheritance: “Is-a” Relationships
We’ve explored the mechanics of inheritance in depth already, but I’d now like
 to show you an example of how it can be used to model real-world
 relationships. From a programmer’s point of view,
 inheritance is kicked off by attribute qualifications, which trigger
 searches for names in instances, their classes, and then any superclasses.
 From a designer’s point of view, inheritance is a way
 to specify set membership: a class defines a set of properties that may be
 inherited and customized by more specific sets (i.e., subclasses).
To illustrate, let’s put that pizza-making robot we talked about at
 the start of this part of the book to work. Suppose we’ve decided to
 explore alternative career paths and open a pizza restaurant (not bad, as
 career paths go). One of the first things we’ll need to do is hire
 employees to serve customers, prepare the food, and so on. Being engineers
 at heart, we’ve decided to build a robot to make the pizzas; but being
 politically and cybernetically correct, we’ve also decided to make our
 robot a full-fledged employee with a salary.
Our pizza shop team can be defined by the four classes in the
 following Python 3.X and 2.X example file, employees.py. The most general class, Employee, provides common behavior such as
 bumping up salaries (giveRaise) and
 printing (__repr__). There are two
 kinds of employees, and so two subclasses of Employee—Chef
 and Server. Both override the inherited
 work method to print more specific
 messages. Finally, our pizza robot is modeled by an even more specific
 class—PizzaRobot is a kind of Chef, which is a kind of Employee. In OOP terms, we call these
 relationships “is-a” links: a robot is a chef, which is an employee.
 Here’s the employees.py file:
File employees.py (2.X + 3.X)
from __future__ import print_function

class Employee:
 def __init__(self, name, salary=0):
 self.name = name
 self.salary = salary
 def giveRaise(self, percent):
 self.salary = self.salary + (self.salary * percent)
 def work(self):
 print(self.name, "does stuff")
 def __repr__(self):
 return "<Employee: name=%s, salary=%s>" % (self.name, self.salary)

class Chef(Employee):
 def __init__(self, name):
 Employee.__init__(self, name, 50000)
 def work(self):
 print(self.name, "makes food")

class Server(Employee):
 def __init__(self, name):
 Employee.__init__(self, name, 40000)
 def work(self):
 print(self.name, "interfaces with customer")

class PizzaRobot(Chef):
 def __init__(self, name):
 Chef.__init__(self, name)
 def work(self):
 print(self.name, "makes pizza")

if __name__ == "__main__":
 bob = PizzaRobot('bob') # Make a robot named bob
 print(bob) # Run inherited __repr__
 bob.work() # Run type-specific action
 bob.giveRaise(0.20) # Give bob a 20% raise
 print(bob); print()

 for klass in Employee, Chef, Server, PizzaRobot:
 obj = klass(klass.__name__)
 obj.work()
When we run the self-test code included in this module, we create a
 pizza-making robot named bob, which
 inherits names from three classes: PizzaRobot, Chef, and Employee. For instance, printing bob runs the Employee.__repr__ method, and giving bob a raise invokes Employee.giveRaise because that’s where the
 inheritance search finds that method:
c:\code> python employees.py
<Employee: name=bob, salary=50000>
bob makes pizza
<Employee: name=bob, salary=60000.0>

Employee does stuff
Chef makes food
Server interfaces with customer
PizzaRobot makes pizza
In a class hierarchy like this, you can usually make instances of
 any of the classes, not just the ones at the bottom. For instance, the
 for loop in this module’s self-test
 code creates instances of all four classes; each responds differently when
 asked to work because the work method
 is different in each. bob the robot,
 for example, gets work from the most
 specific (i.e., lowest) PizzaRobot
 class.
Of course, these classes just simulate
 real-world objects; work prints a
 message for the time being, but it could be expanded to do real work later
 (see Python’s interfaces to devices such as serial ports, Arduino boards,
 and the Raspberry Pi if you’re taking this section much too literally!).

OOP and Composition: “Has-a” Relationships
The notion of composition was introduced in Chapter 26
 and Chapter 28. From a
 programmer’s point of view, composition involves
 embedding other objects in a container object, and activating them to
 implement container methods. To a designer,
 composition is another way to represent relationships in a problem domain.
 But, rather than set membership, composition has to do with
 components—parts of a whole.
Composition also reflects the relationships between parts, called
 “has-a” relationships. Some OOP design texts refer to composition as
 aggregation, or distinguish between the two terms by
 using aggregation to describe a weaker dependency between container and
 contained. In this text, a “composition” simply refers to a collection of
 embedded objects. The composite class generally provides an interface all
 its own and implements it by directing the embedded objects.
Now that we’ve implemented our employees, let’s put them in the
 pizza shop and let them get busy. Our pizza shop is a composite object: it
 has an oven, and it has employees like servers and chefs. When a customer
 enters and places an order, the components of the shop spring into
 action—the server takes the order, the chef makes the pizza, and so on.
 The following example—file pizzashop.py—runs the same on Python 3.X and
 2.X and simulates all the objects and relationships in this
 scenario:
File pizzashop.py (2.X + 3.X)
from __future__ import print_function
from employees import PizzaRobot, Server

class Customer:
 def __init__(self, name):
 self.name = name
 def order(self, server):
 print(self.name, "orders from", server)
 def pay(self, server):
 print(self.name, "pays for item to", server)

class Oven:
 def bake(self):
 print("oven bakes")

class PizzaShop:
 def __init__(self):
 self.server = Server('Pat') # Embed other objects
 self.chef = PizzaRobot('Bob') # A robot named bob
 self.oven = Oven()

 def order(self, name):
 customer = Customer(name) # Activate other objects
 customer.order(self.server) # Customer orders from server
 self.chef.work()
 self.oven.bake()
 customer.pay(self.server)

if __name__ == "__main__":
 scene = PizzaShop() # Make the composite
 scene.order('Homer') # Simulate Homer's order
 print('...')
 scene.order('Shaggy') # Simulate Shaggy's order
The PizzaShop class is a
 container and controller; its constructor makes and embeds instances of
 the employee classes we wrote in the prior section, as well as an Oven class defined here. When this module’s
 self-test code calls the PizzaShop
 order method, the embedded objects are asked to carry out their
 actions in turn. Notice that we make a new Customer object for each order, and we pass on
 the embedded Server object to Customer methods; customers come and go, but the
 server is part of the pizza shop composite. Also notice that employees are
 still involved in an inheritance relationship; composition and inheritance
 are complementary tools.
When we run this module, our pizza shop handles two orders—one from
 Homer, and then one from Shaggy:
c:\code> python pizzashop.py
Homer orders from <Employee: name=Pat, salary=40000>
Bob makes pizza
oven bakes
Homer pays for item to <Employee: name=Pat, salary=40000>
...
Shaggy orders from <Employee: name=Pat, salary=40000>
Bob makes pizza
oven bakes
Shaggy pays for item to <Employee: name=Pat, salary=40000>
Again, this is mostly just a toy simulation, but the objects and
 interactions are representative of composites at work. As a rule of thumb,
 classes can represent just about any objects and relationships you can
 express in a sentence; just replace nouns with
 classes (e.g., Oven), and
 verbs with methods (e.g., bake), and you’ll have a first cut at a
 design.
Stream Processors Revisited
For a composition example that may be a bit more tangible than
 pizza-making robots, recall the generic data stream processor function
 we partially coded in the introduction to OOP in Chapter 26:
def processor(reader, converter, writer):
 while True:
 data = reader.read()
 if not data: break
 data = converter(data)
 writer.write(data)
Rather than using a simple function here, we might code this as a
 class that uses composition to do its work in order to provide more
 structure and support inheritance. The following 3.X/2.X file, streams.py, demonstrates one way to code the
 class (it also mutates one method name because we’ll actually run this
 code):
class Processor:
 def __init__(self, reader, writer):
 self.reader = reader
 self.writer = writer

 def process(self):
 while True:
 data = self.reader.readline()
 if not data: break
 data = self.converter(data)
 self.writer.write(data)

 def converter(self, data):
 assert False, 'converter must be defined' # Or raise exception
This class defines a converter
 method that it expects subclasses to fill in; it’s an example of
 the abstract superclass model we
 outlined in Chapter 29 (more on assert in Part VII—it simply raises an exception if its
 test is false). Coded this way, reader and writer objects are embedded within the class
 instance (composition), and we supply the
 conversion logic in a subclass rather than passing in a converter
 function (inheritance). The file converters.py shows how:
from streams import Processor

class Uppercase(Processor):
 def converter(self, data):
 return data.upper()

if __name__ == '__main__':
 import sys
 obj = Uppercase(open('trispam.txt'), sys.stdout)
 obj.process()
Here, the Uppercase class
 inherits the stream-processing loop logic (and anything else that may be
 coded in its superclasses). It needs to define only what is unique about
 it—the data conversion logic. When this file is run, it makes and runs
 an instance that reads from the file trispam.txt and writes the uppercase
 equivalent of that file to the stdout
 stream:
c:\code> type trispam.txt
spam
Spam
SPAM!

c:\code> python converters.py
SPAM
SPAM
SPAM!
To process different sorts of streams, pass in different sorts of
 objects to the class construction call. Here, we use an output file
 instead of a stream:
C:\code> python
>>> import converters
>>> prog = converters.Uppercase(open('trispam.txt'), open('trispamup.txt', 'w'))
>>> prog.process()

C:\code> type trispamup.txt
SPAM
SPAM
SPAM!
But, as suggested earlier, we could also pass in arbitrary objects
 coded as classes that define the required input and output method
 interfaces. Here’s a simple example that passes in a writer class that
 wraps up the text inside HTML tags:
C:\code> python
>>> from converters import Uppercase
>>>
>>> class HTMLize:
 def write(self, line):
 print('<PRE>%s</PRE>' % line.rstrip())

>>> Uppercase(open('trispam.txt'), HTMLize()).process()
<PRE>SPAM</PRE>
<PRE>SPAM</PRE>
<PRE>SPAM!</PRE>
If you trace through this example’s control flow, you’ll see that
 we get both uppercase conversion (by inheritance)
 and HTML formatting (by composition), even though the core processing
 logic in the original Processor
 superclass knows nothing about either step. The processing code only
 cares that writers have a write
 method and that a method named converter is defined; it doesn’t care what those
 methods do when they are called. Such polymorphism and encapsulation of
 logic is behind much of the power of classes in Python.
As is, the Processor superclass
 only provides a file-scanning loop. In more realistic work, we might
 extend it to support additional programming tools for its subclasses,
 and, in the process, turn it into a full-blown application
 framework. Coding such a tool once in a superclass
 enables you to reuse it in all of your programs. Even in this simple
 example, because so much is packaged and inherited with classes, all we
 had to code was the HTML formatting step; the rest was free.
For another example of composition at work, see exercise 9 at the
 end of Chapter 32 and its solution in
 “Part VI, Classes and OOP” in Appendix D; it’s similar to the
 pizza shop example. We’ve focused on inheritance in this book because
 that is the main tool that the Python language itself provides for OOP.
 But, in practice, composition may be used as much as inheritance as a
 way to structure classes, especially in larger systems. As we’ve seen,
 inheritance and composition are often complementary (and sometimes
 alternative) techniques. Because composition is a design issue outside
 the scope of the Python language and this book, though, I’ll defer to
 other resources for more on this topic.
Why You Will Care: Classes and Persistence
I’ve mentioned Python’s pickle and shelve object persistence support a few times in this part of the book
 because it works especially well with class instances. In fact, these
 tools are often compelling enough to motivate the use of classes in
 general—by pickling or shelving a class instance, we get data storage
 that contains both data and logic combined.
For example, besides allowing us to simulate real-world
 interactions, the pizza shop classes developed in this chapter could
 also be used as the basis of a persistent restaurant database.
 Instances of classes can be stored away on disk in a single step using
 Python’s pickle or shelve modules. We used shelves to store
 instances of classes in the OOP tutorial in Chapter 28, but the object pickling
 interface is remarkably easy to use as well:
import pickle
object = SomeClass()
file = open(filename, 'wb') # Create external file
pickle.dump(object, file) # Save object in file

import pickle
file = open(filename, 'rb')
object = pickle.load(file) # Fetch it back later
Pickling converts in-memory objects to serialized byte streams
 (in Python, strings), which may be stored in files, sent across a
 network, and so on; unpickling converts back from byte streams to
 identical in-memory objects. Shelves are similar, but they
 automatically pickle objects to an access-by-key database, which
 exports a dictionary-like interface:
import shelve
object = SomeClass()
dbase = shelve.open(filename)
dbase['key'] = object # Save under key

import shelve
dbase = shelve.open(filename)
object = dbase['key'] # Fetch it back later
In our pizza shop example, using classes to model employees
 means we can get a simple database of employees and shops with little
 extra work—pickling such instance objects to a file makes them
 persistent across Python program executions:
>>> from pizzashop import PizzaShop
>>> shop = PizzaShop()
>>> shop.server, shop.chef
(<Employee: name=Pat, salary=40000>, <Employee: name=Bob, salary=50000>)
>>> import pickle
>>> pickle.dump(shop, open('shopfile.pkl', 'wb'))
This stores an entire composite shop object in a file all at once. To bring
 it back later in another session or program, a single step suffices as
 well. In fact, objects restored this way retain both state and
 behavior:
>>> import pickle
>>> obj = pickle.load(open('shopfile.pkl', 'rb'))
>>> obj.server, obj.chef
(<Employee: name=Pat, salary=40000>, <Employee: name=Bob, salary=50000>)

>>> obj.order('LSP')
LSP orders from <Employee: name=Pat, salary=40000>
Bob makes pizza
oven bakes
LSP pays for item to <Employee: name=Pat, salary=40000>
This just runs a simulation as is, but we might extend the shop
 to keep track of inventory, revenue, and so on—saving it to its file
 after changes would retain its updated state. See the standard library
 manual and related coverage in Chapter 9, Chapter 28, and Chapter 37 for more on pickles and
 shelves.

OOP and Delegation: “Wrapper” Proxy Objects
Beside inheritance and composition, object-oriented programmers often speak of
 delegation, which usually implies controller objects
 that embed other objects to which they pass off operation requests. The
 controllers can take care of administrative activities, such as logging or
 validating accesses, adding extra steps to interface components, or
 monitoring active instances.
In a sense, delegation is a special form of composition, with a
 single embedded object managed by a wrapper (sometimes called a
 proxy) class that retains most or all of the embedded
 object’s interface. The notion of proxies sometimes applies to other
 mechanisms too, such as function calls; in delegation, we’re concerned
 with proxies for all of an object’s behavior,
 including method calls and other operations.
This concept was introduced by example in Chapter 28, and in Python is often implemented with the __getattr__ method hook we studied in Chapter 30. Because this operator overloading
 method intercepts accesses to nonexistent attributes, a wrapper class can
 use __getattr__ to route arbitrary
 accesses to a wrapped object. Because this method allows attribute
 requests to be routed generically, the wrapper class retains the interface
 of the wrapped object and may add additional operations of its own.
By way of review, consider the file trace.py (which runs the same in 2.X and
 3.X):
class Wrapper:
 def __init__(self, object):
 self.wrapped = object # Save object
 def __getattr__(self, attrname):
 print('Trace: ' + attrname) # Trace fetch
 return getattr(self.wrapped, attrname) # Delegate fetch
Recall from Chapter 30 that
 __getattr__ gets the attribute name as
 a string. This code makes use of the getattr built-in
 function to fetch an attribute from the wrapped object by name
 string—getattr(X,N) is like X.N, except that N is an expression that evaluates to a string at
 runtime, not a variable. In fact, getattr(X,N) is similar to X.__dict__[N], but the former also performs an
 inheritance search, like X.N, while the
 latter does not (see Chapter 22 and
 Chapter 29 for more on the __dict__
 attribute).
You can use the approach of this module’s wrapper class to manage
 access to any object with attributes—lists, dictionaries, and even classes
 and instances. Here, the Wrapper class
 simply prints a trace message on each attribute access and delegates the
 attribute request to the embedded wrapped object:
>>> from trace import Wrapper
>>> x = Wrapper([1, 2, 3]) # Wrap a list
>>> x.append(4) # Delegate to list method
Trace: append
>>> x.wrapped # Print my member
[1, 2, 3, 4]

>>> x = Wrapper({'a': 1, 'b': 2}) # Wrap a dictionary
>>> list(x.keys()) # Delegate to dictionary method
Trace: keys
['a', 'b']
The net effect is to augment the entire interface of the wrapped object, with additional code in the
 Wrapper class. We can use this to log
 our method calls, route method calls to extra or custom logic, adapt a
 class to a new interface, and so on.
We’ll revive the notions of wrapped objects and delegated operations
 as one way to extend built-in types in the next chapter. If you are
 interested in the delegation design pattern, also watch for the
 discussions in Chapter 32 and Chapter 39 of function decorators,
 a strongly related concept designed to augment a specific
 function or method call rather than the entire interface of an object,
 and class decorators, which serve as a
 way to automatically add such delegation-based wrappers to all instances
 of a class.
Note
Version skew note: As we saw by example in
 Chapter 28, delegation of object
 interfaces by general proxies has changed
 substantially in 3.X when wrapped objects implement operator overloading
 methods. Technically, this is a new-style class
 difference, and can appear in 2.X code too if it enables this option;
 per the next chapter, it’s mandatory in 3.X and thus often considered a
 3.X change.
In Python 2.X’s default classes, operator overloading methods run
 by built-in operations are routed through generic attribute interception
 methods like __getattr__. Printing a
 wrapped object directly, for example, calls this method for __repr__ or __str__, which then passes the call on to the
 wrapped object. This pattern holds for __iter__, __add__, and the other operator methods of the
 prior chapter.
In Python 3.X, this no longer happens: printing does not trigger
 __getattr__ (or its __getattribute__ cousin we’ll study in the
 next chapter) and a default display is used instead. In 3.X, new-style
 classes look up methods invoked implicitly by built-in operations in
 classes and skip the normal instance lookup entirely. Explicit name
 attribute fetches are routed to __getattr__ the same way in both 2.X and 3.X,
 but built-in operation method lookup differs in ways that may impact
 some delegation-based tools.
We’ll return to this issue in the next chapter as a new-style
 class change, and see it live in Chapter 38
 and Chapter 39, in the context of managed attributes
 and decorators. For now, keep in mind that for delegation coding
 patterns, you may need to redefine operator overloading methods in
 wrapper classes (either by hand, by tools, or by superclasses) if they
 are used by embedded objects and you want them to be intercepted in
 new-style classes.

Pseudoprivate Class Attributes
Besides larger structuring goals, class designs often must address name
 usage too. In Chapter 28’s case study,
 for example, we noted that methods defined within a general tool class
 might be modified by subclasses if exposed, and noted the tradeoffs of
 this policy—while it supports method customization and direct calls, it’s
 also open to accidental replacements.
In Part V, we learned that every
 name assigned at the top level of a module file is exported. By default,
 the same holds for classes—data hiding is a convention, and clients may
 fetch or change attributes in any class or instance to which they have a
 reference. In fact, attributes are all “public” and “virtual,” in C++
 terms; they’re all accessible everywhere and are looked up
 dynamically at runtime.1
That said, Python today does support the notion of name “mangling” (i.e., expansion) to localize some names in
 classes. Mangled names are sometimes misleadingly called “private
 attributes,” but really this is just a way to
 localize a name to the class that created it—name
 mangling does not prevent access by code outside the class. This feature
 is mostly intended to avoid namespace collisions in instances, not to
 restrict access to names in general; mangled names are therefore better
 called “pseudoprivate” than “private.”
Pseudoprivate names are an advanced and entirely optional feature,
 and you probably won’t find them very useful until you start writing
 general tools or larger class hierarchies for use in multiprogrammer
 projects. In fact, they are not always used even when they probably should
 be—more commonly, Python programmers code internal names with a single
 underscore (e.g., _X), which is just an
 informal convention to let you know that a name shouldn’t generally be
 changed (it means nothing to Python itself).
Because you may see this feature in other people’s code, though, you
 need to be somewhat aware of it, even if you don’t use it yourself. And
 once you learn its advantages and contexts of use, you may find this
 feature to be more useful in your own code than some programmers
 realize.
Name Mangling Overview
Here’s how name mangling works: within a class statement only, any names that
 start with two underscores but don’t end with two
 underscores are automatically expanded to include the name of the
 enclosing class at their front. For instance, a name like __X within a class named Spam is changed to _Spam__X automatically: the original name is
 prefixed with a single underscore and the enclosing class’s name.
 Because the modified name contains the name of the enclosing class, it’s
 generally unique; it won’t clash with similar names created by other
 classes in a hierarchy.
Name mangling happens only for names that appear inside a class statement’s code, and then only for
 names that begin with two leading underscores. It works for
 every name preceded with double underscores,
 though—both class attributes (including method names) and instance
 attribute names assigned to self. For
 example, in a class named Spam, a
 method named __meth is mangled to
 _Spam__meth, and an instance
 attribute reference self.__X is
 transformed to self._Spam__X.
Despite the mangling, as long as the class uses the double
 underscore version everywhere it refers to the name, all its references
 will still work. Because more than one class may add attributes to an
 instance, though, this mangling helps avoid clashes—but we need to move
 on to an example to see how.

Why Use Pseudoprivate Attributes?
One of the main issues that the pseudoprivate attribute feature is
 meant to alleviate has to do with the way instance attributes are
 stored. In Python, all instance attributes wind up in the
 single instance object at the bottom of the class
 tree, and are shared by all class-level method functions the instance is
 passed into. This is different from the C++ model, where each class gets its own
 space for data members it defines.
Within a class’s method in Python, whenever a method assigns to a
 self attribute (e.g., self.attr = value), it
 changes or creates an attribute in the instance (recall that inheritance
 searches happen only on reference, not on assignment). Because this is
 true even if multiple classes in a hierarchy assign to the same
 attribute, collisions are possible.
For example, suppose that when a programmer codes a class, it is
 assumed that the class owns the attribute name X in the instance. In this class’s methods,
 the name is set, and later fetched:
class C1:
 def meth1(self): self.X = 88 # I assume X is mine
 def meth2(self): print(self.X)
Suppose further that another programmer, working in isolation,
 makes the same assumption in another class:
class C2:
 def metha(self): self.X = 99 # Me too
 def methb(self): print(self.X)
Both of these classes work by themselves. The problem arises if
 the two classes are ever mixed together in the same class tree:
class C3(C1, C2): ...
I = C3() # Only 1 X in I!
Now, the value that each class gets back when it says self.X will depend on which class assigned it
 last. Because all assignments to self.X refer to the same single instance,
 there is only one X
 attribute—I.X—no matter how many
 classes use that attribute name.
This isn’t a problem if it’s expected, and indeed, this is how
 classes communicate—the instance is shared memory. To guarantee that an
 attribute belongs to the class that uses it, though, prefix the name
 with double underscores everywhere it is used in the class, as in this
 2.X/3.X file, pseudoprivate.py:
class C1:
 def meth1(self): self.__X = 88 # Now X is mine
 def meth2(self): print(self.__X) # Becomes _C1__X in I
class C2:
 def metha(self): self.__X = 99 # Me too
 def methb(self): print(self.__X) # Becomes _C2__X in I

class C3(C1, C2): pass
I = C3() # Two X names in I

I.meth1(); I.metha()
print(I.__dict__)
I.meth2(); I.methb()
When thus prefixed, the X
 attributes will be expanded to include the names of their classes before
 being added to the instance. If you run a dir call on I or inspect its namespace dictionary after
 the attributes have been assigned, you’ll see the expanded names,
 _C1__X and _C2__X, but not X. Because the expansion makes the names more
 unique within the instance, the class coders can be fairly safe in
 assuming that they truly own any names that they prefix with two
 underscores:
% python pseudoprivate.py
{'_C2__X': 99, '_C1__X': 88}
88
99
This trick can avoid potential name collisions in the instance,
 but note that it does not amount to true privacy. If you know the name
 of the enclosing class, you can still access either of these attributes
 anywhere you have a reference to the instance by using the fully
 expanded name (e.g., I._C1__X = 77).
 Moreover, names could still collide if unknowing programmers use the
 expanded naming pattern explicitly (unlikely, but not impossible). On
 the other hand, this feature makes it less likely that you will
 accidentally step on a class’s names.
Pseudoprivate attributes are also useful in larger frameworks or
 tools, both to avoid introducing new method names that might
 accidentally hide definitions elsewhere in the class tree and to reduce
 the chance of internal methods being replaced by names defined lower in
 the tree. If a method is intended for use only within a class that may
 be mixed into other classes, the double underscore prefix virtually
 ensures that the method won’t interfere with other names in the tree,
 especially in multiple-inheritance scenarios:
class Super:
 def method(self): ... # A real application method

class Tool:
 def __method(self): ... # Becomes _Tool__method
 def other(self): self.__method() # Use my internal method

class Sub1(Tool, Super): ...
 def actions(self): self.method() # Runs Super.method as expected

class Sub2(Tool):
 def __init__(self): self.method = 99 # Doesn't break Tool.__method
We met multiple inheritance briefly in Chapter 26 and will explore it in more
 detail later in this chapter. Recall that superclasses are searched
 according to their left-to-right order in class header lines. Here, this means Sub1 prefers Tool attributes to those in Super. Although in this example we could force
 Python to pick the application class’s methods first by switching the
 order of the superclasses listed in the Sub1 class header, pseudoprivate attributes
 resolve the issue altogether. Pseudoprivate names also prevent
 subclasses from accidentally redefining the internal method’s names, as
 in Sub2.
Again, I should note that this feature tends to be of use
 primarily for larger, multiprogrammer projects, and then only for
 selected names. Don’t be tempted to clutter your code unnecessarily;
 only use this feature for names that truly need to be controlled by a
 single class. Although useful in some general class-based tools, for
 simpler programs, it’s probably overkill.
For more examples that make use of the __X naming feature, see the lister.py mix-in classes introduced later in
 this chapter in the multiple inheritance section, as well as the
 discussion of Private class
 decorators in Chapter 39.
If you care about privacy in general, you might want to review the
 emulation of private instance attributes sketched in the section “Attribute Access: __getattr__ and __setattr__” in Chapter 30, and watch for the more complete
 Private class decorator we’ll build
 with delegation in Chapter 39. Although it’s possible
 to emulate true access controls in Python classes, this is rarely done
 in practice, even for large systems.

Methods Are Objects: Bound or Unbound
Methods in general, and bound methods in particular, simplify the
 implementation of many design goals in Python. We met bound methods
 briefly while studying __call__ in
 Chapter 30. The full story, which we’ll
 flesh out here, turns out to be more general and flexible than you might
 expect.
In Chapter 19, we learned how
 functions can be processed as normal objects. Methods are a kind of object
 too, and can be used generically in much the same way as other
 objects—they can be assigned to names, passed to functions, stored in data
 structures, and so on—and like simple functions, qualify as “first class”
 objects. Because a class’s methods can be accessed from an instance or a
 class, though, they actually come in two flavors in Python:
	Unbound (class) method objects: no self
	Accessing a function attribute of a class by qualifying the
 class returns an unbound method object. To call
 the method, you must provide an instance object explicitly as the
 first argument. In Python 3.X, an unbound method is the same as a
 simple function and can be called through the class’s name; in 2.X
 it’s a distinct type and cannot be called without providing an
 instance.

	Bound (instance) method objects: self + function pairs
	Accessing a function attribute of a class by qualifying an
 instance returns a bound method object. Python
 automatically packages the instance with the function in the bound
 method object, so you don’t need to pass an instance to call the
 method.

Both kinds of methods are full-fledged objects; they can be
 transferred around a program at will, just like strings and numbers. Both
 also require an instance in their first argument when run (i.e., a value
 for self). This is why we’ve had to
 pass in an instance explicitly when calling superclass methods from
 subclass methods in previous examples (including this chapter’s employees.py); technically, such calls produce
 unbound method objects along the way.
When calling a bound method object, Python
 provides an instance for you automatically—the instance used to create the
 bound method object. This means that bound method objects are usually
 interchangeable with simple function objects, and makes them especially
 useful for interfaces originally written for functions (see the sidebar
 “Why You Will Care: Bound Method Callbacks” for a
 realistic use case in GUIs).
To illustrate in simple terms, suppose we define the following
 class:
class Spam:
 def doit(self, message):
 print(message)
Now, in normal operation, we make an instance and call its method in
 a single step to print the passed-in argument:
object1 = Spam()
object1.doit('hello world')
Really, though, a bound method object is
 generated along the way, just before the method call’s parentheses. In
 fact, we can fetch a bound method without actually calling it. An
 object.name expression
 evaluates to an object as all expressions do. In the following, it returns
 a bound method object that packages the instance (object1) with the method function (Spam.doit). We can assign this bound method pair
 to another name and then call it as though it were a simple
 function:
object1 = Spam()
x = object1.doit # Bound method object: instance+function
x('hello world') # Same effect as object1.doit('...')
On the other hand, if we qualify the class to get to doit, we get back an
 unbound method object, which is simply a reference to
 the function object. To call this type of method, we must pass in an
 instance as the leftmost argument—there isn’t one in the expression
 otherwise, and the method expects it:
object1 = Spam()
t = Spam.doit # Unbound method object (a function in 3.X: see ahead)
t(object1, 'howdy') # Pass in instance (if the method expects one in 3.X)
By extension, the same rules apply within a class’s method if we
 reference self attributes that refer to
 functions in the class. A self.method
 expression is a bound method object because self is an instance object:
class Eggs:
 def m1(self, n):
 print(n)
 def m2(self):
 x = self.m1 # Another bound method object
 x(42) # Looks like a simple function

Eggs().m2() # Prints 42
Most of the time, you call methods immediately after fetching them
 with attribute qualification, so you don’t always notice the method
 objects generated along the way. But if you start writing code that calls
 objects generically, you need to be careful to treat unbound methods
 specially—they normally require an explicit instance object to be passed
 in.
Note
For an optional exception to this rule, see the discussion of
 static and class methods in the next chapter, and
 the brief mention of one in the next section. Like bound methods, static
 methods can masquerade as basic functions because they do not expect
 instances when called. Formally speaking, Python supports three kinds of
 class-level methods—instance, static, and class—and 3.X allows simple
 functions in classes, too. Chapter 40’s metaclass
 methods are distinct too, but they are essentially class methods with
 less scope.

Unbound Methods Are Functions in 3.X
In Python 3.X, the language has dropped the notion of unbound
 methods. What we describe as an unbound method here is
 treated as a simple function in 3.X. For most
 purposes, this makes no difference to your code; either way, an instance
 will be passed to a method’s first argument when it’s called through an
 instance.
Programs that do explicit type testing might be impacted,
 though—if you print the type of an instance-less class-level method, it
 displays “unbound method” in 2.X, and “function” in 3.X.
Moreover, in 3.X it is OK to call a method without an instance, as
 long as the method does not expect one and you call it only through the
 class and never through an instance. That is,
 Python 3.X will pass along an instance to methods only for
 through-instance calls. When calling through a class, you must pass an
 instance manually only if the method expects one:
C:\code> c:\python33\python
>>> class Selfless:
 def __init__(self, data):
 self.data = data
 def selfless(arg1, arg2): # A simple function in 3.X
 return arg1 + arg2
 def normal(self, arg1, arg2): # Instance expected when called
 return self.data + arg1 + arg2

>>> X = Selfless(2)
>>> X.normal(3, 4) # Instance passed to self automatically: 2+(3+4)
9
>>> Selfless.normal(X, 3, 4) # self expected by method: pass manually
9
>>> Selfless.selfless(3, 4) # No instance: works in 3.X, fails in 2.X!
7
The last test in this fails in 2.X, because unbound methods
 require an instance to be passed by default; it works in 3.X because
 such methods are treated as simple functions not requiring an instance.
 Although this removes some potential error trapping in 3.X (what if a
 programmer accidentally forgets to pass an instance?), it allows a
 class’s methods to be used as simple functions as long as they are not
 passed and do not expect a “self” instance argument.
The following two calls still fail in both 3.X and 2.X, though—the
 first (calling through an instance) automatically passes an instance to
 a method that does not expect one, while the second (calling through a
 class) does not pass an instance to a method that does expect one (error
 message text here is per 3.3):
>>> X.selfless(3, 4)
TypeError: selfless() takes 2 positional arguments but 3 were given

>>> Selfless.normal(3, 4)
TypeError: normal() missing 1 required positional argument: 'arg2'
Because of this change, the staticmethod
 built-in function and decorator described in the next chapter is not
 needed in 3.X for methods without a self argument that are called only through the
 class name, and never through an instance—such
 methods are run as simple functions, without receiving an instance
 argument. In 2.X, such calls are errors unless an instance is passed
 manually or the method is marked as being static (more on static methods
 in the next chapter).
It’s important to be aware of the differences in behavior in 3.X,
 but bound methods are generally more important from a practical
 perspective anyway. Because they pair together the instance and function
 in a single object, they can be treated as callables generically. The
 next section demonstrates what this means in code.
Note
For a more visual illustration of unbound method treatment in
 Python 3.X and 2.X, see also the lister.py example in the multiple
 inheritance section later in this chapter. Its classes print the value
 of methods fetched from both instances and classes, in both versions
 of Python—as unbound methods in 2.X and simple functions in 3.X. Also
 note that this change is inherent in 3.X itself, not the new-style
 class model it mandates.

Bound Methods and Other Callable Objects
As mentioned earlier, bound methods can be processed as generic
 objects, just like simple functions—they can be passed around a program
 arbitrarily. Moreover, because bound methods combine both a function and
 an instance in a single package, they can be treated like any other
 callable object and require no special syntax when invoked. The
 following, for example, stores four bound method objects in a list and
 calls them later with normal call expressions:
>>> class Number:
 def __init__(self, base):
 self.base = base
 def double(self):
 return self.base * 2
 def triple(self):
 return self.base * 3

>>> x = Number(2) # Class instance objects
>>> y = Number(3) # State + methods
>>> z = Number(4)
>>> x.double() # Normal immediate calls
4

>>> acts = [x.double, y.double, y.triple, z.double] # List of bound methods
>>> for act in acts: # Calls are deferred
 print(act()) # Call as though functions

4
6
9
8
Like simple functions, bound method objects have introspection
 information of their own, including attributes that give access to the
 instance object and method function they pair. Calling the bound method
 simply dispatches the pair:
>>> bound = x.double
>>> bound.__self__, bound.__func__
(<__main__.Number object at 0x...etc...>, <function Number.double at 0x...etc...>)
>>> bound.__self__.base
2
>>> bound() # Calls bound.__func__(bound.__self__, ...)
4
Other callables
In fact, bound methods are just one of a handful of callable
 object types in Python. As the following demonstrates, simple
 functions coded with a def or
 lambda, instances that inherit a __call__,
 and bound instance methods can all be treated and called the same
 way:
>>> def square(arg):
 return arg ** 2 # Simple functions (def or lambda)

>>> class Sum:
 def __init__(self, val): # Callable instances
 self.val = val
 def __call__(self, arg):
 return self.val + arg

>>> class Product:
 def __init__(self, val): # Bound methods
 self.val = val
 def method(self, arg):
 return self.val * arg

>>> sobject = Sum(2)
>>> pobject = Product(3)
>>> actions = [square, sobject, pobject.method] # Function, instance, method

>>> for act in actions: # All three called same way
 print(act(5)) # Call any one-arg callable

25
7
15
>>> actions[-1](5) # Index, comprehensions, maps
15
>>> [act(5) for act in actions]
[25, 7, 15]
>>> list(map(lambda act: act(5), actions))
[25, 7, 15]
Technically speaking, classes belong in the callable objects
 category too, but we normally call them to generate instances rather
 than to do actual work—a single action is better coded as a simple
 function than a class with a constructor, but the class here serves to
 illustrate its callable nature:
>>> class Negate:
 def __init__(self, val): # Classes are callables too
 self.val = -val # But called for object, not work
 def __repr__(self): # Instance print format
 return str(self.val)

>>> actions = [square, sobject, pobject.method, Negate] # Call a class too
>>> for act in actions:
 print(act(5))

25
7
15
-5
>>> [act(5) for act in actions] # Runs __repr__ not __str__!
[25, 7, 15, −5]

>>> table = {act(5): act for act in actions} # 3.X/2.7 dict comprehension
>>> for (key, value) in table.items():
 print('{0:2} => {1}'.format(key, value)) # 2.6+/3.X str.format

25 => <function square at 0x0000000002987400>
15 => <bound method Product.method of <__main__.Product object at ...etc...>>
-5 => <class '__main__.Negate'>
 7 => <__main__.Sum object at 0x000000000298BE48>
As you can see, bound methods, and Python’s callable objects
 model in general, are some of the many ways that Python’s design makes
 for an incredibly flexible language.
You should now understand the method object model. For other
 examples of bound methods at work, see the upcoming sidebar “Why You Will Care: Bound Method Callbacks” as well as the
 prior chapter’s discussion of callback handlers in the section on the
 method __call__.
Why You Will Care: Bound Method Callbacks
Because bound methods automatically pair an instance with a
 class’s method function, you can use them anywhere a simple function
 is expected. One of the most common places you’ll see this idea put
 to work is in code that registers methods as event callback handlers
 in the tkinter GUI
 interface (named Tkinter in
 Python 2.X) we’ve met before. As review, here’s the simple
 case:
def handler():
 ...use globals or closure scopes for state...
...
widget = Button(text='spam', command=handler)
To register a handler for button click events, we usually pass
 a callable object that takes no arguments to the command keyword argument. Function names
 (and lambdas) work here, and so
 do class-level methods—though they must be bound methods if they
 expect an instance when called:
class MyGui:
 def handler(self):
 ...use self.attr for state...
 def makewidgets(self):
 b = Button(text='spam', command=self.handler)
Here, the event handler is self.handler—a bound method object that
 remembers both self and MyGui.handler. Because self will refer to the original instance
 when handler is later invoked on
 events, the method will have access to instance attributes that can
 retain state between events, as well as class-level methods. With
 simple functions, state normally must be retained in global
 variables or enclosing function scopes instead.
See also the discussion of __call__ operator overloading in Chapter 30 for another way to make
 classes compatible with function-based APIs, and lambda in Chapter 19 for another tool often used in
 callback roles. As noted in the former of these, you don’t generally
 need to wrap a bound method in a lambda; the bound method in the preceding
 example already defers the call (note that there are no parentheses
 to trigger one), so adding a lambda here would be pointless!

Classes Are Objects: Generic Object Factories
Sometimes, class-based designs require objects to be created in
 response to conditions that can’t be predicted when a program is written.
 The factory design pattern allows such a deferred approach. Due in large
 part to Python’s flexibility, factories can take multiple forms, some of
 which don’t seem special at all.
Because classes are also “first class” objects, it’s easy to pass
 them around a program, store them in data structures, and so on. You can
 also pass classes to functions that generate arbitrary kinds of objects;
 such functions are sometimes called factories in OOP design circles.
 Factories can be a major undertaking in a statically typed language such as
 C++ but are almost trivial to implement in Python.
For example, the call syntax we met in Chapter 18
 can call any class with any number of positional or keyword constructor
 arguments in one step to generate any sort of instance:2
def factory(aClass, *pargs, **kargs): # Varargs tuple, dict
 return aClass(*pargs, **kargs) # Call aClass (or apply in 2.X only)

class Spam:
 def doit(self, message):
 print(message)

class Person:
 def __init__(self, name, job=None):
 self.name = name
 self.job = job

object1 = factory(Spam) # Make a Spam object
object2 = factory(Person, "Arthur", "King") # Make a Person object
object3 = factory(Person, name='Brian') # Ditto, with keywords and default
In this code, we define an object generator function called factory. It expects to be passed a class object
 (any class will do) along with zero or more arguments for the class’s
 constructor. The function uses special “varargs” call syntax to call the
 function and return an instance.
The rest of the example simply defines two classes and generates
 instances of both by passing them to the factory function. And that’s the only factory
 function you’ll ever need to write in Python; it works for any class and
 any constructor arguments. If you run this live (factory.py), your objects will look like
 this:
>>> object1.doit(99)
99
>>> object2.name, object2.job
('Arthur', 'King')
>>> object3.name, object3.job
('Brian', None)
By now, you should know that everything is a “first class” object in
 Python—including classes, which are usually just compiler input in
 languages like C++. It’s natural to pass them around this way. As
 mentioned at the start of this part of the book, though, only objects
 derived from classes do full OOP in Python.
Why Factories?
So what good is the factory
 function (besides providing an excuse to illustrate first-class class
 objects in this book)? Unfortunately, it’s difficult to show
 applications of this design pattern without listing much more code than
 we have space for here. In general, though, such a factory might allow
 code to be insulated from the details of dynamically configured object
 construction.
For instance, recall the processor example presented in the abstract in
 Chapter 26, and then again as a
 composition example earlier in this chapter. It accepts reader and
 writer objects for processing arbitrary data streams. The original
 version of this example manually passed in instances of specialized
 classes like FileWriter and SocketReader to customize the data streams
 being processed; later, we passed in hardcoded file, stream, and
 formatter objects. In a more dynamic scenario, external devices such as
 configuration files or GUIs might be used to configure the
 streams.
In such a dynamic world, we might not be able to hardcode the
 creation of stream interface objects in our scripts, but might instead
 create them at runtime according to the contents of a configuration
 file.
Such a file might simply give the string name of a stream class to
 be imported from a module, plus an optional constructor call argument.
 Factory-style functions or code might come in handy here because they
 would allow us to fetch and pass in classes that are not hardcoded in
 our program ahead of time. Indeed, those classes might not even have
 existed at all when we wrote our code:
classname = ...parse from config file...
classarg = ...parse from config file...

import streamtypes # Customizable code
aclass = getattr(streamtypes, classname) # Fetch from module
reader = factory(aclass, classarg) # Or aclass(classarg)
processor(reader, ...)
Here, the getattr built-in is
 again used to fetch a module attribute given a string name (it’s like
 saying obj.attr, but
 attr is a string). Because this code snippet
 assumes a single constructor argument, it doesn’t strictly need factory—we could make an instance with just
 aclass(classarg). The factory
 function may prove more useful in the presence of unknown argument
 lists, however, and the general factory coding pattern can improve the code’s flexibility.

Multiple Inheritance: “Mix-in” Classes
Our last design pattern is one of the most useful, and will serve as a
 subject for a more realistic example to wrap up this chapter and point
 toward the next. As a bonus, the code we’ll write here may be a useful
 tool.
Many class-based designs call for combining disparate sets of
 methods. As we’ve seen, in a class
 statement, more than one superclass can be listed in parentheses in the
 header line. When you do this, you leverage multiple
 inheritance—the class and its instances inherit names from
 all the listed superclasses.
When searching for an attribute, Python’s inheritance search
 traverses all superclasses in the class header from left to
 right until a match is found. Technically, because any of the superclasses
 may have superclasses of its own, this search can be a bit more complex
 for larger class trees:
	In classic classes (the default until
 Python 3.0), the attribute search in all cases proceeds depth-first
 all the way to the top of the inheritance tree, and then from left to
 right. This order is usually called DFLR, for its depth-first,
 left-to-right path.

	In new-style classes (optional in 2.X and
 standard in 3.X), the attribute search is usually as before, but in
 diamond patterns proceeds across by tree levels before
 moving up, in a more breadth-first fashion. This order is usually
 called the new-style MRO, for method resolution order, though it’s used for all
 attributes, not just methods.

The second of these search rules is explained fully in the new-style
 class discussion in the next chapter. Though difficult to understand
 without the next chapter’s code (and somewhat rare to create yourself),
 diamond patterns appear when multiple classes in a tree share a common
 superclass; the new-style search order is designed to visit such a shared
 superclass just once, and after all its subclasses. In either model,
 though, when a class has multiple superclasses, they are searched from
 left to right according to the order listed in the class statement header lines.
In general, multiple inheritance is good for modeling objects that
 belong to more than one set. For instance, a person may be an engineer, a
 writer, a musician, and so on, and inherit properties from all such sets.
 With multiple inheritance, objects obtain the union of the behavior in all
 their superclasses. As we’ll see ahead, multiple inheritance also allows
 classes to function as general packages of mixable attributes.
Though a useful pattern, multiple inheritance’s chief downside is
 that it can pose a conflict when the same method (or
 other attribute) name is defined in more than one superclass. When this
 occurs, the conflict is resolved either automatically by the inheritance
 search order, or manually in your code:
	Default: By default, inheritance chooses
 the first occurrence of an attribute it finds
 when an attribute is referenced normally—by self.method(), for example. In this mode,
 Python chooses the lowest and leftmost in classic classes, and in
 nondiamond patterns in all classes; new-style classes may choose an
 option to the right before one above in diamonds.

	Explicit: In some class models, you may
 sometimes need to select an attribute explicitly
 by referencing it through its class name—with superclass.method(self), for instance. Your
 code breaks the conflict and overrides the search’s default—to select
 an option to the right of or above the inheritance search’s
 default.

This is an issue only when the same name
 appears in multiple superclasses, and you do not wish to use the first one
 inherited. Because this isn’t as common an issue in typical Python code as
 it may sound, we’ll defer details on this topic until we study new-style
 classes and their MRO and super tools
 in the next chapter, and revisit this as a “gotcha” at the end of that
 chapter. First, though, the next section demonstrates a practical use case
 for multiple inheritance-based tools.
Coding Mix-in Display Classes
Perhaps the most common way multiple inheritance is used is to
 “mix in” general-purpose methods from superclasses. Such superclasses
 are usually called mix-in classes—they provide
 methods you add to application classes by inheritance. In a sense,
 mix-in classes are similar to modules: they provide packages of methods
 for use in their client subclasses. Unlike simple functions in modules,
 though, methods in mix-in classes also can participate in inheritance
 hierarchies, and have access to the self instance for using state information and
 other methods in their trees.
For example, as we’ve seen, Python’s default way to print a class
 instance object isn’t incredibly useful:
>>> class Spam:
 def __init__(self): # No __repr__ or __str__
 self.data1 = "food"

>>> X = Spam()
>>> print(X) # Default: class name + address (id)
<__main__.Spam object at 0x00000000029CA908> # Same in 2.X, but says "instance"
As you saw in both Chapter 28’s
 case study and Chapter 30’s operator
 overloading coverage, you can provide a __str__ or __repr__ method to implement a custom string
 representation of your own. But, rather than coding one of these in each
 and every class you wish to print, why not code it once in a
 general-purpose tool class and inherit it in all your classes?
That’s what mix-ins are for. Defining a display method in a mix-in
 superclass once enables us to reuse it anywhere we want to see a custom
 display format—even in classes that may already have another superclass.
 We’ve already seen tools that do related work:
	Chapter 28’s AttrDisplay class formatted instance
 attributes in a generic __repr__
 method, but it did not climb class trees and was utilized in
 single-inheritance mode only.

	Chapter 29’s classtree.py module defined functions for
 climbing and sketching class trees, but it did not display object
 attributes along the way and was not architected as an inheritable
 class.

Here, we’re going to revisit these examples’ techniques and expand
 upon them to code a set of three mix-in classes that serve as generic
 display tools for listing instance attributes, inherited attributes, and
 attributes on all objects in a class tree. We’ll also use our tools in
 multiple-inheritance mode and deploy coding techniques that make classes
 better suited to use as generic tools.
Unlike Chapter 28, we’ll also
 code this with a __str__ instead of a
 __repr__. This is partially a style
 issue and limits their role to print
 and str, but the displays we’ll be
 developing will be rich enough to be categorized as more user-friendly
 than as-code. This policy also leaves client classes the option of
 coding an alternative lower-level display for interactive echoes and
 nested appearances with a __repr__.
 Using __repr__ here would still allow
 an alternative __str__, but the
 nature of the displays we’ll be implementing more
 strongly suggests a __str__ role. See
 Chapter 30 for a review of these
 distinctions.
Listing instance attributes with __dict__
Let’s get started with the simple case—listing attributes attached to an instance.
 The following class, coded in the file listinstance.py, defines a mix-in called
 ListInstance that overloads the
 __str__ method for all classes that
 include it in their header lines. Because this is coded as a class,
 ListInstance is a generic tool
 whose formatting logic can be used for instances of any subclass
 client:
#!python
File listinstance.py (2.X + 3.X)

class ListInstance:
 """
 Mix-in class that provides a formatted print() or str() of instances via
 inheritance of __str__ coded here; displays instance attrs only; self is
 instance of lowest class; __X names avoid clashing with client's attrs
 """
 def __attrnames(self):
 result = ''
 for attr in sorted(self.__dict__):
 result += '\t%s=%s\n' % (attr, self.__dict__[attr])
 return result

 def __str__(self):
 return '<Instance of %s, address %s:\n%s>' % (
 self.__class__.__name__, # My class's name
 id(self), # My address
 self.__attrnames()) # name=value list

if __name__ == '__main__':
 import testmixin
 testmixin.tester(ListInstance)
All the code in this section runs in both Python 2.X and 3.X. A
 coding note: this code exhibits a classic comprehension pattern, and
 you could save some program real estate by implementing the __attrnames method here more concisely with
 a generator expression that is triggered by the
 string join method, but it’s
 arguably less clear—expressions that wrap lines like this should
 generally make you consider simpler coding alternatives:
 def __attrnames(self):
 return ''.join('\t%s=%s\n' % (attr, self.__dict__ [attr])
 for attr in sorted(self.__dict__))
ListInstance uses some
 previously explored tricks to extract the instance’s class name and
 attributes:
	Each instance has a built-in __class__ attribute that references the
 class from which it was created, and each class has a __name__
 attribute that references the name in the header, so the
 expression self.__class__.__name__ fetches the name
 of an instance’s class.

	This class does most of its work by simply scanning the
 instance’s attribute dictionary (remember, it’s exported in
 __dict__) to build up a string
 showing the names and values of all instance attributes. The
 dictionary’s keys are sorted to finesse any ordering differences
 across Python releases.

In these respects, ListInstance is similar to Chapter 28’s attribute display; in fact,
 it’s largely just a variation on a theme. Our class here uses two
 additional techniques, though:
	It displays the instance’s memory address by calling
 the id built-in
 function, which returns any object’s address (by definition, a
 unique object identifier, which will be useful in later mutations
 of this code).

	It uses the pseudoprivate naming
 pattern for its worker method: __attrnames. As we learned earlier in
 this chapter, Python automatically localizes any such name to its
 enclosing class by expanding the attribute name to include the
 class name (in this case, it becomes _ListInstance__attrnames). This holds
 true for both class attributes (like methods) and instance
 attributes attached to self. As
 noted in Chapter 28’s first-cut
 version, this behavior is useful in a general tool like this, as
 it ensures that its names don’t clash with any names used in its
 client subclasses.

Because ListInstance defines
 a __str__ operator overloading
 method, instances derived from this class display their attributes
 automatically when printed, giving a bit more information than a
 simple address. Here is the class in action, in single-inheritance
 mode, mixed in to the previous section’s class (this code works the
 same in both Python 3.X and 2.X, though 2.X default repr displays use the label “instance”
 instead of “object”):
>>> from listinstance import ListInstance
>>> class Spam(ListInstance): # Inherit a __str__ method
 def __init__(self):
 self.data1 = 'food'

>>> x = Spam()
>>> print(x) # print() and str() run __str__
<Instance of Spam, address 43034496:
 data1=food
>
You can also fetch and save the listing output as a string
 without printing it with str, and
 interactive echoes still use the default format because we’ve left
 __repr__ as an option for
 clients:
>>> display = str(x) # Print this to interpret escapes
>>> display
'<Instance of Spam, address 43034496:\n\tdata1=food\n>'

>>> x # The __repr__ still is a default
<__main__.Spam object at 0x000000000290A780>
The ListInstance class is
 useful for any classes you write—even classes that already have one or
 more superclasses. This is where multiple
 inheritance comes in handy: by adding ListInstance to the list of superclasses in
 a class header (i.e., mixing it in), you get its __str__ “for free” while still inheriting
 from the existing superclass(es). The file testmixin0.py demonstrates with a first-cut
 testing script:
File testmixin0.py
from listinstance import ListInstance # Get lister tool class

class Super:
 def __init__(self): # Superclass __init__
 self.data1 = 'spam' # Create instance attrs
 def ham(self):
 pass

class Sub(Super, ListInstance): # Mix in ham and a __str__
 def __init__(self): # Listers have access to self
 Super.__init__(self)
 self.data2 = 'eggs' # More instance attrs
 self.data3 = 42
 def spam(self): # Define another method here
 pass

if __name__ == '__main__':
 X = Sub()
 print(X) # Run mixed-in __str__
Here, Sub inherits names from
 both Super and ListInstance; it’s a composite of its own
 names and names in both its superclasses. When you make a Sub instance and print it, you automatically
 get the custom representation mixed in from ListInstance (in this case, this script’s
 output is the same under both Python 3.X and 2.X, except for object
 addresses, which can naturally vary per process):
c:\code> python testmixin0.py
<Instance of Sub, address 44304144:
 data1=spam
 data2=eggs
 data3=42
>
This testmixin0 testing
 script works, but it hardcodes the tested class’s name in the code,
 and makes it difficult to experiment with alternatives—as we will in a
 moment. To be more flexible, we can borrow a page from Chapter 25’s module reloaders, and pass in
 the object to be tested, as in the following improved test script,
 testmixin—the one actually used
 by all the lister class modules’ self-test code. In this context the
 object passed in to the tester is a mix-in class
 instead of a function, but the principle is similar: everything
 qualifies as a passable “first class” object in Python:
#!python
File testmixin.py (2.X + 3.X)
"""
Generic lister mixin tester: similar to transitive reloader in
Chapter 25, but passes a class object to tester (not function),
and testByNames adds loading of both module and class by name
strings here, in keeping with Chapter 31's factories pattern.
"""
import importlib

def tester(listerclass, sept=False):

 class Super:
 def __init__(self): # Superclass __init__
 self.data1 = 'spam' # Create instance attrs
 def ham(self):
 pass

 class Sub(Super, listerclass): # Mix in ham and a __str__
 def __init__(self): # Listers have access to self
 Super.__init__(self)
 self.data2 = 'eggs' # More instance attrs
 self.data3 = 42
 def spam(self): # Define another method here
 pass

 instance = Sub() # Return instance with lister's __str__
 print(instance) # Run mixed-in __str__ (or via str(x))
 if sept: print('-' * 80)

def testByNames(modname, classname, sept=False):
 modobject = importlib.import_module(modname) # Import by namestring
 listerclass = getattr(modobject, classname) # Fetch attr by namestring
 tester(listerclass, sept)

if __name__ == '__main__':
 testByNames('listinstance', 'ListInstance', True) # Test all three here
 testByNames('listinherited', 'ListInherited', True)
 testByNames('listtree', 'ListTree', False)
While it’s at it, this script also adds the ability to specify
 test module and class by name string, and
 leverages this in its self-test code—an application of the factory
 pattern’s mechanics described earlier. Here is the new script in
 action, being run by the lister module that imports it to test its own
 class (with the same results in 2.X and 3.X again); we can run the
 test script itself too, but that mode tests the two lister variants,
 which we have yet to see (or code!):
c:\code> python listinstance.py
<Instance of Sub, address 43256968:
 data1=spam
 data2=eggs
 data3=42
>

c:\code> python testmixin.py
<Instance of Sub, address 43977584:
 data1=spam
 data2=eggs
 data3=42
>
...and tests of two other lister classes coming up...
The ListInstance class we’ve
 coded so far works in any class it’s mixed into because self refers to an instance of the subclass
 that pulls this class in, whatever that may be. Again, in a sense,
 mix-in classes are the class equivalent of modules—packages of methods
 useful in a variety of clients. For example, here is ListInstance working again in
 single-inheritance mode on a different class’s instances, loaded with
 import, and displaying attributes
 assigned outside the class:
>>> import listinstance
>>> class C(listinstance.ListInstance): pass

>>> x = C()
>>> x.a, x.b, x.c = 1, 2, 3
>>> print(x)
<Instance of C, address 43230824:
 a=1
 b=2
 c=3
>
Besides the utility they provide, mix-ins optimize code
 maintenance, like all classes do. For example, if you later decide to
 extend ListInstance’s __str__ to also print all the class
 attributes that an instance inherits, you’re safe; because it’s an
 inherited method, changing __str__
 automatically updates the display of each subclass that imports the
 class and mixes it in. And since it’s now officially “later,” let’s
 move on to the next section to see what such an extension might look
 like.

Listing inherited attributes with dir
As it is, our ListInstance
 mix-in displays instance attributes only (i.e., names attached to the instance
 object itself). It’s trivial to extend the class to display all the
 attributes accessible from an instance, though—both its own and those
 it inherits from its classes. The trick is to use the dir built-in function instead of scanning
 the instance’s __dict__ dictionary;
 the latter holds instance attributes only, but the former also
 collects all inherited attributes in Python 2.2 and later.
The following mutation codes this scheme; I’ve coded this in its
 own module to facilitate simple testing, but if existing clients were
 to use this version instead they would pick up the new display
 automatically (and recall from Chapter 25 that an import’s as clause can rename a new version to a
 prior name being used):
#!python
File listinherited.py (2.X + 3.X)

class ListInherited:
 """
 Use dir() to collect both instance attrs and names inherited from
 its classes; Python 3.X shows more names than 2.X because of the
 implied object superclass in the new-style class model; getattr()
 fetches inherited names not in self.__dict__; use __str__, not
 __repr__, or else this loops when printing bound methods!
 """
 def __attrnames(self):
 result = ''
 for attr in dir(self): # Instance dir()
 if attr[:2] == '__' and attr[-2:] == '__': # Skip internals
 result += '\t%s\n' % attr
 else:
 result += '\t%s=%s\n' % (attr, getattr(self, attr))
 return result

 def __str__(self):
 return '<Instance of %s, address %s:\n%s>' % (
 self.__class__.__name__, # My class's name
 id(self), # My address
 self.__attrnames()) # name=value list

if __name__ == '__main__':
 import testmixin
 testmixin.tester(ListInherited)
Notice that this code skips __X__ names’ values; most of these are internal
 names that we don’t generally care about in a generic listing like
 this. This version also must use the getattr built-in function to fetch
 attributes by name string instead of using instance attribute
 dictionary indexing—getattr employs
 the inheritance search protocol, and some of the names we’re listing
 here are not stored on the instance itself.
To test the new version, run its file directly—it passes the
 class it defines to the testmixin.py file’s test function to be
 used as a mix-in in a subclass. This output of this test and lister
 class varies per release, though, because dir results differ. In Python 2.X, we get
 the following; notice the name mangling at work in the lister’s method
 name (I truncated some of the full value displays to fit on this
 page):
c:\code> c:\python27\python listinherited.py
<Instance of Sub, address 35161352:
 _ListInherited__attrnames=<bound method Sub.__attrnames of <test...more...>>
 __doc__
 __init__
 __module__
 __str__
 data1=spam
 data2=eggs
 data3=42
 ham=<bound method Sub.ham of <testmixin.Sub instance at 0x00000...more...>>
 spam=<bound method Sub.spam of <testmixin.Sub instance at 0x00000...more...>>
>
In Python 3.X, more attributes are displayed because all classes
 are “new style” and inherit names from the implied object superclass; more on this in Chapter 32. Because so many names are
 inherited from the default superclass, I’ve omitted many here—there
 are 32 in total in 3.3. Run this on your own for the full
 listing:
c:\code> c:\python33\python listinherited.py
<Instance of Sub, address 43253152:
 _ListInherited__attrnames=<bound method Sub.__attrnames of <test...more...>>
 __class__
 __delattr__
 __dict__
 __dir__
 __doc__
 __eq__
 ...more names omitted 32 total...
 __repr__
 __setattr__
 __sizeof__
 __str__
 __subclasshook__
 __weakref__
 data1=spam
 data2=eggs
 data3=42
 ham=<bound method Sub.ham of <testmixin.tester.<locals>.Sub ...more...>>
 spam=<bound method Sub.spam of <testmixin.tester.<locals>.Sub ...more...>>
>
As one possible improvement to address the proliferation of
 inherited built-in names and long values here, the following
 alternative for __attrnames in file
 listinherited2.py of the book
 example’s package groups the double-underscore names separately, and
 minimizes line wrapping for large attribute values; notice how it
 escapes a % with %% so that just one remains for the final
 formatting operation at the end:
 def __attrnames(self, indent=' '*4):
 result = 'Unders%s\n%s%%s\nOthers%s\n' % ('-'*77, indent, '-'*77)
 unders = []
 for attr in dir(self): # Instance dir()
 if attr[:2] == '__' and attr[-2:] == '__': # Skip internals
 unders.append(attr)
 else:
 display = str(getattr(self, attr))[:82-(len(indent) + len(attr))]
 result += '%s%s=%s\n' % (indent, attr, display)
 return result % ', '.join(unders)
With this change, the class’s test output is a bit more
 sophisticated, but also more concise and usable:
c:\code> c:\python27\python listinherited2.py
<Instance of Sub, address 36299208:
Unders---
 __doc__, __init__, __module__, __str__
Others---
 _ListInherited__attrnames=<bound method Sub.__attrnames of <testmixin.Sub insta
 data1=spam
 data2=eggs
 data3=42
 ham=<bound method Sub.ham of <testmixin.Sub instance at 0x000000000229E1C8>>
 spam=<bound method Sub.spam of <testmixin.Sub instance at 0x000000000229E1C8>>
>

c:\code> c:\python33\python listinherited2.py
<Instance of Sub, address 43318912:
Unders---
 __class__, __delattr__, __dict__, __dir__, __doc__, __eq__, __format__, __ge__,
__getattribute__, __gt__, __hash__, __init__, __le__, __lt__, __module__, __ne__,
__new__, __qualname__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__,
__str__, __subclasshook__, __weakref__
Others---
 _ListInherited__attrnames=<bound method Sub.__attrnames of <testmixin.tester.<l
 data1=spam
 data2=eggs
 data3=42
 ham=<bound method Sub.ham of <testmixin.tester.<locals>.Sub object at 0x0000000
 spam=<bound method Sub.spam of <testmixin.tester.<locals>.Sub object at 0x00000
>
Display format is an open-ended problem (e.g., Python’s standard
 pprint “pretty printer” module may
 offer options here too), so we’ll leave further polishing as a
 suggested exercise. The tree lister of the next section may be more
 useful in any event.
Note
Looping in
 __repr__: One caution here—now that we’re
 displaying inherited methods too, we have to use __str__ instead of __repr__ to overload printing. With
 __repr__, this code will fall
 into recursive loops—displaying the value of a
 method triggers the __repr__ of
 the method’s class, in order to display the class. That is, if the
 lister’s __repr__ tries to
 display a method, displaying the method’s class will trigger the
 lister’s __repr__ again. Subtle,
 but true! Change __str__ to
 __repr__ here to see this for
 yourself. If you must use __repr__ in such a context, you can avoid
 the loops by using isinstance to
 compare the type of attribute values against types.MethodType in the standard library,
 to know which items to skip.

Listing attributes per object in class trees
Let’s code one last extension. As it is, our latest lister includes inherited names, but doesn’t
 give any sort of designation of the classes from which the names are
 acquired. As we saw in the classtree.py example near the end of Chapter 29, though, it’s straightforward to
 climb class inheritance trees in code. The following mix-in class,
 coded in the file listtree.py,
 makes use of this same technique to display attributes grouped by the
 classes they live in—it sketches the full physical class
 tree, displaying attributes attached to each object along
 the way. The reader must still infer attribute inheritance, but this
 gives substantially more detail than a simple flat list:
#!python
File listtree.py (2.X + 3.X)

class ListTree:
 """
 Mix-in that returns an __str__ trace of the entire class tree and all
 its objects' attrs at and above self; run by print(), str() returns
 constructed string; uses __X attr names to avoid impacting clients;
 recurses to superclasses explicitly, uses str.format() for clarity;
 """
 def __attrnames(self, obj, indent):
 spaces = ' ' * (indent + 1)
 result = ''
 for attr in sorted(obj.__dict__):
 if attr.startswith('__') and attr.endswith('__'):
 result += spaces + '{0}\n'.format(attr)
 else:
 result += spaces + '{0}={1}\n'.format(attr, getattr(obj, attr))
 return result

 def __listclass(self, aClass, indent):
 dots = '.' * indent
 if aClass in self.__visited:
 return '\n{0}<Class {1}:, address {2}: (see above)>\n'.format(
 dots,
 aClass.__name__,
 id(aClass))
 else:
 self.__visited[aClass] = True
 here = self.__attrnames(aClass, indent)
 above = ''
 for super in aClass.__bases__:
 above += self.__listclass(super, indent+4)
 return '\n{0}<Class {1}, address {2}:\n{3}{4}{5}>\n'.format(
 dots,
 aClass.__name__,
 id(aClass),
 here, above,
 dots)

 def __str__(self):
 self.__visited = {}
 here = self.__attrnames(self, 0)
 above = self.__listclass(self.__class__, 4)
 return '<Instance of {0}, address {1}:\n{2}{3}>'.format(
 self.__class__.__name__,
 id(self),
 here, above)

if __name__ == '__main__':
 import testmixin
 testmixin.tester(ListTree)
This class achieves its goal by traversing the inheritance
 tree—from an instance’s __class__
 to its class, and then from the class’s __bases__ to
 all superclasses recursively, scanning each object’s attribute __dict__
 along the way. Ultimately, it concatenates each tree portion’s string
 as the recursion unwinds.
It can take a while to understand recursive programs like this,
 but given the arbitrary shape and depth of class trees, we really have
 no choice here (apart from explicit stack equivalents of the sorts we
 met in Chapter 19 and Chapter 25, which tend to be no simpler, and
 which we’ll omit here for space and time). This class is coded to keep
 its business as explicit as possible, though, to maximize
 clarity.
For example, you could replace the __listclass method’s loop statement in the
 first of the following with the implicitly run generator expression in
 the second, but the second seems unnecessarily convoluted in this
 context—recursive calls embedded in a generator expression—and has
 no obvious performance advantage, especially given this program’s
 limited scope (neither alternative makes a temporary list, though the
 first may create more temporary results depending on the internal
 implementation of strings, concatenation, and join—something you’d need to time with Chapter 21’s tools to determine):
 above = ''
 for super in aClass.__bases__:
 above += self.__listclass(super, indent+4)
...or...
 above = ''.join(
 self.__listclass(super, indent+4) for super in aClass.__bases__)
You could also code the else
 clause in __listclass like the
 following, as in the prior edition of this book—an alternative that
 embeds everything in the format
 arguments list; relies on the fact that the join call kicks off the generator expression
 and its recursive calls before the format
 operation even begins building up the result text; and seems more
 difficult to understand, despite the fact that I wrote it (never a
 good sign!):
 self.__visited[aClass] = True
 genabove = (self.__listclass(c, indent+4) for c in aClass.__bases__)
 return '\n{0}<Class {1}, address {2}:\n{3}{4}{5}>\n'.format(
 dots,
 aClass.__name__,
 id(aClass),
 self.__attrnames(aClass, indent), # Runs before format!
 ''.join(genabove),
 dots)
As always, explicit is better than implicit, and your code can
 be as big a factor in this as the tools it uses.
Also notice how this version uses the Python 3.X and 2.6/2.7
 string format method
 instead of % formatting
 expressions, in an effort to make substitutions arguably clearer; when
 many substitutions are applied like this, explicit argument numbers
 may make the code easier to decipher. In short, in this version we
 exchange the first of the following lines for the second:
 return '<Instance of %s, address %s:\n%s%s>' % (...) # Expression
 return '<Instance of {0}, address {1}:\n{2}{3}>'.format(...) # Method
This policy has an unfortunate downside in 3.2 and 3.3 too, but
 we have to run the code to see why.

Running the tree lister
Now, to test, run this class’s module file as before; it passes
 the ListTree class to testmixin.py to be mixed in with a subclass
 in the test function. The file’s tree-sketcher output in Python 2.X is
 as follows:
c:\code> c:\python27\python listtree.py
<Instance of Sub, address 36690632:
 _ListTree__visited={}
 data1=spam
 data2=eggs
 data3=42

....<Class Sub, address 36652616:
 __doc__
 __init__
 __module__
 spam=<unbound method Sub.spam>

........<Class Super, address 36652712:
 __doc__
 __init__
 __module__
 ham=<unbound method Super.ham>
........>

........<Class ListTree, address 30795816:
 _ListTree__attrnames=<unbound method ListTree.__attrnames>
 _ListTree__listclass=<unbound method ListTree.__listclass>
 __doc__
 __module__
 __str__
........>
....>
>
Notice in this output how methods are
 unbound now under 2.X, because we fetch them from
 classes directly. In the previous section’s
 version they displayed as bound methods, because
 ListInherited fetched these from
 instances with getattr instead (the first version indexed
 the instance __dict__ and did not
 display inherited methods on classes at all). Also observe how the
 lister’s __visited table has its
 name mangled in the instance’s attribute dictionary; unless we’re very
 unlucky, this won’t clash with other data there. Some of the lister
 class’s methods are mangled for pseudoprivacy as well.
Under Python 3.X in the following, we again get extra attributes
 which may vary within the 3.X line, and extra superclasses—as we’ll
 learn in the next chapter, all top-level classes inherit from the
 built-in object class automatically
 in 3.X; Python 2.X classes do so manually if they desire new-style
 class behavior. Also notice that the attributes that were unbound
 methods in 2.X are simple functions in 3.X, as
 described earlier in this chapter (and that again, I’ve deleted most
 built-in attributes in object to
 save space here; run this on your own for the complete
 listing):
c:\code> c:\python33\python listtree.py
<Instance of Sub, address 44277488:
 _ListTree__visited={}
 data1=spam
 data2=eggs
 data3=42

....<Class Sub, address 36990264:
 __doc__
 __init__
 __module__
 __qualname__
 spam=<function tester.<locals>.Sub.spam at 0x0000000002A3C840>

........<Class Super, address 36989352:
 __dict__
 __doc__
 __init__
 __module__
 __qualname__
 __weakref__
 ham=<function tester.<locals>.Super.ham at 0x0000000002A3C730>

............<Class object, address 506770624:
 __class__
 __delattr__
 __dir__
 __doc__
 __eq__
 ...more omitted: 22 total...
 __repr__
 __setattr__
 __sizeof__
 __str__
 __subclasshook__
............>
........>

........<Class ListTree, address 36988440:
 _ListTree__attrnames=<function ListTree.__attrnames at 0x0000000002A3C158>
 _ListTree__listclass=<function ListTree.__listclass at 0x0000000002A3C1E0>
 __dict__
 __doc__
 __module__
 __qualname__
 __str__
 __weakref__

............<Class object:, address 506770624: (see above)>
........>
....>
>
This version avoids listing the same class object twice by
 keeping a table of classes visited so far (this
 is why an object’s id is
 included—to serve as a key for a previously displayed item in the
 report). Like the transitive module reloader of Chapter 25, a dictionary works to avoid
 repeats in the output because class objects are hashable and thus may
 be dictionary keys; a set would provide similar functionality.
Technically, cycles are not generally
 possible in class inheritance trees—a class must already have been
 defined to be named as a superclass, and Python raises an exception as
 it should if you attempt to create a cycle later by __bases__ changes—but the visited mechanism
 here avoids relisting a class twice:
>>> class C: pass
>>> class B(C): pass
>>> C.__bases__ = (B,) # Deep, dark magic!
TypeError: a __bases__ item causes an inheritance cycle

Usage variation: Showing underscore name values
This version also takes care to avoid displaying large
 internal objects by skipping __X__ names again. If you comment out the code
 that treats these names specially:
 for attr in sorted(obj.__dict__):
if attr.startswith('__') and attr.endswith('__'):
result += spaces + '{0}\n'.format(attr)
else:
 result += spaces + '{0}={1}\n'.format(attr, getattr(obj, attr))
then their values will display normally. Here’s the output in
 2.X with this temporary change made, giving the values of every
 attribute in the class tree:
c:\code> c:\python27\python listtree.py
<Instance of Sub, address 35750408:
 _ListTree__visited={}
 data1=spam
 data2=eggs
 data3=42

....<Class Sub, address 36353608:
 __doc__=None
 __init__=<unbound method Sub.__init__>
 __module__=testmixin
 spam=<unbound method Sub.spam>

........<Class Super, address 36353704:
 __doc__=None
 __init__=<unbound method Super.__init__>
 __module__=testmixin
 ham=<unbound method Super.ham>
........>

........<Class ListTree, address 31254568:
 _ListTree__attrnames=<unbound method ListTree.__attrnames>
 _ListTree__listclass=<unbound method ListTree.__listclass>
 __doc__=
 Mix-in that returns an __str__ trace of the entire class tree and all
 its objects' attrs at and above self; run by print(), str() returns
 constructed string; uses __X attr names to avoid impacting clients;
 recurses to superclasses explicitly, uses str.format() for clarity;

 __module__=__main__
 __str__=<unbound method ListTree.__str__>
........>
....>
>
This test’s output is much larger in 3.X and may justify
 isolating underscore names in general as we did earlier. In fact, this
 test may not even work in some currently recent 3.X releases as
 is:
c:\code> c:\python33\python listtree.py
 ...etc...
 File "listtree.py", line 18, in __attrnames
 result += spaces + '{0}={1}\n'.format(attr, getattr(obj, attr))
TypeError: Type method_descriptor doesn't define __format__
I debated recoding to work around this issue, but it serves as a
 fair example of debugging requirements and techniques in a dynamic
 open source project like Python. Per the following note, the str.format call no longer supports certain
 object types that are the values of built-in attribute names—yet
 another reason these names are probably better skipped.
Note
Debugging a str.format issue: In 3.X,
 running the commented-out version works in 3.0 and 3.1, but there
 seems to be a bug, or at least a regression, here in 3.2 and
 3.3—these Pythons fail with an exception because five built-in
 methods in object do not define a
 __format__ expected by str.format, and the default in object is apparently no longer applied
 correctly in such cases with empty and generic formatting targets.
 To see this live, it’s enough to run simplified code that isolates
 the problem:
 c:\code> py −3.1
>>> '{0}'.format(object.__reduce__)
"<method '__reduce__' of 'object' objects>"
c:\code> py −3.3
>>> '{0}'.format(object.__reduce__)
TypeError: Type method_descriptor doesn't define __format__
Per both prior behavior and current Python documentation,
 empty targets like this are supposed to convert the object to its
 str print string (see both the
 original PEP 3101 and the 3.3 language reference manual). Oddly, the
 {0} and {0:s} string targets both now fail, but
 the {0!s} forced str conversion target works, as does
 manual str
 preconversion—apparently reflecting a change for a type-specific
 case that neglected perhaps more common generic usage modes:
c:\code> py −3.3
>>> '{0:s}'.format(object.__reduce__)
TypeError: Type method_descriptor doesn't define __format__
>>> '{0!s}'.format(object.__reduce__)
"<method '__reduce__' of 'object' objects>"
>>> '{0}'.format(str(object.__reduce__))
"<method '__reduce__' of 'object' objects>"
To fix, wrap the format call in a try statement to catch the exception; use
 % formatting expressions instead
 of the str.format method; use one
 of the aforementioned still-working str.format usage modes and hope it does
 not change too; or wait for a repair of this in a later 3.X release.
 Here’s the recommended workaround using the tried-and-true % (it’s also noticeably shorter, but I
 won’t repeat Chapter 7’s comparisons
 here):
c:\code> py −3.3
>>> '%s' % object.__reduce__
"<method '__reduce__' of 'object' objects>"
To apply this in the tree lister’s code, change the first of
 these to its follower:
result += spaces + '{0}={1}\n'.format(attr, getattr(obj, attr))
result += spaces + '%s=%s\n' % (attr, getattr(obj, attr))
Python 2.X has the same regression in 2.7 but not
 2.6—inherited from the 3.2 change, apparently—but does not show
 object methods in this chapter’s
 example. Since this example generates too much output in 3.X anyhow,
 it’s a moot point here, but is a decent example of real-world
 coding. Unfortunately, using newer features like str.format sometimes puts your code in the
 awkward position of beta tester in the current
 3.X line!

Usage variation: Running on larger modules
For more fun, uncomment the underscore handler lines to enable them again, and try mixing this
 class into something more substantial, like the Button class of Python’s tkinter GUI toolkit module. In general,
 you’ll want to name ListTree first
 (leftmost) in a class header, so
 its __str__ is picked up; Button has one, too, and the leftmost
 superclass is always searched first in multiple inheritance.
The output of the following is fairly massive (20K characters
 and 330 lines in 3.X—and 38K if you forget to uncomment the underscore
 detection!), so run this code on your own to see the full listing.
 Notice how our lister’s __visited
 dictionary attribute mixes harmlessly with those created by tkinter itself. If you’re using Python 2.X,
 also recall that you should use Tkinter for the module name instead of
 tkinter:
>>> from listtree import ListTree
>>> from tkinter import Button # Both classes have a __str__
>>> class MyButton(ListTree, Button): pass # ListTree first: use its __str__

>>> B = MyButton(text='spam')
>>> open('savetree.txt', 'w').write(str(B)) # Save to a file for later viewing
20513
>>> len(open('savetree.txt').readlines()) # Lines in the file
330
>>> print(B) # Print the display here
<Instance of MyButton, address 43363688:
 _ListTree__visited={}
 _name=43363688
 _tclCommands=[]
 _w=.43363688
 children={}
 master=.
 ...much more omitted...
>
>>> S = str(B) # Or print just the first part
>>> print(S[:1000])
Experiment arbitrarily on your own. The main point here is that
 OOP is all about code reuse, and mix-in classes are a powerful
 example. Like almost everything else in programming, multiple
 inheritance can be a useful device when applied well. In practice,
 though, it is an advanced feature and can become complicated if used
 carelessly or excessively. We’ll revisit this topic as a gotcha at the
 end of the next chapter.

Collector module
Finally, to make importing our tools even easier, we can provide
 a collector module that combines them in a single namespace—importing
 just the following gives access to all three lister mix-ins at
 once:
File lister.py
Collect all three listers in one module for convenience

from listinstance import ListInstance
from listinherited import ListInherited
from listtree import ListTree

Lister = ListTree # Choose a default lister
Importers can use the individual class names as is, or alias
 them to a common name used in subclasses that can be modified in the
 import statement:
>>> import lister
>>> lister.ListInstance # Use a specific lister
<class 'listinstance.ListInstance'>
>>> lister.Lister # Use Lister default
<class 'listtree.ListTree'>

>>> from lister import Lister # Use Lister default
>>> Lister
<class 'listtree.ListTree'>

>>> from lister import ListInstance as Lister # Use Lister alias
>>> Lister
<class 'listinstance.ListInstance'>
Python often makes flexible tool APIs nearly automatic.

Room for improvement: MRO, slots, GUIs
Like most software, there’s much more we could do here. The following gives
 some pointers on extensions you may wish to explore. Some are
 interesting projects, and two serve as segue to the next chapter, but
 for space will have to remain in the suggested exercise category
 here.
	General ideas: GUIs, built-ins
	Grouping double-underscore names as we did earlier may
 help reduce the size of the tree display, though some like
 __init__ are user-defined and
 may merit special treatment. Sketching the tree in a GUI might
 be a natural next step too—the tkinter toolkit that we utilized in
 the prior section’s lister examples ships with Python and
 provides basic but easy support, and others offer richer but
 more complex alternatives. See the notes at the end of Chapter 28’s case study for more
 pointers in this department.

	Physical trees versus inheritance: using the MRO
 (preview)
	In the next chapter, we’ll also meet the new-style class model, which modifies the search
 order for one special multiple inheritance case (diamonds).
 There, we’ll also study the class.__mro__ new-style class object
 attribute—a tuple giving the class tree search order used by
 inheritance, known as the new-style MRO.
As is, our ListTree
 tree lister sketches the physical shape of
 the inheritance tree, and expects the viewer to infer from this
 where an attribute is inherited from. This was its goal, but a
 general object viewer might also use the MRO tuple to
 automatically associate an attribute with the class from which
 it is inherited—by scanning the new-style
 MRO (or the classic classes’ DFLR ordering) for each inherited
 attribute in a dir result, we
 can simulate Python’s inheritance search, and map attributes to
 their source objects in the physical class tree
 displayed.
In fact, we will write code that
 comes very close to this idea in the next chapter’s mapattrs module, and reuse this
 example’s test classes there to demonstrate the idea, so stay
 tuned for an epilogue to this story. This might be used instead
 of or in addition to displaying attribute physical locations in
 __attrnames here; both forms
 might be useful data for programmers to see. This approach is
 also one way to deal with slots, the topic of the next
 note.

	Virtual data: slots, properties, and more (preview)
	Because they scan instance __dict__ namespace dictionaries, the
 ListInstance and ListTree classes presented here raise
 some subtle design issues. In Python classes, some names
 associated with instance data may not be stored at the instance
 itself. This includes topics presented in the next chapter such
 as new-style properties, slots, and descriptors, but also
 attributes dynamically computed in all classes with tools like
 __getattr__. None of these
 “virtual” attributes’ names are stored in an instance’s
 namespace dictionary, so none will be displayed as part of an
 instance’s own data.
Of these, slots seem the most
 strongly associated with an instance; they store data on
 instances, even though their names don’t appear in instance
 namespace dictionaries. Properties and descriptors are
 associated with instances too, but they don’t reserve space in
 the instance, their computed nature is much more explicit, and
 they may seem closer to class-level methods than instance
 data.
As we’ll see in the next chapter, slots function like
 instance attributes, but are created and managed by
 automatically created items in classes. They are a relatively
 infrequently used new-style class option, where instance
 attributes are declared in a __slots__ class attribute, and not
 physically stored in an instance’s __dict__; in fact, slots may suppress
 a __dict__ entirely. Because
 of this, tools that display instances by scanning their
 namespaces alone won’t directly associate the instance with
 attributes stored in slots. As is, ListTree displays slots as class
 attributes wherever they appear (though not at the instance),
 and ListInstance doesn’t
 display them at all.
Though this will make more sense after we study this
 feature in the next chapter, it impacts code here and similar
 tools. For example, if in textmixin.py we assign __slots__=['data1'] in Super and __slots__=['data3'] in Sub, only the data2 attribute is displayed in the
 instance by these two lister classes. ListTree also displays data1 and data3, but as attributes of the
 Super and Sub class objects
 and with a special format for their values (technically, they
 are class-level descriptors, another new-style tool introduced
 in the next chapter).
As the next chapter will explain, to show slot attributes
 as instance names, tools generally need to use dir to get a list of all
 attributes—both physically present and inherited—and then use
 either getattr to fetch their
 values from the instance, or fetch values from their inheritance
 source via __dict__ in tree
 scans and accept the display of the implementations of some at
 classes. Because dir includes
 the names of inherited “virtual” attributes—including both slots
 and properties—they would be included in the instance set. As
 we’ll also find, the MRO might assist here to map dir attribute to their sources, or
 restrict instance displays to names coded in user-defined
 classes by filtering out names inherited from the built-in
 object.
ListInherited is immune
 to most of this, because it already displays the full dir results set, which include both
 __dict__ names and all
 classes’ __slots__ names,
 though its display is of marginal use as is. A ListTree variant using the dir technique along with the MRO
 sequence to map attributes to classes would apply to slots too,
 because slots-based names appear in class’s __dict__ results individually as slot
 management tools, though not in the instance __dict__.
Alternatively, as a policy we could simply let our code
 handle slot-based attributes as it currently does, rather than
 complicating it for a rarely used, advanced feature that’s even
 questionable practice today. Slots and normal instance
 attributes are different kinds of names. In fact, displaying
 slots names as attributes of classes instead of instances is
 technically more accurate—as we’ll see in the next chapter their
 implementation is at classes, though their space is at
 instances.
Ultimately, attempting to collect all the “virtual”
 attributes associated with a class may be a bit of a pipe dream
 anyhow. Techniques like those outlined here may address slots
 and properties, but some attributes are
 entirely dynamic, with no physical basis at
 all: those computed on fetch by generic method such as __getattr__ are not data in the
 classic sense. Tools that attempt to display data in a wildly
 dynamic language like Python must come with the caveat that some
 data is ethereal at best!3

We’ll also make a minor extension to this section’s code in the
 exercises at the end of this part of the book, to list superclass
 names in parentheses at the start of instance displays, so keep it
 filed for future reference for now. To better understand the last of
 the preceding two points, we need to wrap up this chapter and move on
 to the next and last in this part of the book.

Other Design-Related Topics
In this chapter, we’ve studied inheritance, composition, delegation,
 multiple inheritance, bound methods, and factories—all common patterns
 used to combine classes in Python programs. We’ve really only scratched
 the surface here in the design patterns domain, though. Elsewhere in this
 book you’ll find coverage of other design-related topics, such as:
	Abstract superclasses (Chapter 29)

	Decorators (Chapter 32 and Chapter 39)

	Type subclasses (Chapter 32)

	Static and class methods (Chapter 32)

	Managed attributes (Chapter 32 and Chapter 38)

	Metaclasses (Chapter 32 and Chapter 40)

For more details on design patterns, though, we’ll delegate to other
 resources on OOP at large. Although patterns are important in OOP work and
 are often more natural in Python than other languages, they are not
 specific to Python itself, and a subject that’s often best acquired by
 experience.

Chapter Summary
In this chapter, we sampled common ways to use and combine classes
 to optimize their reusability and factoring benefits—what are usually
 considered design issues that are often independent of any particular
 programming language (though Python can make them easier to implement). We
 studied delegation (wrapping objects in proxy
 classes), composition (controlling embedded objects),
 and inheritance (acquiring behavior from other
 classes), as well as some more esoteric concepts such as pseudoprivate
 attributes, multiple inheritance, bound methods, and factories.
The next chapter ends our look at classes and OOP by surveying more
 advanced class-related topics. Some of its material may be of more
 interest to tool writers than application programmers, but it still merits
 a review by most people who will do OOP in Python—if not for your code,
 then for the code of others you may need to understand. First, though,
 here’s another quick chapter quiz to review.

Test Your Knowledge: Quiz
	What is multiple inheritance?

	What is delegation?

	What is composition?

	What are bound methods?

	What are pseudoprivate attributes used for?

Test Your Knowledge: Answers
	Multiple inheritance occurs when a class inherits from more than
 one superclass; it’s useful for mixing together multiple packages of
 class-based code. The left-to-right order in class statement headers determines the
 general order of attribute searches.

	Delegation involves wrapping an object in a proxy class, which
 adds extra behavior and passes other operations to the wrapped object.
 The proxy retains the interface of the wrapped object.

	Composition is a technique whereby a controller class embeds and
 directs a number of objects, and provides an interface all its own;
 it’s a way to build up larger structures with classes.

	Bound methods combine an instance and a method function; you can
 call them without passing in an instance object explicitly because the
 original instance is still available.

	Pseudoprivate attributes (whose names begin but do not end with
 two leading underscores: __X) are used to
 localize names to the enclosing class. This includes both class
 attributes like methods defined inside the class, and self instance attributes assigned inside the
 class’s methods. Such names are expanded to include the class name,
 which makes them generally unique.

1 This tends to scare people with a C++ background
 disproportionately. In Python, it’s even possible to change or
 completely delete a class’s method at runtime. On the other hand,
 almost nobody ever does this in practical programs. As a scripting
 language, Python is more about enabling than restricting. Also, recall
 from our discussion of operator overloading in Chapter 30 that __getattr__ and __setattr__ can be used to emulate privacy,
 but are generally not used for this purpose in practice. More on this
 when we code a more realistic privacy decorator in Chapter 39.
2 Actually, this syntax can invoke any callable object, including
 functions, classes, and methods. Hence, the factory function here can also run any
 callable object, not just a class (despite the argument name). Also,
 as we learned in Chapter 18, Python 2.X has an
 alternative to aClass(*pargs,
 **kargs): the apply(aClass, pargs,
 kargs) built-in call, which has been removed in Python 3.X
 because of its redundancy and limitations.
3 Some dynamic and proxy objects based on
 __getattr__ and the like can also use the
 __dir__ operator overloading method to
 manually publish an attributes list for
 dir calls. Because this is optional,
 though, general tools cannot rely on their client classes to
 do so. See Python
 Pocket Reference, 5th Edition for more on the
 __dir__ method.

Chapter 32. Advanced Class Topics
This chapter concludes our look at OOP in Python by presenting a few
 more advanced class-related topics: we will survey subclassing built-in
 types, “new style” class changes and extensions, static and class methods,
 slots and properties, function and class decorators, the MRO and the
 super call, and more.
As we’ve seen, Python’s OOP model is, at its core, relatively simple,
 and some of the topics presented in this chapter are so advanced and
 optional that you may not encounter them very often in your Python
 applications-programming career. In the interest of completeness, though—and
 because you never know when an “advanced” topic may crop up in code you
 use—we’ll round out our discussion of classes with a brief look at these
 advanced tools for OOP work.
As usual, because this is the last chapter in this part of the book,
 it ends with a section on class-related “gotchas,” and the set of lab
 exercises for this part. I encourage you to work through the exercises to
 help cement the ideas we’ve studied here. I also suggest working on or
 studying larger OOP Python projects as a supplement to this book. As with
 much in computing, the benefits of OOP tend to become more apparent with
 practice.
Note
Content notes: This chapter collects advanced
 class topics, but some are too large for this chapter to cover well.
 Topics such as properties, descriptors, decorators, and metaclasses are
 mentioned only briefly here, and given a fuller treatment in the
 final part of this book, after exceptions. Be sure to
 look ahead for more complete examples and extended coverage of some of the
 subjects that fall into this chapter’s category.
You’ll also notice that this is the largest
 chapter in this book—I’m assuming that readers courageous enough to take
 on this chapter’s topics are ready to roll up their sleeves and explore
 its in-depth coverage. If you’re not looking for advanced OOP topics, you
 may wish to skip ahead to chapter-end materials, and come back here when
 you confront these tools in the code of your programming future.

Extending Built-in Types
Besides implementing new kinds of objects, classes are sometimes used to extend
 the functionality of Python’s built-in types to support more exotic data
 structures. For instance, to add queue insert and delete methods to lists,
 you can code classes that wrap (embed) a list object and export insert and
 delete methods that process the list specially, like the delegation
 technique we studied in Chapter 31. As of
 Python 2.2, you can also use inheritance to specialize built-in types. The
 next two sections show both techniques in action.
Extending Types by Embedding
Do you remember those set functions we wrote in Chapter 16
 and Chapter 18? Here’s what they look like brought
 back to life as a Python class. The following example (the file
 setwrapper.py) implements a new set
 object type by moving some of the set functions to methods and adding
 some basic operator overloading. For the most part, this class just
 wraps a Python list with extra set operations. But because it’s a class,
 it also supports multiple instances and customization by inheritance in
 subclasses. Unlike our earlier functions, using classes here allows us
 to make multiple self-contained set objects with preset data and
 behavior, rather than passing lists into functions manually:
class Set:
 def __init__(self, value = []): # Constructor
 self.data = [] # Manages a list
 self.concat(value)

 def intersect(self, other): # other is any sequence
 res = [] # self is the subject
 for x in self.data:
 if x in other: # Pick common items
 res.append(x)
 return Set(res) # Return a new Set

 def union(self, other): # other is any sequence
 res = self.data[:] # Copy of my list
 for x in other: # Add items in other
 if not x in res:
 res.append(x)
 return Set(res)

 def concat(self, value): # value: list, Set...
 for x in value: # Removes duplicates
 if not x in self.data:
 self.data.append(x)

 def __len__(self): return len(self.data) # len(self), if self
 def __getitem__(self, key): return self.data[key] # self[i], self[i:j]
 def __and__(self, other): return self.intersect(other) # self & other
 def __or__(self, other): return self.union(other) # self | other
 def __repr__(self): return 'Set:' + repr(self.data) # print(self),...
 def __iter__(self): return iter(self.data) # for x in self,...
To use this class, we make instances, call methods, and run
 defined operators as usual:
from setwrapper import Set
x = Set([1, 3, 5, 7])
print(x.union(Set([1, 4, 7]))) # prints Set:[1, 3, 5, 7, 4]
print(x | Set([1, 4, 6])) # prints Set:[1, 3, 5, 7, 4, 6]
Overloading operations such as indexing and iteration also enables
 instances of our Set class to often
 masquerade as real lists. Because you will interact with and extend this
 class in an exercise at the end of this chapter, I won’t say much more
 about this code until Appendix D.

Extending Types by Subclassing
Beginning with Python 2.2, all the built-in types in the language can now be subclassed
 directly. Type-conversion functions such as list, str,
 dict, and tuple have become built-in type names—although
 transparent to your script, a type-conversion call (e.g., list('spam')) is now really an invocation of a
 type’s object constructor.
This change allows you to customize or extend the behavior of
 built-in types with user-defined class statements: simply subclass the new type
 names to customize them. Instances of your type subclasses can generally
 be used anywhere that the original built-in type can appear. For
 example, suppose you have trouble getting used to the fact that Python
 list offsets begin at 0 instead of 1. Not to worry—you can always code
 your own subclass that customizes this core behavior of lists. The file
 typesubclass.py shows how:
Subclass built-in list type/class
Map 1..N to 0..N-1; call back to built-in version.

class MyList(list):
 def __getitem__(self, offset):
 print('(indexing %s at %s)' % (self, offset))
 return list.__getitem__(self, offset - 1)

if __name__ == '__main__':
 print(list('abc'))
 x = MyList('abc') # __init__ inherited from list
 print(x) # __repr__ inherited from list

 print(x[1]) # MyList.__getitem__
 print(x[3]) # Customizes list superclass method

 x.append('spam'); print(x) # Attributes from list superclass
 x.reverse(); print(x)
In this file, the MyList
 subclass extends the built-in list’s __getitem__ indexing method only, to map
 indexes 1 to N back to the required 0 to N−1. All it really does is
 decrement the submitted index and call back to the superclass’s version
 of indexing, but it’s enough to do the trick:
% python typesubclass.py
['a', 'b', 'c']
['a', 'b', 'c']
(indexing ['a', 'b', 'c'] at 1)
a
(indexing ['a', 'b', 'c'] at 3)
c
['a', 'b', 'c', 'spam']
['spam', 'c', 'b', 'a']
This output also includes tracing text the class prints on
 indexing. Of course, whether changing indexing this way is a good idea
 in general is another issue—users of your MyList class may very well be confused by such
 a core departure from Python sequence behavior! The ability to customize
 built-in types this way can be a powerful asset, though.
For instance, this coding pattern gives rise to an alternative way
 to code a set—as a subclass of the built-in list type, rather than a
 standalone class that manages an embedded list object as shown in the
 prior section. As we learned in Chapter 5, Python
 today comes with a powerful built-in set object, along with literal and
 comprehension syntax for making new sets. Coding one yourself, though,
 is still a great way to learn about type subclassing in general.
The following class, coded in the file setsubclass.py, customizes lists to add just
 methods and operators related to set processing. Because all other
 behavior is inherited from the built-in list superclass, this makes for a shorter and
 simpler alternative—everything not defined here is routed to list directly:
from __future__ import print_function # 2.X compatibility

class Set(list):
 def __init__(self, value = []): # Constructor
 list.__init__(self) # Customizes list
 self.concat(value) # Copies mutable defaults

 def intersect(self, other): # other is any sequence
 res = [] # self is the subject
 for x in self:
 if x in other: # Pick common items
 res.append(x)
 return Set(res) # Return a new Set

 def union(self, other): # other is any sequence
 res = Set(self) # Copy me and my list
 res.concat(other)
 return res

 def concat(self, value): # value: list, Set, etc.
 for x in value: # Removes duplicates
 if not x in self:
 self.append(x)

 def __and__(self, other): return self.intersect(other)
 def __or__(self, other): return self.union(other)
 def __repr__(self): return 'Set:' + list.__repr__(self)

if __name__ == '__main__':
 x = Set([1,3,5,7])
 y = Set([2,1,4,5,6])
 print(x, y, len(x))
 print(x.intersect(y), y.union(x))
 print(x & y, x | y)
 x.reverse(); print(x)
Here is the output of the self-test code at the end of this file.
 Because subclassing core types is a somewhat advanced feature with a
 limited target audience, I’ll omit further details here, but I invite
 you to trace through these results in the code to study its behavior
 (which is the same on Python 3.X and 2.X):
% python setsubclass.py
Set:[1, 3, 5, 7] Set:[2, 1, 4, 5, 6] 4
Set:[1, 5] Set:[2, 1, 4, 5, 6, 3, 7]
Set:[1, 5] Set:[1, 3, 5, 7, 2, 4, 6]
Set:[7, 5, 3, 1]
There are more efficient ways to implement sets with dictionaries
 in Python, which replace the nested linear search scans in the set
 implementations shown here with more direct dictionary index operations
 (hashing) and so run much quicker. For more details, see the
 continuation of this thread in the follow-up book Programming
 Python. Again, if you’re interested in sets, also take another
 look at the set object type we
 explored in Chapter 5; this type provides
 extensive set operations as built-in tools. Set implementations are fun
 to experiment with, but they are no longer strictly required in Python
 today.
For another type subclassing example, explore the implementation
 of the bool type in Python 2.3 and
 later. As mentioned earlier in the book, bool is a subclass of int with two instances (True and False) that behave like the integers 1 and 0 but
 inherit custom string-representation methods that display their names.

The “New Style” Class Model
In release 2.2, Python introduced a new flavor of classes, known as
 new-style classes; classes following the original and
 traditional model became known as classic classes
 when compared to the new kind. In 3.X the class story has merged, but it
 remains split for Python 2.X users and code:
	In Python 3.X, all classes are automatically what were formerly called “new style,”
 whether they explicitly inherit from object
 or not. Coding the object
 superclass is optional and implied.

	In Python 2.X, classes must explicitly
 inherit from object (or another
 built-in type) to be considered “new style” and enable and obtain all
 new-style behavior. Classes without this are “classic.”

Because all classes are automatically new-style in 3.X, the features
 of new-style classes are simply normal class features in that line. I’ve
 opted to keep their descriptions in this section separate, however, in
 deference to users of Python 2.X code—classes in such code acquire
 new-style features and behavior only when they are derived from object.
In other words, when Python 3.X users see descriptions of “new
 style” topics in this book, they should take them to be descriptions of
 existing properties of their classes. For 2.X readers, these are a set of
 optional changes and extensions that you may choose to enable or not,
 unless the code you must use already employs them.
In Python 2.X, the identifying syntactic
 difference for new-style classes is that they are derived from either a
 built-in type, such as list, or a
 special built-in class known as object.
 The built-in name object is provided to
 serve as a superclass for new-style classes if no other built-in type is
 appropriate to use:
class newstyle(object): # 2.X explicit new-style derivation
 ...normal class code... # Not required in 3.X: automatic
Any class derived from object, or
 any other built-in type, is automatically treated as a new-style class.
 That is, as long as a built-in type is somewhere in its superclass tree, a
 2.X class acquires new-style class behavior and extensions. Classes not
 derived from built-ins such as object
 are considered classic.
Just How New Is New-Style?
As we’ll see, new-style classes come with profound differences
 that impact programs broadly, especially when code leverages their added
 advanced features. In fact, at least in terms of its OOP support, these
 changes on some levels transform Python into a different
 language altogether—one that’s mandated in the 3.X line, one
 that’s optional in 2.X only if ignored by every programmer, and one that
 borrows much more from (and is often as complex as) other languages in
 this domain.
New-style classes stem in part from an attempt to merge the notion
 of class with that of type
 around the time of Python 2.2, though they went unnoticed by many until
 they were escalated to required knowledge in 3.X. You’ll need to judge
 the success of that merging for yourself, but as we’ll see, there are
 still distinctions in the model—now between class
 and metaclass—and one of its side effects is to
 make normal classes more powerful but also substantially more complex.
 The new-style inheritance algorithm formalized in Chapter 40, for example, grows in complexity by at least a
 factor of 2.
Still, some programmers using straightforward application code may
 notice only slight divergence from traditional “classic” classes. After
 all, we’ve managed to get to this point in this book writing substantial
 class examples, with mostly just passing mentions of this change.
 Moreover, the classic class model still available in 2.X works exactly
 as it has for some two decades.1
However, because they modify core class behaviors, new-style
 classes had to be introduced in Python 2.X as a distinct tool so as to
 avoid impacting any existing code that depends on the prior model. For
 example, some subtle differences, such as diamond pattern inheritance
 search and the interaction of built-in operations and managed attribute
 methods such as __getattr__ can cause
 some existing code to fail if left unchanged. Using optional extensions
 in the new model such as slots can have the same effect.
The class model split is removed in Python 3.X, which
 mandates new-style classes, but it still exists for
 readers using 2.X, or reusing the vast amount of existing 2.X code in
 production use. Because this has been an optional extension in 2.X, code
 written for that line may use either class model.
The next two top-level sections provide overviews of the ways in
 which new-style classes differ and the new tools they provide. These
 topics represent potential changes to some Python 2.X readers, but
 simply additional advanced class topics to many Python 3.X readers. If
 you’re in the latter group, you’ll find full coverage here, though some
 of it is presented in the context of changes—which you can accept as
 features, but only if you never must deal with any of the millions of
 lines of existing 2.X code.

New-Style Class Changes
New-style classes differ from classic classes in a number of ways, some of
 which are subtle but can impact both existing 2.X code and common coding
 styles. As preview and summary, here are some of the most prominent ways
 they differ:
	Attribute fetch for built-ins: instance skipped
	The __getattr__ and
 __getattribute__ generic
 attribute interception methods are still run for attributes
 accessed by explicit name, but no longer for attributes implicitly
 fetched by built-in operations. They are not called for __X__ operator overloading method names in
 built-in contexts only—the search for such names begins at classes,
 not instances. This breaks or complicates objects that serve as
 proxies for another object’s interface, if
 wrapped objects implement operator overloading. Such methods must be
 redefined for the sake of differing built-ins dispatch in new-style
 classes.

	Classes and types merged: type testing
	Classes are now types, and types are now classes. In fact, the two are essentially synonyms, though the
 metaclasses that now subsume types are still
 somewhat distinct from normal classes. The type(I) built-in returns the class an instance
 is made from, instead of a generic instance type, and is normally
 the same as I.__class__. Moreover, classes are
 instances of the type class, and
 type may be subclassed to
 customize class creation with metaclasses coded with class statements. This can impact code
 that tests types or otherwise relies on the prior type model.

	Automatic object root class:
 defaults
	All new-style classes (and hence types) inherit from object, which comes with a small set of default operator overloading
 methods (e.g., __repr__). In 3.X,
 this class is added automatically above the user-defined root (i.e.,
 topmost) classes in a tree, and need not be
 listed as a superclass explicitly. This can affect code that assumes
 the absence of method defaults and root classes.

	Inheritance search order: MRO and diamonds
	Diamond patterns of multiple inheritance have a slightly different search order—roughly, at
 diamonds they are searched across before up, and more breadth-first
 than depth-first. This attribute search order, known as the MRO, can
 be traced with a new __mro__
 attribute available on new-style classes. The new search order
 largely applies only to diamond class trees, though the new model’s
 implied object root itself forms
 a diamond in all multiple inheritance trees. Code that relies on the
 prior order will not work the same.

	Inheritance algorithm: Chapter 40
	The algorithm used for inheritance in new-style classes is
 substantially more complex than the depth-first model of classic
 classes, incorporating special cases for descriptors, metaclasses,
 and built-ins. We won’t be able to formalize this until Chapter 40 after we’ve studied metaclasses and
 descriptors in more depth, but it can impact code that does not
 anticipate its extra convolutions.

	New advanced tools: code impacts
	New-style classes have a set of new class tools, including slots,
 properties, descriptors,
 super, and the __getattribute__ method. Most of these
 have very specific tool-building purposes. Their use can also impact
 or break existing code, though; slots, for example, sometimes
 prevent creation of an instance namespace dictionary altogether, and
 generic attribute handlers may require different coding.

We’ll explore the extensions noted in the last
 of these items in a later top-level section of its own, and will defer
 formal inheritance algorithm coverage until Chapter 40
 as noted. Because the other items on this list have the potential to break
 traditional Python code, though, let’s take a closer look at each in turn
 here.
Note
Content note: Keep in mind that
 new-style class changes apply to
 both 3.X and 2.X, even though they are an option in
 the latter. This chapter and book sometimes label features as
 3.X changes to contrast with traditional 2.X code,
 but some are technically introduced by new-style classes—which are
 mandated in 3.X, but can show up in 2.X code too.
 For space, this distinction is called out often but not dogmatically
 here. Complicating this distinction, some 3.X class-related changes owe
 to new-style classes (e.g., skipping __getattr__ for operator methods) but some do
 not (e.g., replacing unbound methods with functions). Moreover, many 2.X
 programmers stick to classic classes, ignoring what they view as a 3.X
 feature. New-style classes are not new, though, and apply to both
 Pythons—if they appear in 2.X code, they’re required reading for 2.X
 users too.

Attribute Fetch for Built-ins Skips Instances
We introduced this new-style class change in sidebars in both Chapter 28 and Chapter 31 because of their impact on prior
 examples and topics. In new-style classes (and hence all classes in
 3.X), the generic instance attribute interception methods __getattr__ and
 __getattribute__ are no longer called
 by built-in operations for __X__ operator overloading method names—the
 search for such names begins at classes, not instances. Attributes
 accessed by explicit name, however, are routed through these methods,
 even if they are __X__ names. Hence,
 this is primarily a change to the behavior of built-in
 operations.
More formally, if a class defines a __getitem__ index overload method and X is an instance of this class, then an index
 expression like X[I] is roughly
 equivalent to X.__getitem__(I) for
 classic classes, but type(X).__getitem__(X,
 I) for new-style classes—the latter beginning its search in
 the class, and thus skipping a __getattr__ step from the instance for an
 undefined name.
Technically, this method search for built-in operations like
 X[I] uses normal inheritance
 beginning at the class level, and inspects only the namespace
 dictionaries of all the classes from which X derives—a distinction that can matter in the
 metaclass model we’ll meet later in this chapter
 and focus on in Chapter 40, where classes may
 acquire behavior differently. The instance, however, is omitted by
 built-ins’ search.
Why the lookup change?
You can find formal rationales for this change elsewhere; this
 book is disinclined to parrot justifications for a change that breaks
 many working programs. But this is imagined as both an
 optimization path and a solution to a seemingly
 obscure call pattern issue. The former rationale
 is supported by the frequency of built-in operations. If every
 +, for example, requires extra
 steps at the instance, it can degrade program speed—especially so
 given the new-style model’s many attribute-level extensions.
The latter rationale is more obscure, and is described in Python
 manuals; in short, it reflects a conundrum introduced by the
 metaclass model. Because classes are now
 instances of metaclasses, and because metaclasses can define built-in
 operator methods to process the classes they generate, a method call
 run for a class must skip the class itself and look one level higher
 to pick up a method that processes the class, rather than selecting
 the class’s own version. Its own version would result in an unbound
 method call, because the class’s own method processes lower instances.
 This is just the usual unbound method model we discussed in the prior
 chapter, but is potentially aggravated by the fact that classes can
 acquire type behavior from metaclasses too.
As a result, because classes are both types and instances in
 their own right, all instances are skipped for built-in operation
 method lookup. This is supposedly applied to normal instances for
 uniformity and consistency, but both non-built-in names and direct and
 explicit calls to built-in names still check the instance anyhow.
 Though perhaps a consequence of the new-style class model, to some
 this may seem a solution arrived at for the sake of a usage pattern
 that was more artificial and obscure than the widely used one it
 broke. Its role as optimization path seems more defensible, but also
 not without repercussions.
In particular, this has potentially broad implications for the
 delegation-based classes, often known as proxy classes, when
 embedded objects implement operator overloading. In new-style classes,
 such a proxy object’s class must generally
 redefine any such names to catch and delegate,
 either manually or with tools. The net effect is to either
 significantly complicate or wholly obviate an entire
 category of programs. We explored delegation in Chapter 28 and Chapter 31; it’s a common pattern used to
 augment or adapt another class’s interface—to add validation, tracing,
 timing, and many other sorts of logic. Though proxies may be more the
 exception than the rule in typical Python code, many Python programs
 depend upon them.

Implications for attribute interception
In simple terms, and run in Python 2.X to show how
 new-style classes differ, indexing and prints are routed to __getattr__ in traditional classes, but not
 for new-style classes, where printing uses a default:2
>>> class C:
 data = 'spam'
 def __getattr__(self, name): # Classic in 2.X: catches built-ins
 print(name)
 return getattr(self.data, name)

>>> X = C()
>>> X[0]
__getitem__
's'
>>> print(X) # Classic doesn't inherit default
__str__
spam

>>> class C(object): # New-style in 2.X and 3.X
 ...rest of class unchanged...

>>> X = C() # Built-ins not routed to getattr
>>> X[0]
TypeError: 'C' object does not support indexing
>>> print(X)
<__main__.C object at 0x02205780>
Though apparently rationalized in the name of class metaclass
 methods and optimizing built-in operations, this divergence is not
 addressed by special-casing normal instances having a __getattr__, and applies only to built-in
 operations—not to normally named methods, or explicit calls to
 built-in methods by name:
>>> class C: pass # 2.X classic class
>>> X = C()
>>> X.normal = lambda: 99
>>> X.normal()
99
>>> X.__add__ = lambda(y): 88 + y
>>> X.__add__(1)
89
>>> X + 1
89

>>> class C(object): pass # 2.X/3.X new-style class
>>> X = C()
>>> X.normal = lambda: 99
>>> X.normal() # Normals still from instance
99
>>> X.__add__ = lambda(y): 88 + y
>>> X.__add__(1) # Ditto for explicit built-in names
89
>>> X + 1
TypeError: unsupported operand type(s) for +: 'C' and 'int'
This behavior winds up being inherited by the __getattr__ attribute interception
 method:
>>> class C(object):
 def __getattr__(self, name): print(name)

>>> X = C()
>>> X.normal # Normal names are still routed to getattr
normal
>>> X.__add__ # Direct calls by name are too, but expressions are not!
__add__
>>> X + 1
TypeError: unsupported operand type(s) for +: 'C' and 'int'

Proxy coding requirements
In a more realistic delegation scenario, this means that
 built-in operations like expressions no longer work the same as their
 traditional direct-call equivalents. Asymmetrically, direct calls to
 built-in method names still work, but equivalent expressions do not
 because through-type calls fail for names not at the class level and
 above. In other words, this distinction arises in built-in
 operations only; explicit fetches run correctly:
>>> class C(object):
 data = 'spam'
 def __getattr__(self, name):
 print('getattr: ' + name)
 return getattr(self.data, name)

>>> X = C()
>>> X.__getitem__(1) # Traditional mapping works but new-style's does not
getattr: __getitem__
'p'

>>> X[1]
TypeError: 'C' object does not support indexing
>>> type(X).__getitem__(X, 1)
AttributeError: type object 'C' has no attribute '__getitem__'

>>> X.__add__('eggs') # Ditto for +: instance skipped for expression only
getattr: __add__
'spameggs'

>>> X + 'eggs'
TypeError: unsupported operand type(s) for +: 'C' and 'str'
>>> type(X).__add__(X, 'eggs')
AttributeError: type object 'C' has no attribute '__add__'
The net effect: to code a proxy of an object whose interface may
 in part be invoked by built-in operations, new-style classes require
 both __getattr__ for normal names,
 as well as method redefinitions for all names
 accessed by built-in operations—whether coded manually, obtained from
 superclasses, or generated by tools. When redefinitions are so
 incorporated, calls through both instances and
 types are equivalent to built-in operations, though redefined names
 are no longer routed to the generic __getattr__ undefined name handler, even for
 explicit name calls:
>>> class C(object): # New-style: 3.X and 2.X
 data = 'spam'
 def __getattr__(self, name): # Catch normal names
 print('getattr: ' + name)
 return getattr(self.data, name)
 def __getitem__(self, i): # Redefine built-ins
 print('getitem: ' + str(i))
 return self.data[i] # Run expr or getattr
 def __add__(self, other):
 print('add: ' + other)
 return getattr(self.data, '__add__')(other)

>>> X = C()
>>> X.upper
getattr: upper
<built-in method upper of str object at 0x0233D670>
>>> X.upper()
getattr: upper
'SPAM'

>>> X[1] # Built-in operation (implicit)
getitem: 1
'p'
>>> X.__getitem__(1) # Traditional equivalence (explicit)
getitem: 1
'p'
>>> type(X).__getitem__(X, 1) # New-style equivalence
getitem: 1
'p'

>>> X + 'eggs' # Ditto for + and others
add: eggs
'spameggs'
>>> X.__add__('eggs')
add: eggs
'spameggs'
>>> type(X).__add__(X, 'eggs')
add: eggs
'spameggs'

For more details
We will revisit this change in Chapter 40 on
 metaclasses, and by example in the contexts of attribute management in
 Chapter 38 and privacy decorators in Chapter 39. In the latter of these, we’ll also explore
 coding structures for providing proxies with the required operator
 methods generically—it’s not an impossible task, and may need to be
 coded just once if done well. For more of the sort of code influenced
 by this issue, see those later chapters, as well as the earlier
 examples in Chapter 28 and Chapter 31.
Because we’ll expand on this issue later in the book, we’ll cut
 the coverage short here. For external links and pointers on this
 issue, though, see the following (along with your local search
 engine):
	Python Issue 643841: this issue has
 been discussed widely, but its most official history seems to be
 documented at http://bugs.python.org/issue643841. There, it was
 raised as a concern for real programs and escalated to be
 addressed, but a proposed library remedy or broader change in
 Python was struck down in favor of a simple documentation change
 to describe the new mandated behavior.

	Tool recipes: also see http://code.activestate.com/recipes/252151, an
 Active State Python recipe that describes a tool that
 automatically fills in special method names as generic call
 dispatchers in a proxy class created with metaclass techniques
 introduced later in this chapter. This tool still must ask you to
 pass in the operator method names that a wrapped object may
 implement, though (it must, as interface components of a wrapped
 object may be inherited from arbitrary sources).

	Other approaches: a web search today
 will uncover numerous additional tools that similarly populate
 proxy classes with overloading methods; it’s a widespread concern!
 Again, in Chapter 39, we’ll also see how to
 code straightforward and general superclasses once that provide
 the required methods or attributes as
 mix-ins, without metaclasses, redundant code
 generation, or similarly complex techniques.

This story may evolve over time, of course, but has been an
 issue for many years. As this stands today, classic class proxies for
 objects that do any operator overloading are effectively broken as
 new-style classes. Such classes in both 2.X and 3.X require coding or
 generating wrappers for all the implicitly invoked operator methods a
 wrapped object may support. This is not ideal for such programs—some
 proxies may require dozens of wrapper methods (potentially over
 50!)—but reflects, or is at least an artifact of, the design goals of
 new-style class developers.
Note
Be sure to see Chapter 40’s
 metaclass coverage for an additional
 illustration of this issue and its rationale. We’ll also see there
 that this behavior of built-ins qualifies as a special case in
 new-style inheritance. Understanding this well
 requires more background on metaclasses than the current chapter can
 provide, a regrettable byproduct of metaclasses in general—they’ve
 become prerequisite to more usage than their originators may have
 foreseen.

Type Model Changes
On to our next new-style change: depending on your assessment, in new-style classes the
 distinction between type and
 class has either been greatly muted or has vanished
 entirely. Specifically:
	Classes are types
	The type object generates
 classes as its instances, and classes generate instances of
 themselves. Both are considered types, because they generate
 instances. In fact, there is no real difference between built-in
 types like lists and strings and user-defined types coded as
 classes. This is why we can subclass built-in types, as shown
 earlier in this chapter—a subclass of a built-in type such as
 list qualifies as a new-style
 class and becomes a new user-defined type.

	Types are classes
	New class-generating types may be coded in Python as the
 metaclasses we’ll meet later in this
 chapter—user-defined type
 subclasses that are coded with normal class statements, and control creation
 of the classes that are their instances. As we’ll see, metaclasses
 are both class and type, though they are distinct enough to
 support a reasonable argument that the prior type/class dichotomy
 has become one of metaclass/class, perhaps at the cost of added
 complexity in normal classes.

Besides allowing us to subclass built-in types and code
 metaclasses, one of the most practical contexts where this type/class
 merging becomes most obvious is when we do explicit type testing. With
 Python 2.X’s classic classes, the type of a class instance is a generic
 “instance,” but the types of built-in objects are more specific:
C:\code> c:\python27\python
>>> class C: pass # Classic classes in 2.X

>>> I = C() # Instances are made from classes
>>> type(I), I.__class__
(<type 'instance'>, <class __main__.C at 0x02399768>)

>>> type(C) # But classes are not the same as types
<type 'classobj'>
>>> C.__class__
AttributeError: class C has no attribute '__class__'

>>> type([1, 2, 3]), [1, 2, 3].__class__
(<type 'list'>, <type 'list'>)

>>> type(list), list.__class__
(<type 'type'>, <type 'type'>)
But with new-style classes in 2.X, the type of a class instance is
 the class it’s created from, since classes are simply user-defined
 types—the type of an instance is its class, and the type of a
 user-defined class is the same as the type of a built-in object type.
 Classes have a __class__
 attribute now, too, because they are instances of type:
C:\code> c:\python27\python
>>> class C(object): pass # New-style classes in 2.X

>>> I = C() # Type of instance is class it's made from
>>> type(I), I.__class__
(<class '__main__.C'>, <class '__main__.C'>)

>>> type(C), C.__class__ # Classes are user-defined types
(<type 'type'>, <type 'type'>)
The same is true for all classes in Python 3.X, since all classes
 are automatically new-style, even if they have no explicit superclasses.
 In fact, the distinction between built-in types and user-defined class
 types seems to melt away altogether in 3.X:
C:\code> c:\python33\python
>>> class C: pass

>>> I = C() # All classes are new-style in 3.X
>>> type(I), I.__class__ # Type of instance is class it's made from
(<class '__main__.C'>, <class '__main__.C'>)

>>> type(C), C.__class__ # Class is a type, and type is a class
(<class 'type'>, <class 'type'>)

>>> type([1, 2, 3]), [1, 2, 3].__class__
(<class 'list'>, <class 'list'>)

>>> type(list), list.__class__ # Classes and built-in types work the same
(<class 'type'>, <class 'type'>)
As you can see, in 3.X classes are types, but types are also
 classes. Technically, each class is generated by a
 metaclass—a class that is normally either type itself, or a subclass of it customized to
 augment or manage generated classes. Besides impacting code that does
 type testing, this turns out to be an important hook for tool
 developers. We’ll talk more about metaclasses later in this chapter, and
 again in more detail in Chapter 40.
Implications for type testing
Besides providing for built-in type customization and metaclass
 hooks, the merging of classes and types in the new-style class model
 can impact code that does type testing. In Python 3.X, for example,
 the types of class instances compare directly and meaningfully, and in
 the same way as built-in type objects. This follows from the fact that
 classes are now types, and an instance’s type is the instance’s
 class:
C:\code> c:\python33\python
>>> class C: pass
>>> class D: pass

>>> c, d = C(), D()
>>> type(c) == type(d) # 3.X: compares the instances' classes
False

>>> type(c), type(d)
(<class '__main__.C'>, <class '__main__.D'>)
>>> c.__class__, d.__class__
(<class '__main__.C'>, <class '__main__.D'>)

>>> c1, c2 = C(), C()
>>> type(c1) == type(c2)
True
With classic classes in 2.X, though, comparing instance types is
 almost useless, because all instances have the same “instance” type.
 To truly compare types, the instance __class__ attributes must be compared (if
 you care about portability, this works in 3.X, too, but it’s not
 required there):
C:\code> c:\python27\python
>>> class C: pass
>>> class D: pass

>>> c, d = C(), D()
>>> type(c) == type(d) # 2.X: all instances are same type!
True
>>> c.__class__ == d.__class__ # Compare classes explicitly if needed
False

>>> type(c), type(d)
(<type 'instance'>, <type 'instance'>)
>>> c.__class__, d.__class__
(<class __main__.C at 0x024585A0>, <class __main__.D at 0x024588D0>)
And as you should expect by now, new-style classes in 2.X work
 the same as all classes in 3.X in this regard—comparing instance types
 compares the instances’ classes automatically:
C:\code> c:\python27\python
>>> class C(object): pass
>>> class D(object): pass

>>> c, d = C(), D()
>>> type(c) == type(d) # 2.X new-style: same as all in 3.X
False

>>> type(c), type(d)
(<class '__main__.C'>, <class '__main__.D'>)
>>> c.__class__, d.__class__
(<class '__main__.C'>, <class '__main__.D'>)
Of course, as I’ve pointed out numerous times in this book, type
 checking is usually the wrong thing to do in Python programs (we code
 to object interfaces, not object types), and the more general isinstance built-in is more likely what
 you’ll want to use in the rare cases where instance class types must
 be queried. However, knowledge of Python’s type model can help clarify
 the class model in general.

All Classes Derive from “object”
Another ramification of the type change in the new-style class model is that because all
 classes derive (inherit) from the class object either implicitly or explicitly, and
 because all types are now classes, every object derives from the
 object built-in class, whether
 directly or through a superclass. Consider the following interaction in
 Python 3.X:
>>> class C: pass # For new-style classes
>>> X = C()
>>> type(X), type(C) # Type is class instance was created from
(<class '__main__.C'>, <class 'type'>)
As before, the type of a class instance is
 the class it was made from, and the type of a class
 is the type class because classes and
 types have merged. It is also true, though, that the instance and class
 are both derived from the built-in object class and type, an implicit or explicit
 superclass of every class:
>>> isinstance(X, object)
True
>>> isinstance(C, object) # Classes always inherit from object
True
The preceding returns the same results for both new-style and
 classic classes in 2.X today, though 2.X type results differ. More importantly, as
 we’ll see ahead, object is not added
 to or present in a 2.X classic class’s __bases__ tuple, and so is not a true
 superclass.
The same relationship holds true for built-in types like lists and
 strings, because types are classes in the new-style model—built-in types
 are now classes, and their instances derive from object, too:
>>> type('spam'), type(str)
(<class 'str'>, <class 'type'>)

>>> isinstance('spam', object) # Same for built-in types (classes)
True
>>> isinstance(str, object)
True
In fact, type itself derives
 from object, and object derives from type, even though the two are different
 objects—a circular relationship that caps the object model and stems
 from the fact that types are classes that generate classes:
>>> type(type) # All classes are types, and vice versa
<class 'type'>
>>> type(object)
<class 'type'>

>>> isinstance(type, object) # All classes derive from object, even type
True
>>> isinstance(object, type) # Types make classes, and type is a class
True
>>> type is object
False
Implications for defaults
The preceding may seem obscure, but this model has a number of
 practical implications. For one thing, it means that we sometimes must
 be aware of the method defaults that come with the explicit or
 implicit object root class in
 new-style classes only:
c:\code> py −2
>>> dir(object)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__'
, '__init__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '
__sizeof__', '__str__', '__subclasshook__']

>>> class C: pass
>>> C.__bases__ # Classic classes do not inherit from object
()
>>> X = C()
>>> X.__repr__
AttributeError: C instance has no attribute '__repr__'

>>> class C(object): pass # New-style classes inherit object defaults
>>> C.__bases__
(<type 'object'>,)
>>> X = C()
>>> X.__repr__
<method-wrapper '__repr__' of C object at 0x00000000020B5978>

c:\code> py −3
>>> class C: pass # This means all classes get defaults in 3.X
>>> C.__bases__
(<class 'object'>,)
>>> C().__repr__
<method-wrapper '__repr__' of C object at 0x0000000002955630>
This model also makes for fewer special cases than the prior
 type/class distinction of classic classes, and it allows us to write
 code that can safely assume and use an object superclass (e.g., by assuming it as
 an “anchor” in some super built-in
 roles described ahead, and by passing it method calls to invoke
 default behavior). We’ll see examples of the latter later in the book;
 for now, let’s move on to explore the last major new-style change.

Diamond Inheritance Change
Our final new-style class model change is also one of its most visible: its slightly different
 inheritance search order for so-called diamond
 pattern multiple inheritance trees—a tree pattern in which more than one
 superclass leads to the same higher superclass further above (and whose
 name comes from the diamond shape of the tree if you sketch it out—a
 square resting on one of its corners).
The diamond pattern is a fairly advanced design concept, only
 occurs in multiple inheritance trees, and tends to be coded rarely in
 Python practice, so we won’t cover this topic in full depth. In short,
 though, the differing search orders were introduced briefly in the prior
 chapter’s multiple inheritance coverage:
	For classic classes (the default in 2.X):
 DFLR
	The inheritance search path is strictly depth first, and
 then left to right—Python climbs all the way to the
 top, hugging the left side of the tree, before it backs up and
 begins to look further to the right. This search order is known as
 DFLR for the first letters in its path’s
 directions.

	For new-style classes (optional in 2.X
 and automatic in 3.X): MRO
	The inheritance search path is more breadth-first in diamond
 cases—Python first looks in any superclasses to the right of the
 one just searched before ascending to the common superclass at the
 top. In other words, this search proceeds across by levels before
 moving up. This search order is called the new-style
 MRO for “method resolution order” (and often
 just MRO for short when used in contrast with the DFLR order).
 Despite the name, this is used for all attributes in Python, not
 just methods.

The new-style MRO algorithm is a bit more complex than just
 described—and we’ll expand on it a bit more formally later—but this is
 as much as many programmers need to know. Still, it has both important
 benefits for new-style class code, as well as program-breaking potential
 for existing classic class code.
For example, the new-style MRO allows lower superclasses to
 overload attributes of higher superclasses, regardless of the sort of
 multiple inheritance trees they are mixed into. Moreover, the new-style
 search rule avoids visiting the same superclass more than once when it
 is accessible from multiple subclasses. It’s arguably better than DFLR,
 but applies to a small subset of Python user code; as we’ll see, though,
 the new-style class model itself makes diamonds
 much more common, and the MRO more important.
At the same time, the new MRO will locate attributes differently,
 creating a potential incompatibility for 2.X classic classes. Let’s move
 on to some code to see how its differences pan out in practice.
Implications for diamond inheritance trees
To illustrate how the new-style MRO search differs, consider
 this simplistic incarnation of the diamond multiple inheritance
 pattern for classic classes. Here, D’s superclasses B and C
 both lead to the same common ancestor, A:
>>> class A: attr = 1 # Classic (Python 2.X)
>>> class B(A): pass # B and C both lead to A
>>> class C(A): attr = 2
>>> class D(B, C): pass # Tries A before C

>>> x = D()
>>> x.attr # Searches x, D, B, A
1
The attribute x.attr here is
 found in superclass A, because with
 classic classes, the inheritance search climbs as high as it can
 before backing up and moving right. The full DFLR search order would
 visit x, D, B,
 A, C, and then A. For this attribute, the search stops as
 soon as attr is found in A, above B.
However, with new-style classes derived
 from a built-in like object (and
 all classes in 3.X), the search order is different: Python looks in
 C to the right of B, before trying A above B. The full MRO search order would visit
 x, D, B,
 C, and then A. For this attribute, the search stops as
 soon as attr is found in C:
>>> class A(object): attr = 1 # New-style ("object" not required in 3.X)
>>> class B(A): pass
>>> class C(A): attr = 2
>>> class D(B, C): pass # Tries C before A

>>> x = D()
>>> x.attr # Searches x, D, B, C
2
This change in the inheritance search procedure is based upon
 the assumption that if you mix in C
 lower in the tree, you probably intend to grab its attributes in
 preference to A’s. It also assumes
 that C is always intended to
 override A’s attributes in all
 contexts, which is probably true when it’s used standalone but may not
 be when it’s mixed into a diamond with classic classes—you might not
 even know that C may be mixed in
 like this when you code it.
Since it is most likely that the programmer meant that C should override A in this case, though, new-style classes
 visit C first. Otherwise, C could be essentially pointless in a
 diamond context for any names in A
 too—it could not customize A and
 would be used only for names unique to C.

Explicit conflict resolution
Of course, the problem with assumptions is that they assume things! If this
 search order deviation seems too subtle to remember, or if you want
 more control over the search process, you can always force the
 selection of an attribute from anywhere in the tree by assigning or
 otherwise naming the one you want at the place where the classes are
 mixed together. The following, for example, chooses new-style order in
 a classic class by resolving the choice explicitly:
>>> class A: attr = 1 # Classic
>>> class B(A): pass
>>> class C(A): attr = 2
>>> class D(B, C): attr = C.attr # <== Choose C, to the right

>>> x = D()
>>> x.attr # Works like new-style (all 3.X)
2
Here, a tree of classic classes is emulating the search order of
 new-style classes for a specific attribute: the assignment to the
 attribute in D picks the version in
 C, thereby subverting the normal
 inheritance search path (D.attr
 will be lowest in the tree). New-style classes can similarly emulate
 classic classes by choosing the higher version of the target attribute
 at the place where the classes are mixed together:
>>> class A(object): attr = 1 # New-style
>>> class B(A): pass
>>> class C(A): attr = 2
>>> class D(B, C): attr = B.attr # <== Choose A.attr, above

>>> x = D()
>>> x.attr # Works like classic (default 2.X)
1
If you are willing to always resolve conflicts like this, you
 may be able to largely ignore the search order difference and not rely
 on assumptions about what you meant when you coded your
 classes.
Naturally, attributes picked this way can also be method
 functions—methods are normal, assignable attributes that happen to
 reference callable function objects:
>>> class A:
 def meth(s): print('A.meth')

>>> class C(A):
 def meth(s): print('C.meth')

>>> class B(A):
 pass

>>> class D(B, C): pass # Use default search order
>>> x = D() # Will vary per class type
>>> x.meth() # Defaults to classic order in 2.X
A.meth

>>> class D(B, C): meth = C.meth # <== Pick C's method: new-style (and 3.X)
>>> x = D()
>>> x.meth()
C.meth

>>> class D(B, C): meth = B.meth # <== Pick B's method: classic
>>> x = D()
>>> x.meth()
A.meth
Here, we select methods by explicitly assigning to names lower
 in the tree. We might also simply call the desired class explicitly;
 in practice, this pattern might be more common, especially for things
 like constructors:
class D(B, C):
 def meth(self): # Redefine lower
 ...
 C.meth(self) # <== Pick C's method by calling
Such selections by assignment or call at mix-in points can
 effectively insulate your code from this difference in class flavors.
 This applies only to the attributes you handle this way, of course,
 but explicitly resolving the conflicts ensures that your code won’t
 vary per Python version, at least in terms of attribute conflict
 selection. In other words, this can serve as a
 portability technique for classes that may need
 to be run under both the new-style and classic class models.
Note
Explicit is better than
 implicit—for method resolution too:
 Even without the classic/new-style class divergence, the explicit
 method resolution technique shown here may come in handy in multiple
 inheritance scenarios in general. For instance, if you want part of
 a superclass on the left and part of a superclass on the right, you
 might need to tell Python which same-named attributes to choose by
 using explicit assignments or calls in subclasses. We’ll revisit
 this notion in a “gotcha” at the end of this chapter.
Also note that diamond inheritance patterns might be more
 problematic in some cases than I’ve implied here (e.g., what if
 B and C both have required constructors that
 call to the constructor in A?).
 Since such contexts are rare in real-world Python, we’ll defer this
 topic until we explore the super
 built-in function near the end of this chapter; besides providing
 generic access to superclasses in single inheritance trees, super supports a cooperative mode for
 resolving conflicts in multiple inheritance trees by ordering method
 calls per the MRO—assuming this order makes sense in this context
 too!

Scope of search order change
In sum, by default, the diamond pattern is searched differently
 for classic and new-style classes, and this is a
 non-backward-compatible change. Keep in mind, though, that this change
 primarily affects diamond pattern cases of multiple inheritance;
 new-style class inheritance works the same for most other inheritance
 tree structures. Further, it’s not impossible that this entire issue
 may be of more theoretical than practical importance—because the
 new-style search wasn’t significant enough to address until Python 2.2
 and didn’t become standard until 3.0, it seems unlikely to impact most
 Python code.
Having said that, I should also note that even though you might
 not code diamond patterns in classes you write yourself, because the
 implied object superclass is above
 every root class in 3.X as we saw earlier, every
 case of multiple inheritance exhibits the diamond pattern today. That
 is, in new-style classes, object
 automatically plays the role that the class A does in the example we just considered.
 Hence the new-style MRO search rule not only modifies logical
 semantics, but is also an important performance
 optimization—it avoids visiting and searching the same
 class more than once, even the automatic object.
Just as important, we’ve also seen that the implied object superclass in the new-style model
 provides default methods for a variety of
 built-in operations, including the __str__ and __repr__ display format methods. Run a
 dir(object) to see which methods
 are provided. Without the new-style MRO search order, in multiple
 inheritance cases the defaults in object would always override redefinitions
 in user-coded classes, unless they were always made in the leftmost
 superclass. In other words, the new-style class model itself makes
 using the new-style search order more critical!
For a more visual example of the implied object superclass in 3.X, and other examples
 of diamond patterns created by it, see the ListTree class’s output in the lister.py example in the preceding chapter,
 as well as the classtree.py tree
 walker example in Chapter 29—and the next
 section.

More on the MRO: Method Resolution Order
To trace how new-style inheritance works by default, we can also use the new
 class.__mro__ attribute mentioned in the preceding
 chapter’s class lister examples—technically a new-style extension, but
 useful here to explore a change. This attribute returns a class’s
 MRO—the order in which inheritance searches classes
 in a new-style class tree. This MRO is based on the C3 superclass
 linearization algorithm initially developed in the Dylan programming
 language, but later adopted by other languages including Python 2.3 and
 Perl 6.
The MRO algorithm
This book avoids a full description of the MRO algorithm
 deliberately, because many Python programmers don’t need to care (this
 only impacts diamonds, which are relatively rare in real-world code);
 because it differs between 2.X and 3.X; and because the details of the
 MRO are a bit too arcane and academic for this text. As a rule, this
 book avoids formal algorithms and prefers to teach informally by
 example.
On the other hand, some readers may still have an interest in
 the formal theory behind new-style MRO. If this set includes you, it’s
 described in full detail online; search Python’s manuals and the Web
 for current MRO links. In short, though, the MRO essentially works
 like this:
	List all the classes that an instance inherits from using
 the classic class’s DFLR lookup rule, and
 include a class multiple times if it’s visited more than
 once.

	Scan the resulting list for duplicate classes, removing all
 but the last occurrence of duplicates in the
 list.

The resulting MRO list for a given class includes the class, its
 superclasses, and all higher superclasses up to the object root class at the top of the tree.
 It’s ordered such that each class appears before its parents, and
 multiple parents retain the order in which they appear in the __bases__ superclass tuple.
Crucially, though, because common parents in
 diamonds appear only at the position of their
 last visitation, lower classes are searched first
 when the MRO list is later used by attribute inheritance. Moreover,
 each class is included and thus visited just once, no matter how many
 classes lead to it.
We’ll see applications of this algorithm later in this chapter,
 including that in super—a built-in
 that elevates the MRO to required reading if you wish to fully
 understand how methods are dispatched by this call, should you choose
 to use it. As we’ll see, despite its name, this call invokes the next
 class on the MRO, which might not be a superclass at all.

Tracing the MRO
If you just want to see how Python’s new-style inheritance
 orders superclasses in general, though, new-style classes (and hence
 all classes in 3.X) have a class.__mro__ attribute, which is a tuple giving
 the linear search order Python uses to look up attributes in
 superclasses. Really, this attribute is the
 inheritance order in new-style classes, and is often as much MRO
 detail as many Python users need.
Here are some illustrative examples, run in 3.X; for
 diamond inheritance patterns only, the search is
 the new order we’ve been studying—across before
 up, per the MRO for new-style classes always used in 3.X, and
 available as an option in 2.X:
>>> class A: pass
>>> class B(A): pass # Diamonds: order differs for newstyle
>>> class C(A): pass # Breadth-first across lower levels
>>> class D(B, C): pass
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>,
<class '__main__.A'>, <class 'object'>)
For nondiamonds, though, the search is
 still as it has always been (albeit with an extra object root)—to the top, and then to the
 right (a.k.a. DFLR, depth first and left to
 right, the model used for all classic classes in 2.X):
>>> class A: pass
>>> class B(A): pass # Nondiamonds: order same as classic
>>> class C: pass # Depth first, then left to right
>>> class D(B, C): pass
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.A'>,
<class '__main__.C'>, <class 'object'>)
The MRO of the following tree, for example, is the same as the
 earlier diamond, per DFLR:
>>> class A: pass
>>> class B: pass # Another nondiamond: DFLR
>>> class C(A): pass
>>> class D(B, C): pass
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>,
<class '__main__.A'>, <class 'object'>)
Notice how the implied object superclass always shows up at the
 end of the MRO; as we’ve seen, it’s added
 automatically above root (topmost) classes in
 new-style class trees in 3.X (and optionally in 2.X):
>>> A.__bases__ # Superclass links: object at two roots
(<class 'object'>,)
>>> B.__bases__
(<class 'object'>,)
>>> C.__bases__
(<class '__main__.A'>,)
>>> D.__bases__
(<class '__main__.B'>, <class '__main__.C'>)
Technically, the implied object superclass always creates a diamond
 in multiple inheritance even if your classes do not—your classes are
 searched as before, but the new-style MRO ensures that object is visited last, so your classes can
 override its defaults:
>>> class X: pass
>>> class Y: pass
>>> class A(X): pass # Nondiamond: depth first then left to right
>>> class B(Y): pass # Though implied "object" always forms a diamond
>>> class D(A, B): pass
>>> D.mro()
[<class '__main__.D'>, <class '__main__.A'>, <class '__main__.X'>,
<class '__main__.B'>, <class '__main__.Y'>, <class 'object'>]

>>> X.__bases__, Y.__bases__
((<class 'object'>,), (<class 'object'>,))
>>> A.__bases__, B.__bases__
((<class '__main__.X'>,), (<class '__main__.Y'>,))
The class.__mro__ attribute is available only on
 new-style classes; it’s not present in 2.X unless classes derive from
 object. Strictly speaking,
 new-style classes also have a class.mro() method used in the prior example for
 variety; it’s called at class instantiation time and its return value
 is a list used to initialize the __mro__ attribute when the class is created
 (the method is available for customization in metaclasses, described
 later). You can also select MRO names if classes’ object displays are
 too detailed, though this book usually shows the
 objects to remind you of their true form:
>>> D.mro() == list(D.__mro__)
True
>>> [cls.__name__ for cls in D.__mro__]
['D', 'A', 'X', 'B', 'Y', 'object']
However you access or display them, class MRO paths might be
 useful to resolve confusion, and in tools that must imitate Python’s
 inheritance search order. The next section shows the latter role
 in action.

Example: Mapping Attributes to Inheritance Sources
As a prime MRO use case, we noted at the end of the prior chapter that class tree
 climbers—such as the class tree lister mix-in we wrote there—might
 benefit from the MRO. As coded, the tree lister gave the
 physical locations of attributes in a class tree.
 However, by mapping the list of inherited attributes in a dir result to the linear MRO sequence (or DFLR
 order for classic classes), such tools can more directly associate
 attributes with the classes from which they are
 inherited—also a useful relationship for
 programmers.
We won’t recode our tree lister here, but as a first major step,
 the following file, mapattrs.py,
 implements tools that can be used to associate attributes with their
 inheritance source; as an added bonus, its mapattrs function demonstrates how inheritance
 actually searches for attributes in class tree objects, though the
 new-style MRO is largely automated for us:
"""
File mapattrs.py (3.X + 2.X)

Main tool: mapattrs() maps all attributes on or inherited by an
instance to the instance or class from which they are inherited.

Assumes dir() gives all attributes of an instance. To simulate
inheritance, uses either the class's MRO tuple, which gives the
search order for new-style classes (and all in 3.X), or a recursive
traversal to infer the DFLR order of classic classes in 2.X.

Also here: inheritance() gives version-neutral class ordering;
assorted dictionary tools using 3.X/2.7 comprehensions.
"""

import pprint
def trace(X, label='', end='\n'):
 print(label + pprint.pformat(X) + end) # Print nicely

def filterdictvals(D, V):
 """
 dict D with entries for value V removed.
 filterdictvals(dict(a=1, b=2, c=1), 1) => {'b': 2}
 """
 return {K: V2 for (K, V2) in D.items() if V2 != V}

def invertdict(D):
 """
 dict D with values changed to keys (grouped by values).
 Values must all be hashable to work as dict/set keys.
 invertdict(dict(a=1, b=2, c=1)) => {1: ['a', 'c'], 2: ['b']}
 """
 def keysof(V):
 return sorted(K for K in D.keys() if D[K] == V)
 return {V: keysof(V) for V in set(D.values())}

def dflr(cls):
 """
 Classic depth-first left-to-right order of class tree at cls.
 Cycles not possible: Python disallows on __bases__ changes.
 """
 here = [cls]
 for sup in cls.__bases__:
 here += dflr(sup)
 return here

def inheritance(instance):
 """
 Inheritance order sequence: new-style (MRO) or classic (DFLR)
 """
 if hasattr(instance.__class__, '__mro__'):
 return (instance,) + instance.__class__.__mro__
 else:
 return [instance] + dflr(instance.__class__)

def mapattrs(instance, withobject=False, bysource=False):
 """
 dict with keys giving all inherited attributes of instance,
 with values giving the object that each is inherited from.
 withobject: False=remove object built-in class attributes.
 bysource: True=group result by objects instead of attributes.
 Supports classes with slots that preclude __dict__ in instances.
 """
 attr2obj = {}
 inherits = inheritance(instance)
 for attr in dir(instance):
 for obj in inherits:
 if hasattr(obj, '__dict__') and attr in obj.__dict__: # See slots
 attr2obj[attr] = obj
 break

 if not withobject:
 attr2obj = filterdictvals(attr2obj, object)
 return attr2obj if not bysource else invertdict(attr2obj)

if __name__ == '__main__':
 print('Classic classes in 2.X, new-style in 3.X')
 class A: attr1 = 1
 class B(A): attr2 = 2
 class C(A): attr1 = 3
 class D(B, C): pass
 I = D()
 print('Py=>%s' % I.attr1) # Python's search == ours?
 trace(inheritance(I), 'INH\n') # [Inheritance order]
 trace(mapattrs(I), 'ATTRS\n') # Attrs => Source
 trace(mapattrs(I, bysource=True), 'OBJS\n') # Source => [Attrs]

 print('New-style classes in 2.X and 3.X')
 class A(object): attr1 = 1 # "(object)" optional in 3.X
 class B(A): attr2 = 2
 class C(A): attr1 = 3
 class D(B, C): pass
 I = D()
 print('Py=>%s' % I.attr1)
 trace(inheritance(I), 'INH\n')
 trace(mapattrs(I), 'ATTRS\n')
 trace(mapattrs(I, bysource=True), 'OBJS\n')
This file assumes dir gives all
 an instance’s attributes. It maps each attribute in a dir result to its source by scanning either
 the MRO order for new-style classes, or the DFLR order for classic
 classes, searching each object’s namespace __dict__ along the way. For classic classes,
 the DFLR order is computed with a simple recursive scan. The net effect
 is to simulate Python’s inheritance search in both class models.
This file’s self-test code applies its tools to the diamond
 multiple-inheritance trees we saw earlier. It uses Python’s pprint library module to display lists and dictionaries nicely—pprint.pprint is
 its basic call, and its pformat
 returns a print string. Run this on Python 2.7 to see both classic DFLR
 and new-style MRO search orders; on Python 3.3, the object derivation is unnecessary, and both
 tests give the same, new-style results. Importantly, attr1, whose value is labeled with “Py=>”
 and whose name appears in the results lists, is inherited from class
 A in classic search, but from class
 C in new-style search:
c:\code> py −2 mapattrs.py
Classic classes in 2.X, new-style in 3.X
Py=>1
INH
[<__main__.D instance at 0x000000000225A688>,
 <class __main__.D at 0x0000000002248828>,
 <class __main__.B at 0x0000000002248768>,
 <class __main__.A at 0x0000000002248708>,
 <class __main__.C at 0x00000000022487C8>,
 <class __main__.A at 0x0000000002248708>]

ATTRS
{'__doc__': <class __main__.D at 0x0000000002248828>,
 '__module__': <class __main__.D at 0x0000000002248828>,
 'attr1': <class __main__.A at 0x0000000002248708>,
 'attr2': <class __main__.B at 0x0000000002248768>}

OBJS
{<class __main__.A at 0x0000000002248708>: ['attr1'],
 <class __main__.B at 0x0000000002248768>: ['attr2'],
 <class __main__.D at 0x0000000002248828>: ['__doc__', '__module__']}

New-style classes in 2.X and 3.X
Py=>3
INH
(<__main__.D object at 0x0000000002257B38>,
 <class '__main__.D'>,
 <class '__main__.B'>,
 <class '__main__.C'>,
 <class '__main__.A'>,
 <type 'object'>)

ATTRS
{'__dict__': <class '__main__.A'>,
 '__doc__': <class '__main__.D'>,
 '__module__': <class '__main__.D'>,
 '__weakref__': <class '__main__.A'>,
 'attr1': <class '__main__.C'>,
 'attr2': <class '__main__.B'>}

OBJS
{<class '__main__.A'>: ['__dict__', '__weakref__'],
 <class '__main__.B'>: ['attr2'],
 <class '__main__.C'>: ['attr1'],
 <class '__main__.D'>: ['__doc__', '__module__']}
As a larger application of these tools, the following is our
 inheritance simulator at work in 3.3 on the preceding chapter’s
 testmixin0.py file’s test classes
 (I’ve deleted some built-in names here for space; as usual, run live for
 the whole list). Notice how __X
 pseudoprivate names are mapped to their defining classes, and how
 ListInstance appears in the MRO
 before object,
 which has a __str__ that would
 otherwise be chosen first—as you’ll recall, mixing this method in was
 the whole point of the lister classes!
c:\code> py −3
>>> from mapattrs import trace, dflr, inheritance, mapattrs
>>> from testmixin0 import Sub
>>> I = Sub() # Sub inherits from Super and ListInstance roots
>>> trace(dflr(I.__class__)) # 2.X search order: implied object before lister!
[<class 'testmixin0.Sub'>,
 <class 'testmixin0.Super'>,
 <class 'object'>,
 <class 'listinstance.ListInstance'>,
 <class 'object'>]

>>> trace(inheritance(I)) # 3.X (+ 2.X newstyle) search order: lister first
(<testmixin0.Sub object at 0x0000000002974630>,
 <class 'testmixin0.Sub'>,
 <class 'testmixin0.Super'>,
 <class 'listinstance.ListInstance'>,
 <class 'object'>)

>>> trace(mapattrs(I))
{'_ListInstance__attrnames': <class 'listinstance.ListInstance'>,
 '__init__': <class 'testmixin0.Sub'>,
 '__str__': <class 'listinstance.ListInstance'>,
 ...etc...
 'data1': <testmixin0.Sub object at 0x0000000002974630>,
 'data2': <testmixin0.Sub object at 0x0000000002974630>,
 'data3': <testmixin0.Sub object at 0x0000000002974630>,
 'ham': <class 'testmixin0.Super'>,
 'spam': <class 'testmixin0.Sub'>}

>>> trace(mapattrs(I, bysource=True))
{<testmixin0.Sub object at 0x0000000002974630>: ['data1', 'data2', 'data3'],
 <class 'listinstance.ListInstance'>: ['_ListInstance__attrnames', '__str__'],
 <class 'testmixin0.Super'>: ['__dict__', '__weakref__', 'ham'],
 <class 'testmixin0.Sub'>: ['__doc__',
 '__init__',
 '__module__',
 '__qualname__',
 'spam']}

>>> trace(mapattrs(I, withobject=True))
{'_ListInstance__attrnames': <class 'listinstance.ListInstance'>,
 '__class__': <class 'object'>,
 '__delattr__': <class 'object'>,
 ...etc...
Here’s the bit you might run if you want to label class objects
 with names inherited by an instance, though you may want to filter out
 some built-in double-underscore names for the sake of users’
 eyesight!
>>> amap = mapattrs(I, withobject=True, bysource=True)
>>> trace(amap)
{<testmixin0.Sub object at 0x0000000002974630>: ['data1', 'data2', 'data3'],
 <class 'listinstance.ListInstance'>: ['_ListInstance__attrnames', '__str__'],
 <class 'testmixin0.Super'>: ['__dict__', '__weakref__', 'ham'],
 <class 'testmixin0.Sub'>: ['__doc__',
 '__init__',
 '__module__',
 '__qualname__',
 'spam'],
 <class 'object'>: ['__class__',
 '__delattr__',
 ...etc...
 '__sizeof__',
 '__subclasshook__']}
Finally, and as both a follow-up to the prior chapter’s
 ruminations and segue to the next section here, the following shows how
 this scheme works for class-based slots attributes too.
 Because a class’s __dict__ includes
 both normal class attributes and individual entries for the instance
 attributes defined by its __slots__
 list, the slots attributes inherited by an instance will be correctly
 associated with the implementing class from which they are acquired,
 even though they are not physically stored in the instance’s __dict__ itself:
mapattrs-slots.py: test __slots__ attribute inheritance
from mapattrs import mapattrs, trace

class A(object): __slots__ = ['a', 'b']; x = 1; y = 2
class B(A): __slots__ = ['b', 'c']
class C(A): x = 2
class D(B, C):
 z = 3
 def __init__(self): self.name = 'Bob';

I = D()
trace(mapattrs(I, bysource=True)) # Also: trace(mapattrs(I))
For explicitly new-style classes like those in this file, the
 results are the same under both 2.7 and 3.3, though 3.3 adds an extra
 built-in name to the set. The attribute names here reflect all those
 inherited by the instance from user-defined classes, even those
 implemented by slots defined at classes and stored in space allocated in
 the instance:
c:\code> py −3 mapattrs-slots.py
{<__main__.D object at 0x00000000028988E0>: ['name'],
 <class '__main__.C'>: ['x'],
 <class '__main__.D'>: ['__dict__',
 '__doc__',
 '__init__',
 '__module__',
 '__qualname__',
 '__weakref__',
 'z'],
 <class '__main__.A'>: ['a', 'y'],
 <class '__main__.B'>: ['__slots__', 'b', 'c']}
But we need to move ahead to understand the role of slots
 better—and understand why mapattrs
 must be careful to check to see if a __dict__ is present before fetching it!
Study this code for more insight. For the prior chapter’s tree
 lister, your next step might be to index the mapattrs function’s bysource=True dictionary result to obtain an
 object’s attributes during the tree sketch traversal, instead of (or
 perhaps in addition to?) its current physical __dict__ scan. You’ll probably need to use
 getattr on the instance to fetch
 attribute values, because some may be implemented as slots or other
 “virtual” attributes at their source classes, and fetching these at the
 class directly won’t return the instance’s value. If I code anymore
 here, though, I’ll deprive readers of the remaining fun, and the next
 section of its subject matter.
Note
Python’s pprint module used
 in this example works as shown in Pythons 3.3 and 2.7, but appears to
 have an issue in Pythons 3.2 and 3.1 where it raises a
 wrong-number-arguments exception internally for the objects displayed
 here. Since I’ve already devoted too much space to covering transitory
 Python defects, and since this has been repaired in the versions of
 Python used in this edition, we’ll leave working around this in the
 suggested exercises column for readers running this on the infected
 Pythons; change trace to simple
 prints as needed, and mind the note on battery
 dependence in Chapter 1!

New-Style Class Extensions
Beyond the changes described in the prior section (some of which, frankly, may
 seem too academic and obscure to matter to many readers of this book),
 new-style classes provide a handful of more advanced class tools that have
 more direct and practical application—slots,
 properties, descriptors, and
 more. The following sections provide an overview of each of these
 additional features, available for new-style class in Python 2.X and all
 classes in Python 3.X. Also in this extensions category are the __mro__ attribute and the super call, both covered elsewhere—the former in
 the previous section to explore a change, and the latter postponed until
 chapter end to serve as a larger case study.
Slots: Attribute Declarations
By assigning a sequence of string attribute names to a special __slots__ class attribute, we can enable a
 new-style class to both limit the set of legal attributes that instances
 of the class will have, and optimize memory usage and possibly program
 speed. As we’ll find, though, slots should be used only in applications
 that clearly warrant the added complexity. They will complicate your
 code, may complicate or break code you may use, and require universal
 deployment to be effective.
Slot basics
To use slots, assign a sequence of string names to the special
 __slots__ variable and attribute at
 the top level of a class statement:
 only those names in the __slots__
 list can be assigned as instance attributes. However, like all names
 in Python, instance attribute names must still be assigned before they
 can be referenced, even if they’re listed in __slots__:
>>> class limiter(object):
 __slots__ = ['age', 'name', 'job']

>>> x = limiter()
>>> x.age # Must assign before use
AttributeError: age

>>> x.age = 40 # Looks like instance data
>>> x.age
40
>>> x.ape = 1000 # Illegal: not in __slots__
AttributeError: 'limiter' object has no attribute 'ape'
This feature is envisioned as both a way to catch typo errors
 like this (assignments to illegal attribute names not in __slots__ are detected) as well as an
 optimization mechanism.
Allocating a namespace dictionary for every instance object can
 be expensive in terms of memory if many instances are created and only
 a few attributes are required. To save space, instead of allocating a
 dictionary for each instance, Python reserves just enough space in
 each instance to hold a value for each slot
 attribute, along with inherited attributes in the common
 class to manage slot access. This might
 additionally speed execution, though this benefit is less clear and
 might vary per program, platform, and Python.
Slots are also something of a major break with Python’s core
 dynamic nature, which dictates that any name may be created by
 assignment. In fact, they imitate C++ for efficiency at the expense of
 flexibility, and even have the potential to break
 some programs. As we’ll see, slots also come with a plethora of
 special-case usage rules. Per Python’s own manual, they should
 not be used except in clearly warranted
 cases—they are difficult to use correctly, and are, to quote the
 manual:
best reserved for rare cases where there are large numbers of
 instances in a memory-critical application.

In other words, this is yet another feature that should be used
 only if clearly warranted. Unfortunately, slots seem to be showing up
 in Python code much more often than they should; their obscurity seems
 to be a draw in itself. As usual, knowledge is your best ally in such
 things, so let’s take a quick look here.
Note
In Python 3.3, non-slots attribute space
 requirements have been reduced with a key-sharing
 dictionary model, where the __dict__ dictionaries used for objects’
 attributes may share part of their internal storage, including that
 of their keys. This may lessen some of the value of __slots__ as an optimization tool; per
 benchmark reports, this change reduces memory use by 10% to 20% for
 object-oriented programs, gives a small improvement in speed for
 programs that create many similar objects, and may be optimized
 further in the future. On the other hand, this won’t negate the
 presence of __slots__ in existing
 code you may need to understand!

Slots and namespace dictionaries
Potential benefits aside, slots can complicate the class model—and code
 that relies on it—substantially. In fact, some instances with slots
 may not have a __dict__ attribute
 namespace dictionary at all, and others will have data attributes that
 this dictionary does not include. To be clear: this is a
 major incompatibility with the traditional class
 model—one that can complicate any code that accesses attributes
 generically, and may even cause some programs to fail
 altogether.
For instance, programs that list or access instance attributes
 by name string may need to use more storage-neutral interfaces than
 __dict__ if slots may be used.
 Because an instance’s data may include class-level names such as
 slots—either in addition to or instead of namespace dictionary
 storage—both attribute sources may need to be queried for
 completeness.
Let’s see what this means in terms of code, and explore more
 about slots along the way. First off, when slots are used, instances
 do not normally have an attribute dictionary—instead, Python uses the
 class descriptors feature introduced ahead to
 allocate and manage space reserved for slot attributes in the
 instance. In Python 3.X, and in 2.X for new-style classes derived from
 object:
>>> class C: # Requires "(object)" in 2.X only
 __slots__ = ['a', 'b'] # __slots__ means no __dict__ by default

>>> X = C()
>>> X.a = 1
>>> X.a
1
>>> X.__dict__
AttributeError: 'C' object has no attribute '__dict__'
However, we can still fetch and set slot-based attributes by
 name string using storage-neutral tools such as getattr and setattr (which look beyond the instance
 __dict__ and thus include
 class-level names like slots) and dir (which collects all inherited names
 throughout a class tree):
>>> getattr(X, 'a')
1
>>> setattr(X, 'b', 2) # But getattr() and setattr() still work
>>> X.b
2
>>> 'a' in dir(X) # And dir() finds slot attributes too
True
>>> 'b' in dir(X)
True
Also keep in mind that without an attribute namespace
 dictionary, it’s not possible to assign new names to instances that
 are not names in the slots list:
>>> class D: # Use D(object) for same result in 2.X
 __slots__ = ['a', 'b']
 def __init__(self):
 self.d = 4 # Cannot add new names if no __dict__

>>> X = D()
AttributeError: 'D' object has no attribute 'd'
We can still accommodate extra attributes, though, by including
 __dict__ explicitly in __slots__, in order to create an attribute
 namespace dictionary too:
>>> class D:
 __slots__ = ['a', 'b', '__dict__'] # Name __dict__ to include one too
 c = 3 # Class attrs work normally
 def __init__(self):
 self.d = 4 # d stored in __dict__, a is a slot

>>> X = D()
>>> X.d
4
>>> X.c
3
>>> X.a # All instance attrs undefined until assigned
AttributeError: a
>>> X.a = 1
>>> X.b = 2
In this case, both storage mechanisms are
 used. This renders __dict__ too
 limited for code that wishes to treat slots as instance data, but
 generic tools such as getattr still
 allow us to process both storage forms as a single set of
 attributes:
>>> X.__dict__ # Some objects have both __dict__ and slot names
{'d': 4} # getattr() can fetch either type of attr
>>> X.__slots__
['a', 'b', '__dict__']
>>> getattr(X, 'a'), getattr(X, 'c'), getattr(X, 'd') # Fetches all 3 forms
(1, 3, 4)
Because dir also returns all
 inherited attributes, though, it might be too
 broad in some contexts; it also includes class-level methods, and even
 all object defaults. Code that
 wishes to list just instance attributes may in
 principle still need to allow for both storage forms explicitly. We
 might at first naively code this as follows:
>>> for attr in list(X.__dict__) + X.__slots__: # Wrong...
 print(attr, '=>', getattr(X, attr))
Since either can be omitted, we may more correctly code this as
 follows, using getattr to allow for
 defaults—a noble but nonetheless inaccurate approach, as the next
 section will explain:
>>> for attr in list(getattr(X, '__dict__', [])) + getattr(X, '__slots__', []):
 print(attr, '=>', getattr(X, attr))

d => 4
a => 1 # Less wrong...
b => 2
__dict__ => {'d': 4}

Multiple __slot__ lists in superclasses
The preceding code works in this specific case, but in general it’s
 not entirely accurate. Specifically, this code
 addresses only slot names in the lowest __slots__ attribute inherited by an
 instance, but slot lists may appear more than once in a class tree.
 That is, a name’s absence in the lowest __slots__ list does not preclude its
 existence in a higher __slots__.
 Because slot names become class-level attributes, instances acquire
 the union of all slot names anywhere in the tree, by the normal
 inheritance rule:
>>> class E:
 __slots__ = ['c', 'd'] # Superclass has slots
>>> class D(E):
 __slots__ = ['a', '__dict__'] # But so does its subclass

>>> X = D()
>>> X.a = 1; X.b = 2; X.c = 3 # The instance is the union (slots: a, c)
>>> X.a, X.c
(1, 3)
Inspecting just the inherited slots list won’t pick up slots
 defined higher in a class tree:
>>> E.__slots__ # But slots are not concatenated
['c', 'd']
>>> D.__slots__
['a', '__dict__']
>>> X.__slots__ # Instance inherits *lowest* __slots__
['a', '__dict__']
>>> X.__dict__ # And has its own an attr dict
{'b': 2}

>>> for attr in list(getattr(X, '__dict__', [])) + getattr(X, '__slots__', []):
 print(attr, '=>', getattr(X, attr))

b => 2 # Other superclass slots missed!
a => 1
__dict__ => {'b': 2}

>>> dir(X) # But dir() includes all slot names
[...many names omitted... 'a', 'b', 'c', 'd']
In other words, in terms of listing instance attributes
 generically, one __slots__ isn’t
 always enough—they are potentially subject to the full inheritance
 search procedure. See the earlier mapattrs-slots.py for another example of
 slots appearing in multiple superclasses. If multiple classes in a
 class tree have their own __slots__
 attributes, generic programs must develop other policies for listing
 attributes—as the next section explains.

Handling slots and other “virtual” attributes
 generically
At this point, you may wish to review the discussion of slots policy
 options at the coverage of the lister.py display mix-in classes near the
 end of the preceding chapter—a prime example of why generic programs
 may need to care about slots. Such tools that attempt to list instance
 data attributes generically must account for slots, and perhaps other
 such “virtual” instance attributes like
 properties and descriptors
 discussed ahead—names that similarly reside in classes but may provide
 attribute values for instances on request. Slots are the most
 data-centric of these, but are representative of a larger
 category.
Such attributes require inclusive approaches, special handling,
 or general avoidance—the latter of which becomes unsatisfactory as
 soon as any programmer uses slots in subject code. Really, class-level
 instance attributes like slots probably necessitate a redefinition of
 the term instance data—as locally stored
 attributes, the union of all inherited attributes, or some subset
 thereof.
For example, some programs might classify slot names as
 attributes of classes instead of instances; these
 attributes do not exist in instance namespace dictionaries, after all.
 Alternatively, as shown earlier, programs can be more inclusive by
 relying on dir to fetch all
 inherited attribute names and getattr to fetch their corresponding values
 for the instance—without regard to their physical location or
 implementation. If you must support slots as instance data, this is
 likely the most robust way to proceed:
>>> class Slotful:
 __slots__ = ['a', 'b', '__dict__']
 def __init__(self, data):
 self.c = data

>>> I = Slotful(3)
>>> I.a, I.b = 1, 2
>>> I.a, I.b, I.c # Normal attribute fetch
(1, 2, 3)

>>> I.__dict__ # Both __dict__ and slots storage
{'c': 3}
>>> [x for x in dir(I) if not x.startswith('__')]
['a', 'b', 'c']

>>> I.__dict__['c'] # __dict__ is only one attr source
3
>>> getattr(I, 'c'), getattr(I, 'a') # dir+getattr is broader than __dict__
(3, 1) # applies to slots, properties, descrip

>>> for a in (x for x in dir(I) if not x.startswith('__')):
 print(a, getattr(I, a))

a 1
b 2
c 3
Under this dir/getattr model, you can still map attributes
 to their inheritance sources, and filter them more selectively by
 source or type if needed, by scanning the MRO—as
 we did earlier in both mapattrs.py and its application to slots in
 mapattrs-slots.py. As an added
 bonus, such tools and policies for handling slots will potentially
 apply automatically to properties and
 descriptors too, though these attributes are more
 explicitly computed values, and less obviously instance-related data
 than slots.
Also keep in mind that this is not just a tools issue.
 Class-based instance attributes like slots also impact the traditional
 coding of the __setattr__ operator
 overloading method we met in Chapter 30. Because slots and some other
 attributes are not stored in the instance __dict__, and may even imply its
 absence, new-style classes must instead generally
 run attribute assignments by routing them to the object superclass. In practice, this may
 make this method fundamentally different in some classic and new-style
 classes.

Slot usage rules
Slot declarations can appear in multiple classes in a class tree, but when
 they do they are subject to a number of constraints that are somewhat
 difficult to rationalize unless you understand the implementation of
 slots as class-level descriptors for each slot
 name that are inherited by the instances where the managed space is
 reserved (descriptors are an advanced tool we’ll study in detail in
 the last part of this book):
	Slots in subs are pointless when absent in
 supers: If a subclass inherits from a superclass
 without a __slots__, the
 instance __dict__ attribute
 created for the superclass will always be accessible, making a
 __slots__ in the subclass
 largely pointless. The subclass still manages its slots, but
 doesn’t compute their values in any way, and doesn’t avoid a
 dictionary—the main reason to use slots.

	Slots in supers are pointless when absent in
 subs: Similarly, because the meaning of a __slots__ declaration is limited to the
 class in which it appears, subclasses will produce an instance
 __dict__ if they do not define
 a __slots__, rendering a
 __slots__ in a superclass
 largely pointless.

	Redefinition renders super slots
 pointless: If a class defines the same slot name as a
 superclass, its redefinition hides the slot in the superclass per
 normal inheritance. You can access the version of the name defined
 by the superclass slot only by fetching its descriptor directly
 from the superclass.

	Slots prevent class-level defaults:
 Because slots are implemented as class-level descriptors (along
 with per-instance space), you cannot use class attributes of the
 same name to provide defaults as you can for normal instance
 attributes: assigning the same name in the class overwrites the
 slot descriptor.

	Slots and __dict__: As shown earlier,
 __slots__ preclude both an
 instance __dict__ and assigning
 names not listed, unless __dict__ is listed explicitly
 too.

We’ve already seen the last of these in action, and the earlier
 mapattrs-slots.py illustrates the
 third. It’s easy to demonstrate how the new rules here translate to
 actual code—most crucially, a namespace dictionary is created when any
 class in a tree omits slots, thereby negating the memory optimization
 benefit:
>>> class C: pass # Bullet 1: slots in sub but not super
>>> class D(C): __slots__ = ['a'] # Makes instance dict for nonslots
>>> X = D() # But slot name still managed in class
>>> X.a = 1; X.b = 2
>>> X.__dict__
{'b': 2}
>>> D.__dict__.keys()
dict_keys([... 'a', '__slots__', ...])

>>> class C: __slots__ = ['a'] # Bullet 2: slots in super but not sub
>>> class D(C): pass # Makes instance dict for nonslots
>>> X = D() # But slot name still managed in class
>>> X.a = 1; X.b = 2
>>> X.__dict__
{'b': 2}
>>> C.__dict__.keys()
dict_keys([... 'a', '__slots__', ...])

>>> class C: __slots__ = ['a'] # Bullet 3: only lowest slot accessible
>>> class D(C): __slots__ = ['a']

>>> class C: __slots__ = ['a']; a = 99 # Bullet 4: no class-level defaults
ValueError: 'a' in __slots__ conflicts with class variable
In other words, besides their program-breaking potential, slots
 essentially require both universal and careful
 deployment to be effective—because slots do not compute
 values dynamically like properties (coming up in the next section),
 they are largely pointless unless each class in a tree uses them and
 is cautious to define only new slot names not defined by other
 classes. It’s an all-or-nothing feature—an
 unfortunate property shared by the super call discussed ahead:
>>> class C: __slots__ = ['a'] # Assumes universal use, differing names
>>> class D(C): __slots__ = ['b']
>>> X = D()
>>> X.a = 1; X.b = 2
>>> X.__dict__
AttributeError: 'D' object has no attribute '__dict__'
>>> C.__dict__.keys(), D.__dict__.keys()
(dict_keys([... 'a', '__slots__', ...]), dict_keys([... 'b', '__slots__', ...]))
Such rules—among others regarding weak
 references omitted here for space—are part of the reason
 slots are not generally recommended, except in pathological cases
 where their space reduction is significant. Even then, their potential
 to complicate or break code should be ample cause to carefully
 consider the tradeoffs. Not only must they be spread almost
 neurotically throughout a framework, they may
 also break tools you rely on.

Example impacts of slots: ListTree and mapattrs
As a more realistic example of slots’ effects, due to the first bullet in
 the prior section, Chapter 31’s
 ListTree class does not
 fail when mixed in to a class that defines __slots__, even though it scans instance
 namespace dictionaries. The lister class’s own lack of slots is enough
 to ensure that the instance will still have a __dict__, and hence not trigger an exception
 when fetched or indexed. For example, both of the following display
 without error—the second also allows names not in the slots list to be
 assigned as instances attributes, including any required by the
 superclass:
class C(ListTree): pass
X = C() # OK: no __slots__ used
print(X)

class C(ListTree): __slots__ = ['a', 'b'] # OK: superclass produces __dict__
X = C()
X.c = 3
print(X) # Displays c at X, a and b at C
The following classes display correctly as
 well—any nonslot class like ListTree generates an instance __dict__, and can thus safely assume its
 presence:
class A: __slots__ = ['a'] # Both OK by bullet 1 above
class B(A, ListTree): pass

class A: __slots__ = ['a']
class B(A, ListTree): __slots__ = ['b'] # Displays b at B, a at A
Although it renders subclass slots pointless, this is a positive
 side effect for tools classes like ListTree (and its Chapter 28 predecessor). In general,
 though, some tools might need to catch exceptions when __dict__ is absent or use a hasattr or getattr to test or provide defaults if slot
 usage may preclude a namespace dictionary in instance objects
 inspected.
For example, you should now be able to understand why the
 mapattrs.py program earlier in
 this chapter must check for the presence of a __dict__ before fetching it—instance objects
 created from classes with __slots__
 won’t have one. In fact, if we use the highlighted alternative line in
 the following, the mapattrs
 function fails with an exception when attempting to look for an
 attribute name in the instance at the front of the inheritance path
 sequence:
def mapattrs(instance, withobject=False, bysource=False):
 for attr in dir(instance):
 for obj in inherits:
 if attr in obj.__dict__: # May fail if __slots__ used

>>> class C: __slots__ = ['a']
>>> X = C()
>>> mapattrs(X)
AttributeError: 'C' object has no attribute '__dict__'
Either of the following works around the issue, and allows the
 tool to support slots—the first provides a default, and the second is
 more verbose but seems marginally more explicit in its intent:
 if attr in getattr(obj, '__dict__', {}):

 if hasattr(obj, '__dict__') and attr in obj.__dict__:
As mentioned earlier, some tools may benefit from mapping
 dir results to objects in the MRO
 this way, instead of scanning an instance __dict__ in general—without this more
 inclusive approach, attributes implemented by class-level tools like
 slots won’t be reported as instance data. Even so, this doesn’t
 necessarily excuse such tools from allowing for a missing __dict__ in the instance too!

What about slots speed?
Finally, while slots primarily optimize memory use, their speed impact
 is less clear-cut. Here’s a simple test script using the timeit techniques we studied in Chapter 21. For both the slots and
 nonslots (instance dictionary) storage models, it makes 1,000
 instances, assigns and fetches 4 attributes on each, and repeats 1,000
 times—for both models taking the best of 3 runs that each exercise a
 total of 8M attribute operations:
File slots-test.py
from __future__ import print_function
import timeit
base = """
Is = []
for i in range(1000):
 X = C()
 X.a = 1; X.b = 2; X.c = 3; X.d = 4
 t = X.a + X.b + X.c + X.d
 Is.append(X)
"""

stmt = """
class C(object):
 __slots__ = ['a', 'b', 'c', 'd']
""" + base
print('Slots =>', end=' ')
print(min(timeit.repeat(stmt, number=1000, repeat=3)))

stmt = """
class C(object):
 pass
""" + base
print('Nonslots=>', end=' ')
print(min(timeit.repeat(stmt, number=1000, repeat=3)))
At least on this code, on my laptop, and in my installed
 versions (Python 3.3 and 2.7), the best times imply that slots are
 slightly quicker in both 3.X and 2.X, though this says little
 about memory space, and is prone to change arbitrarily in the
 future:
c:\code> py −3 slots-test.py
Slots => 0.7780903942045899
Nonslots=> 0.9888108080898417

C:\code> py -2 slots-test.py
Slots => 0.615521153591
Nonslots=> 0.766582559582
For more on slots in general, see the Python standard manual
 set. Also watch for the Private
 decorator case study of Chapter 39—an example that
 naturally allows for attributes based on both __slots__ and __dict__ storage, by using delegation and
 storage-neutral accessor tools like getattr.

Properties: Attribute Accessors
Our next new-style extension is properties—a mechanism
 that provides another way for new-style classes to define methods called
 automatically for access or assignment to instance attributes. This
 feature is similar to properties (a.k.a. “getters” and “setters”) in
 languages like Java and C#, but in Python is generally best used
 sparingly, as a way to add accessors to attributes after the
 fact as needs evolve and warrant. Where needed, though,
 properties allow attribute values to be computed dynamically without
 requiring method calls at the point of access.
Though properties cannot support generic attribute routing goals,
 at least for specific attributes they are an alternative to some
 traditional uses of the __getattr__
 and __setattr__ overloading methods
 we first studied in Chapter 30.
 Properties have a similar effect to these two methods, but by contrast
 incur an extra method call only for accesses to names that require
 dynamic computation—other nonproperty names are accessed normally with
 no extra calls. Although __getattr__
 is invoked only for undefined names, the __setattr__ method is instead called for
 assignment to every attribute.
Properties and slots are related too, but serve different goals.
 Both implement instance attributes that are not physically stored in
 instance namespace dictionaries—a sort of “virtual” attribute—and both
 are based on the notion of class-level attribute
 descriptors. In contrast, slots manage instance
 storage, while properties intercept access and compute values
 arbitrarily. Because their underlying descriptor implementation tool is
 too advanced for us to cover here, properties and descriptors both get
 full treatment in Chapter 38.
Property basics
As a brief introduction, though, a property is a type of object assigned to a
 class attribute name. You generate a property by calling the property built-in function, passing in up to
 three accessor methods—handlers for get, set, and delete operations—as
 well as an optional docstring for the property. If any argument is
 passed as None or omitted, that
 operation is not supported.
The resulting property object is typically assigned to a name at
 the top level of a class statement
 (e.g., name=property()), and a special @ syntax we’ll meet later is available to
 automate this step. When thus assigned, later accesses to the class
 property name itself as an object attribute (e.g., obj.name) are
 automatically routed to one of the accessor methods passed into the
 property call.
For example, we’ve seen how the __getattr__ operator overloading method
 allows classes to intercept undefined attribute references in both
 classic and new-style classes:
>>> class operators:
 def __getattr__(self, name):
 if name == 'age':
 return 40
 else:
 raise AttributeError(name)

>>> x = operators()
>>> x.age # Runs __getattr__
40
>>> x.name # Runs __getattr__
AttributeError: name
Here is the same example, coded with properties instead; note
 that properties are available for all classes but require the
 new-style object derivation in 2.X
 to work properly for intercepting attribute
 assignments (and won’t complain if you forget
 this—but will silently overwrite your property with the new
 data!):
>>> class properties(object): # Need object in 2.X for setters
 def getage(self):
 return 40
 age = property(getage, None, None, None) # (get, set, del, docs), or use @

>>> x = properties()
>>> x.age # Runs getage
40
>>> x.name # Normal fetch
AttributeError: 'properties' object has no attribute 'name'
For some coding tasks, properties can be less complex and
 quicker to run than the traditional techniques. For example, when we
 add attribute assignment support, properties
 become more attractive—there’s less code to type, and no extra method
 calls are incurred for assignments to attributes we don’t wish to
 compute dynamically:
>>> class properties(object): # Need object in 2.X for setters
 def getage(self):
 return 40
 def setage(self, value):
 print('set age: %s' % value)
 self._age = value
 age = property(getage, setage, None, None)

>>> x = properties()
>>> x.age # Runs getage
40
>>> x.age = 42 # Runs setage
set age: 42
>>> x._age # Normal fetch: no getage call
42
>>> x.age # Runs getage
40
>>> x.job = 'trainer' # Normal assign: no setage call
>>> x.job # Normal fetch: no getage call
'trainer'
The equivalent class based on operator overloading incurs extra
 method calls for assignments to attributes not being managed and needs
 to route attribute assignments through the attribute dictionary to
 avoid loops (or, for new-style classes, to the object superclass’s __setattr__ to better support “virtual”
 attributes such as slots and properties coded in other
 classes):
>>> class operators:
 def __getattr__(self, name): # On undefined reference
 if name == 'age':
 return 40
 else:
 raise AttributeError(name)
 def __setattr__(self, name, value): # On all assignments
 print('set: %s %s' % (name, value))
 if name == 'age':
 self.__dict__['_age'] = value # Or object.__setattr__()
 else:
 self.__dict__[name] = value

>>> x = operators()
>>> x.age # Runs __getattr__
40
>>> x.age = 41 # Runs __setattr__
set: age 41
>>> x._age # Defined: no __getattr__ call
41
>>> x.age # Runs __getattr__
40
>>> x.job = 'trainer' # Runs __setattr__ again
set: job trainer
>>> x.job # Defined: no __getattr__ call
'trainer'
Properties seem like a win for this simple example. However,
 some applications of __getattr__
 and __setattr__ still require more
 dynamic or generic interfaces than properties directly provide.
For example, in many cases the set of attributes to be supported
 cannot be determined when the class is coded, and may not even exist
 in any tangible form (e.g., when delegating
 arbitrary attribute references to a wrapped/embedded object
 generically). In such contexts, a generic __getattr__ or a __setattr__ attribute handler with a
 passed-in attribute name is usually preferable. Because such generic
 handlers can also support simpler cases, properties are often an
 optional and redundant extension—albeit one that may avoid extra calls
 on assignments, and one that some programmers may prefer when
 applicable.
For more details on both options, stay tuned for Chapter 38 in the final part of this book. As
 we’ll see there, it’s also possible to code properties using
 the @ symbol
 function decorator syntax—a topic introduced
 later in this chapter, and an equivalent and automatic alternative to
 manual assignment in the class scope:
class properties(object):
 @property # Coding properties with decorators: ahead
 def age(self):
 ...
 @age.setter
 def age(self, value):
 ...
To make sense of this decorator syntax, though, we must
 move ahead.

__getattribute__ and Descriptors: Attribute Tools
Also in the class extensions department, the __getattribute__ operator overloading method,
 available for new-style classes only, allows a class to intercept
 all attribute references, not just undefined
 references. This makes it more potent than its __getattr__ cousin we used in the prior
 section, but also trickier to use—it’s prone to loops much like __setattr__, but in different ways.
For more specialized attribute interception goals, in addition to
 properties and operator overloading methods, Python supports the notion
 of attribute descriptors—classes with __get__ and __set__ methods, assigned to class attributes
 and inherited by instances, that intercept read and write accesses to
 specific attributes. As a preview, here’s one of the simplest
 descriptors you’re likely to encounter:
>>> class AgeDesc(object):
 def __get__(self, instance, owner): return 40
 def __set__(self, instance, value): instance._age = value

>>> class descriptors(object):
 age = AgeDesc()

>>> x = descriptors()
>>> x.age # Runs AgeDesc.__get__
40
>>> x.age = 42 # Runs AgeDesc.__set__
>>> x._age # Normal fetch: no AgeDesc call
42
Descriptors have access to state in instances of themselves as
 well as their client class, and are in a sense a more general form of
 properties; in fact, properties are a simplified way to define a
 specific type of descriptor—one that runs functions on access.
 Descriptors are also used to implement the slots feature we met earlier,
 and other Python tools.
Because __getattribute__ and
 descriptors are too substantial to cover well here, we’ll defer the rest
 of their coverage, as well as much more on properties, to Chapter 38 in the final part of this book. We’ll
 also employ them in examples in Chapter 39 and study
 how they factor into inheritance in Chapter 40.

Other Class Changes and Extensions
As mentioned, we’re also postponing coverage of the super built-in—an additional major new-style
 class extension that relies on its MRO—until the end of this chapter.
 Before we get there, though, we’re going to explore additional
 class-related changes and extensions that are not necessarily bound to
 new-style classes, but were introduced at roughly the same time: static
 and class methods, decorators, and more.
Many of the changes and feature additions of new-style classes
 integrate with the notion of subclassable types mentioned earlier in
 this chapter, because subclassable types and new-style classes were
 introduced in conjunction with a merging of the type/class dichotomy in
 Python 2.2 and beyond. As we’ve seen, in 3.X, this merging is complete:
 classes are now types, and types are classes, and Python classes today
 still reflect both that conceptual merging and its
 implementation.
Along with these changes, Python also grew a more coherent and
 generalized protocol for coding metaclasses—classes
 that subclass the type object,
 intercept class creation calls, and may provide behavior acquired by
 classes. Accordingly, they provide a well-defined hook for management
 and augmentation of class objects. They are also an advanced topic that
 is optional for most Python programmers, so we’ll postpone further
 details here. We’ll glimpse metaclasses again later in this chapter in
 conjunction with class decorators—a feature whose roles often
 overlap—but we’ll postpone their full coverage until Chapter 40, in the final part of this book. For our
 purpose here, let’s move on to a handful of additional class-related
 extensions.

Static and Class Methods
As of Python 2.2, it is possible to define two kinds of methods within a class that
 can be called without an instance: static methods
 work roughly like simple instance-less functions inside a class, and
 class methods are passed a class instead of an
 instance. Both are similar to tools in other languages (e.g., C++ static
 methods). Although this feature was added in conjunction with the
 new-style classes discussed in the prior sections, static and class
 methods work for classic classes too.
To enable these method modes, you must call special built-in
 functions named staticmethod
 and classmethod within the class, or
 invoke them with the special @name decoration
 syntax we’ll meet later in this chapter. These functions are required to
 enable these special method modes in Python 2.X, and are generally needed
 in 3.X. In Python 3.X, a staticmethod
 declaration is not required for instance-less methods called only through
 a class name, but is still required if such methods are called through
 instances.
Why the Special Methods?
As we’ve learned, a class’s method is normally passed an instance
 object in its first argument, to serve as the implied subject of the
 method call—that’s the “object” in “object-oriented programming.” Today,
 though, there are two ways to modify this model. Before I explain what
 they are, I should explain why this might matter to you.
Sometimes, programs need to process data associated with classes
 instead of instances. Consider keeping track of the number of instances
 created from a class, or maintaining a list of all of a class’s
 instances that are currently in memory. This type of information and its
 processing are associated with the class rather than its instances. That
 is, the information is usually stored on the class itself and processed
 apart from any instance.
For such tasks, simple functions coded outside a class can often
 suffice—because they can access class attributes through the class name,
 they have access to class data and never require access to an instance.
 However, to better associate such code with a class, and to allow such
 processing to be customized with inheritance as usual, it would be
 better to code these types of functions inside the
 class itself. To make this work, we need methods in a class that are not
 passed, and do not expect, a self
 instance argument.
Python supports such goals with the notion of static
 methods—simple functions with no self argument that
 are nested in a class and are designed to work on class attributes
 instead of instance attributes. Static methods never receive an
 automatic self argument, whether
 called through a class or an instance. They usually keep track of
 information that spans all instances, rather than providing behavior for
 instances.
Although less commonly used, Python also supports the notion of
 class methods—methods of a class that are passed a
 class object in their first argument instead of an instance, regardless
 of whether they are called through an instance or a class. Such methods
 can access class data through their class argument—what we’ve called
 self thus far—even if called through
 an instance. Normal methods, now known in formal circles as
 instance methods, still receive a subject instance
 when called; static and class methods do not.

Static Methods in 2.X and 3.X
The concept of static methods is the same in both Python 2.X and 3.X, but its
 implementation requirements have evolved somewhat in Python 3.X. Since
 this book covers both versions, I need to explain the differences in the
 two underlying models before we get to the code.
Really, we already began this story in the preceding chapter, when
 we explored the notion of unbound methods. Recall that both Python 2.X
 and 3.X always pass an instance to a method that is called through an
 instance. However, Python 3.X treats methods fetched directly from a
 class differently than 2.X—a difference in Python lines that has nothing
 to do with new-style classes:
	Both Python 2.X and 3.X produce a bound
 method when a method is fetched through an instance.

	In Python 2.X, fetching a method from a class produces an
 unbound method, which cannot be called without manually passing an
 instance.

	In Python 3.X, fetching a method from a class produces a
 simple function, which can be called normally
 with no instance present.

In other words, Python 2.X class methods always require an
 instance to be passed in, whether they are called through an instance or
 a class. By contrast, in Python 3.X we are required to pass an instance
 to a method only if the method expects one—methods that do not include
 an instance argument can be called through the class without passing an
 instance. That is, 3.X allows simple functions in a class, as long as
 they do not expect and are not passed an instance argument. The net
 effect is that:
	In Python 2.X, we must always declare a method as static in
 order to call it without an instance, whether it is called through a
 class or an instance.

	In Python 3.X, we need not declare such methods as static if
 they will be called through a class only, but we must do so in order
 to call them through an instance.

To illustrate, suppose we want to use class attributes to count
 how many instances are generated from a class. The following file,
 spam.py, makes a first attempt—its
 class has a counter stored as a class attribute, a constructor that
 bumps up the counter by one each time a new instance is created, and a
 method that displays the counter’s value. Remember, class attributes are
 shared by all instances. Therefore, storing the counter in the class
 object itself ensures that it effectively spans all instances:
class Spam:
 numInstances = 0
 def __init__(self):
 Spam.numInstances = Spam.numInstances + 1
 def printNumInstances():
 print("Number of instances created: %s" % Spam.numInstances)
The printNumInstances method is
 designed to process class data, not instance data—it’s about
 all the instances, not any one in particular.
 Because of that, we want to be able to call it without having to pass an
 instance. Indeed, we don’t want to make an instance to fetch the number
 of instances, because this would change the number of instances we’re
 trying to fetch! In other words, we want a self-less “static” method.
Whether this code’s printNumInstances works or not, though,
 depends on which Python you use, and which way you call the
 method—through the class or through an instance. In 2.X, calls to a
 self-less method function through
 both the class and instances fail (as usual, I’ve omitted some error
 text here for space):
C:\code> c:\python27\python
>>> from spam import Spam
>>> a = Spam() # Cannot call unbound class methods in 2.X
>>> b = Spam() # Methods expect a self object by default
>>> c = Spam()

>>> Spam.printNumInstances()
TypeError: unbound method printNumInstances() must be called with Spam instance
as first argument (got nothing instead)
>>> a.printNumInstances()
TypeError: printNumInstances() takes no arguments (1 given)
The problem here is that unbound instance methods aren’t exactly
 the same as simple functions in 2.X. Even though there are no arguments
 in the def header, the method still
 expects an instance to be passed in when it’s called, because the
 function is associated with a class. In Python 3.X, calls to self-less methods made through classes work,
 but calls from instances fail:
C:\code> c:\python33\python
>>> from spam import Spam
>>> a = Spam() # Can call functions in class in 3.X
>>> b = Spam() # Calls through instances still pass a self
>>> c = Spam()

>>> Spam.printNumInstances() # Differs in 3.X
Number of instances created: 3
>>> a.printNumInstances()
TypeError: printNumInstances() takes 0 positional arguments but 1 was given
That is, calls to instance-less methods like printNumInstances made through the
 class fail in Python 2.X but work in Python 3.X. On
 the other hand, calls made through an instance fail
 in both Pythons, because an instance is automatically passed to a method
 that does not have an argument to receive it:
Spam.printNumInstances() # Fails in 2.X, works in 3.X
instance.printNumInstances() # Fails in both 2.X and 3.X (unless static)
If you’re able to use 3.X and stick with calling self-less methods through classes only, you
 already have a static method feature. However, to allow self-less methods to be called through classes
 in 2.X and through instances in both 2.X and 3.X, you need to either
 adopt other designs or be able to somehow mark such methods as special.
 Let’s look at both options in turn.

Static Method Alternatives
Short of marking a self-less
 method as special, you can sometimes achieve similar
 results with different coding structures. For example, if you just want
 to call functions that access class members without an instance, perhaps
 the simplest idea is to use normal functions outside the class, not
 class methods. This way, an instance isn’t expected in the call. The
 following mutation of spam.py
 illustrates, and works the same in Python 3.X and 2.X:
def printNumInstances():
 print("Number of instances created: %s" % Spam.numInstances)

class Spam:
 numInstances = 0
 def __init__(self):
 Spam.numInstances = Spam.numInstances + 1

C:\code> c:\python33\python
>>> import spam
>>> a = spam.Spam()
>>> b = spam.Spam()
>>> c = spam.Spam()
>>> spam.printNumInstances() # But function may be too far removed
Number of instances created: 3 # And cannot be changed via inheritance
>>> spam.Spam.numInstances
3
Because the class name is accessible to the simple function as a
 global variable, this works fine. Also, note that the name of the
 function becomes global, but only to this single module; it will not
 clash with names in other files of the program.
Prior to static methods in Python, this structure was the general
 prescription. Because Python already provides modules as a
 namespace-partitioning tool, one could argue that there’s not typically
 any need to package functions in classes unless they implement object
 behavior. Simple functions within modules like the one here do much of
 what instance-less class methods could, and are already associated with
 the class because they live in the same module.
Unfortunately, this approach is still less than ideal. For one
 thing, it adds to this file’s scope an extra name that is used only for
 processing a single class. For another, the function is much less
 directly associated with the class by structure; in fact, its definition
 could be hundreds of lines away. Perhaps worse, simple functions like
 this cannot be customized by inheritance, since they live outside a
 class’s namespace: subclasses cannot directly replace or extend such a
 function by redefining it.
We might try to make this example work in a version-neutral way by
 using a normal method and always calling it through (or with) an
 instance, as usual:
class Spam:
 numInstances = 0
 def __init__(self):
 Spam.numInstances = Spam.numInstances + 1
 def printNumInstances(self):
 print("Number of instances created: %s" % Spam.numInstances)

C:\code> c:\python33\python
>>> from spam import Spam
>>> a, b, c = Spam(), Spam(), Spam()
>>> a.printNumInstances()
Number of instances created: 3
>>> Spam.printNumInstances(a)
Number of instances created: 3
>>> Spam().printNumInstances() # But fetching counter changes counter!
Number of instances created: 4
Unfortunately, as mentioned earlier, such an approach is
 completely unworkable if we don’t have an instance available, and making
 an instance changes the class data, as illustrated in the last line
 here. A better solution would be to somehow mark a method inside a class
 as never requiring an instance. The next section shows how.

Using Static and Class Methods
Today, there is another option for coding simple functions associated with a class
 that may be called through either the class or its instances. As of
 Python 2.2, we can code classes with static and class methods, neither
 of which requires an instance argument to be passed in when invoked. To
 designate such methods, classes call the built-in functions staticmethod and classmethod, as hinted in the earlier discussion of new-style classes.
 Both mark a function object as special—that is, as requiring no instance
 if static and requiring a class argument if a class method. For example,
 in the file bothmethods.py (which
 unifies 2.X and 3.X printing with lists, though displays still vary
 slightly for 2.X classic classes):
File bothmethods.py

class Methods:
 def imeth(self, x): # Normal instance method: passed a self
 print([self, x])

 def smeth(x): # Static: no instance passed
 print([x])

 def cmeth(cls, x): # Class: gets class, not instance
 print([cls, x])

 smeth = staticmethod(smeth) # Make smeth a static method (or @: ahead)
 cmeth = classmethod(cmeth) # Make cmeth a class method (or @: ahead)
Notice how the last two assignments in this code simply
 reassign (a.k.a. rebind) the method names smeth and cmeth. Attributes are created and changed by
 any assignment in a class statement,
 so these final assignments simply overwrite the assignments made earlier
 by the defs. As we’ll see in a few
 moments, the special @ syntax works here as
 an alternative to this just as it does for properties—but makes little
 sense unless you first understand the assignment form here that it
 automates.
Technically, Python now supports three kinds of class-related
 methods, with differing argument protocols:
	Instance methods, passed a self instance object (the default)

	Static methods, passed no extra object
 (via staticmethod)

	Class methods, passed a class object (via
 classmethod, and inherent in
 metaclasses)

Moreover, Python 3.X extends this model by also allowing simple
 functions in a class to serve the role of static methods without extra
 protocol, when called through a class object only. Despite its name, the
 bothmethods.py module illustrates
 all three method types, so let’s expand on these in turn.
Instance methods are the normal and default
 case that we’ve seen in this book. An instance method must always be
 called with an instance object. When you call it through an
 instance, Python passes the instance to the first
 (leftmost) argument automatically; when you call it through a
 class, you must pass along the instance
 manually:
>>> from bothmethods import Methods # Normal instance methods
>>> obj = Methods() # Callable through instance or class
>>> obj.imeth(1)
[<bothmethods.Methods object at 0x0000000002A15710>, 1]
>>> Methods.imeth(obj, 2)
[<bothmethods.Methods object at 0x0000000002A15710>, 2]
Static methods, by contrast, are called
 without an instance argument. Unlike simple functions outside a class,
 their names are local to the scopes of the classes in which they are
 defined, and they may be looked up by inheritance. Instance-less
 functions can be called through a class normally in Python 3.X, but
 never by default in 2.X. Using the staticmethod built-in allows such methods to
 also be called through an instance in 3.X and through both a class and
 an instance in Python 2.X (that is, the first of the following works in
 3.X without staticmethod, but the
 second does not):
>>> Methods.smeth(3) # Static method: call through class
[3] # No instance passed or expected
>>> obj.smeth(4) # Static method: call through instance
[4] # Instance not passed
Class methods are similar, but Python
 automatically passes the class (not an instance) in to a class method’s
 first (leftmost) argument, whether it is called through a class or an
 instance:
>>> Methods.cmeth(5) # Class method: call through class
[<class 'bothmethods.Methods'>, 5] # Becomes cmeth(Methods, 5)
>>> obj.cmeth(6) # Class method: call through instance
[<class 'bothmethods.Methods'>, 6] # Becomes cmeth(Methods, 6)
In Chapter 40, we’ll also find that
 metaclass methods—a unique, advanced, and
 technically distinct method type—behave similarly to the
 explicitly-declared class methods we’re exploring here.

Counting Instances with Static Methods
Now, given these built-ins, here is the static method equivalent of this section’s
 instance-counting example—it marks the method as special, so it will
 never be passed an instance automatically:
class Spam:
 numInstances = 0 # Use static method for class data
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances():
 print("Number of instances: %s" % Spam.numInstances)
 printNumInstances = staticmethod(printNumInstances)
Using the static method built-in, our code now allows the self-less method to be called through the
 class or any instance of it, in both Python 2.X and 3.X:
>>> from spam_static import Spam
>>> a = Spam()
>>> b = Spam()
>>> c = Spam()
>>> Spam.printNumInstances() # Call as simple function
Number of instances: 3
>>> a.printNumInstances() # Instance argument not passed
Number of instances: 3
Compared to simply moving printNumInstances outside the class, as
 prescribed earlier, this version requires an extra staticmethod call (or an @ line we’ll see ahead). However, it also
 localizes the function name in the class scope (so it won’t clash with
 other names in the module); moves the function code closer to where it
 is used (inside the class statement);
 and allows subclasses to customize the static
 method with inheritance—a more convenient and powerful approach than
 importing functions from the files in which superclasses are coded. The
 following subclass and new testing session illustrate (be sure to start
 a new session after changing files, so that your from imports load the latest version of the
 file):
class Sub(Spam):
 def printNumInstances(): # Override a static method
 print("Extra stuff...") # But call back to original
 Spam.printNumInstances()
 printNumInstances = staticmethod(printNumInstances)

>>> from spam_static import Spam, Sub
>>> a = Sub()
>>> b = Sub()
>>> a.printNumInstances() # Call from subclass instance
Extra stuff...
Number of instances: 2
>>> Sub.printNumInstances() # Call from subclass itself
Extra stuff...
Number of instances: 2
>>> Spam.printNumInstances() # Call original version
Number of instances: 2
Moreover, classes can inherit the static method without redefining
 it—it is run without an instance, regardless of where it is defined in a
 class tree:
>>> class Other(Spam): pass # Inherit static method verbatim

>>> c = Other()
>>> c.printNumInstances()
Number of instances: 3
Notice how this also bumps up the
 superclass’s instance counter, because its
 constructor is inherited and run—a behavior that begins to encroach on
 the next section’s subject.

Counting Instances with Class Methods
Interestingly, a class method can do similar work here—the following has the same behavior
 as the static method version listed earlier, but it uses a class method
 that receives the instance’s class in its first argument. Rather than
 hardcoding the class name, the class method uses the automatically
 passed class object generically:
class Spam:
 numInstances = 0 # Use class method instead of static
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances(cls):
 print("Number of instances: %s" % cls.numInstances)
 printNumInstances = classmethod(printNumInstances)
This class is used in the same way as the prior versions, but its
 printNumInstances method receives the
 Spam class, not the instance, when
 called from both the class and an instance:
>>> from spam_class import Spam
>>> a, b = Spam(), Spam()
>>> a.printNumInstances() # Passes class to first argument
Number of instances: 2
>>> Spam.printNumInstances() # Also passes class to first argument
Number of instances: 2
When using class methods, though, keep in mind that they receive
 the most specific (i.e., lowest) class of the
 call’s subject. This has some subtle implications when trying to update
 class data through the passed-in class. For example, if in module
 spam_class.py we subclass to
 customize as before, augment Spam.printNumInstances to also display its
 cls argument, and start a new testing
 session:
class Spam:
 numInstances = 0 # Trace class passed in
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances(cls):
 print("Number of instances: %s %s" % (cls.numInstances, cls))
 printNumInstances = classmethod(printNumInstances)

class Sub(Spam):
 def printNumInstances(cls): # Override a class method
 print("Extra stuff...", cls) # But call back to original
 Spam.printNumInstances()
 printNumInstances = classmethod(printNumInstances)

class Other(Spam): pass # Inherit class method verbatim
The lowest class is passed in whenever a class method is run, even
 for subclasses that have no class methods of their own:
>>> from spam_class import Spam, Sub, Other
>>> x = Sub()
>>> y = Spam()
>>> x.printNumInstances() # Call from subclass instance
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> Sub.printNumInstances() # Call from subclass itself
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> y.printNumInstances() # Call from superclass instance
Number of instances: 2 <class 'spam_class.Spam'>
In the first call here, a class method call is made through an
 instance of the Sub subclass, and
 Python passes the lowest class, Sub,
 to the class method. All is well in this case—since Sub’s redefinition of the method calls the
 Spam superclass’s version explicitly,
 the superclass method in Spam
 receives its own class in its first argument. But watch what happens for
 an object that inherits the class method verbatim:
>>> z = Other() # Call from lower sub's instance
>>> z.printNumInstances()
Number of instances: 3 <class 'spam_class.Other'>
This last call here passes Other to Spam’s class method. This works in this
 example because fetching the counter finds it in
 Spam by inheritance. If this method
 tried to assign to the passed class’s data, though,
 it would update Other, not Spam! In this specific case, Spam is probably better off hardcoding its own
 class name to update its data if it means to count instances of all its
 subclasses too, rather than relying on the passed-in class
 argument.
Counting instances per class with class methods
In fact, because class methods always receive the
 lowest class in an instance’s tree:
	Static methods and explicit class names
 may be a better solution for processing data local to a
 class.

	Class methods may be better suited to
 processing data that may differ for each class in a
 hierarchy.

Code that needs to manage per-class
 instance counters, for example, might be best off leveraging class
 methods. In the following, the top-level superclass uses a class
 method to manage state information that varies for and is stored on
 each class in the tree—similar in spirit to the way instance methods
 manage state information that varies per class instance:
class Spam:
 numInstances = 0
 def count(cls): # Per-class instance counters
 cls.numInstances += 1 # cls is lowest class above instance
 def __init__(self):
 self.count() # Passes self.__class__ to count
 count = classmethod(count)

class Sub(Spam):
 numInstances = 0
 def __init__(self): # Redefines __init__
 Spam.__init__(self)

class Other(Spam): # Inherits __init__
 numInstances = 0

>>> from spam_class2 import Spam, Sub, Other
>>> x = Spam()
>>> y1, y2 = Sub(), Sub()
>>> z1, z2, z3 = Other(), Other(), Other()
>>> x.numInstances, y1.numInstances, z1.numInstances # Per-class data!
(1, 2, 3)
>>> Spam.numInstances, Sub.numInstances, Other.numInstances
(1, 2, 3)
Static and class methods have additional advanced roles, which
 we will finesse here; see other resources for more use cases. In
 recent Python versions, though, the static and class method
 designations have become even simpler with the advent of
 function decoration syntax—a way to apply one
 function to another that has roles well beyond the static method use
 case that was its initial motivation. This syntax also allows us to
 augment classes in Python 2.X and 3.X—to
 initialize data like the numInstances counter in the last example,
 for instance. The next section explains how.
Note
For a postscript on Python’s method types, be sure to watch
 for coverage of metaclass methods in Chapter 40—because these are designed to process a
 class that is an instance of a metaclass, they
 turn out to be very similar to the class methods defined here, but
 require no classmethod
 declaration, and apply only to the shadowy metaclass realm.

Decorators and Metaclasses: Part 1
Because the staticmethod and
 classmethod call technique described in the prior section initially seemed obscure to
 some observers, a device was eventually added to make the operation
 simpler. Python decorators—similar to the notion and
 syntax of annotations in Java—both addressed this specific need and
 provided a general tool for adding logic that manages both functions and
 classes, or later calls to them.
This is called a “decoration,” but in more concrete terms is really
 just a way to run extra processing steps at function and class definition
 time with explicit syntax. It comes in two flavors:
	Function decorators—the initial entry in this set, added in Python 2.4—augment function
 definitions. They specify special operation modes for both simple
 functions and classes’ methods by wrapping them in an extra layer of
 logic implemented as another function, usually called a metafunction.

	Class decorators—a later extension, added
 in Python 2.6 and 3.0—augment class definitions. They do the same for classes, adding
 support for management of whole objects and their interfaces. Though
 perhaps simpler, they often overlap in roles with metaclasses.

Function decorators turn out to be very general
 tools: they are useful for adding many types of logic to functions besides
 the static and class method use cases. For instance, they may be used to
 augment functions with code that logs calls made to them, checks the types
 of passed arguments during debugging, and so on. Function decorators can
 be used to manage either functions themselves or later calls to them. In
 the latter mode, function decorators are similar to the
 delegation design pattern we explored in Chapter 31, but they are designed to augment a
 specific function or method call, not an entire object interface.
Python provides a few built-in function decorators for operations
 such as marking static and class methods and defining properties (as
 sketched earlier, the property built-in
 works as a decorator automatically), but programmers can also code
 arbitrary decorators of their own. Although they are not strictly tied to
 classes, user-defined function decorators often are coded as classes to
 save the original functions for later dispatch, along with other data as
 state information.
This proved such a useful hook that it was extended in Python 2.6,
 2.7, and 3.X—class decorators bring augmentation to
 classes too, and are more directly tied to the class model. Like their
 function cohorts, class decorators may manage classes themselves or later
 instance creation calls, and often employ delegation
 in the latter mode. As we’ll find, their roles also often overlap with
 metaclasses; when they do, the newer class decorators
 may offer a more lightweight way to achieve the same goals.
Function Decorator Basics
Syntactically, a function decorator is a sort of runtime
 declaration about the function that follows. A function decorator is
 coded on a line by itself just before the def statement that defines a function or
 method. It consists of the @ symbol,
 followed by what we call a
 metafunction—a function (or other callable object)
 that manages another function. Static methods since Python 2.4, for
 example, may be coded with decorator syntax like this:
class C:
 @staticmethod # Function decoration syntax
 def meth():
 ...
Internally, this syntax has the same effect as the
 following—passing the function through the decorator and assigning the
 result back to the original name:
class C:
 def meth():
 ...
 meth = staticmethod(meth) # Name rebinding equivalent
Decoration rebinds the method name to the
 decorator’s result. The net effect is that calling the method function’s
 name later actually triggers the result of its staticmethod decorator first. Because a
 decorator can return any sort of object, this allows the decorator to
 insert a layer of logic to be run on every call. The decorator function
 is free to return either the original function itself, or a new
 proxy object that saves the original function
 passed to the decorator to be invoked indirectly after the extra logic
 layer runs.
With this addition, here’s a better way to code our static method
 example from the prior section in either Python 2.X or 3.X:
class Spam:
 numInstances = 0
 def __init__(self):
 Spam.numInstances = Spam.numInstances + 1

 @staticmethod
 def printNumInstances():
 print("Number of instances created: %s" % Spam.numInstances)

>>> from spam_static_deco import Spam
>>> a = Spam()
>>> b = Spam()
>>> c = Spam()
>>> Spam.printNumInstances() # Calls from classes and instances work
Number of instances created: 3
>>> a.printNumInstances()
Number of instances created: 3
Because they also accept and return functions, the classmethod and property built-in functions may be used as decorators in the same way—as in the
 following mutation of the prior bothmethods.py:
File bothmethods_decorators.py

class Methods(object): # object needed in 2.X for property setters
 def imeth(self, x): # Normal instance method: passed a self
 print([self, x])

 @staticmethod
 def smeth(x): # Static: no instance passed
 print([x])

 @classmethod
 def cmeth(cls, x): # Class: gets class, not instance
 print([cls, x])

 @property # Property: computed on fetch
 def name(self):
 return 'Bob ' + self.__class__.__name__

>>> from bothmethods_decorators import Methods
>>> obj = Methods()
>>> obj.imeth(1)
[<bothmethods_decorators.Methods object at 0x0000000002A256A0>, 1]
>>> obj.smeth(2)
[2]
>>> obj.cmeth(3)
[<class 'bothmethods_decorators.Methods'>, 3]
>>> obj.name
'Bob Methods'
Keep in mind that staticmethod
 and its kin here are still built-in functions; they may be used in
 decoration syntax, just because they take a function as an argument and
 return a callable to which the original function name can be rebound. In
 fact, any such function can be used in this way—even user-defined
 functions we code ourselves, as the next section explains.

A First Look at User-Defined Function Decorators
Although Python provides a handful of built-in functions that can be used as decorators, we can also
 write custom decorators of our own. Because of their wide utility, we’re
 going to devote an entire chapter to coding decorators in the final part
 of this book. As a quick example, though, let’s look at a simple
 user-defined decorator at work.
Recall from Chapter 30 that the
 __call__ operator overloading method implements a function-call interface
 for class instances. The following code uses this to define a call
 proxy class that saves the decorated function in
 the instance and catches calls to the original name. Because this is a
 class, it also has state information—a counter of calls made:
class tracer:
 def __init__(self, func): # Remember original, init counter
 self.calls = 0
 self.func = func
 def __call__(self, *args): # On later calls: add logic, run original
 self.calls += 1
 print('call %s to %s' % (self.calls, self.func.__name__))
 return self.func(*args)

@tracer # Same as spam = tracer(spam)
def spam(a, b, c): # Wrap spam in a decorator object
 return a + b + c

print(spam(1, 2, 3)) # Really calls the tracer wrapper object
print(spam('a', 'b', 'c')) # Invokes __call__ in class
Because the spam function is
 run through the tracer decorator,
 when the original spam name is called
 it actually triggers the __call__
 method in the class. This method counts and logs the call, and then
 dispatches it to the original wrapped function. Note how the *name argument syntax is used to pack and
 unpack the passed-in arguments; because of this, this decorator can be
 used to wrap any function with any number of positional
 arguments.
The net effect, again, is to add a layer of logic to the original
 spam function. Here is the script’s
 3.X and 2.X output—the first line comes from the tracer class, and the second gives the return
 value of the spam function
 itself:
c:\code> python tracer1.py
call 1 to spam
6
call 2 to spam
abc
Trace through this example’s code for more insight. As it is, this
 decorator works for any function that takes positional arguments, but it
 does not handle keyword arguments, and cannot
 decorate class-level method functions (in short,
 for methods its __call__ would be
 passed a tracer instance only). As
 we’ll see in Part VIII, there are a variety of
 ways to code function decorators, including nested def statements; some of the alternatives are
 better suited to methods than the version shown here.
For example, by using nested functions with enclosing scopes for
 state, instead of callable class instances with attributes, function
 decorators often become more broadly applicable to class-level methods
 too. We’ll postpone the full details on this, but here’s a brief look at
 this closure based coding model; it uses function
 attributes for counter state for portability, but could leverage
 variables and nonlocal instead in 3.X
 only:
def tracer(func): # Remember original
 def oncall(*args): # On later calls
 oncall.calls += 1
 print('call %s to %s' % (oncall.calls, func.__name__))
 return func(*args)
 oncall.calls = 0
 return oncall

class C:
 @tracer
 def spam(self,a, b, c): return a + b + c

x = C()
print(x.spam(1, 2, 3))
print(x.spam('a', 'b', 'c')) # Same output as tracer1 (in tracer2.py)

A First Look at Class Decorators and Metaclasses
Function decorators turned out to be so useful that Python 2.6 and 3.0 expanded the model,
 allowing decorators to be applied to classes as well as functions. In
 short, class decorators are similar to function
 decorators, but they are run at the end of a class statement to rebind a class name to a
 callable. As such, they can be used to either manage classes just after
 they are created, or insert a layer of wrapper logic to manage instances
 when they are later created. Symbolically, the code structure:
def decorator(aClass): ...

@decorator # Class decoration syntax
class C: ...
is mapped to the following equivalent:
def decorator(aClass): ...

class C: ... # Name rebinding equivalent
C = decorator(C)
The class decorator is free to augment the class itself, or return
 a proxy object that intercepts later instance
 construction calls. For example, in the code of the section “Counting instances per class with class methods”, we could use this
 hook to automatically augment the classes with instance counters and any
 other data required:
def count(aClass):
 aClass.numInstances = 0
 return aClass # Return class itself, instead of a wrapper

@count
class Spam: ... # Same as Spam = count(Spam)

@count
class Sub(Spam): ... # numInstances = 0 not needed here

@count
class Other(Spam): ...
In fact, as coded, this decorator can be applied to classes
 or functions—it happily returns the object being
 defined in either context after initializing the object’s
 attribute:
@count
def spam(): pass # Like spam = count(spam)

@count
class Other: pass # Like Other = count(Other)

spam.numInstances # Both are set to zero
Other.numInstances
Though this decorator manages a function or class itself, as we’ll
 see later in this book, class decorators can also manage an object’s
 entire interface by intercepting construction
 calls, and wrapping the new instance object in a
 proxy that deploys attribute accessor tools to
 intercept later requests—a multilevel coding technique we’ll use to
 implement class attribute privacy in Chapter 39.
 Here’s a preview of the model:
def decorator(cls): # On @ decoration
 class Proxy:
 def __init__(self, *args): # On instance creation: make a cls
 self.wrapped = cls(*args)
 def __getattr__(self, name): # On attribute fetch: extra ops here
 return getattr(self.wrapped, name)
 return Proxy

@decorator
class C: ... # Like C = decorator(C)
X = C() # Makes a Proxy that wraps a C, and catches later X.attr
Metaclasses, mentioned briefly earlier, are a
 similarly advanced class-based tool whose roles often intersect with
 those of class decorators. They provide an alternate model, which routes
 the creation of a class object to a subclass of the top-level type class, at the conclusion of a class statement:
class Meta(type):
 def __new__(meta, classname, supers, classdict):
 ...extra logic + class creation via type call...

class C(metaclass=Meta):
 ...my creation routed to Meta... # Like C = Meta('C', (), {...})
In Python 2.X, the effect is the same, but the coding differs—use
 a class attribute instead of a keyword argument in the class header:
class C:
 __metaclass__ = Meta
 ... my creation routed to Meta...
In either line, Python calls a class’s metaclass to create the new
 class object, passing in the data defined during the class statement’s run; in 2.X, the metaclass
 simply defaults to the classic class creator:
 classname = Meta(classname, superclasses, attributedict)
To assume control of the creation or initialization of a new class
 object, a metaclass generally redefines the __new__ or __init__ method of the type class that normally intercepts this call.
 The net effect, as with class decorators, is to define code to be run
 automatically at class creation time. Here, this step binds the class
 name to the result of a call to a user-defined metaclass. In fact, a
 metaclass need not be a class at all—a possibility we’ll explore later
 that blurs some of the distinction between this tool and decorators, and
 may even qualify the two as functionally equivalent in many
 roles.
Both schemes, class decorators and metaclasses, are free to
 augment a class or return an arbitrary object to replace it—a protocol
 with almost limitless class-based customization possibilities. As we’ll
 see later, metaclasses may also define methods that
 process their instance classes, rather than normal instances of them—a
 technique that’s similar to class methods, and might be emulated in
 spirit by methods and data in class decorator proxies, or even a class
 decorator that returns a metaclass instance. Such mind-bending concepts
 will require Chapter 40’s conceptual groundwork (and
 quite possibly sedation!).

For More Details
Naturally, there’s much more to the decorator and metaclass
 stories than I’ve shown here. Although they are a general mechanism
 whose usage may be required by some packages, coding
 new user-defined decorators and metaclasses is an
 advanced topic of interest primarily to tool writers, not application
 programmers. Because of this, we’ll defer additional coverage until the
 final and optional part of this book:
	Chapter 38 shows how to code
 properties using function decorator syntax in more depth.

	Chapter 39 has much more on decorators,
 including more comprehensive examples.

	Chapter 40 covers metaclasses, and more on
 the class and instance management story.

Although these chapters cover advanced topics, they’ll also
 provide us with a chance to see Python at work in more substantial
 examples than much of the rest of the book was able to provide. For now,
 let’s move on to our final class-related topic.

The super Built-in Function: For Better or Worse?
So far, I’ve mentioned Python’s super built-in function only briefly in passing because it is relatively uncommon
 and may even be controversial to use. Given this call’s increased
 visibility in recent years, though, it merits some further elaboration in
 this edition. Besides introducing super, this section also serves as a language
 design case study to close out a chapter on so many tools whose presence
 may to some seem curious in a scripting language like Python.
Some of this section calls this proliferation of tools into
 question, and I encourage you to judge any subjective content here for
 yourself (and we’ll return to such things at the end of this book after
 we’ve expanded on other advanced tools such as metaclasses and
 descriptors). Still, Python’s rapid growth rate in recent years represents
 a strategic decision point for its community going forward, and super seems as good a representative example as
 any.
The Great super Debate
As noted in Chapter 28 and
 Chapter 29, Python has a super built-in function that can be used to
 invoke superclass methods generically, but was deferred until this point
 of the book. This was deliberate—because super has substantial downsides in typical
 code, and a sole use case that seems obscure and complex to many
 observers, most beginners are better served by the traditional
 explicit-name call scheme used so far. See the sidebar “What About super?” in Chapter 28 for a brief summary of the
 rationale for this policy.
The Python community itself seems split on this subject, with
 online articles about it running the gamut from “Python’s Super
 Considered Harmful” to “Python’s super() considered super!”3 Frankly, in my live classes this call seems to be most
 often of interest to Java programmers starting to use Python anew,
 because of its conceptual similarity to a tool in that language (many a
 new Python feature ultimately owes its existence to programmers of other
 languages bringing their old habits to a new model). Python’s super is not Java’s—it translates differently
 to Python’s multiple inheritance, and has a use case beyond Java’s—but
 it has managed to generate both controversy and misunderstanding since
 its conception.
This book postponed the super
 call until now (and omitted it almost entirely in prior editions)
 because it has significant issues—it’s prohibitively cumbersome to use
 in 2.X, differs in form between 2.X and 3.X, is based upon unusual
 semantics in 3.X, and mixes poorly with Python’s multiple inheritance
 and operator overloading in typical Python code. In fact, as we’ll see,
 in some code super can actually mask
 problems, and discourage a more explicit coding style that offers better
 control.
In its defense, this call does have a valid use case
 too—cooperative same-named method dispatch in diamond multiple
 inheritance trees—but it seems to ask a lot of newcomers. It requires
 that super be used universally and
 consistently (if not neurotically), much like __slots__ discussed earlier; relies on the
 arguably obscure MRO algorithm to order calls; and addresses a use case
 that seems far more the exception than the norm in Python programs. In
 this role, super seems an advanced
 tool based upon esoteric principles, which may be beyond much of
 Python’s audience, and seems artificial to real program goals. That
 aside, its expectation of universal use seems unrealistic for the vast
 amount of existing Python code.
Because of all these factors, this introductory-level book has
 preferred the traditional explicit-name call scheme thus far and
 recommends the same for newcomers. You’re better off learning the
 traditional scheme first, and might be better off sticking with that in
 general, rather than using an extra special-case tool that may not work
 in some contexts, and relies on arcane magic in the valid but atypical
 use case it addresses. This is not just your author’s opinion; despite
 its advocate’s best intentions, super
 is not widely recognized as “best practice” in Python today, for
 completely valid reasons.
On the other hand, just as for other tools the increasing use of
 this call in Python code in recent years makes it no longer optional for
 many Python programmers—the first time you see it, it’s officially
 mandatory! For readers who may wish to experiment with super, and for other readers who may have it
 imposed upon them, this section provides a brief look at this tool and
 its rationale—beginning with alternatives to it.

Traditional Superclass Call Form: Portable, General
In general, this book’s examples prefer to call back to superclass methods when needed by
 naming the superclass explicitly, because this technique is traditional
 in Python, because it works the same in both Python 2.X and 3.X, and
 because it sidesteps limitations and complexities related to this call
 in both 2.X and 3.X. As shown earlier, the traditional superclass method
 call scheme to augment a superclass method works as follows:
>>> class C: # In Python 2.X and 3.X
 def act(self):
 print('spam')

>>> class D(C):
 def act(self):
 C.act(self) # Name superclass explicitly, pass self
 print('eggs')

>>> X = D()
>>> X.act()
spam
eggs
This form works the same in 2.X and 3.X, follows Python’s normal
 method call mapping model, applies to all inheritance tree forms, and
 does not lead to confusing behavior when operator overloading is used.
 To see why these distinctions matter, let’s see how super compares.

Basic super Usage and Its Tradeoffs
In this section, we’ll both introduce super in
 basic, single-inheritance mode, and look at its
 perceived downsides in this role. As we’ll find, in this context
 super does work as advertised, but is
 not much different from traditional calls, relies on unusual semantics,
 and is cumbersome to deploy in 2.X. More critically, as soon as your
 classes grow to use multiple inheritance, this super usage mode can both mask problems in
 your code and route calls in ways you may not expect.
Odd semantics: A magic proxy in Python 3.X
The super built-in actually
 has two intended roles. The more esoteric of these—cooperative
 multiple inheritance dispatch protocols in diamond
 multiple-inheritance trees (yes, a mouthful!)—relies on the 3.X MRO,
 was borrowed from the Dylan language, and will be covered later in
 this section.
The role we’re interested in here is more commonly used, and
 more frequently requested by people with Java backgrounds—to allow
 superclasses to be named generically in
 inheritance trees. This is intended to promote simpler code
 maintenance, and to avoid having to type long superclass reference
 paths in calls. In Python 3.X, this call seems at least at first
 glance to achieve this purpose well:
>>> class C: # In Python 3.X (only: see 2.X super form ahead)
 def act(self):
 print('spam')

>>> class D(C):
 def act(self):
 super().act() # Reference superclass generically, omit self
 print('eggs')

>>> X = D()
>>> X.act()
spam
eggs
This works, and minimizes code changes—you don’t need to update
 the call if D’s superclass changes
 in the future. One of the biggest downsides of this call in 3.X,
 though, is its reliance on deep magic: though
 prone to change, it operates today by inspecting the call stack in
 order to automatically locate the self argument and find the superclass, and
 pairs the two in a special proxy object that
 routes the later call to the superclass version of the method. If that
 sounds complicated and strange, it’s because it is. In fact, this call
 form doesn’t work at all outside the context of a class’s
 method:
>>> super # A "magic" proxy object that routes later calls
<class 'super'>
>>> super()
SystemError: super(): no arguments

>>> class E(C):
 def method(self): # self is implicit in super...only!
 proxy = super() # This form has no meaning outside a method
 print(proxy) # Show the normally hidden proxy object
 proxy.act() # No arguments: implicitly calls superclass method!

>>> E().method()
<super: <class 'E'>, <E object>>
spam
Really, this call’s semantics resembles nothing else in
 Python—it’s neither a bound nor unbound method, and somehow finds a
 self even though you omit one in
 the call. In single inheritance trees, a superclass is available from
 self via the path self.__class__.__bases__[0], but the heavily
 implicit nature of this call makes this difficult to see, and even
 flies in the face of Python’s explicit self policy that holds true
 everywhere else. That is, this call violates a
 fundamental Python idiom for a single use case. It also soundly
 contradicts Python’s longstanding EIBTI design rule (run an “import
 this” for more on this rule).

Pitfall: Adding multiple inheritance naively
Besides its unusual semantics, even in 3.X this super role applies most directly to single
 inheritance trees, and can become problematic as soon as classes
 employ multiple inheritance with traditionally coded classes. This
 seems a major limitation of scope; due to the utility of
 mix-in classes in Python, multiple inheritance
 from disjoint and independent superclasses is probably more the norm
 than the exception in realistic code. The super call seems a recipe for disaster in
 classes coded to naively use its basic mode, without allowing for its
 much more subtle implications in multiple inheritance trees.
The following illustrates the trap. This code begins its life
 happily deploying super in
 single-inheritance mode to invoke a method one level up from C:
>>> class A: # In Python 3.X
 def act(self): print('A')
>>> class B:
 def act(self): print('B')

>>> class C(A):
 def act(self):
 super().act() # super applied to a single-inheritance tree
>>> X = C()
>>> X.act()
A
If such classes later grow to use more than one superclass,
 though, super can become
 error-prone, and even unusable—it does not raise an exception for
 multiple inheritance trees, but will naively pick just the
 leftmost superclass having the method being run
 (technically, the first per the MRO), which may or may not be the one
 that you want:
>>> class C(A, B): # Add a B mix-in class with the same method
 def act(self):
 super().act() # Doesn't fail on multi-inher, but picks just one!
>>> X = C()
>>> X.act()
A

>>> class C(B, A):
 def act(self):
 super().act() # If B is listed first, A.act() is no longer run!
>>> X = C()
>>> X.act()
B
Perhaps worse, this silently masks the fact
 that you should probably be selecting superclasses
 explicitly in this case, as we learned earlier in
 both this chapter and its predecessor. In other words, super usage may obscure a common source of
 errors in Python—one so common that it shows up again in this part’s
 “Gotchas.” If you may need to use direct calls later, why not use them
 earlier too?
>>> class C(A, B): # Traditional form
 def act(self): # You probably need to be more explicit here
 A.act(self) # This form handles both single and multiple inher
 B.act(self) # And works the same in both Python 3.X and 2.X
>>> X = C() # So why use the super() special case at all?
>>> X.act()
A
B
As we’ll see in a few moments, you might also be able to address
 such cases by deploying super calls
 in every class of the tree. But that’s also one
 of the biggest downsides of super—why code it in every class, when it’s
 usually not needed, and when using the preceding simpler traditional
 form in a single class will usually suffice? Especially in existing
 code—and new code that uses existing code—this super requirement seems harsh, if not
 unrealistic.
Much more subtly, as we’ll also see ahead, once you step up to
 multiple inheritance calls this way, the super calls in your code might not invoke
 the class you expect them to. They’ll be routed per the MRO order,
 which, depending on where else super might be used, may invoke a method in
 a class that is not the caller’s superclass at
 all—an implicit ordering that might make for interesting
 debugging sessions! Unless you completely understand what super means once multiple inheritance is
 introduced, you may be better off not deploying it in
 single-inheritance mode either.
This coding situation isn’t nearly as abstract as it may seem.
 Here’s a real-world example of such a case, taken from the
 PyMailGUI case study in Programming
 Python—the following very typical Python classes use multiple
 inheritance to mix in both application logic and window tools from
 independent, standalone classes, and hence must invoke
 both superclass constructors explicitly with
 direct calls by name. As coded, a super().__init__() here would run only one
 constructor, and adding super
 throughout this example’s disjoint class trees would be more work,
 would be no simpler, and wouldn’t make sense in tools meant for
 arbitrary deployment in clients that may use super or not:
class PyMailServerWindow(PyMailServer, windows.MainWindow):
 "a Tk, with extra protocol and mixed-in methods"
 def __init__(self):
 windows.MainWindow.__init__(self, appname, srvrname)
 PyMailServer.__init__(self)

class PyMailFileWindow(PyMailFile, windows.PopupWindow):
 "a Toplevel, with extra protocol and mixed-in methods"
 def __init__(self, filename):
 windows.PopupWindow.__init__(self, appname, filename)
 PyMailFile.__init__(self, filename)
The crucial point here is that using super for just the single inheritance cases
 where it applies most clearly is a potential source of error and
 confusion, and means that programmers must remember two ways to
 accomplish the same goal, when just one—explicit direct calls—could
 suffice for all cases.
In other words, unless you can be sure that you will never add a
 second superclass to a class in a tree over your software’s entire
 lifespan, you cannot use super in
 single-inheritance mode without understanding and allowing for its
 much more sophisticated role in multiple-inheritance trees. We’ll
 discuss the latter ahead, but it’s not optional if you deploy super at all.
From a more practical view, it’s also not clear that the trivial
 amount of code maintenance that this super role is envisioned to avoid fully
 justifies its presence. In Python practice, superclass names in
 headers are rarely changed; when they are, there are usually at most a
 very small number of superclass calls to update within the class. And
 consider this: if you add a new superclass in the future that doesn’t
 use super (as in the preceding
 example), you’ll have to either wrap it in an adaptor proxy or augment
 all the super calls in your class
 to use the traditional explicit-name call scheme anyhow—a maintenance
 task that seems just as likely, but perhaps more error-prone if you’ve
 grown to rely on super
 magic.

Limitation: Operator overloading
As briefly noted in Python’s library manual, super
 also doesn’t fully work in the presence of __X__ operator overloading methods. If you
 study the following code, you’ll see that direct named calls to
 overload methods in the superclass operate normally, but using the
 super result in an expression fails
 to dispatch to the superclass’s overload method:
>>> class C: # In Python 3.X
 def __getitem__(self, ix): # Indexing overload method
 print('C index')

>>> class D(C):
 def __getitem__(self, ix): # Redefine to extend here
 print('D index')
 C.__getitem__(self, ix) # Traditional call form works
 super().__getitem__(ix) # Direct name calls work too
 super()[ix] # But operators do not! (__getattribute__)

>>> X = C()
>>> X[99]
C index
>>> X = D()
>>> X[99]
D index
C index
C index
Traceback (most recent call last):
 File "", line 1, in
 File "", line 6, in __getitem__
TypeError: 'super' object is not subscriptable
This behavior is due to the very same new-style (and 3.X) class
 change described earlier in this chapter (see “Attribute Fetch for Built-ins Skips Instances”)—because the
 proxy object returned by super uses
 __getattribute__ to catch and
 dispatch later method calls, it fails to intercept the automatic
 __X__ method invocations run by built-in
 operations including expressions, as these begin their search in the
 class instead of the instance. This may seem less severe than the
 multiple-inheritance limitation, but operators should generally work
 the same as the equivalent method call, especially for a built-in like
 this. Not supporting this adds another exception for super users to confront and remember.
Other languages’ mileage may vary, but in Python, self is explicit, multiple-inheritance
 mix-ins and operator overloading are common, and superclass name
 updates are rare. Because super
 adds an odd special case to the language—one with strange semantics,
 limited scope, rigid requirements, and questionable reward—most Python
 programmers may be better served by the more broadly applicable
 traditional call scheme. While super has some advanced applications too
 that we’ll study ahead, they may be too obscure to warrant making it a
 mandatory part of every Python programmer’s toolbox.

Use differs in Python 2.X: Verbose calls
If you are a Python 2.X user reading this dual-version book, you should also know that the
 super technique is not portable
 between Python lines. Its form differs between 2.X and 3.X—and not
 just between classic and new-style classes. It’s really a different
 tool in 2.X, which cannot run 3.X’s simpler form.
To make this call work in Python 2.X, you must first use
 new-style classes. Even then, you must also
 explicitly pass in the immediate class name and self to super, making this call so complex and
 verbose that in most cases it’s probably easier to avoid it
 completely, and simply name the superclass explicitly per the previous
 traditional code pattern (for brevity, I’ll leave it to readers to
 consider what changing a class’s own name means for code maintenance
 when using the 2.X super
 form!):
>>> class C(object): # In Python 2.X: for new-style classes only
 def act(self):
 print('spam')

>>> class D(C):
 def act(self):
 super(D, self).act() # 2.X: different call format - seems too complex
 print('eggs') # "D" may be just as much to type/change as "C"!

>>> X = D()
>>> X.act()
spam
eggs
Although you can use the 2.X call form in 3.X for backward
 compatibility, it’s too cumbersome to deploy in 3.X-only code, and the
 more reasonable 3.X form is not usable in 2.X:
>>> class D(C):
 def act(self):
 super().act() # Simpler 3.X call format fails in 2.X
 print('eggs')

>>> X = D()
>>> X.act()
TypeError: super() takes at least 1 argument (0 given)
On the other hand, the traditional call form with explicit class
 names works in 2.X in both classic and new-style classes, and exactly
 as it does in 3.X:
>>> class D(C):
 def act(self):
 C.act(self) # But traditional pattern works portably
 print('eggs') # And may often be simpler in 2.X code

>>> X = D()
>>> X.act()
spam
eggs
So why use a technique that works in only limited contexts
 instead of one that works in many more? Though its basis is complex,
 the next sections attempt to rally support for the super cause.

The super Upsides: Tree Changes and Dispatch
Having just shown you the downsides of super, I should also confess that I’ve been
 tempted to use this call in code that would only ever run on 3.X, and
 which used a very long superclass reference path through a module
 package (that is, mostly for laziness, but coding brevity can matter
 too). To be fair, super may still be
 useful in some use cases, the chief among which merit a brief
 introduction here:
	Changing class trees at runtime: When a
 superclass may be changed at runtime, it’s not possible to hardcode
 its name in a call expression, but it is possible to dispatch calls
 via super.
On the other hand, this case is extremely rare in Python
 programming, and other techniques can often be used in this context
 as well.

	Cooperative multiple inheritance method
 dispatch: When multiple inheritance trees must dispatch
 to the same-named method in multiple classes, super can provide a protocol for orderly
 call routing.
On the other hand, the class tree must rely upon the ordering
 of classes by the MRO—a complex tool in its own right that is
 artificial to the problem a program is meant to address—and must be
 coded or augmented to use super
 in each version of the method in the tree to be effective. Such
 dispatch can also often be implemented in other ways (e.g., via
 instance state).

As discussed earlier, super can
 also be used to select a superclass generically as long as the MRO’s
 default makes sense, though in traditional code naming a superclass
 explicitly is often preferable, and may even be required. Moreover, even
 valid super use cases tend to be
 uncommon in many Python programs—to the point of seeming academic
 curiosity to some. The two cases just listed, however, are most often
 cited as super rationales, so let’s
 take a quick look at each.

Runtime Class Changes and super
Superclasses that might be changed at runtime dynamically preclude hardcoding
 their names in a subclass’s methods, while super will happily look up the current
 superclass dynamically. Still, this case may be too rare in practice to
 warrant the super model by itself,
 and can often be implemented in other ways in the exceptional cases
 where it is needed. To illustrate, the following changes the superclass
 of C dynamically by changing the
 subclass’s __bases__ tuple in
 3.X:
>>> class X:
 def m(self): print('X.m')
>>> class Y:
 def m(self): print('Y.m')
>>> class C(X): # Start out inheriting from X
 def m(self): super().m() # Can't hardcode class name here

>>> i = C()
>>> i.m()
X.m
>>> C.__bases__ = (Y,) # Change superclass at runtime!
>>> i.m()
Y.m
This works (and shares behavior-morphing goals with other deep
 magic, such as changing an instance’s __class__), but seems rare in the extreme.
 Moreover, there may be other ways to achieve the same effect—perhaps
 most simply, calling through the current superclass tuple’s value
 indirectly: special code to be sure, but only for a very special case
 (and perhaps not any more special than implicit routing by MROs):
>>> class C(X):
 def m(self): C.__bases__[0].m(self) # Special code for a special case

>>> i = C()
>>> i.m()
X.m
>>> C.__bases__ = (Y,) # Same effect, without super()
>>> i.m()
Y.m
Given the preexisting alternatives, this case alone doesn’t seem
 to justify super, though in more
 complex trees, the next rationale—based on the tree’s MRO order instead
 of physical superclass links—may apply here as well.

Cooperative Multiple Inheritance Method Dispatch
The second of the use cases listed earlier is the main rationale commonly given
 for super, and also borrows from
 other programming languages (most notably, Dylan), where its use case
 may be more common than it is in typical Python code. It generally
 applies to diamond pattern multiple inheritance trees, discussed earlier
 in this chapter, and allows for cooperative and conformant classes to
 route calls to a same-named method coherently among
 multiple class implementations. Especially for constructors, which have
 multiple implementations normally, this can simplify call routing
 protocol when used consistently.
In this mode, each super call
 selects the method from a next class following it
 in the MRO ordering of the class of the self subject of a method call. This selection
 process chooses the first class following the calling class having a
 requested attribute. The MRO was introduced earlier; it’s the path
 Python follows for inheritance in new-style classes. Because the MRO’s
 linear ordering depends on which class self was made from, the order of method
 dispatch orchestrated by super can
 vary per class tree, and visits each class just once as long as all
 classes use super to dispatch.
Since every class participates in a diamond under object in 3.X (and 2.X new-style classes), the
 applications are broader than you might expect. In fact, some of the
 earlier examples that demonstrated super shortcomings in multiple inheritance
 trees could use this call to achieve their dispatch goals. To do so,
 however, super must be used
 universally in the class tree to ensure that method
 call chains are passed on—a fairly major requirement that may be
 difficult to enforce in much existing and new code.
The basics: Cooperative super call in action
Let’s take a look at what this role means in code. In this and
 the following sections, we’ll both learn how super works, and explore the tradeoffs it
 implies along the way. To get started, consider the following
 traditionally coded Python classes (condensed
 somewhat here as usual for space):
>>> class B:
 def __init__(self): print('B.__init__') # Disjoint class tree branches
>>> class C:
 def __init__(self): print('C.__init__')
>>> class D(B, C): pass

>>> x = D() # Runs leftmost only by default
B.__init__
In this case, superclass tree branches are
 disjoint (they don’t share a common explicit
 ancestor), so subclasses that combine them must call through each
 superclass by name—a common situation in much existing Python code
 that super cannot address directly
 without code changes:
>>> class D(B, C):
 def __init__(self): # Traditional form
 B.__init__(self) # Invoke supers by name
 C.__init__(self)

>>> x = D()
B.__init__
C.__init__
In diamond class tree patterns, though,
 explicit-name calls may by default trigger the
 top-level class’s method more than once, though this might be
 subverted with additional protocols (e.g., status markers in the
 instance):
>>> class A:
 def __init__(self): print('A.__init__')
>>> class B(A):
 def __init__(self): print('B.__init__'); A.__init__(self)
>>> class C(A):
 def __init__(self): print('C.__init__'); A.__init__(self)

>>> x = B()
B.__init__
A.__init__
>>> x = C() # Each super works by itself
C.__init__
A.__init__

>>> class D(B, C): pass # Still runs leftmost only
>>> x = D()
B.__init__
A.__init__

>>> class D(B, C):
 def __init__(self): # Traditional form
 B.__init__(self) # Invoke both supers by name
 C.__init__(self)

>>> x = D() # But this now invokes A twice!
B.__init__
A.__init__
C.__init__
A.__init__
By contrast, if all classes use super, or are appropriately coerced by
 proxies to behave as if they do, the method calls are dispatched
 according to class order in the MRO, such that the top-level class’s
 method is run just once:
>>> class A:
 def __init__(self): print('A.__init__')
>>> class B(A):
 def __init__(self): print('B.__init__'); super().__init__()
>>> class C(A):
 def __init__(self): print('C.__init__'); super().__init__()

>>> x = B() # Runs B.__init__, A is next super in self's B MRO
B.__init__
A.__init__
>>> x = C()
C.__init__
A.__init__

>>> class D(B, C): pass
>>> x = D() # Runs B.__init__, C is next super in self's D MRO!
B.__init__
C.__init__
A.__init__
The real magic behind this is the linear MRO list constructed
 for the class of self—because each
 class appears just once on this list, and because super dispatches to the
 next class on this list, it ensures an orderly
 invocation chain that visits each class just once. Crucially, the
 next class following B in the MRO differs depending on the class
 of self—it’s A for a B
 instance, but C for a D instance, accounting for the order of
 constructors run:
>>> B.__mro__
(<class '__main__.B'>, <class '__main__.A'>, <class 'object'>)

>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>,
<class '__main__.A'>, <class 'object'>)
The MRO and its algorithm were presented earlier in this
 chapter. By selecting a next class in the MRO sequence, a super call in a class’s method
 propagates the call through the tree, so long as
 all classes do the same. In this mode super does not necessarily choose a
 superclass at all; it picks the next in the linearized MRO, which
 might be a sibling—or even a
 lower relative—in the class tree of a given
 instance. See “Tracing the MRO” for other examples of
 the path super dispatch would
 follow, especially for nondiamonds.
The preceding works—and may even seem clever at first glance—but
 its scope may also appear limited to some. Most Python programs do not
 rely on the nuances of diamond pattern multiple inheritance trees (in
 fact, many Python programmers I’ve met do not know what the term
 means!). Moreover, super applies
 most directly to single inheritance and cooperative diamond cases, and
 may seem superfluous for disjoint nondiamond cases, where we might
 want to invoke superclass methods selectively or independently. Even
 cooperative diamonds can be managed in other ways that may afford
 programmers more control than an automatic MRO ordering can. To
 evaluate this tool objectively, though, we need to look deeper.

Constraint: Call chain anchor requirement
The super call comes with
 complexities that may not be apparent on first encounter, and may even
 seem initially like features. For example, because
 all classes inherit from object in 3.X automatically (and explicitly
 in 2.X new-style classes), the MRO ordering can be used even in cases
 where the diamond is only implicit—in the following, triggering
 constructors in independent classes automatically:
>>> class B:
 def __init__(self): print('B.__init__'); super().__init__()
>>> class C:
 def __init__(self): print('C.__init__'); super().__init__()

>>> x = B() # object is an implied super at the end of MRO
B.__init__
>>> x = C()
C.__init__

>>> class D(B, C): pass # Inherits B.__init__ but B's MRO differs for D
>>> x = D() # Runs B.__init__, C is next super in self's D MRO!
B.__init__
C.__init__
Technically, this dispatch model generally requires that the
 method being called by super must
 exist, and must have the same argument signature across the class
 tree, and every appearance of the method but the last must use
 super itself. This prior example
 works only because the implied object superclass at the end of the MRO of
 all three classes happens to have a compatible __init__ that satisfies these rules:
>>> B.__mro__
(<class '__main__.B'>, <class 'object'>)
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class 'object'>)
Here, for a D instance, the
 next class in the MRO after B is
 C, which is followed by object whose __init__ silently accepts the call from
 C and ends the chain. Thus,
 B’s method calls C’s, which ends in object’s version, even though C is not a superclass to B.
Really, though, this example is atypical—and perhaps even
 lucky. In most cases, no such suitable default
 will exist in object, and it may be
 less trivial to satisfy this model’s expectations. Most trees will
 require an explicit—and possibly extra—superclass
 to serve the anchoring role that object does here, to accept but not forward
 the call. Other trees may require careful design to adhere to this
 requirement. Moreover, unless Python optimizes it away, the call to
 object (or other anchor) defaults
 at the end of the chain may also add extra performance
 costs.
By contrast, in such cases direct calls incur neither extra
 coding requirements nor added performance cost, and make dispatch more
 explicit and direct:
>>> class B:
 def __init__(self): print('B.__init__')
>>> class C:
 def __init__(self): print('C.__init__')
>>> class D(B, C):
 def __init__(self): B.__init__(self); C.__init__(self)

>>> x = D()
B.__init__
C.__init__

Scope: An all-or-nothing model
Also keep in mind that traditional classes that were not written
 to use super in this role cannot be
 directly used in such cooperative dispatch trees, as they will not
 forward calls along the MRO chain. It’s possible to incorporate such
 classes with proxies that wrap the original
 object and add the requisite super
 calls, but this imposes both additional coding requirements and
 performance costs on the model. Given that there are many millions of
 lines of existing Python code that do not use
 super, this seems a major
 detriment.
Watch what happens, for example, if any one class fails to pass
 along the call chain by omitting a super, ending the call chain
 prematurely—like __slots__,
 super is generally an
 all-or-nothing feature:
>>> class B:
 def __init__(self): print('B.__init__'); super().__init__()
>>> class C:
 def __init__(self): print('C.__init__'); super().__init__()
>>> class D(B, C):
 def __init__(self): print('D.__init__'); super().__init__()
>>> X = D()
D.__init__
B.__init__
C.__init__
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class 'object'>)

What if you must use a class that doesn't call super?

>>> class B:
 def __init__(self): print('B.__init__')
>>> class D(B, C):
 def __init__(self): print('D.__init__'); super().__init__()
>>> X = D()
D.__init__
B.__init__ # It's an all-or-nothing tool...
Satisfying this mandatory propagation requirement may be no
 simpler than direct by-name calls—which you might still forget, but
 which you won’t need to require of all the code your classes employ.
 As mentioned, it’s possible to adapt a class like B by inheriting from a
 proxy class that embeds B instances, but that seems artificial to
 program goals, adds an extra call to each wrapped method, is subject
 to the new-style class problems we met earlier regarding interface
 proxies and built-ins, and seems an extraordinary and even stunning
 added coding requirement inherent in a model
 intended to simplify code.

Flexibility: Call ordering assumptions
Routing with super also
 assumes that you really mean to pass method calls throughout all your
 classes per the MRO, which may or may not match your call
 ordering requirements. For example, imagine
 that—irrespective of other inheritance ordering needs—the following
 requires that the class C’s version
 of a given method be run before B’s
 in some contexts. If the MRO says otherwise, you’re back to
 traditional calls, which may conflict with super usage—in the following, invoking
 C’s method twice:
What if method call ordering needs differ from the MRO?

>>> class B:
 def __init__(self): print('B.__init__'); super().__init__()
>>> class C:
 def __init__(self): print('C.__init__'); super().__init__()
>>> class D(B, C):
 def __init__(self): print('D.__init__'); C.__init__(self); B.__init__(self)
>>> X = D()
D.__init__
C.__init__
B.__init__
C.__init__ # It's the MRO xor explicit calls...
Similarly, if you want some methods to not run at
 all, the super automatic
 path won’t apply as directly as explicit calls may, and will make it
 difficult to take more explicit control of the dispatch process. In
 realistic programs with many methods, resources, and state variables,
 these seem entirely plausible scenarios. While you could reorder
 superclasses in D for this method,
 that may break other expectations.

Customization: Method replacement
On a related note, the universal deployment expectations of
 super may make it difficult for a
 single class to replace (override) an inherited
 method altogether. Not passing the call higher with super—intentionally in this case—works fine
 for the class itself, but may break the call chain of trees it’s mixed
 into, thereby preventing methods elsewhere in the tree from running.
 Consider the following tree:
>>> class A:
 def method(self): print('A.method'); super().method()
>>> class B(A):
 def method(self): print('B.method'); super().method()
>>> class C:
 def method(self): print('C.method') # No super: must anchor the chain!
>>> class D(B, C):
 def method(self): print('D.method'); super().method()
>>> X = D()
>>> X.method()
D.method
B.method
A.method # Dispatch to all per the MRO automatically
C.method
Method replacement here breaks the super model, and probably leads us back to
 the traditional form:
What if a class needs to replace a super's default entirely?

>>> class B(A):
 def method(self): print('B.method') # Drop super to replace A's method
>>> class D(B, C):
 def method(self): print('D.method'); super().method()
>>> X = D()
>>> X.method()
D.method
B.method # But replacement also breaks the call chain...

>>> class D(B, C):
 def method(self): print('D.method'); B.method(self); C.method(self)
>>> D().method()
D.method
B.method
C.method # It's back to explicit calls...
Once again, the problem with assumptions is that they assume
 things! Although the assumption of universal routing might be
 reasonable for constructors, it would also seem to conflict with one
 of the core tenets of OOP—unrestricted subclass
 customization. This might suggest restricting super usage to constructors, but even these
 might sometimes warrant replacement, and this adds an odd special-case
 requirement for one specific context. A tool that can be used only for
 certain categories of methods might be seen by some as redundant—and
 even spurious, given the extra complexity it implies.

Coupling: Application to mix-in classes
Subtly, when we say super
 selects the next class in the MRO, we
 really mean the next class in the MRO that implements the
 requested method—it technically skips ahead until it finds
 a class with the requested name. This matters for independent mix-in
 classes, which might be added to arbitrary client trees. Without this
 skipping-ahead behavior, such mix-ins wouldn’t work at all—they would
 otherwise drop the call chain of their clients’ arbitrary methods, and
 couldn’t rely on their own super
 calls to work as expected.
In the following independent branches, for example, C’s call to method is passed on, even though Mixin, the next class in the C instance’s MRO, doesn’t define that
 method’s name. As long as method name sets are disjoint, this just
 works—the call chains of each branch can exist independently:
Mix-ins work for disjoint method sets

>>> class A:
 def other(self): print('A.other')
>>> class Mixin(A):
 def other(self): print('Mixin.other'); super().other()

>>> class B:
 def method(self): print('B.method')
>>> class C(Mixin, B):
 def method(self): print('C.method'); super().other(); super().method()

>>> C().method()
C.method
Mixin.other
A.other
B.method

>>> C.__mro__
(<class '__main__.C'>, <class '__main__.Mixin'>, <class '__main__.A'>,
<class '__main__.B'>, <class 'object'>)
Similarly, mixing the other way doesn’t break call chains of the
 mix-in either. For instance, in the following, even though B doesn’t define other when called in C, classes do later in the MRO. In fact, the
 call chains work even if one of the branches doesn’t use super at all—as long as a method is defined
 somewhere ahead on the MRO, its call works:
>>> class C(B, Mixin):
 def method(self): print('C.method'); super().other(); super().method()

>>> C().method()
C.method
Mixin.other
A.other
B.method

>>> C.__mro__
(<class '__main__.C'>, <class '__main__.B'>, <class '__main__.Mixin'>,
<class '__main__.A'>, <class 'object'>)
This is also true in the presence of
 diamonds—disjoint method sets are dispatched as
 expected, even if not implemented by each disjoint branch, because we
 select the next on the MRO with the method. Really, because the MRO
 contains the same classes in these cases, and because a subclass
 always appears before its superclass in the MRO, they are equivalent
 contexts. For example, the call in Mixin to other in the following still finds it in
 A, even though the next class after
 Mixin on the MRO is B (the call to method in C works again for similar reasons):
Explicit diamonds work too

>>> class A:
 def other(self): print('A.other')
>>> class Mixin(A):
 def other(self): print('Mixin.other'); super().other()

>>> class B(A):
 def method(self): print('B.method')
>>> class C(Mixin, B):
 def method(self): print('C.method'); super().other(); super().method()

>>> C().method()
C.method
Mixin.other
A.other
B.method

>>> C.__mro__
(<class '__main__.C'>, <class '__main__.Mixin'>, <class '__main__.B'>,
<class '__main__.A'>, <class 'object'>)

Other mix-in orderings work too

>>> class C(B, Mixin):
 def method(self): print('C.method'); super().other(); super().method()

>>> C().method()
C.method
Mixin.other
A.other
B.method

>>> C.__mro__
(<class '__main__.C'>, <class '__main__.B'>, <class '__main__.Mixin'>,
<class '__main__.A'>, <class 'object'>)
Still, this has an effect that is no different—but may seem
 wildly more implicit—than direct by-name calls,
 which also work the same in this case regardless of superclass
 ordering, and whether there is a diamond or not. In this case, the
 motivation for relying on MRO ordering seems on shaky ground, if the
 traditional form is both simpler and more explicit, and offers more
 control and flexibility:
But direct calls work here too: explicit is better than implicit

>>> class C(Mixin, B):
 def method(self): print('C.method'); Mixin.other(self); B.method(self)

>>> X = C()
>>> X.method()
C.method
Mixin.other
A.other
B.method
More crucially, this example so far assumes that method names
 are disjoint in its branches; the dispatch order for
 same-named methods in diamonds like this may be
 much less fortuitous. In a diamond like the preceding, for example,
 it’s not impossible that a client class could invalidate a super call’s intent—the call to method in Mixin in the following works to run A’s version as expected,
 unless it’s mixed into a tree that drops the call
 chain:
But for nondisjoint methods: super creates overly strong coupling

>>> class A:
 def method(self): print('A.method')
>>> class Mixin(A):
 def method(self): print('Mixin.method'); super().method()
>>> Mixin().method()
Mixin.method
A.method

>>> class B(A):
 def method(self): print('B.method') # super here would invoke A after B
>>> class C(Mixin, B):
 def method(self): print('C.method'); super().method()
>>> C().method()
C.method
Mixin.method
B.method # We miss A in this context only!
It may be that B shouldn’t
 redefine this method anyhow (and frankly, we may be encroaching on
 problems inherent in multiple inheritance in general), but this need
 not also break the mix-in—direct
 calls give you more control in such cases, and allow mix-in
 classes to be much more independent of usage contexts:
And direct calls do not: they are immune to context of use

>>> class A:
 def method(self): print('A.method')
>>> class Mixin(A):
 def method(self): print('Mixin.method'); A.method(self) # C irrelevant

>>> class C(Mixin, B):
 def method(self): print('C.method'); Mixin.method(self)
>>> C().method()
C.method
Mixin.method
A.method
More to the point, by making mix-ins more
 self-contained, direct calls minimize
 component coupling that always skews program complexity higher—a fundamental software
 principle that seems neglected by super’s variable and context-specific
 dispatch model.

Customization: Same-argument constraints
As a final note, you should also consider the consequences of
 using super when method
 arguments differ per class—because a class coder
 can’t be sure which version of a method super might invoke (indeed, this may vary
 per tree!), every version of the method must generally accept the same
 arguments list, or choose its inputs with analysis of generic argument
 lists—either of which imposes additional requirements on your code. In
 realistic programs, this constraint may in fact be a true
 showstopper for many potential super applications, precluding its use
 entirely.
To illustrate why this can matter, recall the pizza shop
 employee classes we wrote in Chapter 31. As coded there, both subclasses
 use direct by-name calls to invoke the superclass
 constructor, filling in an expected salary argument automatically—the logic
 being that the subclass implies the pay grade:
>>> class Employee:
 def __init__(self, name, salary): # Common superclass
 self.name = name
 self.salary = salary

>>> class Chef1(Employee):
 def __init__(self, name): # Differing arguments
 Employee.__init__(self, name, 50000) # Dispatch by direct call

>>> class Server1(Employee):
 def __init__(self, name):
 Employee.__init__(self, name, 40000)

>>> bob = Chef1('Bob')
>>> sue = Server1('Sue')
>>> bob.salary, sue.salary
(50000, 40000)
This works, but since this is a single-inheritance tree, we
 might be tempted to deploy super
 here to route the constructor calls generically. Doing so works for
 either subclass in isolation, since its MRO includes just itself and
 its actual superclass:
>>> class Chef2(Employee):
 def __init__(self, name):
 super().__init__(name, 50000) # Dispatch by super()

>>> class Server2(Employee):
 def __init__(self, name):
 super().__init__(name, 40000)

>>> bob = Chef2('Bob')
>>> sue = Server2('Sue')
>>> bob.salary, sue.salary
(50000, 40000)
Watch what happens, though, when an employee is a member of
 both categories. Because the constructors in the
 tree have differing argument lists, we’re in trouble:
>>> class TwoJobs(Chef2, Server2): pass

>>> tom = TwoJobs('Tom')
TypeError: __init__() takes 2 positional arguments but 3 were given
The problem here is that the super call in Chef2 no longer invokes its Employee superclass, but instead invokes its
 sibling class and follower on the MRO, Server2. Since this sibling has a differing
 argument list than the true superclass—expecting just self and name—the code breaks. This is inherent in
 super use: because the MRO can
 differ per tree, it might call different versions of a method in
 different trees—even some you may not be able to anticipate when
 coding a class by itself:
>>> TwoJobs.__mro__
(<class '__main__.TwoJobs'>, <class '__main__.Chef2'>, <class '__main__.Server2'>
<class '__main__.Employee'>, <class 'object'>)

>>> Chef2.__mro__
(<class '__main__.Chef2'>, <class '__main__.Employee'>, <class 'object'>)
By contrast, the direct by-name call scheme still works when the
 classes are mixed, though the results are a bit dubious—the combined
 category gets the pay of the leftmost superclass:
>>> class TwoJobs(Chef1, Server1): pass

>>> tom = TwoJobs('Tom')
>>> tom.salary
50000
Really, we probably want to route the call to the top-level
 class in this event with a new salary—a model that is possible with
 direct calls but not with super
 alone. Moreover, calling Employee
 directly in this one class means our code uses
 two dispatch techniques when just one—direct
 calls—would suffice:
>>> class TwoJobs(Chef1, Server1):
 def __init__(self, name): Employee.__init__(self, name, 70000)

>>> tom = TwoJobs('Tom')
>>> tom.salary
70000

>>> class TwoJobs(Chef2, Server2):
 def __init__(self, name): super().__init__(name, 70000)

>>> tom = TwoJobs('Tom')
TypeError: __init__() takes 2 positional arguments but 3 were given
This example may warrant redesign in general—splitting off
 shareable parts of Chef and
 Server to mix-in classes without a
 constructor, for example. It’s also true that polymorphism in general
 assumes that the methods in an object’s external
 interface have the same argument signature, though this doesn’t quite
 apply to customization of superclass methods—an
 internal implementation technique that should by
 nature support variation, especially in constructors.
But the crucial point here is that because direct calls do not
 make code dependent on a magic ordering that can vary per tree, they
 more directly support argument list flexibility. More broadly, the
 questionable (or weak) performances super turns in on method replacement, mix-in
 coupling, call ordering, and argument constraints should make you
 evaluate its deployment carefully. Even in single-inheritance mode,
 its potential for later impacts as trees grow is
 considerable.
In sum, the three requirements of super in this role are also the source of
 most of its usability issues:
	The method called by super must exist—which requires extra
 code if no anchor is present.

	The method called by super must have the same argument
 signature across the class tree—which impairs flexibility,
 especially for implementation-level methods like
 constructors.

	Every appearance of the method called by super but the last must use super itself—which makes it difficult to
 use existing code, change call ordering, override methods, and
 code self-contained classes.

Taken together, these seem to make for a tool with both
 substantial complexity and significant tradeoffs—downsides that will
 assert themselves the moment the code grows to incorporate multiple
 inheritance.
Naturally, there may be creative workarounds for the super dilemmas just posed, but additional
 coding steps would further dilute the call’s benefits—and we’ve run
 out of space here in any event. There are also alternative
 non-super
 solutions to some diamond method dispatch problems, but these will
 have to be left as a user exercise for space reasons too. In general,
 when superclass methods are called by explicit name, root classes of
 diamonds might check state in instances to avoid firing twice—a
 similarly complex coding pattern, but required rarely in most code,
 and which to some may seem no more difficult than using super
 itself.

The super Summary
So there it is—the bad and the good. As with all Python extensions, you should be the
 judge on this one too. I’ve tried to give both sides of the debate a
 fair shake here to help you decide. But because the super call:
	Differs in form between 2.X and 3.X

	In 3.X, relies on arguably non-Pythonic magic, and does not
 fully apply to operator overloading or traditionally coded
 multiple-inheritance trees

	In 2.X, seems so verbose in this intended role that it may
 make code more complex instead of less

	Claims code maintenance benefits that may be more hypothetical
 than real in Python practice

even ex–Java programmers should also consider this book’s
 preferred traditional technique of explicit-name superclass calls to be
 at least as valid a solution as Python’s super—a call that on some levels seems an
 unusual and limited answer to a question that was not being asked by
 most Python programmers, and was not deemed important for much of
 Python’s history.
At the same time, the super call offers one solution to the
 difficult problem of same-named method dispatch in multiple inheritance
 trees, for programs that choose to use it
 universally and consistently. But therein lies one
 of its largest obstacles: it requires universal deployment to address a
 problem most programmers probably do not have. Moreover, at this point
 in Python’s history, asking programmers to change their existing code to
 use this call widely enough to make it reliable seems highly
 unrealistic.
Perhaps the chief problem of this role, though, is the
 role itself—same-named method dispatch in multiple
 inheritance trees is relatively rare in real Python programs, and
 obscure enough to have generated both much controversy and much
 misunderstanding surrounding this role. People don’t use Python the same
 way they use C++, Java, or Dylan, and lessons from other such languages
 do not necessarily apply.
Also keep in mind that using super makes your program’s behavior dependent
 on the MRO algorithm—a procedure that we’ve covered only informally here
 due to its complexity, that is artificial to your
 program’s purpose, and that seems tersely documented and understood in
 the Python world. As we’ve seen, even if you understand the MRO, its
 implications on customization,
 coupling, and flexibility are
 remarkably subtle. If you don’t completely understand this algorithm—or
 have goals that its application does not address—you may be better
 served not relying on it to implicitly trigger actions in your
 code.
Or, to quote a Python motto from its import this creed:
If the implementation is hard to explain, it’s a bad
 idea.

The super call seems firmly in
 this category. Most programmers won’t use an arcane tool aimed at a rare
 use case, no matter how clever it may be. This is especially true in a
 scripting language that bills itself as friendly to nonspecialists.
 Regrettably, use by any programmer can impose such a tool on others
 anyhow—the real reason I’ve covered it here, and a theme we’ll revisit
 at the end of this book.
As usual, time and user base will tell if this call’s tradeoffs or
 momentum lead to broader adoption or not. At the least, it behooves you
 to also know about the traditional explicit-name superclass call
 technique, as it is still commonly used and often either simpler or
 required in today’s real-world Python programming. If you do choose to
 use this tool, my own advice to readers is to remember that using
 super:
	In single-inheritance mode can mask later
 problems and lead to unexpected behavior as trees grow

	In multiple-inheritance mode brings with
 it substantial complexity for an atypical Python use case

For other opinions on Python’s super that go into further details both good
 and bad, search the Web for related articles. You can find plenty of
 additional positions, though in the end, Python’s future relies as much
 on yours as any other.
Note
Also watch for Chapter 40’s formal
 description of full inheritance—a procedure which
 super objects eschew for a custom scan of a
 context-specific MRO tail, looking for the first appearance of an
 attribute (descriptor or value) along the way. Full inheritance is
 used on the super object itself only if this scan
 fails. The net effect is a special case for basic name resolution,
 imposed on both the language and your code for the sake of a
 relatively rare use case.

Class Gotchas
We’ve reached the end of the primary OOP coverage in this book. After
 exceptions, we’ll explore additional class-related examples and topics in
 the last part of the book, but that part mostly just gives expanded
 coverage to concepts introduced here. As usual, let’s wrap up this part
 with the standard warnings about pitfalls to avoid.
Most class issues can be boiled down to namespace issues—which makes
 sense, given that classes are just namespaces with a handful of extra
 tricks. Some of the items in this section are more like class usage
 pointers than problems, but even experienced class coders have been known
 to stumble on a few.
Changing Class Attributes Can Have Side Effects
Theoretically speaking, classes (and class instances) are
 mutable objects. As with built-in lists and
 dictionaries, you can change them in place by assigning to their
 attributes—and as with lists and dictionaries, this means that changing
 a class or instance object may impact multiple references to it.
That’s usually what we want, and is how objects change their state
 in general, but awareness of this issue becomes especially critical when
 changing class attributes. Because all instances generated from a class
 share the class’s namespace, any changes at the class level are
 reflected in all instances, unless they have their own versions of the
 changed class attributes.
Because classes, modules, and instances are all just objects with
 attribute namespaces, you can normally change their attributes at
 runtime by assignments. Consider the following class. Inside the class
 body, the assignment to the name a
 generates an attribute X.a, which
 lives in the class object at runtime and will be inherited by all of
 X’s instances:
>>> class X:
 a = 1 # Class attribute

>>> I = X()
>>> I.a # Inherited by instance
1
>>> X.a
1
So far, so good—this is the normal case. But notice what happens
 when we change the class attribute dynamically outside the class statement: it also changes the attribute
 in every object that inherits from the class. Moreover, new instances
 created from the class during this session or program run also get the
 dynamically set value, regardless of what the class’s source code
 says:
>>> X.a = 2 # May change more than X
>>> I.a # I changes too
2
>>> J = X() # J inherits from X's runtime values
>>> J.a # (but assigning to J.a changes a in J, not X or I)
2
Is this a useful feature or a dangerous trap? You be the judge. As
 we learned in Chapter 27, you can actually
 get work done by changing class attributes without ever making a single
 instance—a technique that can simulate the use of “records” or “structs”
 in other languages. As a refresher, consider the following unusual but
 legal Python program:
class X: pass # Make a few attribute namespaces
class Y: pass

X.a = 1 # Use class attributes as variables
X.b = 2 # No instances anywhere to be found
X.c = 3
Y.a = X.a + X.b + X.c

for X.i in range(Y.a): print(X.i) # Prints 0..5
Here, the classes X and
 Y work like “fileless”
 modules—namespaces for storing variables we don’t want to clash. This is
 a perfectly legal Python programming trick, but it’s less appropriate
 when applied to classes written by others; you can’t always be sure that
 class attributes you change aren’t critical to the class’s internal
 behavior. If you’re out to simulate a C struct, you may be better off changing
 instances than classes, as that way only one object is affected:
class Record: pass
X = Record()
X.name = 'bob'
X.job = 'Pizza maker'

Changing Mutable Class Attributes Can Have Side Effects,
 Too
This gotcha is really an extension of the prior. Because class
 attributes are shared by all instances, if a class attribute references
 a mutable object, changing that object in place from any instance
 impacts all instances at once:
>>> class C:
 shared = [] # Class attribute
 def __init__(self):
 self.perobj = [] # Instance attribute

>>> x = C() # Two instances
>>> y = C() # Implicitly share class attrs
>>> y.shared, y.perobj
([], [])

>>> x.shared.append('spam') # Impacts y's view too!
>>> x.perobj.append('spam') # Impacts x's data only
>>> x.shared, x.perobj
(['spam'], ['spam'])

>>> y.shared, y.perobj # y sees change made through x
(['spam'], [])
>>> C.shared # Stored on class and shared
['spam']
This effect is no different than many we’ve seen in this book
 already: mutable objects are shared by simple variables, globals are
 shared by functions, module-level objects are shared by multiple
 importers, and mutable function arguments are shared by the caller and
 the callee. All of these are cases of general behavior—multiple
 references to a mutable object—and all are impacted if the shared object
 is changed in place from any reference. Here, this occurs in class
 attributes shared by all instances via inheritance, but it’s the same
 phenomenon at work. It may be made more subtle by the different behavior
 of assignments to instance attributes themselves:
x.shared.append('spam') # Changes shared object attached to class in place
x.shared = 'spam' # Changed or creates instance attribute attached to x
But again, this is not a problem, it’s just something to be aware
 of; shared mutable class attributes can have many valid uses in
 Python programs.

Multiple Inheritance: Order Matters
This may be obvious by now, but it’s worth underscoring: if you use multiple
 inheritance, the order in which superclasses are listed in the class statement header can be critical. Python
 always searches superclasses from left to right, according to their
 order in the header line.
For instance, in the multiple inheritance example we studied in
 Chapter 31, suppose that the Super class implemented a __str__ method, too:
class ListTree:
 def __str__(self): ...

class Super:
 def __str__(self): ...

class Sub(ListTree, Super): # Get ListTree's __str__ by listing it first

x = Sub() # Inheritance searches ListTree before Super
Which class would we inherit it from—ListTree or Super? As inheritance searches proceed from
 left to right, we would get the method from whichever class is listed
 first (leftmost) in Sub’s class header. Presumably, we would list
 ListTree first because its whole
 purpose is its custom __str__
 (indeed, we had to do this in Chapter 31
 when mixing this class with a tkinter.Button that had a __str__ of its own).
But now suppose Super and
 ListTree have their own versions of
 other same-named attributes, too. If we want one name from Super and another from ListTree, the order in which we list them in
 the class header won’t help—we will
 have to override inheritance by manually assigning to the attribute name
 in the Sub class:
class ListTree:
 def __str__(self): ...
 def other(self): ...

class Super:
 def __str__(self): ...
 def other(self): ...

class Sub(ListTree, Super): # Get ListTree's __str__ by listing it first
 other = Super.other # But explicitly pick Super's version of other
 def __init__(self):
 ...

x = Sub() # Inheritance searches Sub before ListTree/Super
Here, the assignment to other
 within the Sub class creates Sub.other—a reference back to the Super.other object. Because it is lower in the
 tree, Sub.other effectively hides
 ListTree.other, the attribute that
 the inheritance search would normally find. Similarly, if we listed
 Super first in the class header to pick up its other, we would need to select ListTree’s method explicitly:
class Sub(Super, ListTree): # Get Super's other by order
 __str__ = ListTree.__str__ # Explicitly pick ListTree.__str__
Multiple inheritance is an advanced tool. Even if you understood
 the last paragraph, it’s still a good idea to use it sparingly and
 carefully. Otherwise, the meaning of a name may come to depend on the
 order in which classes are mixed in an arbitrarily far-removed subclass.
 (For another example of the technique shown here in action, see the
 discussion of explicit conflict resolution in “The ‘New-Style’ Class
 Model”, as well as the earlier super
 coverage.)
As a rule of thumb, multiple inheritance works best when your
 mix-in classes are as self-contained as possible—because they may be
 used in a variety of contexts, they should not make assumptions about
 names related to other classes in a tree. The pseudoprivate __X attributes
 feature we studied in Chapter 31 can help
 by localizing names that a class relies on owning and limiting the names
 that your mix-in classes add to the mix. In this example, for instance,
 if ListTree only means to export its
 custom __str__, it can name its
 other method __other to avoid clashing with like-named
 classes in the tree.

Scopes in Methods and Classes
When working out the meaning of names in class-based code, it helps to remember
 that classes introduce local scopes, just as functions do, and methods
 are simply further nested functions. In the following example, the
 generate function returns an instance
 of the nested Spam class. Within its
 code, the class name Spam is assigned
 in the generate function’s local
 scope, and hence is visible to any further nested functions, including
 code inside method; it’s the
 E in the “LEGB” scope lookup rule:
def generate():
 class Spam: # Spam is a name in generate's local scope
 count = 1
 def method(self):
 print(Spam.count) # Visible in generate's scope, per LEGB rule (E)
 return Spam()

generate().method()
This example works in Python since version 2.2 because the local
 scopes of all enclosing function defs
 are automatically visible to nested defs (including nested method defs, as in this example).
Even so, keep in mind that method defs cannot see the local scope of the
 enclosing class; they can see only the local scopes
 of enclosing defs. That’s why methods
 must go through the self instance or
 the class name to reference methods and other attributes defined in the
 enclosing class statement. For
 example, code in the method must use self.count or Spam.count, not just count.
To avoid nesting, we could restructure this code such that the
 class Spam is defined at the top
 level of the module: the nested method function and the top-level generate will then both find Spam in their global scopes; it’s not
 localized to a function’s scope, but is still local to a single
 module:
def generate():
 return Spam()

class Spam: # Define at top level of module
 count = 1
 def method(self):
 print(Spam.count) # Works: in global (enclosing module)

generate().method()
In fact, this approach is recommended for all Python releases—code
 tends to be simpler in general if you avoid nesting classes and
 functions. On the other hand, class nesting is useful in
 closure contexts, where the enclosing function’s
 scope retains state used by the class or its
 methods. In the following, the nested method has access to its own scope, the
 enclosing function’s scope (for label), the enclosing module’s global scope,
 anything saved in the self instance
 by the class, and the class itself via its nonlocal name:
>>> def generate(label): # Returns a class instead of an instance
 class Spam:
 count = 1
 def method(self):
 print("%s=%s" % (label, Spam.count))
 return Spam

>>> aclass = generate('Gotchas')
>>> I = aclass()
>>> I.method()
Gotchas=1

Miscellaneous Class Gotchas
Here’s a handful of additional class-related warnings, mostly as
 review.
Choose per-instance or class storage wisely
On a similar note, be careful when you decide whether an attribute should be
 stored on a class or its instances: the former is shared by all
 instances, and the latter will differ per instance. This can be a
 crucial design issue in practice. In a GUI program, for instance, if
 you want information to be shared by all of the window class objects
 your application will create (e.g., the last directory used for a Save
 operation, or an already entered password), it must be stored as
 class-level data; if stored in the instance as self attributes, it will vary per window or
 be missing entirely when looked up by inheritance.

You usually want to call superclass constructors
Remember that Python runs only one __init__ constructor method when an instance
 is made—the lowest in the class inheritance tree. It does not
 automatically run the constructors of all superclasses higher up.
 Because constructors normally perform required startup work, you’ll
 usually need to run a superclass constructor from a subclass
 constructor—using a manual call through the superclass’s name (or
 super), passing along whatever
 arguments are required—unless you mean to replace the super’s
 constructor altogether, or the superclass doesn’t have or inherit a
 constructor at all.

Delegation-based classes in 3.X: __getattr__ and
 built-ins
Another reminder: as described earlier in this chapter and elsewhere, classes
 that use the __getattr__ operator
 overloading method to delegate attribute fetches to wrapped objects
 may fail in Python 3.X (and 2.X when new-style classes are used)
 unless operator overloading methods are redefined in the wrapper
 class. The names of operator overloading methods implicitly fetched by
 built-in operations are not routed through generic
 attribute-interception methods. To work around this, you must redefine
 such methods in wrapper classes, either manually, with tools, or by
 definition in superclasses; we’ll see how in Chapter 40.

KISS Revisited: “Overwrapping-itis”
When used well, the code reuse features of OOP make it excel at cutting development time.
 Sometimes, though, OOP’s abstraction potential can be abused to the
 point of making code difficult to understand. If classes are layered too
 deeply, code can become obscure; you may have to search through many
 classes to discover what an operation does.
For example, I once worked in a C++ shop with thousands of classes
 (some machine-generated), and up to 15 levels of inheritance.
 Deciphering method calls in such a complex system was often a monumental
 task: multiple classes had to be consulted for even the most basic of
 operations. In fact, the logic of the system was so deeply wrapped that
 understanding a piece of code in some cases required days of wading
 through related files. This obviously isn’t ideal for programmer
 productivity!
The most general rule of thumb of Python programming applies here,
 too: don’t make things complicated unless they truly must
 be. Wrapping your code in multiple layers of classes to the
 point of incomprehensibility is always a bad idea. Abstraction is the
 basis of polymorphism and encapsulation, and it can be a very effective
 tool when used well. However, you’ll simplify debugging and aid
 maintainability if you make your class interfaces intuitive, avoid
 making your code overly abstract, and keep your class hierarchies short
 and flat unless there is a good reason to do otherwise. Remember: code
 you write is generally code that others must read. See Chapter 20 for more on KISS.

Chapter Summary
This chapter presented an assortment of advanced class-related
 topics, including subclassing built-in types, new-style classes, static
 methods, and decorators. Most of these are optional extensions to the OOP
 model in Python, but they may become more useful as you start writing
 larger object-oriented programs, and are fair game if they appear in code
 you must understand. As mentioned earlier, our discussion of some of the
 more advanced class tools continues in the final part of this book; be
 sure to look ahead if you need more details on properties, descriptors,
 decorators, and metaclasses.
This is the end of the class part of this book, so you’ll find the
 usual lab exercises at the end of the chapter: be sure to work through
 them to get some practice coding real classes. In the next chapter, we’ll
 begin our look at our last core language topic,
 exceptions—Python’s mechanism for communicating
 errors and other conditions to your code. This is a relatively lightweight
 topic, but I’ve saved it for last because new exceptions are supposed to
 be coded as classes today. Before we tackle that final core subject,
 though, take a look at this chapter’s quiz and the lab exercises.

Test Your Knowledge: Quiz
	Name two ways to extend a built-in object type.

	What are function and class decorators used for?

	How do you code a new-style class?

	How are new-style and classic classes different?

	How are normal and static methods different?

	Are tools like __slots__ and
 super valid to use in your
 code?

	How long should you wait before lobbing a “Holy Hand
 Grenade”?

Test Your Knowledge: Answers
	You can embed a built-in object in a wrapper class, or subclass
 the built-in type directly. The latter approach tends to be simpler,
 as most original behavior is automatically inherited.

	Function decorators are generally used to manage a function or
 method, or add to it a layer of logic that is run each time the
 function or method is called. They can be used to log or count calls
 to a function, check its argument types, and so on. They are also used
 to “declare” static methods (simple functions in a class that are not
 passed an instance when called), as well as class methods and
 properties. Class decorators are similar, but manage whole objects and
 their interfaces instead of a function call.

	New-style classes are coded by inheriting from the object built-in class (or any other built-in
 type). In Python 3.X, all classes are new-style automatically, so this
 derivation is not required (but doesn’t hurt); in 2.X, classes with
 this explicit derivation are new-style and those without it are
 “classic.”

	New-style classes search the diamond pattern of multiple
 inheritance trees differently—they essentially search breadth-first
 (across), instead of depth-first (up) in diamond trees. New-style
 classes also change the result of the type built-in for instances and classes, do
 not run generic attribute fetch methods such as __getattr__ for built-in operation methods,
 and support a set of advanced extra tools including properties,
 descriptors, super, and __slots__ instance attribute lists.

	Normal (instance) methods receive a self argument (the implied instance), but
 static methods do not. Static methods are simple functions nested in
 class objects. To make a method static, it must either be run through
 a special built-in function or be decorated with decorator syntax.
 Python 3.X allows simple functions in a class to be called through the
 class without this step, but calls through instances still require
 static method declaration.

	Of course, but you shouldn’t use advanced tools automatically
 without carefully considering their implications. Slots, for example,
 can break code; super can mask
 later problems when used for single inheritance, and in multiple
 inheritance brings with it substantial complexity for an isolated use
 case; and both require universal deployment to be most useful.
 Evaluating new or advanced tools is a primary task of any engineer,
 and is why we explored tradeoffs so carefully in this chapter. This
 book’s goal is not to tell you which tools to use, but to underscore
 the importance of objectively analyzing them—a task often given too
 low a priority in the software field.

	Three seconds. (Or, more accurately: “And the Lord spake,
 saying, ‘First shalt thou take out the Holy Pin. Then, shalt thou
 count to three, no more, no less. Three shalt be the number thou shalt
 count, and the number of the counting shall be three. Four shalt thou
 not count, nor either count thou two, excepting that thou then proceed
 to three. Five is right out. Once the number three, being the third
 number, be reached, then lobbest thou thy Holy Hand Grenade of Antioch
 towards thy foe, who, being naughty in my sight, shall snuff
 it.’”)4

Test Your Knowledge: Part VI Exercises
These exercises ask you to write a few classes and experiment with some existing
 code. Of course, the problem with existing code is that it must be
 existing. To work with the set class in exercise 5, either pull the class
 source code off this book’s website (see the preface for a pointer) or
 type it up by hand (it’s fairly brief). These programs are starting to get
 more sophisticated, so be sure to check the solutions at the end of the
 book for pointers. You’ll find them in Appendix D, under “Part VI, Classes and OOP”.
	Inheritance. Write a class called Adder that exports a method add(self, x, y) that prints a “Not
 Implemented” message. Then, define two subclasses of Adder that implement the add method:
	ListAdder
	With an add method that
 returns the concatenation of its two list arguments

	DictAdder
	With an add method that
 returns a new dictionary containing the items in both its two
 dictionary arguments (any definition of dictionary addition will
 do)

Experiment by making instances of all three of your classes
 interactively and calling their add
 methods.
Now, extend your Adder
 superclass to save an object in the instance with a constructor (e.g.,
 assign self.data a list or a
 dictionary), and overload the +
 operator with an __add__ method to
 automatically dispatch to your add
 methods (e.g., X + Y triggers
 X.add(X.data,Y)). Where is the best
 place to put the constructors and operator overloading methods (i.e.,
 in which classes)? What sorts of objects can you add to your class
 instances?
In practice, you might find it easier to code your add methods to accept just one real argument
 (e.g., add(self,y)), and add that
 one argument to the instance’s current data (e.g., self.data + y). Does this make more sense
 than passing two arguments to add?
 Would you say this makes your classes more “object-oriented”?

	Operator overloading. Write a class called
 MyList that shadows (“wraps”) a
 Python list: it should overload most list operators and operations,
 including +, indexing, iteration,
 slicing, and list methods such as append and sort. See the Python reference manual or
 other documentation for a list of all possible methods to support.
 Also, provide a constructor for your class that takes an existing list
 (or a MyList instance) and copies
 its components into an instance attribute. Experiment with your class
 interactively. Things to explore:
	Why is copying the initial value important here?

	Can you use an empty slice (e.g., start[:]) to copy the initial value if
 it’s a MyList instance?

	Is there a general way to route list method calls to the
 wrapped list?

	Can you add a MyList and
 a regular list? How about a list and a MyList instance?

	What type of object should operations like + and slicing return? What about
 indexing operations?

	If you are working with a reasonably recent Python release
 (version 2.2 or later), you may implement this sort of wrapper
 class by embedding a real list in a standalone class, or by
 extending the built-in list type with a subclass. Which is easier,
 and why?

	Subclassing. Make a subclass of MyList from exercise 2 called MyListSub, which extends MyList to print a message to stdout before each call to the + overloaded operation and counts the number
 of such calls. MyListSub should
 inherit basic method behavior from MyList. Adding a sequence to a MyListSub should print a message, increment
 the counter for + calls, and
 perform the superclass’s method. Also, introduce a new method that
 prints the operation counters to stdout, and experiment with your class
 interactively. Do your counters count calls per instance, or per class
 (for all instances of the class)? How would you program the other
 option? (Hint: it depends on which object the count members are
 assigned to: class members are shared by instances, but self members are per-instance data.)

	Attribute methods. Write a class called
 Attrs with methods that intercept
 every attribute qualification (both fetches and assignments), and
 print messages listing their arguments to stdout. Create an Attrs instance, and experiment with
 qualifying it interactively. What happens when you try to use the
 instance in expressions? Try adding, indexing, and slicing the
 instance of your class. (Note: a fully generic approach based upon
 __getattr__ will work in 2.X’s
 classic classes but not in 3.X’s new-style classes—which are optional
 in 2.X—for reasons noted in Chapter 28, Chapter 31, and Chapter 32, and summarized in the solution to
 this exercise.)

	Set objects. Experiment with the set class
 described in “Extending Types by Embedding”. Run commands to do the
 following sorts of operations:
	Create two sets of integers, and compute their intersection
 and union by using & and
 | operator expressions.

	Create a set from a string, and experiment with indexing
 your set. Which methods in the class are called?

	Try iterating through the items in your string set using a
 for loop. Which methods run
 this time?

	Try computing the intersection and union of your string set
 and a simple Python string. Does it work?

	Now, extend your set by subclassing to handle arbitrarily
 many operands using the *args
 argument form. (Hint: see the function versions of these
 algorithms in Chapter 18.) Compute intersections
 and unions of multiple operands with your set subclass. How can
 you intersect three or more sets, given that & has only two sides?

	How would you go about emulating other list operations in
 the set class? (Hint: __add__
 can catch concatenation, and __getattr__ can pass most named list
 method calls like append to the
 wrapped list.)

	Class tree links. In “Namespaces: The Whole
 Story” in Chapter 29 and in “Multiple
 Inheritance: ‘Mix-in’ Classes” in Chapter 31, we learned that classes have a
 __bases__ attribute that returns a
 tuple of their superclass objects (the ones listed in parentheses in
 the class header). Use __bases__ to
 extend the lister.py mix-in
 classes we wrote in Chapter 31 so that
 they print the names of the immediate superclasses of the instance’s
 class. When you’re done, the first line of the string representation
 should look like this (your address will almost certainly
 vary):
<Instance of Sub(Super, Lister), address 7841200:

	Composition. Simulate a fast-food ordering
 scenario by defining four classes:
	Lunch
	A container and controller class

	Customer
	The actor who buys food

	Employee
	The actor from whom a customer orders

	Food
	What the customer buys

To get you started, here are the classes and methods you’ll be
 defining:
class Lunch:
 def __init__(self) # Make/embed Customer and Employee
 def order(self, foodName) # Start a Customer order simulation
 def result(self) # Ask the Customer what Food it has

class Customer:
 def __init__(self) # Initialize my food to None
 def placeOrder(self, foodName, employee) # Place order with an Employee
 def printFood(self) # Print the name of my food

class Employee:
 def takeOrder(self, foodName) # Return a Food, with requested name

class Food:
 def __init__(self, name) # Store food name
The order simulation should work as follows:
	The Lunch class’s
 constructor should make and embed an instance of Customer and an instance of Employee, and it should export a method
 called order. When called, this
 order method should ask the
 Customer to place an order by
 calling its placeOrder method.
 The Customer’s placeOrder method should in turn ask the
 Employee object for a new
 Food object by calling Employee’s takeOrder method.

	Food objects should store
 a food name string (e.g., “burritos”), passed down from Lunch.order, to Customer.placeOrder, to Employee.takeOrder, and finally to
 Food’s constructor. The
 top-level Lunch class should
 also export a method called result, which asks the customer to print
 the name of the food it received from the Employee via the order (this can be used
 to test your simulation).

Note that Lunch needs to pass
 either the Employee or itself to
 the Customer to allow the Customer to call Employee methods.
Experiment with your classes interactively by importing the
 Lunch class, calling its order method to run an interaction, and then
 calling its result method to verify
 that the Customer got what he or
 she ordered. If you prefer, you can also simply code test cases as
 self-test code in the file where your classes are defined, using the
 module __name__ trick of Chapter 25. In this simulation, the Customer is the active agent; how would your
 classes change if Employee were the
 object that initiated customer/employee interaction instead?

	Zoo animal hierarchy. Consider the class
 tree shown in Figure 32-1.
Figure 32-1. A zoo hierarchy composed of classes linked into a tree to be
 searched by attribute inheritance. Animal has a common “reply”
 method, but each class may have its own custom “speak” method called
 by “reply”.

Code a set of six class
 statements to model this taxonomy with Python
 inheritance. Then, add a speak method to each of your classes that
 prints a unique message, and a reply method in your top-level Animal superclass that simply calls self.speak to invoke the category-specific
 message printer in a subclass below (this will kick off an independent
 inheritance search from self).
 Finally, remove the speak method
 from your Hacker class so that it
 picks up the default above it. When you’re finished, your classes
 should work this way:
% python
>>> from zoo import Cat, Hacker
>>> spot = Cat()
>>> spot.reply() # Animal.reply: calls Cat.speak
meow
>>> data = Hacker() # Animal.reply: calls Primate.speak
>>> data.reply()
Hello world!

	The Dead Parrot Sketch. Consider the object
 embedding structure captured in Figure 32-2.
Figure 32-2. A scene composite with a controller class (Scene) that embeds and
 directs instances of three other classes (Customer, Clerk, Parrot). The
 embedded instance’s classes may also participate in an inheritance
 hierarchy; composition and inheritance are often equally useful ways to
 structure classes for code reuse.

Code a set of Python classes to implement this structure with
 composition. Code your Scene object to define an action method, and embed instances of the
 Customer, Clerk, and Parrot classes (each of which should define
 a line method that prints a unique
 message). The embedded objects may either inherit from a common
 superclass that defines line and
 simply provide message text, or define line themselves. In the end, your classes
 should operate like this:
% python
>>> import parrot
>>> parrot.Scene().action() # Activate nested objects
customer: "that's one ex-bird!"
clerk: "no it isn't..."
parrot: None

Why You Will Care: OOP by the Masters
When I teach Python classes, I invariably find that about halfway
 through the class, people who have used OOP in the past are following
 along intensely, while people who have not are beginning to glaze over
 (or nod off completely). The point behind the technology just isn’t
 apparent.
In a book like this, I have the luxury of including material like
 the new Big Picture overview in Chapter 26, and the gradual tutorial of
 Chapter 28—in fact, you should probably
 review that section if you’re starting to feel like OOP is just some
 computer science mumbo-jumbo. Though it adds much more structure than
 the generators we met earlier, OOP similarly relies on some magic
 (inheritance search and a special first argument) that beginners can
 find difficult to rationalize.
In real classes, however, to help get the newcomers on board (and
 keep them awake), I have been known to stop and ask the experts in the
 audience why they use OOP. The answers they’ve given might help shed
 some light on the purpose of OOP, if you’re new to the subject.
Here, then, with only a few embellishments, are the most common
 reasons to use OOP, as cited by my students over the years:
	Code reuse
	This one’s easy (and is the main reason for using OOP). By
 supporting inheritance, classes allow you to program by
 customization instead of starting each project from
 scratch.

	Encapsulation
	Wrapping up implementation details behind object interfaces
 insulates users of a class from code changes.

	Structure
	Classes provide new local scopes, which minimizes name
 clashes. They also provide a natural place to write and look for
 implementation code, and to manage object state.

	Maintenance
	Classes naturally promote code factoring, which allows us to
 minimize redundancy. Thanks both to the structure and code reuse
 support of classes, usually only one copy of the code needs to be
 changed.

	Consistency
	Classes and inheritance allow you to implement common
 interfaces, and hence create a common look and feel in your code;
 this eases debugging, comprehension, and maintenance.

	Polymorphism
	This is more a property of OOP than a reason for using it,
 but by supporting code generality, polymorphism makes code more
 flexible and widely applicable, and hence more reusable.

	Other
	And, of course, the number one reason students gave for
 using OOP: it looks good on a résumé! (OK, I threw this one in as
 a joke, but it is important to be familiar with OOP if you plan to
 work in the software field today.)

Finally, keep in mind what I said at the beginning of this part of
 the book: you won’t fully appreciate OOP until you’ve used it for a
 while. Pick a project, study larger examples, work through the
 exercises—do whatever it takes to get your feet wet with OO code; it’s
 worth the effort.

1 As a data point, the book Programming
 Python, a 1,600-page applications programming follow-up to
 this book that uses 3.X exclusively, neither uses nor needs to
 accommodate any of the new-style class tools of this chapter, and
 still manages to build significant programs for GUIs, websites,
 systems programming, databases, and text. It’s mostly
 straightforward code that leverages built-in types and libraries to
 do its work, not obscure and esoteric OOP extensions. When it does
 use classes, they are relatively simple, providing structure and
 code factoring. That book’s code is also probably more
 representative of real-world programming than some in this language
 tutorial text—which suggests that many of Python’s advanced OOP
 tools may be artificial, having more to do with language design than
 practical program goals. Then again, that book has the luxury of
 restricting its toolset to such code; as soon as your coworker finds
 a way to use an arcane language feature, all bets are off!
2 As of this chapter’s interaction listings, I’ve started
 omitting some blank lines and shortening some hex addresses to 32
 bits in object displays, to reduce size and clutter. I’m going to
 assume that by this point in the book, you’ll find such small
 details irrelevant.
3 Both are opinion pieces in part, but are suggested reading.
 The first was eventually retitled “Python’s Super is nifty, but you
 can’t use it,” and is today at https://fuhm.net/super-harmful.
 Oddly—and despite its subjective tone—the second article (“Python’s
 super() considered super!”) alone somehow found its way into
 Python’s official library manual; see its link in the manual’s
 super section...and consider
 demanding that differing opinions be represented more evenly in your
 tools’ documentation, or omitted altogether. Python’s manuals are
 not the place for personal opinion and one-sided propaganda!
4 This quote is from Monty Python and the Holy
 Grail (and if you didn’t know that, it may be time to
 find a copy!).

Part VII. Exceptions and Tools

Chapter 33. Exception Basics
This part of the book deals with exceptions,
 which are events that can modify the flow of control through a
 program. In Python, exceptions are triggered automatically on errors, and
 they can be triggered and intercepted by your code. They are processed by
 four statements we’ll study in this part, the first of which has two
 variations (listed separately here) and the last of which was an optional
 extension until Python 2.6 and 3.0:
	try/except
	Catch and recover from exceptions raised by Python, or by
 you.

	try/finally
	Perform cleanup actions, whether exceptions occur or not.

	raise
	Trigger an exception manually in your code.

	assert
	Conditionally trigger an exception in your code.

	with/as
	Implement context managers in Python 2.6, 3.0, and later (optional in
 2.5).

This topic was saved until nearly the end of the book because you need
 to know about classes to code exceptions of your own. With a few exceptions
 (pun intended), though, you’ll find that exception handling is simple in
 Python because it’s integrated into the language itself as another
 high-level tool.
Why Use Exceptions?
In a nutshell, exceptions let us jump out of arbitrarily large chunks of a program.
 Consider the hypothetical pizza-making robot we discussed earlier in the
 book. Suppose we took the idea seriously and actually built such a
 machine. To make a pizza, our culinary automaton would need to execute a
 plan, which we would implement as a Python program: it would take an
 order, prepare the dough, add toppings, bake the pie, and so on.
Now, suppose that something goes very wrong during the “bake the
 pie” step. Perhaps the oven is broken, or perhaps our robot miscalculates
 its reach and spontaneously combusts. Clearly, we want to be able to jump
 to code that handles such states quickly. As we have no hope of finishing
 the pizza task in such unusual cases, we might as well abandon the entire
 plan.
That’s exactly what exceptions let you do: you can jump to an
 exception handler in a single step, abandoning all function calls begun
 since the exception handler was entered. Code in the exception handler can
 then respond to the raised exception as appropriate (by calling the fire
 department, for instance!).
One way to think of an exception is as a sort of structured “super
 go to.” An exception handler (try statement) leaves a marker and executes some code. Somewhere further
 ahead in the program, an exception is raised that makes Python jump back
 to that marker, abandoning any active functions that were called after the
 marker was left. This protocol provides a coherent way to respond to
 unusual events. Moreover, because Python jumps to the handler statement
 immediately, your code is simpler—there is usually no need to check status
 codes after every call to a function that could possibly fail.
Exception Roles
In Python programs, exceptions are typically used for a variety of purposes.
 Here are some of their most common roles:
	Error handling
	Python raises exceptions whenever it detects errors in programs at
 runtime. You can catch and respond to the errors in your code, or
 ignore the exceptions that are raised. If an error is ignored,
 Python’s default exception-handling behavior kicks in: it stops
 the program and prints an error message. If you don’t want this
 default behavior, code a try
 statement to catch and recover from the exception—Python will jump
 to your try handler when the
 error is detected, and your program will resume execution after
 the try.

	Event notification
	Exceptions can also be used to signal valid conditions without you having
 to pass result flags around a program or test them explicitly. For
 instance, a search routine might raise an exception on failure,
 rather than returning an integer result code—and hoping that the
 code will never be a valid result!

	Special-case handling
	Sometimes a condition may occur so rarely that it’s hard to
 justify convoluting your code to handle it in multiple places. You
 can often eliminate special-case code by handling unusual cases in
 exception handlers in higher levels of your program. An assert can similarly be used to check that conditions are as expected
 during development.

	Termination actions
	As you’ll see, the try/finally statement allows you to guarantee that required closing-time
 operations will be performed, regardless of the presence or
 absence of exceptions in your programs. The newer with statement offers an alternative in
 this department for objects that support it.

	Unusual control flows
	Finally, because exceptions are a sort of high-level and structured “go to,” you can
 use them as the basis for implementing exotic control flows. For
 instance, although the language does not explicitly support backtracking, you can implement it in Python
 by using exceptions and a bit of support logic to unwind
 assignments.1 There is no “go to” statement in Python
 (thankfully!), but exceptions can sometimes serve similar roles; a
 raise, for instance, can be
 used to jump out of multiple loops.

We saw some of these roles briefly earlier, and will study typical
 exception use cases in action later in this part of the book. For now,
 let’s get started with a look at Python’s exception-processing
 tools.

Exceptions: The Short Story
Compared to some other core language topics we’ve met in this book,
 exceptions are a fairly lightweight tool in Python. Because they are so
 simple, let’s jump right into some code.
Default Exception Handler
Suppose we write the following function:
>>> def fetcher(obj, index):
 return obj[index]
There’s not much to this function—it simply indexes an object on a
 passed-in index. In normal operation, it returns the result of a legal
 index:
>>> x = 'spam'
>>> fetcher(x, 3) # Like x[3]
'm'
However, if we ask this function to index off the end of the
 string, an exception will be triggered when the function tries to run
 obj[index]. Python detects
 out-of-bounds indexing for sequences and reports it by
 raising (triggering) the built-in IndexError
 exception:
>>> fetcher(x, 4) # Default handler - shell interface
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in fetcher
IndexError: string index out of range
Because our code does not explicitly catch this exception, it
 filters back up to the top level of the program and invokes the
 default exception handler, which simply prints the
 standard error message. By this point in the book, you’ve probably seen
 your share of standard error messages. They include the exception that
 was raised, along with a stack trace—a list of all the lines
 and functions that were active when the exception occurred.
The error message text here was printed by Python 3.3; it can vary
 slightly per release, and even per interactive shell, so you shouldn’t
 rely upon its exact form—in either this book or your code. When you’re
 coding interactively in the basic shell interface, the filename is just
 “<stdin>,” meaning the standard input stream.
When working in the IDLE GUI’s interactive shell, the filename is
 “<pyshell>,” and source lines are displayed, too. Either way, file
 line numbers are not very meaningful when there is no file (we’ll see
 more interesting error messages later in this part of the book):
>>> fetcher(x, 4) # Default handler - IDLE GUI interface
Traceback (most recent call last):
 File "<pyshell#6>", line 1, in <module>
 fetcher(x, 4)
 File "<pyshell#3>", line 2, in fetcher
 return obj[index]
IndexError: string index out of range
In a more realistic program launched outside the interactive
 prompt, after printing an error message the default handler at the top
 also terminates the program
 immediately. That course of action makes sense for simple scripts;
 errors often should be fatal, and the best you can do when they occur is
 inspect the standard error message.

Catching Exceptions
Sometimes, this isn’t what you want, though. Server programs, for instance,
 typically need to remain active even after internal errors. If you don’t
 want the default exception behavior, wrap the call in a try statement
 to catch exceptions yourself:
>>> try:
... fetcher(x, 4)
... except IndexError: # Catch and recover
... print('got exception')
...
got exception
>>>
Now, Python jumps to your handler—the block
 under the except clause that names
 the exception raised—automatically when an exception is triggered while
 the try block is running. The net
 effect is to wrap a nested block of code in an error handler that
 intercepts the block’s exceptions.
When working interactively like this, after the except clause runs, we wind up back at the
 Python prompt. In a more realistic program, try statements not only catch exceptions, but
 also recover from them:
>>> def catcher():
 try:
 fetcher(x, 4)
 except IndexError:
 print('got exception')
 print('continuing')

>>> catcher()
got exception
continuing
>>>
This time, after the exception is caught and handled, the program
 resumes execution after the entire try statement that caught it—which is why we
 get the “continuing” message here. We don’t see the standard error
 message, and the program continues on its way normally.
Notice that there’s no way in Python to go
 back to the code that triggered the exception (short of
 rerunning the code that reached that point all over again, of course).
 Once you’ve caught the exception, control continues after the entire
 try that caught the exception, not
 after the statement that kicked it off. In fact, Python clears the
 memory of any functions that were exited as a result of the exception,
 like fetcher in our example; they’re
 not resumable. The try both catches
 exceptions, and is where the program resumes.
Note
Presentation note: The interactive prompt’s
 “...” reappears in this part for some top-level try statements, because their code won’t
 work if cut and pasted unless nested in a function or class (the
 except and other lines must align
 with the try, and not have extra
 preceding spaces that are needed to illustrate their indentation
 structure). To run, simply type or paste statements with “...” prompts
 one line at a time.

Raising Exceptions
So far, we’ve been letting Python raise exceptions for us by making mistakes
 (on purpose this time!), but our scripts can raise exceptions too—that
 is, exceptions can be raised by Python or by your program, and can be
 caught or not. To trigger an exception manually, simply run a raise statement. User-triggered exceptions are caught the same way as those Python raises.
 The following may not be the most useful Python code ever penned, but it
 makes the point—raising the built-in IndexError
 exception:
>>> try:
... raise IndexError # Trigger exception manually
... except IndexError:
... print('got exception')
...
got exception
As usual, if they’re not caught, user-triggered exceptions are
 propagated up to the top-level default exception handler and terminate
 the program with a standard error message:
>>> raise IndexError
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError
As we’ll see in the next chapter, the assert statement can be used to trigger exceptions, too—it’s a conditional
 raise, used mostly for debugging
 purposes during development:
>>> assert False, 'Nobody expects the Spanish Inquisition!'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError: Nobody expects the Spanish Inquisition!

User-Defined Exceptions
The raise statement introduced
 in the prior section raises a built-in
 exception defined in Python’s built-in scope. As you’ll learn later in
 this part of the book, you can also define new exceptions of your own
 that are specific to your programs. User-defined exceptions are coded
 with classes, which inherit from a built-in
 exception class: usually the class named Exception:
>>> class AlreadyGotOne(Exception): pass # User-defined exception

>>> def grail():
 raise AlreadyGotOne() # Raise an instance

>>> try:
... grail()
... except AlreadyGotOne: # Catch class name
... print('got exception')
...
got exception
>>>
As we’ll see in the next chapter, an as clause on an except can gain access to the exception object
 itself. Class-based exceptions allow scripts to build exception
 categories, which can inherit behavior, and have attached state
 information and methods. They can also customize their error message
 text displayed if they’re not caught:
>>> class Career(Exception):
 def __str__(self): return 'So I became a waiter...'

>>> raise Career()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.Career: So I became a waiter...
>>>

Termination Actions
Finally, try statements can
 say “finally”—that is, they may include finally blocks. These look like except handlers for exceptions, but the
 try/finally combination specifies termination
 actions that always execute “on the way out,” regardless of whether an
 exception occurs in the try block or
 not;
>>> try:
... fetcher(x, 3)
... finally: # Termination actions
... print('after fetch')
...
'm'
after fetch
>>>
Here, if the try block finishes
 without an exception, the finally
 block will run, and the program will resume after the entire try. In this case, this statement seems a bit
 silly—we might as well have simply typed the print right after a call to the function, and
 skipped the try altogether:
fetcher(x, 3)
print('after fetch')
There is a problem with coding this way, though: if the function
 call raises an exception, the print
 will never be reached. The try/finally
 combination avoids this pitfall—when an exception does occur in a
 try block, finally blocks are executed while the program
 is being unwound:
>>> def after():
 try:
 fetcher(x, 4)
 finally:
 print('after fetch')
 print('after try?')

>>> after()
after fetch
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in after
 File "<stdin>", line 2, in fetcher
IndexError: string index out of range
>>>
Here, we don’t get the “after try?” message because control does
 not resume after the try/finally block when an exception occurs.
 Instead, Python jumps back to run the finally action, and then
 propagates the exception up to a prior handler (in
 this case, to the default handler at the top). If we change the call
 inside this function so as not to trigger an exception, the finally code still runs, but the program
 continues after the try:
>>> def after():
 try:
 fetcher(x, 3)
 finally:
 print('after fetch')
 print('after try?')

>>> after()
after fetch
after try?
>>>
In practice, try/except combinations are useful for catching and recovering from exceptions, and try/finally
 combinations come in handy to guarantee that termination actions will fire regardless of any exceptions
 that may occur in the try block’s
 code. For instance, you might use try/except
 to catch errors raised by code that you import from a third-party
 library, and try/finally to ensure that calls to close files or
 terminate server connections are always run. We’ll see some such
 practical examples later in this part of the book.
Although they serve conceptually distinct purposes, as of Python
 2.5, we can mix except and finally clauses in the same try statement—the finally is run on the way out regardless of
 whether an exception was raised, and regardless of whether the exception
 was caught by an except
 clause.
As we’ll learn in the next chapter, Python 2.X and 3.X both
 provide an alternative to try/finally
 when using some types of objects. The with/as statement runs an object’s context management logic to
 guarantee that termination actions occur, irrespective of any exceptions
 in its nested block:
>>> with open('lumberjack.txt', 'w') as file: # Always close file on exit
 file.write('The larch!\n')
Although this option requires fewer lines of code, it’s applicable
 only when processing certain object types, so try/finally
 is a more general termination structure, and is often simpler than
 coding a class in cases where with is
 not already supported. On the other hand, with/as may
 also run startup actions too, and supports user-defined context
 management code with access to Python’s full OOP toolset.
Why You Will Care: Error Checks
One way to see how exceptions are useful is to compare coding styles in Python and
 languages without exceptions. For instance, if you want to write
 robust programs in the C language, you generally have to test return values or
 status codes after every operation that could possibly go astray, and
 propagate the results of the tests as your programs run:
doStuff()
{ # C program
 if (doFirstThing() == ERROR) # Detect errors everywhere
 return ERROR; # even if not handled here
 if (doNextThing() == ERROR)
 return ERROR;
 ...
 return doLastThing();
}

main()
{
 if (doStuff() == ERROR)
 badEnding();
 else
 goodEnding();
}
In fact, realistic C programs often have as much code devoted to
 error detection as to doing actual work. But in Python, you don’t have
 to be so methodical (and neurotic!). You can instead wrap arbitrarily
 vast pieces of a program in exception handlers and simply write the
 parts that do the actual work, assuming all is normally well:
def doStuff(): # Python code
 doFirstThing() # We don't care about exceptions here,
 doNextThing() # so we don't need to detect them
 ...
 doLastThing()

if __name__ == '__main__':
 try:
 doStuff() # This is where we care about results,
 except: # so it's the only place we must check
 badEnding()
 else:
 goodEnding()
Because control jumps immediately to a handler when an exception
 occurs, there’s no need to instrument all your code to guard for
 errors, and there’s no extra performance overhead to run all the
 tests. Moreover, because Python detects errors automatically, your
 code often doesn’t need to check for errors in the first place. The
 upshot is that exceptions let you largely ignore the unusual cases and
 avoid error-checking code that can distract from your program’s
 goals.

Chapter Summary
And that is the majority of the exception story; exceptions really
 are a simple tool.
To summarize, Python exceptions are a high-level control flow
 device. They may be raised by Python, or by your own programs. In both
 cases, they may be ignored (to trigger the default error message), or
 caught by try statements (to be
 processed by your code). The try
 statement comes in two logical formats that, as of Python 2.5, can be
 combined—one that handles exceptions, and one that executes finalization
 code regardless of whether exceptions occur or not. Python’s raise and assert statements trigger exceptions on
 demand—both built-ins and new exceptions we define with classes—and the
 with/as statement is an alternative way to ensure
 that termination actions are carried out for objects that support
 it.
In the rest of this part of the book, we’ll fill in some of the
 details about the statements involved, examine the other sorts of clauses
 that can appear under a try, and
 discuss class-based exception objects. The next chapter begins our tour by
 taking a closer look at the statements we introduced here. Before you turn
 the page, though, here are a few quiz questions to review.

Test Your Knowledge: Quiz
	Name three things that exception processing is good
 for.

	What happens to an exception if you don’t do anything special to
 handle it?

	How can your script recover from an exception?

	Name two ways to trigger exceptions in your script.

	Name two ways to specify actions to be run at termination time,
 whether an exception occurs or not.

Test Your Knowledge: Answers
	Exception processing is useful for error handling, termination
 actions, and event notification. It can also simplify the handling of
 special cases and can be used to implement alternative control flows
 as a sort of structured “go to” operation. In general, exception
 processing also cuts down on the amount of error-checking code your
 program may require—because all errors filter up to handlers, you may
 not need to test the outcome of every operation.

	Any uncaught exception eventually filters up to the default
 exception handler Python provides at the top of your program. This
 handler prints the familiar error message and shuts down your
 program.

	If you don’t want the default message and shutdown, you can code
 try/except statements to catch and recover from
 exceptions that are raised within its nested code block. Once an
 exception is caught, the exception is terminated and your program
 continues after the try.

	The raise and assert statements can be used to trigger an
 exception, exactly as if it had been raised by Python itself. In
 principle, you can also raise an exception by making a programming
 mistake, but that’s not usually an explicit goal!

	The try/finally statement can be used to ensure
 actions are run after a block of code exits, regardless of whether the
 block raises an exception or not. The with/as
 statement can also be used to ensure termination actions are run, but
 only when processing object types that support it.

1 But true backtracking is not part of the Python
 language. Backtracking undoes all computations before it
 jumps, but Python exceptions do not: variables assigned
 between the time a try
 statement is entered and the time an exception is raised are
 not reset to their prior values. Even the generator functions
 and expressions we met in Chapter 20 don’t do full
 backtracking—they simply respond to next(G) requests by restoring state
 and resuming. For more on backtracking, see books on
 artificial intelligence or the Prolog or Icon programming
 languages.

Chapter 34. Exception Coding Details
In the prior chapter we took a quick look at exception-related statements in action. Here,
 we’re going to dig a bit deeper—this chapter provides a more formal
 introduction to exception processing syntax in Python. Specifically, we’ll
 explore the details behind the try,
 raise, assert, and with statements. As we’ll see, although these
 statements are mostly straightforward, they offer powerful tools for dealing
 with exceptional conditions in Python code.
Note
One procedural note up front: The exception story has changed in
 major ways in recent years. As of Python 2.5, the finally clause can appear in the same try statement as except and else clauses (previously, they could not be
 combined). Also, as of Python 3.0 and 2.6, the new with context manager statement has become
 official, and user-defined exceptions must now be coded as class
 instances, which should inherit from a built-in exception superclass.
 Moreover, 3.X sports slightly modified syntax for the raise statement and except clauses, some of which is available in
 2.6 and 2.7.
I will focus on the state of exceptions in recent Python 2.X and 3.X
 releases in this edition, but because you are still very likely to see the
 original techniques in code for some time to come, along the way I’ll
 point out how things have evolved in this domain.

The try/except/else Statement
Now that we’ve seen the basics, it’s time for the details. In the following
 discussion, I’ll first present try/except/else
 and try/finally as separate statements, because in
 versions of Python prior to 2.5 they serve distinct roles and cannot be
 combined, and still are at least logically distinct today. Per the
 preceding note, in Python 2.5 and later except and finally can be mixed in a single try statement; we’ll see the implications of
 that merging after we’ve explored the two original forms in
 isolation.
Syntactically, the try is a compound, multipart statement. It starts with a try header line, followed by a block of
 (usually) indented statements; then one or more except clauses that identify exceptions to be
 caught and blocks to process them; and an optional else clause and block at the end. You associate
 the words try, except, and else by indenting them to the same level (i.e.,
 lining them up vertically). For reference, here’s the general and most
 complete format in Python 3.X:
try:
 statements # Run this main action first
except name1:
 statements # Run if name1 is raised during try block
except (name2, name3):
 statements # Run if any of these exceptions occur
except name4 as var:
 statements # Run if name4 is raised, assign instance raised to var
except:
 statements # Run for all other exceptions raised
else:
 statements # Run if no exception was raised during try block
Semantically, the block under the try header in this statement represents the
 main action of the statement—the code you’re trying
 to run and wrap in error processing logic. The except clauses define
 handlers for exceptions raised during the try block, and the else clause (if coded) provides a handler to be
 run if no exceptions occur. The
 var entry here has to do with a feature of
 raise statements and exception classes,
 which we will discuss in full later in this chapter.
How try Statements Work
Operationally, here’s how try statements are run. When a try statement is entered, Python marks the
 current program context so it can return to it if an exception occurs.
 The statements nested under the try
 header are run first. What happens next depends on whether exceptions
 are raised while the try block’s
 statements are running, and whether they match those that the try is watching for:
	If an exception occurs while the try block’s statements are running, and
 the exception matches one that the statement
 names, Python jumps back to the try and runs the statements under the
 first except clause that matches
 the raised exception, after assigning the raised exception object to
 the variable named after the as
 keyword in the clause (if present). After the except block runs, control then resumes
 below the entire try statement
 (unless the except block itself
 raises another exception, in which case the process is started anew
 from this point in the code).

	If an exception occurs while the try block’s statements are running, but
 the exception does not match one that the
 statement names, the exception is propagated up to the next most
 recently entered try statement
 that matches the exception; if no such matching try statement can be found and the search
 reaches the top level of the process, Python kills the program and
 prints a default error message.

	If an exception does not occur while the
 try block’s statements are
 running, Python runs the statements under the else line (if present), and control then
 resumes below the entire try
 statement.

In other words, except clauses
 catch any matching exceptions that happen while the try block is running, and the else clause runs only if no exceptions happen
 while the try block runs. Exceptions
 raised are matched to exceptions named in except clauses by superclass relationships
 we’ll explore in the next chapter, and the empty except clause (with no exception name)
 matches all (or all other) exceptions.
The except clauses are
 focused exception handlers—they catch exceptions
 that occur only within the statements in the associated try block. However, as the try block’s statements can call functions
 coded elsewhere in a program, the source of an exception may be outside
 the try statement itself.
In fact, a try block might
 invoke arbitrarily large amounts of program code—including code that may
 have try statements of its own, which
 will be searched first when exceptions occur. That is, try statements can nest at
 runtime, a topic I’ll have more to say about in Chapter 36.

try Statement Clauses
When you write a try statement,
 a variety of clauses can appear after the try header. Table 34-1 summarizes all the possible
 forms—you must use at least one. We’ve already met some of these: as you
 know, except clauses catch
 exceptions, finally clauses run on
 the way out, and else clauses run if
 no exceptions are encountered.
Formally, there may be any number of except clauses, but you can code else only if there is at least one except, and there can be only one else and one finally. Through Python 2.4, the finally clause must appear alone (without
 else or except); the try/finally
 is really a different statement. As of Python 2.5, however, a finally can appear in the same statement as
 except and else (more on the ordering rules later in this
 chapter when we meet the unified try
 statement).
Table 34-1. try statement clause forms	Clause
 form	Interpretation
	except:
	Catch all (or all other)
 exception types.

	except
 name:
	Catch a specific
 exception only.

	except name
 as
 value:
	Catch the listed
 exception and assign its instance.

	except (name1, name2):
	Catch any of the listed
 exceptions.

	except (name1, name2) as value:
	Catch any listed
 exception and assign its instance.

	else:
	Run if no exceptions are
 raised in the try
 block.

	finally:
	Always perform this block
 on exit.

We’ll explore the entries with the extra as value part in
 more detail when we meet the raise
 statement later in this chapter. They provide access to the objects that
 are raised as exceptions.
Catching any and all exceptions
The first and fourth entries in Table 34-1 are new here:
	except clauses that list
 no exception name (except:)
 catch all exceptions not previously listed in
 the try statement.

	except clauses that list
 a set of exceptions in parentheses (except (e1, e2, e3):) catch
 any of the listed exceptions.

Because Python looks for a match within a given try by inspecting the except clauses from top to
 bottom, the parenthesized version has the same effect as
 listing each exception in its own except clause, but you have to code the
 statement body associated with each only once. Here’s an example of
 multiple except clauses at work,
 which demonstrates just how specific your handlers can be:
try:
 action()
except NameError:
 ...
except IndexError:
 ...
except KeyError:
 ...
except (AttributeError, TypeError, SyntaxError):
 ...
else:
 ...
In this example, if an exception is raised while the call to the
 action function is running, Python
 returns to the try and searches for
 the first except that names the
 exception raised. It inspects the except clauses from top to bottom and left
 to right, and runs the statements under the first one that matches. If
 none match, the exception is propagated past this try. Note that the else runs only when no
 exception occurs in action—it does
 not run when an exception without a matching except is raised.

Catching all: The empty except and Exception
If you really want a general “catchall” clause, an empty
 except does the trick:
try:
 action()
except NameError:
 ... # Handle NameError
except IndexError:
 ... # Handle IndexError
except:
 ... # Handle all other exceptions
else:
 ... # Handle the no-exception case
The empty except clause is a
 sort of wildcard feature—because it catches
 everything, it allows your handlers to be as general or specific as
 you like. In some scenarios, this form may be more convenient than
 listing all possible exceptions in a try. For example, the following catches
 everything without listing anything:
try:
 action()
except:
 ... # Catch all possible exceptions
Empty excepts also raise some
 design issues, though. Although convenient, they may catch unexpected
 system exceptions unrelated to your code, and they may inadvertently
 intercept exceptions meant for another handler. For example, even
 system exit calls and Ctrl-C key combinations in Python trigger
 exceptions, and you usually want these to pass. Even worse, the empty
 except may also catch genuine
 programming mistakes for which you probably want to see an error
 message. We’ll revisit this as a gotcha at the end of this part of the
 book. For now, I’ll just say, “use with care.”
Python 3.X more strongly supports an alternative that solves one
 of these problems—catching an exception named Exception has almost the same effect as an
 empty except, but ignores
 exceptions related to system exits:
try:
 action()
except Exception:
 ... # Catch all possible exceptions, except exits
We’ll explore how this form works its voodoo formally in the
 next chapter when we study exception classes. In short, it works
 because exceptions match if they are a subclass of one named in an
 except clause, and Exception is a superclass of all the exceptions you should generally catch this way.
 This form has most of the same convenience of the empty except, without the risk of catching exit
 events. Though better, it also has some of the same dangers—especially
 with regard to masking programming errors.
Note
Version skew note: See also the raise statement ahead for more on the
 as portion of except clauses in try. Syntactically, Python 3.X requires
 the except E as V: handler clause
 form listed in Table 34-1 and
 used in this book, rather than the older except E, V: form. The latter form is
 still available (but not recommended) in Python 2.6 and 2.7: if
 used, it’s converted to the former.
The change was made to eliminate confusion regarding the dual
 role of commas in the older form. In this form, two alternate
 exceptions are properly coded as except
 (E1, E2):. Because 3.X supports the as form only, commas in a handler clause
 are always taken to mean a tuple, regardless of whether parentheses
 are used or not, and the values are interpreted as alternative
 exceptions to be caught.
As we’ll see ahead, though, this option does not modify the
 scoping rules in 2.X: even with the new as syntax, the variable V is still available after the except block in 2.X. In 3.X, V is not available later, and is in fact
 forcibly deleted.

The try else Clause
The purpose of the else clause
 is not always immediately obvious to Python newcomers. Without it,
 though, there is no direct way to tell (without setting and checking
 Boolean flags) whether the flow of control has proceeded past a try statement because no exception was raised,
 or because an exception occurred and was handled. Either way, we wind up
 after the try:
try:
 ...run code...
except IndexError:
 ...handle exception...
Did we get here because the try failed or not?
Much like the way else clauses
 in loops make the exit cause more apparent, the else clause provides syntax in a try that makes what has happened obvious and
 unambiguous:
try:
 ...run code...
except IndexError:
 ...handle exception...
else:
 ...no exception occurred...
You can almost emulate an else clause by moving its code into the
 try block:
try:
 ...run code...
 ...no exception occurred...
except IndexError:
 ...handle exception...
This can lead to incorrect exception classifications, though. If
 the “no exception occurred” action triggers an IndexError, it will register as a failure of
 the try block and erroneously trigger
 the exception handler below the try
 (subtle, but true!). By using an explicit else clause instead, you make the logic more
 obvious and guarantee that except
 handlers will run only for real failures in the code you’re wrapping in
 a try, not for failures in the
 else no-exception case’s action.

Example: Default Behavior
Because the control flow through a program is easier to capture in Python than
 in English, let’s run some examples that further illustrate exception
 basics in the context of larger code samples in files.
I’ve mentioned that exceptions not caught by try statements percolate up to the top level
 of the Python process and run Python’s default exception-handling logic
 (i.e., Python terminates the running program and prints a standard error
 message). To illustrate, running the following module file, bad.py, generates a divide-by-zero
 exception:
def gobad(x, y):
 return x / y

def gosouth(x):
 print(gobad(x, 0))

gosouth(1)
Because the program ignores the exception it triggers, Python
 kills the program and prints a message:
% python bad.py
Traceback (most recent call last):
 File "bad.py", line 7, in <module>
 gosouth(1)
 File "bad.py", line 5, in gosouth
 print(gobad(x, 0))
 File "bad.py", line 2, in gobad
 return x / y
ZeroDivisionError: division by zero
I ran this in a shell window with Python 3.X. The message consists
 of a stack trace (“Traceback”) and the name of and details about the
 exception that was raised. The stack trace lists all lines active when
 the exception occurred, from oldest to newest. Note that because we’re
 not working at the interactive prompt, in this case the file and line
 number information is more useful. For example, here we can see that the bad
 divide happens at the last entry in the trace—line 2 of the file
 bad.py, a return statement.1
Because Python detects and reports all errors at runtime by
 raising exceptions, exceptions are intimately bound up with the ideas of
 error handling and debugging in general. If you’ve worked through this
 book’s examples, you’ve undoubtedly seen an exception or two along the
 way—even typos usually generate a SyntaxError or other exception when a file is
 imported or executed (that’s when the compiler is run). By default, you
 get a useful error display like the one just shown, which helps you
 track down the problem.
Often, this standard error message is all you need to resolve
 problems in your code. For more heavy-duty debugging jobs, you can catch
 exceptions with try statements, or
 use one of the debugging tools that I introduced in Chapter 3 and will summarize again in Chapter 36, such as the pdb standard library module.

Example: Catching Built-in Exceptions
Python’s default exception handling is often exactly what you want—especially for
 code in a top-level script file, an error often should terminate your
 program immediately. For many programs, there is no need to be more
 specific about errors in your code.
Sometimes, though, you’ll want to catch errors and recover from
 them instead. If you don’t want your program terminated when Python
 raises an exception, simply catch it by wrapping the program logic in a
 try. This is an important capability
 for programs such as network servers, which must keep running
 persistently. For example, the following code, in the file kaboom.py, catches and recovers from the TypeError
 Python raises immediately when you try to concatenate a list and a
 string (remember, the + operator
 expects the same sequence type on both sides):
def kaboom(x, y):
 print(x + y) # Trigger TypeError

try:
 kaboom([0, 1, 2], 'spam')
except TypeError: # Catch and recover here
 print('Hello world!')
print('resuming here') # Continue here if exception or not
When the exception occurs in the function kaboom, control jumps to the try statement’s except clause, which prints a message. Since
 an exception is “dead” after it’s been caught like this, the program
 continues executing below the try
 rather than being terminated by Python. In effect, the code processes
 and clears the error, and your script recovers:
% python kaboom.py
Hello world!
resuming here
Keep in mind that once you’ve caught an error, control resumes at
 the place where you caught it (i.e., after the try); there is no direct way to go back to the
 place where the exception occurred (here, in the function kaboom). In a sense, this makes exceptions
 more like simple jumps than function calls—there is no way to return to
 the code that triggered the error.

The try/finally Statement
The other flavor of the try
 statement is a specialization that has to do with finalization (a.k.a.
 termination) actions. If a finally
 clause is included in a try, Python
 will always run its block of statements “on the way out” of the try statement, whether an exception occurred
 while the try block was running or not.
 Its general form is:
try:
 statements # Run this action first
finally:
 statements # Always run this code on the way out
With this variant, Python begins by running the statement block
 associated with the try header line as
 usual. What happens next depends on whether an exception occurs during the
 try block:
	If an exception does not occur while the
 try block is running, Python
 continues on to run the finally
 block, and then continues execution past the try statement.

	If an exception does occur during the
 try block’s run, Python still comes
 back and runs the finally block,
 but it then propagates the exception up to a previously entered
 try or the top-level default
 handler; the program does not resume execution below the finally clause’s try statement. That is, the finally block is run even if an exception is
 raised, but unlike an except, the
 finally does not terminate the
 exception—it continues being raised after the finally block runs.

The try/finally form is useful when you want to be
 completely sure that an action will happen after some code runs,
 regardless of the exception behavior of the program. In practice, it
 allows you to specify cleanup actions that always must occur, such as file
 closes and server disconnects where required.
Note that the finally clause
 cannot be used in the same try
 statement as except and else in Python 2.4 and earlier, so the try/finally
 is best thought of as a distinct statement form if you are using an older
 release. In Python 2.5, and later, however, finally can appear in the same statement as
 except and else, so today there is really a single try statement with many optional clauses (more
 about this shortly). Whichever version you use, though, the finally clause still serves the same purpose—to
 specify “cleanup” actions that must always be run, regardless of any
 exceptions.
Note
As we’ll also see later in this chapter, as of Python 2.6 and 3.0,
 the new with statement and its
 context managers provide an object-based way to do similar work for exit
 actions. Unlike finally, this new
 statement also supports entry actions, but it is limited in scope to
 objects that implement the context manager protocol it leverages.

Example: Coding Termination Actions with try/finally
We saw some simple try/finally examples in the prior chapter. Here’s
 a more realistic example that illustrates a typical role for this
 statement:
class MyError(Exception): pass

def stuff(file):
 raise MyError()

file = open('data', 'w') # Open an output file (this can fail too)
try:
 stuff(file) # Raises exception
finally:
 file.close() # Always close file to flush output buffers
print('not reached') # Continue here only if no exception
When the function in this code raises its exception, the control
 flow jumps back and runs the finally
 block to close the file. The exception is then propagated on to either
 another try or the default top-level
 handler, which prints the standard error message and shuts down the
 program. Hence, the statement after this try is never reached. If the function here did
 not raise an exception, the program would still
 execute the finally block to close
 the file, but it would then continue below the entire try statement.
In this specific case, we’ve wrapped a call to a file-processing
 function in a try with a finally clause to make sure that the file is
 always closed, and thus finalized, whether the function triggers an
 exception or not. This way, later code can be sure that the file’s
 output buffer’s content has been flushed from memory to disk. A similar
 code structure can guarantee that server connections are closed, and so
 on.
As we learned in Chapter 9, file objects are
 automatically closed on garbage collection in standard Python (CPython);
 this is especially useful for temporary files that we don’t assign to
 variables. However, it’s not always easy to predict when garbage
 collection will occur, especially in larger programs or alternative
 Python implementations with differing garbage collection policies (e.g.,
 Jython, PyPy). The try statement
 makes file closes more explicit and predictable and pertains to a
 specific block of code. It ensures that the file will be closed on block
 exit, regardless of whether an exception occurs or not.
This particular example’s function isn’t all that useful (it just
 raises an exception), but wrapping calls in try/finally
 statements is a good way to ensure that your closing-time termination
 activities always run. Again, Python always runs the code in your
 finally blocks, regardless of whether
 an exception happens in the try
 block.2
Notice how the user-defined exception here is again defined with a
 class—as we’ll see more formally in the next
 chapter, exceptions today must all be class instances in 2.6, 3.0, and
 later releases in both lines.

Unified try/except/finally
In all versions of Python prior to release 2.5 (for its first 15 years of life,
 more or less), the try statement came
 in two flavors and was really two separate statements—we could either use
 a finally to ensure that cleanup code
 was always run, or write except blocks
 to catch and recover from specific exceptions and optionally specify an
 else clause to be run if no exceptions
 occurred.
That is, the finally clause could
 not be mixed with except and else. This was partly because of implementation
 issues, and partly because the meaning of mixing the two seemed
 obscure—catching and recovering from exceptions seemed a disjoint concept
 from performing cleanup actions.
In Python 2.5 and later, though, the two statements have merged.
 Today, we can mix finally, except, and else clauses in the same statement—in part
 because of similar utility in the Java language. That is, we can now write
 a statement of this form:
try: # Merged form
 main-action
except Exception1:
 handler1
except Exception2: # Catch exceptions
 handler2
...
else: # No-exception handler
 else-block
finally: # The finally encloses all else
 finally-block
The code in this statement’s main-action
 block is executed first, as usual. If that code raises an exception, all
 the except blocks are tested, one after
 another, looking for a match to the exception raised. If the exception
 raised is Exception1, the
 handler1 block is executed; if it’s Exception2, handler2
 is run, and so on. If no exception is raised, the
 else-block is executed.
No matter what’s happened previously, the
 finally-block is executed once the main action
 block is complete and any raised exceptions have been handled. In fact,
 the code in the finally-block will be run even
 if there is an error in an exception handler or the
 else-block and a new exception is
 raised.
As always, the finally clause
 does not end the exception—if an exception is active when the
 finally-block is executed, it continues to be
 propagated after the finally-block runs, and
 control jumps somewhere else in the program (to another try, or to the default top-level handler). If no
 exception is active when the finally is
 run, control resumes after the entire try statement.
The net effect is that the finally is always run, regardless of
 whether:
	An exception occurred in the main action and was handled.

	An exception occurred in the main action and was not
 handled.

	No exceptions occurred in the main action.

	A new exception was triggered in one of the handlers.

Again, the finally serves to
 specify cleanup actions that must always occur on the way out of the
 try, regardless of what exceptions have
 been raised or handled.
Unified try Statement Syntax
When combined like this, the try statement must have either an except or a finally, and the order of its parts must be
 like this:
try -> except -> else -> finally
where the else and finally are optional, and there may be zero or
 more excepts, but there must be at
 least one except if an else appears. Really, the try statement consists of two parts: excepts with an optional else, and/or the finally.
In fact, it’s more accurate to describe the merged statement’s
 syntactic form this way (square brackets mean optional and star means
 zero-or-more here):
try: # Format 1
 statements
except [type [as value]]: # [type [, value]] in Python 2.X
 statements
[except [type [as value]]:
 statements]*
[else:
 statements]
[finally:
 statements]

try: # Format 2
 statements
finally:
 statements
Because of these rules, the else can appear only if there is at least one
 except, and it’s always possible to
 mix except and finally, regardless of whether an else appears or not. It’s also possible to mix
 finally and else, but only if an except appears too (though the except can omit an exception name to catch
 everything and run a raise statement,
 described later, to reraise the current exception). If you violate any
 of these ordering rules, Python will raise a syntax error exception
 before your code runs.

Combining finally and except by Nesting
Prior to Python 2.5, it is actually possible to combine finally and except clauses in a try by syntactically nesting a try/except
 in the try block of a try/finally
 statement. We’ll explore this technique more fully in Chapter 36, but the basics may help clarify
 the meaning of a combined try—the
 following has the same effect as the new merged form shown at the start
 of this section:
try: # Nested equivalent to merged form
 try:
 main-action
 except Exception1:
 handler1
 except Exception2:
 handler2
 ...
 else:
 no-error
finally:
 cleanup
Again, the finally block is
 always run on the way out, regardless of what happened in the main
 action and regardless of any exception handlers run in the nested
 try (trace through the four cases
 listed previously to see how this works the same). Since an else always requires an except, this nested form even sports the same
 mixing constraints of the unified statement form outlined in the
 preceding section.
However, this nested equivalent seems more obscure to some, and
 requires more code than the new merged form—though just one
 four-character line plus extra indentation. Mixing finally into the same statement makes your
 code arguably easier to write and read, and is a generally preferred
 technique today.

Unified try Example
Here’s a demonstration of the merged try statement form at work. The following
 file, mergedexc.py, codes four
 common scenarios, with print
 statements that describe the meaning of each:
File mergedexc.py (Python 3.X + 2.X)
sep = '-' * 45 + '\n'

print(sep + 'EXCEPTION RAISED AND CAUGHT')
try:
 x = 'spam'[99]
except IndexError:
 print('except run')
finally:
 print('finally run')
print('after run')

print(sep + 'NO EXCEPTION RAISED')
try:
 x = 'spam'[3]
except IndexError:
 print('except run')
finally:
 print('finally run')
print('after run')

print(sep + 'NO EXCEPTION RAISED, WITH ELSE')
try:
 x = 'spam'[3]
except IndexError:
 print('except run')
else:
 print('else run')
finally:
 print('finally run')
print('after run')

print(sep + 'EXCEPTION RAISED BUT NOT CAUGHT')
try:
 x = 1 / 0
except IndexError:
 print('except run')
finally:
 print('finally run')
print('after run')
When this code is run, the following output is produced in Python
 3.3; in 2.X, its behavior and output are the same because the print calls each print a single item, though
 the error message text varies slightly. Trace through the code to see
 how exception handling produces the output of each of the four tests
 here:
c:\code> py −3 mergedexc.py

EXCEPTION RAISED AND CAUGHT
except run
finally run
after run

NO EXCEPTION RAISED
finally run
after run

NO EXCEPTION RAISED, WITH ELSE
else run
finally run
after run

EXCEPTION RAISED BUT NOT CAUGHT
finally run
Traceback (most recent call last):
 File "mergedexc.py", line 39, in <module>
 x = 1 / 0
ZeroDivisionError: division by zero
This example uses built-in operations in the main action to
 trigger exceptions (or not), and it relies on the fact that Python
 always checks for errors as code is running. The next section shows how
 to raise exceptions manually instead.

The raise Statement
To trigger exceptions explicitly, you can code raise statements. Their general form is simple—a
 raise statement consists of the word
 raise, optionally followed by the class
 to be raised or an instance of it:
raise instance # Raise instance of class
raise class # Make and raise instance of class: makes an instance
raise # Reraise the most recent exception
As mentioned earlier, exceptions are always instances of classes in
 Python 2.6, 3.0, and later. Hence, the first raise form here is the most common—we provide an
 instance directly, either created before the raise or within the raise statement itself. If we pass a
 class instead, Python calls the class with no
 constructor arguments, to create an instance to be raised; this form is
 equivalent to adding parentheses after the class reference. The last form
 reraises the most recently raised exception; it’s commonly used
 in exception handlers to propagate exceptions that have been
 caught.
Note
Version skew note: Python 3.X no longer
 supports the raise
 Exc,
 Args form that is still available in Python
 2.X. In 3.X, use the raise
 Exc(Args) instance-creation call form described in
 this book instead. The equivalent comma form in 2.X is legacy syntax
 provided for compatibility with the now-defunct string-based exceptions
 model, and it’s deprecated in 2.X. If used, it is converted to the 3.X
 call form.
As in earlier releases, a raise
 Exc form is also allowed to name a class—it
 is converted to raise
 Exc() in
 both versions, calling the class constructor with no arguments. Besides
 its defunct comma syntax, Python 2.X’s raise also allowed for either string or class
 exceptions, but the former is removed in 2.6, deprecated in 2.5, and not
 covered here except for a brief mention in the next chapter. Use classes
 for new exceptions today.

Raising Exceptions
To make this clearer, let’s look at some examples. With built-in exceptions, the
 following two forms are equivalent—both raise an instance of the
 exception class named, but the first creates the instance
 implicitly:
raise IndexError # Class (instance created)
raise IndexError() # Instance (created in statement)
We can also create the instance ahead of time—because the raise statement accepts any kind of object
 reference, the following two examples raise IndexError just like the prior two:
exc = IndexError() # Create instance ahead of time
raise exc

excs = [IndexError, TypeError]
raise excs[0]
When an exception is raised, Python sends the raised instance
 along with the exception. If a try
 includes an except
 name as
 X: clause,
 the variable X will be assigned the instance
 provided in the raise:
try:
 ...
except IndexError as X: # X assigned the raised instance object
 ...
The as is optional in a
 try handler (if it’s omitted, the
 instance is simply not assigned to a name), but including it allows the
 handler to access both data in the instance and methods in the exception
 class.
This model works the same for user-defined exceptions we code with
 classes—the following, for example, passes to the exception class
 constructor arguments that become available in the handler through the
 assigned instance:
class MyExc(Exception): pass
...
raise MyExc('spam') # Exception class with constructor args
...
try:
 ...
except MyExc as X: # Instance attributes available in handler
 print(X.args)
Because this encroaches on the next chapter’s topic, though, I’ll
 defer further details until then.
Regardless of how you name them, exceptions are always identified
 by class instance objects, and at most one is
 active at any given time. Once caught by an except clause anywhere in the program, an
 exception dies (i.e., won’t propagate to another try), unless it’s reraised by another raise statement or error.

Scopes and try except Variables
We’ll study exception objects in more detail in the next chapter. Now
 that we’ve seen the as variable in
 action, though, we can finally clarify the related version-specific
 scope issue summarized in Chapter 17. In Python
 2.X, the exception reference variable name in an except clause is not
 localized to the clause itself, and is available after the associated
 block runs:
c:\code> py −2
>>> try:
... 1 / 0
... except Exception as X: # 2.X does not localize X either way
... print X
...
integer division or modulo by zero
>>> X
ZeroDivisionError('integer division or modulo by zero',)
This is true in 2.X whether we use the 3.X-style as or the earlier comma syntax:
>>> try:
... 1 / 0
... except Exception, X:
... print X
...
integer division or modulo by zero
>>> X
ZeroDivisionError('integer division or modulo by zero',)
By contrast, Python 3.X localizes the
 exception reference name to the except block—the variable is not available
 after the block exits, much like a temporary loop variable in 3.X
 comprehension expressions (3.X also doesn’t accept 2.X’s except comma syntax, as noted earlier):
c:\code> py −3
>>> try:
... 1 / 0
... except Exception, X:
SyntaxError: invalid syntax

>>> try:
... 1 / 0
... except Exception as X: # 3.X localizes 'as' names to except block
... print(X)
...
division by zero
>>> X
NameError: name 'X' is not defined
Unlike comprehension loop variables, though, this variable is
 removed after the except block exits in 3.X. It does so because
 it would otherwise retain a reference to the runtime call stack, which
 would defer garbage collection and thus retain excess memory space. This
 removal occurs, though, even if you’re using the name elsewhere, and is
 more extreme policy than that used for comprehensions:
>>> X = 99
>>> try:
... 1 / 0
... except Exception as X: # 3.X localizes _and_ removes on exit!
... print(X)
...
division by zero
>>> X
NameError: name 'X' is not defined

>>> X = 99
>>> {X for X in 'spam'} # 2.X/3.X localizes only: not removed
{'s', 'a', 'p', 'm'}
>>> X
99
Because of this, you should generally use unique variable names in
 your try statement’s except clauses, even if they are localized by
 scope. If you do need to reference the exception instance after the
 try statement, simply assign it to
 another name that won’t be automatically removed:
>>> try:
... 1 / 0
... except Exception as X: # Python removes this reference
... print(X)
... Saveit = X # Assign exc to retain exc if needed
...
division by zero
>>> X
NameError: name 'X' is not defined
>>> Saveit
ZeroDivisionError('division by zero',)

Propagating Exceptions with raise
The raise statement is a
 bit more feature-rich than we’ve seen thus far. For
 example, a raise that does not
 include an exception name or extra data value simply reraises the
 current exception. This form is typically used if you need to catch and
 handle an exception but don’t want the exception to die in your
 code:
>>> try:
... raise IndexError('spam') # Exceptions remember arguments
... except IndexError:
... print('propagating')
... raise # Reraise most recent exception
...
propagating
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
IndexError: spam
Running a raise this way
 reraises the exception and propagates it to a higher handler (or the
 default handler at the top, which stops the program with a standard
 error message). Notice how the argument we passed to the exception class
 shows up in the error messages; you’ll learn why this happens in the
 next chapter.

Python 3.X Exception Chaining: raise from
Exceptions can sometimes be triggered in response to other
 exceptions—both deliberately and by new program errors. To support full
 disclosure in such cases, Python 3.X (but not 2.X) also allows raise statements to have an optional from clause:
raise newexception from otherexception
When the from is used in an
 explicit raise request, the
 expression following from specifies
 another exception class or instance to attach to the __cause__ attribute of the new exception being
 raised. If the raised exception is not caught, Python prints both
 exceptions as part of the standard error message:
>>> try:
... 1 / 0
... except Exception as E:
... raise TypeError('Bad') from E # Explicitly chained exceptions
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "<stdin>", line 4, in <module>
TypeError: Bad
When an exception is raised implicitly by a program error inside
 an exception handler, a similar procedure is followed automatically: the
 previous exception is attached to the new exception’s __context__ attribute and is again displayed in the standard error message if
 the exception goes uncaught:
>>> try:
... 1 / 0
... except:
... badname # Implicitly chained exceptions
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "<stdin>", line 4, in <module>
NameError: name 'badname' is not defined
In both cases, because the original exception objects thus
 attached to new exception objects may themselves
 have attached causes, the causality chain can be arbitrarily
 long, and is displayed in full in error messages. That is,
 error messages might give more than two exceptions. The net effect in
 both explicit and implicit contexts is to allow programmers to know all
 exceptions involved, when one exception triggers another:
>>> try:
... try:
... raise IndexError()
... except Exception as E:
... raise TypeError() from E
... except Exception as E:
... raise SyntaxError() from E
...
Traceback (most recent call last):
 File "<stdin>", line 3, in <module>
IndexError

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "<stdin>", line 5, in <module>
TypeError

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "<stdin>", line 7, in <module>
SyntaxError: None
Code like the following would similarly display three exceptions,
 though implicitly triggered here:
try:
 try:
 1 / 0
 except:
 badname
except:
 open('nonesuch')
Like the unified try, chained
 exceptions are similar to utility in other languages (including Java and
 C#) though it’s not clear which languages were borrowers. In Python,
 it’s a still somewhat obscure extension, so we’ll defer to Python’s
 manuals for more details. In fact, Python 3.3 adds a way to
 stop exceptions from chaining, per the following
 note.
Note
Python 3.3 chained exception suppression:
 raise from None. Python 3.3
 introduces a new syntax form—using None as the exception name in the raise from statement:
raise newexception from None
This allows the display of the chained exception context
 described in the preceding section to be disabled. This makes for less
 cluttered error messages in applications that convert between
 exception types while processing exception chains.

The assert Statement
As a somewhat special case for debugging purposes, Python includes the
 assert statement. It is mostly just
 syntactic shorthand for a common raise
 usage pattern, and an assert can be
 thought of as a conditional raise statement. A statement of the form:
assert test, data # The data part is optional
works like the following code:
if __debug__:
 if not test:
 raise AssertionError(data)
In other words, if the test evaluates to
 false, Python raises an exception: the data
 item (if it’s provided) is used as the exception’s constructor argument.
 Like all exceptions, the AssertionError
 exception will kill your program if it’s not caught with a try, in which case the
 data item shows up as part of the standard
 error message.
As an added feature, assert
 statements may be removed from a compiled program’s byte code if the
 -O Python command-line flag is used,
 thereby optimizing the program. AssertionError is a built-in exception, and
 the __debug__ flag is a
 built-in name that is automatically set to True unless the -O flag is used. Use a command line like
 python –O main.py to run in optimized
 mode and disable (and hence skip) asserts.
Example: Trapping Constraints (but Not Errors!)
Assertions are typically used to verify program conditions during development. When
 displayed, their error message text automatically includes source code
 line information and the value listed in the assert statement. Consider the file asserter.py:
def f(x):
 assert x < 0, 'x must be negative'
 return x ** 2

% python
>>> import asserter
>>> asserter.f(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File ".\asserter.py", line 2, in f
 assert x < 0, 'x must be negative'
AssertionError: x must be negative
It’s important to keep in mind that assert is mostly intended for trapping
 user-defined constraints, not for catching genuine programming errors.
 Because Python traps programming errors itself, there is usually no need
 to code assert to catch things like
 out-of-bounds indexes, type mismatches, and zero divides:
def reciprocal(x):
 assert x != 0 # A generally useless assert!
 return 1 / x # Python checks for zero automatically
Such assert use cases are
 usually superfluous—because Python raises exceptions on errors
 automatically, you might as well let it do the job for you. As a rule,
 you don’t need to do error checking explicitly in your own code.
Of course, there are exceptions to most rules—as suggested earlier
 in the book, if a function has to perform long-running or unrecoverable
 actions before it reaches the place where an exception will be
 triggered, you still might want to test for errors. Even in this case,
 though, be careful not to make your tests overly specific or
 restrictive, or you will limit your code’s utility.
For another example of common assert usage, see the abstract superclass
 example in Chapter 29; there, we used
 assert to make calls to undefined
 methods fail with a message. It’s a rare but useful tool.

with/as Context Managers
Python 2.6 and 3.0 introduced a new exception-related statement—the with, and its optional as clause. This statement is designed to work
 with context manager objects, which support a new
 method-based protocol, similar in spirit to the way that iteration tools
 work with methods of the iteration protocol. This feature is also
 available as an option in 2.5, but must be enabled there with an import of this
 form:
from __future__ import with_statement
The with statement is also
 similar to a “using” statement in the C# language. Although a somewhat
 optional and advanced tools-oriented topic (and once a candidate for the
 next part of the book), context managers are lightweight and useful enough
 to group with the rest of the exception toolset here.
In short, the with/as statement is designed to be an alternative to
 a common try/finally usage idiom; like that statement,
 with is in large part intended for
 specifying termination-time or “cleanup” activities that must run
 regardless of whether an exception occurs during a processing step.
Unlike try/finally, the with statement is based upon an object protocol
 for specifying actions to be run around a block of code. This makes
 with less general, qualifies it as
 redundant in termination roles, and requires coding classes for objects
 that do not support its protocol. On the other hand, with also handles entry actions, can reduce code
 size, and allows code contexts to be managed with full OOP.
Python enhances some built-in tools with context managers, such as
 files that automatically close themselves and thread locks that
 automatically lock and unlock, but programmers can code context managers
 of their own with classes, too. Let’s take a brief look at the statement
 and its implicit protocol.
Basic Usage
The basic format of the with
 statement looks like this, with an optional part in square brackets
 here:
with expression [as variable]:
 with-block
The expression here is assumed to
 return an object that supports the context management protocol (more on
 this protocol in a moment). This object may also return a value that
 will be assigned to the name variable if the
 optional as clause is present.
Note that the variable is not
 necessarily assigned the result of the
 expression; the result of the
 expression is the object that supports the
 context protocol, and the variable may be
 assigned something else intended to be used inside the statement. The
 object returned by the expression may then
 run startup code before the with-block is
 started, as well as termination code after the block is done, regardless
 of whether the block raised an exception or not.
Some built-in Python objects have been augmented to support the
 context management protocol, and so can be used with the with statement. For example, file objects
 (covered in Chapter 9)
 have a context manager that automatically closes the file after the
 with block regardless of whether an
 exception is raised, and regardless of if or when the version of Python
 running the code may close automatically:
with open(r'C:\misc\data') as myfile:
 for line in myfile:
 print(line)
 ...more code here...
Here, the call to open returns
 a simple file object that is assigned to the name myfile. We can use myfile with the usual file tools—in this case,
 the file iterator reads line by line in the for loop.
However, this object also supports the context management protocol
 used by the with statement. After
 this with statement has run, the
 context management machinery guarantees that the file object referenced
 by myfile is automatically closed,
 even if the for loop raised an
 exception while processing the file.
Although file objects may be automatically closed on garbage
 collection, it’s not always straightforward to know when that will
 occur, especially when using alternative Python implementations. The
 with statement in this role is an
 alternative that allows us to be sure that the close will occur after
 execution of a specific block of code.
As we saw earlier, we can achieve a similar effect with the more
 general and explicit try/finally
 statement, but it requires three more lines of administrative code in
 this case (four instead of just one):
myfile = open(r'C:\misc\data')
try:
 for line in myfile:
 print(line)
 ...more code here...
finally:
 myfile.close()
We won’t cover Python’s multithreading modules in this book (for
 more on that topic, see follow-up application-level texts such as Programming
 Python) but the lock and condition synchronization objects they
 define may also be used with the with
 statement, because they support the context management protocol—in this
 case adding both entry and exit actions around a block:
lock = threading.Lock() # After: import threading
with lock:
 # critical section of code
 ...access shared resources...
Here, the context management machinery guarantees that the lock is
 automatically acquired before the block is executed and released once
 the block is complete, regardless of exception outcomes.
As introduced in Chapter 5, the decimal module also uses context managers to
 simplify saving and restoring the current decimal context, which
 specifies the precision and rounding characteristics for
 calculations:
with decimal.localcontext() as ctx: # After: import decimal
 ctx.prec = 2
 x = decimal.Decimal('1.00') / decimal.Decimal('3.00')
After this statement runs, the current thread’s context manager
 state is automatically restored to what it was before the statement
 began. To do the same with a try/finally, we would need to save the context
 before and restore it manually after the nested block.

The Context Management Protocol
Although some built-in types come with context managers, we can
 also write new ones of our own. To implement context managers, classes
 use special methods that fall into the operator overloading category to
 tap into the with statement. The
 interface expected of objects used in with statements is somewhat complex, and most
 programmers only need to know how to use existing context managers. For
 tool builders who might want to write new application-specific context
 managers, though, let’s take a quick look at what’s involved.
Here’s how the with statement
 actually works:
	The expression is evaluated, resulting in an object known as a
 context manager that must have __enter__ and __exit__ methods.

	The context manager’s __enter__ method is called. The value it returns is assigned to the
 variable in the as clause if
 present, or simply discarded otherwise.

	The code in the nested with
 block is executed.

	If the with block raises an
 exception, the __exit__(type, value,
 traceback) method is called with the exception
 details. These are the same three values returned by sys.exc_info, described in the Python
 manuals and later in this part of the book. If this method returns a
 false value, the exception is reraised; otherwise, the exception is
 terminated. The exception should normally be reraised so that it is
 propagated outside the with
 statement.

	If the with block does not
 raise an exception, the __exit__
 method is still called, but its type,
 value, and
 traceback arguments are all passed in as
 None.

Let’s look at a quick demo of the protocol in action. The
 following, file withas.py, defines
 a context manager object that traces the entry and exit of the with block in any with statement it is used for:
class TraceBlock:
 def message(self, arg):
 print('running ' + arg)
 def __enter__(self):
 print('starting with block')
 return self
 def __exit__(self, exc_type, exc_value, exc_tb):
 if exc_type is None:
 print('exited normally\n')
 else:
 print('raise an exception! ' + str(exc_type))
 return False # Propagate

if __name__ == '__main__':
 with TraceBlock() as action:
 action.message('test 1')
 print('reached')

 with TraceBlock() as action:
 action.message('test 2')
 raise TypeError
 print('not reached')
Notice that this class’s __exit__ method returns False to propagate the exception; deleting the
 return statement would have the same
 effect, as the default None return
 value of functions is False by
 definition. Also notice that the __enter__ method returns self as the object to assign to the as variable; in other use cases, this might
 return a completely different object instead.
When run, the context manager traces the entry and exit of the
 with statement block with its
 __enter__ and __exit__ methods. Here’s the script in action
 being run under either Python 3.X or 2.X (as usual, mileage varies
 slightly in some 2.X displays, and this runs on 2.6, 2.7, and 2.5 if
 enabled):
c:\code> py −3 withas.py
starting with block
running test 1
reached
exited normally

starting with block
running test 2
raise an exception! <class 'TypeError'>
Traceback (most recent call last):
 File "withas.py", line 22, in <module>
 raise TypeError
TypeError
Context managers can also utilize OOP state information and
 inheritance, but are somewhat advanced devices for tool builders, so
 we’ll skip additional details here (see Python’s standard manuals for
 the full story—for example, there’s a new contextlib standard module that provides additional tools for coding context
 managers). For simpler purposes, the try/finally
 statement provides sufficient support for termination-time activities
 without coding classes.

Multiple Context Managers in 3.1, 2.7, and Later
Python 3.1 introduced a with
 extension that eventually appeared in Python 2.7 as well. In these and
 later Pythons, the with statement may
 also specify multiple (sometimes referred to as “nested”) context
 managers with new comma syntax. In the following, for example, both
 files’ exit actions are automatically run when the statement block
 exits, regardless of exception outcomes:
with open('data') as fin, open('res', 'w') as fout:
 for line in fin:
 if 'some key' in line:
 fout.write(line)
Any number of context manager items may be listed, and multiple
 items work the same as nested with
 statements. In Pythons that support this, the following code:
with A() as a, B() as b:
 ...statements...
is equivalent to the following, which also works in 3.0 and
 2.6:
with A() as a:
 with B() as b:
 ...statements...
Python 3.1’s release notes have additional details, but here’s a
 quick look at the extension in action—to implement a parallel lines scan
 of two files, the following uses with
 to open two files at once and zip together their lines, without having
 to manually close when finished (assuming manual closes are
 required):
>>> with open('script1.py') as f1, open('script2.py') as f2:
... for pair in zip(f1, f2):
... print(pair)
...
('# A first Python script\n', 'import sys\n')
('import sys # Load a library module\n', 'print(sys.path)\n')
('print(sys.platform)\n', 'x = 2\n')
('print(2 ** 32) # Raise 2 to a power\n', 'print(x ** 32)\n')
You might use this coding structure to do a line-by-line
 comparison of two text files, for example—replace
 the print with an if for a simple file comparison operation, and
 use enumerate for line
 numbers:
with open('script1.py') as f1, open('script2.py') as f2:
 for (linenum, (line1, line2)) in enumerate(zip(f1, f2)):
 if line1 != line2:
 print('%s\n%r\n%r' % (linenum, line1, line2))
Still, the preceding technique isn’t all that useful in CPython,
 because input file objects don’t require a buffer flush, and file
 objects are closed automatically when reclaimed if still open. In
 CPython, the files would be reclaimed immediately if the parallel scan
 were coded the following simpler way:
for pair in zip(open('script1.py'), open('script2.py')): # Same effect, auto close
 print(pair)
On the other hand, alternative implementations such as PyPy and
 Jython may require more direct closure inside loops to avoid taxing
 system resources, due to differing garbage collectors. Even more
 usefully, the following automatically closes the output file on
 statement exit, to ensure that any buffered text is transferred to disk
 immediately:
>>> with open('script2.py') as fin, open('upper.py', 'w') as fout:
... for line in fin:
... fout.write(line.upper())
...
>>> print(open('upper.py').read())
IMPORT SYS
PRINT(SYS.PATH)
X = 2
PRINT(X ** 32)
In both cases, we can instead simply open files in individual
 statements and close after processing if needed, and in some scripts we
 probably should—there’s no point in using statements that catch an
 exception if it means your program is out of business anyhow!
fin = open('script2.py')
fout = open('upper.py', 'w')
for line in fin: # Same effect as preceding code, auto close
 fout.write(line.upper())
However, in cases where programs must continue after exceptions,
 the with forms also implicitly catch
 exceptions, and thereby also avoid a try/finally
 in cases where close is required. The equivalent without with is more explicit, but requires noticeably
 more code:
fin = open('script2.py')
fout = open('upper.py', 'w')
try: # Same effect but explicit close on error
 for line in fin:
 fout.write(line.upper())
finally:
 fin.close()
 fout.close()
On the other hand, the try/finally
 is a single tool that applies to all finalization cases, whereas the
 with adds a second tool that can be
 more concise, but applies to only certain objects types, and doubles the
 required knowledge base of programmers. As usual, you’ll have to weigh
 the tradeoffs for yourself.

Chapter Summary
In this chapter, we took a more detailed look at exception
 processing by exploring the statements related to exceptions in Python:
 try to catch them, raise to trigger them, assert to raise them conditionally, and with to wrap code blocks in context managers
 that specify entry and exit actions.
Up to this point, exceptions probably seem like a fairly lightweight
 tool, and in fact, they are; the only substantially complex thing about
 them is how they are identified. The next chapter continues our
 exploration by describing how to implement exception objects of your own;
 as you’ll see, classes allow you to code new exceptions specific to your
 programs. Before we move ahead, though, let’s work through the following
 short quiz on the basics covered here.

Test Your Knowledge: Quiz
	What is the try statement
 for?

	What are the two common variations of the try statement?

	What is the raise statement
 for?

	What is the assert statement
 designed to do, and what other statement is it like?

	What is the with/as statement designed to do, and what other
 statement is it like?

Test Your Knowledge: Answers
	The try statement catches and
 recovers from exceptions—it specifies a block of code to run, and one
 or more handlers for exceptions that may be raised during the block’s
 execution.

	The two common variations on the try statement are try/except/else (for catching exceptions) and try/finally (for specifying cleanup actions that
 must occur whether an exception is raised or not). Through Python 2.4,
 these were separate statements that could be combined by syntactic
 nesting; in 2.5 and later, except
 and finally blocks may be mixed in
 the same statement, so the two statement forms are merged. In the
 merged form, the finally is still
 run on the way out of the try,
 regardless of what exceptions may have been raised or handled. In
 fact, the merged form is equivalent to nesting a try/except/else in a try/finally, and the two still have logically
 distinct roles.

	The raise statement raises
 (triggers) an exception. Python raises built-in exceptions on errors
 internally, but your scripts can trigger built-in or user-defined
 exceptions with raise, too.

	The assert statement raises
 an AssertionError exception if a
 condition is false. It works like a conditional raise statement wrapped up in an if statement, and can be disabled with a
 –O switch.

	The with/as statement is designed to automate startup
 and termination activities that must occur around a block of code. It
 is roughly like a try/finally statement in that its exit actions
 run whether an exception occurred or not, but it allows a richer
 object-based protocol for specifying entry and
 exit actions, and may reduce code size. Still, it’s not quite as
 general, as it applies only to objects that support its protocol; try
 handles many more use cases.

1 As mentioned in the prior chapter, the text of error messages
 and stack traces tends to vary slightly over time and shells. Don’t
 be alarmed if your error messages don’t exactly match mine. When I
 ran this example in Python 3.3’s IDLE GUI, for instance, its error
 message text showed filenames with full absolute directory
 paths.
2 Unless Python crashes completely, of course. It does a good
 job of avoiding this, though, by checking all possible errors as a
 program runs. When a program does crash hard, it is usually due to a
 bug in linked-in C extension code, outside of Python’s scope.

Chapter 35. Exception Objects
So far, I’ve been deliberately vague about what an exception actually
 is. As suggested in the prior chapter, as of Python 2.6
 and 3.0 both built-in and user-defined exceptions are identified by class instance objects.
 This is what is raised and propagated along by exception processing, and the
 source of the class matched against exceptions named in try statements.
Although this means you must use object-oriented programming to define new
 exceptions in your programs—and introduces a knowledge dependency that
 deferred full exception coverage to this part of the book—basing exceptions
 on classes and OOP offers a number of benefits. Among them, class-based
 exceptions:
	Can be organized into
 categories. Exceptions coded as classes support future
 changes by providing categories—adding new exceptions in the future
 won’t generally require changes in try statements.

	Have state information and
 behavior. Exception classes provide a natural place for us to
 store context information and tools for use in the try handler—instances have access to both
 attached state information and callable methods.

	Support inheritance.
 Class-based exceptions can participate in inheritance hierarchies to
 obtain and customize common behavior—inherited display methods, for
 example, can provide a common look and feel for error messages.

Because of these advantages, class-based exceptions support program
 evolution and larger systems well. As we’ll find, all built-in exceptions
 are identified by classes and are organized into an inheritance tree, for
 the reasons just listed. You can do the same with user-defined exceptions of
 your own.
In fact, in Python 3.X the built-in exceptions we’ll study here turn
 out to be integral to new exceptions you define. Because 3.X requires
 user-defined exceptions to inherit from built-in exception superclasses that
 provide useful defaults for printing and state retention, the task of coding
 user-defined exceptions also involves understanding the roles of these built-ins.
Note
Version skew note: Python 2.6, 3.0, and later
 require exceptions to be defined by classes. In addition, 3.X requires
 exception classes to be derived from the BaseException built-in exception superclass,
 either directly or indirectly. As we’ll see, most programs inherit from
 this class’s Exception subclass, to
 support catchall handlers for normal exception types—naming it in a
 handler will thus catch everything most programs should. Python 2.X allows
 standalone classic classes to serve as exceptions, too, but it requires
 new-style classes to be derived from built-in exception classes, the same
 as 3.X.

Exceptions: Back to the Future
Once upon a time (well, prior to Python 2.6 and 3.0), it was
 possible to define exceptions in two different ways. This complicated
 try statements, raise statements, and Python in general. Today,
 there is only one way to do it. This is a good thing: it removes from the
 language substantial cruft accumulated for the sake of backward
 compatibility. Because the old way helps explain why exceptions are as
 they are today, though, and because it’s not really possible to completely
 erase the history of something that has been used by on the order of a
 million people over the course of nearly two decades, let’s begin our
 exploration of the present with a brief look at the past.
String Exceptions Are Right Out!
Prior to Python 2.6 and 3.0, it was possible to define exceptions
 with both class instances and string objects. String-based exceptions began issuing deprecation warnings in 2.5 and
 were removed in 2.6 and 3.0, so today you should use class-based
 exceptions, as shown in this book. If you work with legacy code, though,
 you might still come across string exceptions. They might also appear in
 books, tutorials, and web resources written a few years ago (which
 qualifies as an eternity in Python years!).
String exceptions were straightforward to use—any string would do,
 and they matched by object identity, not value (that is, using is, not ==):
C:\code> C:\Python25\python
>>> myexc = "My exception string" # Were we ever this young?...
>>> try:
... raise myexc
... except myexc:
... print('caught')
...
caught
This form of exception was removed because it was not as good as
 classes for larger programs and code maintenance. In modern Pythons,
 string exceptions trigger exceptions instead:
C:\code> py −3
>>> raise 'spam'
TypeError: exceptions must derive from BaseException

C:\code> py −2
>>> raise 'spam'
TypeError: exceptions must be old-style classes or derived from BaseException, ...etc
Although you can’t use string exceptions today, they actually
 provide a natural vehicle for introducing the class-based exceptions
 model.

Class-Based Exceptions
Strings were a simple way to define exceptions. As described
 earlier, however, classes have some added advantages that merit a quick
 look. Most prominently, they allow us to identify exception
 categories that are more flexible to use and
 maintain than simple strings. Moreover, classes naturally allow for
 attached exception details and support inheritance. Because they are
 seen by many as the better approach, they are now required.
Coding details aside, the chief difference between string and
 class exceptions has to do with the way that exceptions raised are
 matched against except clauses in
 try statements:
	String exceptions were matched by simple object
 identity: the raised exception was matched to except clauses by Python’s is test.

	Class exceptions are matched by superclass
 relationships: the raised exception matches an except clause if that except clause names the exception
 instance’s class or any superclass of it.

That is, when a try statement’s
 except clause lists a superclass, it
 catches instances of that superclass, as well as instances of all its
 subclasses lower in the class tree. The net effect is that class
 exceptions naturally support the construction of exception
 hierarchies: superclasses become category names,
 and subclasses become specific kinds of exceptions within a category. By
 naming a general exception superclass, an except clause can catch an entire category of
 exceptions—any more specific subclass will match.
String exceptions had no such concept: because they were matched
 by simple object identity, there was no direct way to organize
 exceptions into more flexible categories or groups. The net result was
 that exception handlers were coupled with exception sets in a way that
 made changes difficult.
In addition to this category idea, class-based exceptions better
 support exception state information (attached to
 instances) and allow exceptions to participate in inheritance
 hierarchies (to obtain common behaviors). Because they offer
 all the benefits of classes and OOP in general, they provide a more
 powerful alternative to the now-defunct string-based exceptions model in
 exchange for a small amount of additional code.

Coding Exceptions Classes
Let’s look at an example to see how class exceptions translate to code. In
 the following file, classexc.py, we
 define a superclass called General
 and two subclasses called Specific1
 and Specific2. This example
 illustrates the notion of exception categories—General is a category name, and its two
 subclasses are specific types of exceptions within the category.
 Handlers that catch General will also
 catch any subclasses of it, including Specific1 and Specific2:
class General(Exception): pass
class Specific1(General): pass
class Specific2(General): pass

def raiser0():
 X = General() # Raise superclass instance
 raise X

def raiser1():
 X = Specific1() # Raise subclass instance
 raise X

def raiser2():
 X = Specific2() # Raise different subclass instance
 raise X

for func in (raiser0, raiser1, raiser2):
 try:
 func()
 except General: # Match General or any subclass of it
 import sys
 print('caught: %s' % sys.exc_info()[0])

C:\code> python classexc.py
caught: <class '__main__.General'>
caught: <class '__main__.Specific1'>
caught: <class '__main__.Specific2'>
This code is mostly straightforward, but here are a few points to
 notice:
	Exception superclass
	Classes used to build exception category trees have very few
 requirements—in fact, in this example they are mostly empty, with
 bodies that do nothing but pass. Notice, though, how the top-level
 class here inherits from the built-in Exception class. This is required in
 Python 3.X; Python 2.X allows standalone classic classes to serve
 as exceptions too, but it requires new-style classes to be derived
 from built-in exception classes just as in 3.X. Although we don’t
 employ it here, because Exception provides some useful behavior
 we’ll meet later, it’s a good idea to inherit from it in either
 Python.

	Raising instances
	In this code, we call classes to make instances for the raise statements. In the class exception
 model, we always raise and catch a class instance object. If we
 list a class name without parentheses in a raise, Python calls the class with no
 constructor argument to make an instance for us. Exception
 instances can be created before the raise, as done here, or within the
 raise statement itself.

	Catching categories
	This code includes functions that raise instances of all
 three of our classes as exceptions, as well as a top-level
 try that calls the functions
 and catches General exceptions.
 The same try also catches the
 two specific exceptions, because they are subclasses of General—members of its category.

	Exception details
	The exception handler here uses the sys.exc_info call—as we’ll see in more
 detail in the next chapter, it’s how we can grab hold of the most
 recently raised exception in a generic fashion. Briefly, the first
 item in its result is the class of the exception raised, and the
 second is the actual instance raised. In a general except clause like the one here that
 catches all classes in a category, sys.exc_info is one way to determine
 exactly what’s occurred. In this particular case, it’s equivalent
 to fetching the instance’s __class__ attribute. As we’ll see in the
 next chapter, the sys.exc_info
 scheme is also commonly used with empty except clauses that catch
 everything.

The last point merits further explanation. When an exception is
 caught, we can be sure that the instance raised is an instance of the
 class listed in the except, or one of
 its more specific subclasses. Because of this, the __class__ attribute of the instance also gives
 the exception type. The following variant in classexc2.py, for example, works the same as
 the prior example—it uses the as
 extension in its except clause to
 assign a variable to the instance actually raised:
class General(Exception): pass
class Specific1(General): pass
class Specific2(General): pass

def raiser0(): raise General()
def raiser1(): raise Specific1()
def raiser2(): raise Specific2()

for func in (raiser0, raiser1, raiser2):
 try:
 func()
 except General as X: # X is the raised instance
 print('caught: %s' % X.__class__) # Same as sys.exc_info()[0]
Because __class__ can be used
 like this to determine the specific type of exception raised, sys.exc_info is more useful for empty except clauses that do not otherwise have a
 way to access the instance or its class. Furthermore, more realistic
 programs usually should not have to care about
 which specific exception was raised at all—by calling methods of the
 exception class instance generically, we automatically dispatch to
 behavior tailored for the exception raised.
More on this and sys.exc_info
 in the next chapter; also see Chapter 29
 and Part VI at large if you’ve forgotten what
 __class__ means in an instance, and
 the prior chapter for a review of the as used here.

Why Exception Hierarchies?
Because there are only three possible exceptions in the prior section’s
 example, it doesn’t really do justice to the utility of class exceptions.
 In fact, we could achieve the same effects by coding a list of exception
 names in parentheses within the except
 clause:
try:
 func()
except (General, Specific1, Specific2): # Catch any of these
 ...
This approach worked for the defunct string exception model too. For
 large or high exception hierarchies, however, it may be easier to catch
 categories using class-based categories than to list every member of a
 category in a single except clause.
 Perhaps more importantly, you can extend exception hierarchies as software
 needs evolve by adding new subclasses without breaking existing
 code.
Suppose, for example, you code a numeric programming library in
 Python, to be used by a large number of people. While you are writing your
 library, you identify two things that can go wrong with numbers in your
 code—division by zero, and numeric overflow. You document these as the two
 standalone exceptions that your library may raise:
mathlib.py

class Divzero(Exception): pass
class Oflow(Exception): pass

def func():
 ...
 raise Divzero()

...and so on...
Now, when people use your library, they typically wrap calls to your
 functions or classes in try statements
 that catch your two exceptions; after all, if they do not catch your
 exceptions, exceptions from your library will kill their code:
client.py

import mathlib

try:
 mathlib.func(...)
except (mathlib.Divzero, mathlib.Oflow):
 ...handle and recover...
This works fine, and lots of people start using your library. Six
 months down the road, though, you revise it (as programmers are prone to
 do!). Along the way, you identify a new thing that can go wrong—underflow,
 perhaps—and add that as a new exception:
mathlib.py

class Divzero(Exception): pass
class Oflow(Exception): pass
class Uflow(Exception): pass
Unfortunately, when you re-release your code, you create a
 maintenance problem for your users. If they’ve listed your exceptions
 explicitly, they now have to go back and change every place they call your
 library to include the newly added exception name:
client.py

try:
 mathlib.func(...)
except (mathlib.Divzero, mathlib.Oflow, mathlib.Uflow):
 ...handle and recover...
This may not be the end of the world. If your library is used only
 in-house, you can make the changes yourself. You might also ship a Python
 script that tries to fix such code automatically (it would probably be
 only a few dozen lines, and it would guess right at least some of the
 time). If many people have to change all their try statements each time you alter your
 exception set, though, this is not exactly the most polite of upgrade
 policies.
Your users might try to avoid this pitfall by coding empty except clauses to catch all
 possible exceptions:
client.py

try:
 mathlib.func(...)
except: # Catch everything here (or catch Exception super)
 ...handle and recover...
But this workaround might catch more than they bargained for—things
 like running out of memory, keyboard interrupts (Ctrl-C), system exits,
 and even typos in their own try block’s
 code will all trigger exceptions, and such things should pass, not be
 caught and erroneously classified as library errors. Catching the Exception super class improves on this, but
 still intercepts—and thus may mask—program errors.
And really, in this scenario users want to catch and recover from
 only the specific exceptions the library is defined
 and documented to raise. If any other exception occurs during a library
 call, it’s likely a genuine bug in the library (and probably time to
 contact the vendor!). As a rule of thumb, it’s usually better to be
 specific than general in exception handlers—an idea we’ll revisit as a
 “gotcha” in the next chapter.1
So what to do, then? Class exception hierarchies fix this dilemma
 completely. Rather than defining your library’s exceptions as a set of
 autonomous classes, arrange them into a class tree with a common
 superclass to encompass the entire category:
mathlib.py

class NumErr(Exception): pass
class Divzero(NumErr): pass
class Oflow(NumErr): pass

def func():
 ...
 raise DivZero()

...and so on...
This way, users of your library simply need to list the common
 superclass (i.e., category) to catch all of your library’s exceptions,
 both now and in the future:
client.py

import mathlib

try:
 mathlib.func(...)
except mathlib.NumErr:
 ...report and recover...
When you go back and hack (update) your code again, you can add new
 exceptions as new subclasses of the common superclass:
mathlib.py

...
class Uflow(NumErr): pass
The end result is that user code that catches your library’s
 exceptions will keep working, unchanged. In fact, you
 are free to add, delete, and change exceptions arbitrarily in the
 future—as long as clients name the superclass, and that superclass remains
 intact, they are insulated from changes in your exceptions set. In other
 words, class exceptions provide a better answer to maintenance issues than
 strings could.
Class-based exception hierarchies also support state retention and
 inheritance in ways that make them ideal in larger programs. To understand
 these roles, though, we first need to see how user-defined exception
 classes relate to the built-in exceptions from which they inherit.

Built-in Exception Classes
I didn’t really pull the prior section’s examples out of thin air. All built-in
 exceptions that Python itself may raise are predefined class objects.
 Moreover, they are organized into a shallow hierarchy with general
 superclass categories and specific subclass types, much like the prior
 section’s exceptions class tree.
In Python 3.X, all the familiar exceptions you’ve seen (e.g.,
 SyntaxError) are really just predefined
 classes, available as built-in names in the module named builtins; in Python 2.X, they instead live in
 __builtin__ and are also attributes of
 the standard library module exceptions.
 In addition, Python organizes the built-in exceptions into a hierarchy, to
 support a variety of catching modes. For example:
	BaseException: topmost root,
 printing and constructor defaults
	The top-level root superclass of exceptions. This class is not supposed
 to be directly inherited by user-defined classes (use Exception instead). It provides default
 printing and state retention behavior inherited by subclasses. If
 the str built-in is called on an
 instance of this class (e.g., by print), the class returns the display
 strings of the constructor arguments passed when the instance was
 created (or an empty string if there were no arguments). In
 addition, unless subclasses replace this class’s constructor, all of
 the arguments passed to this class at instance construction time are
 stored in its args attribute as a
 tuple.

	Exception: root of
 user-defined exceptions
	The top-level root superclass of application-related exceptions.
 This is an immediate subclass of BaseException and is a superclass to every
 other built-in exception, except the system exit event classes
 (SystemExit, KeyboardInterrupt, and GeneratorExit). Nearly all user-defined
 classes should inherit from this class, not BaseException. When this convention is
 followed, naming Exception in a
 try statement’s handler ensures
 that your program will catch everything but system exit events,
 which should normally be allowed to pass. In effect, Exception becomes a catchall in try statements and is more accurate than
 an empty except.

	ArithmeticError: root of
 numeric errors
	A subclass of Exception,
 and the superclass of all numeric errors. Its subclasses
 identify specific numeric errors: OverflowError, ZeroDivisionError, and FloatingPointError.

	LookupError: root of indexing
 errors
	A subclass of Exception,
 and the superclass category for indexing errors for both
 sequences and mappings—IndexError
 and KeyError—as well as some
 Unicode lookup errors.

And so on—because the built-in exception set is prone to frequent
 changes, this book doesn’t document it exhaustively. You can read further
 about this structure in reference texts such as Python Pocket
 Reference or the Python library manual. In fact, the exceptions
 class tree differs slightly between Python 3.X and 2.X in ways we’ll omit
 here, because they are not relevant to examples.
You can also see the built-in exceptions class tree in the help
 text of the exceptions
 module in Python 2.X only (see Chapter 4 and Chapter 15 for help on help):
>>> import exceptions
>>> help(exceptions)
...lots of text omitted...
This module is removed in 3.X, where you’ll find up-to-date help in
 the other resources mentioned.
Built-in Exception Categories
The built-in class tree allows you to choose how specific or general your handlers
 will be. For example, because the built-in exception ArithmeticError is a superclass for more specific exceptions such as OverflowError
 and ZeroDivisionError:
	By listing ArithmeticError
 in a try, you will catch
 any kind of numeric error raised.

	By listing ZeroDivisionError, you will intercept just that specific type
 of error, and no others.

Similarly, because Exception is
 the superclass of all application-level exceptions in Python 3.X, you
 can generally use it as a catchall—the effect is
 much like an empty except, but it
 allows system exit exceptions to pass and propagate as they usually
 should:
try:
 action()
except Exception: # Exits not caught here
 ...handle all application exceptions...
else:
 ...handle no-exception case...
This doesn’t quite work universally in Python 2.X, however,
 because standalone user-defined exceptions coded as classic classes are
 not required to be subclasses of the Exception root class. This technique is more
 reliable in Python 3.X, since it requires all classes to derive from
 built-in exceptions. Even in Python 3.X, though, this scheme suffers
 most of the same potential pitfalls as the empty except, as described in the prior chapter—it
 might intercept exceptions intended for elsewhere, and it might mask
 genuine programming errors. Since this is such a common issue, we’ll
 revisit it as a “gotcha” in the next chapter.
Whether or not you will leverage the categories in the built-in
 class tree, it serves as a good example; by using similar techniques for
 class exceptions in your own code, you can provide exception sets that
 are flexible and easily modified.
Note
Python 3.3 reworks the built-in
 IO and OS exception hierarchies. It adds new
 specific exception classes corresponding to common file and system
 error numbers, and groups these and others related to operating system
 calls under the OSError category
 superclass. Former exception names are retained for backward
 compatibility.
Prior to this, programs inspect the data attached to the
 exception instance to see what specific error occurred, and possibly
 reraise others to be propagated (the errno module has names preset to the error
 codes for convenience, and the error number is available in both the
 generic tuple as V.args[0] and
 attribute V.errno):
c:\temp> py −3.2
>>> try:
... f = open('nonesuch.txt')
... except IOError as V:
... if V.errno == 2: # Or errno.N, V.args[0]
... print('No such file')
... else:
... raise # Propagate others
...
No such file
This code still works in 3.3, but with the new classes, programs
 in 3.3 and later can be more specific about the exceptions they mean
 to process, and ignore others:
c:\temp> py −3.3
>>> try:
... f = open('nonesuch.txt')
... except FileNotFoundError:
... print('No such file')
...
No such file
For full details on this extension and its classes, see the
 other resources listed earlier.

Default Printing and State
Built-in exceptions also provide default print displays and state retention, which
 is often as much logic as user-defined classes require. Unless you
 redefine the constructors your classes inherit from them, any
 constructor arguments you pass to these classes are automatically saved
 in the instance’s args tuple
 attribute, and are automatically displayed when the instance is printed.
 An empty tuple and display string are used if no constructor arguments
 are passed, and a single argument displays as itself (not as a
 tuple).
This explains why arguments passed to
 built-in exception classes show up in error
 messages—any constructor arguments are attached to the instance and
 displayed when the instance is printed:
>>> raise IndexError # Same as IndexError(): no arguments
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError

>>> raise IndexError('spam') # Constructor argument attached, printed
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: spam

>>> I = IndexError('spam') # Available in object attribute
>>> I.args
('spam',)
>>> print(I) # Displays args when printed manually
spam
The same holds true for user-defined exceptions in Python
 3.X (and for new-style classes in 2.X), because they inherit the
 constructor and display methods present in their built-in
 superclasses:
>>> class E(Exception): pass
...
>>> raise E
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.E

>>> raise E('spam')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.E: spam

>>> I = E('spam')
>>> I.args
('spam',)
>>> print(I)
spam
When intercepted in a try
 statement, the exception instance object gives access to both the
 original constructor arguments and the display method:
>>> try:
... raise E('spam')
... except E as X:
... print(X) # Displays and saves constructor arguments
... print(X.args)
... print(repr(X))
...
spam
('spam',)
E('spam',)

>>> try: # Multiple arguments save/display a tuple
... raise E('spam', 'eggs', 'ham')
... except E as X:
... print('%s %s' % (X, X.args))
...
('spam', 'eggs', 'ham') ('spam', 'eggs', 'ham')
Note that exception instance objects are not strings themselves,
 but use the __str__ operator
 overloading protocol we studied in Chapter 30 to provide display strings when
 printed; to concatenate with real strings, perform manual conversions:
 str(X) + 'astr', '%s' % X, and the like.
Although this automatic state and display support is useful by
 itself, for more specific display and state retention needs you can
 always redefine inherited methods such as __str__ and __init__ in Exception subclasses—as the next section shows.

Custom Print Displays
As we saw in the preceding section, by default, instances of class-based
 exceptions display whatever you passed to the class constructor when they
 are caught and printed:
>>> class MyBad(Exception): pass
...
>>> try:
... raise MyBad('Sorry--my mistake!')
... except MyBad as X:
... print(X)
...
Sorry--my mistake!
This inherited default display model is also used if the exception
 is displayed as part of an error message when the exception is not
 caught:
>>> raise MyBad('Sorry--my mistake!')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.MyBad: Sorry--my mistake!
For many roles, this is sufficient. To provide a more custom
 display, though, you can define one of two string-representation
 overloading methods in your class (__repr__ or __str__) to return the string you want to display for your exception.
 The string the method returns will be displayed if the exception either is
 caught and printed or reaches the default handler:
>>> class MyBad(Exception):
... def __str__(self):
... return 'Always look on the bright side of life...'
...
>>> try:
... raise MyBad()
... except MyBad as X:
... print(X)
...
Always look on the bright side of life...

>>> raise MyBad()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.MyBad: Always look on the bright side of life...
Whatever your method returns is included in error messages for
 uncaught exceptions and used when exceptions are printed explicitly. The
 method returns a hardcoded string here to illustrate, but it can also
 perform arbitrary text processing, possibly using state information
 attached to the instance object. The next section looks at state
 information options.
Note
A subtle point here: you generally must redefine __str__ for exception display purposes,
 because the built-in exception superclasses already have a __str__ method, and __str__ is preferred to __repr__ in some contexts—including error
 message displays. If you define a __repr__, printing will happily call the
 built-in superclass’s __str__
 instead!
>>> class E(Exception):
 def __repr__(self): return 'Not called!'
>>> raise E('spam')
...
__main__.E: spam

>>> class E(Exception):
 def __str__(self): return 'Called!'
>>> raise E('spam')
...
__main__.E: Called!
See Chapter 30 for more details
 on these special operator overloading methods.

Custom Data and Behavior
Besides supporting flexible hierarchies, exception classes also provide storage
 for extra state information as instance attributes. As we saw earlier,
 built-in exception superclasses provide a default constructor that
 automatically saves constructor arguments in an instance tuple attribute
 named args. Although the default
 constructor is adequate for many cases, for more custom needs we can
 provide a constructor of our own. In addition, classes may define methods
 for use in handlers that provide precoded exception processing
 logic.
Providing Exception Details
When an exception is raised, it may cross arbitrary file
 boundaries—the raise statement that
 triggers an exception and the try
 statement that catches it may be in completely different module files.
 It is not generally feasible to store extra details in global variables
 because the try statement might not
 know which file the globals reside in. Passing extra state information
 along in the exception itself allows the try statement to access it more
 reliably.
With classes, this is nearly automatic. As we’ve seen, when an
 exception is raised, Python passes the class instance object along with
 the exception. Code in try statements
 can access the raised instance by listing an extra variable after the
 as keyword in an except handler. This provides a natural hook
 for supplying data and behavior to the handler.
For example, a program that parses data files might signal a
 formatting error by raising an exception instance that is filled out
 with extra details about the error:
>>> class FormatError(Exception):
 def __init__(self, line, file):
 self.line = line
 self.file = file

>>> def parser():
 raise FormatError(42, file='spam.txt') # When error found

>>> try:
... parser()
... except FormatError as X:
... print('Error at: %s %s' % (X.file, X.line))
...
Error at: spam.txt 42
In the except clause here, the
 variable X is assigned a reference to
 the instance that was generated when the exception was raised. This
 gives access to the attributes attached to the instance by the custom
 constructor. Although we could rely on the default state retention of
 built-in superclasses, it’s less relevant to our application (and
 doesn’t support the keyword arguments used in the prior example):
>>> class FormatError(Exception): pass # Inherited constructor

>>> def parser():
 raise FormatError(42, 'spam.txt') # No keywords allowed!

>>> try:
... parser()
... except FormatError as X:
... print('Error at:', X.args[0], X.args[1]) # Not specific to this app
...
Error at: 42 spam.txt

Providing Exception Methods
Besides enabling application-specific state information, custom
 constructors also better support extra behavior for exception objects.
 That is, the exception class can also define
 methods to be called in the handler. The following
 code in excparse.py, for example,
 adds a method that uses exception state information to log errors to a
 file automatically:
from __future__ import print_function # 2.X compatibility

class FormatError(Exception):
 logfile = 'formaterror.txt'
 def __init__(self, line, file):
 self.line = line
 self.file = file
 def logerror(self):
 log = open(self.logfile, 'a')
 print('Error at:', self.file, self.line, file=log)

def parser():
 raise FormatError(40, 'spam.txt')

if __name__ == '__main__':
 try:
 parser()
 except FormatError as exc:
 exc.logerror()
When run, this script writes its error message to a file in
 response to method calls in the exception handler:
c:\code> del formaterror.txt
c:\code> py −3 excparse.py
c:\code> py −2 excparse.py
c:\code> type formaterror.txt
Error at: spam.txt 40
Error at: spam.txt 40
In such a class, methods (like logerror) may also be inherited from
 superclasses, and instance attributes (like line and file) provide a place to save state
 information that provides extra context for use in later method calls.
 Moreover, exception classes are free to customize and extend inherited
 behavior:
class CustomFormatError(FormatError):
 def logerror(self):
 ...something unique here...

raise CustomFormatError(...)
In other words, because they are defined with classes, all the
 benefits of OOP that we studied in Part VI
 are available for use with exceptions in Python.
Two final notes here: first, the raised instance object assigned
 to exc in this code is also available
 generically as the second item in the result tuple of the sys.exc_info() call—a tool that returns information about the most recently raised
 exception. This interface must be used if you do not list an exception
 name in an except clause but still
 need access to the exception that occurred, or to any of its attached
 state information or methods. Second, although our class’s logerror method appends a custom message to a
 logfile, it could also generate Python’s standard error message with
 stack trace using tools in the traceback standard library module, which uses
 traceback objects.
To learn more about sys.exc_info and tracebacks, though, we need
 to move ahead to the next chapter.

Chapter Summary
In this chapter, we explored coding user-defined exceptions. As we
 learned, exceptions are implemented as class instance objects as of Python
 2.6 and 3.0 (an earlier string-based exception model alternative was
 available in earlier releases but has now been deprecated). Exception
 classes support the concept of exception hierarchies that ease
 maintenance, allow data and behavior to be attached to exceptions as
 instance attributes and methods, and allow exceptions to inherit data and
 behavior from superclasses.
We saw that in a try statement,
 catching a superclass catches that class as well as all subclasses below
 it in the class tree—superclasses become exception category names, and
 subclasses become more specific exception types within those categories.
 We also saw that the built-in exception superclasses we must inherit from
 provide usable defaults for printing and state retention, which we can
 override if desired.
The next chapter wraps up this part of the book by exploring some
 common use cases for exceptions and surveying tools commonly used by
 Python programmers. Before we get there, though, here’s this chapter’s
 quiz.

Test Your Knowledge: Quiz
	What are the two new constraints on user-defined exceptions in Python
 3.X?

	How are raised class-based exceptions matched to
 handlers?

	Name two ways that you can attach context information to
 exception objects.

	Name two ways that you can specify the error message text for
 exception objects.

	Why should you not use string-based exceptions anymore
 today?

Test Your Knowledge: Answers
	In 3.X, exceptions must be defined by classes (that is, a class
 instance object is raised and caught). In addition, exception classes
 must be derived from the built-in class BaseException; most programs inherit from
 its Exception subclass, to support
 catchall handlers for normal kinds of exceptions.

	Class-based exceptions match by superclass relationships: naming
 a superclass in an exception handler will catch instances of that
 class, as well as instances of any of its subclasses lower in the
 class tree. Because of this, you can think of superclasses as general
 exception categories and subclasses as more specific types of
 exceptions within those categories.

	You can attach context information to class-based exceptions by
 filling out instance attributes in the instance object raised, usually
 in a custom class constructor. For simpler needs, built-in exception
 superclasses provide a constructor that stores its arguments on the
 instance automatically (as a tuple in the attribute args). In exception handlers, you list a
 variable to be assigned to the raised instance, then go through this
 name to access attached state information and call any methods defined
 in the class.

	The error message text in class-based exceptions can be
 specified with a custom __str__
 operator overloading method. For simpler needs, built-in exception
 superclasses automatically display anything you pass to the class
 constructor. Operations like print
 and str automatically fetch the
 display string of an exception object when it is printed either
 explicitly or as part of an error message.

	Because Guido said so—they have been removed as of both Python 2.6 and 3.0. There are
 arguably good reasons for this: string-based exceptions did not support categories, state
 information, or behavior inheritance in the way class-based exceptions do. In practice,
 this made string-based exceptions easier to use at first when programs were small, but
 more complex to use as programs grew larger.
The downsides of requiring exceptions to be classes are to break
 existing code, and create a forward knowledge dependency—beginners
 must first learn classes and OOP before they can code new exceptions, or even truly
 understand exceptions at all. In fact, this is why this relatively straightforward topic
 was largely postponed until this point in the book. For better or worse, such dependencies
 are not uncommon in Python today (see the preface and conclusion for more on such
 things).

1 As a clever student of mine suggested, the library module could
 also provide a tuple object that contains all the exceptions the
 library can possibly raise—the client could then import the tuple and
 name it in an except clause to
 catch all the library’s exceptions (recall that including a tuple in
 an except means catch
 any of its exceptions). When new exceptions are
 added later, the library can just expand the exported tuple. This
 would work, but you’d still need to keep the tuple up-to-date with
 raised exceptions inside the library module. Also, class hierarchies
 offer more benefits than just categories—they also support inherited
 state and methods and a customization model that individual exceptions
 do not.

Chapter 36. Designing with Exceptions
This chapter rounds out this part of the book with a collection of exception design topics
 and common use case examples, followed by this part’s gotchas and exercises.
 Because this chapter also closes out the fundamentals portion of the book at
 large, it includes a brief overview of development tools as well to help you
 as you make the migration from Python beginner to Python application
 developer.
Nesting Exception Handlers
Most of our examples so far have used only a single try to catch exceptions, but what happens if one
 try is physically nested inside
 another? For that matter, what does it mean if a try calls a function that runs another try? Technically, try statements can nest, in terms of both syntax
 and the runtime control flow through your code. I’ve mentioned this
 briefly, but let’s clarify the idea here.
Both of these cases can be understood if you realize that Python
 stacks try
 statements at runtime. When an exception is raised, Python returns to the
 most recently entered try statement
 with a matching except clause. Because
 each try statement leaves a marker,
 Python can jump back to earlier trys by
 inspecting the stacked markers. This nesting of active handlers is what we
 mean when we talk about propagating exceptions up to “higher”
 handlers—such handlers are simply try
 statements entered earlier in the program’s execution
 flow.
Figure 36-1
 illustrates what occurs when try
 statements with except clauses nest at
 runtime. The amount of code that goes into a try block can be substantial, and it may contain
 function calls that invoke other code watching for the same exceptions.
 When an exception is eventually raised, Python jumps back to the most
 recently entered try statement that
 names that exception, runs that statement’s except clause, and then resumes execution after
 that try.
Figure 36-1. Nested try/except statements: when an exception is raised (by you
 or by Python), control jumps back to the most recently entered try
 statement with a matching except clause, and the program resumes after
 that try statement. except clauses intercept and stop the exception—they
 are where you process and recover from exceptions.

Once the exception is caught, its life is over—control does not jump
 back to all matching trys that name the exception; only the first
 (i.e., most recent) one is given the opportunity to handle it. In Figure 36-1, for instance, the
 raise statement in the function
 func2 sends control back to the handler
 in func1, and then the program
 continues within func1.
By contrast, when try statements
 that contain only finally clauses are
 nested, each finally block is run in turn when an exception
 occurs—Python continues propagating the exception up to other trys, and eventually perhaps to the top-level
 default handler (the standard error message printer). As Figure 36-2 illustrates, the
 finally clauses do not kill the
 exception—they just specify code to be run on the way out of each try during the exception propagation process. If
 there are many try/finally clauses active when an exception occurs,
 they will all be run, unless a try/except
 catches the exception somewhere along the way.
Figure 36-2. Nested try/finally statements: when an exception is raised here,
 control returns to the most recently entered try to run its finally
 statement, but then the exception keeps propagating to all finallys in
 all active try statements and eventually reaches the default top-level
 handler, where an error message is printed. finally clauses intercept
 (but do not stop) an exception—they are for actions to be performed “on
 the way out.”

In other words, where the program goes when an exception is raised
 depends entirely upon where it has been—it’s a
 function of the runtime flow of control through the script, not just its
 syntax. The propagation of an exception essentially proceeds backward
 through time to try statements that
 have been entered but not yet exited. This propagation stops as soon as
 control is unwound to a matching except
 clause, but not as it passes through finally clauses on the way.
Example: Control-Flow Nesting
Let’s turn to an example to make this nesting concept more concrete. The following module file,
 nestexc.py, defines two functions.
 action2 is coded to trigger an
 exception (you can’t add numbers and sequences), and action1 wraps a call to action2 in a try handler, to catch the exception:
def action2():
 print(1 + []) # Generate TypeError

def action1():
 try:
 action2()
 except TypeError: # Most recent matching try
 print('inner try')

try:
 action1()
except TypeError: # Here, only if action1 re-raises
 print('outer try')

% python nestexc.py
inner try
Notice, though, that the top-level module code at the bottom of
 the file wraps a call to action1 in a
 try handler, too. When action2 triggers the TypeError exception, there will be two active
 try statements—the one in action1, and the one at the top level of the
 module file. Python picks and runs just the most recent try with a matching except—which in this case is the try inside action1.
Again, the place where an exception winds up jumping to depends on
 the control flow through the program at runtime. Because of this, to
 know where you will go, you need to know where you’ve been. In this
 case, where exceptions are handled is more a function of control flow
 than of statement syntax. However, we can also nest exception handlers
 syntactically—an equivalent case we turn to next.

Example: Syntactic Nesting
As I mentioned when we looked at the new unified try/except/finally statement in Chapter 34, it is possible to nest try statements syntactically by their position
 in your source code:
try:
 try:
 action2()
 except TypeError: # Most recent matching try
 print('inner try')
except TypeError: # Here, only if nested handler re-raises
 print('outer try')
Really, though, this code just sets up the same handler-nesting
 structure as (and behaves identically to) the prior example. In fact,
 syntactic nesting works just like the cases sketched in Figure 36-1 and Figure 36-2. The only
 difference is that the nested handlers are physically embedded in a
 try block, not coded elsewhere in
 functions that are called from the try block. For example, nested finally handlers all fire on an exception,
 whether they are nested syntactically or by means of the runtime flow
 through physically separated parts of your code:
>>> try:
... try:
... raise IndexError
... finally:
... print('spam')
... finally:
... print('SPAM')
...
spam
SPAM
Traceback (most recent call last):
 File "<stdin>", line 3, in <module>
IndexError
See Figure 36-2
 for a graphic illustration of this code’s operation; the effect is the
 same, but the function logic has been inlined as nested statements here.
 For a more useful example of syntactic nesting at work, consider the
 following file, except-finally.py:
def raise1(): raise IndexError
def noraise(): return
def raise2(): raise SyntaxError

for func in (raise1, noraise, raise2):
 print('<%s>' % func.__name__)
 try:
 try:
 func()
 except IndexError:
 print('caught IndexError')
 finally:
 print('finally run')
 print('...')
This code catches an exception if one is raised and performs a
 finally termination-time action
 regardless of whether an exception occurs. This may take a few moments
 to digest, but the effect is the same as combining an except and a finally clause in a single try statement in Python 2.5 and later:
% python except-finally.py
<raise1>
caught IndexError
finally run
...
<noraise>
finally run
...
<raise2>
finally run
Traceback (most recent call last):
 File "except-finally.py", line 9, in <module>
 func()
 File "except-finally.py", line 3, in raise2
 def raise2(): raise SyntaxError
SyntaxError: None
As we saw in Chapter 34, as of
 Python 2.5, except and finally clauses can be mixed in the same
 try statement. This, along with
 multiple except clause support, makes
 some of the syntactic nesting described in this section unnecessary,
 though the equivalent runtime nesting is common in larger Python
 programs. Moreover, syntactic nesting still works today, may still
 appear in code written prior to Python 2.5 that you may encounter, can
 make the disjoint roles of except and
 finally more explicit, and can be
 used as a technique for implementing alternative exception-handling
 behaviors in general.

Exception Idioms
We’ve seen the mechanics behind exceptions. Now let’s take a look at some
 of the other ways they are typically used.
Breaking Out of Multiple Nested Loops: “go to”
As mentioned at the start of this part of the book, exceptions can often be used to
 serve the same roles as other languages’ “go to” statements to implement
 more arbitrary control transfers. Exceptions, however, provide a more
 structured option that localizes the jump to a specific block of nested
 code.
In this role, raise is like “go
 to,” and except clauses and exception
 names take the place of program labels. You can jump only out of code
 wrapped in a try this way, but that’s
 a crucial feature—truly arbitrary “go to” statements can make code
 extraordinarily difficult to understand and maintain.
For example, Python’s break
 statement exits just the single closest enclosing loop, but we can always
 use exceptions to break out of more than one loop level if
 needed:
>>> class Exitloop(Exception): pass
...
>>> try:
... while True:
... while True:
... for i in range(10):
... if i > 3: raise Exitloop # break exits just one level
... print('loop3: %s' % i)
... print('loop2')
... print('loop1')
... except Exitloop:
... print('continuing') # Or just pass, to move on
...
loop3: 0
loop3: 1
loop3: 2
loop3: 3
continuing
>>> i
4
If you change the raise in this
 to break, you’ll get an infinite
 loop, because you’ll break only out of the most deeply nested for loop, and wind up in the second-level loop
 nesting. The code would then print “loop2” and start the for again.
Also notice that variable i is
 still what it was after the try
 statement exits. Variable assignments made in a try are not undone in general, though as we’ve
 seen, exception instance variables listed in except clause headers are localized to that
 clause, and the local variables of any functions that are exited as a
 result of a raise are discarded.
 Technically, active functions’ local variables are popped off the call
 stack and the objects they reference may be garbage-collected as a
 result, but this is an automatic step.

Exceptions Aren’t Always Errors
In Python, all errors are exceptions, but not all exceptions are errors. For
 instance, we saw in Chapter 9 that file object
 read methods return an empty string at the end of a file. In contrast,
 the built-in input function—which we
 first met in Chapter 3, deployed in an
 interactive loop in Chapter 10,
 and learned is named raw_input in
 2.X—reads a line of text from the standard input stream, sys.stdin, at each call and raises the
 built-in EOFError at
 end-of-file.
Unlike file methods, this function does not return an empty
 string—an empty string from input
 means an empty line. Despite its name, though, the EOFError exception is just a signal in this
 context, not an error. Because of this behavior, unless the end-of-file
 should terminate a script, input
 often appears wrapped in a try
 handler and nested in a loop, as in the following code:
while True:
 try:
 line = input() # Read line from stdin (raw_input in 2.X)
 except EOFError:
 break # Exit loop at end-of-file
 else:
 ...process next line here...
Several other built-in exceptions are similarly signals, not
 errors—for example, calling sys.exit() and
 pressing Ctrl-C on your keyboard raise SystemExit and
 KeyboardInterrupt,
 respectively.
Python also has a set of built-in exceptions that represent
 warnings rather than errors; some of these are used
 to signal use of deprecated (phased out) language features. See the
 standard library manual’s description of built-in exceptions for more
 information, and consult the warnings module’s
 documentation for more on exceptions raised as warnings.

Functions Can Signal Conditions with raise
User-defined exceptions can also signal nonerror conditions. For instance, a
 search routine can be coded to raise an exception when a match is found
 instead of returning a status flag for the caller to interpret. In the
 following, the try/except/else
 exception handler does the work of an if/else
 return-value tester:
class Found(Exception): pass

def searcher():
 if ...success...:
 raise Found() # Raise exceptions instead of returning flags
 else:
 return

try:
 searcher()
except Found: # Exception if item was found
 ...success...
else: # else returned: not found
 ...failure...
More generally, such a coding structure may also be useful for any
 function that cannot return a sentinel value to designate
 success or failure. In a widely applicable function, for instance, if
 all objects are potentially valid return values, it’s impossible for any
 return value to signal a failure condition. Exceptions provide a way to
 signal results without a return value:
class Failure(Exception): pass

def searcher():
 if ...success...:
 return ...founditem...

 else:
 raise Failure()

try:
 item = searcher()
except Failure:
 ...not found...
else:
 ...use item here...
Because Python is dynamically typed and polymorphic to the core,
 exceptions, rather than sentinel return values, are the generally
 preferred way to signal such conditions.

Closing Files and Server Connections
We encountered examples in this category in Chapter 34. As a summary, though, exception
 processing tools are also commonly used to ensure that system resources
 are finalized, regardless of whether an error occurs during processing
 or not.
For example, some servers require connections to be closed in
 order to terminate a session. Similarly, output files may require close
 calls to flush their buffers to disk for waiting consumers, and input
 files may consume file descriptors if not closed; although file objects
 are automatically closed when garbage-collected if still open, in some
 Pythons it may be difficult to be sure when that will occur.
As we saw in Chapter 34, the most
 general and explicit way to guarantee termination actions for a specific
 block of code is the try/finally statement:
myfile = open(r'C:\code\textdata', 'w')
try:
 ...process myfile...
finally:
 myfile.close()
As we also saw, some objects make this potentially easier in
 Python 2.6, 3.0, and later by providing context managers that
 terminate or close the objects for us automatically when run by the
 with/as statement:
with open(r'C:\code\textdata', 'w') as myfile:
 ...process myfile...
So which option is better here? As usual, it depends on your
 programs. Compared to the traditional try/finally, context managers are more
 implicit, which runs contrary to Python’s general design
 philosophy. Context managers are also arguably less
 general—they are available only for select objects, and
 writing user-defined context managers to handle general termination
 requirements is more complex than coding a try/finally.
On the other hand, using existing context managers requires
 less code than using try/finally, as shown by the preceding examples.
 Moreover, the context manager protocol supports
 entry actions in addition to exit actions. In fact,
 it can save a line of code when no exceptions are expected at all
 (albeit at the expense of further nesting and indenting file processing
 logic):
myfile = open(filename, 'w') # Traditional form
...process myfile...
myfile.close()

with open(filename) as myfile: # Context manager form
 ...process myfile...
Still, the implicit exception processing of with makes it more directly comparable to the
 explicit exception handling of try/finally. Although try/finally
 is the more widely applicable technique, context managers may be
 preferable where they are already available, or where their extra
 complexity is warranted.

Debugging with Outer try Statements
You can also make use of exception handlers to replace Python’s default
 top-level exception-handling behavior. By wrapping an entire program (or
 a call to it) in an outer try in your
 top-level code, you can catch any exception that may occur while your
 program runs, thereby subverting the default program termination.
In the following, the empty except clause catches any uncaught exception
 raised while the program runs. To get hold of the actual exception that
 occurred in this mode, fetch the sys.exc_info function call result from the
 built-in sys module; it returns a
 tuple whose first two items contain the current exception’s class and
 the instance object raised (more on sys.exc_info in a
 moment):
try:
 ...run program...
except: # All uncaught exceptions come here
 import sys
 print('uncaught!', sys.exc_info()[0], sys.exc_info()[1])
This structure is commonly used during development, to keep
 programs active even after errors occur—within a loop, it allows you to
 run additional tests without having to restart. It’s also used when
 testing other program code, as described in the next section.
Note
On a related note, for more about handling program shutdowns
 without recovery from them, see also Python’s
 atexit standard library module.
 It’s also possible to customize what the top-level exception handler
 does with sys.excepthook. These and
 other related tools are described in Python’s library manual.

Running In-Process Tests
Some of the coding patterns we’ve just looked at can be combined in a
 test-driver application that tests other code within the same process.
 The following partial code sketches the general model:
import sys
log = open('testlog', 'a')
from testapi import moreTests, runNextTest, testName
def testdriver():
 while moreTests():
 try:
 runNextTest()
 except:
 print('FAILED', testName(), sys.exc_info()[:2], file=log)
 else:
 print('PASSED', testName(), file=log)
testdriver()
The testdriver function here
 cycles through a series of test calls (the module testapi is left abstract in this example).
 Because an uncaught exception in a test case would normally kill this
 test driver, you need to wrap test case calls in a try if you want to continue the testing
 process after a test fails. The empty except catches any uncaught exception
 generated by a test case as usual, and it uses sys.exc_info to
 log the exception to a file. The else
 clause is run when no exception occurs—the test success case.
Such boilerplate code is typical of systems that test functions, modules, and classes by
 running them in the same process as the test
 driver. In practice, however, testing can be much more sophisticated
 than this. For instance, to test external programs,
 you could instead check status codes or outputs generated by
 program-launching tools such as os.system and
 os.popen, used earlier in this book
 and covered in the standard library manual. Such tools do not generally
 raise exceptions for errors in the external programs—in fact, the test
 cases may run in parallel with the test driver.
At the end of this chapter, we’ll also briefly meet more complete
 testing frameworks provided by Python, such as doctest and PyUnit, which provide tools for
 comparing expected outputs with actual results.

More on sys.exc_info
The sys.exc_info result used in
 the last two sections allows an exception handler to gain access to the
 most recently raised exception generically. This is especially useful
 when using the empty except clause to
 catch everything blindly, to determine what was raised:
try:
 ...
except:
 # sys.exc_info()[0:2] are the exception class and instance
If no exception is being handled, this call returns a tuple
 containing three None values.
 Otherwise, the values returned are (type, value, traceback), where:
	type is the exception class of the
 exception being handled.

	value is the exception class
 instance that was raised.

	traceback is a traceback
 object that represents the call stack at the point where the
 exception originally occurred, and used by the traceback module to generate error
 messages.

As we saw in the prior chapter, sys.exc_info can also sometimes be useful to
 determine the specific exception type when catching exception category
 superclasses. As we’ve also learned, though, because in this case you
 can also get the exception type by fetching the __class__
 attribute of the instance obtained with the as clause, sys.exc_info is often redundant apart from the
 empty except:
try:
 ...
except General as instance:
 # instance.__class__ is the exception class
As we’ve seen, using Exception for the
 General exception name here would catch all
 nonexit exceptions, similar to an empty except but less extreme, and still giving
 access to the exception instance and its class. Even so, using the
 instance object’s interfaces and polymorphism is
 often a better approach than testing exception types—exception
 methods can be defined per class and run generically:
try:
 ...
except General as instance:
 # instance.method() does the right thing for this instance
As usual, being too specific in Python can limit your code’s
 flexibility. A polymorphic approach like the last example here generally
 supports future evolution better than explicitly type-specific tests or
 actions.

Displaying Errors and Tracebacks
Finally, the exception traceback object available in the prior section’s sys.exc_info result is also used by the
 standard library’s traceback module
 to generate the standard error message and stack display
 manually. This file has a handful of interfaces that support wide
 customization, which we don’t have space to cover usefully here, but the
 basics are simple. Consider the following aptly named file, badly.py:
import traceback

def inverse(x):
 return 1 / x

try:
 inverse(0)
except Exception:
 traceback.print_exc(file=open('badly.exc', 'w'))
print('Bye')
This code uses the print_exc
 convenience function in the traceback
 module, which uses sys.exc_info data
 by default; when run, the script prints the error message to a
 file—handy in testing programs that need to catch errors but still
 record them in full:
c:\code> python badly.py
Bye

c:\code> type badly.exc
Traceback (most recent call last):
 File "badly.py", line 7, in <module>
 inverse(0)
 File "badly.py", line 4, in inverse
 return 1 / x
ZeroDivisionError: division by zero
For much more on traceback objects, the traceback module that uses them, and related
 topics, consult other reference resources and manuals.
Note
Version skew note: In Python 2.X, the older
 tools sys.exc_type and sys.exc_value still work to fetch the most
 recent exception type and value, but they can manage only a single,
 global exception for the entire process. These two names have been
 removed in Python 3.X. The newer and preferred sys.exc_info() call available in both 2.X
 and 3.X instead keeps track of each thread’s exception information,
 and so is thread-specific. Of course, this distinction matters only
 when using multiple threads in Python programs (a subject beyond this
 book’s scope), but 3.X forces the issue. See other resources for more
 details.

Exception Design Tips and Gotchas
I’m lumping design tips and gotchas together in this chapter, because it
 turns out that the most common gotchas largely stem from design issues. By
 and large, exceptions are easy to use in Python. The real art behind them
 is in deciding how specific or general your except clauses should be and how much code to
 wrap up in try statements. Let’s
 address the second of these concerns first.
What Should Be Wrapped
In principle, you could wrap every statement in your script in its own try, but that would just be silly (the
 try statements would then need to be
 wrapped in try statements!). What to
 wrap is really a design issue that goes beyond the language itself, and
 it will become more apparent with use. But for now, here are a few rules
 of thumb:
	Operations that commonly fail should generally be wrapped in
 try statements. For example,
 operations that interface with system state (file opens, socket
 calls, and the like) are prime candidates for try.

	However, there are exceptions to the prior rule—in a simple
 script, you may want failures of such
 operations to kill your program instead of being caught and ignored.
 This is especially true if the failure is a showstopper. Failures in
 Python typically result in useful error messages (not hard crashes),
 and this is the best outcome some programs could hope for.

	You should implement termination actions in try/finally statements to guarantee their
 execution, unless a context manager is available as a with/as
 option. The try/finally statement form allows you to run
 code whether exceptions occur or not in arbitrary scenarios.

	It is sometimes more convenient to wrap the call to a large
 function in a single try
 statement, rather than littering the function itself with many
 try statements. That way, all
 exceptions in the function percolate up to the try around the call, and you reduce the
 amount of code within the function.

The types of programs you write will probably influence the amount
 of exception handling you code as well. Servers,
 for instance, must generally keep running persistently and so will
 likely require try statements to
 catch and recover from exceptions. In-process
 testing programs of the kind we saw in this chapter
 will probably handle exceptions as well. Simpler one-shot scripts,
 though, will often ignore exception handling completely because failure
 at any step requires script shutdown.

Catching Too Much: Avoid Empty except and Exception
As mentioned, exception handler generality is a key design choice. Python lets you
 pick and choose which exceptions to catch, but you sometimes have to be
 careful to not be too inclusive. For example, you’ve seen that an empty
 except clause catches
 every exception that might be raised while the code
 in the try block runs.
That’s easy to code, and sometimes desirable, but you may also
 wind up intercepting an error that’s expected by a try handler higher up in the exception nesting
 structure. For example, an exception handler such as the following
 catches and stops every exception that reaches it,
 regardless of whether another handler is waiting for it:
def func():
 try:
 ... # IndexError is raised in here
 except:
 ... # But everything comes here and dies!
try:
 func()
except IndexError: # Exception should be processed here
 ...
Perhaps worse, such code might also catch unrelated system
 exceptions. Even things like memory errors, genuine programming
 mistakes, iteration stops, keyboard interrupts, and system exits raise
 exceptions in Python. Unless you’re writing a debugger or similar tool,
 such exceptions should not usually be intercepted in your code.
For example, scripts normally exit when control falls off the end
 of the top-level file. However, Python also provides a built-in sys.exit(statuscode) call to allow early terminations. This
 actually works by raising a built-in SystemExit
 exception to end the program, so that try/finally
 handlers run on the way out and special types of programs can intercept
 the event.1 Because of this, a try
 with an empty except might
 unknowingly prevent a crucial exit, as in the following file (exiter.py):
import sys
def bye():
 sys.exit(40) # Crucial error: abort now!
try:
 bye()
except:
 print('got it') # Oops--we ignored the exit
print('continuing...')

% python exiter.py
got it
continuing...
You simply might not expect all the kinds of exceptions that could
 occur during an operation. Using the built-in exception classes of the
 prior chapter can help in this particular case, because the Exception superclass is not a superclass of
 SystemExit:
try:
 bye()
except Exception: # Won't catch exits, but _will_ catch many others
 ...
In other cases, though, this scheme is no better than an empty
 except clause—because Exception is a superclass above all built-in
 exceptions except system-exit events, it still has the potential to
 catch exceptions meant for elsewhere in the program.
Probably worst of all, both using an empty
 except and catching the Exception superclass will also catch genuine
 programming errors, which should be allowed to pass most of the time. In
 fact, these two techniques can effectively turn off
 Python’s error-reporting machinery, making it difficult to notice
 mistakes in your code. Consider this code, for example:
mydictionary = {...}
...
try:
 x = myditctionary['spam'] # Oops: misspelled
except:
 x = None # Assume we got KeyError
...continue here with x...
The coder here assumes that the only sort of error that can happen
 when indexing a dictionary is a missing key error. But because the name
 myditctionary is misspelled (it
 should say mydictionary), Python
 raises a NameError instead for the
 undefined name reference, which the handler will silently catch and
 ignore. The event handler will incorrectly fill in a None default for the dictionary access,
 masking the program error.
Moreover, catching Exception
 here will not help—it would have the exact same effect as an empty
 except, happily and silently filling
 in a default and masking a genuine program error you will probably want
 to know about. If this happens in code that is far removed from the
 place where the fetched values are used, it might make for a very
 interesting debugging task!
As a rule of thumb, be as specific in your
 handlers as you can be—empty except
 clauses and Exception catchers are
 handy, but potentially error-prone. In the last example, for instance,
 you would be better off saying except
 KeyError: to make your intentions explicit and avoid
 intercepting unrelated events. In simpler scripts, the potential for
 problems might not be significant enough to outweigh the convenience of
 a catchall, but in general, general handlers are generally trouble.

Catching Too Little: Use Class-Based Categories
On the other hand, neither should handlers be too specific. When you list
 specific exceptions in a try, you
 catch only what you actually list. This isn’t necessarily a bad thing,
 but if a system evolves to raise other exceptions in the future, you may
 need to go back and add them to exception lists elsewhere in your
 code.
We saw this phenomenon at work in the prior chapter. For instance,
 the following handler is written to treat MyExcept1 and MyExcept2 as normal cases and everything else
 as an error. If you add a MyExcept3
 in the future, though, it will be processed as an error unless you
 update the exception list:
try:
 ...
except (MyExcept1, MyExcept2): # Breaks if you add a MyExcept3 later
 ... # Nonerrors
else:
 ... # Assumed to be an error
Luckily, careful use of the class-based exceptions we discussed in
 Chapter 34 can make this code
 maintenance trap go away completely. As we saw, if you catch a general
 superclass, you can add and raise more specific subclasses in the future
 without having to extend except
 clause lists manually—the superclass becomes an extendible exceptions
 category:
try:
 ...
except SuccessCategoryName: # OK if you add a MyExcept3 subclass later
 ... # Nonerrors
else:
 ... # Assumed to be an error
In other words, a little design goes a long way. The moral of the
 story is to be careful to be neither too general nor too specific in
 exception handlers, and to pick the granularity of your try statement wrappings wisely. Especially in
 larger systems, exception policies should be a part of the overall
 design.

Core Language Summary
Congratulations! This concludes your look at the fundamentals of the
 Python programming language. If you’ve gotten this far, you’ve become a
 fully operational Python programmer. There’s more optional reading in the
 advanced topics part ahead that I’ll describe in a moment. In terms of the
 essentials, though, the Python story—and this book’s main journey—is now
 complete.
Along the way, you’ve seen just about everything there is to see in
 the language itself, and in enough depth to apply to most of the code you
 are likely to encounter in the open source “wild.” You’ve studied built-in
 types, statements, and exceptions, as well as tools used to build up the
 larger program units of functions, modules, and classes. You’ve also
 explored important software design issues, the complete OOP paradigm,
 functional programming tools, program architecture concepts, alternative
 tool tradeoffs, and more—compiling a skill set now qualified to be turned
 loose on the task of developing real applications.
The Python Toolset
From this point forward, your future Python career will largely consist of
 becoming proficient with the toolset available for application-level
 Python programming. You’ll find this to be an ongoing task. The standard
 library, for example, contains hundreds of modules, and the public
 domain offers still more tools. It’s possible to spend decades seeking
 proficiency with all these tools, especially as new ones are constantly
 appearing to address new technologies (trust me on this—I’m at 20 years
 and counting!).
Speaking generally, Python provides a hierarchy of
 toolsets:
	Built-ins
	Built-in types like strings, lists, and dictionaries make it
 easy to write simple programs fast.

	Python extensions
	For more demanding tasks, you can extend Python by writing
 your own functions, modules, and classes.

	Compiled extensions
	Although we don’t cover this topic in this book, Python can
 also be extended with modules written in an external language like
 C or C++.

Because Python layers its toolsets, you can decide how deeply your
 programs need to delve into this hierarchy for any given task—you can
 use built-ins for simple scripts, add Python-coded extensions for larger
 systems, and code compiled extensions for advanced work. We’ve only
 covered the first two of these categories in this book, and that’s
 plenty to get you started doing substantial programming in
 Python.
Beyond this, there are tools, resources, or precedents for using
 Python in nearly any computer domain you can imagine. For pointers on
 where to go next, see Chapter 1’s overview
 of Python applications and users. You’ll likely find that with a
 powerful open source language like Python, common tasks are often much
 easier, and even enjoyable, than you might expect.

Development Tools for Larger Projects
Most of the examples in this book have been fairly small and self-contained.
 They were written that way on purpose, to help you master the basics.
 But now that you know all about the core language, it’s time to start
 learning how to use Python’s built-in and third-party interfaces to do
 real work.
In practice, Python programs can become substantially larger than
 the examples you’ve experimented with so far in this book. Even in
 Python, thousands of lines of code are not uncommon
 for nontrivial and useful programs, once you add up all the individual
 modules in the system. Though Python basic program structuring tools
 such as modules and classes help much to manage this complexity, other
 tools can sometimes offer additional support.
For developing larger systems, you’ll find such support available
 in both Python and the public domain. You’ve seen some of these in
 action, and I’ve mentioned a few others. To help you on your next steps,
 here is a quick tour and summary of some of the most commonly used tools
 in this domain:
	PyDoc and docstrings
	PyDoc’s help function and
 HTML interfaces were introduced in Chapter 15. PyDoc provides a
 documentation system for your modules and objects, integrates with
 Python’s docstrings syntax, and is a standard part
 of the Python system. See Chapter 15 and Chapter 4 for more
 documentation source hints.

	PyChecker and PyLint
	Because Python is such a dynamic language, some programming
 errors are not reported until your program runs (even syntax
 errors are not caught until a file is run or imported). This isn’t
 a big drawback—as with most languages, it just means that you have
 to test your Python code before shipping it. At worst, with Python
 you essentially trade a compile phase for an initial testing
 phase. Furthermore, Python’s dynamic nature, automatic error
 messages, and exception model make it easier and quicker to find
 and fix errors than it is in some other languages. Unlike C, for
 example, Python does not crash completely on errors.
Still, tools can help here too. The PyChecker and PyLint
 systems provide support for catching common errors ahead of time,
 before your script runs. They serve similar roles to the
 lint program in C development. Some Python
 developers run their code through PyChecker prior to testing or
 delivery, to catch any lurking potential problems. In fact, it’s
 not a bad idea to try this when you’re first starting out—some of
 these tools’ warnings may help you learn to spot and avoid common
 Python mistakes. PyChecker and PyLint are third-party open source
 packages, available at the PyPI website or your friendly
 neighborhood web search engine. They may appear in IDE GUIs as
 well.

	PyUnit (a.k.a. unittest)
	In Chapter 25, we learned how to add self-test code to a Python file
 by using the __name__ ==
 '__main__' trick at the bottom of the file—a simple
 unit-testing protocol. For more advanced testing purposes, Python
 comes with two testing support tools. The first, PyUnit (called
 unittest in the library manual), provides an object-oriented class
 framework for specifying and customizing test cases and expected
 results. It mimics the JUnit framework for Java. This is a
 sophisticated class-based unit testing system; see the Python
 library manual for details.

	doctest
	The doctest standard
 library module provides a second and simpler approach to
 regression testing, based upon Python’s docstrings feature.
 Roughly, to use doctest, you
 cut and paste a log of an interactive testing session into the
 docstrings of your source files. doctest then extracts your docstrings,
 parses out the test cases and results, and reruns the tests to
 verify the expected results. doctest’s operation can be tailored in a
 variety of ways; see the library manual for more details.

	IDEs
	We discussed IDEs for Python in Chapter 3. IDEs such as IDLE provide a
 graphical environment for editing, running, debugging, and
 browsing your Python programs. Some advanced IDEs—such as Eclipse,
 Komodo, NetBeans, and others listed in Chapter 3—may support additional
 development tasks, including source control integration, code
 refactoring, project management tools, and more. See Chapter 3, the text editors page at http://www.python.org, and your favorite web search
 engine for more on available IDEs and GUI builders for
 Python.

	Profilers
	Because Python is so high-level and dynamic, intuitions about performance gleaned from
 experience with other languages usually don’t apply to Python
 code. To truly isolate performance bottlenecks in your code, you
 need to add timing logic with clock tools in the time or timeit modules, or run your code under
 the profile module. We saw an
 example of the timing modules at work when comparing the speed of
 iteration tools and Pythons in Chapter 21.
Profiling is usually your first optimization step—code for
 clarity, then profile to isolate bottlenecks, and then time
 alternative codings of the slow parts of your program. For the
 second of these steps, profile
 is a standard library module that implements a source code
 profiler for Python. It runs a string of code you provide (e.g., a
 script file import, or a call to a function) and then, by default,
 prints a report to the standard output stream that gives
 performance statistics—number of calls to each function, time
 spent in each function, and more.
The profile module can be
 run as a script or imported, and it may be customized in various
 ways; for example, it can save run statistics to a file to be
 analyzed later with the pstats
 module. To profile interactively, import the profile module and call profile.run('code'), passing in the code
 you wish to profile as a string (e.g., a call to a function, an
 import of a file, or code read from a file). To profile from a
 system shell command line, use a command of the form python -m profile main.py
 args (see Appendix A for more on this
 format). Also see Python’s standard library manuals for other
 profiling options; the cProfile
 module, for example, has identical interfaces to profile but runs with less overhead, so
 it may be better suited to profiling long-running programs.

	Debuggers
	We also discussed debugging options in Chapter 3 (see its sidebar “Debugging Python Code”). As a review, most development
 IDEs for Python support GUI-based debugging, and the Python
 standard library also includes a source code debugger module
 called pdb. This module
 provides a command-line interface and works much like common C
 language debuggers (e.g., dbx,
 gdb).
Much like the profiler, the pdb
 debugger can be run either interactively or from a command
 line and can be imported and called from a Python program. To use
 it interactively, import the module, start running code by calling
 a pdb function (e.g., pdb.run('main()')), and then type
 debugging commands from pdb’s interactive
 prompt. To launch pdb from a system shell
 command line, use a command of the form python -m pdb main.py
 args. pdb also
 includes a useful postmortem analysis call, pdb.pm(), which starts the debugger
 after an exception has been encountered, possibly in conjunction
 with Python’s -i flag. See
 Appendix A for more on
 these tools.
Because IDEs such as IDLE also include point-and-click
 debugging interfaces, pdb isn’t as critical a
 tool today, except when a GUI isn’t available or when more control
 is desired. See Chapter 3 for tips
 on using IDLE’s debugging GUI interfaces. Really, neither
 pdb nor IDEs seem to be used much in
 practice—as noted in Chapter 3, most
 programmers either insert print
 statements or simply read Python’s error messages: perhaps not the
 most high-tech of approaches, but the practical tends to win the
 day in the Python world!

	Shipping options
	In Chapter 2, we
 introduced common tools for packaging Python programs. py2exe,
 PyInstaller, and others listed in that chapter can package byte code
 and the Python Virtual Machine into “frozen binary” standalone
 executables, which don’t require that Python be installed on the
 target machine and hide your system’s code. In addition, we
 learned in Chapter 2 that Python
 programs may be shipped in their source (.py) or byte code (.pyc) forms, and that import hooks
 support special packaging techniques such as automatic extraction
 of .zip files and byte code
 encryption.
We also briefly met the standard library’s distutils modules, which provide
 packaging options for Python modules and packages, and C-coded
 extensions; see the Python manuals for more details. The emerging
 Python “eggs” third-party packaging system provides another
 alternative that also accounts for dependencies; search the Web
 for more details.

	Optimization options
	When speed counts, there are a handful of options for optimizing your programs. The
 PyPy system described in Chapter 2 provides a just-in-time
 compiler for translating Python byte code to binary machine code,
 and Shed Skin offers a Python-to-C++ translator. You may also
 occasionally see .pyo
 optimized byte code files, generated and run with the -O Python command-line flag discussed in
 Chapter 22 and Chapter 34, and to be deployed in Chapter 39; because this provides a very modest
 performance boost, however, it is not commonly used except to
 remove debugging code.
As a last resort, you can also move parts of your program to
 a compiled language such as C to boost performance. See the book
 Programming
 Python and the Python standard manuals for more on C
 extensions. In general, Python’s speed tends to also improve over
 time, so upgrading to later releases may improve speed too—once
 you verify that they are faster for your code, that is (though
 largely repaired since, Python 3.0’s initial release was up to
 1000X slower than 2.X on some IO operations!).

	Other hints for larger projects
	We’ve met a variety of core language features in this text
 that will also tend to become more useful once you start coding
 larger projects. These include module packages (Chapter 24), class-based exceptions (Chapter 34), class pseudoprivate attributes (Chapter 31), documentation strings (Chapter 15), module path
 configuration files (Chapter 22), hiding names from
 from * with __all__ lists and _X-style names (Chapter 25), adding self-test code with
 the __name__ == '__main__'
 trick (Chapter 25), using common
 design rules for functions and modules (Chapter 17,
 Chapter 19, and Chapter 25), using object-oriented design
 patterns (Chapter 31 and others),
 and so on.

To learn about other large-scale Python development tools
 available in the public domain, be sure to browse the pages at the PyPI
 website at http://www.python.org, and the Web at large. Applying
 Python is actually a larger topic than learning Python, and one we’ll
 have to delegate to follow-up resources here.

Chapter Summary
This chapter wrapped up the exceptions part of the book with a
 survey of design concepts, a look at common exception use cases, and a
 brief summary of commonly used development tools.
This chapter also wrapped up the core material of this book. At this
 point, you’ve been exposed to the full subset of Python that most
 programmers use—and probably more. In fact, if you have read this far, you
 should feel free to consider yourself an official Python
 programmer. Be sure to pick up a t-shirt or laptop sticker the
 next time you’re online (and don’t forget to add Python to your résumé the
 next time you dig it out).
The next and final part of this book is a collection of chapters
 dealing with topics that are advanced, but still in the core language
 category. These chapters are all optional reading, or
 at least deferrable reading, because not every Python
 programmer must delve into their subjects, and others can postpone these
 chapters’ topics until they are needed. Indeed, many of you can stop here
 and begin exploring Python’s roles in your application domains. Frankly,
 application libraries tend to be more important in practice than
 advanced—and to some, esoteric—language features.
On the other hand, if you do need to care about things like Unicode
 or binary data, have to deal with API-building tools such as descriptors,
 decorators, and metaclasses, or just want to dig a bit further in general,
 the next part of the book will help you get started. The larger examples
 in the final part will also give you a chance to see the concepts you’ve
 already learned being applied in more realistic ways.
As this is the end of the core material of this book, though, you
 get a break on the chapter quiz—just one question this time. As always, be
 sure to work through this part’s closing exercises to cement what you’ve
 learned in the past few chapters; because the next part is optional
 reading, this is the final end-of-part exercises session. If you want to
 see some examples of how what you’ve learned comes together in real
 scripts drawn from common applications, be sure to check out the
 “solution” to exercise 4 in Appendix D.
And if this is the end of your journey in this book, be sure to also
 see the “Encore” section at the end of Chapter 41,
 the very last chapter in this book (for the sake of readers continuing on
 to the Advanced Topics part, I won’t spill the beans here).

Test Your Knowledge: Quiz
	(This question is a repeat from the first quiz in Chapter 1—see, I told you it would be easy!
 :-) Why does “spam” show up in so many Python examples in books and on
 the Web?

Test Your Knowledge: Answers
	Because Python is named after the British comedy group Monty
 Python (based on surveys I’ve conducted in classes, this is a
 much-too-well-kept secret in the Python world!). The spam reference
 comes from a Monty Python skit, set in a cafeteria whose menu items
 all seem to come with Spam. A couple trying to order food there keeps
 getting drowned out by a chorus of Vikings singing a song about Spam.
 No, really. And if I could insert an audio clip of that song here, I
 would...

Test Your Knowledge: Part VII Exercises
As we’ve reached the end of this part of the book, it’s time for a few
 exception exercises to give you a chance to practice the basics.
 Exceptions really are simple tools; if you get these, you’ve probably
 mastered the exceptions domain. See “Part VII, Exceptions and Tools” in Appendix D for the solutions.
	try/except. Write a function called oops that explicitly raises an IndexError exception when called. Then write
 another function that calls oops
 inside a try/except statement to catch the error. What
 happens if you change oops to raise
 a KeyError
 instead of an IndexError? Where do
 the names KeyError and IndexError come from? (Hint: recall that all
 unqualified names generally come from one of four scopes.)

	Exception objects and lists. Change the
 oops function you just wrote to
 raise an exception you define yourself, called MyError. Identify your exception with a
 class (unless you’re using Python 2.5 or earlier, you must). Then,
 extend the try statement in the
 catcher function to catch this exception and its instance in addition
 to IndexError, and print the
 instance you catch.

	Error handling. Write a function called
 safe(func, *pargs, **kargs) that
 runs any function with any number of positional and/or keyword
 arguments by using the * arbitrary
 arguments header and call syntax, catches any exception raised while
 the function runs, and prints the exception using the exc_info call in the sys module. Then use your safe function to run your oops function from exercise 1 or 2. Put
 safe in a module file called
 exctools.py, and pass it the
 oops function interactively. What
 kind of error messages do you get? Finally, expand safe to also print a Python stack trace when
 an error occurs by calling the built-in print_exc function in the standard traceback module; see earlier in this
 chapter, and consult the Python library reference manual for usage
 details. We could probably code safe as a function
 decorator using Chapter 32
 techniques, but we’ll have to move on to the next part of the book to
 learn fully how (see the solutions for a preview).

	Self-study examples. At the end of Appendix D, I’ve included a
 handful of example scripts developed as group exercises in live Python
 classes for you to study and run on your own in conjunction with
 Python’s standard manual set. These are not described, and they use
 tools in the Python standard library that you’ll have to research on
 your own. Still, for many readers, it helps to see how the concepts
 we’ve discussed in this book come together in real programs. If these
 whet your appetite for more, you can find a wealth of larger and more
 realistic application-level Python program examples in follow-up books
 like Programming
 Python and on the Web.

1 A related call, os._exit,
 also ends a program, but via an immediate termination—it skips
 cleanup actions, including any registered with the atexit module noted earlier, and cannot be
 intercepted with try/except or try/finally blocks. It is usually used only in
 spawned child processes, a topic beyond this book’s scope. See the
 library manual or follow-up texts for details.

Part VIII. Advanced Topics

Chapter 37. Unicode and Byte Strings
So far, our exploration of strings in this book has been deliberately
 incomplete. Chapter 4’s types
 preview briefly introduced Python’s Unicode strings and files without giving
 many details, and the strings chapter in the core types
 part of this book (Chapter 7) deliberately
 limited its scope to the subset of string topics that most Python
 programmers need to know about.
This was by design: because many programmers, including most
 beginners, deal with simple forms of text like ASCII, they can happily work
 with Python’s basic str string type and
 its associated operations and don’t need to come to grips with more advanced
 string concepts. In fact, such programmers can often ignore the string
 changes in Python 3.X and continue to use strings as they may have in the
 past.
On the other hand, many other programmers deal with more specialized
 types of data: non-ASCII character sets, image file contents, and so on. For
 those programmers, and others who may someday join them, in this chapter
 we’re going to fill in the rest of the Python string story and look at some
 more advanced concepts in Python’s string model.
Specifically, we’ll explore the basics of Python’s support for
 Unicode text—rich character strings used in
 internationalized applications—as well as binary
 data—strings that represent absolute byte values. As we’ll see,
 the advanced string representation story has diverged in
 recent versions of Python:
	Python 3.X provides an alternative string
 type for binary data, and supports Unicode text (including ASCII) in its
 normal string type.

	Python 2.X provides an alternative string
 type for non-ASCII Unicode text, and supports both simple text and
 binary data in its normal string type.

In addition, because Python’s string model has a direct impact on how
 you process non-ASCII files, we’ll explore the
 fundamentals of that related topic here as well. Finally, we’ll take a brief
 look at some advanced string and binary tools, such as
 pattern matching, object pickling, binary data packing, and XML parsing, and
 the ways in which they are impacted by 3.X’s string changes.
This is officially an advanced topics chapter, because not all
 programmers will need to delve into the worlds of Unicode encodings or
 binary data. For some readers, Chapter 4’s preview may suffice, and
 others may wish to file this chapter away for future reference. If you ever
 need to care about processing either of these, though, you’ll find that
 Python’s string models provide the support you need.
String Changes in 3.X
One of the most noticeable changes in the Python 3.X line is the
 mutation of string object types. In a nutshell, 2.X’s str and unicode types have morphed into 3.X’s bytes and str
 types, and a new mutable bytearray type
 has been added. The bytearray type is technically available in
 Python 2.6 and 2.7 too (though not earlier), but it’s a back-port from 3.X
 and does not as clearly distinguish between text and binary content in
 2.X.
Especially if you process data that is either Unicode or binary in
 nature, these changes can have substantial impacts on your code. As a
 general rule of thumb, how much you need to care about this topic depends
 in large part upon which of the following categories you fall into:
	If you deal with non-ASCII Unicode text—for
 instance, in the context of internationalized domains like the Web, or
 the results of some XML and JSON parsers and databases—you will find
 support for text encodings to be different in 3.X, but also probably
 more direct, accessible, and seamless than in 2.X.

	If you deal with binary data—for example,
 in the form of image or audio files or packed data processed with the
 struct module—you will need to
 understand 3.X’s new bytes object
 and 3.X’s different and sharper distinction between text and binary
 data and files.

	If you fall into neither of the prior two
 categories, you can generally use strings in 3.X much as you would in
 2.X, with the general str string
 type, text files, and all the familiar string operations we studied
 earlier. Your strings will be encoded and decoded by 3.X using your
 platform’s default encoding (e.g., ASCII, UTF-8, or Latin-1—locale.getpreferredencoding(False) gives
 your open default if you care to check), but you probably won’t
 notice.

In other words, if your text is always ASCII, you can get by with
 normal string objects and text files and can avoid most of the following
 story for now. As we’ll see in a moment, ASCII is a simple kind of Unicode
 and a subset of other encodings, so string operations and files generally
 “just work” if your programs process only ASCII text.
Even if you fall into the last of the three categories just
 mentioned, though, a basic understanding of Unicode and 3.X’s string model
 can help both to demystify some of the underlying behavior now, and to
 make mastering Unicode or binary data issues easier if they impact you
 later.
To put that more strongly: like it or not, Unicode will be part of
 most software development in the interconnected future we’ve sown, and
 will probably impact you eventually. Though applications are beyond our
 scope here, if you work with the Internet, files, directories, network
 interfaces, databases, pipes, JSON, XML, and even GUIs, Unicode may no
 longer be an optional topic for you in Python 3.X.
Python 3.X’s support for Unicode and binary data is also available
 in 2.X, albeit in different forms. Although our main focus in this chapter
 is on string types in 3.X, we’ll also explore how 2.X’s equivalent support
 differs along the way for readers using 2.X. Regardless of which version
 you use, the tools we’ll explore here can become important in many types
 of programs.

String Basics
Before we look at any code, let’s begin with a general overview of Python’s
 string model. To understand why 3.X changed the way it did on this front,
 we have to start with a brief look at how characters are actually
 represented in computers—both when encoded in files and when stored in
 memory.
Character Encoding Schemes
Most programmers think of strings as series of characters used to represent textual
 data. While that’s accurate, the way characters are stored can vary,
 depending on what sort of character set must be recorded. When text is
 stored on files, for example, its character set determines its
 format.
Character sets are standards that assign integer codes to individual characters so they
 can be represented in computer memory. The ASCII
 standard, for example, was created in the U.S., and it
 defines many U.S. programmers’ notion of text strings. ASCII defines
 character codes from 0 through 127 and allows each character to be
 stored in one 8-bit byte, only 7 bits of which are actually used.
For example, the ASCII standard maps the character 'a' to the integer value 97 (0x61 in hex), which can be stored in a
 single byte in memory and files. If you wish to see how this works,
 Python’s ord built-in function gives
 the binary identifying value for a character, and chr returns the character for a given integer
 code value:
>>> ord('a') # 'a' is a byte coded as value 97 in ASCII (and others)
97
>>> hex(97)
'0x61'
>>> chr(97) # Code value 97 stands for character 'a' in ASCII
'a'
Sometimes one byte per character isn’t enough, though. Various
 symbols and accented characters, for instance, do not fit into the range
 of possible characters defined by ASCII. To accommodate special
 characters, some standards use all the possible values in an 8-bit byte,
 0 through 255, to represent characters, and assign the values 128
 through 255 (outside ASCII’s range) to special characters.
One such standard, known as the Latin-1 character set, is widely
 used in Western Europe. In Latin-1, character codes above 127 are
 assigned to accented and otherwise special characters. The character
 assigned to byte value 196, for example, is a specially marked non-ASCII
 character:
>>> 0xC4
196
>>> chr(196) # Python 3.X result form shown
'Ä'
This standard allows for a wide array of extra special characters,
 but still supports ASCII as a 7-bit subset of its 8-bit
 representation.
Still, some alphabets define so many characters that it is
 impossible to represent each of them as one byte.
 Unicode allows more flexibility. Unicode text is
 sometimes referred to as “wide-character” strings, because characters
 may be represented with multiple bytes if needed. Unicode is typically
 used in internationalized programs, to represent
 European, Asian, and other non-English character sets that have more
 characters than 8-bit bytes can represent.
To store such rich text in computer memory, we say that characters
 are translated to and from raw bytes using an
 encoding—the rules for translating a string of
 Unicode characters to a sequence of bytes, and extracting a string from
 a sequence of bytes. More procedurally, this translation back and forth
 between bytes and strings is defined by two terms:
	Encoding is the process of translating a
 string of characters into its raw bytes form, according to a desired
 encoding name.

	Decoding is the process of translating a
 raw string of bytes into its character string form, according to its
 encoding name.

That is, we encode from string to raw bytes,
 and decode from raw bytes to string. To scripts,
 decoded strings are just characters in memory, but may be encoded into a
 variety of byte string representations when stored on files, transferred
 over networks, embedded in documents and databases, and so on.
For some encodings, the translation process is trivial—ASCII and
 Latin-1, for instance, map each character to a
 fixed-size single byte, so no translation work is
 required. For other encodings, the mapping can be more complex and yield
 multiple bytes per character, even for simple 8-bit forms of
 text.
The widely used UTF-8 encoding, for example,
 allows a wide range of characters to be represented by employing a
 variable-sized number of bytes scheme. Character
 codes less than 128 are represented as a single byte; codes between 128
 and 0x7ff (2047) are turned into 2 bytes, where each byte has a value
 between 128 and 255; and codes above 0x7ff are turned into 3- or 4-byte
 sequences having values between 128 and 255. This keeps simple ASCII
 strings compact, sidesteps byte ordering issues, and avoids null (zero
 value) bytes that can cause problems for C libraries and
 networking.
Because their encodings’ character maps assign characters to the
 same codes for compatibility, ASCII is a subset of
 both Latin-1 and UTF-8. That is, a valid ASCII character string is also
 a valid Latin-1- and UTF-8-encoded string. For example, every ASCII file
 is a valid UTF-8 file, because the ASCII character set is a 7-bit subset
 of UTF-8.
Conversely, the UTF-8 encoding is binary compatible with ASCII,
 but only for character codes less than 128. Latin-1 and UTF-8 simply
 allow for additional characters: Latin-1 for characters mapped to values
 128 through 255 within a byte, and UTF-8 for characters that may be
 represented with multiple bytes.
Other encodings allow for richer character sets in different ways.
 UTF-16 and UTF-32, for
 example, format text with a fixed-size 2 and 4 bytes per each character
 scheme, respectively, even for characters that could otherwise fit in a
 single byte. Some encodings may also insert prefixes that identify byte
 ordering.
To see this for yourself, run a string’s encode method, which gives its encoded byte-string format under a named
 scheme—a two-character ASCII string is 2 bytes in ASCII, Latin-1, and
 UTF-8, but it’s much wider in UTF-16 and UTF-32, and includes header
 bytes:
>>> S = 'ni'
>>> S.encode('ascii'), S.encode('latin1'), S.encode('utf8')
(b'ni', b'ni', b'ni')

>>> S.encode('utf16'), len(S.encode('utf16'))
(b'\xff\xfen\x00i\x00', 6)

>>> S.encode('utf32'), len(S.encode('utf32'))
(b'\xff\xfe\x00\x00n\x00\x00\x00i\x00\x00\x00', 12)
These results differ slightly in Python 2.X (you won’t get the
 leading b for byte strings). But all
 of these encoding schemes—ASCII, Latin-1, UTF-8, and many others—are
 considered to be Unicode.
To Python programmers, encodings are specified as strings
 containing the encoding’s name. Python comes with roughly 100 different
 encodings; see the Python library reference for a complete list.
 Importing the module encodings and
 running help(encodings) shows you
 many encoding names as well; some are implemented in Python, and some in
 C. Some encodings have multiple names, too; for example,
 latin-1, iso_8859_1, and
 8859 are all synonyms for the same encoding,
 Latin-1. We’ll revisit encodings later in this chapter, when we study
 techniques for writing Unicode strings in a script.
For more on the underlying Unicode story, see the Python standard
 manual set. It includes a “Unicode HOWTO” in its “Python HOWTOs”
 section, which provides additional background that we will skip here in
 the interest of space.

How Python Stores Strings in Memory
The prior section’s encodings really only apply when text is stored or
 transferred externally, in files and other mediums. In memory, Python
 always stores decoded text strings in an
 encoding-neutral format, which may or may not use
 multiple bytes for each character. All text processing occurs in this
 uniform internal format. Text is translated to and from an
 encoding-specific format only when it is transferred to or from external
 text files, byte strings, or APIs with specific encoding requirements.
 Once in memory, though, strings have no encoding. They are just the
 string object presented in this book.
Though irrelevant to your code, it may help some readers to make
 this more tangible. The way Python actually stores text in memory is
 prone to change over time, and in fact mutated substantially as of 3.3:
	Python 3.2 and earlier
	Through Python 3.2, strings are stored internally in fixed-length
 UTF-16 (roughly, UCS-2) format with 2 bytes per character, unless
 Python is configured to use 4 bytes per character (UCS-4).

	Python 3.3 and later
	Python 3.3 and later instead use a
 variable-length scheme with 1, 2, or 4 bytes
 per character, depending on a string’s content. The size is chosen
 based upon the character with the largest Unicode ordinal value in
 the represented string. This scheme allows a space-efficient
 representation in common cases, but also allows for full UCS-4 on
 all platforms.

Python 3.3’s new scheme is an optimization, especially compared to
 former wide Unicode builds. Per Python documentation: memory footprint
 is divided by 2 to 4 depending on the text; encoding an ASCII string to
 UTF-8 doesn’t need to encode characters anymore, because its ASCII and
 UTF-8 representations are the same; repeating a single ASCII letter and
 getting a substring of an ASCII string is 4 times faster; UTF-8 is 2 to
 4 times faster; and UTF-16 encoding is up to 10 times faster. On some
 benchmarks, Python 3.3’s overall memory usage is 2 to 3 times smaller
 than 3.2, and similar to the less Unicode-centric 2.7.
Regardless of the storage scheme used, as noted in Chapter 6 Unicode clearly requires us to
 think of strings in terms of characters, instead of
 bytes. This may be a bigger hurdle for programmers
 accustomed to the simpler ASCII-only world where each character mapped
 to a single byte, but that idea no longer applies, in terms of both the
 results of text string tools and physical character size:
	Text tools
	Today, both string content and length really correspond to
 Unicode code points—identifying ordinal numbers for characters. For instance, the
 built-in ord function now
 returns a character’s Unicode code point ordinal, which is not
 necessarily an ASCII code, and which may or may not fit in a
 single 8-bit byte’s value. Similarly, len returns the number of characters, not bytes; the string is
 probably larger in memory, and its characters may not fit in bytes
 anyhow.

	Text size
	As we saw by example in Chapter 4, under Unicode a
 single character does not necessarily map directly to a single
 byte, either when encoded in a file or when stored in memory. Even
 characters in simple 7-bit ASCII text may not map to bytes—UTF-16
 uses multiple bytes per character in files, and Python may
 allocate 1, 2, or 4 bytes per character in memory. Thinking in
 terms of characters allows us to abstract away the details of
 external and internal storage.

The key point here, though, is that encoding
 pertains mostly to files and transfers. Once loaded into a Python
 string, text in memory has no notion of an “encoding,” and is simply a
 sequence of Unicode characters (a.k.a. code points) stored generically.
 In your script, that string is accessed as a Python string object—the
 next section’s topic.

Python’s String Types
At a more concrete level, the Python language provides string data
 types to represent character text in your scripts. The string types you
 will use in your scripts depend upon the version of Python you’re using.
 Python 2.X has a general string type for
 representing binary data and simple 8-bit text like ASCII, along with a
 specific type for representing richer Unicode text:
	str for representing 8-bit
 text and binary data

	unicode for representing
 decoded Unicode text

Python 2.X’s two string types are different (unicode allows for the extra size of some
 Unicode characters and has extra support for encoding and decoding), but
 their operation sets largely overlap. The str string type in 2.X is used for text that
 can be represented with 8-bit bytes (including ASCII and Latin-1), as
 well as binary data that represents absolute byte values.
By contrast, Python 3.X comes with three
 string object types—one for textual data and two for binary data:
	str for representing
 decoded Unicode text (including ASCII)

	bytes for representing
 binary data (including encoded text)

	bytearray, a mutable
 flavor of the bytes
 type

As mentioned earlier, bytearray
 is also available in Python 2.6 and 2.7, but it’s simply a back-port
 from 3.X with less content-specific behavior and is generally considered
 a 3.X type.
Why the different string types?
All three string types in 3.X support similar operation sets,
 but they have different roles. The main goal behind this change in 3.X
 was to merge the normal and Unicode string types
 of 2.X into a single string type that supports both simple and Unicode
 text: developers wanted to remove the 2.X string dichotomy and make
 Unicode processing more natural. Given that ASCII and other 8-bit text
 is really a simple kind of Unicode, this convergence seems logically
 sound.
To achieve this, 3.X stores text in a redefined str type—an immutable sequence of
 characters (not necessarily bytes), which may contain
 either simple text such as ASCII whose character values fit in single
 bytes, or richer character set text such as UTF-8 whose character
 values may require multiple bytes. Strings processed by your script
 with this type are stored generically in memory, and are encoded to
 and decoded from byte strings per either the platform Unicode default
 or an explicit encoding name. This allows scripts to translate text to
 different encoding schemes, both in memory and when transferring to
 and from files.
While 3.X’s new str type does
 achieve the desired string/unicode
 merging, many programs still need to process raw binary data that is
 not encoded per any text format. Image and audio files, as well as
 packed data used to interface with devices or C programs you might
 process with Python’s struct
 module, fall into this category. Because Unicode strings are decoded
 from bytes, they cannot be used to represent
 bytes.
To support processing of such truly binary data, a new string
 type, bytes, also was
 introduced—an immutable sequence of 8-bit
 integers representing absolute byte values, which prints as
 ASCII characters when possible. Though a distinct object type,
 bytes supports almost all the same
 operations that the str type does;
 this includes string methods, sequence operations, and even re module pattern matching, but not string
 formatting. In 2.X, the general str
 type fills this binary data role, because its strings are just
 sequences of bytes; the separate unicode type handles richer text
 strings.
In more detail, a 3.X bytes
 object really is a sequence of small integers, each of which is in the
 range 0 through 255; indexing a bytes returns an int, slicing one returns another bytes, and running the list built-in on one returns a list of
 integers, not characters. When processed with operations that assume
 characters, though, the contents of bytes objects are assumed to be
 ASCII-encoded bytes (e.g., the isalpha method assumes each byte is an ASCII
 character code). Further, bytes
 objects are printed as character strings instead of integers for
 convenience.
While they were at it, Python developers also added a bytearray type in 3.X. bytearray is a variant of bytes that is mutable
 and so supports in-place changes. It supports the usual string
 operations that str and bytes do, as well as many of the same
 in-place change operations as lists (e.g., the append and extend methods, and assignment to indexes).
 This can be useful both for truly binary data and simple types of
 text. Assuming your text strings can be treated as raw 8-bit bytes
 (e.g., ASCII or Latin-1 text), bytearray finally adds direct in-place
 mutability for text data—something not possible without conversion to
 a mutable type in Python 2.X, and not supported by Python 3.X’s
 str or bytes.
Although Python 2.X and 3.X offer much the same functionality,
 they package it differently. In fact, the mapping from 2.X to 3.X
 string types is not completely direct—2.X’s str equates to both str and bytes in 3.X, and 3.X’s str equates to both str and unicode in 2.X. Moreover, the mutability of
 3.X’s bytearray is unique.
In practice, though, this asymmetry is not as daunting as it
 might sound. It boils down to the following: in 2.X, you will use
 str for simple text and binary data
 and unicode for advanced forms of
 text whose character sets don’t map to 8-bit bytes; in 3.X, you’ll use
 str for any kind of text (ASCII,
 Latin-1, and all other kinds of Unicode) and bytes or bytearray for binary data. In practice, the
 choice is often made for you by the tools you use—especially in the
 case of file processing tools, the topic of the next section.

Text and Binary Files
File I/O (input and output) was also revamped in 3.X to reflect
 the str/bytes distinction and automatically support
 encoding Unicode text on transfers. Python now makes a sharp
 platform-independent distinction between text files and binary files; in
 3.X:
	Text files
	When a file is opened in text mode, reading
 its data automatically decodes its content and returns it as a
 str; writing takes a str and automatically encodes it before
 transferring it to the file. Both reads and writes translate per a
 platform default or a provided encoding name. Text-mode files also
 support universal end-of-line translation and additional encoding
 specification arguments. Depending on the encoding name, text
 files may also automatically process the byte order mark sequence
 at the start of a file (more on this momentarily).

	Binary files
	When a file is opened in binary mode by adding
 a b (lowercase only) to the
 mode-string argument in the built-in open call, reading its data does not
 decode it in any way but simply returns its content raw and
 unchanged, as a bytes object;
 writing similarly takes a bytes
 object and transfers it to the file unchanged. Binary-mode files
 also accept a bytearray object
 for the content to be written to the file.

Because the language sharply differentiates between str and bytes, you must decide whether your data is
 text or binary in nature and use either str or bytes objects to represent its content in your
 script, as appropriate. Ultimately, the mode in which you open a file
 will dictate which type of object your script will use to represent its
 content:
	If you are processing image files, data transferred over
 networks, packed binary data whose content you must extract, or some
 device data streams, chances are good that you will want to deal
 with it using bytes and
 binary-mode files. You might also opt for
 bytearray if you wish to update
 the data without making copies of it in memory.

	If instead you are processing something that is textual in
 nature, such as program output, HTML, email content, or CSV or XML
 files, you’ll probably want to use str and text-mode
 files.

Notice that the mode string argument to
 built-in function open (its second
 argument) becomes fairly crucial in Python 3.X—its content not only
 specifies a file processing mode, but also implies
 a Python object type. By adding a b to the mode string, you specify binary mode
 and will receive, or must provide, a bytes object to represent the file’s content
 when reading or writing. Without the b, your file is processed in text mode, and
 you’ll use str objects to represent
 its content in your script. For example, the modes rb, wb, and
 rb+ imply bytes; r,
 w+, and rt (the default) imply str.
Text-mode files also handle the byte order mark (BOM) sequence
 that may appear at the start of files under some encoding schemes. In
 the UTF-16 and UTF-32 encodings, for example, the BOM specifies big- or
 little-endian format (essentially, which end of a bit-string is most
 significant)—see the leading bytes in the results of the UTF-16 and
 UTF-32 encoding calls we ran earlier for examples. A UTF-8 text file
 might also include a BOM to declare that it is UTF-8 in general. When
 reading and writing data using these encoding schemes, Python skips or
 writes the BOM according to rules we’ll study later in this
 chapter.
In Python 2.X, the same behavior is supported, but normal files
 created by open are used to access
 bytes-based data, and Unicode files opened with the codecs.open call are used to process Unicode
 text data. The latter of these also encode and decode on transfer, as
 we’ll see later in this chapter. First, let’s explore Python’s Unicode
 string model live.

Coding Basic Strings
Let’s step through a few examples that demonstrate how the 3.X string types are
 used. One note up front: the code in this section was run with and applies
 to 3.X only. Still, basic string operations are generally portable across
 Python versions. Simple ASCII strings represented with the str type work the same in 2.X and 3.X (and
 exactly as we saw in Chapter 7 of this
 book).
Moreover, although there is no bytes type in Python 2.X (it has just the
 general str), it can usually run code
 that thinks there is—in 2.6 and 2.7, the call bytes(X) is present as a synonym for str(X), and the new literal form b'...' is taken to be the same as the normal
 string literal '...'. You may still run
 into version skew in some isolated cases, though; the 2.6/2.7 bytes call, for instance, does not require or
 allow the second argument (encoding name) that is required by 3.X’s
 bytes.
Python 3.X String Literals
Python 3.X string objects originate when you call a built-in function such as
 str or bytes, read a file created by calling open (described in the next section), or code
 literal syntax in your script. For the latter, a new literal form,
 b'xxx' (and equivalently, B'xxx') is used to create bytes objects in 3.X, and you may create
 bytearray objects by calling the
 bytearray function, with a variety of
 possible arguments.
More formally, in 3.X all the current string literal
 forms—'xxx', "xxx", and triple-quoted blocks—generate a
 str; adding a b or B just
 before any of them creates a bytes
 instead. This new b'...' bytes
 literal is similar in form to the r'...' raw string used to suppress backslash
 escapes. Consider the following, run in 3.X:
C:\code> C:\python33\python
>>> B = b'spam' # 3.X bytes literal make a bytes object (8-bit bytes)
>>> S = 'eggs' # 3.X str literal makes a Unicode text string

>>> type(B), type(S)
(<class 'bytes'>, <class 'str'>)

>>> B # bytes: sequence of int, prints as character string
b'spam'
>>> S
'eggs'
The 3.X bytes object is
 actually a sequence of short integers, though it prints its content as
 characters whenever possible:
>>> B[0], S[0] # Indexing returns an int for bytes, str for str
(115, 'e')
>>> B[1:], S[1:] # Slicing makes another bytes or str object
(b'pam', 'ggs')
>>> list(B), list(S)
([115, 112, 97, 109], ['e', 'g', 'g', 's']) # bytes is really 8-bit small ints
The bytes object is also
 immutable, just like str (though
 bytearray, described later, is not);
 you cannot assign a str, bytes, or integer to an offset of a bytes object.
>>> B[0] = 'x' # Both are immutable
TypeError: 'bytes' object does not support item assignment
>>> S[0] = 'x'
TypeError: 'str' object does not support item assignment
Finally, note that the bytes
 literal’s b or B prefix also works for any string literal
 form, including triple-quoted blocks, though you get back a string of
 raw bytes that may or may not map to characters:
>>> # bytes prefix works on single, double, triple quotes, raw
>>> B = B"""
... xxxx
... yyyy
... """
>>> B
b'\nxxxx\nyyyy\n'
Python 2.X Unicode literals in Python 3.3
Python 2.X’s u'xxx' and
 U'xxx' Unicode string literal forms were removed in Python 3.0 because they
 were deemed redundant—normal strings are Unicode in 3.X. To aid both
 forward and backward compatibility, though, they are available again
 as of 3.3, where they are treated as normal str strings:
C:\code> C:\python33\python
>>> U = u'spam' # 2.X Unicode literal accepted in 3.3+
>>> type(U) # It is just str, but is backward compatible
<class 'str'>
>>> U
'spam'
>>> U[0]
's'
>>> list(U)
['s', 'p', 'a', 'm']
These literals are gone in 3.0 through 3.2, where you must use
 'xxx' instead. You should generally
 use 3.X 'xxx' text literals in new
 3.X-only code, because the 2.X form is superfluous. However, in 3.3
 and later, using the 2.X literal form can ease the task of porting 2.X
 code, and boost 2.X code compatibility (for a case in point, see Chapter 25’s currency
 example, described in an upcoming note). Regardless of how text
 strings are coded in 3.X, though, they are all Unicode, even if they
 contain only ASCII characters (more on writing non-ASCII Unicode text
 in the section “Coding Non-ASCII Text”).

Python 2.X String Literals
All three of the 3.X string forms of the prior section can be
 coded in 2.X, but their meaning differs. As mentioned earlier, in Python
 2.6 and 2.7 the b'xxx' bytes literal
 is present for forward compatibility with 3.X, but is the same as
 'xxx' and makes a str (the b
 is ignored), and bytes is just a
 synonym for str; as you’ve seen, in
 3.X both of these address the distinct bytes type:
C:\code> C:\python27\python
>>> B = b'spam' # 3.X bytes literal is just str in 2.6/2.7
>>> S = 'eggs' # str is a bytes/character sequence

>>> type(B), type(S)
(<type 'str'>, <type 'str'>)
>>> B, S
('spam', 'eggs')
>>> B[0], S[0]
('s', 'e')
>>> list(B), list(S)
(['s', 'p', 'a', 'm'], ['e', 'g', 'g', 's'])
In 2.X the special Unicode literal and type accommodates richer
 forms of text:
>>> U = u'spam' # 2.X Unicode literal makes a distinct type
>>> type(U) # Works in 3.3 too, but is just a str there
<type 'unicode'>
>>> U
u'spam'
>>> U[0]
u's'
>>> list(U)
[u's', u'p', u'a', u'm']
As we saw, for compatibility this form works in 3.3 and later too,
 but it simply makes a normal str there (the
 u is ignored).

String Type Conversions
Although Python 2.X allowed str
 and unicode type objects to be mixed
 in expressions (when the str
 contained only 7-bit ASCII text), 3.X draws a much sharper
 distinction—str and bytes type objects never
 mix automatically in expressions and never are
 converted to one another automatically when passed to functions. A
 function that expects an argument to be a str object won’t generally accept a bytes, and vice versa.
Because of this, Python 3.X basically requires that you commit to
 one type or the other, or perform manual, explicit conversions when
 needed:
	str.encode() and bytes(S, encoding) translate a string to its raw bytes form and create an encoded
 bytes from a decoded str in the process.

	bytes.decode() and str(B, encoding) translate raw bytes into its string form and create a decoded
 str from an encoded bytes in the process.

Both these encode and decode methods and the file open calls we’ll explore ahead use either an explicitly passed-in encoding name or a default. In Python 3.X, the methods’ default is always UTF-8, but open uses a value in the locale module that may vary per platform. In 2.X both defaults are usually ASCII, as exposed in the sys module (which allows changes at start-up). For example, in 3.X:
>>> S = 'eggs'
>>> S.encode() # str->bytes: encode text into raw bytes
b'eggs'
>>> bytes(S, encoding='ascii') # str->bytes, alternative
b'eggs'

>>> B = b'spam'
>>> B.decode() # bytes->str: decode raw bytes into text
'spam'
>>> str(B, encoding='ascii') # bytes->str, alternative
'spam'
Two cautions here. First of all, your platform’s various default encodings are available in the sys and locale modules, but
 the encoding argument to bytes is not
 optional, even though it is in str.encode (and bytes.decode).
Second, although calls to str
 do not require the encoding argument like bytes does, leaving it off in str calls does not mean that it
 defaults—instead, a str call without
 an encoding returns the bytes
 object’s print string, not its str converted form (this is usually not what
 you’ll want!). Assuming B and
 S are still as in the prior
 listing:
>>> import sys, locale # Windows open() uses cp1252 (a Latin-1 superset)
>>> sys.platform # But str() never uses a default...
'win32'
>>> locale.getpreferredencoding(False), sys.getdefaultencoding()
('cp1252', 'utf-8')

>>> bytes(S)
TypeError: string argument without an encoding

>>> str(B) # str without encoding
"b'spam'" # A print string, not conversion!
>>> len(str(B))
7
>>> len(str(B, encoding='ascii')) # Use encoding to convert to str
4
When in doubt, pass in an encoding name argument in 3.X, even if
 it may have a default. Conversions are similar in Python
 2.X, though 2.X’s support for mixing string types in
 expressions makes conversions optional for ASCII text, and the tool
 names differ for the different string type model—conversions in 2.X
 occur between encoded str and decoded
 unicode, rather than 3.X’s encoded
 bytes and decoded str:
>>> S, U = 'spam', u'eggs' # 2.X type string conversion tools
>>> S, U
('spam', u'eggs')
>>> unicode(S), str(U) # 2.X converts str->uni, uni->str
(u'spam', 'eggs')
>>> S.decode(), U.encode() # versus 3.X byte->str, str->bytes
(u'spam', 'eggs')

Coding Unicode Strings
Encoding and decoding become more meaningful when you start dealing with
 non-ASCII Unicode text. To code arbitrary Unicode characters in your
 strings, some of which you might not even be able to type on your
 keyboard, Python string literals support both "\xNN" hex byte value escapes and "\uNNNN" and "\UNNNNNNNN" Unicode escapes in string literals.
 In Unicode escapes, the first form gives four hex digits to encode a
 2-byte (16-bit) character code point, and the second gives eight hex
 digits for a 4-byte (32-bit) code point. Byte strings support only hex
 escapes for encoded text and other forms of byte-based data.
Coding ASCII Text
Let’s step through some examples that demonstrate text coding basics. As we’ve
 seen, ASCII text is a simple type of Unicode, stored as a sequence of
 byte values that represent characters:
C:\code> C:\python33\python
>>> ord('X') # 'X' is binary code point value 88 in the default encoding
88
>>> chr(88) # 88 stands for character 'X'
'X'

>>> S = 'XYZ' # A Unicode string of ASCII text
>>> S
'XYZ'
>>> len(S) # Three characters long
3
>>> [ord(c) for c in S] # Three characters with integer ordinal values
[88, 89, 90]
Normal 7-bit ASCII text like this is represented with one
 character per byte under each of the Unicode encoding schemes described
 earlier in this chapter:
>>> S.encode('ascii') # Values 0..127 in 1 byte (7 bits) each
b'XYZ'
>>> S.encode('latin-1') # Values 0..255 in 1 byte (8 bits) each
b'XYZ'
>>> S.encode('utf-8') # Values 0..127 in 1 byte, 128..2047 in 2, others 3 or 4
b'XYZ'
In fact, the bytes objects
 returned by encoding ASCII text this way are really a sequence of short
 integers, which just happen to print as ASCII characters when
 possible:
>>> S.encode('latin-1')
b'XYZ'
>>> S.encode('latin-1')[0]
88
>>> list(S.encode('latin-1'))
[88, 89, 90]

Coding Non-ASCII Text
Formally, to code non-ASCII characters, we can use:
	Hex or Unicode
 escapes to embed Unicode code point ordinal values in text
 strings—normal string literals in 3.X, and Unicode string
 literals in 2.X (and in 3.3 for compatibility).

	Hex escapes to embed the encoded
 representation of characters in byte
 strings—normal string literals in 2.X, and bytes string
 literals in 3.X (and in 2.X for compatibility).

Note that text strings embed actual code point values, while byte
 strings embed their encoded form. The value of a character’s encoded
 representation in a byte string is the same as its decoded Unicode code
 point value in a text string for only certain characters and encodings.
 In any event, hex escapes are limited to coding a single byte’s value,
 but Unicode escapes can name characters with values 2 and 4 bytes wide.
 The chr function can also be used to create a single non-ASCII character
 from its code point value, and as we’ll see later, source code
 declarations apply to such characters embedded in your script.
For instance, the hex values 0xC4 and 0xE8 are codes for two special accented
 characters outside the 7-bit range of ASCII, but we can embed them in
 3.X str objects because str supports Unicode:
>>> chr(0xc4) # 0xC4, 0xE8: characters outside ASCII's range
'Ä'
>>> chr(0xe8)
'è'

>>> S = '\xc4\xe8' # Single 8-bit value hex escapes: two digits
>>> S
'Äè'

>>> S = '\u00c4\u00e8' # 16-bit Unicode escapes: four digits each
>>> S
'Äè'
>>> len(S) # Two characters long (not number of bytes!)
2
Note that in Unicode text string literals like these, hex and
 Unicode escapes denote a Unicode code point value, not byte values. The
 x hex escapes require exactly two
 digits (for 8-bit code point values), and u and U
 Unicode escapes require exactly four and eight hexadecimal digits,
 respectively, for denoting code point values that can be as big as 16
 and 32 bits will allow:
>>> S = '\U000000c4\U000000e8' # 32-bit Unicode escapes: eight digits each
>>> S
'Äè'
As shown later, Python 2.X works similarly in this regard, but
 Unicode escapes are allowed only in its Unicode literal form. They work
 in normal string literals in 3.X here simply because its normal strings
 are always Unicode.

Encoding and Decoding Non-ASCII text
Now, if we try to encode the prior section’s
 non-ASCII text string into raw bytes as
 ASCII, we’ll get an error, because its characters
 are outside ASCII’s 7-bit code point value range:
>>> S = '\u00c4\u00e8' # Non-ASCII text string, two characters long
>>> S
'Äè'
>>> len(S)
2

>>> S.encode('ascii')
UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-1:
ordinal not in range(128)
Encoding this as Latin-1 works, though,
 because each character falls into that encoding’s 8-bit range, and we
 get 1 byte per character allocated in the encoded byte string. Encoding
 as UTF-8 also works: this encoding supports a wide
 range of Unicode code points, but allocates 2 bytes per non-ASCII
 character instead. If these encoded strings are written to a file, the
 raw bytes shown here for encoding
 results are what is actually stored on the file for the encoding types
 given:
>>> S.encode('latin-1') # 1 byte per character when encoded
b'\xc4\xe8'

>>> S.encode('utf-8') # 2 bytes per character when encoded
b'\xc3\x84\xc3\xa8'

>>> len(S.encode('latin-1')) # 2 bytes in latin-1, 4 in utf-8
2
>>> len(S.encode('utf-8'))
4
Note that you can also go the other way, reading raw bytes from a
 file and decoding them back to a Unicode string.
 However, as we’ll see later, the encoding mode you give to the open call causes this decoding to be done for
 you automatically on input (and avoids issues that may arise from
 reading partial character sequences when reading by blocks of bytes):
>>> B = b'\xc4\xe8' # Text encoded per Latin-1
>>> B
b'\xc4\xe8'
>>> len(B) # 2 raw bytes, two encoded characters
2
>>> B.decode('latin-1') # Decode to text per Latin-1
'Äè'

>>> B = b'\xc3\x84\xc3\xa8' # Text encoded per UTF-8
>>> len(B) # 4 raw bytes, two encoded characters
4
>>> B.decode('utf-8') # Decode to text per UTF-8
'Äè'
>>> len(B.decode('utf-8')) # Two Unicode characters in memory
2

Other Encoding Schemes
Some encodings use even larger byte sequences to represent characters.
 When needed, you can specify both 16- and 32-bit Unicode code point
 values for characters in your strings—as shown earlier, we can use
 "\u..." with four hex digits for the
 former, and "\U..." with eight hex
 digits for the latter, and can mix these in literals with simpler ASCII
 characters freely:
>>> S = 'A\u00c4B\U000000e8C'
>>> S # A, B, C, and 2 non-ASCII characters
'AÄBèC'
>>> len(S) # Five characters long
5

>>> S.encode('latin-1')
b'A\xc4B\xe8C'
>>> len(S.encode('latin-1')) # 5 bytes when encoded per latin-1
5

>>> S.encode('utf-8')
b'A\xc3\x84B\xc3\xa8C'
>>> len(S.encode('utf-8')) # 7 bytes when encoded per utf-8
7
Technically speaking, you can also build Unicode strings piecemeal
 using chr instead of Unicode or hex
 escapes, but this might become tedious for large strings:
>>> S = 'A' + chr(0xC4) + 'B' + chr(0xE8) + 'C'
>>> S
'AÄBèC'
Some other encodings may use very different byte formats,
 though. The cp500
 EBCDIC encoding, for example, doesn’t even encode ASCII the same way as
 the encodings we’ve been using so far; since Python encodes and decodes
 for us, we only generally need to care about this when providing
 encoding names for data sources:
>>> S
'AÄBèC'
>>> S.encode('cp500') # Two other Western European encodings
b'\xc1c\xc2T\xc3'
>>> S.encode('cp850') # 5 bytes each, different encoded values
b'A\x8eB\x8aC'

>>> S = 'spam' # ASCII text is the same in most
>>> S.encode('latin-1')
b'spam'
>>> S.encode('utf-8')
b'spam'
>>> S.encode('cp500') # But not in cp500: IBM EBCDIC!
b'\xa2\x97\x81\x94'
>>> S.encode('cp850')
b'spam'
The same holds true for the UTF-16 and UTF-32 encodings, which use
 fixed 2- and 4-byte-per-character schemes with same-sized
 headers—non-ASCII encodes differently, and ASCII is not 1 byte per
 character:
>>> S = 'A\u00c4B\U000000e8C'
>>> S.encode('utf-16')
b'\xff\xfeA\x00\xc4\x00B\x00\xe8\x00C\x00'

>>> S = 'spam'
>>> S.encode('utf-16')
b'\xff\xfes\x00p\x00a\x00m\x00'
>>> S.encode('utf-32')
b'\xff\xfe\x00\x00s\x00\x00\x00p\x00\x00\x00a\x00\x00\x00m\x00\x00\x00'

Byte String Literals: Encoded Text
Two cautions here too. First, Python 3.X allows special characters to
 be coded with both hex and Unicode escapes in str strings, but only with hex escapes in
 bytes strings—Unicode escape
 sequences are silently taken verbatim in bytes literals, not as escapes. In fact,
 bytes must be decoded to str strings to print their non-ASCII
 characters properly:
>>> S = 'A\xC4B\xE8C' # 3.X: str recognizes hex and Unicode escapes
>>> S
'AÄBèC'
>>> S = 'A\u00C4B\U000000E8C'
>>> S
'AÄBèC'

>>> B = b'A\xC4B\xE8C' # bytes recognizes hex but not Unicode
>>> B
b'A\xc4B\xe8C'
>>> B = b'A\u00C4B\U000000E8C' # Escape sequences taken literally!
>>> B
b'A\\u00C4B\\U000000E8C'

>>> B = b'A\xC4B\xE8C' # Use hex escapes for bytes
>>> B # Prints non-ASCII as hex
b'A\xc4B\xe8C'
>>> print(B)
b'A\xc4B\xe8C'
>>> B.decode('latin-1') # Decode as latin-1 to interpret as text
'AÄBèC'
Second, bytes literals require
 characters either to be ASCII characters or, if their values are greater
 than 127, to be escaped; str strings,
 on the other hand, allow literals containing any character in the source
 character set—which, as discussed later, defaults to UTF-8 in 3.X (and ASCII in 2.X) unless an
 encoding declaration is given in the source file:
>>> S = 'AÄBèC' # Chars from UTF-8 if no encoding declaration
>>> S
'AÄBèC'

>>> B = b'AÄBèC'
SyntaxError: bytes can only contain ASCII literal characters.

>>> B = b'A\xC4B\xE8C' # Chars must be ASCII, or escapes
>>> B
b'A\xc4B\xe8C'
>>> B.decode('latin-1')
'AÄBèC'

>>> S.encode() # Source code encoded per UTF-8 by default
b'A\xc3\x84B\xc3\xa8C' # Uses system default to encode, unless passed
>>> S.encode('utf-8')
b'A\xc3\x84B\xc3\xa8C'

>>> B.decode() # Raw bytes do not correspond to utf-8
UnicodeDecodeError: 'utf8' codec can't decode bytes in position 1-2: ...
Both these constraints make sense if you remember that byte
 strings hold bytes-based data, not decoded Unicode code point ordinals;
 while they may contain the encoded form of text, decoded code point
 values don’t quite apply to byte strings unless the characters are first
 encoded.

Converting Encodings
So far, we’ve been encoding and decoding strings to inspect their structure.
 It’s also possible to convert a string to a
 different encoding than its original, but we must provide an explicit
 encoding name to encode to and decode from. This is true whether the
 original text string originated in a file or a literal.
The term conversion may be a misnomer here—it
 really just means encoding a text string to raw bytes per a different
 encoding scheme than the one it was decoded from. As stressed earlier,
 decoded text in memory has no encoding type, and is simply a string of
 Unicode code points (a.k.a. characters); there is no concept of changing
 its encoding in this form. Still, this scheme allows scripts to read
 data in one encoding and store it in another, to support multiple
 clients of the same data:
>>> B = b'A\xc3\x84B\xc3\xa8C' # Text encoded in UTF-8 format originally
>>> S = B.decode('utf-8') # Decode to Unicode text per UTF-8
>>> S
'AÄBèC'

>>> T = S.encode('cp500') # Convert to encoded bytes per EBCDIC
>>> T
b'\xc1c\xc2T\xc3'

>>> U = T.decode('cp500') # Convert back to Unicode per EBCDIC
>>> U
'AÄBèC'

>>> U.encode() # Per default utf-8 encoding again
b'A\xc3\x84B\xc3\xa8C'
Keep in mind that the special Unicode and hex character escapes
 are only necessary when you code non-ASCII Unicode strings manually. In
 practice, you’ll often load such text from files instead. As we’ll see
 later in this chapter, 3.X’s file object (created with the open built-in function) automatically decodes
 text strings as they are read and encodes them when they are written;
 because of this, your script can often deal with strings generically,
 without having to code special characters directly.
Later in this chapter we’ll also see that it’s possible to convert
 between encodings when transferring strings to and from files, using a
 technique very similar to that in the last example; although you’ll
 still need to provide explicit encoding names when opening a file, the
 file interface does most of the conversion work for you
 automatically.

Coding Unicode Strings in Python 2.X
I stress Python 3.X Unicode support in this chapter because it’s new. But now
 that I’ve shown you the basics of Unicode strings in 3.X, I need to
 explain more fully how you can do much the same in 2.X, though the tools
 differ. unicode is available in
 Python 2.X, but is a distinct type from str, supports most of the same operations, and
 allows mixing of normal and Unicode strings when the str is all ASCII.
In fact, you can essentially pretend 2.X’s str is 3.X’s bytes when it comes to decoding raw bytes into
 a Unicode string, as long as it’s in the proper form. Here is 2.X in
 action; Unicode characters display in hex in 2.X unless you explicitly
 print, and non-ASCII displays can vary per shell (most of this section
 ran outside IDLE, which sometimes detects and prints Latin-1 characters
 in encoded byte strings—see ahead for more on PYTHONIOENCODING and Windows Command Prompt
 display issues):
C:\code> C:\python27\python
>>> S = 'A\xC4B\xE8C' # String of 8-bit bytes
>>> S # Text encoded per Latin-1, some non-ASCII
'A\xc4B\xe8C'
>>> print S # Nonprintable characters (IDLE may differ)
A─BΦC

>>> U = S.decode('latin1') # Decode bytes to Unicode text per latin-1
>>> U
u'A\xc4B\xe8C'
>>> print U
AÄBèC

>>> S.decode('utf-8') # Encoded form not compatible with utf-8
UnicodeDecodeError: 'utf8' codec can't decode byte 0xc4 in position 1: invalid c
ontinuation byte

>>> S.decode('ascii') # Encoded bytes are also outside ASCII range
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc4 in position 1: ordinal
not in range(128)
To code Unicode text, make a unicode object with the u'xxx' literal form (as mentioned, this
 literal is available again in 3.3, but superfluous in 3.X in general,
 since its normal strings support Unicode):
>>> U = u'A\xC4B\xE8C' # Make Unicode string, hex escapes
>>> U
u'A\xc4B\xe8C'
>>> print U
AÄBèC
Once you’ve created it, you can convert Unicode text to different
 raw byte encodings, similar to encoding str objects into bytes objects in 3.X:
>>> U.encode('latin-1') # Encode per latin-1: 8-bit bytes
'A\xc4B\xe8C'
>>> U.encode('utf-8') # Encode per utf-8: multibyte
'A\xc3\x84B\xc3\xa8C'
Non-ASCII characters can be coded with hex or Unicode escapes in
 string literals in 2.X, just as in 3.X. However, as with bytes in 3.X, the "\u..." and "\U..." escapes are recognized only for
 unicode strings in 2.X, not 8-bit
 str strings—again, these are used to
 give the values of decoded Unicode ordinal integers, which don’t make
 sense in a raw byte string:
C:\code> C:\python27\python
>>> U = u'A\xC4B\xE8C' # Hex escapes for non-ASCII
>>> U
u'A\xc4B\xe8C'
>>> print U
AÄBèC

>>> U = u'A\u00C4B\U000000E8C' # Unicode escapes for non-ASCII
>>> U # u'' = 16 bits, U'' = 32 bits
u'A\xc4B\xe8C'
>>> print U
AÄBèC

>>> S = 'A\xC4B\xE8C' # Hex escapes work
>>> S
'A\xc4B\xe8C'
>>> print S # But some may print oddly, unless decoded
A─BΦC
>>> print S.decode('latin-1')
AÄBèC

>>> S = 'A\u00C4B\U000000E8C' # Not Unicode escapes: taken literally!
>>> S
'A\\u00C4B\\U000000E8C'
>>> print S
A\u00C4B\U000000E8C
>>> len(S)
19
Mixing string types in 2.X
Like 3.X’s str and bytes, 2.X’s unicode and str share nearly identical operation sets,
 so unless you need to convert to other encodings you can often treat
 unicode as though it were str. One of the primary differences between
 2.X and 3.X, though, is that unicode and non-Unicode str objects can be freely
 mixed in 2.X expressions—as long as the str is compatible with the unicode object, Python will automatically
 convert it up to unicode:
>>> u'ab' + 'cd' # Can mix if compatible in 2.X
u'abcd' # But 'ab' + b'cd' not allowed in 3.X
However, this liberal approach to mixing string types in 2.X
 works only if the 8-bit string happens to contain
 only 7-bit (ASCII) bytes:
>>> S = 'A\xC4B\xE8C' # Can't mix in 2.X if str is non-ASCII!
>>> U = u'A\xC4B\xE8C'
>>> S + U
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc4 in position 1: ordinal
not in range(128)

>>> 'abc' + U # Can mix only if str is all 7-bit ASCII
u'abcA\xc4B\xe8C'
>>> print 'abc' + U # Use print to display characters
abcAÄBèC

>>> S.decode('latin-1') + U # Manual conversion may be required in 2.X too
u'A\xc4B\xe8CA\xc4B\xe8C'
>>> print S.decode('latin-1') + U
AÄBèCAÄBèC

>>> print u'\xA3' + '999.99' # Also see Chapter 25's currency example
£999.99
By contrast, in 3.X, str and
 bytes never
 mix automatically and require manual conversions—the preceding code
 actually runs in 3.3, but only because 2.X’s Unicode literal is taken
 to be the same as a normal string by 3.X (the u is ignored); the 3.X equivalent would be a
 str added to a bytes (i.e., 'ab' +
 b'cd') which fails in 3.X, unless objects are converted to a
 common type.
In 2.X, though, the difference in types is often trivial to your
 code. Like normal strings, Unicode strings may be concatenated,
 indexed, sliced, matched with the re module, and so on, and they cannot be
 changed in place. If you ever need to convert between the two types
 explicitly, you can use the built-in str and unicode functions as shown earlier:
>>> str(u'spam') # Unicode to normal
'spam'
>>> unicode('spam') # Normal to Unicode
u'spam'
If you are using Python 2.X, also watch for an example of your
 different file interface later in this chapter. Your open call supports only files of 8-bit
 bytes, returning their contents as str strings, and it’s up to you to interpret
 the contents as text or binary data and decode if needed. To read and
 write Unicode files and encode or decode their content automatically,
 use 2.X’s codecs.open call we’ll
 see in action later in this chapter. This call provides much the same
 functionality as 3.X’s open and
 uses 2.X unicode objects to
 represent file content—reading a file translates encoded bytes into
 decoded Unicode characters, and writing translates strings to the
 desired encoding specified when the file is opened.

Source File Character Set Encoding Declarations
Finally, Unicode escape codes are fine for the occasional Unicode character in
 string literals, but they can become tedious if you need to embed
 non-ASCII text in your strings frequently. To interpret the content of
 strings you code and hence embed within the text of your script files,
 Python uses UTF-8 in 3.X (and ASCII in 2.X) as its default encoding, but allows you to use arbitrary encodings and the character sets they support by including a comment that names your desired encoding. The comment is usually of this form and must appear as either the first or second line in your script in either Python 2.X or 3.X:
-*- coding: latin-1 -*-
When a comment of this form is present, Python will recognize
 strings represented natively in the given encoding. This means you can
 edit your script file in a text editor that accepts and displays
 accented and other non-ASCII characters correctly, and Python will
 decode them correctly in your string literals. For example, notice how
 the comment at the top of the following file, text.py, allows Latin-1 characters to be
 embedded in strings, which are themselves embedded in the script file’s
 text:
-*- coding: latin-1 -*-
Any of the following string literal forms work in latin-1.
Changing the encoding above to either ascii or utf-8 fails,
because the 0xc4 and 0xe8 in myStr1 are not valid in either.

myStr1 = 'aÄBèC'

myStr2 = 'A\u00c4B\U000000e8C'

myStr3 = 'A' + chr(0xC4) + 'B' + chr(0xE8) + 'C'

import sys
print('Default encoding:', sys.getdefaultencoding())

for aStr in myStr1, myStr2, myStr3:
 print('{0}, strlen={1}, '.format(aStr, len(aStr)), end='')

 bytes1 = aStr.encode() # Per default utf-8: 2 bytes for non-ASCII
 bytes2 = aStr.encode('latin-1') # One byte per char
 #bytes3 = aStr.encode('ascii') # ASCII fails: outside 0..127 range

 print('byteslen1={0}, byteslen2={1}'.format(len(bytes1), len(bytes2)))
When run, this script produces the following output, giving, for
 each of three coding techniques, the string, its length, and the lengths
 of its UTF-8 and Latin-1 encoded byte string forms.
C:\code> C:\python33\python text.py
Default encoding: utf-8
aÄBèC, strlen=5, byteslen1=7, byteslen2=5
AÄBèC, strlen=5, byteslen1=7, byteslen2=5
AÄBèC, strlen=5, byteslen1=7, byteslen2=5
Since many programmers are likely to fall back on the default
 source encodings, I’ll defer to Python’s standard manual set for more
 details on this option and other advanced Unicode support topics, such
 as properties and character name escapes in strings I’m omitting here.
 For this chapter, let’s take a quick look at the new byte string object
 types in Python 3.X, before moving on to its file and tool changes.
Note
For an additional example of non-ASCII character coding and
 source file declarations, see the currency symbols used in the money
 formatting example of Chapter 25, as
 well as its associated file in this book’s examples package, formats_currency2.py. The latter requires a
 source-file declaration to be usable by Python, because it embeds
 non-ASCII currency symbol characters. This example also illustrates
 the portability gains possible when using 2.X’s Unicode literal in 3.X
 code in 3.3 and later.

Using 3.X bytes Objects
We studied a wide variety of operations available for Python 3.X’s general
 str string type in Chapter 7; the basic string type works identically
 in 2.X and 3.X, so we won’t rehash this topic. Instead, let’s dig a bit
 deeper into the operation sets provided by the new bytes type in 3.X.
As mentioned previously, the 3.X bytes object is a sequence of small integers,
 each of which is in the range 0 through 255, that happens to print as
 ASCII characters when displayed. It supports sequence operations and most
 of the same methods available on str
 objects (and present in 2.X’s str
 type). However, bytes does
 not support the format method or the % formatting expression, and you cannot mix and
 match bytes and str type objects without explicit
 conversions—you generally will use all str type objects and text files for
 text data, and all bytes type objects and binary files for
 binary data.
Method Calls
If you really want to see what attributes str has
 that bytes doesn’t, you can always
 check their dir built-in function
 results. The output can also tell you something about the expression
 operators they support (e.g., __mod__
 and __rmod__ implement the % operator):
C:\code> C:\python33\python

Attributes in str but not bytes
>>> set(dir('abc')) - set(dir(b'abc'))
{'isdecimal', '__mod__', '__rmod__', 'format_map', 'isprintable',
'casefold', 'format', 'isnumeric', 'isidentifier', 'encode'}

Attributes in bytes but not str
>>> set(dir(b'abc')) - set(dir('abc'))
{'decode', 'fromhex'}
As you can see, str and
 bytes have almost identical
 functionality. Their unique attributes are generally methods that don’t
 apply to the other; for instance, decode translates a raw bytes into its str representation, and encode translates a string into its raw
 bytes representation. Most of the
 methods are the same, though bytes
 methods require bytes arguments
 (again, 3.X string types don’t mix). Also recall that bytes objects are immutable, just like
 str objects in both 2.X and 3.X
 (error messages here have been shortened for brevity):
>>> B = b'spam' # b'...' bytes literal
>>> B.find(b'pa')
1

>>> B.replace(b'pa', b'XY') # bytes methods expect bytes arguments
b'sXYm'

>>> B.split(b'pa') # bytes methods return bytes results
[b's', b'm']

>>> B
b'spam'
>>> B[0] = 'x'
TypeError: 'bytes' object does not support item assignment
One notable difference is that string formatting works only
 on str objects in 3.X, not on
 bytes objects (see Chapter 7 for more on string formatting
 expressions and methods):
>>> '%s' % 99
'99'
>>> b'%s' % 99
TypeError: unsupported operand type(s) for %: 'bytes' and 'int'

>>> '{0}'.format(99)
'99'
>>> b'{0}'.format(99)
AttributeError: 'bytes' object has no attribute 'format'

Sequence Operations
Besides method calls, all the usual generic sequence operations you know (and
 possibly love) from Python 2.X strings and lists work as expected on
 both str and bytes in 3.X; this includes indexing, slicing,
 concatenation, and so on. Notice in the following that indexing a
 bytes object returns an integer
 giving the byte’s binary value; bytes
 really is a sequence of 8-bit integers, but for
 convenience prints as a string of ASCII-coded characters where possible
 when displayed as a whole. To check a given byte’s value, use the
 chr built-in to convert it back to
 its character, as in the following:
>>> B = b'spam' # A sequence of small ints
>>> B # Prints as ASCII characters (and/or hex escapes)
b'spam'

>>> B[0] # Indexing yields an int
115
>>> B[-1]
109

>>> chr(B[0]) # Show character for int
's'
>>> list(B) # Show all the byte's int values
[115, 112, 97, 109]

>>> B[1:], B[:-1]
(b'pam', b'spa')
>>> len(B)
4
>>> B + b'lmn'
b'spamlmn'
>>> B * 4
b'spamspamspamspam'

Other Ways to Make bytes Objects
So far, we’ve been mostly making bytes
 objects with the b'...' literal
 syntax. We can also create them by calling the bytes constructor with a str and an encoding name, calling the bytes constructor with an iterable of integers
 representing byte values, or encoding a str object per the default (or passed-in)
 encoding. As we’ve seen, encoding takes a text str and returns the raw encoded byte values of
 the string per the encoding specified; conversely, decoding takes a raw
 bytes sequence and translates it to
 its str text string representation—a
 series of Unicode characters. Both operations create new string
 objects:
>>> B = b'abc' # Literal
>>> B
b'abc'

>>> B = bytes('abc', 'ascii') # Constructor with encoding name
>>> B
b'abc'

>>> ord('a')
97
>>> B = bytes([97, 98, 99]) # Integer iterable
>>> B
b'abc'

>>> B = 'spam'.encode() # str.encode() (or bytes())
>>> B
b'spam'
>>>
>>> S = B.decode() # bytes.decode() (or str())
>>> S
'spam'
From a functional perspective, the last two of these operations
 are really tools for converting between str and bytes, a topic introduced earlier and expanded
 upon in the next section.

Mixing String Types
In the replace call of the
 section “Method Calls”, we had to
 pass in two bytes objects—str types won’t work there. Although Python
 2.X automatically converts str to and
 from unicode when possible (i.e.,
 when the str is 7-bit ASCII text),
 Python 3.X requires specific string types in some contexts and expects
 manual conversions if needed:
Must pass expected types to function and method calls

>>> B = b'spam'

>>> B.replace('pa', 'XY')
TypeError: expected an object with the buffer interface

>>> B.replace(b'pa', b'XY')
b'sXYm'

>>> B = B'spam'
>>> B.replace(bytes('pa'), bytes('xy'))
TypeError: string argument without an encoding

>>> B.replace(bytes('pa', 'ascii'), bytes('xy', 'utf-8'))
b'sxym'

Must convert manually in 3.X mixed-type expressions

>>> b'ab' + 'cd'
TypeError: can't concat bytes to str

>>> b'ab'.decode() + 'cd' # bytes to str
'abcd'
>>> b'ab' + 'cd'.encode() # str to bytes
b'abcd'
>>> b'ab' + bytes('cd', 'ascii') # str to bytes
b'abcd'
Although you can create bytes
 objects yourself to represent packed binary data, they can also be made
 automatically by reading files opened in binary mode, as we’ll see in
 more detail later in this chapter. First, though, let’s introduce
 bytes’s very close, and mutable,
 cousin.

Using 3.X/2.6+ bytearray Objects
So far we’ve focused on str and bytes, because they subsume Python 2’s unicode and str. Python 3.X grew a third string type,
 though—bytearray, a mutable sequence of
 integers in the range 0 through 255, which is a mutable variant of
 bytes. As such, it supports the same
 string methods and sequence operations as bytes, as well as many of the mutable
 in-place-change operations supported by lists.
Bytearrays support in-place changes to both truly binary data as
 well as simple forms of text such as ASCII, which can be represented with
 1 byte per character (richer Unicode text generally requires Unicode
 strings, which are still immutable). The bytearray type is also available in Python 2.6
 and 2.7 as a back-port from 3.X, but it does not enforce the strict
 text/binary distinction there that it does in 3.X.
bytearrays in Action
Let’s take a quick tour. We can create bytearray objects by calling the bytearray built-in. In Python 2.X, any string
 may be used to initialize:
Creation in 2.6/2.7: a mutable sequence of small (0..255) ints

>>> S = 'spam'
>>> C = bytearray(S) # A back-port from 3.X in 2.6+
>>> C # b'..' == '..' in 2.6+ (str)
bytearray(b'spam')
In Python 3.X, an encoding name or byte string is required,
 because text and binary strings do not mix (though byte strings may
 reflect encoded Unicode text):
Creation in 3.X: text/binary do not mix

>>> S = 'spam'
>>> C = bytearray(S)
TypeError: string argument without an encoding

>>> C = bytearray(S, 'latin1') # A content-specific type in 3.X
>>> C
bytearray(b'spam')

>>> B = b'spam' # b'..' != '..' in 3.X (bytes/str)
>>> C = bytearray(B)
>>> C
bytearray(b'spam')
Once created, bytearray objects
 are sequences of small integers like bytes and are mutable like lists, though they
 require an integer for index assignments, not a string (all of the
 following is a continuation of this session and is run under Python 3.X
 unless otherwise noted—see comments for 2.X usage notes):
Mutable, but must assign ints, not strings

>>> C[0]
115

>>> C[0] = 'x' # This and the next work in 2.6/2.7
TypeError: an integer is required
>>> C[0] = b'x'
TypeError: an integer is required

>>> C[0] = ord('x') # Use ord() to get a character's ordinal
>>> C
bytearray(b'xpam')

>>> C[1] = b'Y'[0] # Or index a byte string
>>> C
bytearray(b'xYam')
Processing bytearray objects
 borrows from both strings and lists, since they are mutable byte
 strings. While the byterrray’s
 methods overlap with both str and
 bytes, it also has many of the
 list’s mutable methods. Besides named
 methods, the __iadd__ and
 __setitem__ methods in bytearray implement
 += in-place concatenation and index assignment, respectively:
in bytes but not bytearray
>>> set(dir(b'abc')) - set(dir(bytearray(b'abc')))
{'__getnewargs__'}

in bytearray but not bytes
>>> set(dir(bytearray(b'abc'))) - set(dir(b'abc'))
{'__iadd__', 'reverse', '__setitem__', 'extend', 'copy', '__alloc__',
'__delitem__', '__imul__', 'remove', 'clear', 'insert', 'append', 'pop'}
You can change a bytearray in
 place with both index assignment, as you’ve just seen, and list-like
 methods like those shown here (to change text in place prior to 2.6, you
 would need to convert to and then from a list, with list(str) and ''.join(list)—see Chapter 4 and Chapter 6 for examples):
Mutable method calls

>>> C
bytearray(b'xYam')

>>> C.append(b'LMN') # 2.X requires string of size 1
TypeError: an integer is required

>>> C.append(ord('L'))
>>> C
bytearray(b'xYamL')

>>> C.extend(b'MNO')
>>> C
bytearray(b'xYamLMNO')
All the usual sequence operations and string methods work on
 bytearrays, as you would expect
 (notice that like bytes objects,
 their expressions and methods expect bytes arguments, not str arguments):
Sequence operations and string methods

>>> C
bytearray(b'xYamLMNO')

>>> C + b'!#'
bytearray(b'xYamLMNO!#')
>>> C[0]
120
>>> C[1:]
bytearray(b'YamLMNO')
>>> len(C)
8

>>> C.replace('xY', 'sp') # This works in 2.X
TypeError: Type str doesn't support the buffer API
>>> C.replace(b'xY', b'sp')
bytearray(b'spamLMNO')

>>> C
bytearray(b'xYamLMNO')
>>> C * 4
bytearray(b'xYamLMNOxYamLMNOxYamLMNOxYamLMNO')

Python 3.X String Types Summary
Finally, by way of summary, the following examples demonstrate how
 bytes and bytearray objects are sequences of ints, and str objects are sequences of
 characters:
Binary versus text

>>> B # B is same as S in 2.6/2.7
b'spam'
>>> list(B)
[115, 112, 97, 109]

>>> C
bytearray(b'xYamLMNO')
>>> list(C)
[120, 89, 97, 109, 76, 77, 78, 79]

>>> S
'spam'
>>> list(S)
['s', 'p', 'a', 'm']
Although all three Python 3.X string types can contain character
 values and support many of the same operations, again, you should
 always:
	Use str for textual
 data.

	Use bytes for binary
 data.

	Use bytearray for binary
 data you wish to change in place.

Related tools such as files, the next section’s topic, often make
 the choice for you.

Using Text and Binary Files
This section expands on the impact of Python 3.X’s string model on
 the file processing basics introduced earlier in the book. As mentioned
 earlier, the mode in which you open a file is crucial—it determines which
 object type you will use to represent the file’s content in your script.
 Text mode implies str objects, and
 binary mode implies bytes
 objects:
	Text-mode files interpret file contents according to a Unicode
 encoding—either the default for your platform, or
 one whose name you pass in. By passing in an encoding name to open, you can force conversions for various
 types of Unicode files. Text-mode files also perform universal
 line-end translations: by default, all line-end
 forms map to the single '\n'
 character in your script, regardless of the platform on which you run
 it. As described earlier, text files also handle reading and writing
 the byte order mark (BOM) stored at the
 start-of-file in some Unicode encoding schemes.

	Binary-mode files instead return file content to you raw, as a
 sequence of integers representing byte values, with no encoding or
 decoding and no line-end translations.

The second argument to open
 determines whether you want text or binary processing, just as it does in
 2.X Python—adding a b to this string
 implies binary mode (e.g., "rb" to read
 binary data files). The default mode is "rt"; this is the same as "r", which means text input (just as in
 2.X).
In 3.X, though, this mode argument to open also implies an object
 type for file content representation, regardless of the
 underlying platform—text files return a str for reads and expect one for writes, but
 binary files return a bytes for reads
 and expect one (or a bytearray) for
 writes.
Text File Basics
To demonstrate, let’s begin with basic file I/O. As long as you’re
 processing basic text files (e.g., ASCII) and don’t care about
 circumventing the platform-default encoding of strings, files in 3.X
 look and feel much as they do in 2.X (for that matter, so do strings in
 general). The following, for instance, writes one line of text to a file
 and reads it back in 3.X, exactly as it would in 2.X (note that file is no longer a built-in name in 3.X, so
 it’s perfectly OK to use it as a variable here):
C:\code> C:\python33\python
Basic text files (and strings) work the same as in 2.X

>>> file = open('temp', 'w')
>>> size = file.write('abc\n') # Returns number of characters written
>>> file.close() # Manual close to flush output buffer

>>> file = open('temp') # Default mode is "r" (== "rt"): text input
>>> text = file.read()
>>> text
'abc\n'
>>> print(text)
abc

Text and Binary Modes in 2.X and 3.X
In Python 2.X, there is no major distinction between text and binary files—both
 accept and return content as str
 strings. The only major difference is that text files automatically map
 \n end-of-line characters to and from
 \r\n on Windows, while binary files
 do not (I’m stringing operations together into one-liners here just for
 brevity):
C:\code> C:\python27\python
>>> open('temp', 'w').write('abd\n') # Write in text mode: adds \r
>>> open('temp', 'r').read() # Read in text mode: drops \r
'abd\n'
>>> open('temp', 'rb').read() # Read in binary mode: verbatim
'abd\r\n'

>>> open('temp', 'wb').write('abc\n') # Write in binary mode
>>> open('temp', 'r').read() # \n not expanded to \r\n
'abc\n'
>>> open('temp', 'rb').read()
'abc\n'
In Python 3.X, things are a bit more complex because of the
 distinction between str for text data
 and bytes for binary data. To
 demonstrate, let’s write a text file and read it
 back in both modes in 3.X. Notice that we are required to provide a
 str for writing, but reading gives us
 a str or a bytes, depending on the open mode:
C:\code> C:\python33\python
Write and read a text file
>>> open('temp', 'w').write('abc\n') # Text mode output, provide a str
4
>>> open('temp', 'r').read() # Text mode input, returns a str
'abc\n'
>>> open('temp', 'rb').read() # Binary mode input, returns a bytes
b'abc\r\n'
Notice how on Windows text-mode files translate the \n end-of-line character
 to \r\n on output; on input, text
 mode translates the \r\n back to
 \n, but binary-mode files do not.
 This is the same in 2.X, and it’s normally what we want—text files
 should for portability map end-of-line markers to and from \n (which is what is actually present in files
 in Linux, where no mapping occurs), and such translations should never
 occur for binary data (where end-of-line bytes are irrelevant). Although
 you can control this behavior with extra open arguments in 3.X if desired, the default
 usually works well.
Now let’s do the same again, but with a binary
 file. We provide a bytes
 to write in this case, and we still get back a str or a bytes, depending on the input mode:
Write and read a binary file
>>> open('temp', 'wb').write(b'abc\n') # Binary mode output, provide a bytes
4
>>> open('temp', 'r').read() # Text mode input, returns a str
'abc\n'
>>> open('temp', 'rb').read() # Binary mode input, returns a bytes
b'abc\n'
Note that the \n end-of-line
 character is not expanded to \r\n in
 binary-mode output—again, a desired result for binary data. Type
 requirements and file behavior are the same even if the data we’re
 writing to the binary file is truly binary in nature. In the following,
 for example, the "\x00" is a binary
 zero byte and not a printable character:
Write and read truly binary data
>>> open('temp', 'wb').write(b'a\x00c') # Provide a bytes
3
>>> open('temp', 'r').read() # Receive a str
'a\x00c'
>>> open('temp', 'rb').read() # Receive a bytes
b'a\x00c'
Binary-mode files always return contents as a bytes object, but accept either a bytes or bytearray object for writing; this naturally
 follows, given that bytearray is
 basically just a mutable variant of bytes. In fact, most APIs in Python 3.X that
 accept a bytes also allow a bytearray:
bytearrays work too
>>> BA = bytearray(b'\x01\x02\x03')

>>> open('temp', 'wb').write(BA)
3
>>> open('temp', 'r').read()
'\x01\x02\x03'
>>> open('temp', 'rb').read()
b'\x01\x02\x03'

Type and Content Mismatches in 3.X
Notice that you cannot get away with violating Python’s str/bytes
 type distinction when it comes to files. As the following examples
 illustrate, we get errors (shortened here) if we try to write a bytes to a text file or a str to a binary file (the exact text of the
 error messages here is prone to change):
Types are not flexible for file content
>>> open('temp', 'w').write('abc\n') # Text mode makes and requires str
4
>>> open('temp', 'w').write(b'abc\n')
TypeError: must be str, not bytes

>>> open('temp', 'wb').write(b'abc\n') # Binary mode makes and requires bytes
4
>>> open('temp', 'wb').write('abc\n')
TypeError: 'str' does not support the buffer interface
This makes sense: text has no meaning in binary terms, before it
 is encoded. Although it is often possible to convert between the types
 by encoding str and decoding bytes, as described earlier in this chapter,
 you will usually want to stick to either str for text data or bytes for binary data. Because the str and bytes operation sets largely intersect, the
 choice won’t be much of a dilemma for most programs (see the string
 tools coverage in the final section of this chapter for some prime
 examples of this).
In addition to type constraints, file content
 can matter in 3.X. Text-mode output files require a str instead of a bytes for content, so there is no way in 3.X
 to write truly binary data to a text-mode file. Depending on the
 encoding rules, bytes outside the default character set can sometimes be
 embedded in a normal string, and they can always be written in binary
 mode (some of the following raise errors when displaying their string
 results in Pythons prior to 3.3, but the file operations work
 successfully):
Can't read truly binary data in text mode
>>> chr(0xFF) # FF is a valid char, FE is not
'ÿ'
>>> chr(0xFE) # An error in some Pythons
'\xfe'

>>> open('temp', 'w').write(b'\xFF\xFE\xFD') # Can't use arbitrary bytes!
TypeError: must be str, not bytes

>>> open('temp', 'w').write('\xFF\xFE\xFD') # Can write if embeddable in str
3
>>> open('temp', 'wb').write(b'\xFF\xFE\xFD') # Can also write in binary mode
3

>>> open('temp', 'rb').read() # Can always read as binary bytes
b'\xff\xfe\xfd'

>>> open('temp', 'r').read() # Can't read text unless decodable!
'ÿ\xfe\xfd' # An error in some Pythons
In general, however, because text-mode input files in 3.X must be
 able to decode content per a Unicode encoding, there is no way to read
 truly binary data in text mode, as the next section explains.

Using Unicode Files
So far, we’ve been reading and writing basic text and binary files. It turns
 out to be easy to read and write Unicode text stored in files too, because
 the 3.X open call accepts an encoding
 for text files, and arranges to run the required encoding and decoding for
 us automatically as data is transferred. This allows us to process a
 variety of Unicode text created with different encodings than the default
 for the platform, and store the same text in different encodings for
 different purposes.
Reading and Writing Unicode in 3.X
In fact, we can effectively convert a string
 to different encoded forms both manually with method calls as we did
 earlier, and automatically on file input and output. We’ll use the
 following Unicode string in this section to demonstrate:
C:\code> C:\python33\python
>>> S = 'A\xc4B\xe8C' # Five-character decoded string, non-ASCII
>>> S
'AÄBèC'
>>> len(S)
5
Manual encoding
As we’ve already learned, we can always encode such a string to
 raw bytes according to the target encoding name:
Encode manually with methods
>>> L = S.encode('latin-1') # 5 bytes when encoded as latin-1
>>> L
b'A\xc4B\xe8C'
>>> len(L)
5

>>> U = S.encode('utf-8') # 7 bytes when encoded as utf-8
>>> U
b'A\xc3\x84B\xc3\xa8C'
>>> len(U)
7

File output encoding
Now, to write our string to a text file in a particular
 encoding, we can simply pass the desired encoding name to open—although we could manually encode first
 and write in binary mode, there’s no need to:
Encoding automatically when written
>>> open('latindata', 'w', encoding='latin-1').write(S) # Write as latin-1
5
>>> open('utf8data', 'w', encoding='utf-8').write(S) # Write as utf-8
5

>>> open('latindata', 'rb').read() # Read raw bytes
b'A\xc4B\xe8C'

>>> open('utf8data', 'rb').read() # Different in files
b'A\xc3\x84B\xc3\xa8C'

File input decoding
Similarly, to read arbitrary Unicode data, we simply pass in the
 file’s encoding type name to open,
 and it decodes from raw bytes to strings automatically; we could read
 raw bytes and decode manually too, but that can be tricky when reading
 in blocks (we might read an incomplete character), and it isn’t
 necessary:
Decoding automatically when read
>>> open('latindata', 'r', encoding='latin-1').read() # Decoded on input
'AÄBèC'
>>> open('utf8data', 'r', encoding='utf-8').read() # Per encoding type
'AÄBèC'

>>> X = open('latindata', 'rb').read() # Manual decoding:
>>> X.decode('latin-1') # Not necessary
'AÄBèC'
>>> X = open('utf8data', 'rb').read()
>>> X.decode() # UTF-8 is default
'AÄBèC'

Decoding mismatches
Finally, keep in mind that this behavior of files in 3.X limits
 the kind of content you can load as text. As suggested in the prior
 section, Python 3.X really must be able to decode the data in text
 files into a str string, according
 to either the default or a passed-in Unicode encoding name. Trying to
 open a truly binary data file in text mode, for example, is unlikely
 to work in 3.X even if you use the correct object types:
>>> file = open(r'C:\Python33\python.exe', 'r')
>>> text = file.read()
UnicodeDecodeError: 'charmap' codec can't decode byte 0x90 in position 2: ...

>>> file = open(r'C:\Python33\python.exe', 'rb')
>>> data = file.read()
>>> data[:20]
b'MZ\x90\x00\x03\x00\x00\x00\x04\x00\x00\x00\xff\xff\x00\x00\xb8\x00\x00\x00'
The first of these examples might not fail in Python 2.X (normal
 files do not decode text), even though it probably should: reading the
 file may return corrupted data in the string, due to automatic
 end-of-line translations in text mode (any embedded \r\n bytes will be translated to \n on Windows when read). To treat file
 content as Unicode text in 2.X, we need to use special tools instead
 of the general open built-in
 function, as we’ll see in a moment. First, though, let’s turn to a
 more explosive topic.

Handling the BOM in 3.X
As described earlier in this chapter, some encoding schemes store a special byte order
 mark (BOM) sequence at the start of files, to specify
 data endianness (which end of a
 string of bits is most significant to its value) or declare the encoding
 type. Python both skips this marker on input and writes it on output if
 the encoding name implies it, but we sometimes must use a specific
 encoding name to force BOM processing explicitly.
For example, in the UTF-16 and UTF-32 encodings, the BOM
 specifies big- or little-endian format. A UTF-8 text file
 may also include a BOM, but this isn’t guaranteed, and serves only to
 declare that it is UTF-8 in general. When reading and writing data using
 these encoding schemes, Python automatically skips or writes the BOM if
 it is either implied by a general encoding name, or if you provide a
 more specific encoding name to force the issue. For instance:
	In UTF-16, the BOM is always processed for “utf-16,” and the
 more specific encoding name “utf-16-le” denotes little-endian
 format.

	In UTF-8, the more specific encoding “utf-8-sig” forces Python
 to both skip and write a BOM on input and output, respectively, but
 the general “utf-8” does not.

Dropping the BOM in Notepad
Let’s make some files with BOMs to see how this works in
 practice. When you save a text file in Windows Notepad, you can
 specify its encoding type in a drop-down list—simple ASCII text,
 UTF-8, or little- or big-endian UTF-16. If a two-line text file named
 spam.txt is saved in Notepad as
 the encoding type ANSI, for instance, it’s
 written as simple ASCII text without a BOM. When this file is read in
 binary mode in Python, we can see the actual bytes stored in the file.
 When it’s read as text, Python performs end-of-line translation by
 default; we can also decode it as explicit UTF-8 text since ASCII is a
 subset of this scheme (or Latin-1’s cp1252 superset, which is Python 3.X’s default open encoding on Windows per locale.getpreferredencoding):
C:\code> C:\python33\python # File saved in Notepad
>>> import sys, locale
>>> locale.getpreferredencoding(False)
'cp1252'
>>> open('spam.txt', 'rb').read() # ASCII (UTF-8) text file
b'spam\r\nSPAM\r\n'
>>> open('spam.txt', 'r').read() # Text mode translates line end
'spam\nSPAM\n'
>>> open('spam.txt', 'r', encoding='utf-8').read()
'spam\nSPAM\n'
If this file is instead saved as UTF-8 in
 Notepad, it is prepended with a 3-byte UTF-8 BOM sequence, and we need
 to give a more specific encoding name (“utf-8-sig”) to force Python to
 skip the marker:
>>> open('spam.txt', 'rb').read() # UTF-8 with 3-byte BOM
b'\xef\xbb\xbfspam\r\nSPAM\r\n'
>>> open('spam.txt', 'r').read()
'ï»¿spam\nSPAM\n'
>>> open('spam.txt', 'r', encoding='utf-8').read()
'\ufeffspam\nSPAM\n'
>>> open('spam.txt', 'r', encoding='utf-8-sig').read()
'spam\nSPAM\n'
If the file is stored as Unicode big endian
 in Notepad, we get UTF-16-format data in the file, with 2-byte
 (16-bit) characters prepended with a 2-byte BOM sequence—the encoding
 name “utf-16” in Python skips the BOM because it is implied (since all
 UTF-16 files have a BOM), and “utf-16-be” handles the big-endian
 format but does not skip the BOM (the second of the following fails to
 print on older Pythons):
>>> open('spam.txt', 'rb').read()
b'\xfe\xff\x00s\x00p\x00a\x00m\x00\r\x00\n\x00S\x00P\x00A\x00M\x00\r\x00\n'
>>> open('spam.txt', 'r').read()
'\xfeÿ\x00s\x00p\x00a\x00m\x00\n\x00\n\x00S\x00P\x00A\x00M\x00\n\x00\n'
>>> open('spam.txt', 'r', encoding='utf-16').read()
'spam\nSPAM\n'
>>> open('spam.txt', 'r', encoding='utf-16-be').read()
'\ufeffspam\nSPAM\n'
Notepad’s “Unicode,” by the way, is UTF-16 little endian (which,
 of course, is one of very many kinds of Unicode encoding!).

Dropping the BOM in Python
The same patterns generally hold true for
 output. When writing a Unicode file in Python
 code, we need a more explicit encoding name to force the BOM in
 UTF-8—“utf-8” does not write (or skip) the BOM, but “utf-8-sig”
 does:
>>> open('temp.txt', 'w', encoding='utf-8').write('spam\nSPAM\n')
10
>>> open('temp.txt', 'rb').read() # No BOM
b'spam\r\nSPAM\r\n'

>>> open('temp.txt', 'w', encoding='utf-8-sig').write('spam\nSPAM\n')
10
>>> open('temp.txt', 'rb').read() # Wrote BOM
b'\xef\xbb\xbfspam\r\nSPAM\r\n'

>>> open('temp.txt', 'r').read()
'ï»¿spam\nSPAM\n'
>>> open('temp.txt', 'r', encoding='utf-8').read() # Keeps BOM
'\ufeffspam\nSPAM\n'
>>> open('temp.txt', 'r', encoding='utf-8-sig').read() # Skips BOM
'spam\nSPAM\n'
Notice that although “utf-8” does not drop the BOM, data
 without a BOM can be read with both “utf-8” and
 “utf-8-sig”—use the latter for input if you’re not sure whether a BOM
 is present in a file (and don’t read this paragraph out loud in an
 airport security line!):
>>> open('temp.txt', 'w').write('spam\nSPAM\n')
10
>>> open('temp.txt', 'rb').read() # Data without BOM
b'spam\r\nSPAM\r\n'

>>> open('temp.txt', 'r').read() # Either utf-8 works
'spam\nSPAM\n'
>>> open('temp.txt', 'r', encoding='utf-8').read()
'spam\nSPAM\n'
>>> open('temp.txt', 'r', encoding='utf-8-sig').read()
'spam\nSPAM\n'
Finally, for the encoding name “utf-16,” the BOM is handled
 automatically: on output, data is written in the
 platform’s native endianness, and the BOM is always written; on
 input, data is decoded per the BOM, and the BOM
 is always stripped because it’s standard in this scheme:
>>> sys.byteorder
'little'
>>> open('temp.txt', 'w', encoding='utf-16').write('spam\nSPAM\n')
10
>>> open('temp.txt', 'rb').read()
b'\xff\xfes\x00p\x00a\x00m\x00\r\x00\n\x00S\x00P\x00A\x00M\x00\r\x00\n\x00'
>>> open('temp.txt', 'r', encoding='utf-16').read()
'spam\nSPAM\n'
More specific UTF-16 encoding names can specify different
 endianness, though you may have to manually write and skip the BOM
 yourself in some scenarios if it is required or present—study the
 following examples for more BOM-making instructions:
>>> open('temp.txt', 'w', encoding='utf-16-be').write('\ufeffspam\nSPAM\n')
11
>>> open('spam.txt', 'rb').read()
b'\xfe\xff\x00s\x00p\x00a\x00m\x00\r\x00\n\x00S\x00P\x00A\x00M\x00\r\x00\n'
>>> open('temp.txt', 'r', encoding='utf-16').read()
'spam\nSPAM\n'
>>> open('temp.txt', 'r', encoding='utf-16-be').read()
'\ufeffspam\nSPAM\n'
The more specific UTF-16 encoding names work fine with BOM-less
 files, though “utf-16” requires one on input in order to determine
 byte order:
>>> open('temp.txt', 'w', encoding='utf-16-le').write('SPAM')
4
>>> open('temp.txt', 'rb').read() # OK if BOM not present or expected
b'S\x00P\x00A\x00M\x00'
>>> open('temp.txt', 'r', encoding='utf-16-le').read()
'SPAM'
>>> open('temp.txt', 'r', encoding='utf-16').read()
UnicodeError: UTF-16 stream does not start with BOM
Experiment with these encodings yourself or see Python’s library
 manuals for more details on the BOM.

Unicode Files in 2.X
The preceding discussion applies to Python 3.X’s string types and files.
 You can achieve similar effects for Unicode files in 2.X, but the
 interface is different. However, if you replace str with
 unicode and open with codecs.open, the result is essentially the
 same in 3.X:
C:\code> C:\python27\python
>>> S = u'A\xc4B\xe8C' # 2.X type
>>> print S
AÄBèC
>>> len(S)
5
>>> S.encode('latin-1') # Manual calls
'A\xc4B\xe8C'
>>> S.encode('utf-8')
'A\xc3\x84B\xc3\xa8C'

>>> import codecs # 2.X files
>>> codecs.open('latindata', 'w', encoding='latin-1').write(S) # Writes encode
>>> codecs.open('utfdata', 'w', encoding='utf-8').write(S)

>>> open('latindata', 'rb').read()
'A\xc4B\xe8C'
>>> open('utfdata', 'rb').read()
'A\xc3\x84B\xc3\xa8C'

>>> codecs.open('latindata', 'r', encoding='latin-1').read() # Reads decode
u'A\xc4B\xe8C'
>>> codecs.open('utfdata', 'r', encoding='utf-8').read()
u'A\xc4B\xe8C'
>>> print codecs.open('utfdata', 'r', encoding='utf-8').read() # Print to view
AÄBèC
For more 2.X Unicode details, see earlier sections of this chapter
 and Python 2.X manuals.

Unicode Filenames and Streams
In closing, this section has focused on the encoding and decoding
 of Unicode text file content, but Python also
 supports the notion of non-ASCII file names. In
 fact, they are independent settings in sys, which can vary per Python version and
 platform (2.X returns ASCII for the first of the following on
 Windows):
>>> import sys
>>> sys.getdefaultencoding(), sys.getfilesystemencoding() # File content, names
('utf-8', 'mbcs')
Filenames: Text versus bytes
Filename encoding is often a nonissue. In short, for filenames
 given as Unicode text strings, the open call encodes automatically to and from
 the underlying platform’s filename conventions. Passing arbitrarily
 pre-encoded filenames as byte strings to file tools (including
 open and directory walkers and
 listers) overrides automatic encodings, and forces filename results to
 be returned in encoded byte string form too—useful if filenames are
 undecodable per the underlying platform’s conventions (I’m using
 Windows, but some of the following may fail on other
 platforms):
>>> f = open('xxx\u00A5', 'w') # Non-ASCII filename
>>> f.write('\xA5999\n') # Writes five characters
>>> f.close()
>>> print(open('xxx\u00A5').read()) # Text: auto-encoded
¥999
>>> print(open(b'xxx\xA5').read()) # Bytes: pre-encoded
¥999

>>> import glob # Filename expansion tool
>>> glob.glob('*\u00A5*') # Get decoded text for decoded text
['xxx¥']
>>> glob.glob(b'*\xA5*') # Get encoded bytes for encoded bytes
[b'xxx\xa5']

Stream content: PYTHONIOENCODING
In addition, the environment variable PYTHONIOENCODING can be used to set the encoding used for text in the
 standard streams—input, output, and error. This
 setting overrides Python’s default encoding for printed text, which on
 Windows currently uses a Windows format on 3.X and ASCII on 2.X.
 Setting this to a general Unicode format like UTF-8 may sometimes be
 required to print non-ASCII text, and to display such text in shell
 windows (possibly in conjunction with code page changes on some
 Windows machines). A script that prints non-ASCII filenames, for
 example, may fail unless this setting is made.
For more background on this subject, see also “Currency Symbols:
 Unicode in Action” in Chapter 25.
 There, we work through an example that demonstrates the essentials of
 portable Unicode coding, as well as the roles and requirements of
 PYTHONIOENCODING settings, which we
 won’t rehash here.
For more on these topics in general, see Python manuals or books
 such as Programming Python,
 4th Edition (or later, if later may be). The latter of these
 digs deeper into streams and files from an applications-level
 perspective.

Other String Tool Changes in 3.X
Many of the other popular string-processing tools in Python’s standard library
 have also been revamped for the new str/bytes
 type dichotomy. We won’t cover any of these application-focused tools in
 much detail in this core language book, but to wrap up this chapter,
 here’s a quick look at four of the major tools impacted: the re pattern-matching module, the struct binary data module, the pickle object serialization module, and the
 xml package for parsing XML text. As
 noted ahead, other Python tools, such as its json module, differ in ways similar to those
 presented here.
The re Pattern-Matching Module
Python’s re pattern-matching
 module supports text processing that is more general than that
 afforded by simple string method calls such as find, split, and replace. With re, strings that designate searching and
 splitting targets can be described by general patterns, instead of
 absolute text. This module has been generalized to work on objects of
 any string type in 3.X—str, bytes, and bytearray—and returns result substrings of the
 same type as the subject string. In 2.X it supports both unicode
 and str.
Here it is at work in 3.X, extracting substrings from a line of
 text—borrowed, of course, from Monty Python’s The Meaning of
 Life. Within pattern strings, (.*) means any character (the .), zero or more times (the *), saved away as a matched substring (the
 ()). Parts of the string matched by
 the parts of a pattern enclosed in parentheses are available after a
 successful match, via the group or
 groups method:
C:\code> C:\python33\python
>>> import re
>>> S = 'Bugger all down here on earth!' # Line of text
>>> B = b'Bugger all down here on earth!' # Usually from a file

>>> re.match('(.*) down (.*) on (.*)', S).groups() # Match line to pattern
('Bugger all', 'here', 'earth!') # Matched substrings

>>> re.match(b'(.*) down (.*) on (.*)', B).groups() # bytes substrings
(b'Bugger all', b'here', b'earth!')
In Python 2.X results are similar, but the unicode type is used for non-ASCII text, and
 str handles both 8-bit and binary
 text:
C:\code> C:\python27\python
>>> import re
>>> S = 'Bugger all down here on earth!' # Simple text and binary
>>> U = u'Bugger all down here on earth!' # Unicode text

>>> re.match('(.*) down (.*) on (.*)', S).groups()
('Bugger all', 'here', 'earth!')

>>> re.match('(.*) down (.*) on (.*)', U).groups()
(u'Bugger all', u'here', u'earth!')
Since bytes and str support essentially the same operation
 sets, this type distinction is largely transparent. But note that, like
 in other APIs, you can’t mix str and
 bytes types in its calls’ arguments
 in 3.X (although if you don’t plan to do pattern matching on binary
 data, you probably don’t need to care):
C:\code> C:\python33\python
>>> import re
>>> S = 'Bugger all down here on earth!'
>>> B = b'Bugger all down here on earth!'

>>> re.match('(.*) down (.*) on (.*)', B).groups()
TypeError: can't use a string pattern on a bytes-like object

>>> re.match(b'(.*) down (.*) on (.*)', S).groups()
TypeError: can't use a bytes pattern on a string-like object

>>> re.match(b'(.*) down (.*) on (.*)', bytearray(B)).groups()
(bytearray(b'Bugger all'), bytearray(b'here'), bytearray(b'earth!'))

>>> re.match('(.*) down (.*) on (.*)', bytearray(B)).groups()
TypeError: can't use a string pattern on a bytes-like object

The struct Binary Data Module
The Python struct module, used
 to create and extract packed binary data from strings, also
 works the same in 3.X as it does in 2.X, but in 3.X packed data is
 represented as bytes and bytearray objects only, not str objects (which makes sense, given that
 it’s intended for processing binary data, not decoded text); and “s”
 data code values must be bytes as of
 3.2 (the former str UTF-8 auto-encode
 is dropped).
Here are both Pythons in action, packing three objects into a
 string according to a binary type specification (they create a 4-byte
 integer, a 4-byte string, and a 2-byte integer):
C:\code> C:\python33\python
>>> from struct import pack
>>> pack('>i4sh', 7, b'spam', 8) # bytes in 3.X (8-bit strings)
b'\x00\x00\x00\x07spam\x00\x08'

C:\code> C:\python27\python
>>> from struct import pack
>>> pack('>i4sh', 7, 'spam', 8) # str in 2.X (8-bit strings)
'\x00\x00\x00\x07spam\x00\x08'
Since bytes has an almost
 identical interface to that of str in
 3.X and 2.X, though, most programmers probably won’t need to care—the
 change is irrelevant to most existing code, especially since reading
 from a binary file creates a bytes
 automatically. Although the last test in the following example fails on
 a type mismatch, most scripts will read binary data from a file, not
 create it as a string as we do here:
C:\code> C:\python33\python
>>> import struct
>>> B = struct.pack('>i4sh', 7, b'spam', 8)
>>> B
b'\x00\x00\x00\x07spam\x00\x08'

>>> vals = struct.unpack('>i4sh', B)
>>> vals
(7, b'spam', 8)

>>> vals = struct.unpack('>i4sh', B.decode())
TypeError: 'str' does not support the buffer interface
Apart from the new syntax for bytes, creating and reading binary
 files works almost the same in 3.X as it does in 2.X. Still, code like
 this is one of the main places where programmers will notice the
 bytes object type:
C:\code> C:\python33\python
Write values to a packed binary file
>>> F = open('data.bin', 'wb') # Open binary output file
>>> import struct
>>> data = struct.pack('>i4sh', 7, b'spam', 8) # Create packed binary data
>>> data # bytes in 3.X, not str
b'\x00\x00\x00\x07spam\x00\x08'
>>> F.write(data) # Write to the file
10
>>> F.close()

Read values from a packed binary file
>>> F = open('data.bin', 'rb') # Open binary input file
>>> data = F.read() # Read bytes
>>> data
b'\x00\x00\x00\x07spam\x00\x08'
>>> values = struct.unpack('>i4sh', data) # Extract packed binary data
>>> values # Back to Python objects
(7, b'spam', 8)
Once you’ve extracted packed binary data into Python objects like
 this, you can dig even further into the binary world if you have
 to—strings can be indexed and sliced to get individual bytes’ values,
 individual bits can be extracted from integers with bitwise operators,
 and so on (see earlier in this book for more on the operations applied
 here):
>>> values # Result of struct.unpack
(7, b'spam', 8)

Accessing bits of parsed integers
>>> bin(values[0]) # Can get to bits in ints
'0b111'
>>> values[0] & 0x01 # Test first (lowest) bit in int
1
>>> values[0] | 0b1010 # Bitwise or: turn bits on
15
>>> bin(values[0] | 0b1010) # 15 decimal is 1111 binary
'0b1111'
>>> bin(values[0] ^ 0b1010) # Bitwise xor: off if both true
'0b1101'
>>> bool(values[0] & 0b100) # Test if bit 3 is on
True
>>> bool(values[0] & 0b1000) # Test if bit 4 is set
False
Since parsed bytes strings are
 sequences of small integers, we can do similar processing with their
 individual bytes:
Accessing bytes of parsed strings and bits within them
>>> values[1]
b'spam'
>>> values[1][0] # bytes string: sequence of ints
115
>>> values[1][1:] # Prints as ASCII characters
b'pam'
>>> bin(values[1][0]) # Can get to bits of bytes in strings
'0b1110011'
>>> bin(values[1][0] | 0b1100) # Turn bits on
'0b1111111'
>>> values[1][0] | 0b1100
127
Of course, most Python programmers don’t deal with binary bits;
 Python has higher-level object types, like lists and dictionaries that
 are generally a better choice for representing information in Python
 scripts. However, if you must use or produce lower-level data used by C
 programs, networking libraries, or other interfaces, Python has tools to
 assist.

The pickle Object Serialization Module
We met the pickle
 module briefly in Chapter 9, Chapter 28, and Chapter 31. In Chapter 28, we also used the shelve module, which uses pickle internally.
 For completeness here, keep in mind that the Python 3.X version of the
 pickle module always creates a
 bytes object, regardless of the
 default or passed-in “protocol” (data format level). You can see this by
 using the module’s dumps call to
 return an object’s pickle string:
C:\code> C:\python33\python
>>> import pickle # dumps() returns pickle string

>>> pickle.dumps([1, 2, 3]) # Python 3.X default protocol=3=binary
b'\x80\x03]q\x00(K\x01K\x02K\x03e.'

>>> pickle.dumps([1, 2, 3], protocol=0) # ASCII protocol 0, but still bytes!
b'(lp0\nL1L\naL2L\naL3L\na.'
This implies that files used to store pickled objects must always
 be opened in binary mode in Python 3.X, since text
 files use str strings to represent
 data, not bytes—the dump call simply attempts to write the pickle
 string to an open output file:
>>> pickle.dump([1, 2, 3], open('temp', 'w')) # Text files fail on bytes!
TypeError: must be str, not bytes # Despite protocol value

>>> pickle.dump([1, 2, 3], open('temp', 'w'), protocol=0)
TypeError: must be str, not bytes

>>> pickle.dump([1, 2, 3], open('temp', 'wb')) # Always use binary in 3.X

>>> open('temp', 'r').read() # This works, but just by luck
'\u20ac\x03]q\x00(K\x01K\x02K\x03e.'
Notice the last result here didn’t issue an error in text mode
 only because the stored binary data was compatible with the Windows
 platform’s UTF-8 default decoder; this was really just luck (and in
 fact, this command failed when printing in older Pythons, and may fail
 on other platforms). Because pickle data is not generally decodable
 Unicode text, the same rule holds on input—correct usage in 3.X requires
 always both writing and reading pickle data in binary modes, whether
 unpickling or not:
>>> pickle.dump([1, 2, 3], open('temp', 'wb'))
>>> pickle.load(open('temp', 'rb'))
[1, 2, 3]
>>> open('temp', 'rb').read()
b'\x80\x03]q\x00(K\x01K\x02K\x03e.'
In Python 2.X, we can get by with text-mode files for pickled
 data, as long as the protocol is level 0 (the default in 2.X) and we use
 text mode consistently to convert line ends:
C:\code> C:\python27\python
>>> import pickle
>>> pickle.dumps([1, 2, 3]) # Python 2.X default=0=ASCII
'(lp0\nI1\naI2\naI3\na.'

>>> pickle.dumps([1, 2, 3], protocol=1)
']q\x00(K\x01K\x02K\x03e.'

>>> pickle.dump([1, 2, 3], open('temp', 'w')) # Text mode works in 2.X
>>> pickle.load(open('temp'))
[1, 2, 3]
>>> open('temp').read()
'(lp0\nI1\naI2\naI3\na.'
If you care about version neutrality, though, or don’t want to
 care about protocols or their version-specific defaults, always use
 binary-mode files for pickled data—the following works the same in
 Python 3.X and 2.X:
>>> import pickle
>>> pickle.dump([1, 2, 3], open('temp', 'wb')) # Version neutral
>>> pickle.load(open('temp', 'rb')) # And required in 3.X
[1, 2, 3]
Because almost all programs let Python pickle and unpickle objects
 automatically and do not deal with the content of pickled data itself,
 the requirement to always use binary file modes is the only significant
 incompatibility in Python 3.X’s newer pickling model. See reference
 books or Python’s manuals for more details on object pickling.

XML Parsing Tools
XML is a tag-based language for defining structured information, commonly used to define
 documents and data shipped over the Web. Although some information can
 be extracted from XML text with basic string methods or the re pattern module, XML’s nesting of constructs
 and arbitrary attribute text tend to make full parsing more
 accurate.
Because XML is such a pervasive format, Python itself comes with
 an entire package of XML parsing tools that support the SAX and DOM
 parsing models, as well as a package known as ElementTree—a
 Python-specific API for parsing and constructing XML. Beyond basic
 parsing, the open source domain provides support for additional XML
 tools, such as XPath, Xquery, XSLT, and more.
XML by definition represents text in Unicode form, to support
 internationalization. Although most of Python’s XML parsing tools have
 always returned Unicode strings, in Python 3.X their results have
 mutated from the 2.X unicode type to
 the 3.X general str string type—which
 makes sense, given that 3.X’s str
 string is Unicode, whether the encoding is ASCII or
 other.
We can’t go into many details here, but to sample the flavor of
 this domain, suppose we have a simple XML text file, mybooks.xml:
<books>
 <date>1995~2013</date>
 <title>Learning Python</title>
 <title>Programming Python</title>
 <title>Python Pocket Reference</title>
 <publisher>O'Reilly Media</publisher>
</books>
and we want to run a script to extract and display the content of
 all the nested title tags, as
 follows:
Learning Python
Programming Python
Python Pocket Reference
There are at least four basic ways to accomplish this (not
 counting more advanced tools like XPath). First, we could run basic
 pattern matching on the file’s text, though this
 tends to be inaccurate if the text is unpredictable. Where applicable,
 the re module we met
 earlier does the job—its match method
 looks for a match at the start of a string, search scans
 ahead for a match, and the findall
 method used here locates all places where the pattern matches in the
 string (the result comes back as a list of matched substrings
 corresponding to parenthesized pattern groups, or tuples of such for
 multiple groups):
File patternparse.py

import re
text = open('mybooks.xml').read()
found = re.findall('<title>(.*)</title>', text)
for title in found: print(title)
Second, to be more robust, we could perform complete XML parsing
 with the standard library’s DOM parsing
 support. DOM parses XML text into a tree of objects and provides an
 interface for navigating the tree to extract tag attributes and values;
 the interface is a formal specification, independent of Python:
File domparse.py

from xml.dom.minidom import parse, Node
xmltree = parse('mybooks.xml')
for node1 in xmltree.getElementsByTagName('title'):
 for node2 in node1.childNodes:
 if node2.nodeType == Node.TEXT_NODE:
 print(node2.data)
As a third option, Python’s standard library supports SAX parsing for XML. Under
 the SAX model, a class’s methods receive callbacks as a parse progresses
 and use state information to keep track of where they are in the
 document and collect its data:
File saxparse.py

import xml.sax.handler
class BookHandler(xml.sax.handler.ContentHandler):
 def __init__(self):
 self.inTitle = False
 def startElement(self, name, attributes):
 if name == 'title':
 self.inTitle = True
 def characters(self, data):
 if self.inTitle:
 print(data)
 def endElement(self, name):
 if name == 'title':
 self.inTitle = False

import xml.sax
parser = xml.sax.make_parser()
handler = BookHandler()
parser.setContentHandler(handler)
parser.parse('mybooks.xml')
Finally, the ElementTree system available in the etree
 package of the standard library can often achieve the same effects
 as XML DOM parsers, but with remarkably less code. It’s a
 Python-specific way to both parse and generate XML text; after a parse,
 its API gives access to components of the document:
File etreeparse.py

from xml.etree.ElementTree import parse
tree = parse('mybooks.xml')
for E in tree.findall('title'):
 print(E.text)
When run in either 2.X or 3.X, all four of these scripts display
 the same printed result:
C:\code> C:\python27\python domparse.py
Learning Python
Programming Python
Python Pocket Reference

C:\code> C:\python33\python domparse.py
Learning Python
Programming Python
Python Pocket Reference
Technically, though, in 2.X some of these scripts produce unicode string objects, while in 3.X all
 produce str strings, since that type
 includes Unicode text (whether ASCII or other):
C:\code> C:\python33\python
>>> from xml.dom.minidom import parse, Node
>>> xmltree = parse('mybooks.xml')
>>> for node in xmltree.getElementsByTagName('title'):
 for node2 in node.childNodes:
 if node2.nodeType == Node.TEXT_NODE:
 node2.data

'Learning Python'
'Programming Python'
'Python Pocket Reference'

C:\code> C:\python27\python
>>> ...same code...

u'Learning Python'
u'Programming Python'
u'Python Pocket Reference'
Programs that must deal with XML parsing results in nontrivial
 ways will need to account for the different object type in 3.X. Again,
 though, because all strings have nearly identical interfaces in both 2.X
 and 3.X, most scripts won’t be affected by the change; tools available
 on unicode in 2.X are generally
 available on str in 3.X. The major
 feat, if there is one, is likely in getting the encoding names right
 when transferring the parsed-out data to and from files, network
 connections, GUIs, and so on.
Regrettably, going into further XML parsing details is beyond this
 book’s scope. If you are interested in text or XML parsing, it is
 covered in more detail in the applications-focused follow-up book Programming
 Python. For more details on re, struct,
 pickle, and XML, as well as the
 additional impacts of Unicode on other library tools such as filename
 expansion and directory walkers, consult the Web, the aforementioned
 book and others, and Python’s standard library manual.
For a related topic, see also the JSON
 example in Chapter 9—a
 language-neutral data exchange format, whose structure is very similar
 to Python dictionaries and lists, and whose strings are all Unicode that
 differs in type between Pythons 2.X and 3.X much the same as shown for
 XML here.
Why You Will Care: Inspecting Files, and Much More
As I was updating this chapter, I stumbled onto a use case for some of its tools. After
 saving a formerly ASCII HTML file in Notepad as “UTF8,” I found that
 it had grown a mystery non-ASCII character along the way due to an
 apparent keyboard operator error, and would no longer work as ASCII in
 text tools. To find the bad character, I simply started Python,
 decoded the file’s content from its UTF-8 format via a text
 mode file, and scanned character by character looking for
 the first byte that was not a valid ASCII character too:
>>> f = open('py33-windows-launcher.html', encoding='utf8')
>>> t = f.read()
>>> for (i, c) in enumerate(t):
 try:
 x = c.encode(encoding='ascii')
 except:
 print(i, sys.exc_info()[0])
 9886 <class 'UnicodeEncodeError'>
With the bad character’s index in hand, it’s easy to slice the
 Unicode string for more details:
>>> len(t)
31021
>>> t[9880:9890]
'ugh. \u206cThi'
>>> t[9870:9890]
'trace through. \u206cThi'
After fixing, I could also open in binary
 mode to verify and explore actual undecoded file content
 further:
>>> f = open('py33-windows-launcher.html', 'rb')
>>> b = f.read()
>>> b[0]
60
>>> b[:10]
b'<HTML>\r\n<T'
Not rocket science, perhaps, and there are other approaches, but
 Python makes for a convenient tactical tool in such cases, and its
 file objects give you a tangible window on your data when needed, both
 in scripts and interactive mode.
For more realistically scaled examples of Unicode at work, I
 suggest my other book Programming Python,
 4th Edition (or later). That book develops much larger
 programs than we can here, and has numerous up close and personal
 encounters with Unicode along the way, in the context of files,
 directory walkers, network sockets, GUIs, email content and headers,
 web page content, databases, and more. Though clearly an important
 topic in today’s global software world, Unicode is more mandatory than
 you might expect, especially in a language like Python 3.X, which
 elevates it to its core string and file types, thus bringing all its
 users into the Unicode fold—ready or not!

Chapter Summary
This chapter explored in-depth the advanced string types available
 in Python 3.X and 2.X for processing Unicode text and binary data. As we
 saw, many programmers use ASCII text and can get by with the basic string
 type and its operations. For more advanced applications, Python’s string
 models fully support both richer Unicode text (via the normal string type
 in 3.X and a special type in 2.X) and byte-oriented data (represented with
 a bytes type in 3.X and normal strings
 in 2.X).
In addition, we learned how Python’s file object has mutated in 3.X
 to automatically encode and decode Unicode text and deal with byte strings
 for binary-mode files, and saw similar utility for 2.X. Finally, we
 briefly met some text and binary data tools in Python’s library, and
 sampled their behavior in 3.X and 2.X.
In the next chapter, we’ll shift our focus to tool-builder topics,
 with a look at ways to manage access to object attributes by inserting
 automatically run code. Before we move on, though, here’s a set of
 questions to review what we’ve learned here. This has been a substantial
 chapter, so be sure to read the quiz answers eventually for a more
 in-depth summary.

Test Your Knowledge: Quiz
	What are the names and roles of string object types in Python
 3.X?

	What are the names and roles of string object types in Python
 2.X?

	What is the mapping between 2.X and 3.X string types?

	How do Python 3.X’s string types differ in terms of
 operations?

	How can you code non-ASCII Unicode characters in a string in
 3.X?

	What are the main differences between text- and binary-mode
 files in Python 3.X?

	How would you read a Unicode text file that contains text in a
 different encoding than the default for your platform?

	How can you create a Unicode text file in a specific encoding
 format?

	Why is ASCII text considered to be a kind of Unicode
 text?

	How large an impact does Python 3.X’s string types change have
 on your code?

Test Your Knowledge: Answers
	Python 3.X has three string types: str (for Unicode text, including ASCII),
 bytes (for binary data with
 absolute byte values), and bytearray (a mutable flavor of bytes). The str type usually represents content stored
 on a text file, and the other two types generally represent content
 stored on binary files.

	Python 2.X has two main string types: str (for 8-bit text and binary data) and
 unicode (for possibly wider
 character Unicode text). The str
 type is used for both text and binary file content; unicode is used for text file content that
 is generally more complex than 8-bit characters. Python 2.6 (but not
 earlier) also has 3.X’s bytearray
 type, but it’s mostly a back-port and doesn’t exhibit the sharp
 text/binary distinction that it does in 3.X.

	The mapping from 2.X to 3.X string types is not direct, because
 2.X’s str equates to both str and bytes in 3.X, and 3.X’s str equates to both str and unicode in 2.X. The mutability of bytearray in 3.X is also unique. In general,
 though: Unicode text is handled by 3.X str and 2.X unicode, byte-based data is handled by 3.X
 bytes and 2.X str, and 3.X bytes and 2.X str can both handle some simpler types of
 text.

	Python 3.X’s string types share almost all the same operations:
 method calls, sequence operations, and even larger tools like pattern
 matching work the same way. On the other hand, only str supports string formatting operations,
 and bytearray has an additional set
 of operations that perform in-place changes. The str and bytes types also have methods for encoding
 and decoding text, respectively.

	Non-ASCII Unicode characters can be coded in a string with both
 hex (\xNN) and Unicode (\uNNNN, \UNNNNNNNN) escapes. On some machines, some
 non-ASCII characters—certain Latin-1 characters, for example—can also
 be typed or pasted directly into code, and are interpreted per the
 UTF-8 default or a source code encoding directive comment.

	In 3.X, text-mode files assume their file content is Unicode
 text (even if it’s all ASCII) and automatically decode when reading
 and encode when writing. With binary-mode files, bytes are transferred
 to and from the file unchanged. The contents of text-mode files are
 usually represented as str objects
 in your script, and the contents of binary files are represented as
 bytes (or bytearray) objects. Text-mode files also
 handle the BOM for certain encoding types and automatically translate
 end-of-line sequences to and from the single \n character on input and output unless this
 is explicitly disabled; binary-mode files do not perform either of
 these steps. Python 2.X uses codecs.open for Unicode files, which encodes
 and decodes similarly; 2.X’s open
 only translates line ends in text mode.

	To read files encoded in a different encoding than the default
 for your platform, simply pass the name of the file’s encoding to the
 open built-in in 3.X (codecs.open() in 2.X); data will be decoded
 per the specified encoding when it is read from the file. You can also
 read in binary mode and manually decode the bytes to a string by
 giving an encoding name, but this involves extra work and is somewhat
 error-prone for multibyte characters (you may accidentally read a
 partial character sequence).

	To create a Unicode text file in a specific encoding format,
 pass the desired encoding name to open in 3.X (codecs.open() in 2.X); strings will be
 encoded per the desired encoding when they are written to the file.
 You can also manually encode a string to bytes and write it in binary
 mode, but this is usually extra work.

	ASCII text is considered to be a kind of Unicode text, because
 its 7-bit range of values is a subset of most Unicode encodings. For
 example, valid ASCII text is also valid Latin-1 text (Latin-1 simply
 assigns the remaining possible values in an 8-bit byte to additional
 characters) and valid UTF-8 text (UTF-8 defines a variable-byte scheme
 for representing more characters, but ASCII characters are still
 represented with the same codes, in a single byte). This makes Unicode
 backward-compatible with the mass of ASCII text data in the world
 (though it also may have limited its options—self-identifying text,
 for instance, may have been difficult (though BOMs serve much the same
 role).

	The impact of Python 3.X’s string types change depends upon the
 types of strings you use. For scripts that use simple ASCII text on
 platforms with ASCII-compatible default encodings, the impact is
 probably minor: the str string type
 works the same in 2.X and 3.X in this case. Moreover, although
 string-related tools in the standard library such as re, struct, pickle, and xml may technically use different types in
 3.X than in 2.X, the changes are largely irrelevant to most programs
 because 3.X’s str and bytes and 2.X’s str support almost identical interfaces. If
 you process Unicode data, the toolset you need has simply moved from
 2.X’s unicode and codecs.open() to 3.X’s str and open. If you deal with binary data files,
 you’ll need to deal with content as bytes objects; since they have a similar
 interface to 2.X strings, though, the impact should again be minimal.
 That said, the update of the book Programming
 Python for 3.X ran across numerous cases where Unicode’s
 mandatory status in 3.X implied changes in standard library APIs—from
 networking and GUIs, to databases and email. In general, Unicode will
 probably impact most 3.X users eventually.

Chapter 38. Managed Attributes
This chapter expands on the attribute
 interception techniques introduced earlier, introduces another,
 and employs them in a handful of larger examples. Like everything in this
 part of the book, this chapter is classified as an advanced topic and
 optional reading, because most applications programmers don’t need to care
 about the material discussed here—they can fetch and set attributes on
 objects without concern for attribute implementations.
Especially for tools builders, though, managing attribute access can
 be an important part of flexible APIs. Moreover, an understanding of the
 descriptor model covered here can make related tools such as slots and
 properties more tangible, and may even be required reading if it appears in
 code you must use.
Why Manage Attributes?
Object attributes are central to most Python programs—they are where we often
 store information about the entities our scripts process. Normally,
 attributes are simply names for objects; a person’s name attribute, for example, might be a simple
 string, fetched and set with basic attribute syntax:
person.name # Fetch attribute value
person.name = value # Change attribute value
In most cases, the attribute lives in the object itself, or is
 inherited from a class from which it derives. That basic model suffices
 for most programs you will write in your Python career.
Sometimes, though, more flexibility is required. Suppose you’ve
 written a program to use a name
 attribute directly, but then your requirements change—for example, you
 decide that names should be validated with logic when set or mutated in
 some way when fetched. It’s straightforward to code methods to manage
 access to the attribute’s value (valid
 and transform are abstract
 here):
class Person:
 def getName(self):
 if not valid():
 raise TypeError('cannot fetch name')
 else:
 return self.name.transform()

 def setName(self, value):
 if not valid(value):
 raise TypeError('cannot change name')
 else:
 self.name = transform(value)

person = Person()
person.getName()
person.setName('value')
However, this also requires changing all the places where names are
 used in the entire program—a possibly nontrivial task. Moreover, this
 approach requires the program to be aware of how values are exported: as
 simple names or called methods. If you begin with a method-based interface
 to data, clients are immune to changes; if you do not, they can become
 problematic.
This issue can crop up more often than you might expect. The value
 of a cell in a spreadsheet-like program, for instance, might begin its
 life as a simple discrete value, but later mutate into an arbitrary
 calculation. Since an object’s interface should be flexible enough to
 support such future changes without breaking existing code, switching to
 methods later is less than ideal.
Inserting Code to Run on Attribute Access
A better solution would allow you to run code automatically on attribute access, if needed.
 That’s one of the main roles of managed attributes—they provide ways to
 add attribute accessor logic after the fact. More
 generally, they support arbitrary attribute usage modes that go beyond
 simple data storage.
At various points in this book, we’ve met Python tools that allow
 our scripts to dynamically compute attribute values when fetching them
 and validate or change attribute values when storing them. In this
 chapter, we’re going to expand on the tools already introduced, explore
 other available tools, and study some larger use-case examples in this
 domain. Specifically, this chapter presents four
 accessor techniques:
	The __getattr__ and
 __setattr__ methods, for
 routing undefined attribute fetches and all attribute
 assignments to generic handler methods.

	The __getattribute__
 method, for routing all attribute fetches to a generic handler
 method.

	The property built-in, for
 routing specific attribute access to get and set handler functions.

	The descriptor protocol, for routing specific attribute accesses to instances of
 classes with arbitrary get and set handler methods, and the basis
 for other tools such as properties and slots.

The tools in the first of these bullets are available in all
 Pythons. The last three bullets’ tools are available in Python 3.X and
 new-style classes in 2.X—they first appeared in Python 2.2, along with
 many of the other advanced tools of Chapter 32 such as slots and super. We briefly met the first and third of
 these in Chapter 30 and Chapter 32, respectively; the second and fourth
 are largely new topics we’ll explore in full here.
As we’ll see, all four techniques share goals to some degree, and
 it’s usually possible to code a given problem using any one of them.
 They do differ in some important ways, though. For example, the last two
 techniques listed here apply to specific
 attributes, whereas the first two are generic enough to be used by
 delegation-based proxy classes that must route
 arbitrary attributes to wrapped objects. As we’ll
 see, all four schemes also differ in both complexity and aesthetics, in
 ways you must see in action to judge for yourself.
Besides studying the specifics behind the four attribute
 interception techniques listed in this section, this chapter also
 presents an opportunity to explore larger programs than we’ve seen
 elsewhere in this book. The CardHolder case study at the end, for example,
 should serve as a self-study example of larger classes in action. We’ll
 also be using some of the techniques outlined here in the next chapter
 to code decorators, so be sure you have at least a general understanding
 of these topics before you move on.

Properties
The property protocol allows us to route a specific attribute’s get, set,
 and delete operations to functions or methods we provide, enabling us to
 insert code to be run automatically on attribute access, intercept
 attribute deletions, and provide documentation for the attributes if
 desired.
Properties are created with the property built-in and are assigned to class
 attributes, just like method functions. Accordingly, they are inherited by
 subclasses and instances, like any other class attributes. Their
 access-interception functions are provided with the self instance argument, which grants access to
 state information and class attributes available on the subject
 instance.
A property manages a single, specific attribute; although it can’t
 catch all attribute accesses generically, it allows us to control both
 fetch and assignment accesses and enables us to change an attribute from
 simple data to a computation freely, without breaking existing code. As
 we’ll see, properties are strongly related to descriptors; in fact, they
 are essentially a restricted form of them.
The Basics
A property is created by assigning the result of a built-in
 function to a class attribute:
attribute = property(fget, fset, fdel, doc)
None of this built-in’s arguments are required, and all default to
 None if not passed. For the first
 three, this None means that the
 corresponding operation is not supported, and attempting it will
 raise an AttributeError
 exception automatically.
When these arguments are used, we pass fget a function for intercepting attribute
 fetches, fset a function for
 assignments, and fdel a function for
 attribute deletions. Technically, all three of these arguments accept
 any callable, including a class’s method, having a first argument to
 receive the instance being qualified. When later invoked, the fget function returns the computed attribute
 value, fset and fdel return nothing (really, None), and all three may raise exceptions to
 reject access requests.
The doc argument receives a
 documentation string for the attribute, if desired; otherwise, the
 property copies the docstring of the fget function, which as usual defaults to
 None.
This built-in property call
 returns a property object, which we assign to the name of the attribute
 to be managed in the class scope, where it will be inherited by every
 instance.

A First Example
To demonstrate how this translates to working code, the following
 class uses a property to trace access to an attribute named name; the actual stored data is named _name so it does not clash with the property
 (if you’re working along with the book examples package, some filenames
 in this chapter are implied by the command lines that run them following
 their listings):
class Person: # Add (object) in 2.X
 def __init__(self, name):
 self._name = name
 def getName(self):
 print('fetch...')
 return self._name
 def setName(self, value):
 print('change...')
 self._name = value
 def delName(self):
 print('remove...')
 del self._name
 name = property(getName, setName, delName, "name property docs")

bob = Person('Bob Smith') # bob has a managed attribute
print(bob.name) # Runs getName
bob.name = 'Robert Smith' # Runs setName
print(bob.name)
del bob.name # Runs delName

print('-'*20)
sue = Person('Sue Jones') # sue inherits property too
print(sue.name)
print(Person.name.__doc__) # Or help(Person.name)
Properties are available in both 2.X and 3.X, but they require
 new-style object derivation in 2.X to
 work correctly for assignments—add object as a superclass here to run this in
 2.X. You can list the superclass in 3.X too, but it’s implied and not
 required, and is sometimes omitted in this book to reduce
 clutter.
This particular property doesn’t do much—it simply intercepts and
 traces an attribute—but it serves to demonstrate the protocol. When this
 code is run, two instances inherit the property, just as they would any
 other attribute attached to their class. However, their attribute
 accesses are caught:
c:\code> py −3 prop-person.py
fetch...
Bob Smith
change...
fetch...
Robert Smith
remove...

fetch...
Sue Jones
name property docs
Like all class attributes, properties are
 inherited by both instances and lower subclasses.
 If we change our example as follows, for instance:
class Super:
 ...the original Person class code...
 name = property(getName, setName, delName, 'name property docs')

class Person(Super):
 pass # Properties are inherited (class attrs)

bob = Person('Bob Smith')
...rest unchanged...
the output is the same—the Person subclass inherits the name property from Super, and the bob instance gets it from Person. In terms of inheritance, properties
 work the same as normal methods; because they have access to the
 self instance argument, they can
 access instance state information and methods irrespective of subclass
 depth, as the next section further demonstrates.

Computed Attributes
The example in the prior section simply traces attribute accesses.
 Usually, though, properties do much more—computing the value of an
 attribute dynamically when fetched, for example. The following example
 illustrates:
class PropSquare:
 def __init__(self, start):
 self.value = start
 def getX(self): # On attr fetch
 return self.value ** 2
 def setX(self, value): # On attr assign
 self.value = value
 X = property(getX, setX) # No delete or docs

P = PropSquare(3) # Two instances of class with property
Q = PropSquare(32) # Each has different state information

print(P.X) # 3 ** 2
P.X = 4
print(P.X) # 4 ** 2
print(Q.X) # 32 ** 2 (1024)
This class defines an attribute X that is accessed as though it were static
 data, but really runs code to compute its value when fetched. The effect
 is much like an implicit method call. When the code is run, the value is
 stored in the instance as state information, but each time we fetch it
 via the managed attribute, its value is automatically squared:
c:\code> py −3 prop-computed.py
9
16
1024
Notice that we’ve made two different instances—because property
 methods automatically receive a self
 argument, they have access to the state information stored in instances.
 In our case, this means the fetch computes the square of the subject
 instance’s own data.

Coding Properties with Decorators
Although we’re saving additional details until the next chapter, we introduced
 function decorator basics earlier, in Chapter 32. Recall that the function decorator
 syntax:
@decorator
def func(args): ...
is automatically translated to this equivalent by Python, to
 rebind the function name to the result of the decorator callable:
def func(args): ...
func = decorator(func)
Because of this mapping, it turns out that the property built-in can serve as a decorator, to
 define a function that will run automatically when an attribute is
 fetched:
class Person:
 @property
 def name(self): ... # Rebinds: name = property(name)
When run, the decorated method is automatically passed to the
 first argument of the property
 built-in. This is really just alternative syntax for creating a property
 and rebinding the attribute name manually, but may be seen as more
 explicit in this role:
class Person:
 def name(self): ...
 name = property(name)
Setter and deleter decorators
As of Python 2.6 and 3.0, property objects also have getter, setter, and deleter methods that assign the
 corresponding property accessor methods and return a copy of the
 property itself. We can use these to specify components of properties
 by decorating normal methods too, though the getter component is usually filled in
 automatically by the act of creating the property itself:
class Person:
 def __init__(self, name):
 self._name = name

 @property
 def name(self): # name = property(name)
 "name property docs"
 print('fetch...')
 return self._name

 @name.setter
 def name(self, value): # name = name.setter(name)
 print('change...')
 self._name = value

 @name.deleter
 def name(self): # name = name.deleter(name)
 print('remove...')
 del self._name

bob = Person('Bob Smith') # bob has a managed attribute
print(bob.name) # Runs name getter (name 1)
bob.name = 'Robert Smith' # Runs name setter (name 2)
print(bob.name)
del bob.name # Runs name deleter (name 3)

print('-'*20)
sue = Person('Sue Jones') # sue inherits property too
print(sue.name)
print(Person.name.__doc__) # Or help(Person.name)
In fact, this code is equivalent to the first example in this
 section—decoration is just an alternative way to code properties in
 this case. When it’s run, the results are the same:
c:\code> py −3 prop-person-deco.py
fetch...
Bob Smith
change...
fetch...
Robert Smith
remove...

fetch...
Sue Jones
name property docs
Compared to manual assignment of property results, in this case using
 decorators to code properties requires just three extra lines of
 code—a seemingly negligible difference. As is so often the case with
 alternative tools, though, the choice between the two techniques is
 largely subjective.

Descriptors
Descriptors provide an alternative way to
 intercept attribute access; they are strongly related to the
 properties discussed in the prior section. Really, a property
 is a kind of descriptor—technically speaking, the
 property built-in is just a simplified
 way to create a specific type of descriptor that runs method functions on
 attribute accesses. In fact, descriptors are the underlying implementation
 mechanism for a variety of class tools, including both properties and
 slots.
Functionally speaking, the descriptor protocol allows us to route a
 specific attribute’s get, set, and delete operations to methods of a
 separate class’s instance object that we provide. This allows us to insert
 code to be run automatically on attribute fetches and assignments,
 intercept attribute deletions, and provide documentation for the
 attributes if desired.
Descriptors are created as independent classes,
 and they are assigned to class attributes just like method
 functions. Like any other class attribute, they are inherited by
 subclasses and instances. Their access-interception methods are provided
 with both a self for the descriptor
 instance itself, as well as the instance of the client class whose
 attribute references the descriptor object. Because of this, they can
 retain and use state information of their own, as well as state
 information of the subject instance. For example, a descriptor may call
 methods available in the client class, as well as descriptor-specific
 methods it defines.
Like a property, a descriptor manages a single, specific attribute;
 although it can’t catch all attribute accesses generically, it provides
 control over both fetch and assignment accesses and allows us to change an
 attribute name freely from simple data to a computation without breaking
 existing code. Properties really are just a convenient way to create a
 specific kind of descriptor, and as we shall see, they can be coded as
 descriptors directly.
Unlike properties, descriptors are broader in scope, and provide a
 more general tool. For instance, because they are coded as normal classes,
 descriptors have their own state, may participate in descriptor
 inheritance hierarchies, can use composition to aggregate objects, and
 provide a natural structure for coding internal methods and attribute
 documentation strings.
The Basics
As mentioned previously, descriptors are coded as separate classes
 and provide specially named accessor methods for the attribute access
 operations they wish to intercept—get, set, and deletion methods in the
 descriptor class are automatically run when the attribute assigned to
 the descriptor class instance is accessed in the corresponding
 way:
class Descriptor:
 "docstring goes here"
 def __get__(self, instance, owner): ... # Return attr value
 def __set__(self, instance, value): ... # Return nothing (None)
 def __delete__(self, instance): ... # Return nothing (None)
Classes with any of these methods are considered descriptors, and
 their methods are special when one of their instances is assigned to
 another class’s attribute—when the attribute is accessed, they are
 automatically invoked. If any of these methods are absent, it generally
 means that the corresponding type of access is not supported. Unlike
 properties, however, omitting a __set__
 allows the descriptor attribute’s name to be assigned and thus redefined
 in an instance, thereby hiding the descriptor—to
 make an attribute read-only, you must define
 __set__ to catch assignments and
 raise an exception.
Descriptors with __set__
 methods also have some special-case implications for inheritance that
 we’ll largely defer until Chapter 40’s coverage of
 metaclasses and the complete inheritance specification. In short, a
 descriptor with a __set__ is known
 formally as a data descriptor, and is given
 precedence over other names located by normal inheritance rules. The
 inherited descriptor for name __class__, for example, overrides the same
 name in an instance’s namespace dictionary. This also works to ensure
 that data descriptors you code in your own classes take precedence over
 others.
Descriptor method arguments
Before we code anything realistic, let’s take a brief look at
 some fundamentals. All three descriptor methods outlined in the prior
 section are passed both the descriptor class instance (self), and the instance of the client class
 to which the descriptor instance is attached (instance).
The __get__ access method
 additionally receives an owner
 argument, specifying the class to which the descriptor instance is
 attached. Its instance argument is
 either the instance through which the attribute was accessed (for
 instance.attr), or None when the attribute is accessed through
 the owner class directly (for class.attr). The former of these generally
 computes a value for instance access, and the latter usually returns
 self if descriptor object access is
 supported.
For example, in the following 3.X session, when X.attr is fetched, Python automatically runs
 the __get__ method of
 the Descriptor class instance to
 which the Subject.attr class
 attribute is assigned. In 2.X, use the print statement equivalent, and
 derive both classes here from object, as descriptors are a new-style class
 tool; in 3.X this derivation is implied and can be omitted, but
 doesn’t hurt:
>>> class Descriptor: # Add "(object)" in 2.X
 def __get__(self, instance, owner):
 print(self, instance, owner, sep='\n')

>>> class Subject: # Add "(object)" in 2.X
 attr = Descriptor() # Descriptor instance is class attr

>>> X = Subject()
>>> X.attr
<__main__.Descriptor object at 0x0281E690>
<__main__.Subject object at 0x028289B0>
<class '__main__.Subject'>

>>> Subject.attr
<__main__.Descriptor object at 0x0281E690>
None
<class '__main__.Subject'>
Notice the arguments automatically passed in to the __get__ method in the first attribute
 fetch—when X.attr is fetched, it’s
 as though the following translation occurs (though the Subject.attr here doesn’t invoke __get__ again):
X.attr -> Descriptor.__get__(Subject.attr, X, Subject)
The descriptor knows it is being accessed directly when its
 instance argument is None.

Read-only descriptors
As mentioned earlier, unlike properties, simply omitting the __set__ method in a descriptor isn’t enough
 to make an attribute read-only, because the descriptor name can be
 assigned to an instance. In the following, the attribute assignment to
 X.a stores a in the instance object X, thereby hiding the descriptor stored in
 class C:
>>> class D:
 def __get__(*args): print('get')

>>> class C:
 a = D() # Attribute a is a descriptor instance

>>> X = C()
>>> X.a # Runs inherited descriptor __get__
get
>>> C.a
get
>>> X.a = 99 # Stored on X, hiding C.a!
>>> X.a
99
>>> list(X.__dict__.keys())
['a']
>>> Y = C()
>>> Y.a # Y still inherits descriptor
get
>>> C.a
get
This is the way all instance attribute assignments work in
 Python, and it allows classes to selectively override class-level
 defaults in their instances. To make a descriptor-based attribute
 read-only, catch the assignment in the descriptor class and raise an
 exception to prevent attribute assignment—when assigning an attribute
 that is a descriptor, Python effectively bypasses the normal
 instance-level assignment behavior and routes the operation to the
 descriptor object:
>>> class D:
 def __get__(*args): print('get')
 def __set__(*args): raise AttributeError('cannot set')

>>> class C:
 a = D()

>>> X = C()
>>> X.a # Routed to C.a.__get__
get
>>> X.a = 99 # Routed to C.a.__set__
AttributeError: cannot set
Note
Also be careful not to confuse the descriptor __delete__ method with the general
 __del__ method. The former is
 called on attempts to delete the managed attribute name on an
 instance of the owner class; the latter is the general instance
 destructor method, run when an instance of any kind of class is
 about to be garbage-collected. __delete__ is more closely related to the
 __delattr__ generic attribute
 deletion method we’ll meet later in this chapter. See Chapter 30 for more on operator
 overloading methods.

A First Example
To see how this all comes together in more realistic code, let’s get
 started with the same first example we wrote for properties. The
 following defines a descriptor that intercepts access to an attribute
 named name in its clients. Its
 methods use their instance argument
 to access state information in the subject instance, where the name
 string is actually stored. Like properties, descriptors work properly
 only for new-style classes, so be sure to derive
 both classes in the following from object if you’re using 2.X—it’s not enough to
 derive just the descriptor, or just its client:
class Name: # Use (object) in 2.X
 "name descriptor docs"
 def __get__(self, instance, owner):
 print('fetch...')
 return instance._name
 def __set__(self, instance, value):
 print('change...')
 instance._name = value
 def __delete__(self, instance):
 print('remove...')
 del instance._name

class Person: # Use (object) in 2.X
 def __init__(self, name):
 self._name = name
 name = Name() # Assign descriptor to attr

bob = Person('Bob Smith') # bob has a managed attribute
print(bob.name) # Runs Name.__get__
bob.name = 'Robert Smith' # Runs Name.__set__
print(bob.name)
del bob.name # Runs Name.__delete__

print('-'*20)
sue = Person('Sue Jones') # sue inherits descriptor too
print(sue.name)
print(Name.__doc__) # Or help(Name)
Notice in this code how we assign an instance of our descriptor
 class to a class attribute in the client class;
 because of this, it is inherited by all instances of the class, just
 like a class’s methods. Really, we must assign the
 descriptor to a class attribute like this—it won’t work if assigned to a
 self instance attribute instead. When
 the descriptor’s __get__ method is
 run, it is passed three objects to define its context:
	self is the Name class instance.

	instance is the Person class instance.

	owner is the Person class.

When this code is run the descriptor’s methods intercept accesses
 to the attribute, much like the property version. In fact, the output is
 the same again:
c:\code> py −3 desc-person.py
fetch...
Bob Smith
change...
fetch...
Robert Smith
remove...

fetch...
Sue Jones
name descriptor docs
Also like in the property example, our descriptor class instance
 is a class attribute and thus is inherited by all
 instances of the client class and any subclasses. If we change the
 Person class in our example to the
 following, for instance, the output of our script is the same:
...
class Super:
 def __init__(self, name):
 self._name = name
 name = Name()

class Person(Super): # Descriptors are inherited (class attrs)
 pass
...
Also note that when a descriptor class is not useful outside the
 client class, it’s perfectly reasonable to embed the descriptor’s
 definition inside its client syntactically. Here’s what our example
 looks like if we use a nested class:
class Person:
 def __init__(self, name):
 self._name = name

 class Name: # Using a nested class
 "name descriptor docs"
 def __get__(self, instance, owner):
 print('fetch...')
 return instance._name
 def __set__(self, instance, value):
 print('change...')
 instance._name = value
 def __delete__(self, instance):
 print('remove...')
 del instance._name
 name = Name()
When coded this way, Name
 becomes a local variable in the scope of the Person class statement, such that it won’t
 clash with any names outside the class. This version works the same as
 the original—we’ve simply moved the descriptor class definition into the
 client class’s scope—but the last line of the testing code must change
 to fetch the docstring from its new location (per the example file
 desc-person-nested.py):
...
print(Person.Name.__doc__) # Differs: not Name.__doc__ outside class

Computed Attributes
As was the case when using properties, our first descriptor
 example of the prior section didn’t do much—it simply printed trace
 messages for attribute accesses. In practice, descriptors can also be
 used to compute attribute values each time they are fetched. The
 following illustrates—it’s a rehash of the same example we coded for
 properties, which uses a descriptor to automatically square an
 attribute’s value each time it is fetched:
class DescSquare:
 def __init__(self, start): # Each desc has own state
 self.value = start
 def __get__(self, instance, owner): # On attr fetch
 return self.value ** 2
 def __set__(self, instance, value): # On attr assign
 self.value = value # No delete or docs

class Client1:
 X = DescSquare(3) # Assign descriptor instance to class attr

class Client2:
 X = DescSquare(32) # Another instance in another client class
 # Could also code two instances in same class
c1 = Client1()
c2 = Client2()

print(c1.X) # 3 ** 2
c1.X = 4
print(c1.X) # 4 ** 2
print(c2.X) # 32 ** 2 (1024)
When run, the output of this example is the same as that of the
 original property-based version, but here a descriptor class object is
 intercepting the attribute accesses:
c:\code> py −3 desc-computed.py
9
16
1024

Using State Information in Descriptors
If you study the two descriptor examples we’ve written so far, you might notice
 that they get their information from different places—the first (the
 name attribute example) uses data
 stored on the client instance, and the second (the
 attribute squaring example) uses data attached to the
 descriptor object itself (a.k.a. self). In fact, descriptors can use
 both instance state and descriptor state, or any
 combination thereof:
	Descriptor state is used to manage either
 data internal to the workings of the descriptor, or data that spans
 all instances. It can vary per attribute appearance (often, per
 client class).

	Instance state records information
 related to and possibly created by the client class. It can vary per
 client class instance (that is, per application object).

In other words, descriptor state is per-descriptor data and
 instance state is per-client-instance data. As usual in OOP, you must choose state carefully. For instance, you
 would not normally use descriptor state to record
 employee names, since each client instance requires its own value—if
 stored in the descriptor, each client class instance will effectively
 share the same single copy. On the other hand, you would not usually use
 instance state to record data pertaining to
 descriptor implementation internals—if stored in each instance, there
 would be multiple varying copies.
Descriptor methods may use either state form, but descriptor state
 often makes it unnecessary to use special naming conventions to avoid
 name collisions in the instance for data that is not instance-specific.
 For example, the following descriptor attaches information to its own
 instance, so it doesn’t clash with that on the client class’s
 instance—but also shares that information between two client
 instances:
class DescState: # Use descriptor state, (object) in 2.X
 def __init__(self, value):
 self.value = value
 def __get__(self, instance, owner): # On attr fetch
 print('DescState get')
 return self.value * 10
 def __set__(self, instance, value): # On attr assign
 print('DescState set')
 self.value = value

Client class
class CalcAttrs:
 X = DescState(2) # Descriptor class attr
 Y = 3 # Class attr
 def __init__(self):
 self.Z = 4 # Instance attr

obj = CalcAttrs()
print(obj.X, obj.Y, obj.Z) # X is computed, others are not
obj.X = 5 # X assignment is intercepted
CalcAttrs.Y = 6 # Y reassigned in class
obj.Z = 7 # Z assigned in instance
print(obj.X, obj.Y, obj.Z)

obj2 = CalcAttrs() # But X uses shared data, like Y!
print(obj2.X, obj2.Y, obj2.Z)
This code’s internal value
 information lives only in the descriptor, so there
 won’t be a collision if the same name is used in the client’s instance.
 Notice that only the descriptor attribute is managed here—get and set
 accesses to X are intercepted, but
 accesses to Y and Z are not (Y is attached to the client class and Z to the instance). When this code is run,
 X is computed when fetched, but its
 value is also the same for all client instances because it uses
 descriptor-level state:
c:\code> py −3 desc-state-desc.py
DescState get
20 3 4
DescState set
DescState get
50 6 7
DescState get
50 6 4
It’s also feasible for a descriptor to store or use an attribute
 attached to the client class’s instance, instead of
 itself. Crucially, unlike data stored in the descriptor itself, this
 allows for data that can vary per client class instance. The descriptor
 in the following example assumes the instance has an attribute _X attached by the client class, and uses it
 to compute the value of the attribute it represents:
class InstState: # Using instance state, (object) in 2.X
 def __get__(self, instance, owner):
 print('InstState get') # Assume set by client class
 return instance._X * 10
 def __set__(self, instance, value):
 print('InstState set')
 instance._X = value

Client class
class CalcAttrs:
 X = InstState() # Descriptor class attr
 Y = 3 # Class attr
 def __init__(self):
 self._X = 2 # Instance attr
 self.Z = 4 # Instance attr

obj = CalcAttrs()
print(obj.X, obj.Y, obj.Z) # X is computed, others are not
obj.X = 5 # X assignment is intercepted
CalcAttrs.Y = 6 # Y reassigned in class
obj.Z = 7 # Z assigned in instance
print(obj.X, obj.Y, obj.Z)

obj2 = CalcAttrs() # But X differs now, like Z!
print(obj2.X, obj2.Y, obj2.Z)
Here, X is assigned to a
 descriptor as before that manages accesses. The new descriptor here,
 though, has no information itself, but it uses an attribute assumed to
 exist in the instance—that attribute is named _X, to avoid collisions with the name of the
 descriptor itself. When this version is run the results are similar, but
 the value of the descriptor attribute can vary per client instance due
 to the differing state policy:
c:\code> py −3 desc-state-inst.py
InstState get
20 3 4
InstState set
InstState get
50 6 7
InstState get
20 6 4
Both descriptor and instance state have roles. In fact, this is a
 general advantage that descriptors have over properties—because they
 have state of their own, they can easily retain data internally, without
 adding it to the namespace of the client instance object. As a summary,
 the following uses both state sources—its self.data retains per-attribute information,
 while its instance.data can vary per
 client instance:
>>> class DescBoth:
 def __init__(self, data):
 self.data = data
 def __get__(self, instance, owner):
 return '%s, %s' % (self.data, instance.data)
 def __set__(self, instance, value):
 instance.data = value

>>> class Client:
 def __init__(self, data):
 self.data = data
 managed = DescBoth('spam')

>>> I = Client('eggs')
>>> I.managed # Show both data sources
'spam, eggs'
>>> I.managed = 'SPAM' # Change instance data
>>> I.managed
'spam, SPAM'
We’ll revisit the implications of this choice in a larger case
 study later in this chapter. Before we move on, recall from Chapter 32’s coverage of slots that we can
 access “virtual” attributes like properties and descriptors with tools
 like dir and getattr, even though they don’t exist in the
 instance’s namespace dictionary. Whether you should
 access these this way probably varies per program—properties and
 descriptors may run arbitrary computation, and may be less obviously
 instance “data” than slots:
>>> I.__dict__
{'data': 'SPAM'}
>>> [x for x in dir(I) if not x.startswith('__')]
['data', 'managed']

>>> getattr(I, 'data')
'SPAM'
>>> getattr(I, 'managed')
'spam, SPAM'

>>> for attr in (x for x in dir(I) if not x.startswith('__')):
 print('%s => %s' % (attr, getattr(I, attr)))

data => SPAM
managed => spam, SPAM
The more generic __getattr__
 and __getattribute__ tools we’ll meet
 later are not designed to support this functionality—because they have
 no class-level attributes, their “virtual” attribute names do not appear
 in dir results.1 In exchange, they are also not limited to specific
 attribute names coded as properties or descriptors: tools that share
 even more than this behavior, as the next section explains.

How Properties and Descriptors Relate
As mentioned earlier, properties and descriptors are strongly related—the
 property built-in is just a
 convenient way to create a descriptor. Now that you know
 how both work, you should also be able to see that it’s possible to
 simulate the property built-in with a
 descriptor class like the following:
class Property:
 def __init__(self, fget=None, fset=None, fdel=None, doc=None):
 self.fget = fget
 self.fset = fset
 self.fdel = fdel # Save unbound methods
 self.__doc__ = doc # or other callables

 def __get__(self, instance, instancetype=None):
 if instance is None:
 return self
 if self.fget is None:
 raise AttributeError("can't get attribute")
 return self.fget(instance) # Pass instance to self
 # in property accessors
 def __set__(self, instance, value):
 if self.fset is None:
 raise AttributeError("can't set attribute")
 self.fset(instance, value)

 def __delete__(self, instance):
 if self.fdel is None:
 raise AttributeError("can't delete attribute")
 self.fdel(instance)

class Person:
 def getName(self): print('getName...')
 def setName(self, value): print('setName...')
 name = Property(getName, setName) # Use like property()

x = Person()
x.name
x.name = 'Bob'
del x.name
This Property class catches
 attribute accesses with the descriptor protocol and routes requests to
 functions or methods passed in and saved in descriptor state when the
 class is created. Attribute fetches, for example, are routed from the
 Person class, to the Property class’s __get__ method, and back to the Person class’s getName. With descriptors, this “just
 works”:
c:\code> py −3 prop-desc-equiv.py
getName...
setName...
AttributeError: can't delete attribute
Note that this descriptor class equivalent only handles basic
 property usage, though; to use @
 decorator syntax to also specify set and delete
 operations, we’d have to extend our Property class with setter and deleter methods, which would save the
 decorated accessor function and return the property object (self should suffice). Since the property built-in already does this, we’ll
 omit a formal coding of this extension here.
Descriptors and slots and more
You can also probably now at least in part imagine how
 descriptors are used to implement Python’s slots
 extension: instance attribute dictionaries are avoided by creating
 class-level descriptors that intercept slot name access, and map those
 names to sequential storage space in the instance. Unlike the explicit
 property call, though, much of the
 magic behind slots is orchestrated at class creation time both
 automatically and implicitly, when a __slots__ attribute is present in a
 class.
See Chapter 32 for more on slots
 (and why they’re not recommended except in pathological use cases).
 Descriptors are also used for other class tools, but we’ll omit
 further internals details here; see Python’s manuals and source code
 for more details.
Note
In Chapter 39, we’ll also make use of
 descriptors to implement function decorators
 that apply to both functions and methods. As you’ll see there,
 because descriptors receive both descriptor and
 subject class instances they work well in this role, though nested
 functions are usually a conceptually much simpler solution. We’ll
 also deploy descriptors as one way to intercept
 built-in operation method fetches in Chapter 39.
Be sure to also see Chapter 40’s coverage
 of data descriptors’ precedence in the full
 inheritance model mentioned earlier: with a __set__, descriptors override other names,
 and are thus fairly binding—they cannot be hidden by names in
 instance dictionaries.

__getattr__ and __getattribute__
So far, we’ve studied properties and descriptors—tools for managing specific attributes. The
 __getattr__ and __getattribute__ operator overloading methods
 provide still other ways to intercept attribute fetches for class
 instances. Like properties and descriptors, they allow us to insert code
 to be run automatically when attributes are accessed. As we’ll see,
 though, these two methods can also be used in more general ways. Because
 they intercept arbitrary names, they apply in broader roles such as
 delegation, but may also incur extra calls in some contexts, and are too
 dynamic to register in dir
 results.
Attribute fetch interception comes in two flavors, coded with two
 different methods:
	__getattr__ is run for
 undefined attributes—because it is run only for
 attributes not stored on an instance or inherited from one of its
 classes, its use is straightforward.

	__getattribute__ is run for
 every attribute—because it is all-inclusive, you
 must be cautious when using this method to avoid recursive loops by
 passing attribute accesses to a superclass.

We met the former of these in Chapter 30; it’s available for all Python
 versions. The latter of these is available for new-style classes in 2.X,
 and for all (implicitly new-style) classes in 3.X. These two methods are
 representatives of a set of attribute interception methods that also
 includes __setattr__ and __delattr__. Because these methods have similar roles, though, we will generally treat
 them all as a single topic here.
Unlike properties and descriptors, these methods are part of
 Python’s general operator overloading
 protocol—specially named methods of a class, inherited by subclasses, and
 run automatically when instances are used in the implied built-in
 operation. Like all normal methods of a class, they each receive a first
 self argument when called, giving
 access to any required instance state information as well as other methods
 of the class in which they appear.
The __getattr__ and __getattribute__ methods are also more
 generic than properties and descriptors—they can be
 used to intercept access to any (or even all) instance attribute fetches,
 not just a single specific name. Because of this, these two methods are
 well suited to general delegation-based coding
 patterns—they can be used to implement wrapper (a.k.a.
 proxy) objects that manage all attribute accesses for
 an embedded object. By contrast, we must define one property or descriptor
 for every attribute we wish to intercept. As we’ll see ahead, this role is
 impaired somewhat in new-style classes for built-in operations, but still
 applies to all named methods in a wrapped object’s interface.
Finally, these two methods are more narrowly
 focused than the alternatives we considered earlier: they
 intercept attribute fetches only, not assignments. To also catch attribute
 changes by assignment, we must code a __setattr__ method—an operator overloading
 method run for every attribute assignment, which must take care to avoid
 recursive loops by routing attribute assignments through the instance
 namespace dictionary or a superclass method. Although less common, we can
 also code a __delattr__ overloading
 method (which must avoid looping in the same way) to intercept attribute
 deletions. By contrast, properties and descriptors catch get, set,
 and delete operations by design.
Most of these operator overloading methods were introduced earlier
 in the book; here, we’ll expand on their usage and study their roles in
 larger contexts.
The Basics
__getattr__ and __setattr__ were introduced in Chapter 30 and Chapter 32, and __getattribute__ was mentioned briefly in
 Chapter 32. In short, if a class defines
 or inherits the following methods, they will be run automatically when
 an instance is used in the context described by the comments to the
 right:
def __getattr__(self, name): # On undefined attribute fetch [obj.name]
def __getattribute__(self, name): # On all attribute fetch [obj.name]
def __setattr__(self, name, value): # On all attribute assignment [obj.name=value]
def __delattr__(self, name): # On all attribute deletion [del obj.name]
In all of these, self is the
 subject instance object as usual, name is the string name of the attribute being
 accessed, and value is the object
 being assigned to the attribute. The two get methods normally return an
 attribute’s value, and the other two return nothing (None). All can raise exceptions to signal
 prohibited access.
For example, to catch every attribute fetch, we can use either of
 the first two previous methods, and to catch every attribute assignment
 we can use the third. The following uses __getattr__ and works
 portably on both Python 2.X and 3.X, not requiring
 new-style object derivation in
 2.X:
class Catcher:
 def __getattr__(self, name):
 print('Get: %s' % name)
 def __setattr__(self, name, value):
 print('Set: %s %s' % (name, value))

X = Catcher()
X.job # Prints "Get: job"
X.pay # Prints "Get: pay"
X.pay = 99 # Prints "Set: pay 99"
Using __getattribute__ works
 exactly the same in this specific case, but requires object derivation in 2.X (only), and has
 subtle looping potential, which we’ll take up in the next
 section:
class Catcher(object): # Need (object) in 2.X only
 def __getattribute__(self, name): # Works same as getattr here
 print('Get: %s' % name) # But prone to loops on general
 ...rest unchanged...
Such a coding structure can be used to implement the
 delegation design pattern we met earlier, in Chapter 31. Because all attributes are routed
 to our interception methods generically, we can validate and pass them
 along to embedded, managed objects. The following class (borrowed from
 Chapter 31), for example, traces
 every attribute fetch made to another object passed
 to the wrapper (proxy) class:
class Wrapper:
 def __init__(self, object):
 self.wrapped = object # Save object
 def __getattr__(self, attrname):
 print('Trace: ' + attrname) # Trace fetch
 return getattr(self.wrapped, attrname) # Delegate fetch

X = Wrapper([1, 2, 3])
X.append(4) # Prints "Trace: append"
print(X.wrapped) # Prints "[1, 2, 3, 4]"
There is no such analog for properties and descriptors, short of
 coding accessors for every possible attribute in
 every possibly wrapped object. On the other hand,
 when such generality is not required, generic accessor methods may incur
 additional calls for assignments in some contexts—a tradeoff described
 in Chapter 30 and mentioned in the
 context of the case study example we’ll explore at the end of this
 chapter.
Avoiding loops in attribute interception methods
These methods are generally straightforward to use; their only
 substantially complex aspect is the potential for
 looping (a.k.a. recursing). Because __getattr__ is called for undefined
 attributes only, it can freely fetch other attributes within its own
 code. However, because __getattribute__ and __setattr__ are run for
 all attributes, their code needs to be careful
 when accessing other attributes to avoid calling themselves again and
 triggering a recursive loop.
For example, another attribute fetch run inside a __getattribute__ method’s code will trigger
 __getattribute__ again, and the
 code will usually loop until memory is exhausted:
 def __getattribute__(self, name):
 x = self.other # LOOPS!
Technically, this method is even more loop-prone than this may
 imply—a self attribute reference
 run anywhere in a class that defines this method
 will trigger __getattribute__, and
 also has the potential to loop depending on the class’s logic. This is
 normally desired behavior—intercepting every attribute fetch is this
 method’s purpose, after all—but you should be aware that this method
 catches all attribute fetches wherever they are coded. When coded
 within __getattribute__ itself,
 this almost always causes a loop. To avoid this loop, route the fetch
 through a higher superclass instead to skip this level’s
 version—because the object class is
 always a new-style superclass, it serves well in this role:
 def __getattribute__(self, name):
 x = object.__getattribute__(self, 'other') # Force higher to avoid me
For __setattr__, the
 situation is similar, as summarized in Chapter 30—assigning
 any attribute inside this method triggers
 __setattr__ again and may create a
 similar loop:
 def __setattr__(self, name, value):
 self.other = value # Recurs (and might LOOP!)
Here too, self attribute
 assignments anywhere in a class defining this
 method trigger __setattr__ as well,
 though the potential for looping is much stronger when they show up in
 __setattr__ itself. To work around
 this problem, you can assign the attribute as a key in the instance’s
 __dict__ namespace dictionary
 instead. This avoids direct attribute assignment:
 def __setattr__(self, name, value):
 self.__dict__['other'] = value # Use attr dict to avoid me
Although it’s a less traditional approach, __setattr__ can also pass its own attribute
 assignments to a higher superclass to avoid looping, just like
 __getattribute__ (and per the
 upcoming note, this scheme is sometimes preferred):
 def __setattr__(self, name, value):
 object.__setattr__(self, 'other', value) # Force higher to avoid me
By contrast, though, we cannot use the
 __dict__ trick to avoid loops in
 __getattribute__:
 def __getattribute__(self, name):
 x = self.__dict__['other'] # Loops!
Fetching the __dict__
 attribute itself triggers __getattribute__ again, causing a recursive
 loop. Strange but true!
The __delattr__ method is
 less commonly used in practice, but when it is, it is called for every
 attribute deletion (just as __setattr__ is called for every attribute
 assignment). When using this method, you must take care to avoid loops
 when deleting attributes, by using the same techniques: namespace
 dictionaries operations or superclass method calls.
Note
As noted in Chapter 30,
 attributes implemented with new-style class features such as
 slots and properties are
 not physically stored in the instance’s __dict__ namespace dictionary (and slots
 may even preclude its existence entirely). Because of this, code
 that wishes to support such attributes should code __setattr__ to assign with the object.__setattr__ scheme shown here, not
 by self.__dict__ indexing.
 Namespace __dict__ operations
 suffice for classes known to store data in instances, like this
 chapter’s self-contained examples; general tools, though, should
 prefer object.

A First Example
Generic attribute management is not nearly as complicated as the
 prior section may have implied. To see how to put these ideas to work,
 here is the same first example we used for properties and descriptors in
 action again, this time implemented with attribute operator overloading
 methods. Because these methods are so generic, we test attribute names
 here to know when a managed attribute is being accessed; others are
 allowed to pass normally:
class Person: # Portable: 2.X or 3.X
 def __init__(self, name): # On [Person()]
 self._name = name # Triggers __setattr__!

 def __getattr__(self, attr): # On [obj.undefined]
 print('get: ' + attr)
 if attr == 'name': # Intercept name: not stored
 return self._name # Does not loop: real attr
 else: # Others are errors
 raise AttributeError(attr)

 def __setattr__(self, attr, value): # On [obj.any = value]
 print('set: ' + attr)
 if attr == 'name':
 attr = '_name' # Set internal name
 self.__dict__[attr] = value # Avoid looping here

 def __delattr__(self, attr): # On [del obj.any]
 print('del: ' + attr)
 if attr == 'name':
 attr = '_name' # Avoid looping here too
 del self.__dict__[attr] # but much less common

bob = Person('Bob Smith') # bob has a managed attribute
print(bob.name) # Runs __getattr__
bob.name = 'Robert Smith' # Runs __setattr__
print(bob.name)
del bob.name # Runs __delattr__

print('-'*20)
sue = Person('Sue Jones') # sue's attrs work like bob's
print(sue.name)
#print(Person.name.__doc__) # No equivalent here
Notice that the attribute assignment in the __init__ constructor triggers __setattr__ too—this method catches
 every attribute assignment, even those anywhere
 within the class itself. When this code is run, the same output is
 produced, but this time it’s the result of Python’s normal operator
 overloading mechanism and our attribute interception methods:
c:\code> py −3 getattr-person.py
set: _name
get: name
Bob Smith
set: name
get: name
Robert Smith
del: name

set: _name
get: name
Sue Jones
Also note that, unlike with properties and descriptors, there’s no
 direct notion of specifying documentation for our
 attribute here; managed attributes exist within the code of our
 interception methods, not as distinct objects.
Using __getattribute__
To achieve exactly the same results with __getattribute__, replace __getattr__ in the example with the
 following; because it catches all attribute
 fetches, this version must be careful to avoid looping by passing new
 fetches to a superclass, and it can’t generally assume unknown names
 are errors:
Replace __getattr__ with this

 def __getattribute__(self, attr): # On [obj.any]
 print('get: ' + attr)
 if attr == 'name': # Intercept all names
 attr = '_name' # Map to internal name
 return object.__getattribute__(self, attr) # Avoid looping here
When run with this change, the output is similar, but we get an
 extra __getattribute__ call for the
 fetch in __setattr__ (the first
 time originating in __init__):
c:\code> py −3 getattribute-person.py
set: _name
get: __dict__
get: name
Bob Smith
set: name
get: __dict__
get: name
Robert Smith
del: name
get: __dict__

set: _name
get: __dict__
get: name
Sue Jones
This example is equivalent to that coded for properties and
 descriptors, but it’s a bit artificial, and it doesn’t really
 highlight these tools’ assets. Because they are generic, __getattr__ and __getattribute__ are probably more commonly
 used in delegation-base code (as sketched earlier), where attribute
 access is validated and routed to an embedded object. Where just a
 single attribute must be managed, properties and
 descriptors might do as well or better.

Computed Attributes
As before, our prior example doesn’t really do anything but trace
 attribute fetches; it’s not much more work to compute an attribute’s
 value when fetched. As for properties and descriptors, the following
 creates a virtual attribute X that
 runs a calculation when fetched:
class AttrSquare:
 def __init__(self, start):
 self.value = start # Triggers __setattr__!

 def __getattr__(self, attr): # On undefined attr fetch
 if attr == 'X':
 return self.value ** 2 # value is not undefined
 else:
 raise AttributeError(attr)

 def __setattr__(self, attr, value): # On all attr assignments
 if attr == 'X':
 attr = 'value'
 self.__dict__[attr] = value

A = AttrSquare(3) # 2 instances of class with overloading
B = AttrSquare(32) # Each has different state information

print(A.X) # 3 ** 2
A.X = 4
print(A.X) # 4 ** 2
print(B.X) # 32 ** 2 (1024)
Running this code results in the same output that we got earlier
 when using properties and descriptors, but this script’s mechanics are
 based on generic attribute interception methods:
c:\code> py −3 getattr-computed.py
9
16
1024
Using __getattribute__
As before, we can achieve the same effect with __getattribute__ instead of __getattr__; the following replaces the
 fetch method with a __getattribute__ and changes the __setattr__ assignment method to avoid
 looping by using direct superclass method calls instead of __dict__ keys:
class AttrSquare: # Add (object) for 2.X
 def __init__(self, start):
 self.value = start # Triggers __setattr__!

 def __getattribute__(self, attr): # On all attr fetches
 if attr == 'X':
 return self.value ** 2 # Triggers __getattribute__ again!
 else:
 return object.__getattribute__(self, attr)

 def __setattr__(self, attr, value): # On all attr assignments
 if attr == 'X':
 attr = 'value'
 object.__setattr__(self, attr, value)
When this version, getattribute-computed.py, is run, the
 results are the same again. Notice, though, the implicit routing going
 on inside this class’s methods:
	self.value=start inside
 the constructor triggers __setattr__

	self.value inside
 __getattribute__ triggers
 __getattribute__ again

In fact, __getattribute__ is
 run twice each time we fetch attribute X. This doesn’t happen in the __getattr__ version, because the value attribute is not undefined. If you
 care about speed and want to avoid this, change __getattribute__ to use the superclass to
 fetch value as well:
 def __getattribute__(self, attr):
 if attr == 'X':
 return object.__getattribute__(self, 'value') ** 2
Of course, this still incurs a call to the superclass method,
 but not an additional recursive call before we get there. Add print calls to these methods to trace how
 and when they run.

__getattr__ and __getattribute__ Compared
To summarize the coding differences between __getattr__ and __getattribute__, the following example uses
 both to implement three attributes—attr1 is a class attribute, attr2 is an instance attribute, and attr3 is a virtual managed attribute computed
 when fetched:
class GetAttr:
 attr1 = 1
 def __init__(self):
 self.attr2 = 2
 def __getattr__(self, attr): # On undefined attrs only
 print('get: ' + attr) # Not on attr1: inherited from class
 if attr == 'attr3': # Not on attr2: stored on instance
 return 3
 else:
 raise AttributeError(attr)

X = GetAttr()
print(X.attr1)
print(X.attr2)
print(X.attr3)
print('-'*20)

class GetAttribute(object): # (object) needed in 2.X only
 attr1 = 1
 def __init__(self):
 self.attr2 = 2
 def __getattribute__(self, attr): # On all attr fetches
 print('get: ' + attr) # Use superclass to avoid looping here
 if attr == 'attr3':
 return 3
 else:
 return object.__getattribute__(self, attr)

X = GetAttribute()
print(X.attr1)
print(X.attr2)
print(X.attr3)
When run, the __getattr__
 version intercepts only attr3
 accesses, because it is undefined. The __getattribute__ version, on the other hand,
 intercepts all attribute fetches and must route those it does not manage
 to the superclass fetcher to avoid loops:
c:\code> py −3 getattr-v-getattr.py
1
2
get: attr3
3

get: attr1
1
get: attr2
2
get: attr3
3
Although __getattribute__ can
 catch more attribute fetches than __getattr__, in practice they are often just
 variations on a theme—if attributes are not physically stored, the two
 have the same effect.

Management Techniques Compared
To summarize the coding differences in all four attribute management
 schemes we’ve seen in this chapter, let’s quickly step through a
 somewhat more comprehensive computed-attribute example using each
 technique, coded to run in either Python 3.X or 2.X. The following first
 version uses properties to intercept and calculate
 attributes named square and cube. Notice how their base values are stored
 in names that begin with an underscore, so they don’t clash with the
 names of the properties themselves:
Two dynamically computed attributes with properties

class Powers(object): # Need (object) in 2.X only
 def __init__(self, square, cube):
 self._square = square # _square is the base value
 self._cube = cube # square is the property name

 def getSquare(self):
 return self._square ** 2
 def setSquare(self, value):
 self._square = value
 square = property(getSquare, setSquare)

 def getCube(self):
 return self._cube ** 3
 cube = property(getCube)

X = Powers(3, 4)
print(X.square) # 3 ** 2 = 9
print(X.cube) # 4 ** 3 = 64
X.square = 5
print(X.square) # 5 ** 2 = 25
To do the same with descriptors, we define
 the attributes with complete classes. Note that these descriptors store
 base values as instance state, so they must use leading underscores
 again so as not to clash with the names of descriptors; as we’ll see in
 the final example of this chapter, we could avoid this renaming
 requirement by storing base values as descriptor state instead, but that
 doesn’t as directly address data that must vary per client class
 instance:
Same, but with descriptors (per-instance state)

class DescSquare(object):
 def __get__(self, instance, owner):
 return instance._square ** 2
 def __set__(self, instance, value):
 instance._square = value

class DescCube(object):
 def __get__(self, instance, owner):
 return instance._cube ** 3

class Powers(object): # Need all (object) in 2.X only
 square = DescSquare()
 cube = DescCube()
 def __init__(self, square, cube):
 self._square = square # "self.square = square" works too,
 self._cube = cube # because it triggers desc __set__!

X = Powers(3, 4)
print(X.square) # 3 ** 2 = 9
print(X.cube) # 4 ** 3 = 64
X.square = 5
print(X.square) # 5 ** 2 = 25
To achieve the same result with __getattr__ fetch interception, we again store
 base values with underscore-prefixed names so that accesses to managed
 names are undefined and thus invoke our method; we also need to code a
 __setattr__ to intercept assignments,
 and take care to avoid its potential for looping:
Same, but with generic __getattr__ undefined attribute interception

class Powers:
 def __init__(self, square, cube):
 self._square = square
 self._cube = cube

 def __getattr__(self, name):
 if name == 'square':
 return self._square ** 2
 elif name == 'cube':
 return self._cube ** 3
 else:
 raise TypeError('unknown attr:' + name)

 def __setattr__(self, name, value):
 if name == 'square':
 self.__dict__['_square'] = value # Or use object
 else:
 self.__dict__[name] = value

X = Powers(3, 4)
print(X.square) # 3 ** 2 = 9
print(X.cube) # 4 ** 3 = 64
X.square = 5
print(X.square) # 5 ** 2 = 25
The final option, coding this with __getattribute__, is similar to the prior
 version. Because we catch every attribute now, though, we must also
 route base value fetches to a superclass to avoid looping or extra
 calls—fetching self._square directly
 works too, but runs a second __getattribute__ call:
Same, but with generic __getattribute__ all attribute interception

class Powers(object): # Need (object) in 2.X only
 def __init__(self, square, cube):
 self._square = square
 self._cube = cube

 def __getattribute__(self, name):
 if name == 'square':
 return object.__getattribute__(self, '_square') ** 2
 elif name == 'cube':
 return object.__getattribute__(self, '_cube') ** 3
 else:
 return object.__getattribute__(self, name)

 def __setattr__(self, name, value):
 if name == 'square':
 object.__setattr__(self, '_square', value) # Or use __dict__
 else:
 object.__setattr__(self, name , value)

X = Powers(3, 4)
print(X.square) # 3 ** 2 = 9
print(X.cube) # 4 ** 3 = 64
X.square = 5
print(X.square) # 5 ** 2 = 25
As you can see, each technique takes a different form in code, but
 all four produce the same result when run:
9
64
25
For more on how these alternatives compare, and other coding
 options, stay tuned for a more realistic application of them in the
 attribute validation example in the section “Example: Attribute Validations”. First, though, we need
 to take a short side trip to study a new-style-class pitfall associated
 with two of these tools—the generic attribute interceptors presented in
 this section.

Intercepting Built-in Operation Attributes
If you’ve been reading this book linearly, some of this section is review and
 elaboration on material covered earlier, especially in Chapter 32. For others, this topic is presented
 in this chapter’s context here.
When I introduced __getattr__
 and __getattribute__, I stated
 that they intercept undefined and all attribute fetches,
 respectively, which makes them ideal for delegation-based coding
 patterns. While this is true for both normally
 named and explicitly called attributes,
 their behavior needs some additional clarification: for method-name
 attributes implicitly fetched by built-in
 operations, these methods may not be run at all.
 This means that operator overloading method calls cannot be delegated to
 wrapped objects unless wrapper classes somehow redefine these methods
 themselves.
For example, attribute fetches for the __str__, __add__, and __getitem__ methods run implicitly by
 printing, + expressions, and
 indexing, respectively, are not routed to the generic attribute
 interception methods in 3.X. Specifically:
	In Python 3.X, neither __getattr__ nor __getattribute__ is run for such
 attributes.

	In Python 2.X classic classes, __getattr__ is run
 for such attributes if they are undefined in the class.

	In Python 2.X, __getattribute__ is available for
 new-style classes only and works as it does in 3.X.

In other words, in all Python 3.X classes (and 2.X new-style
 classes), there is no direct way to generically intercept built-in
 operations like printing and addition. In Python 2.X’s default classic
 classes, the methods such operations invoke are looked up at runtime in
 instances, like all other attributes; in Python
 3.X’s new-style classes such methods are looked up in
 classes instead. Since 3.X mandates new-style
 classes and 2.X defaults to classic, this is understandably attributed
 to 3.X, but it can happen in 2.X new-style code too. In 2.X, though, you
 at least have a way to avoid this change; in 3.X, you do not.
Per Chapter 32, the official (though
 tersely documented) rationale for this change appears to revolve around
 metaclassses and optimization of built-in operations. Regardless, given
 that all attributes—both normally named and others—still dispatch
 generically through the instance and these methods when accessed
 explicitly by name, this does not seem meant to
 preclude delegation in general; it seems more an optimization step for
 built-in operations’ implicit behavior. This does, however, make
 delegation-based coding patterns more complex in 3.X, because object
 interface proxies cannot generically intercept operator overloading
 method calls and route them to an embedded object.
This is an inconvenience, but is not necessarily a
 showstopper—wrapper classes can work around this constraint by
 redefining all relevant operator overloading methods in the wrapper
 itself, in order to delegate calls. These extra methods can be added
 either manually, with tools, or by definition in and inheritance from
 common superclasses. This does, however, make object wrappers more work
 than they used to be when operator overloading methods are a part of a
 wrapped object’s interface.
Keep in mind that this issue applies only to __getattr__ and __getattribute__. Because properties and
 descriptors are defined for specific attributes only, they don’t really
 apply to delegation-based classes at all—a single property or descriptor
 cannot be used to intercept arbitrary attributes. Moreover, a class that
 defines both operator overloading methods and
 attribute interception will work correctly, regardless of the type of
 attribute interception defined. Our concern here is only with classes
 that do not have operator overloading methods defined, but try to
 intercept them generically.
Consider the following example, the file getattr-bultins.py, which tests various
 attribute types and built-in operations on instances of classes
 containing __getattr__ and __getattribute__ methods:
class GetAttr:
 eggs = 88 # eggs stored on class, spam on instance
 def __init__(self):
 self.spam = 77
 def __len__(self): # len here, else __getattr__ called with __len__
 print('__len__: 42')
 return 42
 def __getattr__(self, attr): # Provide __str__ if asked, else dummy func
 print('getattr: ' + attr)
 if attr == '__str__':
 return lambda *args: '[Getattr str]'
 else:
 return lambda *args: None

class GetAttribute(object): # object required in 2.X, implied in 3.X
 eggs = 88 # In 2.X all are isinstance(object) auto
 def __init__(self): # But must derive to get new-style tools,
 self.spam = 77 # incl __getattribute__, some __X__ defaults
 def __len__(self):
 print('__len__: 42')
 return 42
 def __getattribute__(self, attr):
 print('getattribute: ' + attr)
 if attr == '__str__':
 return lambda *args: '[GetAttribute str]'
 else:
 return lambda *args: None

for Class in GetAttr, GetAttribute:
 print('\n' + Class.__name__.ljust(50, '='))

 X = Class()
 X.eggs # Class attr
 X.spam # Instance attr
 X.other # Missing attr
 len(X) # __len__ defined explicitly

New-styles must support [], +, call directly: redefine

 try: X[0] # __getitem__?
 except: print('fail []')

 try: X + 99 # __add__?
 except: print('fail +')

 try: X() # __call__? (implicit via built-in)
 except: print('fail ()')

 X.__call__() # __call__? (explicit, not inherited)
 print(X.__str__()) # __str__? (explicit, inherited from type)
 print(X) # __str__? (implicit via built-in)
When run under Python 2.X as coded, __getattr__ does receive
 a variety of implicit attribute fetches for built-in operations, because
 Python looks up such attributes in instances normally. Conversely,
 __getattribute__ is
 not run for any of the operator overloading names
 invoked by built-in operations, because such names are looked up in
 classes only in the new-style class model:
c:\code> py −2 getattr-builtins.py

GetAttr===
getattr: other
__len__: 42
getattr: __getitem__
getattr: __coerce__
getattr: __add__
getattr: __call__
getattr: __call__
getattr: __str__
[Getattr str]
getattr: __str__
[Getattr str]

GetAttribute======================================
getattribute: eggs
getattribute: spam
getattribute: other
__len__: 42
fail []
fail +
fail ()
getattribute: __call__
getattribute: __str__
[GetAttribute str]
<__main__.GetAttribute object at 0x02287898>
Note how __getattr__ intercepts
 both implicit and explicit fetches of __call__ and __str__ in 2.X here. By contrast, __getattribute__ fails to catch implicit
 fetches of either attribute name for built-in operations.
Really, the __getattribute__
 case is the same in 2.X as it is in 3.X, because in 2.X classes must be
 made new-style by deriving from object to use this method. This code’s
 object derivation is optional in 3.X
 because all classes are new-style.
When run under Python 3.X, though, results for __getattr__ differ—none
 of the implicitly run operator overloading methods trigger
 either attribute interception method when their
 attributes are fetched by built-in operations. Python 3.X (and new-style
 classes in general) skips the normal instance lookup mechanism when
 resolving such names, though normally named methods are still
 intercepted as before:
 c:\code> py −3 getattr-builtins.py

GetAttr===
getattr: other
__len__: 42
fail []
fail +
fail ()
getattr: __call__
<__main__.GetAttr object at 0x02987CC0>
<__main__.GetAttr object at 0x02987CC0>

GetAttribute======================================
getattribute: eggs
getattribute: spam
getattribute: other
__len__: 42
fail []
fail +
fail ()
getattribute: __call__
getattribute: __str__
[GetAttribute str]
<__main__.GetAttribute object at 0x02987CF8>
Trace these outputs back to prints in the script to see how this works.
 Some highlights:
	__str__ access fails to be
 caught twice by __getattr__ in
 3.X: once for the built-in print, and once for explicit fetches
 because a default is inherited from the class (really, from the
 built-in object, which is an
 automatic superclass to every class in 3.X).

	__str__ fails to be caught
 only once by the __getattribute__
 catchall, during the built-in print operation; explicit fetches
 bypass the inherited version.

	__call__ fails to be caught
 in both schemes in 3.X for built-in call expressions, but it is
 intercepted by both when fetched explicitly; unlike __str__, there is no inherited __call__ default for object instances to defeat __getattr__.

	__len__ is caught by both
 classes, simply because it is an explicitly defined method in the
 classes themselves—though its name it is not routed to either
 __getattr__ or __getattribute__ in 3.X if we delete the
 class’s __len__ methods.

	All other built-in operations fail to be intercepted by both
 schemes in 3.X.

Again, the net effect is that operator overloading methods
 implicitly run by built-in operations are never routed through either
 attribute interception method in 3.X: Python 3.X’s new-style classes
 search for such attributes in classes and skip
 instance lookup entirely. Normally named attributes do not.
This makes delegation-based wrapper classes more difficult to code
 in 3.X’s new-style classes—if wrapped classes may contain operator
 overloading methods, those methods must be redefined redundantly in the
 wrapper class in order to delegate to the wrapped object. In general
 delegation tools, this can add dozens of extra methods.
Of course, the addition of such methods can be partly automated by
 tools that augment classes with new methods (the class decorators and
 metaclasses of the next two chapters might help here). Moreover, a
 superclass might be able to define all these extra methods once, for
 inheritance in delegation-based classes. Still, delegation coding
 patterns require extra work in 3.X’s classes.
For a more realistic illustration of this phenomenon as well as
 its workaround, see the Private
 decorator example in the following chapter. There, we’ll explore
 alternatives for coding the operator methods required of proxies in
 3.X’s classes—including reusable mix-in superclass
 models. We’ll also see there that it’s possible to insert a __getattribute__ in the client class to retain
 its original type, although this method still won’t be called for
 operator overloading methods; printing still runs a __str__ defined in such a class directly, for
 example, instead of routing the request through __getattribute__.
As a more realistic example of this, the next section resurrects
 our class tutorial example. Now that you understand how attribute
 interception works, I’ll be able to explain one of its stranger
 bits.
Delegation-based managers revisited
The object-oriented tutorial of Chapter 28 presented a Manager class that used object embedding and
 method delegation to customize its superclass, rather than
 inheritance. Here is the code again for reference, with some
 irrelevant testing removed:
class Person:
 def __init__(self, name, job=None, pay=0):
 self.name = name
 self.job = job
 self.pay = pay
 def lastName(self):
 return self.name.split()[-1]
 def giveRaise(self, percent):
 self.pay = int(self.pay * (1 + percent))
 def __repr__(self):
 return '[Person: %s, %s]' % (self.name, self.pay)

class Manager:
 def __init__(self, name, pay):
 self.person = Person(name, 'mgr', pay) # Embed a Person object
 def giveRaise(self, percent, bonus=.10):
 self.person.giveRaise(percent + bonus) # Intercept and delegate
 def __getattr__(self, attr):
 return getattr(self.person, attr) # Delegate all other attrs
 def __repr__(self):
 return str(self.person) # Must overload again (in 3.X)

if __name__ == '__main__':
 sue = Person('Sue Jones', job='dev', pay=100000)
 print(sue.lastName())
 sue.giveRaise(.10)
 print(sue)
 tom = Manager('Tom Jones', 50000) # Manager.__init__
 print(tom.lastName()) # Manager.__getattr__ -> Person.lastName
 tom.giveRaise(.10) # Manager.giveRaise -> Person.giveRaise
 print(tom) # Manager.__repr__ -> Person.__repr__
Comments at the end of this file show which methods are invoked
 for a line’s operation. In particular, notice how lastName calls are undefined in Manager, and thus are routed into the
 generic __getattr__ and from there
 on to the embedded Person object.
 Here is the script’s output—Sue receives a 10% raise from Person, but Tom gets 20% because giveRaise is customized in Manager:
c:\code> py −3 getattr-delegate.py
Jones
[Person: Sue Jones, 110000]
Jones
[Person: Tom Jones, 60000]
By contrast, though, notice what occurs when we
 print a Manager at the end of the script: the
 wrapper class’s __repr__ is
 invoked, and it delegates to the embedded Person object’s __repr__. With that in mind, watch what
 happens if we delete the Manager.__repr__ method in this code:
Delete the Manager __str__ method

class Manager:
 def __init__(self, name, pay):
 self.person = Person(name, 'mgr', pay) # Embed a Person object
 def giveRaise(self, percent, bonus=.10):
 self.person.giveRaise(percent + bonus) # Intercept and delegate
 def __getattr__(self, attr):
 return getattr(self.person, attr) # Delegate all other attrs
Now printing does not route its attribute
 fetch through the generic __getattr__ interceptor under Python 3.X’s
 new-style classes for Manager
 objects. Instead, a default __str__ display method inherited from the
 class’s implicit object superclass
 is looked up and run (sue still
 prints correctly, because Person
 has an explicit __repr__):
c:\code> py −3 getattr-delegate.py
Jones
[Person: Sue Jones, 110000]
Jones
<__main__.Manager object at 0x029E7B70>
As coded, running without a __repr__ like this does
 trigger __getattr__ in Python 2.X’s
 default classic classes, because operator overloading attributes are
 routed through this method, and such classes do not inherit a default
 for __repr__:
c:\code> py −2 getattr-delegate.py
Jones
[Person: Sue Jones, 110000]
Jones
[Person: Tom Jones, 60000]
Switching to __getattribute__
 won’t help 3.X here either—like __getattr__, it is not
 run for operator overloading attributes implied by built-in operations
 in either Python 2.X or 3.X:
Replace __getattr_ with __getattribute__

class Manager(object): # Use "(object)" in 2.X
 def __init__(self, name, pay):
 self.person = Person(name, 'mgr', pay) # Embed a Person object
 def giveRaise(self, percent, bonus=.10):
 self.person.giveRaise(percent + bonus) # Intercept and delegate
 def __getattribute__(self, attr):
 print('**', attr)
 if attr in ['person', 'giveRaise']:
 return object.__getattribute__(self, attr) # Fetch my attrs
 else:
 return getattr(self.person, attr) # Delegate all others
Regardless of which attribute interception method is used in
 3.X, we still must include a redefined __repr__ in Manager (as shown previously) in order to
 intercept printing operations and route them to the embedded Person object:
C:\code> py −3 getattr-delegate.py
Jones
[Person: Sue Jones, 110000]
** lastName
** person
Jones
** giveRaise
** person
<__main__.Manager object at 0x028E0590>
Notice that __getattribute__
 gets called twice here for methods—once for the
 method name, and again for the self.person embedded object fetch. We could
 avoid that with a different coding, but we would still have to
 redefine __repr__ to catch
 printing, albeit differently here (self.person would cause this __getattribute__ to fail):
Code __getattribute__ differently to minimize extra calls

class Manager:
 def __init__(self, name, pay):
 self.person = Person(name, 'mgr', pay)
 def __getattribute__(self, attr):
 print('**', attr)
 person = object.__getattribute__(self, 'person')
 if attr == 'giveRaise':
 return lambda percent: person.giveRaise(percent+.10)
 else:
 return getattr(person, attr)
 def __repr__(self):
 person = object.__getattribute__(self, 'person')
 return str(person)
When this alternative runs, our object prints properly, but only
 because we’ve added an explicit __repr__ in the wrapper—this attribute is
 still not routed to our generic attribute interception method:
Jones
[Person: Sue Jones, 110000]
** lastName
Jones
** giveRaise
[Person: Tom Jones, 60000]
The short story here is that delegation-based classes like
 Manager must redefine some operator
 overloading methods (like __repr__
 and __str__) to route them to
 embedded objects in Python 3.X, but not in Python 2.X unless new-style
 classes are used. Our only direct options seem to be using __getattr__ and Python 2.X, or redefining
 operator overloading methods in wrapper classes redundantly in
 3.X.
Again, this isn’t an impossible task; many wrappers can predict
 the set of operator overloading methods required, and tools and
 superclasses can automate part of this task—in fact, we’ll study
 coding patterns that can fill this need in the next chapter. Moreover,
 not all classes use operator overloading methods (indeed, most
 application classes usually should not). It is, however, something to
 keep in mind for delegation coding models used in Python 3.X; when
 operator overloading methods are part of an object’s interface,
 wrappers must accommodate them portably by redefining them locally.

Example: Attribute Validations
To close out this chapter, let’s turn to a more realistic example, coded in all four of
 our attribute management schemes. The example we will use defines a
 CardHolder object with four attributes,
 three of which are managed. The managed attributes validate or transform
 values when fetched or stored. All four versions produce the same results
 for the same test code, but they implement their attributes in very
 different ways. The examples are included largely for self-study; although
 I won’t go through their code in detail, they all use concepts we’ve
 already explored in this chapter.
Using Properties to Validate
Our first coding in the file that follows uses properties to manage three attributes. As
 usual, we could use simple methods instead of managed attributes, but
 properties help if we have been using attributes in existing code
 already. Properties run code automatically on attribute access, but are
 focused on a specific set of attributes; they cannot be used to
 intercept all attributes generically.
To understand this code, it’s crucial to notice that the attribute
 assignments inside the __init__
 constructor method trigger property setter methods too. When this method
 assigns to self.name, for example, it
 automatically invokes the setName
 method, which transforms the value and assigns it to an instance
 attribute called __name so it won’t
 clash with the property’s name.
This renaming (sometimes called name
 mangling) is necessary because properties use common instance
 state and have none of their own. Data is stored in an attribute called
 __name, and the attribute called
 name is always a property, not data.
 As we saw in Chapter 31, names like
 __name are known as
 pseudoprivate attributes, and are changed by Python
 to include the enclosing class’s name when stored in the instance’s
 namespace; here, this helps keep the implementation-specific attributes
 distinct from others, including that of the property that manages
 them.
In the end, this class manages attributes called name, age,
 and acct; allows the attribute
 addr to be accessed directly; and
 provides a read-only attribute called remain that is entirely virtual and computed
 on demand. For comparison purposes, this property-based coding weighs in
 at 39 lines of code, not counting its two initial lines, and includes
 the object derivation required in 2.X
 but optional in 3.X:
File validate_properties.py

class CardHolder(object): # Need "(object)" for setter in 2.X
 acctlen = 8 # Class data
 retireage = 59.5

 def __init__(self, acct, name, age, addr):
 self.acct = acct # Instance data
 self.name = name # These trigger prop setters too!
 self.age = age # __X mangled to have class name
 self.addr = addr # addr is not managed
 # remain has no data
 def getName(self):
 return self.__name
 def setName(self, value):
 value = value.lower().replace(' ', '_')
 self.__name = value
 name = property(getName, setName)

 def getAge(self):
 return self.__age
 def setAge(self, value):
 if value < 0 or value > 150:
 raise ValueError('invalid age')
 else:
 self.__age = value
 age = property(getAge, setAge)

 def getAcct(self):
 return self.__acct[:-3] + '***'
 def setAcct(self, value):
 value = value.replace('-', '')
 if len(value) != self.acctlen:
 raise TypeError('invald acct number')
 else:
 self.__acct = value
 acct = property(getAcct, setAcct)

 def remainGet(self): # Could be a method, not attr
 return self.retireage - self.age # Unless already using as attr
 remain = property(remainGet)
Testing code
The following code, validate_tester.py, tests our class; run
 this script with the name of the class’s module (sans “.py”) as a
 single command-line argument (you could also add most of its test code
 to the bottom of each file, or interactively import it from a module
 after importing the class). We’ll use this same testing code for all
 four versions of this example. When it runs, it makes two instances of
 our managed-attribute class and fetches and changes their various
 attributes. Operations expected to fail are wrapped in try statements, and identical behavior on
 2.X is supported by enabling the 3.X print function:
File validate_tester.py
from __future__ import print_function # 2.X

def loadclass():
 import sys, importlib
 modulename = sys.argv[1] # Module name in command line
 module = importlib.import_module(modulename) # Import module by name string
 print('[Using: %s]' % module.CardHolder) # No need for getattr() here
 return module.CardHolder

def printholder(who):
 print(who.acct, who.name, who.age, who.remain, who.addr, sep=' / ')

if __name__ == '__main__':
 CardHolder = loadclass()
 bob = CardHolder('1234-5678', 'Bob Smith', 40, '123 main st')
 printholder(bob)
 bob.name = 'Bob Q. Smith'
 bob.age = 50
 bob.acct = '23-45-67-89'
 printholder(bob)

 sue = CardHolder('5678-12-34', 'Sue Jones', 35, '124 main st')
 printholder(sue)
 try:
 sue.age = 200
 except:
 print('Bad age for Sue')

 try:
 sue.remain = 5
 except:
 print("Can't set sue.remain")

 try:
 sue.acct = '1234567'
 except:
 print('Bad acct for Sue')
Here is the output of our self-test code on both Python 3.X and
 2.X; again, this is the same for all versions of this example, except
 for the tested class’s name. Trace through this code to see how the
 class’s methods are invoked; accounts are displayed with some digits
 hidden, names are converted to a standard format, and time remaining
 until retirement is computed when fetched using a class attribute
 cutoff:
c:\code> py −3 validate_tester.py validate_properties
[Using: <class 'validate_properties.CardHolder'>]
12345*** / bob_smith / 40 / 19.5 / 123 main st
23456*** / bob_q._smith / 50 / 9.5 / 123 main st
56781*** / sue_jones / 35 / 24.5 / 124 main st
Bad age for Sue
Can't set sue.remain
Bad acct for Sue

Using Descriptors to Validate
Now, let’s recode our example using descriptors instead
 of properties. As we’ve seen, descriptors are very similar to properties
 in terms of functionality and roles; in fact, properties are basically a
 restricted form of descriptor. Like properties, descriptors are designed
 to handle specific attributes, not generic attribute access. Unlike
 properties, descriptors can also have their own state, and are a more
 general scheme.
Option 1: Validating with shared descriptor instance
 state
To understand the following code, it’s again important to notice that the attribute
 assignments inside the __init__
 constructor method trigger descriptor __set__ methods. When the constructor method
 assigns to self.name, for example,
 it automatically invokes the Name.__set__() method, which transforms the
 value and assigns it to a descriptor attribute called name.
In the end, this class implements the same attributes as the
 prior version: it manages attributes called name, age, and acct; allows the attribute addr to be accessed directly; and provides a
 read-only attribute called remain
 that is entirely virtual and computed on demand. Notice how we must
 catch assignments to the remain
 name in its descriptor and raise an exception; as we learned earlier,
 if we did not do this, assigning to this attribute of an instance
 would silently create an instance attribute that hides the class
 attribute descriptor.
For comparison purposes, this descriptor-based coding takes 45
 lines of code; I’ve added the required object derivation to the main descriptor
 classes for 2.X compatibility (they can be omitted for code to be run
 in 3.X only, but don’t hurt in 3.X, and aid portability if
 present):
File validate_descriptors1.py: using shared descriptor state

class CardHolder(object): # Need all "(object)" in 2.X only
 acctlen = 8 # Class data
 retireage = 59.5

 def __init__(self, acct, name, age, addr):
 self.acct = acct # Instance data
 self.name = name # These trigger __set__ calls too!
 self.age = age # __X not needed: in descriptor
 self.addr = addr # addr is not managed
 # remain has no data
 class Name(object):
 def __get__(self, instance, owner): # Class names: CardHolder locals
 return self.name
 def __set__(self, instance, value):
 value = value.lower().replace(' ', '_')
 self.name = value
 name = Name()

 class Age(object):
 def __get__(self, instance, owner):
 return self.age # Use descriptor data
 def __set__(self, instance, value):
 if value < 0 or value > 150:
 raise ValueError('invalid age')
 else:
 self.age = value
 age = Age()

 class Acct(object):
 def __get__(self, instance, owner):
 return self.acct[:-3] + '***'
 def __set__(self, instance, value):
 value = value.replace('-', '')
 if len(value) != instance.acctlen: # Use instance class data
 raise TypeError('invald acct number')
 else:
 self.acct = value
 acct = Acct()

 class Remain(object):
 def __get__(self, instance, owner):
 return instance.retireage - instance.age # Triggers Age.__get__
 def __set__(self, instance, value):
 raise TypeError('cannot set remain') # Else set allowed here
 remain = Remain()
When run with the prior testing script, all examples in this
 section produce the same output as shown for properties earlier,
 except that the name of the class in the first line varies:
C:\code> python validate_tester.py validate_descriptors1
...same output as properties, except class name...

Option 2: Validating with per-client-instance state
Unlike in the prior property-based variant, though, in this case
 the actual name value is attached
 to the descriptor object, not the client class
 instance. Although we could store this value in either instance or
 descriptor state, the latter avoids the need to mangle names with
 underscores to avoid collisions. In the CardHolder client class, the attribute
 called name is always a descriptor
 object, not data.
Importantly, the downside of this scheme is that state stored
 inside a descriptor itself is class-level data that is effectively
 shared by all client class instances, and so
 cannot vary between them. That is, storing state in the
 descriptor instance instead of the
 owner (client) class instance means that the
 state will be the same in all owner class instances. Descriptor state
 can vary only per attribute appearance.
To see this at work, in the preceding descriptor-based CardHolder example, try printing attributes
 of the bob instance after creating
 the second instance, sue. The
 values of sue’s managed attributes
 (name, age, and acct) overwrite those
 of the earlier object bob, because
 both share the same, single descriptor instance attached to their
 class:
File validate_tester2.py
from __future__ import print_function # 2.X

from validate_tester import loadclass
CardHolder = loadclass()

bob = CardHolder('1234-5678', 'Bob Smith', 40, '123 main st')
print('bob:', bob.name, bob.acct, bob.age, bob.addr)

sue = CardHolder('5678-12-34', 'Sue Jones', 35, '124 main st')
print('sue:', sue.name, sue.acct, sue.age, sue.addr) # addr differs: client data
print('bob:', bob.name, bob.acct, bob.age, bob.addr) # name,acct,age overwritten?
The results confirm the suspicion—in terms of managed
 attributes, bob has morphed into
 sue!
c:\code> py −3 validate_tester2.py validate_descriptors1
[Using: <class 'validate_descriptors1.CardHolder'>]
bob: bob_smith 12345*** 40 123 main st
sue: sue_jones 56781*** 35 124 main st
bob: sue_jones 56781*** 35 123 main st
There are valid uses for descriptor state, of course—to manage
 descriptor implementation and data that spans all instance—and this
 code was implemented to illustrate the technique. Moreover, the state
 scope implications of class versus instance attributes should be more
 or less a given at this point in the book.
However, in this particular use case, attributes of CardHolder objects are probably better
 stored as per-instance data instead of descriptor
 instance data, perhaps using the same __X naming
 convention as the property-based equivalent to avoid name clashes in
 the instance—a more important factor this time, as the client is a
 different class with its own state attributes. Here are the required
 coding changes; it doesn’t change line counts (we’re still at
 45):
File validate_descriptors2.py: using per-client-instance state

class CardHolder(object): # Need all "(object)" in 2.X only
 acctlen = 8 # Class data
 retireage = 59.5

 def __init__(self, acct, name, age, addr):
 self.acct = acct # Client instance data
 self.name = name # These trigger __set__ calls too!
 self.age = age # __X needed: in client instance
 self.addr = addr # addr is not managed
 # remain managed but has no data
 class Name(object):
 def __get__(self, instance, owner): # Class names: CardHolder locals
 return instance.__name
 def __set__(self, instance, value):
 value = value.lower().replace(' ', '_')
 instance.__name = value
 name = Name() # class.name vs mangled attr

 class Age(object):
 def __get__(self, instance, owner):
 return instance.__age # Use descriptor data
 def __set__(self, instance, value):
 if value < 0 or value > 150:
 raise ValueError('invalid age')
 else:
 instance.__age = value
 age = Age() # class.age vs mangled attr

 class Acct(object):
 def __get__(self, instance, owner):
 return instance.__acct[:-3] + '***'
 def __set__(self, instance, value):
 value = value.replace('-', '')
 if len(value) != instance.acctlen: # Use instance class data
 raise TypeError('invald acct number')
 else:
 instance.__acct = value
 acct = Acct() # class.acct vs mangled name

 class Remain(object):
 def __get__(self, instance, owner):
 return instance.retireage - instance.age # Triggers Age.__get__
 def __set__(self, instance, value):
 raise TypeError('cannot set remain') # Else set allowed here
 remain = Remain()
This supports per-instance data for the name, age, and acct managed fields as expected (bob remains bob), and other tests work as before:
c:\code> py −3 validate_tester2.py validate_descriptors2
[Using: <class 'validate_descriptors2.CardHolder'>]
bob: bob_smith 12345*** 40 123 main st
sue: sue_jones 56781*** 35 124 main st
bob: bob_smith 12345*** 40 123 main st

c:\code> py −3 validate_tester.py validate_descriptors2
...same output as properties, except class name...
One small caveat here: as coded, this version doesn’t support
 through-class descriptor access, because such
 access passes a None to the
 instance argument (also notice the attribute __X name mangling
 to _Name__name in the error message
 when the fetch attempt is made):
>>> from validate_descriptors1 import CardHolder
>>> bob = CardHolder('1234-5678', 'Bob Smith', 40, '123 main st')
>>> bob.name
'bob_smith'
>>> CardHolder.name
'bob_smith'

>>> from validate_descriptors2 import CardHolder
>>> bob = CardHolder('1234-5678', 'Bob Smith', 40, '123 main st')
>>> bob.name
'bob_smith'
>>> CardHolder.name
AttributeError: 'NoneType' object has no attribute '_Name__name'
We could detect this with a minor amount of additional code to
 trigger the error more explicitly, but there’s probably no
 point—because this version stores data in the client
 instance, there’s no meaning to its descriptors unless
 they’re accompanied by a client instance (much like a normal unbound
 instance method). In fact, that’s really the entire point of this
 version’s change!
Because they are classes, descriptors are a useful and powerful
 tool, but they present choices that can deeply impact a program’s
 behavior. As always in OOP, choose your state retention policies
 carefully.

Using __getattr__ to Validate
As we’ve seen, the __getattr__
 method intercepts all undefined attributes, so it can be more
 generic than using properties or descriptors. For our example, we simply
 test the attribute name to know when a managed attribute is being
 fetched; others are stored physically on the instance and so never reach
 __getattr__. Although this approach
 is more general than using properties or descriptors, extra work may be
 required to imitate the specific-attribute focus of other tools. We need
 to check names at runtime, and we must code a __setattr__ in order to intercept and validate
 attribute assignments.
As for the property and descriptor versions of this example, it’s
 critical to notice that the attribute assignments inside the __init__ constructor method trigger the
 class’s __setattr__ method too. When
 this method assigns to self.name, for
 example, it automatically invokes the __setattr__ method, which transforms the value
 and assigns it to an instance attribute called name. By storing name on the instance, it ensures that future
 accesses will not trigger __getattr__. In contrast, acct is stored as _acct, so that later accesses to acct do invoke __getattr__.
In the end, this class, like the prior two, manages attributes
 called name, age, and acct; allows the attribute addr to be accessed directly; and provides a
 read-only attribute called remain
 that is entirely virtual and is computed on demand.
For comparison purposes, this alternative comes in at 32 lines of
 code—7 fewer than the property-based version, and 13 fewer than the
 version using descriptors. Clarity matters more than code size, of
 course, but extra code can sometimes imply extra development and
 maintenance work. Probably more important here are
 roles: generic tools like __getattr__ may be better suited to generic
 delegation, while properties and descriptors are more directly designed
 to manage specific attributes.
Also note that the code here incurs extra
 calls when setting unmanaged attributes (e.g., addr), although no extra calls are incurred
 for fetching unmanaged attributes, since they are defined. Though this
 will likely result in negligible overhead for most programs, the more
 narrowly focused properties and
 descriptors incur an extra call only when managed
 attributes are accessed, and also appear in dir results when needed by generic
 tools.
Here’s the __getattr__ version
 of our validations code:
File validate_getattr.py

class CardHolder:
 acctlen = 8 # Class data
 retireage = 59.5

 def __init__(self, acct, name, age, addr):
 self.acct = acct # Instance data
 self.name = name # These trigger __setattr__ too
 self.age = age # _acct not mangled: name tested
 self.addr = addr # addr is not managed
 # remain has no data
 def __getattr__(self, name):
 if name == 'acct': # On undefined attr fetches
 return self._acct[:-3] + '***' # name, age, addr are defined
 elif name == 'remain':
 return self.retireage - self.age # Doesn't trigger __getattr__
 else:
 raise AttributeError(name)

 def __setattr__(self, name, value):
 if name == 'name': # On all attr assignments
 value = value.lower().replace(' ', '_') # addr stored directly
 elif name == 'age': # acct mangled to _acct
 if value < 0 or value > 150:
 raise ValueError('invalid age')
 elif name == 'acct':
 name = '_acct'
 value = value.replace('-', '')
 if len(value) != self.acctlen:
 raise TypeError('invald acct number')
 elif name == 'remain':
 raise TypeError('cannot set remain')
 self.__dict__[name] = value # Avoid looping (or via object)
When this code is run with either test script, it produces the
 same output (with a different class name):
c:\code> py −3 validate_tester.py validate_getattr
...same output as properties, except class name...

c:\code> py −3 validate_tester2.py validate_getattr
...same output as instance-state descriptors, except class name...

Using __getattribute__ to Validate
Our final variant uses the __getattribute__ catchall to intercept attribute fetches and manage them as needed.
 Every attribute fetch is caught here, so we test the attribute names to
 detect managed attributes and route all others to the superclass for
 normal fetch processing. This version uses the same __setattr__ to catch assignments as the prior
 version.
The code works very much like the __getattr__ version, so I won’t repeat the
 full description here. Note, though, that because
 every attribute fetch is routed to __getattribute__, we don’t need to mangle
 names to intercept them here (acct is
 stored as acct). On the other hand,
 this code must take care to route nonmanaged attribute fetches to a
 superclass to avoid looping or extra calls.
Also notice that this version incurs extra calls for both setting
 and fetching unmanaged attributes (e.g., addr); if speed is paramount, this alternative
 may be the slowest of the bunch. For comparison purposes, this version
 amounts to 32 lines of code, just like the prior version, and includes
 the requisite object derivation for
 2.X compatibility; like properties and descriptors, __getattribute__ is a new-style class
 tool:
File validate_getattribute.py

class CardHolder(object): # Need "(object)" in 2.X only
 acctlen = 8 # Class data
 retireage = 59.5

 def __init__(self, acct, name, age, addr):
 self.acct = acct # Instance data
 self.name = name # These trigger __setattr__ too
 self.age = age # acct not mangled: name tested
 self.addr = addr # addr is not managed
 # remain has no data
 def __getattribute__(self, name):
 superget = object.__getattribute__ # Don't loop: one level up
 if name == 'acct': # On all attr fetches
 return superget(self, 'acct')[:-3] + '***'
 elif name == 'remain':
 return superget(self, 'retireage') - superget(self, 'age')
 else:
 return superget(self, name) # name, age, addr: stored

 def __setattr__(self, name, value):
 if name == 'name': # On all attr assignments
 value = value.lower().replace(' ', '_') # addr stored directly
 elif name == 'age':
 if value < 0 or value > 150:
 raise ValueError('invalid age')
 elif name == 'acct':
 value = value.replace('-', '')
 if len(value) != self.acctlen:
 raise TypeError('invald acct number')
 elif name == 'remain':
 raise TypeError('cannot set remain')
 self.__dict__[name] = value # Avoid loops, orig names
Both the getattr and getattribute scripts work the same as the
 property and per-client-instance descriptor versions, when run by both
 tester scripts on either 2.X or 3.X.—four ways to achieve the
 same goal in Python, though they vary in structure, and are
 perhaps less redundant in some other roles. Be sure to study and run
 this section’s code on your own for more pointers on managed attribute
 coding techniques.

Chapter Summary
This chapter covered the various techniques for managing access to
 attributes in Python, including the __getattr__ and __getattribute__ operator overloading methods,
 class properties, and class attribute descriptors. Along the way, it
 compared and contrasted these tools and presented a handful of use cases
 to demonstrate their behavior.
Chapter 39 continues our tool-building survey
 with a look at decorators—code run automatically at
 function and class creation time, rather than on attribute access. Before
 we continue, though, let’s work through a set of questions to review what
 we’ve covered here.

Test Your Knowledge: Quiz
	How do __getattr__ and
 __getattribute__ differ?

	How do properties and descriptors differ?

	How are properties and decorators related?

	What are the main functional differences between __getattr__ and __getattribute__ and properties and
 descriptors?

	Isn’t all this feature comparison just a kind of
 argument?

Test Your Knowledge: Answers
	The __getattr__ method is
 run for fetches of undefined attributes only
 (i.e., those not present on an instance and not inherited from any
 of its classes). By contrast, the __getattribute__ method is called for
 every attribute fetch, whether the attribute is
 defined or not. Because of this, code inside a __getattr__ can freely fetch other
 attributes if they are defined, whereas __getattribute__ must use special code for
 all such attribute fetches to avoid looping or extra calls (it must
 route fetches to a superclass to skip itself).

	Properties serve a specific role, while descriptors are more
 general. Properties define get, set, and delete functions for a
 specific attribute; descriptors provide a class with methods for
 these actions, too, but they provide extra flexibility to support
 more arbitrary actions. In fact, properties are really a simple way
 to create a specific kind of descriptor—one that runs functions on
 attribute accesses. Coding differs too: a property is created with a
 built-in function, and a descriptor is coded with a class; thus,
 descriptors can leverage all the usual OOP features of classes, such
 as inheritance. Moreover, in addition to the instance’s state
 information, descriptors have local state of their own, so they can
 sometimes avoid name collisions in the instance.

	Properties can be coded with decorator syntax. Because the
 property built-in accepts a
 single function argument, it can be used directly as a function
 decorator to define a fetch access property. Due to the name
 rebinding behavior of decorators, the name of the decorated function
 is assigned to a property whose get accessor is set to the original
 function decorated (name =
 property(name)). Property setter and deleter attributes allow us to further add
 set and delete accessors with decoration syntax—they set the
 accessor to the decorated function and return the augmented
 property.

	The __getattr__ and
 __getattribute__ methods are more
 generic: they can be used to catch arbitrarily many attributes. In
 contrast, each property or descriptor provides access interception
 for only one specific attribute—we can’t catch
 every attribute fetch with a single property or descriptor. On the
 other hand, properties and descriptors handle both attribute fetch
 and assignment by design: __getattr__ and __getattribute__ handle fetches only; to
 intercept assignments as well, __setattr__ must also be coded. The
 implementation is also different: __getattr__ and __getattribute__ are operator overloading
 methods, whereas properties and descriptors are objects manually
 assigned to class attributes. Unlike the others, properties and
 descriptors can also sometimes avoid extra calls on assignment to
 unmanaged names, and show up in dir results automatically, but are also
 narrower in scope—they can’t address generic dispatch goals. In
 Python evolution, new features tend to offer alternatives, but do
 not fully subsume what came before.

	No it isn’t. To quote from Python namesake Monty Python’s Flying
 Circus:
An argument is a connected series of statements intended to establish a
proposition.
No it isn't.
Yes it is! It's not just contradiction.
Look, if I argue with you, I must take up a contrary position.
Yes, but that's not just saying "No it isn't."
Yes it is!
No it isn't!
Yes it is!
No it isn't. Argument is an intellectual process. Contradiction is just
the automatic gainsaying of any statement the other person makes.
(short pause) No it isn't.
It is.
Not at all.
Now look...

1 As noted in Chapter 31, such
 dynamic classes can also use a __dir__ method to
 provide an attribute result list for dir calls,
 though general tools cannot depend on this optional
 interface.

Chapter 39. Decorators
In the advanced class topics chapter of this book (Chapter 32), we met static and class methods, took a
 quick look at the @ decorator syntax
 Python offers for declaring them, and previewed decorator coding techniques.
 We also met function decorators briefly in Chapter 38, while exploring the property built-in’s ability to serve as one, and
 in Chapter 29 while studying the notion of
 abstract superclasses.
This chapter picks up where this previous decorator coverage left off.
 Here, we’ll dig deeper into the inner workings of decorators and study more
 advanced ways to code new decorators ourselves. As we’ll see, many of the
 concepts we studied earlier—especially state retention—show up regularly in
 decorators.
This is a somewhat advanced topic, and decorator construction tends to
 be of more interest to tool builders than to application programmers. Still,
 given that decorators are becoming increasingly common in popular Python
 frameworks, a basic understanding can help demystify their role, even if
 you’re just a decorator user.
Besides covering decorator construction details, this chapter serves
 as a more realistic case study of Python in action.
 Because its examples grow somewhat larger than most of the others we’ve seen
 in this book, they better illustrate how code comes together into more
 complete systems and tools. As an extra perk, some of the code we’ll write
 here may be used as general-purpose tools in your day-to-day
 programs.
What’s a Decorator?
Decoration is a way to specify management or augmentation code for functions and
 classes. Decorators themselves take the form of callable objects (e.g.,
 functions) that process other callable objects. As we saw earlier in this
 book, Python decorators come in two related flavors, neither of which
 requires 3.X or new-style classes:
	Function decorators, added in Python 2.4,
 do name rebinding at function definition time, providing a layer
 of logic that can manage functions and methods, or later calls to
 them.

	Class decorators, added in Python 2.6 and
 3.0, do name rebinding at class definition time, providing a
 layer of logic that can manage classes, or the instances created by
 later calls to them.

In short, decorators provide a way to insert automatically
 run code at the end of function and class definition
 statements—at the end of a def for
 function decorators, and at the end of a class for class decorators. Such code can play a
 variety of roles, as described in the following sections.
Managing Calls and Instances
In typical use, this automatically run code may be used to augment calls to
 functions and classes. It arranges this by installing wrapper (a.k.a.
 proxy) objects to be invoked later:
	Call proxies
	Function decorators install wrapper objects to intercept
 later function calls and process them as
 needed, usually passing the call on to the original function to
 run the managed action.

	Interface proxies
	Class decorators install wrapper objects to intercept later
 instance creation calls and process them as
 required, usually passing the call on to the original class to
 create a managed instance.

Decorators achieve these effects by automatically rebinding
 function and class names to other callables, at the end of def and class statements. When later invoked, these
 callables can perform tasks such as tracing and timing function calls,
 managing access to class instance attributes, and so on.

Managing Functions and Classes
Although most examples in this chapter deal with using wrappers to intercept later
 calls to functions and classes, this is not the only way decorators can
 be used:
	Function managers
	Function decorators can also be used to manage
 function objects, instead of or in addition
 to later calls to them—to register a function to an API, for
 instance. Our primary focus here, though, will be on their more
 commonly used call wrapper application.

	Class managers
	Class decorators can also be used to manage class
 objects directly, instead of or in addition to instance
 creation calls—to augment a class with new methods, for example.
 Because this role intersects strongly with that of
 metaclasses, we’ll see additional use cases
 in the next chapter. As we’ll find, both tools run at the end of
 the class creation process, but class decorators often offer a
 lighter-weight solution.

In other words, function decorators can be used to manage both
 function calls and function objects, and class decorators can be used to
 manage both class instances and classes themselves. By returning the
 decorated object itself instead of a wrapper, decorators become a simple
 post-creation step for functions and classes.
Regardless of the role they play, decorators provide a convenient
 and explicit way to code tools useful both during program development
 and in live production systems.

Using and Defining Decorators
Depending on your job description, you might encounter decorators as a
 user or a provider (you might also be a maintainer, but that just means
 you straddle the fence). As we’ve seen, Python itself comes with
 built-in decorators that have specialized roles—static and class method
 declaration, property creation, and more. In addition, many popular
 Python toolkits include decorators to perform tasks such as managing
 database or user-interface logic. In such cases, we can get by without
 knowing how the decorators are coded.
For more general tasks, programmers can code arbitrary decorators
 of their own. For example, function decorators may be used to augment
 functions with code that adds call tracing or logging, performs argument
 validity testing during debugging, automatically acquires and releases
 thread locks, times calls made to functions for optimization, and so on.
 Any behavior you can imagine adding to—really, wrapping around—a
 function call is a candidate for custom function decorators.
On the other hand, function decorators are designed to augment
 only a specific function or method call, not an
 entire object interface. Class decorators fill the
 latter role better—because they can intercept instance creation calls,
 they can be used to implement arbitrary object interface augmentation or
 management tasks. For example, custom class decorators can trace,
 validate, or otherwise augment every attribute reference made for an
 object. They can also be used to implement proxy objects, singleton
 classes, and other common coding patterns. In fact, we’ll find that many
 class decorators bear a strong resemblance to—and in fact are a prime
 application of—the delegation coding pattern we met
 in Chapter 31.

Why Decorators?
Like many advanced Python tools, decorators are never strictly
 required from a purely technical perspective: we can often implement
 their functionality instead using simple helper function calls or other
 techniques. And at a base level, we can always manually code the name
 rebinding that decorators perform automatically.
That said, decorators provide an explicit syntax for such tasks,
 which makes intent clearer, can minimize augmentation code redundancy,
 and may help ensure correct API usage:
	Decorators have a very explicit syntax,
 which makes them easier to spot than helper function calls that may
 be arbitrarily far-removed from the subject functions or
 classes.

	Decorators are applied once, when the
 subject function or class is defined; it’s not necessary to add
 extra code at every call to the class or function, which may have to
 be changed in the future.

	Because of both of the prior points, decorators make it less
 likely that a user of an API will forget to
 augment a function or class according to API requirements.

In other words, beyond their technical model, decorators offer
 some advantages in terms of both code maintenance and consistency.
 Moreover, as structuring tools, decorators naturally foster
 encapsulation of code, which reduces redundancy and
 makes future changes easier.
Decorators do have some potential drawbacks,
 too—when they insert wrapper logic, they can alter the types of the
 decorated objects, and they may incur extra calls when used as call or
 interface proxies. On the other hand, the same considerations apply to
 any technique that adds wrapping logic to objects.
We’ll explore these tradeoffs in the context of real code later in
 this chapter. Although the choice to use decorators is still somewhat
 subjective, their advantages are compelling enough that they are quickly
 becoming best practice in the Python world. To help you decide for
 yourself, let’s turn to the details.
Note
Decorators versus macros: Python’s
 decorators bear similarities to what some call
 aspect-oriented programming in other
 languages—code inserted to run automatically before or after a
 function call runs. Their syntax also very closely resembles (and is
 likely borrowed from) Java’s annotations, though
 Python’s model is usually considered more flexible and general.
Some liken decorators to macros too, but
 this isn’t entirely apt, and might even be misleading. Macros (e.g.,
 C’s #define preprocessor directive)
 are typically associated with textual replacement and expansion, and
 designed for generating code. By contrast, Python’s decorators are a
 runtime operation, based upon name rebinding,
 callable objects, and often, proxies. While the two may have use cases
 that sometimes overlap, decorators and macros are fundamentally
 different in scope, implementation, and coding patterns. Comparing the
 two seems akin to comparing Python’s import with a C #include, which similarly confuses a runtime
 object-based operation with text insertion.
Of course, the term macro has been a bit
 diluted over time—to some, it now can also refer to any canned series
 of steps or procedure—and users of other languages might find the
 analogy to descriptors useful anyhow. But they should probably also
 keep in mind that decorators are about callable
 objects managing callable
 objects, not text expansion. Python tends to be
 best understood and used in terms of Python idioms.

The Basics
Let’s get started with a first-pass look at decoration behavior from
 a symbolic perspective. We’ll write real and more substantial code soon,
 but since most of the magic of decorators boils down to an automatic
 rebinding operation, it’s important to understand this mapping
 first.
Function Decorators
Function decorators have been available in Python since version 2.4. As we saw
 earlier in this book, they are largely just syntactic sugar that runs
 one function through another at the end of a def statement, and rebinds the original
 function name to the result.
Usage
A function decorator is a kind of runtime
 declaration about the function whose definition follows.
 The decorator is coded on a line just before the def statement that defines a function or
 method, and it consists of the @
 symbol followed by a reference to a metafunction—a
 function (or other callable object) that manages another
 function.
In terms of code, function decorators automatically map the
 following syntax:
@decorator # Decorate function
def F(arg):
 ...

F(99) # Call function
into this equivalent form, where decorator is a one-argument callable object
 that returns a callable object with the same number of arguments as
 F (if not F itself):
def F(arg):
 ...
F = decorator(F) # Rebind function name to decorator result

F(99) # Essentially calls decorator(F)(99)
This automatic name rebinding works on any def statement,
 whether it’s for a simple function or a method within a class. When
 the function F is later called,
 it’s actually calling the object returned by the
 decorator, which may be either another object that implements required
 wrapping logic, or the original function itself.
In other words, decoration essentially maps the first of the
 following into the second—though the decorator is really run only
 once, at decoration time:
func(6, 7)
decorator(func)(6, 7)
This automatic name rebinding accounts for the static method and
 property decoration syntax we met earlier in the book:
class C:
 @staticmethod
 def meth(...): ... # meth = staticmethod(meth)

class C:
 @property
 def name(self): ... # name = property(name)
In both cases, the method name is rebound to the result of a
 built-in function decorator, at the end of the def statement. Calling the original name
 later invokes whatever object the decorator returns. In these specific
 cases, the original names are rebound to a static method router and
 property descriptor, but the process is much more general than this—as
 the next section explains.

Implementation
A decorator itself is a callable that returns a
 callable. That is, it returns the object to be called later
 when the decorated function is invoked through its original
 name—either a wrapper object to intercept later calls, or the original
 function augmented in some way. In fact, decorators can
 be any type of callable and
 return any type of callable: any combination of
 functions and classes may be used, though some are better suited to
 certain contexts.
For example, to tap into the decoration protocol in order to
 manage a function just after it is created, we might code a decorator
 of this form:
def decorator(F):
 # Process function F
 return F

@decorator
def func(): ... # func = decorator(func)
Because the original decorated function is assigned back to its
 name, this simply adds a post-creation step to function definition.
 Such a structure might be used to register a function to an API,
 assign function attributes, and so on.
In more typical use, to insert logic that intercepts later calls
 to a function, we might code a decorator to return a different object
 than the original function—a proxy for later calls:
def decorator(F):
 # Save or use function F
 # Return a different callable: nested def, class instance with __call__, etc.

@decorator
def func(): ... # func = decorator(func)
This decorator is invoked at decoration time, and the callable
 it returns is invoked when the original function name is later called.
 The decorator itself receives the decorated function; the callable
 returned receives whatever arguments are later passed to the decorated
 function’s name. When coded properly, this works the same for
 class-level methods: the implied instance object
 simply shows up in the first argument of the returned callable.
In skeleton terms, here’s one common coding pattern that
 captures this idea—the decorator returns a wrapper that retains the
 original function in an enclosing scope:
def decorator(F): # On @ decoration
 def wrapper(*args): # On wrapped function call
 # Use F and args
 # F(*args) calls original function
 return wrapper

@decorator # func = decorator(func)
def func(x, y): # func is passed to decorator's F
 ...

func(6, 7) # 6, 7 are passed to wrapper's *args
When the name func is later
 called, it really invokes the wrapper function returned by decorator; the wrapper function can then run the original
 func because it is still available
 in an enclosing scope. When coded this way, each
 decorated function produces a new scope to retain state.
To do the same with classes, we can
 overload the call operation and use instance attributes instead of
 enclosing scopes:
class decorator:
 def __init__(self, func): # On @ decoration
 self.func = func
 def __call__(self, *args): # On wrapped function call
 # Use self.func and args
 # self.func(*args) calls original function

@decorator
def func(x, y): # func = decorator(func)
 ... # func is passed to __init__

func(6, 7) # 6, 7 are passed to __call__'s *args
When the name func is later
 called now, it really invokes the __call__
 operator overloading method of the instance created by decorator; the __call__ method can then run the original
 func because it is still available
 in an instance attribute. When coded this way,
 each decorated function produces a new instance to retain
 state.

Supporting method decoration
One subtle point about the prior class-based coding is that while it works to
 intercept simple function calls, it does not
 quite work when applied to class-level method
 functions:
class decorator:
 def __init__(self, func): # func is method without instance
 self.func = func
 def __call__(self, *args): # self is decorator instance
 # self.func(*args) fails! # C instance not in args!

class C:
 @decorator
 def method(self, x, y): # method = decorator(method)
 ... # Rebound to decorator instance
When coded this way, the decorated method is rebound to an
 instance of the decorator class, instead of a simple function.
The problem with this is that the self in the decorator’s __call__ receives the decorator class instance when the method is
 later run, and the instance of class C is never included in *args. This makes it impossible to dispatch
 the call to the original method—the decorator object retains the
 original method function, but it has no instance to pass to it.
To support both functions and methods, the
 nested function alternative works better:
def decorator(F): # F is func or method without instance
 def wrapper(*args): # class instance in args[0] for method
 # F(*args) runs func or method
 return wrapper

@decorator
def func(x, y): # func = decorator(func)
 ...
func(6, 7) # Really calls wrapper(6, 7)

class C:
 @decorator
 def method(self, x, y): # method = decorator(method)
 ... # Rebound to simple function

X = C()
X.method(6, 7) # Really calls wrapper(X, 6, 7)
When coded this way wrapper
 receives the C class instance in
 its first argument, so it can dispatch to the original method and
 access state information.
Technically, this nested-function version works because Python
 creates a bound method object and thus passes the subject class
 instance to the self argument only
 when a method attribute references a simple function; when it
 references an instance of a callable class instead, the callable
 class’s instance is passed to self
 to give the callable class access to its own state information. We’ll
 see how this subtle difference can matter in more realistic examples
 later in this chapter.
Also note that nested functions are perhaps the most
 straightforward way to support decoration of both functions and
 methods, but not necessarily the only way. The prior chapter’s
 descriptors, for example, receive both the
 descriptor and subject class instance when called. Though more
 complex, later in this chapter we’ll see how this tool can be
 leveraged in this context as well.

Class Decorators
Function decorators proved so useful that the model was extended to allow
 class decoration as of Python 2.6 and 3.0. They were initially resisted
 because of role overlap with metaclasses; in the
 end, though, they were adopted because they provide a simpler way to
 achieve many of the same goals.
Class decorators are strongly related to function decorators; in
 fact, they use the same syntax and very similar coding patterns. Rather
 than wrapping individual functions or methods, though, class decorators
 are a way to manage classes, or wrap up instance construction calls with
 extra logic that manages or augments instances created from a class. In
 the latter role, they may manage full object interfaces.
Usage
Syntactically, class decorators appear just before class statements, in the same way that
 function decorators appear just before def statements. In symbolic terms, for a
 decorator that must be a
 one-argument callable that returns a callable, the class decorator
 syntax:
@decorator # Decorate class
class C:
 ...

x = C(99) # Make an instance
is equivalent to the following—the class is automatically passed
 to the decorator function, and the decorator’s result is assigned back
 to the class name:
class C:
 ...
C = decorator(C) # Rebind class name to decorator result

x = C(99) # Essentially calls decorator(C)(99)
The net effect is that calling the class name later to create an
 instance winds up triggering the callable returned by the decorator,
 which may or may not call the original class itself.

Implementation
New class decorators are coded with many of the same techniques used for
 function decorators, though some may involve two
 levels of augmentation—to manage both instance construction
 calls, as well as instance interface access. Because a class decorator
 is also a callable that returns a callable, most
 combinations of functions and classes suffice.
However it’s coded, the decorator’s result is what runs when an
 instance is later created. For example, to simply manage a class just
 after it is created, return the original class itself:
def decorator(C):
 # Process class C
 return C

@decorator
class C: ... # C = decorator(C)
To instead insert a wrapper layer that intercepts later instance
 creation calls, return a different callable object:
def decorator(C):
 # Save or use class C
 # Return a different callable: nested def, class instance with __call__, etc.

@decorator
class C: ... # C = decorator(C)
The callable returned by such a class decorator typically
 creates and returns a new instance of the original class, augmented in
 some way to manage its interface. For example, the following inserts
 an object that intercepts undefined attributes of a class
 instance:
def decorator(cls): # On @ decoration
 class Wrapper:
 def __init__(self, *args): # On instance creation
 self.wrapped = cls(*args)
 def __getattr__(self, name): # On attribute fetch
 return getattr(self.wrapped, name)
 return Wrapper

@decorator
class C: # C = decorator(C)
 def __init__(self, x, y): # Run by Wrapper.__init__
 self.attr = 'spam'

x = C(6, 7) # Really calls Wrapper(6, 7)
print(x.attr) # Runs Wrapper.__getattr__, prints "spam"
In this example, the decorator rebinds the class name to another
 class, which retains the original class in an enclosing scope and
 creates and embeds an instance of the original class when it’s called.
 When an attribute is later fetched from the instance, it is
 intercepted by the wrapper’s __getattr__
 and delegated to the embedded instance of the original class.
 Moreover, each decorated class creates a new scope, which remembers
 the original class. We’ll flesh out this example into some more useful
 code later in this chapter.
Like function decorators, class decorators are commonly coded as
 either “factory” functions that create and return callables, classes
 that use __init__ or __call__ methods to intercept call operations, or some combination
 thereof. Factory functions typically retain state in enclosing scope
 references, and classes in attributes.

Supporting multiple instances
As for function decorators, some callable type combinations work better for class
 decorators than others. Consider the following invalid alternative to
 the class decorator of the prior example:
class Decorator:
 def __init__(self, C): # On @ decoration
 self.C = C
 def __call__(self, *args): # On instance creation
 self.wrapped = self.C(*args)
 return self
 def __getattr__(self, attrname): # On atrribute fetch
 return getattr(self.wrapped, attrname)

@Decorator
class C: ... # C = Decorator(C)

x = C()
y = C() # Overwrites x!
This code handles multiple decorated classes (each makes a new
 Decorator instance) and will
 intercept instance creation calls (each runs __call__). Unlike the prior version,
 however, this version fails to handle multiple
 instances of a given class—each instance creation call
 overwrites the prior saved instance. The original version does support
 multiple instances, because each instance creation call makes a new
 independent wrapper object. More generally, either of the following
 patterns supports multiple wrapped instances:
def decorator(C): # On @ decoration
 class Wrapper:
 def __init__(self, *args): # On instance creation: new Wrapper
 self.wrapped = C(*args) # Embed instance in instance
 return Wrapper

class Wrapper: ...
def decorator(C): # On @ decoration
 def onCall(*args): # On instance creation: new Wrapper
 return Wrapper(C(*args)) # Embed instance in instance
 return onCall
We’ll study this phenomenon in a more realistic context later in
 the chapter too; in practice, though, we must be careful to combine
 callable types properly to support our intent, and choose state
 policies wisely.

Decorator Nesting
Sometimes one decorator isn’t enough. For instance, suppose you’ve coded
 two function decorators to be used during
 development—one to test argument types before function calls, and
 another to test return value types after function calls. You can use
 either independently, but what to do if you want to employ
 both on a single function? What you really need is
 a way to nest the two, such that the result of one
 decorator is the function decorated by the other. It’s irrelevant which
 is nested, as long as both steps run on later calls.
To support multiple nested steps of augmentation this way,
 decorator syntax allows you to add multiple layers of wrapper logic to a
 decorated function or method. When this feature is used, each decorator
 must appear on a line of its own. Decorator syntax of this form:
@A
@B
@C
def f(...):
 ...
runs the same as the following:
def f(...):
 ...
f = A(B(C(f)))
Here, the original function is passed through three different
 decorators, and the resulting callable object is assigned back to the
 original name. Each decorator processes the result of the prior, which
 may be the original function or an inserted wrapper.
If all the decorators insert wrappers, the net effect is that when
 the original function name is called, three different layers of wrapping
 object logic will be invoked, to augment the original function in three
 different ways. The last decorator listed is the first applied, and is
 the most deeply nested when the original function name is later called
 (insert joke about Python “interior decorators” here).
Just as for functions, multiple class decorators result in
 multiple nested function calls, and possibly multiple levels and steps
 of wrapper logic around instance creation calls. For example, the
 following code:
@spam
@eggs
class C:
 ...

X = C()
is equivalent to the following:
class C:
 ...
C = spam(eggs(C))

X = C()
Again, each decorator is free to return either the original class
 or an inserted wrapper object. With wrappers, when an instance of the
 original C class is finally
 requested, the call is redirected to the wrapping layer objects provided
 by both the spam and eggs decorators, which may have arbitrarily
 different roles—they might trace and validate attribute access, for
 example, and both steps would be run on later requests.
For instance, the following do-nothing decorators simply return
 the decorated function:
def d1(F): return F
def d2(F): return F
def d3(F): return F

@d1
@d2
@d3
def func(): # func = d1(d2(d3(func)))
 print('spam')

func() # Prints "spam"
The same syntax works on classes, as do these same do-nothing
 decorators.
When decorators insert wrapper function objects, though, they may
 augment the original function when called—the following concatenates to
 its result in the decorator layers, as it runs the layers from inner to
 outer:
def d1(F): return lambda: 'X' + F()
def d2(F): return lambda: 'Y' + F()
def d3(F): return lambda: 'Z' + F()

@d1
@d2
@d3
def func(): # func = d1(d2(d3(func)))
 return 'spam'

print(func()) # Prints "XYZspam"
We use lambda functions to
 implement wrapper layers here (each retains the wrapped function in an
 enclosing scope); in practice, wrappers can take the form of functions,
 callable classes, and more. When designed well, decorator nesting allows
 us to combine augmentation steps in a wide variety of ways.

Decorator Arguments
Both function and class decorators can also seem to take
 arguments, although really these arguments are
 passed to a callable that in effect returns the
 decorator, which in turn returns a callable. By nature, this usually
 sets up multiple levels of state retention. The following, for
 instance:
@decorator(A, B)
def F(arg):
 ...

F(99)
is automatically mapped into this equivalent form, where decorator is a callable that
 returns the actual decorator. The returned
 decorator in turn returns the callable run later for calls to the
 original function name:
def F(arg):
 ...
F = decorator(A, B)(F) # Rebind F to result of decorator's return value

F(99) # Essentially calls decorator(A, B)(F)(99)
Decorator arguments are resolved before decoration ever occurs,
 and they are usually used to retain state information for use in later
 calls. The decorator function in this example, for instance, might take
 a form like the following:
def decorator(A, B):
 # Save or use A, B
 def actualDecorator(F):
 # Save or use function F
 # Return a callable: nested def, class instance with __call__, etc.
 return callable
 return actualDecorator
The outer function in this structure generally saves the decorator
 arguments away as state information, for use in the actual decorator,
 the callable it returns, or both. This code snippet retains the state
 information argument in enclosing function scope references, but class
 attributes are commonly used as well.
In other words, decorator arguments often imply three
 levels of callables: a callable to accept decorator
 arguments, which returns a callable to serve as decorator, which returns
 a callable to handle calls to the original function or class. Each of
 the three levels may be a function or class and may retain state in the
 form of scopes or class attributes.
Decorator arguments can be used to provide attribute
 initialization values, call trace message labels, attribute names to be
 validated, and much more—any sort of configuration parameter for objects
 or their proxies is a candidate. We’ll see concrete examples of
 decorator arguments employed later in this chapter.

Decorators Manage Functions and Classes, Too
Although much of the rest of this chapter focuses on wrapping later calls to
 functions and classes, it’s important to remember that the decorator
 mechanism is more general than this—it is a protocol for passing
 functions and classes through any callable immediately after they are
 created. As such, it can also be used to invoke arbitrary post-creation
 processing:
def decorator(O):
 # Save or augment function or class O
 return O

@decorator
def F(): ... # F = decorator(F)

@decorator
class C: ... # C = decorator(C)
As long as we return the original decorated object this way
 instead of a proxy, we can manage functions and classes themselves, not
 just later calls to them. We’ll see more realistic examples later in
 this chapter that use this idea to register callable objects to an API
 with decoration and assign attributes to functions when they are
 created.

Coding Function Decorators
On to the code—in the rest of this chapter, we are going to study working examples
 that demonstrate the decorator concepts we just explored. This section
 presents a handful of function decorators at work, and the next shows
 class decorators in action. Following that, we’ll close out with some
 larger case studies of class and function decorator usage—complete
 implementations of class privacy and argument range tests.
Tracing Calls
To get started, let’s revive the call tracer example we met in
 Chapter 32. The following defines and
 applies a function decorator that counts the number of calls made to the
 decorated function and prints a trace message for each call:
File decorator1.py

class tracer:
 def __init__(self, func): # On @ decoration: save original func
 self.calls = 0
 self.func = func
 def __call__(self, *args): # On later calls: run original func
 self.calls += 1
 print('call %s to %s' % (self.calls, self.func.__name__))
 self.func(*args)

@tracer
def spam(a, b, c): # spam = tracer(spam)
 print(a + b + c) # Wraps spam in a decorator object
Notice how each function decorated with this class will create a
 new instance, with its own saved function object and calls counter. Also
 observe how the *args argument syntax
 is used to pack and unpack arbitrarily many passed-in arguments. This
 generality enables this decorator to be used to wrap any function with
 any number of positional arguments; this version doesn’t yet work on
 keyword arguments or class-level methods, and doesn’t return results,
 but we’ll fix these shortcomings later in this section.
Now, if we import this module’s function and test it
 interactively, we get the following sort of behavior—each call generates
 a trace message initially, because the decorator class intercepts it.
 This code runs as is under both Python 2.X and 3.X, as does all code in
 this chapter unless otherwise noted (I’ve made prints version-neutral,
 and decorators do not require new-style classes; some hex addresses have
 also been shortened to protect the sighted):
>>> from decorator1 import spam

>>> spam(1, 2, 3) # Really calls the tracer wrapper object
call 1 to spam
6

>>> spam('a', 'b', 'c') # Invokes __call__ in class
call 2 to spam
abc

>>> spam.calls # Number calls in wrapper state information
2
>>> spam
<decorator1.tracer object at 0x02D9A730>
When run, the tracer class
 saves away the decorated function, and intercepts later calls to it, in
 order to add a layer of logic that counts and prints each call. Notice
 how the total number of calls shows up as an attribute of the decorated
 function—spam is really an instance
 of the tracer class when decorated, a
 finding that may have ramifications for programs that do type checking,
 but is generally benign (decorators might copy the original function’s
 __name__, but such forgery is
 limited, and could lead to confusion).
For function calls, the @
 decoration syntax can be more convenient than modifying each call to
 account for the extra logic level, and it avoids accidentally calling
 the original function directly. Consider a nondecorator equivalent such
 as the following:
calls = 0
def tracer(func, *args):
 global calls
 calls += 1
 print('call %s to %s' % (calls, func.__name__))
 func(*args)

def spam(a, b, c):
 print(a, b, c)

>>> spam(1, 2, 3) # Normal nontraced call: accidental?
1 2 3

>>> tracer(spam, 1, 2, 3) # Special traced call without decorators
call 1 to spam
1 2 3
This alternative can be used on any function without the special
 @ syntax, but unlike the decorator
 version, it requires extra syntax at every place where the function is
 called in your code. Furthermore, its intent may not be as obvious, and
 it does not ensure that the extra layer will be invoked for normal
 calls. Although decorators are never required (we
 can always rebind names manually), they are often the most convenient
 and uniform option.

Decorator State Retention Options
The last example of the prior section raises an important issue.
 Function decorators have a variety of options for retaining state
 information provided at decoration time, for use during the actual
 function call. They generally need to support multiple decorated objects
 and multiple calls, but there are a number of ways to implement these
 goals: instance attributes, global variables, nonlocal closure
 variables, and function attributes can all be used for retaining
 state.
Class instance attributes
For example, here is an augmented version of the prior example, which adds
 support for keyword arguments with ** syntax, and returns
 the wrapped function’s result to support more use cases (for nonlinear
 readers, we first studied keyword arguments in Chapter 18, and for readers working with the book examples
 package, some filenames in this chapter are again implied by the
 command lines that follow their listings):
class tracer: # State via instance attributes
 def __init__(self, func): # On @ decorator
 self.calls = 0 # Save func for later call
 self.func = func
 def __call__(self, *args, **kwargs): # On call to original function
 self.calls += 1
 print('call %s to %s' % (self.calls, self.func.__name__))
 return self.func(*args, **kwargs)

@tracer
def spam(a, b, c): # Same as: spam = tracer(spam)
 print(a + b + c) # Triggers tracer.__init__

@tracer
def eggs(x, y): # Same as: eggs = tracer(eggs)
 print(x ** y) # Wraps eggs in a tracer object

spam(1, 2, 3) # Really calls tracer instance: runs tracer.__call__
spam(a=4, b=5, c=6) # spam is an instance attribute

eggs(2, 16) # Really calls tracer instance, self.func is eggs
eggs(4, y=4) # self.calls is per-decoration here
Like the original, this uses class instance
 attributes to save state explicitly. Both the wrapped
 function and the calls counter are per-instance
 information—each decoration gets its own copy. When run as a script
 under either 2.X or 3.X, the output of this version is as follows;
 notice how the spam and eggs functions each have their own calls
 counter, because each decoration creates a new class instance:
c:\code> python decorator2.py
call 1 to spam
6
call 2 to spam
15
call 1 to eggs
65536
call 2 to eggs
256
While useful for decorating functions, this coding scheme still
 has issues when applied to methods—a shortcoming we’ll address in a
 later revision.

Enclosing scopes and globals
Closure functions—with enclosing def scope
 references and nested defs—can
 often achieve the same effect, especially for static data like the
 decorated original function. In this example, though, we would also
 need a counter in the enclosing scope that
 changes on each call, and that’s not possible in
 Python 2.X (recall from Chapter 17 that the nonlocal statement is 3.X-only).
In 2.X, we can still use either classes and attributes per the
 prior section, or other options. Moving state variables out to the
 global scope with declarations is one candidate,
 and works in both 2.X and 3.X:
calls = 0
def tracer(func): # State via enclosing scope and global
 def wrapper(*args, **kwargs): # Instead of class attributes
 global calls # calls is global, not per-function
 calls += 1
 print('call %s to %s' % (calls, func.__name__))
 return func(*args, **kwargs)
 return wrapper

@tracer
def spam(a, b, c): # Same as: spam = tracer(spam)
 print(a + b + c)

@tracer
def eggs(x, y): # Same as: eggs = tracer(eggs)
 print(x ** y)

spam(1, 2, 3) # Really calls wrapper, assigned to spam
spam(a=4, b=5, c=6) # wrapper calls spam

eggs(2, 16) # Really calls wrapper, assigned to eggs
eggs(4, y=4) # Global calls is not per-decoration here!
Unfortunately, moving the counter out to the common global scope
 to allow it to be changed like this also means that it will be
 shared by every wrapped function. Unlike class
 instance attributes, global counters are cross-program, not
 per-function—the counter is incremented for any
 traced function call. You can tell the difference if you compare this
 version’s output with the prior version’s—the single, shared global
 call counter is incorrectly updated by calls to every decorated
 function:
c:\code> python decorator3.py
call 1 to spam
6
call 2 to spam
15
call 3 to eggs
65536
call 4 to eggs
256

Enclosing scopes and nonlocals
Shared global state may be what we want in some cases. If we
 really want a per-function counter, though, we
 can either use classes as before, or make use of
 closure (a.k.a. factory)
 functions and the nonlocal
 statement in Python 3.X, described in Chapter 17.
 Because this new statement allows enclosing function scope variables
 to be changed, they can serve as per-decoration and changeable data.
 In 3.X only:
def tracer(func): # State via enclosing scope and nonlocal
 calls = 0 # Instead of class attrs or global
 def wrapper(*args, **kwargs): # calls is per-function, not global
 nonlocal calls
 calls += 1
 print('call %s to %s' % (calls, func.__name__))
 return func(*args, **kwargs)
 return wrapper

@tracer
def spam(a, b, c): # Same as: spam = tracer(spam)
 print(a + b + c)

@tracer
def eggs(x, y): # Same as: eggs = tracer(eggs)
 print(x ** y)

spam(1, 2, 3) # Really calls wrapper, bound to spam
spam(a=4, b=5, c=6) # wrapper calls spam

eggs(2, 16) # Really calls wrapper, bound to eggs
eggs(4, y=4) # Nonlocal calls _is_ per-decoration here
Now, because enclosing scope variables are not cross-program
 globals, each wrapped function gets its own counter again, just as for
 classes and attributes. Here’s the new output when run under 3.X:
c:\code> py −3 decorator4.py
call 1 to spam
6
call 2 to spam
15
call 1 to eggs
65536
call 2 to eggs
256

Function attributes
Finally, if you are not using Python 3.X and don’t have a nonlocal statement—or you want your code to
 work portably on both 3.X and 2.X—you may still
 be able to avoid globals and classes by making use of
 function attributes for some changeable state
 instead. In all Pythons since 2.1, we can assign arbitrary attributes
 to functions to attach them, with func.attr=value. Because a
 factory function makes a new function on each call, its attributes
 become per-call state. Moreover, you need to use this technique only
 for state variables that must change; enclosing
 scope references are still retained and work normally.
In our example, we can simply use wrapper.calls for state. The following works
 the same as the preceding nonlocal
 version because the counter is again per-decorated-function, but it
 also runs in Python 2.X:
def tracer(func): # State via enclosing scope and func attr
 def wrapper(*args, **kwargs): # calls is per-function, not global
 wrapper.calls += 1
 print('call %s to %s' % (wrapper.calls, func.__name__))
 return func(*args, **kwargs)
 wrapper.calls = 0
 return wrapper

@tracer
def spam(a, b, c): # Same as: spam = tracer(spam)
 print(a + b + c)

@tracer
def eggs(x, y): # Same as: eggs = tracer(eggs)
 print(x ** y)

spam(1, 2, 3) # Really calls wrapper, assigned to spam
spam(a=4, b=5, c=6) # wrapper calls spam

eggs(2, 16) # Really calls wrapper, assigned to eggs
eggs(4, y=4) # wrapper.calls _is_ per-decoration here
As we learned in Chapter 17, this works only
 because the name wrapper is
 retained in the enclosing tracer
 function’s scope. When we later increment wrapper.calls, we are not changing the name
 wrapper itself, so no nonlocal declaration is required. This
 version runs in either Python line:
c:\code> py −2 decorator5.py
...same output as prior version, but works on 2.X too...
This scheme was almost relegated to a footnote, because it may
 be more obscure than nonlocal in
 3.X and might be better saved for cases where other schemes don’t
 help. However, function attributes also have substantial advantages.
 For one, they allow access to the saved state from
 outside the decorator’s code; nonlocals can only
 be seen inside the nested function itself, but function attributes
 have wider visibility. For another, they are far more
 portable; this scheme also works in 2.X, making
 it version-neutral.
We will employ function attributes again in an answer to one of
 the end-of-chapter questions, where their visibility outside callables
 becomes an asset. As changeable state associated with a context of
 use, they are equivalent to enclosing scope nonlocals. As usual,
 choosing from multiple tools is an inherent part of the programming
 task.
Because decorators often imply multiple levels of callables, you
 can combine functions with enclosing scopes, classes with attributes,
 and function attributes to achieve a variety of coding structures. As
 we’ll see later, though, this sometimes may be subtler than you
 expect—each decorated function should have its own state, and each
 decorated class may require state both for itself and for each
 generated instance.
In fact, as the next section will explain in more detail, if we
 want to apply function decorators to class-level methods, too, we also
 have to be careful about the distinction Python makes between
 decorators based on callable class instance objects and decorators based on nested functions.

Class Blunders I: Decorating Methods
When I wrote the first class-based tracer
 function decorator in decorator1.py
 earlier, I naively assumed that it could also be applied to any
 method—decorated methods should work the same, I
 reasoned, but the automatic self
 instance argument would simply be included at the front of *args. The only real downside to this
 assumption is that it is completely wrong! When
 applied to a class’s method, the first version of the tracer fails, because self is the instance of the decorator class
 and the instance of the decorated subject class is not included in
 *args at all. This is true in both
 Python 3.X and 2.X.
I introduced this phenomenon earlier in this chapter, but now we
 can see it in the context of realistic working code. Given the
 class-based tracing decorator:
class tracer:
 def __init__(self, func): # On @ decorator
 self.calls = 0 # Save func for later call
 self.func = func
 def __call__(self, *args, **kwargs): # On call to original function
 self.calls += 1
 print('call %s to %s' % (self.calls, self.func.__name__))
 return self.func(*args, **kwargs)
decoration of simple functions works as advertised earlier:
@tracer
def spam(a, b, c): # spam = tracer(spam)
 print(a + b + c) # Triggers tracer.__init__

>>> spam(1, 2, 3) # Runs tracer.__call__
call 1 to spam
6
>>> spam(a=4, b=5, c=6) # spam saved in an instance attribute
call 2 to spam
15
However, decoration of class-level methods fails (more lucid
 sequential readers might recognize this as an adaptation of our Person class resurrected from the
 object-oriented tutorial in Chapter 28):
class Person:
 def __init__(self, name, pay):
 self.name = name
 self.pay = pay

 @tracer
 def giveRaise(self, percent): # giveRaise = tracer(giveRaise)
 self.pay *= (1.0 + percent)

 @tracer
 def lastName(self): # lastName = tracer(lastName)
 return self.name.split()[-1]

>>> bob = Person('Bob Smith', 50000) # tracer remembers method funcs
>>> bob.giveRaise(.25) # Runs tracer.__call__(???, .25)
call 1 to giveRaise
TypeError: giveRaise() missing 1 required positional argument: 'percent'

>>> print(bob.lastName()) # Runs tracer.__call__(???)
call 1 to lastName
TypeError: lastName() missing 1 required positional argument: 'self'
The root of the problem here is in the self argument of the tracer class’s __call__ method—is it a tracer instance or a Person instance? We really need
 both as it’s coded: the tracer for decorator state, and the Person for routing on to the original method.
 Really, self
 must be the tracer object, to provide access to tracer’s state information (its calls and func); this is true whether decorating a
 simple function or a method.
Unfortunately, when our decorated method name is rebound to a
 class instance object with a __call__, Python passes only the tracer instance to
 self; it doesn’t pass along the
 Person subject in the arguments list
 at all. Moreover, because the tracer
 knows nothing about the Person
 instance we are trying to process with method calls, there’s no way to
 create a bound method with an instance, and thus no way to correctly
 dispatch the call. This isn’t a bug, but it’s wildly subtle.
In the end, the prior listing winds up passing too few arguments
 to the decorated method, and results in an error. Add a line to the
 decorator’s __call__ to print all its
 arguments to verify this—as you can see, self is the tracer instance, and the Person instance is entirely absent:
>>> bob.giveRaise(.25)
<__main__.tracer object at 0x02A486D8> (0.25,) {}
call 1 to giveRaise
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 9, in __call__
TypeError: giveRaise() missing 1 required positional argument: 'percent'
As mentioned earlier, this happens because Python passes the
 implied subject instance to self when
 a method name is bound to a simple function only; when it is an instance
 of a callable class, that class’s instance is passed instead.
 Technically, Python makes a bound method object containing the subject
 instance only when the method is a simple function, not when it is a
 callable instance of another class.
Using nested functions to decorate methods
If you want your function decorators to work on both simple
 functions and class-level methods, the most straightforward solution
 lies in using one of the other state retention solutions described
 earlier—code your function decorator as nested defs, so that you don’t depend on a single
 self instance argument to be both
 the wrapper class instance and the subject class instance.
The following alternative applies this fix using Python 3.X
 nonlocals; recode this to use function attributes for the changeable
 calls to use in 2.X. Because
 decorated methods are rebound to simple functions instead of instance
 objects, Python correctly passes the Person object as the first argument, and the
 decorator propagates it on in the first item of *args to the self argument of the real, decorated
 methods:
A call tracer decorator for both functions and methods

def tracer(func): # Use function, not class instance with __call__
 calls = 0 # Else "self" is decorator instance only!
 def onCall(*args, **kwargs): # Or in 2.X+3.X: use [onCall.calls += 1]
 nonlocal calls
 calls += 1
 print('call %s to %s' % (calls, func.__name__))
 return func(*args, **kwargs)
 return onCall

if __name__ == '__main__':

 # Applies to simple functions
 @tracer
 def spam(a, b, c): # spam = tracer(spam)
 print(a + b + c) # onCall remembers spam

 @tracer
 def eggs(N):
 return 2 ** N

 spam(1, 2, 3) # Runs onCall(1, 2, 3)
 spam(a=4, b=5, c=6)
 print(eggs(32))

 # Applies to class-level method functions too!
 class Person:
 def __init__(self, name, pay):
 self.name = name
 self.pay = pay

 @tracer
 def giveRaise(self, percent): # giveRaise = tracer(giveRaise)
 self.pay *= (1.0 + percent) # onCall remembers giveRaise

 @tracer
 def lastName(self): # lastName = tracer(lastName)
 return self.name.split()[-1]

 print('methods...')
 bob = Person('Bob Smith', 50000)
 sue = Person('Sue Jones', 100000)
 print(bob.name, sue.name)
 sue.giveRaise(.10) # Runs onCall(sue, .10)
 print(int(sue.pay))
 print(bob.lastName(), sue.lastName()) # Runs onCall(bob), lastName in scopes
We’ve also indented the file’s self-test code under a __name__ test so the decorator can be
 imported and used elsewhere. This version works the same on both
 functions and methods, but runs in 3.X only due to its nonlocal:
c:\code> py −3 calltracer.py
call 1 to spam
6
call 2 to spam
15
call 1 to eggs
4294967296
methods...
Bob Smith Sue Jones
call 1 to giveRaise
110000
call 1 to lastName
call 2 to lastName
Smith Jones
Trace through these results to make sure you have a handle on
 this model; the next section provides an alternative to it that
 supports classes, but is also substantially more complex.

Using descriptors to decorate methods
Although the nested function solution illustrated in the prior
 section is the most straightforward way to support decorators that
 apply to both functions and class-level methods, other schemes are
 possible. The descriptor feature we explored in
 the prior chapter, for example, can help here as well.
Recall from our discussion in that chapter that a descriptor is
 normally a class attribute assigned to an object with a __get__ method
 run automatically whenever that attribute is referenced and fetched;
 new-style class object derivation
 is required for descriptors in Python 2.X, but not 3.X:
class Descriptor(object):
 def __get__(self, instance, owner): ...

class Subject:
 attr = Descriptor()

X = Subject()
X.attr # Roughly runs Descriptor.__get__(Subject.attr, X, Subject)
Descriptors may also have __set__ and
 __del__ access methods, but we
 don’t need them here. More relevant to this chapter’s topic, because
 the descriptor’s __get__ method
 receives both the descriptor class instance and
 subject class instance when invoked, it’s well suited to decorating
 methods when we need both the decorator’s state and the original class
 instance for dispatching calls. Consider the following alternative
 tracing decorator, which also happens to be a
 descriptor when used for a class-level method:
class tracer(object): # A decorator+descriptor
 def __init__(self, func): # On @ decorator
 self.calls = 0 # Save func for later call
 self.func = func
 def __call__(self, *args, **kwargs): # On call to original func
 self.calls += 1
 print('call %s to %s' % (self.calls, self.func.__name__))
 return self.func(*args, **kwargs)
 def __get__(self, instance, owner): # On method attribute fetch
 return wrapper(self, instance)

class wrapper:
 def __init__(self, desc, subj): # Save both instances
 self.desc = desc # Route calls back to deco/desc
 self.subj = subj
 def __call__(self, *args, **kwargs):
 return self.desc(self.subj, *args, **kwargs) # Runs tracer.__call__

@tracer
def spam(a, b, c): # spam = tracer(spam)
 ...same as prior... # Uses __call__ only

class Person:
 @tracer
 def giveRaise(self, percent): # giveRaise = tracer(giveRaise)
 ...same as prior... # Makes giveRaise a descriptor
This works the same as the preceding nested function coding. Its
 operation varies by usage context:
	Decorated functions invoke only its
 __call__, and never invoke its __get__.

	Decorated methods invoke its __get__ first to resolve the method name
 fetch (on I.method); the
 object returned by __get__
 retains the subject class instance and is then invoked to complete
 the call expression, thereby triggering the decorator’s __call__ (on ()).

For example, the test code’s call to:
sue.giveRaise(.10) # Runs __get__ then __call__
runs tracer.__get__ first,
 because the giveRaise attribute in
 the Person class has been rebound
 to a descriptor by the method function decorator. The call expression
 then triggers the __call__ method
 of the returned wrapper object,
 which in turn invokes tracer.__call__. In other words, decorated
 method calls trigger a four-step process: tracer.__get__, followed by three call
 operations— wrapper.__call__,
 tracer.__call__, and finally the
 original wrapped method.
The wrapper object retains
 both descriptor and subject instances, so it can route control back to
 the original decorator/descriptor class instance. In effect, the
 wrapper object saves the subject
 class instance available during method attribute fetch and adds it to
 the later call’s arguments list, which is passed to the
 decorator__call__. Routing the call
 back to the descriptor class instance this way is required in this
 application so that all calls to a wrapped method use the same
 calls counter state information in
 the descriptor instance object.
Alternatively, we could use a nested function and enclosing
 scope references to achieve the same effect—the following version
 works the same as the preceding one, by swapping a class and object
 attributes for a nested function and scope references. It requires
 noticeably less code, but follows the same four-step process on each
 decorated method call:
class tracer(object):
 def __init__(self, func): # On @ decorator
 self.calls = 0 # Save func for later call
 self.func = func
 def __call__(self, *args, **kwargs): # On call to original func
 self.calls += 1
 print('call %s to %s' % (self.calls, self.func.__name__))
 return self.func(*args, **kwargs)
 def __get__(self, instance, owner): # On method fetch
 def wrapper(*args, **kwargs): # Retain both inst
 return self(instance, *args, **kwargs) # Runs __call__
 return wrapper
Add print statements to these
 alternatives’ methods to trace the multistep get/call process on your
 own, and run them with the same test code as in the nested function
 alternative shown earlier (see file calltracer-descr.py for their source). In
 either coding, this descriptor-based scheme is also substantially
 subtler than the nested function option, and so is probably a second
 choice here. To be more blunt, if its complexity doesn’t send you
 screaming into the night, its performance costs probably should!
 Still, this may be a useful coding pattern in other contexts.
It’s also worth noting that we might code this descriptor-based
 decorator more simply as follows, but it would then apply only to
 methods, not to simple functions—an intrinsic limitation of attribute
 descriptors (and just the inverse of the problem we’re trying to
 solve: application to both functions and methods):
class tracer(object): # For methods, but not functions!
 def __init__(self, meth): # On @ decorator
 self.calls = 0
 self.meth = meth
 def __get__(self, instance, owner): # On method fetch
 def wrapper(*args, **kwargs): # On method call: proxy with self+inst
 self.calls += 1
 print('call %s to %s' % (self.calls, self.meth.__name__))
 return self.meth(instance, *args, **kwargs)
 return wrapper

class Person:
 @tracer # Applies to class methods
 def giveRaise(self, percent): # giveRaise = tracer(giveRaise)
 ... # Makes giveRaise a descriptor

@tracer # But fails for simple functions
def spam(a, b, c): # spam = tracer(spam)
 ... # No attribute fetch occurs here

In the rest of this chapter we’re going to be fairly casual
 about using classes or functions to code our function decorators, as
 long as they are applied only to functions. Some decorators may not
 require the instance of the original class, and will still work on
 both functions and methods if coded as a class—something like Python’s
 own staticmethod decorator, for
 example, wouldn’t require an instance of the subject class (indeed,
 its whole point is to remove the instance from the call).
The moral of this story, though, is that if you want your
 decorators to work on both simple functions and methods, you’re
 probably better off using the nested-function-based coding pattern
 outlined here instead of a class with call interception.

Timing Calls
To sample the fuller flavor of what function decorators are capable of, let’s turn to a
 different use case. Our next decorator times calls made to a decorated
 function—both the time for one call, and the total time among all calls.
 The decorator is applied to two functions, in order to compare the
 relative speed of list comprehensions and the map built-in
 call:
File timerdeco1.py
Caveat: range still differs - a list in 2.X, an iterable in 3.X
Caveat: timer won't work on methods as coded (see quiz solution)

import time, sys
force = list if sys.version_info[0] == 3 else (lambda X: X)

class timer:
 def __init__(self, func):
 self.func = func
 self.alltime = 0
 def __call__(self, *args, **kargs):
 start = time.clock()
 result = self.func(*args, **kargs)
 elapsed = time.clock() - start
 self.alltime += elapsed
 print('%s: %.5f, %.5f' % (self.func.__name__, elapsed, self.alltime))
 return result

@timer
def listcomp(N):
 return [x * 2 for x in range(N)]

@timer
def mapcall(N):
 return force(map((lambda x: x * 2), range(N)))

result = listcomp(5) # Time for this call, all calls, return value
listcomp(50000)
listcomp(500000)
listcomp(1000000)
print(result)
print('allTime = %s' % listcomp.alltime) # Total time for all listcomp calls

print('')
result = mapcall(5)
mapcall(50000)
mapcall(500000)
mapcall(1000000)
print(result)
print('allTime = %s' % mapcall.alltime) # Total time for all mapcall calls

print('\n**map/comp = %s' % round(mapcall.alltime / listcomp.alltime, 3))
When run in either Python 3.X or 2.X, the output of this file’s
 self-test code is as follows—giving for each function call the function
 name, time for this call, and time for all calls so far, along with the
 first call’s return value, cumulative time for each function, and the
 map-to-comprehension time ratio at the end:
c:\code> py −3 timerdeco1.py
listcomp: 0.00001, 0.00001
listcomp: 0.00499, 0.00499
listcomp: 0.05716, 0.06215
listcomp: 0.11565, 0.17781
[0, 2, 4, 6, 8]
allTime = 0.17780527629411225

mapcall: 0.00002, 0.00002
mapcall: 0.00988, 0.00990
mapcall: 0.10601, 0.11591
mapcall: 0.21690, 0.33281
[0, 2, 4, 6, 8]
allTime = 0.3328064956447921

**map/comp = 1.872
Times vary per Python line and test machine, of course, and
 cumulative time is available as a class instance attribute here. As
 usual, map calls are almost twice as
 slow as list comprehensions when the latter can avoid a function call
 (or equivalently, its requirement of function calls can make map slower).
Decorators versus per-call timing
For comparison, see Chapter 21 for a
 nondecorator approach to timing iteration
 alternatives like these. As a review, we saw two per-call timing
 techniques there, homegrown and library—here deployed to time the 1M
 list comprehension case of the decorator’s test code, though incurring
 extra costs for management code including an outer loop and function
 calls:
>>> def listcomp(N): [x * 2 for x in range(N)]

>>> import timer # Chapter 21 techniques
>>> timer.total(1, listcomp, 1000000)
(0.1461295268088542, None)

>>> import timeit
>>> timeit.timeit(number=1, stmt=lambda: listcomp(1000000))
0.14964829430189397
In this specific case, a nondecorator approach would allow the
 subject functions to be used with or without timing, but it would also
 complicate the call signature when timing is desired—we’d need to add
 code at every call instead of once at the def. Moreover, in the nondecorator scheme
 there would be no direct way to guarantee that all list builder calls
 in a program are routed through timer logic, short of finding and
 potentially changing them all. This may make it difficult to collect
 cumulative data for all calls.
In general, decorators may be preferred
 when functions are already deployed as part of a larger system, and
 may not be easily passed to analysis functions at calls. On the other
 hand, because decorators charge each call to a function with
 augmentation logic, a nondecorator approach may
 be better if you wish to augment calls more selectively. As usual, different tools serve different roles.
Note
Timer call portability and new options in
 3.3: Also see Chapter 21’s more complete handling and
 selection of time module
 functions, as well as its sidebar concerning the new and improved
 timer functions in this module available as of Python 3.3 (e.g.,
 perf_counter). We’re taking a
 simplistic approach here for both brevity and version neutrality,
 but time.clock may not be best on
 some platforms even prior to 3.3, and platform or version tests may
 be required outside Windows.

Testing subtleties
Notice how this script uses its force
 setting to make it portable between 2.X and 3.X. As described in Chapter 14, the map built-in returns an
 iterable that generates results on demand in 3.X,
 but an actual list in 2.X. Hence, 3.X’s map by itself doesn’t compare directly to a
 list comprehension’s work. In fact, without wrapping it in a list call to force results production, the
 map test takes virtually no time at
 all in 3.X—it returns an iterable without iterating!
At the same time, adding this list call in 2.X too charges map with an unfair penalty—the map test’s results would include the time
 required to build two lists, not one. To work
 around this, the script selects a map enclosing function per the Python
 version number in sys: in 3.X,
 picking list, and in 2.X using a
 no-op function that simply returns its input argument unchanged. This
 adds a very minor constant time in 2.X, which is probably fully
 overshadowed by the cost of the inner loop iterations in the timed
 function.
While this makes the comparison between list comprehensions and
 map more fair in either 2.X or 3.X,
 because range is also an iterator
 in 3.X, the results for 2.X and 3.X won’t compare directly unless you
 also hoist this call out of the timed code. They’ll be relatively
 comparable—and will reflect best practice code in each line anyhow—but
 a range iteration adds extra time in 3.X only. For more on all such
 things, see Chapter 21’s benchmark
 recreations; producing comparable numbers is often a nontrivial
 task.
Finally, as we did for the tracer decorator earlier, we could
 make this timing decorator reusable in other modules by indenting the
 self-test code at the bottom of the file under a __name__ test so it runs only when the file
 is run, not when it’s imported. We won’t do this here, though, because
 we’re about to add another feature to our code.

Adding Decorator Arguments
The timer decorator of the prior section works, but it would be nice if it were more
 configurable—providing an output label and turning trace messages on and
 off, for instance, might be useful in a general-purpose tool like this.
 Decorator arguments come in handy here: when they’re coded properly, we
 can use them to specify configuration options that can vary for each
 decorated function. A label, for instance, might be added as
 follows:
def timer(label=''):
 def decorator(func):
 def onCall(*args): # Multilevel state retention:
 ... # args passed to function
 func(*args) # func retained in enclosing scope
 print(label, ... # label retained in enclosing scope
 return onCall
 return decorator # Returns the actual decorator

@timer('==>') # Like listcomp = timer('==>')(listcomp)
def listcomp(N): ... # listcomp is rebound to new onCall

listcomp(...) # Really calls onCall
This code adds an enclosing scope to retain a decorator argument
 for use on a later actual call. When the listcomp function is defined, Python really
 invokes decorator—the result of
 timer, run before decoration actually
 occurs—with the label value available
 in its enclosing scope. That is, timer returns the
 decorator, which remembers both the decorator argument and the original
 function, and returns the callable onCall, which ultimately invokes the original
 function on later calls. Because this structure creates new decorator and onCall functions, their enclosing scopes are
 per-decoration state retention.
We can put this structure to use in our timer to allow a label and
 a trace control flag to be passed in at decoration time. Here’s an
 example that does just that, coded in a module file named timerdeco2.py so it can be imported as a
 general tool; it uses a class for the second state retention level
 instead of a nested function, but the net result is similar:
import time

def timer(label='', trace=True): # On decorator args: retain args
 class Timer:
 def __init__(self, func): # On @: retain decorated func
 self.func = func
 self.alltime = 0
 def __call__(self, *args, **kargs): # On calls: call original
 start = time.clock()
 result = self.func(*args, **kargs)
 elapsed = time.clock() - start
 self.alltime += elapsed
 if trace:
 format = '%s %s: %.5f, %.5f'
 values = (label, self.func.__name__, elapsed, self.alltime)
 print(format % values)
 return result
 return Timer
Mostly all we’ve done here is embed the original Timer class in an enclosing function, in order
 to create a scope that retains the decorator arguments per deployment.
 The outer timer function is called
 before decoration occurs, and it simply returns the Timer class to serve as the actual decorator.
 On decoration, an instance of Timer
 is made that remembers the decorated function itself, but also has
 access to the decorator arguments in the enclosing function
 scope.
Timing with decorator arguments
This time, rather than embedding self-test code in this file,
 we’ll run the decorator in a different file. Here’s a client of our
 timer decorator, the module file testseqs.py, applying it to sequence
 iteration alternatives again:
import sys
from timerdeco2 import timer
force = list if sys.version_info[0] == 3 else (lambda X: X)

@timer(label='[CCC]==>')
def listcomp(N): # Like listcomp = timer(...)(listcomp)
 return [x * 2 for x in range(N)] # listcomp(...) triggers Timer.__call__

@timer(trace=True, label='[MMM]==>')
def mapcall(N):
 return force(map((lambda x: x * 2), range(N)))

for func in (listcomp, mapcall):
 result = func(5) # Time for this call, all calls, return value
 func(50000)
 func(500000)
 func(1000000)
 print(result)
 print('allTime = %s\n' % func.alltime) # Total time for all calls

print('**map/comp = %s' % round(mapcall.alltime / listcomp.alltime, 3))
Again, to make this fair, map
 is wrapped in a list call in 3.X
 only. When run as is in 3.X or 2.X, this file prints the
 following—each decorated function now has a label of its own defined
 by decorator arguments, which will be more useful when we need to find
 trace displays mixed in with a larger program’s output:
c:\code> py −3 testseqs.py
[CCC]==> listcomp: 0.00001, 0.00001
[CCC]==> listcomp: 0.00504, 0.00505
[CCC]==> listcomp: 0.05839, 0.06344
[CCC]==> listcomp: 0.12001, 0.18344
[0, 2, 4, 6, 8]
allTime = 0.1834406801777564

[MMM]==> mapcall: 0.00003, 0.00003
[MMM]==> mapcall: 0.00961, 0.00964
[MMM]==> mapcall: 0.10929, 0.11892
[MMM]==> mapcall: 0.22143, 0.34035
[0, 2, 4, 6, 8]
allTime = 0.3403542519173618

**map/comp = 1.855
As usual, we can also test interactively to see how the
 decorator’s configuration arguments come into play:
>>> from timerdeco2 import timer
>>> @timer(trace=False) # No tracing, collect total time
... def listcomp(N):
... return [x * 2 for x in range(N)]
...
>>> x = listcomp(5000)
>>> x = listcomp(5000)
>>> x = listcomp(5000)
>>> listcomp.alltime
0.0037191417530599152
>>> listcomp
<timerdeco2.timer.<locals>.Timer object at 0x02957518>

>>> @timer(trace=True, label='\t=>') # Turn on tracing, custom label
... def listcomp(N):
... return [x * 2 for x in range(N)]
...
>>> x = listcomp(5000)
 => listcomp: 0.00106, 0.00106
>>> x = listcomp(5000)
 => listcomp: 0.00108, 0.00214
>>> x = listcomp(5000)
 => listcomp: 0.00107, 0.00321
>>> listcomp.alltime
0.003208920466562404
As is, this timing function decorator can be used for any
 function, both in modules and interactively. In other words, it
 automatically qualifies as a general-purpose tool
 for timing code in our scripts. Watch for another example of decorator
 arguments in the section “Implementing Private Attributes”, and again in “A Basic
 Range-Testing Decorator for Positional Arguments”.
Note
Supporting methods: This section’s timer
 decorator works on any function, but a minor
 rewrite is required to be able to apply it to class-level
 methods too. In short, as our earlier section
 “Class Blunders I: Decorating Methods”
 illustrated, it must avoid using a nested class. Because this
 mutation was deliberately reserved to be a subject of one of our
 end-of-chapter quiz questions, though, I’ll avoid giving away the
 answer completely here.

Coding Class Decorators
So far we’ve been coding function decorators to manage function calls, but as
 we’ve seen, decorators have been extended to work on classes too as of
 Python 2.6 and 3.0. As described earlier, while similar in concept to
 function decorators, class decorators are applied to classes instead—they
 may be used either to manage classes themselves, or
 to intercept instance creation calls in order to manage
 instances. Also like function decorators, class
 decorators are really just optional syntactic sugar, though many believe
 that they make a programmer’s intent more obvious and minimize erroneous
 or missed calls.
Singleton Classes
Because class decorators may intercept instance creation calls, they can
 be used to either manage all the instances of a class, or augment the
 interfaces of those instances. To demonstrate, here’s a first class
 decorator example that does the former—managing all instances of a
 class. This code implements the classic singleton
 coding pattern, where at most one instance of a class ever exists. Its
 singleton function defines and
 returns a function for managing instances, and the @ syntax automatically wraps up a subject
 class in this function:
3.X and 2.X: global table

instances = {}

def singleton(aClass): # On @ decoration
 def onCall(*args, **kwargs): # On instance creation
 if aClass not in instances: # One dict entry per class
 instances[aClass] = aClass(*args, **kwargs)
 return instances[aClass]
 return onCall
To use this, decorate the classes for which you want to enforce a
 single-instance model (for reference, all the code in this section is in
 the file singletons.py):
@singleton # Person = singleton(Person)
class Person: # Rebinds Person to onCall
 def __init__(self, name, hours, rate): # onCall remembers Person
 self.name = name
 self.hours = hours
 self.rate = rate
 def pay(self):
 return self.hours * self.rate

@singleton # Spam = singleton(Spam)
class Spam: # Rebinds Spam to onCall
 def __init__(self, val): # onCall remembers Spam
 self.attr = val

bob = Person('Bob', 40, 10) # Really calls onCall
print(bob.name, bob.pay())

sue = Person('Sue', 50, 20) # Same, single object
print(sue.name, sue.pay())

X = Spam(val=42) # One Person, one Spam
Y = Spam(99)
print(X.attr, Y.attr)
Now, when the Person or
 Spam class is later used to create an
 instance, the wrapping logic layer provided by the decorator routes
 instance construction calls to onCall, which in turn ensures a single
 instance per class, regardless of how many construction calls are made.
 Here’s this code’s output (2.X prints extra tuple parentheses):
c:\code> python singletons.py
Bob 400
Bob 400
42 42
Coding alternatives
Interestingly, you can code a more self-contained solution here
 if you’re able to use the nonlocal
 statement (available in Python 3.X only) to change enclosing scope
 names, as described earlier—the following alternative achieves an
 identical effect, by using one enclosing scope
 per class, instead of one global table entry per class. It works the
 same, but it does not depend on names in the global scope outside the
 decorator (note that the None check
 could use is instead of == here, but it’s a trivial test either
 way):
3.X only: nonlocal

def singleton(aClass): # On @ decoration
 instance = None
 def onCall(*args, **kwargs): # On instance creation
 nonlocal instance # 3.X and later nonlocal
 if instance == None:
 instance = aClass(*args, **kwargs) # One scope per class
 return instance
 return onCall
In either Python 3.X or 2.X (2.6 and later), you can also code a
 self-contained solution with either function attributes or a class
 instead. The first of the following codes the former, leveraging the
 fact that there will be one onCall
 function per decoration—the object namespace
 serves the same role as an enclosing scope. The second uses one
 instance per decoration, rather than an enclosing
 scope, function object, or global table. In fact, the second relies on
 the same coding pattern that we will later see is a common decorator
 class blunder—here we want just one instance, but
 that’s not usually the case:
3.X and 2.X: func attrs, classes (alternative codings)

def singleton(aClass): # On @ decoration
 def onCall(*args, **kwargs): # On instance creation
 if onCall.instance == None:
 onCall.instance = aClass(*args, **kwargs) # One function per class
 return onCall.instance
 onCall.instance = None
 return onCall

class singleton:
 def __init__(self, aClass): # On @ decoration
 self.aClass = aClass
 self.instance = None
 def __call__(self, *args, **kwargs): # On instance creation
 if self.instance == None:
 self.instance = self.aClass(*args, **kwargs) # One instance per class
 return self.instance
To make this decorator a fully general-purpose tool, choose one,
 store it in an importable module file, and indent the self-test code
 under a __name__ check—steps we’ll
 leave as suggested exercise. The final class-based version offers a
 portability and explicit option, with extra structure that may better
 support later evolution, but OOP might not be warranted in all
 contexts.

Tracing Object Interfaces
The singleton example of the prior section illustrated using class
 decorators to manage all the instances of a class.
 Another common use case for class decorators augments the interface of
 each generated instance. Class decorators can
 essentially install on instances a wrapper or “proxy” logic layer that
 manages access to their interfaces in some way.
For example, in Chapter 31, the
 __getattr__ operator overloading
 method is shown as a way to wrap up entire object
 interfaces of embedded instances, in order to implement the
 delegation coding pattern. We saw similar examples
 in the managed attribute coverage of the prior chapter. Recall that
 __getattr__ is run when an undefined
 attribute name is fetched; we can use this hook to intercept method
 calls in a controller class and propagate them to an embedded
 object.
For reference, here’s the original nondecorator delegation
 example, working on two built-in type objects:
class Wrapper:
 def __init__(self, object):
 self.wrapped = object # Save object
 def __getattr__(self, attrname):
 print('Trace:', attrname) # Trace fetch
 return getattr(self.wrapped, attrname) # Delegate fetch

>>> x = Wrapper([1,2,3]) # Wrap a list
>>> x.append(4) # Delegate to list method
Trace: append
>>> x.wrapped # Print my member
[1, 2, 3, 4]

>>> x = Wrapper({"a": 1, "b": 2}) # Wrap a dictionary
>>> list(x.keys()) # Delegate to dictionary method
Trace: keys # Use list() in 3.X
['a', 'b']
In this code, the Wrapper class
 intercepts access to any of the wrapped object’s named attributes,
 prints a trace message, and uses the getattr built-in to pass off the request to
 the wrapped object. Specifically, it traces attribute accesses made
 outside the wrapped object’s class; accesses inside
 the wrapped object’s methods are not caught and run normally by design.
 This whole-interface model differs from the
 behavior of function decorators, which wrap up just one specific
 method.
Tracing interfaces with class decorators
Class decorators provide an alternative and convenient way to
 code this __getattr__ technique to
 wrap an entire interface. As of both 2.6 and 3.0, for example, the
 prior class example can be coded as a class decorator that triggers
 wrapped instance creation, instead of passing a premade instance into
 the wrapper’s constructor (also augmented here to support keyword
 arguments with **kargs and to count the number of accesses
 made to illustrate changeable state):
def Tracer(aClass): # On @ decorator
 class Wrapper:
 def __init__(self, *args, **kargs): # On instance creation
 self.fetches = 0
 self.wrapped = aClass(*args, **kargs) # Use enclosing scope name
 def __getattr__(self, attrname):
 print('Trace: ' + attrname) # Catches all but own attrs
 self.fetches += 1
 return getattr(self.wrapped, attrname) # Delegate to wrapped obj
 return Wrapper

if __name__ == '__main__':

 @Tracer
 class Spam: # Spam = Tracer(Spam)
 def display(self): # Spam is rebound to Wrapper
 print('Spam!' * 8)

 @Tracer
 class Person: # Person = Tracer(Person)
 def __init__(self, name, hours, rate): # Wrapper remembers Person
 self.name = name
 self.hours = hours
 self.rate = rate
 def pay(self): # Accesses outside class traced
 return self.hours * self.rate # In-method accesses not traced

 food = Spam() # Triggers Wrapper()
 food.display() # Triggers __getattr__
 print([food.fetches])

 bob = Person('Bob', 40, 50) # bob is really a Wrapper
 print(bob.name) # Wrapper embeds a Person
 print(bob.pay())

 print('')
 sue = Person('Sue', rate=100, hours=60) # sue is a different Wrapper
 print(sue.name) # with a different Person
 print(sue.pay())

 print(bob.name) # bob has different state
 print(bob.pay())
 print([bob.fetches, sue.fetches]) # Wrapper attrs not traced
It’s important to note that this is very different from the
 tracer decorator we met earlier (despite the name!). In “Coding
 Function Decorators”, we looked at decorators that enabled us to trace
 and time calls to a given function or method. In contrast, by
 intercepting instance creation calls, the class decorator here allows
 us to trace an entire object interface—that is, accesses to any of the
 instance’s attributes.
The following is the output produced by this code under both 3.X
 and 2.X (2.6 and later): attribute fetches on instances of both the
 Spam and Person classes invoke the __getattr__ logic in the Wrapper class, because food and bob are really instances of Wrapper, thanks to the decorator’s
 redirection of instance creation calls:
c:\code> python interfacetracer.py
Trace: display
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
[1]
Trace: name
Bob
Trace: pay
2000

Trace: name
Sue
Trace: pay
6000
Trace: name
Bob
Trace: pay
2000
[4, 2]
Notice how there is one Wrapper class with state retention per
 decoration, generated by the nested class statement in the Tracer function, and how each instance gets
 its own fetches counter by virtue of generating a new Wrapper instance. As we’ll see ahead,
 orchestrating this is trickier than you may expect.

Applying class decorators to built-in types
Also notice that the preceding decorates a user-defined class. Just like in
 the original example in Chapter 31, we
 can also use the decorator to wrap up a built-in type such as a list,
 as long as we either subclass to allow decoration syntax or perform
 the decoration manually—decorator syntax requires a class
 statement for the @ line. In the
 following, x is really a Wrapper again due to the indirection of
 decoration:
>>> from interfacetracer import Tracer

>>> @Tracer
... class MyList(list): pass # MyList = Tracer(MyList)

>>> x = MyList([1, 2, 3]) # Triggers Wrapper()
>>> x.append(4) # Triggers __getattr__, append
Trace: append
>>> x.wrapped
[1, 2, 3, 4]

>>> WrapList = Tracer(list) # Or perform decoration manually
>>> x = WrapList([4, 5, 6]) # Else subclass statement required
>>> x.append(7)
Trace: append
>>> x.wrapped
[4, 5, 6, 7]
The decorator approach allows us to move instance creation into
 the decorator itself, instead of requiring a premade object to be
 passed in. Although this seems like a minor difference, it lets us
 retain normal instance creation syntax and realize all the benefits of
 decorators in general. Rather than requiring all instance creation
 calls to route objects through a wrapper manually, we need only
 augment class definitions with decorator syntax:
@Tracer # Decorator approach
class Person: ...
bob = Person('Bob', 40, 50)
sue = Person('Sue', rate=100, hours=60)

class Person: ... # Nondecorator approach
bob = Wrapper(Person('Bob', 40, 50))
sue = Wrapper(Person('Sue', rate=100, hours=60))
Assuming you will make more than one instance of a class, and
 want to apply the augmentation to every instance of a class,
 decorators will generally be a net win in terms of both code size and
 code maintenance.
Note
Attribute version skew note: The
 preceding tracer decorator works for explicitly accessed attribute
 names on all Pythons. As we learned in Chapter 38, Chapter 32, and elsewhere, though, __getattr__ intercepts built-ins’ implicit
 accesses to operator overloading methods like __str__ and __repr__ in Python 2.X’s default classic
 classes, but not in 3.X’s new-style classes.
In Python 3.X’s classes, instances inherit defaults for some,
 but not all of these names from the class (really, from the object superclass). Moreover, in 3.X,
 implicitly invoked attributes for built-in operations like printing
 and + are
 not routed through __getattr__, or its cousin, __getattribute__. In new-style classes,
 built-ins start such searches at classes and
 skip the normal instance lookup entirely.
Here, this means that the __getattr__ based tracing wrapper will
 automatically trace and propagate operator overloading calls for
 built-ins in 2.X as coded, but not in 3.X. To see this, display “x”
 directly at the end of the preceding interactive session—in 2.X the
 attribute __repr__ is traced and
 the list prints as expected, but in 3.X no trace occurs and the list
 prints using a default display for the Wrapper class:
>>> x # 2.X
Trace: __repr__
[4, 5, 6, 7]
>>> x # 3.X
<interfacetracer.Tracer.<locals>.Wrapper object at 0x02946358>
To work the same in 3.X, operator overloading methods
 generally must be redefined redundantly in the wrapper class, either
 by hand, by tools, or by definition in superclasses. We’ll see this
 at work again in a Private
 decorator later in this chapter—where we’ll also study ways to add
 the methods required of such code in 3.X.

Class Blunders II: Retaining Multiple Instances
Curiously, the decorator function in this example can
 almost be coded as a class instead of a function,
 with the proper operator overloading protocol. The following slightly
 simplified alternative works similarly because its __init__ is triggered when the @ decorator is applied to the class,
 and its __call__ is
 triggered when a subject class instance is created. Our objects are
 really instances of Tracer this time,
 and we essentially just trade an enclosing scope reference for an
 instance attribute here:
class Tracer:
 def __init__(self, aClass): # On @decorator
 self.aClass = aClass # Use instance attribute
 def __call__(self, *args): # On instance creation
 self.wrapped = self.aClass(*args) # ONE (LAST) INSTANCE PER CLASS!
 return self
 def __getattr__(self, attrname):
 print('Trace: ' + attrname)
 return getattr(self.wrapped, attrname)

@Tracer # Triggers __init__
class Spam: # Like: Spam = Tracer(Spam)
 def display(self):
 print('Spam!' * 8)

...
food = Spam() # Triggers __call__
food.display() # Triggers __getattr__
As we saw in the abstract earlier, though, this class-only
 alternative handles multiple classes as before, but
 it won’t quite work for multiple instances of a
 given class: each instance construction call triggers __call__, which overwrites the prior instance.
 The net effect is that Tracer saves
 just one instance—the last one created. Experiment with this yourself to
 see how, but here’s an example of the problem:
@Tracer
class Person: # Person = Tracer(Person)
 def __init__(self, name): # Person rebound to a Tracer
 self.name = name

bob = Person('Bob') # bob is really a Tracer
print(bob.name) # Tracer embeds a Person
Sue = Person('Sue')
print(sue.name) # sue overwrites bob
print(bob.name) # OOPS: now bob's name is 'Sue'!
This code’s output follows—because this tracer only has a single
 shared instance, the second overwrites the first:
Trace: name
Bob
Trace: name
Sue
Trace: name
Sue
The problem here is bad state retention—we
 make one decorator instance per class, but not per class instance, such
 that only the last instance is retained. The solution, as in our prior
 class blunder for decorating methods, lies in abandoning class-based
 decorators.
The earlier function-based Tracer version does work
 for multiple instances, because each instance construction call makes a
 new Wrapper instance, instead of
 overwriting the state of a single shared Tracer instance; the original nondecorator
 version handles multiple instances correctly for the same reason. The
 moral here: decorators are not only arguably magical, they can also be
 incredibly subtle!

Decorators Versus Manager Functions
Regardless of such subtleties, the Tracer
 class decorator example ultimately still relies on __getattr__ to intercept fetches on a wrapped
 and embedded instance object. As we saw earlier, all we’ve really
 accomplished is moving the instance creation call inside a class,
 instead of passing the instance into a manager function. With the
 original nondecorator tracing example, we would simply code instance
 creation differently:
class Spam: # Nondecorator version
 ... # Any class will do
food = Wrapper(Spam()) # Special creation syntax

@Tracer
class Spam: # Decorator version
 ... # Requires @ syntax at class
food = Spam() # Normal creation syntax
Essentially, class decorators shift special
 syntax requirements from the instance creation call to the class
 statement itself. This is also true for the singleton example earlier in
 this section—rather than decorating a class and using normal instance
 creation calls, we could simply pass the class and its construction
 arguments into a manager function:
instances = {}
def getInstance(aClass, *args, **kwargs):
 if aClass not in instances:
 instances[aClass] = aClass(*args, **kwargs)
 return instances[aClass]

bob = getInstance(Person, 'Bob', 40, 10) # Versus: bob = Person('Bob', 40, 10)
Alternatively, we could use Python’s introspection facilities to
 fetch the class from an already created instance (assuming creating an
 initial instance is acceptable):
instances = {}
def getInstance(object):
 aClass = object.__class__
 if aClass not in instances:
 instances[aClass] = object
 return instances[aClass]

bob = getInstance(Person('Bob', 40, 10)) # Versus: bob = Person('Bob', 40, 10)
The same holds true for function decorators like
 the tracer we wrote earlier: rather than decorating a function with
 logic that intercepts later calls, we could simply pass the function and
 its arguments into a manager that dispatches the call:
def func(x, y): # Nondecorator version
 ... # def tracer(func, args): ... func(*args)
result = tracer(func, (1, 2)) # Special call syntax

@tracer
def func(x, y): # Decorator version
 ... # Rebinds name: func = tracer(func)
result = func(1, 2) # Normal call syntax
Manager function approaches like this place the burden of using
 special syntax on calls, instead of expecting
 decoration syntax at function and class definitions, but also allow you
 to selectively apply augmentation on a call-by-call basis.

Why Decorators? (Revisited)
So why did I just show you ways to not use decorators
 to implement singletons? As I mentioned at the start of this chapter,
 decorators present us with tradeoffs. Although syntax matters, we all
 too often forget to ask the “why” questions when confronted with new
 tools. Now that we’ve seen how decorators actually work, let’s step back
 for a minute to glimpse the big picture here before moving on to more
 code.
Like most language features, decorators have both pros and cons.
 For example, in the negatives column, decorators may suffer from three
 potential drawbacks, which can vary per decorator type:
	Type changes
	As we’ve seen, when wrappers are inserted, a decorated
 function or class does not retain its original
 type—it is rebound to a wrapper (proxy) object, which
 might matter in programs that use object names or test object
 types. In the singleton example, both the decorator and manager
 function approaches retain the original class type for instances;
 in the tracer code, neither approach does, because wrappers are
 required. Of course, you should avoid type checks in a polymorphic
 language like Python anyhow, but there are exceptions to most
 rules.

	Extra calls
	A wrapping layer added by decoration incurs the additional
 performance cost of an extra call each time
 the decorated object is invoked—calls are relatively
 time-expensive operations, so decoration wrappers can make a
 program slower. In the tracer code, both approaches require each
 attribute to be routed through a wrapper layer; the singleton
 example avoids extra calls by retaining the original class
 type.

	All or nothing
	Because decorators augment a function or class, they
 generally apply to every later call to the
 decorated object. That ensures uniform deployment, but can also be
 a negative if you’d rather apply an augmentation more selectively
 on a call-by-call basis.

That said, none of these is a very serious issue. For most
 programs, decorations’ uniformity is an asset, the type difference is
 unlikely to matter, and the speed hit of the extra calls will be
 insignificant. Furthermore, the latter of these occurs only when
 wrappers are used, can often be negated if we simply remove the
 decorator when optimal performance is required, and is also incurred by
 nondecorator solutions that add wrapping logic (including
 metaclasses, as we’ll see in Chapter 40).
Conversely, as we saw at the start of this chapter, decorators
 have three main advantages. Compared to the manager (a.k.a. “helper”)
 function solutions of the prior section, decorators offer:
	Explicit syntax
	Decorators make augmentation explicit and obvious. Their
 @ syntax is easier to recognize
 than special code in calls that may appear anywhere in a source
 file—in our singleton and tracer examples, for instance, the
 decorator lines seem more likely to be noticed than extra code at
 calls would be. Moreover, decorators allow function and instance
 creation calls to use normal syntax familiar to all Python
 programmers.

	Code maintenance
	Decorators avoid repeated augmentation code at each function
 or class call. Because they appear just once, at the definition of
 the class or function itself, they obviate redundancy and simplify
 future code maintenance. For our singleton and tracer cases, we
 need to use special code at each call to use a manager function
 approach—extra work is required both initially and for any
 modifications that must be made in the future.

	Consistency
	Decorators make it less likely that a programmer will forget
 to use required wrapping logic. This derives mostly from the two
 prior advantages—because decoration is explicit and appears only
 once, at the decorated objects themselves, decorators promote more
 consistent and uniform API usage than special code that must be
 included at each call. In the singleton example, for instance, it
 would be easy to forget to route all class creation calls through
 special code, which would subvert the singleton management
 altogether.

Decorators also promote code encapsulation to reduce
 redundancy and minimize future maintenance effort; augmentation code
 appears just once in the decorator callable, instead of being copied for
 each deployment. Although manager functions can achieve this too,
 decorators also offer an explicit syntax and seamless call model that
 makes them natural for augmentation tasks.
None of these benefits completely requires decorator syntax to be
 achieved, though, and decorator usage is ultimately a stylistic choice.
 That said, most programmers find them to be a net win, especially as a
 tool for using libraries and APIs correctly.
Note
Historic anecdote: I can recall similar
 arguments being made both for and against
 constructor functions in classes—prior to the
 introduction of __init__ methods,
 programmers achieved the same effect by running an instance through a
 method manually when creating it (e.g., X=Class().init()). Over time, though,
 despite being fundamentally a stylistic choice, the __init__ syntax came to be universally
 preferred because it was more explicit, consistent, and maintainable.
 Although you should be the judge, decorators seem to bring many of the
 same assets to the table.

Managing Functions and Classes Directly
Most of our examples in this chapter have been designed to intercept function and
 instance creation calls. Although this is typical for decorators, they are
 not limited to this role. Because decorators work by running new functions
 and classes through decorator code, they can also be used to manage
 function and class objects themselves, not just later calls made to
 them.
Imagine, for example, that you require methods or classes used by an
 application to be registered to an API for later processing (perhaps that
 API will call the objects later, in response to events). Although you
 could provide a registration function to be called manually after the
 objects are defined, decorators make your intent more explicit.
The following simple implementation of this idea defines a decorator
 that can be applied to both functions and classes, to
 add the object to a dictionary-based registry. Because it returns the
 object itself instead of a wrapper, it does not intercept later
 calls:
Registering decorated objects to an API
from __future__ import print_function # 2.X

registry = {}
def register(obj): # Both class and func decorator
 registry[obj.__name__] = obj # Add to registry
 return obj # Return obj itself, not a wrapper

@register
def spam(x):
 return(x ** 2) # spam = register(spam)

@register
def ham(x):
 return(x ** 3)

@register
class Eggs: # Eggs = register(Eggs)
 def __init__(self, x):
 self.data = x ** 4
 def __str__(self):
 return str(self.data)

print('Registry:')
for name in registry:
 print(name, '=>', registry[name], type(registry[name]))

print('\nManual calls:')
print(spam(2)) # Invoke objects manually
print(ham(2)) # Later calls not intercepted
X = Eggs(2)
print(X)

print('\nRegistry calls:')
for name in registry:
 print(name, '=>', registry[name](2)) # Invoke from registry
When this code is run the decorated objects are added to the
 registry by name, but they still work as originally coded when they’re
 called later, without being routed through a wrapper layer. In fact, our
 objects can be run both manually and from inside the registry
 table:
c:\code> py −3 registry-deco.py
Registry:
spam => <function spam at 0x02969158> <class 'function'>
ham => <function ham at 0x02969400> <class 'function'>
Eggs => <class '__main__.Eggs'> <class 'type'>

Manual calls:
4
8
16

Registry calls:
spam => 4
ham => 8
Eggs => 16
A user interface might use this technique, for example, to register
 callback handlers for user actions. Handlers might be registered by
 function or class name, as done here, or decorator arguments could be used
 to specify the subject event; an extra def statement enclosing our decorator could be
 used to retain such arguments for use on decoration.
This example is artificial, but its technique is very general. For
 example, function decorators might also be used to process function
 attributes, and class decorators might insert new class attributes, or
 even new methods, dynamically. Consider the following function
 decorators—they assign function attributes to record information for later
 use by an API, but they do not insert a wrapper layer to intercept later
 calls:
Augmenting decorated objects directly

>>> def decorate(func):
 func.marked = True # Assign function attribute for later use
 return func

>>> @decorate
 def spam(a, b):
 return a + b

>>> spam.marked
True

>>> def annotate(text): # Same, but value is decorator argument
 def decorate(func):
 func.label = text
 return func
 return decorate

>>> @annotate('spam data')
 def spam(a, b): # spam = annotate(...)(spam)
 return a + b

>>> spam(1, 2), spam.label
(3, 'spam data')
Such decorators augment functions and classes directly, without
 catching later calls to them. We’ll see more examples of class decorations
 managing classes directly in the next chapter, because this turns out to
 encroach on the domain of metaclasses; for the
 remainder of this chapter, let’s turn to two larger case studies of
 decorators at work.

Example: “Private” and “Public” Attributes
The final two sections of this chapter present larger examples of
 decorator use. Both are presented with minimal description, partly because
 this chapter has hit its size limits, but mostly because you should
 already understand decorator basics well enough to study these on your
 own. Being general-purpose tools, these examples give us a chance to see
 how decorator concepts come together in more useful code.
Implementing Private Attributes
The following class decorator implements a
 Private declaration for class instance attributes—that is, attributes stored
 on an instance, or inherited from one of its classes. It disallows fetch
 and change access to such attributes from outside
 the decorated class, but still allows the class itself to access those
 names freely within its own methods. It’s not exactly C++ or Java, but
 it provides similar access control as an option in Python.
We saw an incomplete first-cut implementation of instance
 attribute privacy for changes only in Chapter 30. The version here extends this
 concept to validate attribute fetches too, and it
 uses delegation instead of inheritance to implement the model. In fact,
 in a sense this is just an extension to the attribute tracer class
 decorator we met earlier.
Although this example utilizes the new syntactic sugar of class
 decorators to code attribute privacy, its attribute interception is
 ultimately still based upon the __getattr__ and __setattr__ operator overloading methods we
 met in prior chapters. When a private attribute access is detected, this
 version uses the raise statement to
 raise an exception, along with an error message; the exception may be
 caught in a try or allowed to
 terminate the script.
Here is the code, along with a self test at the bottom of the
 file. It will work under both Python 3.X and 2.X (2.6 and later) because
 it employs version-neutral print and
 raise syntax, though as coded it
 catches built-ins’ dispatch to operator overloading method attributes in
 2.X only (more on this in a moment):
"""
File access1.py (3.X + 2.X)

Privacy for attributes fetched from class instances.
See self-test code at end of file for a usage example.

Decorator same as: Doubler = Private('data', 'size')(Doubler).
Private returns onDecorator, onDecorator returns onInstance,
and each onInstance instance embeds a Doubler instance.
"""

traceMe = False
def trace(*args):
 if traceMe: print('[' + ' '.join(map(str, args)) + ']')

def Private(*privates): # privates in enclosing scope
 def onDecorator(aClass): # aClass in enclosing scope
 class onInstance: # wrapped in instance attribute
 def __init__(self, *args, **kargs):
 self.wrapped = aClass(*args, **kargs)

 def __getattr__(self, attr): # My attrs don't call getattr
 trace('get:', attr) # Others assumed in wrapped
 if attr in privates:
 raise TypeError('private attribute fetch: ' + attr)
 else:
 return getattr(self.wrapped, attr)

 def __setattr__(self, attr, value): # Outside accesses
 trace('set:', attr, value) # Others run normally
 if attr == 'wrapped': # Allow my attrs
 self.__dict__[attr] = value # Avoid looping
 elif attr in privates:
 raise TypeError('private attribute change: ' + attr)
 else:
 setattr(self.wrapped, attr, value) # Wrapped obj attrs
 return onInstance # Or use __dict__
 return onDecorator

if __name__ == '__main__':
 traceMe = True

 @Private('data', 'size') # Doubler = Private(...)(Doubler)
 class Doubler:
 def __init__(self, label, start):
 self.label = label # Accesses inside the subject class
 self.data = start # Not intercepted: run normally
 def size(self):
 return len(self.data) # Methods run with no checking
 def double(self): # Because privacy not inherited
 for i in range(self.size()):
 self.data[i] = self.data[i] * 2
 def display(self):
 print('%s => %s' % (self.label, self.data))

 X = Doubler('X is', [1, 2, 3])
 Y = Doubler('Y is', [-10, −20, −30])

 # The following all succeed
 print(X.label) # Accesses outside subject class
 X.display(); X.double(); X.display() # Intercepted: validated, delegated
 print(Y.label)
 Y.display(); Y.double()
 Y.label = 'Spam'
 Y.display()

 # The following all fail properly
 """
 print(X.size()) # prints "TypeError: private attribute fetch: size"
 print(X.data)
 X.data = [1, 1, 1]
 X.size = lambda S: 0
 print(Y.data)
 print(Y.size())
 """
When traceMe is True, the module file’s self-test code
 produces the following output. Notice how the decorator catches and
 validates both attribute fetches and assignments run
 outside of the wrapped class, but does not catch
 attribute accesses inside the class itself:
 c:\code> py −3 access1.py
[set: wrapped <__main__.Doubler object at 0x00000000029769B0>]
[set: wrapped <__main__.Doubler object at 0x00000000029769E8>]
[get: label]
X is
[get: display]
X is => [1, 2, 3]
[get: double]
[get: display]
X is => [2, 4, 6]
[get: label]
Y is
[get: display]
Y is => [-10, −20, −30]
[get: double]
[set: label Spam]
[get: display]
Spam => [−20, −40, −60]

Implementation Details I
This code is a bit complex, and you’re probably best off tracing
 through it on your own to see how it works. To help you study, though,
 here are a few highlights worth mentioning.
Inheritance versus delegation
The first-cut privacy example shown in Chapter 30
 used inheritance to mix in a __setattr__ to catch accesses. Inheritance
 makes this difficult, however, because differentiating between
 accesses from inside or outside the class is not straightforward
 (inside access should be allowed to run normally, and outside access
 should be restricted). To work around this, the Chapter 30 example requires inheriting
 classes to use __dict__ assignments
 to set attributes—an incomplete solution at best.
The version here uses delegation (embedding
 one object inside another) instead of inheritance; this pattern is
 better suited to our task, as it makes it much easier to distinguish
 between accesses inside and outside of the subject class. Attribute
 accesses from outside the subject class are intercepted by the wrapper
 layer’s overloading methods and delegated to the class if valid.
 Accesses inside the class itself (i.e., through self within its methods’ code) are not
 intercepted and are allowed to run normally without checks, because
 privacy is not inherited in this version.

Decorator arguments
The class decorator used here accepts any number of arguments,
 to name private attributes. What really happens, though, is that the
 arguments are passed to the Private
 function, and Private returns the
 decorator function to be applied to the subject class. That is, the
 arguments are used before decoration ever occurs; Private returns the decorator, which in turn
 “remembers” the privates list as an enclosing scope reference.

State retention and enclosing scopes
Speaking of enclosing scopes, there are actually three
 levels of state retention at work in this code:
	The arguments to Private
 are used before decoration occurs and are retained as an enclosing
 scope reference for use in both onDecorator and onInstance.

	The class argument to onDecorator is used at decoration time
 and is retained as an enclosing scope reference for use at
 instance construction time.

	The wrapped instance object is retained as an instance
 attribute in the onInstance
 proxy object, for use when attributes are later accessed from
 outside the class.

This all works fairly naturally, given Python’s scope and
 namespace rules.

Using __dict__ and __slots__ (and other virtual names)
The __setattr__ method in
 this code relies on an instance object’s __dict__ attribute namespace dictionary in
 order to set onInstance’s own
 wrapped attribute. As we learned in
 the prior chapter, this method cannot assign an attribute directly
 without looping. However, it uses the setattr built-in instead of __dict__ to set attributes in the
 wrapped object itself. Moreover, getattr is used to fetch attributes in the
 wrapped object, since they may be stored in the object itself or
 inherited by it.
Because of that, this code will work for most classes—including
 those with “virtual” class-level attributes based on
 slots, properties,
 descriptors, and even __getattr__ and its ilk. By assuming a
 namespace dictionary for itself only and using storage-neutral tools
 for the wrapped object, the wrapper class avoids limitations inherent
 in other tools.
For example, you may recall from Chapter 32 that new-style classes with
 __slots__ may not store attributes
 in a __dict__ (and in fact may not
 even have one of these at all). However, because we rely on a __dict__ only at the onInstance level here, and not in the
 wrapped instance, this concern does not apply. In addition, because
 setattr and getattr apply to attributes based on both
 __dict__ and __slots__, our decorator applies to classes
 using either storage scheme. By the same reasoning, the decorator also
 applies to new-style properties and similar tools: delegated names
 will be looked up anew in the wrapped instance, irrespective of
 attributes of the decorator proxy object itself.

Generalizing for Public Declarations, Too
Now that we have a Private
 implementation, it’s straightforward to generalize the code to allow for
 Public declarations too—they are
 essentially the inverse of Private
 declarations, so we need only negate the inner test. The example listed
 in this section allows a class to use decorators to define a set of
 either Private or Public instance attributes—attributes of any
 kind stored on an instance or inherited from its classes—with the
 following semantics:
	Private declares attributes
 of a class’s instances that cannot be fetched
 or assigned, except from within the code of the class’s methods.
 That is, any name declared Private cannot be accessed from outside
 the class, while any name not declared Private can be freely fetched or assigned
 from outside the class.

	Public declares attributes
 of a class’s instances that can be fetched or
 assigned from both outside the class and within the class’s methods.
 That is, any name declared Public
 can be freely accessed anywhere, while any name not declared
 Public cannot be accessed from
 outside the class.

Private and Public declarations are intended to be
 mutually exclusive: when using Private, all undeclared names are considered
 Public, and when using Public, all undeclared names are considered
 Private. They are essentially
 inverses, though undeclared names not created by a class’s methods
 behave slightly differently—new names can be assigned and thus created
 outside the class under Private (all
 undeclared names are accessible), but not under Public (all undeclared names are
 inaccessible).
Again, study this code on your own to get a feel for how this
 works. Notice that this scheme adds an additional fourth level
 of state retention at the top, beyond that described in the
 preceding section: the test functions used by the lambdas are saved in an extra enclosing scope.
 This example is coded to run under either Python 3.X or 2.X (2.6 or
 later), though it comes with a caveat when run under 3.X (explained
 briefly in the file’s docstring and expanded on after the code):
"""
File access2.py (3.X + 2.X)
Class decorator with Private and Public attribute declarations.

Controls external access to attributes stored on an instance, or
Inherited by it from its classes. Private declares attribute names
that cannot be fetched or assigned outside the decorated class,
and Public declares all the names that can.

Caveat: this works in 3.X for explicitly named attributes only: __X__
operator overloading methods implicitly run for built-in operations
do not trigger either __getattr__ or __getattribute__ in new-style
classes. Add __X__ methods here to intercept and delegate built-ins.
"""

traceMe = False
def trace(*args):
 if traceMe: print('[' + ' '.join(map(str, args)) + ']')

def accessControl(failIf):
 def onDecorator(aClass):
 class onInstance:
 def __init__(self, *args, **kargs):
 self.__wrapped = aClass(*args, **kargs)

 def __getattr__(self, attr):
 trace('get:', attr)
 if failIf(attr):
 raise TypeError('private attribute fetch: ' + attr)
 else:
 return getattr(self.__wrapped, attr)

 def __setattr__(self, attr, value):
 trace('set:', attr, value)
 if attr == '_onInstance__wrapped':
 self.__dict__[attr] = value
 elif failIf(attr):
 raise TypeError('private attribute change: ' + attr)
 else:
 setattr(self.__wrapped, attr, value)
 return onInstance
 return onDecorator

def Private(*attributes):
 return accessControl(failIf=(lambda attr: attr in attributes))

def Public(*attributes):
 return accessControl(failIf=(lambda attr: attr not in attributes))
See the prior example’s self-test code for a usage example. Here’s
 a quick look at these class decorators in action at the interactive
 prompt; they work the same in 2.X and 3.X for attributes referenced by
 explicit name like those tested here. As advertised, non-Private or Public names can be fetched and changed from
 outside the subject class, but Private or non-Public names cannot:
>>> from access2 import Private, Public

>>> @Private('age') # Person = Private('age')(Person)
 class Person: # Person = onInstance with state
 def __init__(self, name, age):
 self.name = name
 self.age = age # Inside accesses run normally

>>> X = Person('Bob', 40)
>>> X.name # Outside accesses validated
'Bob'
>>> X.name = 'Sue'
>>> X.name
'Sue'
>>> X.age
TypeError: private attribute fetch: age
>>> X.age = 'Tom'
TypeError: private attribute change: age

>>> @Public('name')
 class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

>>> X = Person('bob', 40) # X is an onInstance
>>> X.name # onInstance embeds Person
'bob'
>>> X.name = 'Sue'
>>> X.name
'Sue'
>>> X.age
TypeError: private attribute fetch: age
>>> X.age = 'Tom'
TypeError: private attribute change: age

Implementation Details II
To help you analyze the code, here are a few final notes on this
 version. Since this is just a generalization of the preceding section’s
 version, the implementation notes there apply here as well.
Using __X pseudoprivate names
Besides generalizing, this version also makes use of Python’s
 __X
 pseudoprivate name mangling feature (which we met in Chapter 31) to localize the wrapped attribute to the proxy control
 class, by automatically prefixing it with this class’s name. This
 avoids the prior version’s risk for collisions with a wrapped attribute that may be used by the
 real, wrapped class, and it’s useful in a general tool like this. It’s
 not quite “privacy,” though, because the mangled version of the name
 can be used freely outside the class. Notice that we also have to use
 the fully expanded name string—'_onInstance__wrapped'— as a test value in
 __setattr__, because that’s what
 Python changes it to.

Breaking privacy
Although this example does implement access controls for
 attributes of an instance and its classes, it is possible to subvert
 these controls in various ways—for instance, by going through the
 expanded version of the wrapped
 attribute explicitly (bob.pay might
 not work, but the fully mangled bob._onInstance__wrapped.pay could!). If you
 have to explicitly try to do so, though, these controls are probably
 sufficient for normal intended use. Of course, privacy controls can
 generally be subverted in other languages if you try hard enough
 (#define private public may work in
 some C++ implementations, too). Although access controls can reduce
 accidental changes, much of this is up to programmers in any language;
 whenever source code may be changed, airtight access control will
 always be a bit of a pipe dream.

Decorator tradeoffs
We could again achieve the same results without decorators, by
 using manager functions or coding the name rebinding of decorators
 manually; the decorator syntax, however, makes this consistent and a
 bit more obvious in the code. The chief potential downsides of this
 and any other wrapper-based approach are that attribute access incurs
 an extra call, and instances of decorated classes are not really
 instances of the original decorated class—if you test their type with
 X.__class__ or isinstance(X, C), for example, you’ll find
 that they are instances of the wrapper class.
 Unless you plan to do introspection on objects’ types, though, the
 type issue is probably irrelevant, and the extra call may apply mostly
 to development time; as we’ll see later, there are ways to remove
 decorations automatically if desired.

Open Issues
As is, this example works as planned under both Python 2.X and 3.X
 for methods called explicitly by name. As with most software, though,
 there is always room for improvement. Most notably, this tool turns in
 mixed performance on operator overloading methods if they are used by
 client classes.
As coded, the proxy class is a classic class when run under 2.X,
 but a new-style class when run by 3.X. As such, the code supports any
 client class in 2.X, but in 3.X fails to validate or delegate operator
 overloading methods dispatched implicitly by built-in operations, unless
 they are redefined in the proxy. Clients that do not use operator
 overloading are fully supported, but others may require additional code
 in 3.X.
Importantly, this is not a new-style class issue here, it’s a
 Python version issue—the same code runs differently
 and fails in 3.X only. Because the nature of the wrapped object’s class
 is irrelevant to the proxy, we are concerned only with the proxy’s own
 code, which works under 2.X but not 3.X.
We’ve met this issue a few times already in this book, but let’s
 take a quick look at its impact on the very realistic code we’ve written
 here, and explore a workaround to it.
Caveat: Implicitly run operator overloading methods fail to
 delegate under 3.X
Like all delegation-based classes that use __getattr__, this decorator works
 cross-version for normally named or explicitly called attributes only.
 When run implicitly by built-in operations, operator overloading
 methods like __str__ and __add__ work differently for new-style
 classes. Because this code is interpreted as a new-style class in 3.X
 only, such operations fail to reach an embedded object that defines
 them when run under this Python line as currently coded.
As we learned in the prior chapter, built-in operations look for
 operator overloading names in instances for
 classic classes, but not for new-style classes—for the latter, they
 skip the instance entirely and begin the search for such methods in
 classes (technically, in the namespace
 dictionaries of all classes in the instance’s tree). Hence, the
 __X__ operator overloading methods implicitly
 run for built-in operations do not trigger either
 __getattr__ or __getattribute__ in new-style classes;
 because such attribute fetches skip our onInstance class’s __getattr__ altogether, they cannot be
 validated or delegated.
Our decorator’s class is not coded as explicitly new-style (by
 deriving from object), so it will
 catch operator overloading methods if run under 2.X as a default
 classic class. In 3.X, though, because all classes are new-style
 automatically (and by mandate), such methods will
 fail if they are implemented by the embedded
 object—because they are not caught by the proxy, they won’t be passed
 on.
The most direct workaround in 3.X is to redefine redundantly in
 onInstance all the operator
 overloading methods that can possibly be used in wrapped objects. Such
 extra methods can be added by hand, by tools that partly automate the
 task (e.g., with class decorators or the metaclasses discussed in the
 next chapter), or by definition in reusable superclasses. Though
 tedious—and code-intensive enough to largely omit here—we’ll explore
 approaches to satisfying this 3.X-only requirement in a moment.
First, though, to see the difference for yourself, try applying
 the decorator to a class that uses operator overloading methods under
 2.X; validations work as before, and both the __str__ method used by printing and the
 __add__ method run for + invoke the decorator’s __getattr__ and hence wind up being
 validated and delegated to the subject Person object correctly:
C:\code> c:\python27\python
>>> from access2 import Private
>>> @Private('age')
 class Person:
 def __init__(self):
 self.age = 42
 def __str__(self):
 return 'Person: ' + str(self.age)
 def __add__(self, yrs):
 self.age += yrs

>>> X = Person()
>>> X.age # Name validations fail correctly
TypeError: private attribute fetch: age
>>> print(X) # __getattr__ => runs Person.__str__
Person: 42
>>> X + 10 # __getattr__ => runs Person.__add__
>>> print(X) # __getattr__ => runs Person.__str__
Person: 52
When the same code is run under Python 3.X, though, the
 implicitly invoked __str__ and
 __add__ skip the decorator’s
 __getattr__ and look for
 definitions in or above the decorator class itself; print winds up finding the default display
 inherited from the class type (technically, from the implied object superclass in 3.X), and + generates an error because no default is
 inherited:
C:\code> c:\python33\python
>>> from access2 import Private
>>> @Private('age')
 class Person:
 def __init__(self):
 self.age = 42
 def __str__(self):
 return 'Person: ' + str(self.age)
 def __add__(self, yrs):
 self.age += yrs

>>> X = Person() # Name validations still work
>>> X.age # But 3.X fails to delegate built-ins!
TypeError: private attribute fetch: age
>>> print(X)
<access2.accessControl.<locals>.onDecorator.<locals>.onInstance object at ...etc>
>>> X + 10
TypeError: unsupported operand type(s) for +: 'onInstance' and 'int'
>>> print(X)
<access2.accessControl.<locals>.onDecorator.<locals>.onInstance object at ...etc>
Strangely, this occurs only for dispatch from built-in
 operations; explicit direct calls to overload methods are routed to
 __getattr__, though clients using
 operator overloading can’t be expected to do the same:
>>> X.__add__(10) # Though calls by name work normally
>>> X._onInstance__wrapped.age # Break privacy to view result...
52
In other words, this is a matter of built-in
 operations versus explicit calls; it has little to do with
 the actual names of the methods involved. Just for built-in
 operations, Python skips a step for 3.X’s new-style classes.
Using the alternative __getattribute__ method won’t help
 here—although it is defined to catch every attribute reference (not
 just undefined names), it is also not run by built-in operations.
 Python’s property feature, which we
 met in Chapter 38, won’t help directly here
 either; recall that properties are automatically run code associated
 with specific attributes defined when a class is
 written, and are not designed to handle arbitrary attributes in
 wrapped objects.

Approaches to redefining operator overloading methods for
 3.X
As mentioned earlier, the most straightforward solution under
 3.X is to redundantly redefine operator overloading names that may
 appear in embedded objects in delegation-based classes like our
 decorator. This isn’t ideal because it creates some code redundancy,
 especially compared to 2.X solutions. However, it isn’t an impossibly
 major coding effort; can be automated to some extent with tools or
 superclasses; suffices to make our decorator work in 3.X; and may
 allow operator overloading names to be declared Private or Public too, assuming overloading methods
 trigger the failIf test
 internally.
Inline definition
For instance, the following is an inline
 redefinition approach—add method redefinitions to the proxy for
 every operator overloading method a wrapped object may define
 itself, to catch and delegate. We’re adding just four operation
 interceptors to illustrate, but others are similar (new code is in
 bold font here):
def accessControl(failIf):
 def onDecorator(aClass):
 class onInstance:
 def __init__(self, *args, **kargs):
 self.__wrapped = aClass(*args, **kargs)

 # Intercept and delegate built-in operations specifically
 def __str__(self):
 return str(self.__wrapped)
 def __add__(self, other):
 return self.__wrapped + other # Or getattr(x, '__add__')(y)
 def __getitem__(self, index):
 return self.__wrapped[index] # If needed
 def __call__(self, *args, **kargs):
 return self.__wrapped(*args, **kargs) # If needed
 # plus any others needed

 # Intercept and delegate by-name attribute access generically
 def __getattr__(self, attr): ...
 def __setattr__(self, attr, value): ...
 return onInstance
 return onDecorator

Mix-in superclasses
Alternatively, these methods can be inserted by a common
 superclass—given that there are dozens of such
 methods, an external class may be better suited to the task,
 especially if it is general enough to be used in any such interface
 proxy class. Either of the following mix-in class schemes (among
 likely others) suffice to catch and delegate built-ins
 operations:
	The first catches built-ins and
 forcibly reroutes down to the subclass __getattr__. It requires that operator
 overloading names be public per the decorator’s specifications,
 but built-in operation calls will work the same as both explicit
 name calls and 2.X’s classic classes.

	The second catches built-ins and
 reroutes to the wrapped object directly. It requires access to
 and assumes a proxy attribute named _wrapped giving access to the embedded
 object—which is less than ideal because it precludes wrapped
 objects from using the same name and creates a subclass
 dependency, but better than using the mangled and class-specific
 _onInstance__wrapped, and no
 worse than a similarly named method.

Like the inline approach, both of these mix-ins also require
 one method per built-in operation in general tools that proxy
 arbitrary objects’ interfaces. Notice how these classes catch
 operation calls rather than operation attribute
 fetches, and thus must perform the actual
 operation by delegating a call or expression:
class BuiltinsMixin:
 def __add__(self, other):
 return self.__class__.__getattr__(self, '__add__')(other)
 def __str__(self):
 return self.__class__.__getattr__(self, '__str__')()
 def __getitem__(self, index):
 return self.__class__.__getattr__(self, '__getitem__')(index)
 def __call__(self, *args, **kargs):
 return self.__class__.__getattr__(self, '__call__')(*args, **kargs)
 # plus any others needed

def accessControl(failIf):
 def onDecorator(aClass):
 class onInstance(BuiltinsMixin):
 ...rest unchanged...
 def __getattr__(self, attr): ...
 def __setattr__(self, attr, value): ...

class BuiltinsMixin:
 def __add__(self, other):
 return self._wrapped + other # Assume a _wrapped
 def __str__(self): # Bypass __getattr__
 return str(self._wrapped)
 def __getitem__(self, index):
 return self._wrapped[index]
 def __call__(self, *args, **kargs):
 return self._wrapped(*args, **kargs)
 # plus any others needed

def accessControl(failIf):
 def onDecorator(aClass):
 class onInstance(BuiltinsMixin):
 ...and use self._wrapped instead of self.__wrapped...
 def __getattr__(self, attr): ...
 def __setattr__(self, attr, value): ...
Either one of these superclass mix-ins will be extraneous
 code, but must be implemented only once, and seem much more
 straightforward than the various metaclass- or
 decorator-based tool approaches you’ll find
 online that populate each proxy class with the requisite methods
 redundantly (see the class augmentation examples in Chapter 40 for the principles behind such
 tools).

Coding variations: Routers, descriptors, automation
Naturally, both of the prior section’s mix-in superclasses
 might be improved with additional code changes we’ll largely pass on
 here, except for two variations worth noting briefly. First, compare
 the following mutation of the first
 mix-in—which uses a simpler coding structure but will incur an extra
 call per built-in operation, making it slower (though perhaps not significantly so in a proxy
 context):
class BuiltinsMixin:
 def reroute(self, attr, *args, **kargs):
 return self.__class__.__getattr__(self, attr)(*args, **kargs)

 def __add__(self, other):
 return self.reroute('__add__', other)
 def __str__(self):
 return self.reroute('__str__')
 def __getitem__(self, index):
 return self.reroute('__getitem__', index)
 def __call__(self, *args, **kargs):
 return self.reroute('__call__', *args, **kargs)
 # plus any others needed
Second, all the preceding built-in mix-in classes code each
 operator overloading method explicitly, and
 intercept the call issued for the operation.
 With an alternative coding, we could instead
 generate methods from a list of names
 mechanically, and intercept only the attribute
 fetch preceding the call by creating
 class-level descriptors of the prior chapter—as
 in the following, which, like the second mix-in alternative, assumes
 the proxied object is named _wrapped in the proxy instance
 itself:
class BuiltinsMixin:
 class ProxyDesc(object): # object for 2.X
 def __init__(self, attrname):
 self.attrname = attrname
 def __get__(self, instance, owner):
 return getattr(instance._wrapped, self.attrname) # Assume a _wrapped

 builtins = ['add', 'str', 'getitem', 'call'] # Plus any others
 for attr in builtins:
 exec('__%s__ = ProxyDesc("__%s__")' % (attr, attr))
This coding may be the most concise, but also the most
 implicit and complex, and is fairly tightly coupled with its
 subclasses by the shared name. The loop at the end of this class is
 equivalent to the following, run in the mix-in class’s local
 scope—it creates descriptors that respond to initial name lookups by
 fetching from the wrapped object in __get__, rather than catching the later
 operation call itself:
 __add__ = ProxyDesc("__add__")
 __str__ = ProxyDesc("__str__")
 ...etc...
With such operator overloading methods added—either inline or
 by mix-in inheritance—the prior Private example client that overloaded
 + and print with __str__ and __add__ works correctly under 2.X and 3.X,
 as do subclasses that overload indexing and calls. If you care to
 experiment further, see files access2_builtins*.py in the book examples
 package for complete codings of these options; we’ll also employ the
 third of the mix-in options in a solution to an end-of-chapter
 quiz.

Should operator methods be validated?
Adding support for operator overloading methods is required of interface
 proxies in general, to delegate calls correctly. In our specific
 privacy application, though, it also raises some additional design
 choices. In particular, privacy of operator overloading methods
 differs per implementation:
	Because they invoke __getattr__, the rerouter mix-ins
 require either that all __X__ names accessed be listed in Public decorations, or that Private be used instead when operator
 overloading is present in clients. In classes that use overloading
 heavily, Public may be
 impractical.

	Because they bypass __getattr__ entirely, as coded here both
 the inline scheme and self._wrapped mix-ins do not have these
 constraints, but they preclude built-in operations from being made
 private, and cause built-in operation dispatch to work
 asymmetrically from both explicit __X__ calls by-name and 2.X’s default
 classic classes.

	Python 2.X classic classes have the first bullet’s
 constraints, simply because all __X__ names are routed through __getattr__ automatically.

	Operator overloading names and protocols differ between 2.X
 and 3.X, making truly cross-version decoration less than trivial
 (e.g., Public decorators may
 need to list names from both lines).

We’ll leave final policy here a TBD, but some interface proxies
 might prefer to allow __X__ operator names to always pass unchecked
 when delegated.
In the general case, though, a substantial amount of extra code
 is required to accommodate 3.X’s new-style classes as delegation
 proxies—in principle, every operator overloading
 method that is no longer dispatched as a normal instance attribute
 automatically will need to be defined redundantly in a general tool
 class like this privacy decorator. This is why this extension is
 omitted in our code: there are potentially more than 50 such methods!
 Because all its classes are new-style, delegation-based code is more
 difficult—though not necessarily impossible—in Python 3.X.

Implementation alternatives: __getattribute__ inserts, call
 stack inspection
Although redundantly defining operator overloading methods in wrappers is probably the most straightforward
 workaround to Python 3.X dilemma outlined in the prior section, it’s
 not necessarily the only one. We don’t have space to explore this
 issue much further here, so deeper investigation will have to be
 relegated to suggested exercise. Because one dead-end alternative
 illustrates class concepts well, though, it merits a brief
 mention.
One downside of the privacy example is that instance objects are
 not truly instances of the original class—they are instances of the
 wrapper instead. In some programs that rely on
 type testing, this might matter. To support such cases, we might try
 to achieve similar effects by inserting a
 __getattribute__ and a __setattr__ method into the original class,
 to catch every attribute reference and assignment
 made on its instances. These inserted methods would pass valid
 requests up to their superclass to avoid loops, using the techniques
 we studied in the prior chapter. Here is the potential change to our
 class decorator’s code:
Method insertion: rest of access2.py code as before

def accessControl(failIf):
 def onDecorator(aClass):
 def getattributes(self, attr):
 trace('get:', attr)
 if failIf(attr):
 raise TypeError('private attribute fetch: ' + attr)
 else:
 return object.__getattribute__(self, attr)

 def setattributes(self, attr, value):
 trace('set:', attr)
 if failIf(attr):
 raise TypeError('private attribute change: ' + attr)
 else:
 return object.__setattr__(self, attr, value)

 aClass.__getattribute__ = getattributes
 aClass.__setattr__ = setattributes # Insert accessors
 return aClass # Return original class
 return onDecorator
This alternative addresses the type-testing issue but suffers
 from others. For one thing, this decorator can be used by
 new-style class clients only: because __getattribute__ is a new-style-only tool
 (as is this __setattr__ coding),
 decorated classes in 2.X must use new-style derivation, which may or
 may not be appropriate for their goals. In fact, the set of classes
 supported is even further limited: inserting methods will break
 clients that are already using a __setattr__ or __getattribute__ of their own.
Worse, this scheme does not address the
 built-in operation attributes issue described in
 the prior section, because __getattribute__ is also not run in these
 contexts. In our case, if Person
 had a __str__ it would be run by
 print operations, but only because it was actually present in that
 class. As before, the __str__
 attribute would not be routed to the inserted
 __getattribute__ method
 generically—printing would bypass this method altogether and call the
 class’s __str__ directly.
Although this is probably better than not supporting operator
 overloading methods in a wrapped object at all (barring redefinition,
 at least), this scheme still cannot intercept and validate __X__ methods, making it impossible for any of
 them to be private. Whether operator overloading methods should be
 private is another matter, but this structure precludes the
 possibility.
Much worse, because this nonwrapper
 approach works by adding a __getattribute__ and __setattr__ to the decorated class, it also
 intercepts attribute accesses made by the class
 itself and validates them the same as accesses made from
 outside. In other words, the class’s own method won’t be able to use
 its private names either! This is a showstopper for the insertion
 approach.
In fact, inserting these methods this way is functionally
 equivalent to inheriting them, and implies the
 same constraints as our original Chapter 30 privacy code. To know whether an
 attribute access originated inside or outside the class, our methods
 might need to inspect frame objects on the Python call
 stack. This might ultimately yield a solution—implementing
 private attributes as properties or descriptors that check the stack
 and validate for outside accesses only, for example—but it would slow
 access further, and is far too dark a magic for us to explore here.
 (Descriptors seem to make all things possible, even when they
 shouldn’t!)
While interesting, and possibly relevant for some other use
 cases, this method insertion technique doesn’t meet our goals. We
 won’t explore this option’s coding pattern further here because we
 will study class augmentation techniques in the next chapter, in
 conjunction with metaclasses. As we’ll see there, metaclasses are not
 strictly required for changing classes this way, because class
 decorators can often serve the same role.

Python Isn’t About Control
Now that I’ve gone to such great lengths to implement Private and Public attribute declarations for Python code,
 I must again remind you that it is not entirely
 Pythonic to add access controls to your classes
 like this. In fact, most Python programmers will probably find this
 example to be largely or totally irrelevant, apart from serving as a
 demonstration of decorators in action. Most large Python programs get by
 successfully without any such controls at all.
That said, you might find this tool useful in limited scopes
 during development. If you do wish to regulate attribute access in order
 to eliminate coding mistakes, or happen to be a
 soon-to-be-ex-C++-or-Java programmer, most things are possible with
 Python’s operator overloading and introspection tools.

Example: Validating Function Arguments
As a final example of the utility of decorators, this section develops a
 function decorator that automatically tests whether
 arguments passed to a function or method are within a valid numeric range.
 It’s designed to be used during either development or production, and it
 can be used as a template for similar tasks (e.g., argument type testing,
 if you must). Because this chapter’s size limits have been broached, this
 example’s code is largely self-study material, with limited narrative; as
 usual, browse the code for more details.
The Goal
In the object-oriented tutorial of Chapter 28, we wrote a class that gave a pay
 raise to objects representing people based upon a passed-in
 percentage:
class Person:
 ...
 def giveRaise(self, percent):
 self.pay = int(self.pay * (1 + percent))
There, we noted that if we wanted the code to be robust it would
 be a good idea to check the percentage to make sure it’s not too large
 or too small. We could implement such a check with either if or assert statements in the method itself, using
 inline tests:
class Person:
 def giveRaise(self, percent): # Validate with inline code
 if percent < 0.0 or percent > 1.0:
 raise TypeError, 'percent invalid'
 self.pay = int(self.pay * (1 + percent))

class Person: # Validate with asserts
 def giveRaise(self, percent):
 assert percent >= 0.0 and percent <= 1.0, 'percent invalid'
 self.pay = int(self.pay * (1 + percent))
However, this approach clutters up the method with inline tests
 that will probably be useful only during development. For more complex
 cases, this can become tedious (imagine trying to inline the code needed
 to implement the attribute privacy provided by the last section’s
 decorator). Perhaps worse, if the validation logic ever needs to change,
 there may be arbitrarily many inline copies to find and update.
A more useful and interesting alternative would be to develop a
 general tool that can perform range tests for us automatically, for the
 arguments of any function or method we might code now or in the future.
 A decorator approach makes this explicit and
 convenient:
class Person:
 @rangetest(percent=(0.0, 1.0)) # Use decorator to validate
 def giveRaise(self, percent):
 self.pay = int(self.pay * (1 + percent))
Isolating validation logic in a decorator simplifies both clients
 and future maintenance.
Notice that our goal here is different than the attribute
 validations coded in the prior chapter’s final example. Here, we mean to
 validate the values of function arguments when
 passed, rather than attribute values when set.
 Python’s decorator and introspection tools allow us to code this new
 task just as easily.

A Basic Range-Testing Decorator for Positional Arguments
Let’s start with a basic range test implementation. To keep things simple, we’ll begin by
 coding a decorator that works only for positional arguments and assumes
 they always appear at the same position in every call; they cannot be
 passed by keyword name, and we don’t support additional **args keywords in calls because this can
 invalidate the positions declared in the decorator. Code the following
 in a file called rangetest1.py:
def rangetest(*argchecks): # Validate positional arg ranges
 def onDecorator(func):
 if not __debug__: # True if "python -O main.py args..."
 return func # No-op: call original directly
 else: # Else wrapper while debugging
 def onCall(*args):
 for (ix, low, high) in argchecks:
 if args[ix] < low or args[ix] > high:
 errmsg = 'Argument %s not in %s..%s' % (ix, low, high)
 raise TypeError(errmsg)
 return func(*args)
 return onCall
 return onDecorator
As is, this code is mostly a rehash of the coding patterns we
 explored earlier: we use decorator arguments, nested scopes for state
 retention, and so on.
We also use nested def
 statements to ensure that this works for both simple functions and
 methods, as we learned earlier. When used for a
 class’s method, onCall receives the
 subject class’s instance in the first item in *args and passes this along to self in the original method function; argument
 numbers in range tests start at 1 in this case, not 0.
New here, notice this code’s use of the __debug__ built-in variable—Python sets this to True, unless it’s being run with the –O optimize command-line flag (e.g., python –O main.py). When __debug__ is False, the decorator returns the original
 function unchanged, to avoid extra later calls and their associated
 performance penalty. In other words, the decorator automatically
 removes its augmentation logic when –O is used, without requiring you to
 physically remove the decoration lines in your code.
This first iteration solution is used as follows:
File rangetest1_test.py
from __future__ import print_function # 2.X
from rangetest1 import rangetest
print(__debug__) # False if "python -O main.py"

@rangetest((1, 0, 120)) # persinfo = rangetest(...)(persinfo)
def persinfo(name, age): # age must be in 0..120
 print('%s is %s years old' % (name, age))

@rangetest([0, 1, 12], [1, 1, 31], [2, 0, 2009])
def birthday(M, D, Y):
 print('birthday = {0}/{1}/{2}'.format(M, D, Y))

class Person:
 def __init__(self, name, job, pay):
 self.job = job
 self.pay = pay

 @rangetest([1, 0.0, 1.0]) # giveRaise = rangetest(...)(giveRaise)
 def giveRaise(self, percent): # Arg 0 is the self instance here
 self.pay = int(self.pay * (1 + percent))

Comment lines raise TypeError unless "python -O" used on shell command line

persinfo('Bob Smith', 45) # Really runs onCall(...) with state
#persinfo('Bob Smith', 200) # Or persinfo if -O cmd line argument

birthday(5, 31, 1963)
#birthday(5, 32, 1963)

sue = Person('Sue Jones', 'dev', 100000)
sue.giveRaise(.10) # Really runs onCall(self, .10)
print(sue.pay) # Or giveRaise(self, .10) if -O
#sue.giveRaise(1.10)
#print(sue.pay)
When run, valid calls in this code produce the following output
 (all the code in this section works the same under Python 2.X and 3.X,
 because function decorators are supported in both, we’re not using
 attribute delegation, and we use version-neutral exception construction
 and printing techniques):
C:\code> python rangetest1_test.py
True
Bob Smith is 45 years old
birthday = 5/31/1963
110000
Uncommenting any of the invalid calls causes a TypeError to be raised by the decorator.
 Here’s the result when the last two lines are allowed to run (as usual,
 I’ve omitted some of the error message text here to save space):
C:\code> python rangetest1_test.py
True
Bob Smith is 45 years old
birthday = 5/31/1963
110000
TypeError: Argument 1 not in 0.0..1.0
Running Python with its -O flag
 at a system command line will disable range testing, but also avoid the
 performance overhead of the wrapping layer—we wind up calling the
 original undecorated function directly. Assuming this is a debugging
 tool only, you can use this flag to optimize your program for production
 use:
C:\code> python -O rangetest1_test.py
False
Bob Smith is 45 years old
birthday = 5/31/1963
110000
231000

Generalizing for Keywords and Defaults, Too
The prior version illustrates the basics we need to employ, but
 it’s fairly limited—it supports validating arguments passed by position
 only, and it does not validate keyword arguments (in fact, it assumes
 that no keywords are passed in a way that makes argument position
 numbers incorrect). Additionally, it does nothing about arguments with
 defaults that may be omitted in a given call. That’s fine if all your
 arguments are passed by position and never defaulted, but less than
 ideal in a general tool. Python supports much more flexible
 argument-passing modes, which we’re not yet addressing.
The mutation of our example shown next does better. By matching
 the wrapped function’s expected arguments against the actual arguments
 passed in a call, it supports range validations for arguments passed by
 either position or keyword name, and it skips testing for default
 arguments omitted in the call. In short, arguments to be validated are
 specified by keyword arguments to the decorator, which later steps
 through both the *pargs positionals
 tuple and the **kargs keywords
 dictionary to validate.
"""
File rangetest.py: function decorator that performs range-test
validation for arguments passed to any function or method.

Arguments are specified by keyword to the decorator. In the actual
call, arguments may be passed by position or keyword, and defaults
may be omitted. See rangetest_test.py for example use cases.
"""
trace = True

def rangetest(**argchecks): # Validate ranges for both+defaults
 def onDecorator(func): # onCall remembers func and argchecks
 if not __debug__: # True if "python -O main.py args..."
 return func # Wrap if debugging; else use original
 else:
 code = func.__code__
 allargs = code.co_varnames[:code.co_argcount]
 funcname = func.__name__

 def onCall(*pargs, **kargs):
 # All pargs match first N expected args by position
 # The rest must be in kargs or be omitted defaults
 expected = list(allargs)
 positionals = expected[:len(pargs)]

 for (argname, (low, high)) in argchecks.items():
 # For all args to be checked
 if argname in kargs:
 # Was passed by name
 if kargs[argname] < low or kargs[argname] > high:
 errmsg = '{0} argument "{1}" not in {2}..{3}'
 errmsg = errmsg.format(funcname, argname, low, high)
 raise TypeError(errmsg)

 elif argname in positionals:
 # Was passed by position
 position = positionals.index(argname)
 if pargs[position] < low or pargs[position] > high:
 errmsg = '{0} argument "{1}" not in {2}..{3}'
 errmsg = errmsg.format(funcname, argname, low, high)
 raise TypeError(errmsg)
 else:
 # Assume not passed: default
 if trace:
 print('Argument "{0}" defaulted'.format(argname))

 return func(*pargs, **kargs) # OK: run original call
 return onCall
 return onDecorator
The following test script shows how the decorator is
 used—arguments to be validated are given by keyword decorator arguments,
 and at actual calls we can pass by name or position and omit arguments
 with defaults even if they are to be validated otherwise:
"""
File rangetest_test.py (3.X + 2.X)
Comment lines raise TypeError unless "python -O" used on shell command line
"""
from __future__ import print_function # 2.X
from rangetest import rangetest

Test functions, positional and keyword

@rangetest(age=(0, 120)) # persinfo = rangetest(...)(persinfo)
def persinfo(name, age):
 print('%s is %s years old' % (name, age))

@rangetest(M=(1, 12), D=(1, 31), Y=(0, 2013))
def birthday(M, D, Y):
 print('birthday = {0}/{1}/{2}'.format(M, D, Y))

persinfo('Bob', 40)
persinfo(age=40, name='Bob')
birthday(5, D=1, Y=1963)
#persinfo('Bob', 150)
#persinfo(age=150, name='Bob')
#birthday(5, D=40, Y=1963)

Test methods, positional and keyword

class Person:
 def __init__(self, name, job, pay):
 self.job = job
 self.pay = pay
 # giveRaise = rangetest(...)(giveRaise)
 @rangetest(percent=(0.0, 1.0)) # percent passed by name or position
 def giveRaise(self, percent):
 self.pay = int(self.pay * (1 + percent))

bob = Person('Bob Smith', 'dev', 100000)
sue = Person('Sue Jones', 'dev', 100000)
bob.giveRaise(.10)
sue.giveRaise(percent=.20)
print(bob.pay, sue.pay)
#bob.giveRaise(1.10)
#bob.giveRaise(percent=1.20)

Test omitted defaults: skipped

@rangetest(a=(1, 10), b=(1, 10), c=(1, 10), d=(1, 10))
def omitargs(a, b=7, c=8, d=9):
 print(a, b, c, d)

omitargs(1, 2, 3, 4)
omitargs(1, 2, 3)
omitargs(1, 2, 3, d=4)
omitargs(1, d=4)
omitargs(d=4, a=1)
omitargs(1, b=2, d=4)
omitargs(d=8, c=7, a=1)

#omitargs(1, 2, 3, 11) # Bad d
#omitargs(1, 2, 11) # Bad c
#omitargs(1, 2, 3, d=11) # Bad d
#omitargs(11, d=4) # Bad a
#omitargs(d=4, a=11) # Bad a
#omitargs(1, b=11, d=4) # Bad b
#omitargs(d=8, c=7, a=11) # Bad a
When this script is run, out-of-range arguments raise an exception
 as before, but arguments may be passed by either name or position, and
 omitted defaults are not validated. This code runs on both 2.X and 3.X.
 Trace its output and test this further on your own to experiment; it
 works as before, but its scope has been broadened:
C:\code> python rangetest_test.py
Bob is 40 years old
Bob is 40 years old
birthday = 5/1/1963
110000 120000
1 2 3 4
Argument "d" defaulted
1 2 3 9
1 2 3 4
Argument "c" defaulted
Argument "b" defaulted
1 7 8 4
Argument "c" defaulted
Argument "b" defaulted
1 7 8 4
Argument "c" defaulted
1 2 8 4
Argument "b" defaulted
1 7 7 8
On validation errors, we get an exception as before when one of
 the method test lines is uncommented, unless the -O command-line argument is passed to Python
 to disable the decorator’s logic:
TypeError: giveRaise argument "percent" not in 0.0..1.0

Implementation Details
This decorator’s code relies on both introspection APIs and subtle
 constraints of argument passing. To be fully general we could in
 principle try to mimic Python’s argument matching logic in its entirety
 to see which names have been passed in which modes, but that’s far too
 much complexity for our tool. It would be better if we could somehow
 match the names of testable arguments given to the decorator against the names of actual arguments expected by the function, to determine how the former map to the latter during a given call.
Function introspection
It turns out that the introspection API available on function objects and their associated
 code objects has exactly the tool we need. This API was briefly
 introduced in Chapter 19, but we’ll
 actually put it to use here. The set of expected argument names is
 simply the first N variable names attached to a
 function’s code object:
In Python 3.X (and 2.6+ for compatibility)
>>> def func(a, b, c, e=True, f=None): # Args: three required, two defaults
 x = 1 # Plus two more local variables
 y = 2

>>> code = func.__code__ # Code object of function object
>>> code.co_nlocals
7
>>> code.co_varnames # All local variable names
('a', 'b', 'c', 'e', 'f', 'x', 'y')
>>> code.co_varnames[:code.co_argcount] # <== First N locals are expected args
('a', 'b', 'c', 'e', 'f')
And as usual, starred-argument names in the
 call proxy allow it to collect arbitrarily many arguments to be
 matched against the expected arguments so obtained from the function’s
 introspection API:
>>> def catcher(*pargs, **kargs): print('%s, %s' % (pargs, kargs))

>>> catcher(1, 2, 3, 4, 5)
(1, 2, 3, 4, 5), {}
>>> catcher(1, 2, c=3, d=4, e=5) # Arguments at calls
(1, 2), {'d': 4, 'e': 5, 'c': 3}
The function object’s API is available in older Pythons, but the
 func.__code__ attribute is named
 func.func_code in 2.5 and earlier;
 the newer __code__ attribute is
 also redundantly available in 2.6 and later for portability. Run a
 dir call on function and code
 objects for more details. Code like the following would support 2.5
 and earlier, though the sys.version_info result itself is similarly
 nonportable—it’s a named tuple in recent Pythons, but we can use
 offsets on newer and older Pythons alike:
>>> import sys # For backward compatibility
>>> tuple(sys.version_info) # [0] is major release number
(3, 3, 0, 'final', 0)
>>> code = func.__code__ if sys.version_info[0] == 3 else func.func_code

Argument assumptions
Given the decorated function’s set of expected argument names,
 the solution relies upon two constraints on argument passing
 order imposed by Python (these still hold true in
 both 2.X and 3.X current releases):
	At the call, all positional arguments appear before all
 keyword arguments.

	In the def, all
 nondefault arguments appear before all default arguments.

That is, a nonkeyword argument cannot generally follow a keyword
 argument at a call, and a nondefault argument
 cannot follow a default argument at a definition.
 All “name=value” syntax must appear after any simple “name” in both
 places. As we’ve also learned, Python matches argument values passed
 by position to argument names in function headers from left to right,
 such that these values always match the leftmost
 names in headers. Keywords match by name instead, and a given argument
 can receive only one value.
To simplify our work, we can also make the assumption that a
 call is valid in general—that is, that all
 arguments either will receive values (by name or position), or will be
 omitted intentionally to pick up defaults. This assumption won’t
 necessarily hold, because the function has not yet actually been
 called when the wrapper logic tests validity—the call may still fail
 later when invoked by the wrapper layer, due to incorrect argument
 passing. As long as that doesn’t cause the wrapper to fail any more
 badly, though, we can finesse the validity of the call. This helps,
 because validating calls before they are actually made would require
 us to emulate Python’s argument-matching algorithm in full—again, too
 complex a procedure for our tool.

Matching algorithm
Now, given these constraints and assumptions, we can allow for
 both keywords and omitted default arguments in the call with this
 algorithm. When a call is intercepted, we can make the following
 assumptions and deductions:
	Let N be the number of passed positional arguments, obtained from the
 length of the *pargs
 tuple.

	All N positional arguments in *pargs must match the first
 N expected arguments obtained from the
 function’s code object. This is true per Python’s call ordering
 rules, outlined earlier, since all positionals precede all
 keywords in a call.

	To obtain the names of arguments actually passed by
 position, we can slice the list of all expected arguments up to
 the length N of the *pargs passed positionals tuple.

	Any arguments after the first N
 expected arguments either were passed by keyword or were defaulted
 by omission at the call.

	For each argument name to be validated by the
 decorator:
	If the name is in **kargs, it was passed by
 name—indexing **kargs gives
 its passed value.

	If the name is in the first N
 expected arguments, it was passed by position—its relative
 position in the expected list gives its relative position in
 *pargs.

	Otherwise, we can assume it was omitted in the call and
 defaulted, and need not be checked.

In other words, we can skip tests for arguments that were
 omitted in a call by assuming that the first N
 actually passed positional arguments in *pargs must match the first
 N argument names in the list of all expected
 arguments, and that any others must either have been passed by keyword
 and thus be in **kargs, or
 have been defaulted. Under this scheme, the decorator
 will simply skip any argument to be checked that was omitted between
 the rightmost positional argument and the leftmost keyword argument;
 between keyword arguments; or after the rightmost positional in
 general. Trace through the decorator and its test script to see how
 this is realized in code.

Open Issues
Although our range-testing tool works as planned, three caveats
 remain—it doesn’t detect invalid calls, doesn’t handle some
 arbitrary-argument signatures, and doesn’t fully support nesting.
 Improvements may require extension or altogether different approaches.
 Here’s a quick rundown of the issues.
Invalid calls
First, as mentioned earlier, calls to the original function that
 are not valid still fail in our final decorator.
 The following both trigger exceptions, for example:
omitargs()
omitargs(d=8, c=7, b=6)
These only fail, though, where we try to invoke the original
 function, at the end of the wrapper. While we could try to imitate
 Python’s argument matching to avoid this, there’s not much reason to
 do so—since the call would fail at this point anyhow, we might as well
 let Python’s own argument-matching logic detect the problem for
 us.

Arbitrary arguments
Second, although our final version handles positional arguments, keyword arguments, and
 omitted defaults, it still doesn’t do anything explicit about *pargs and
 **kargs
 starred-argument names that may be used in a decorated function that
 accepts arbitrarily many arguments itself. We
 probably don’t need to care for our purposes, though:
	If an extra keyword argument is passed,
 its name will show up in **kargs and
 can be tested normally if mentioned to the decorator.

	If an extra keyword argument is not
 passed, its name won’t be in either **kargs or
 the sliced expected positionals list, and it will thus not be
 checked—it is treated as though it were defaulted, even though it
 is really an optional extra argument.

	If an extra positional argument is
 passed, there’s no way to reference it in the decorator anyhow—its
 name won’t be in either **kargs or
 the sliced expected arguments list, so it will simply be skipped.
 Because such arguments are not listed in the function’s
 definition, there’s no way to map a name given to the decorator
 back to an expected relative position.

In other words, as it is the code supports testing arbitrary
 keyword arguments by name, but not arbitrary positionals that are
 unnamed and hence have no set position in the function’s argument
 signature. In terms of the function object’s API, here’s the effect of
 these tools in decorated functions:
>>> def func(*kargs, **pargs): pass
>>> code = func.__code__
>>> code.co_nlocals, code.co_varnames
(2, ('kargs', 'pargs'))
>>> code.co_argcount, code.co_varnames[:code.co_argcount]
(0, ())

>>> def func(a, b, *kargs, **pargs): pass
>>> code = func.__code__
>>> code.co_argcount, code.co_varnames[:code.co_argcount]
(2, ('a', 'b'))
Because starred-argument names show up as locals but
 not as expected arguments, they won’t be a factor
 in our matching algorithm—names preceding them in function headers can
 be validated as usual, but not any extra positional arguments passed.
 In principle, we could extend the decorator’s interface to support
 *pargs
 in the decorated function, too, for the rare cases where this might be
 useful (e.g., a special argument name with a test to apply to all
 arguments in the wrapper’s *pargs beyond the
 length of the expected arguments list), but we’ll pass on such an
 extension here.

Decorator nesting
Finally, and perhaps most subtly, this code’s approach does not fully support
 use of decorator nesting to combine steps.
 Because it analyzes arguments using names in function definitions, and
 the names of the call proxy function returned by a nested decoration
 won’t correspond to argument names in either the original function or
 decorator arguments, it does not fully support use in nested
 mode.
Technically, when nested, only the most deeply nested
 appearance’s validations are run in full; all other nesting levels run
 tests on arguments passed by keyword only. Trace the code to see why;
 because the onCall proxy’s call
 signature expects no named positional arguments, any to-be-validated
 arguments passed to it by position are treated as if they were omitted
 and hence defaulted, and are thus skipped.
This may be inherent in this tool’s approach—proxies change the
 argument name signatures at their levels, making it impossible to
 directly map names in decorator arguments to positions in passed
 argument sequences. When proxies are present, argument
 names ultimately apply to keywords only; by
 contrast, the first-cut solution’s argument
 positions may support proxies better, but do not
 fully support keywords.
In lieu of this nesting capability, we’ll generalize this
 decorator to support multiple types of validations in a single
 decoration in an end-of-chapter quiz solution, which also gives
 examples of the nesting limitation in action. Since we’ve already
 neared the space allocation for this example, though, if you care
 about these or any other further improvements, you’ve officially
 crossed over into the realm of suggested exercises.

Decorator Arguments Versus Function Annotations
Interestingly, the function annotation feature introduced in Python 3.X (3.0
 and later) could provide an alternative to the decorator arguments used
 by our example to specify range tests. As we learned in Chapter 19, annotations allow us to associate
 expressions with arguments and return values, by coding them in the
 def header line itself; Python
 collects annotations in a dictionary and attaches it to the annotated
 function.
We could use this in our example to code range limits in the
 header line, instead of in decorator arguments. We would still need a
 function decorator to wrap the function in order to intercept later
 calls, but we would essentially trade decorator argument syntax:
@rangetest(a=(1, 5), c=(0.0, 1.0))
def func(a, b, c): # func = rangetest(...)(func)
 print(a + b + c)
for annotation syntax like this:
@rangetest
def func(a:(1, 5), b, c:(0.0, 1.0)):
 print(a + b + c)
That is, the range constraints would be moved into the function
 itself, instead of being coded externally. The following script
 illustrates the structure of the resulting decorators under both
 schemes, in incomplete skeleton code for brevity. The decorator
 arguments code pattern is that of our complete solution shown earlier;
 the annotation alternative requires one less level of nesting, because
 it doesn’t need to retain decorator arguments as state:
Using decorator arguments (3.X + 2.X)

def rangetest(**argchecks):
 def onDecorator(func):
 def onCall(*pargs, **kargs):
 print(argchecks)
 for check in argchecks:
 pass # Add validation code here
 return func(*pargs, **kargs)
 return onCall
 return onDecorator

@rangetest(a=(1, 5), c=(0.0, 1.0))
def func(a, b, c): # func = rangetest(...)(func)
 print(a + b + c)

func(1, 2, c=3) # Runs onCall, argchecks in scope

Using function annotations (3.X only)

def rangetest(func):
 def onCall(*pargs, **kargs):
 argchecks = func.__annotations__
 print(argchecks)
 for check in argchecks:
 pass # Add validation code here
 return func(*pargs, **kargs)
 return onCall

@rangetest
def func(a:(1, 5), b, c:(0.0, 1.0)): # func = rangetest(func)
 print(a + b + c)

func(1, 2, c=3) # Runs onCall, annotations on func
When run, both schemes have access to the same validation test
 information, but in different forms—the decorator argument version’s
 information is retained in an argument in an enclosing scope, and the
 annotation version’s information is retained in an attribute of the
 function itself. In 3.X only, due to the use of function
 annotations:
C:\code> py −3 decoargs-vs-annotation.py
{'a': (1, 5), 'c': (0.0, 1.0)}
6
{'a': (1, 5), 'c': (0.0, 1.0)}
6
I’ll leave fleshing out the rest of the annotation-based version
 as a suggested exercise; its code would be identical to that of our
 complete solution shown earlier, because range-test information is
 simply on the function instead of in an enclosing scope. Really, all
 this buys us is a different user interface for our tool—it will still
 need to match argument names against expected argument names to obtain
 relative positions as before.
In fact, using annotation instead of decorator arguments in this
 example actually limits its utility. For one thing,
 annotation only works under Python 3.X, so 2.X is no longer supported;
 function decorators with arguments, on the other hand, work in both
 versions.
More importantly, by moving the validation specifications into the
 def header, we essentially commit the
 function to a single role—since annotation allows
 us to code only one expression per argument, it can have only one
 purpose. For instance, we cannot use range-test annotations for any
 other role.
By contrast, because decorator arguments are coded outside the
 function itself, they are both easier to remove and more
 general—the code of the function itself does not imply a
 single decoration purpose. Crucially, by nesting
 decorators with arguments, we can apply multiple augmentation steps to
 the same function; annotation directly supports only one. With decorator
 arguments, the function itself also retains a simpler, normal
 appearance.
Still, if you have a single purpose in mind, and you can commit to
 supporting 3.X only, the choice between annotation and decorator
 arguments is largely stylistic and subjective. As is so often true in
 life, one person’s decoration or annotation may well be another’s
 syntactic clutter!

Other Applications: Type Testing (If You Insist!)
The coding pattern we’ve arrived at for processing arguments in decorators
 could be applied in other contexts. Checking argument data types at
 development time, for example, is a straightforward extension:
def typetest(**argchecks):
 def onDecorator(func):
 ...
 def onCall(*pargs, **kargs):
 positionals = list(allargs)[:len(pargs)]
 for (argname, type) in argchecks.items():
 if argname in kargs:
 if not isinstance(kargs[argname], type):
 ...
 raise TypeError(errmsg)
 elif argname in positionals:
 position = positionals.index(argname)
 if not isinstance(pargs[position], type):
 ...
 raise TypeError(errmsg)
 else:
 # Assume not passed: default
 return func(*pargs, **kargs)
 return onCall
 return onDecorator

@typetest(a=int, c=float)
def func(a, b, c, d): # func = typetest(...)(func)
 ...

func(1, 2, 3.0, 4) # OK
func('spam', 2, 99, 4) # Triggers exception correctly
Using function annotations instead of decorator arguments for such
 a decorator, as described in the prior section, would make this look
 even more like type declarations in other languages:
@typetest
def func(a: int, b, c: float, d): # func = typetest(func)
 ... # Gasp!...
But we’re getting dangerously close to triggering a “flag on the
 play” here. As you should have learned in this book, this particular
 role is generally a bad idea in working code, and, much like private
 declarations, is not at all Pythonic (and is often
 a symptom of an ex-C++ programmer’s first attempts to use
 Python).
Type testing restricts your function to work on specific types
 only, instead of allowing it to operate on any types with compatible
 interfaces. In effect, it limits your code and
 breaks its flexibility. On the other hand, every
 rule has exceptions; type checking may come in handy in isolated cases
 while debugging and when interfacing with code written in more
 restrictive languages, such as C++.
Still, this general pattern of argument processing might also be
 applicable in a variety of less controversial roles. We might even
 generalize further by passing in a test function,
 much as we did to add Public
 decorations earlier; a single copy of this sort of code would then
 suffice for both range and type testing, and perhaps other similar
 goals. In fact, we will generalize this way in the
 end-of-chapter quiz coming up, so we’ll leave this extension as a
 cliffhanger here.

Chapter Summary
In this chapter, we explored decorators—both the function and class
 varieties. As we learned, decorators are a way to insert code to be run
 automatically when a function or class is defined. When a decorator is
 used, Python rebinds a function or class name to the callable object it
 returns. This hook allows us to manage functions and classes themselves,
 or later calls to them—by adding a layer of wrapper logic to catch later
 calls, we can augment both function calls and instance interfaces. As we
 also saw, manager functions and manual name rebinding can achieve the same
 effect, but decorators provide a more explicit and uniform
 solution.
As we also learned, class decorators can be used to manage classes
 themselves, rather than just their instances. Because this functionality
 overlaps with metaclasses—the topic of the next and
 final technical chapter— you’ll have to read ahead for the conclusion to
 this story, and that of this book at large. First, though, let’s work
 through the following quiz. Because this chapter was mostly focused on its
 examples, its quiz will ask you to modify some of its code in order to
 review. You can find the original versions’ code in the book’s examples
 package (see the preface for access pointers). If you’re pressed for time,
 study the modifications listed in the answers instead—programming is as
 much about reading code as writing it.

Test Your Knowledge: Quiz
	Method decorators: As mentioned in one of this chapter’s notes, the timerdeco2.py module’s timer function
 decorator with decorator arguments that we wrote in the section “Adding Decorator Arguments” can be applied only to simple
 functions, because it uses a nested class with a
 __call__ operator overloading
 method to catch calls. This structure does not work for a class’s
 methods because the decorator instance is passed
 to self, not the subject class
 instance.
Rewrite this decorator so that it can be applied to both simple
 functions and methods in classes, and test it on both functions and
 methods. (Hint: see the section “Class Blunders I: Decorating Methods” for pointers.)
 Note that you will probably need to use function object
 attributes to keep track of total time, since you
 won’t have a nested class for state retention and can’t access
 nonlocals from outside the decorator code. As an added bonus, this
 makes your decorator usable on both Python 3.X and 2.X.

	Class decorators: The Public/Private class decorators we wrote in module
 access2.py in this chapter’s
 first case study example will add performance
 costs to every attribute fetch in a decorated class.
 Although we could simply delete the @ decoration line to gain speed, we could
 also augment the decorator itself to check the __debug__ switch and perform no wrapping at
 all when the –O Python flag is
 passed on the command line—just as we did for the argument range-test
 decorators. That way, we can speed our program without changing its
 source, via command-line arguments (python –O
 main.py...). While we’re at it, we could also use one of the
 mix-in superclass techniques we studied to catch a few
 built-in operations in Python 3.X too. Code and
 test these two extensions.

	Generalized argument validations: The
 function and method decorator we wrote in rangetest.py checks that passed arguments
 are in a valid range, but we also saw that the same pattern could
 apply to similar goals such as argument type testing, and possibly
 more. Generalize the range tester so that its single code base can be
 used for multiple argument validations. Passed-in functions may be the
 simplest solution given the coding structure here, though in more
 OOP-based contexts, subclasses that provide expected methods can often
 provide similar generalization routes as well.

Test Your Knowledge: Answers
	Here’s one way to code the first question’s solution, and its
 output (though some methods may run too fast to register reported
 time). The trick lies in replacing nested classes with
 nested functions, so the self argument is not the decorator’s
 instance, and assigning the total time to the decorator function
 itself so it can be fetched later through the original rebound name
 (see the section “State Information Retention Options” of this chapter
 for details—functions support arbitrary attribute attachment, and the
 function name is an enclosing scope reference in this context). If you
 wish to expand this further, it might be useful to also record the
 best (minimum) call time in addition to the total
 time, as we did in Chapter 21’s
 timer examples.
"""
File timerdeco.py (3.X + 2.X)
Call timer decorator for both functions and methods.
"""
import time

def timer(label='', trace=True): # On decorator args: retain args
 def onDecorator(func): # On @: retain decorated func
 def onCall(*args, **kargs): # On calls: call original
 start = time.clock() # State is scopes + func attr
 result = func(*args, **kargs)
 elapsed = time.clock() - start
 onCall.alltime += elapsed
 if trace:
 format = '%s%s: %.5f, %.5f'
 values = (label, func.__name__, elapsed, onCall.alltime)
 print(format % values)
 return result
 onCall.alltime = 0
 return onCall
 return onDecorator
I’ve coded tests in a separate file here to allow the decorator
 to be easily reused:
"""
File timerdeco-test.py
"""
from __future__ import print_function # 2.X
from timerdeco import timer
import sys
force = list if sys.version_info[0] == 3 else (lambda X: X)

print('---')
Test on functions

@timer(trace=True, label='[CCC]==>')
def listcomp(N): # Like listcomp = timer(...)(listcomp)
 return [x * 2 for x in range(N)] # listcomp(...) triggers onCall

@timer('[MMM]==>')
def mapcall(N):
 return force(map((lambda x: x * 2), range(N))) # list() for 3.X views

for func in (listcomp, mapcall):
 result = func(5) # Time for this call, all calls, return value
 func(5000000)
 print(result)
 print('allTime = %s\n' % func.alltime) # Total time for all calls

print('---')
Test on methods

class Person:
 def __init__(self, name, pay):
 self.name = name
 self.pay = pay

 @timer()
 def giveRaise(self, percent): # giveRaise = timer()(giveRaise)
 self.pay *= (1.0 + percent) # tracer remembers giveRaise

 @timer(label='**')
 def lastName(self): # lastName = timer(...)(lastName)
 return self.name.split()[-1] # alltime per class, not instance

bob = Person('Bob Smith', 50000)
sue = Person('Sue Jones', 100000)
bob.giveRaise(.10)
sue.giveRaise(.20) # runs onCall(sue, .10)
print(int(bob.pay), int(sue.pay))
print(bob.lastName(), sue.lastName()) # runs onCall(bob), remembers lastName
print('%.5f %.5f' % (Person.giveRaise.alltime, Person.lastName.alltime))
If all goes according to plan, you’ll see the following output
 in both Python 3.X and 2.X, albeit with timing results that will vary
 per Python and machine:
c:\code> py −3 timerdeco-test.py

[CCC]==>listcomp: 0.00001, 0.00001
[CCC]==>listcomp: 0.57930, 0.57930
[0, 2, 4, 6, 8]
allTime = 0.5793010457092784

[MMM]==>mapcall: 0.00002, 0.00002
[MMM]==>mapcall: 1.08609, 1.08611
[0, 2, 4, 6, 8]
allTime = 1.0861149923442373

giveRaise: 0.00001, 0.00001
giveRaise: 0.00000, 0.00001
55000 120000
**lastName: 0.00001, 0.00001
**lastName: 0.00000, 0.00001
Smith Jones
0.00001 0.00001

	The following three files satisfy the second question. The first
 gives the decorator—it’s been augmented to return
 the original class in optimized mode (–O), so attribute accesses don’t incur a
 speed hit. Mostly, it just adds the debug mode test statements and
 indents the class further to the right:
"""
File access.py (3.X + 2.X)
Class decorator with Private and Public attribute declarations.
Controls external access to attributes stored on an instance, or
inherited by it from its classes in any fashion.

Private declares attribute names that cannot be fetched or assigned
outside the decorated class, and Public declares all the names that can.

Caveats: in 3.X catches built-ins coded in BuiltinMixins only (expand me);
as coded, Public may be less useful than Private for operator overloading.
"""
from access_builtins import BuiltinsMixin # A partial set!

traceMe = False
def trace(*args):
 if traceMe: print('[' + ' '.join(map(str, args)) + ']')

def accessControl(failIf):
 def onDecorator(aClass):
 if not __debug__:
 return aClass
 else:
 class onInstance(BuiltinsMixin):
 def __init__(self, *args, **kargs):
 self.__wrapped = aClass(*args, **kargs)

 def __getattr__(self, attr):
 trace('get:', attr)
 if failIf(attr):
 raise TypeError('private attribute fetch: ' + attr)
 else:
 return getattr(self.__wrapped, attr)

 def __setattr__(self, attr, value):
 trace('set:', attr, value)
 if attr == '_onInstance__wrapped':
 self.__dict__[attr] = value
 elif failIf(attr):
 raise TypeError('private attribute change: ' + attr)
 else:
 setattr(self.__wrapped, attr, value)
 return onInstance
 return onDecorator

def Private(*attributes):
 return accessControl(failIf=(lambda attr: attr in attributes))

def Public(*attributes):
 return accessControl(failIf=(lambda attr: attr not in attributes))
I’ve also used one of our mix-in techniques to add some operator
 overloading method redefinitions to the wrapper class, so that in 3.X
 it correctly delegates built-in operations to subject classes that use
 these methods. As coded, the proxy is a default classic class in 2.X
 that routes these through __getattr__ already, but in 3.X is a
 new-style class that does not. The mix-in used here requires listing
 such methods in Public decorators;
 see earlier for alternatives that do not (but that also do not allow
 built-ins to be made private), and expand this class as needed:
"""
File access_builtins.py (from access2_builtins2b.py)
Route some built-in operations back to proxy class __getattr__, so they
work the same in 3.X as direct by-name calls and 2.X's default classic classes.
Expand me as needed to include other __X__ names used by proxied objects.
"""

class BuiltinsMixin:
 def reroute(self, attr, *args, **kargs):
 return self.__class__.__getattr__(self, attr)(*args, **kargs)

 def __add__(self, other):
 return self.reroute('__add__', other)
 def __str__(self):
 return self.reroute('__str__')
 def __getitem__(self, index):
 return self.reroute('__getitem__', index)
 def __call__(self, *args, **kargs):
 return self.reroute('__call__', *args, **kargs)

 # Plus any others used by wrapped objects in 3.X only
Here too I split the self-test code off to a separate file, so
 the decorator could be imported elsewhere without triggering the
 tests, and without requiring a __name__ test and indenting:
"""
File: access-test.py
Test code: separate file to allow decorator reuse.
"""
import sys
from access import Private, Public

print('---')
Test 1: names are public if not private

@Private('age') # Person = Private('age')(Person)
class Person: # Person = onInstance with state
 def __init__(self, name, age):
 self.name = name
 self.age = age # Inside accesses run normally
 def __add__(self, N):
 self.age += N # Built-ins caught by mix-in in 3.X
 def __str__(self):
 return '%s: %s' % (self.name, self.age)

X = Person('Bob', 40)
print(X.name) # Outside accesses validated
X.name = 'Sue'
print(X.name)
X + 10
print(X)

try: t = X.age # FAILS unless "python -O"
except: print(sys.exc_info()[1])
try: X.age = 999 # ditto
except: print(sys.exc_info()[1])

print('---')
Test 2: names are private if not public
Operators must be non-Private or Public in BuiltinMixin used

@Public('name', '__add__', '__str__', '__coerce__')
class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age
 def __add__(self, N):
 self.age += N # Built-ins caught by mix-in in 3.X
 def __str__(self):
 return '%s: %s' % (self.name, self.age)

X = Person('bob', 40) # X is an onInstance
print(X.name) # onInstance embeds Person
X.name = 'sue'
print(X.name)
X + 10
print(X)

try: t = X.age # FAILS unless "python -O"
except: print(sys.exc_info()[1])
try: X.age = 999 # ditto
except: print(sys.exc_info()[1])
Finally, if all works as expected, this test’s output is as
 follows in both Python 3.X and 2.X—the same code applied to the same
 class decorated with Private and
 then with Public:
c:\code> py −3 access-test.py

Bob
Sue
Sue: 50
private attribute fetch: age
private attribute change: age

bob
sue
sue: 50
private attribute fetch: age
private attribute change: age

c:\code> py −3 -O access-test.py # Suppresses the four access error messages

	Here’s a generalized argument validator for you to study on your
 own. It uses a passed-in validation function, to which it passes the
 test’s criteria value coded for the argument in the decorator. This
 handles ranges, type tests, value testers, and almost anything else
 you can dream up in an expressive language like Python. I’ve also
 refactored the code a bit to remove some redundancy, and automated
 test failure processing. See this module’s self-test for usage
 examples and expected output. Per this example’s caveats described
 earlier, this decorator doesn’t fully work in nested mode as is—only
 the most deeply nested validation is run for positional arguments—but
 its arbitrary valuetest can be used
 to combine differing types of tests in a single decoration (though the
 amount of code needed in this mode may negate much of its benefits
 over a simple assert!).
"""
File argtest.py: (3.X + 2.X) function decorator that performs
arbitrary passed-in validations for arguments passed to any
function method. Range and type tests are two example uses;
valuetest handles more arbitrary tests on an argument's value.

Arguments are specified by keyword to the decorator. In the actual
call, arguments may be passed by position or keyword, and defaults
may be omitted. See self-test code below for example use cases.

Caveats: doesn't fully support nesting because call proxy args
differ; doesn't validate extra args passed to a decoratee's *args;
and may be no easier than an assert except for canned use cases.
"""
trace = False

def rangetest(**argchecks):
 return argtest(argchecks, lambda arg, vals: arg < vals[0] or arg > vals[1])

def typetest(**argchecks):
 return argtest(argchecks, lambda arg, type: not isinstance(arg, type))

def valuetest(**argchecks):
 return argtest(argchecks, lambda arg, tester: not tester(arg))

def argtest(argchecks, failif): # Validate args per failif + criteria
 def onDecorator(func): # onCall retains func, argchecks, failif
 if not __debug__: # No-op if "python -O main.py args..."
 return func
 else:
 code = func.__code__
 expected = list(code.co_varnames[:code.co_argcount])
 def onError(argname, criteria):
 errfmt = '%s argument "%s" not %s'
 raise TypeError(errfmt % (func.__name__, argname, criteria))

 def onCall(*pargs, **kargs):
 positionals = expected[:len(pargs)]
 for (argname, criteria) in argchecks.items(): # For all to test
 if argname in kargs: # Passed by name
 if failif(kargs[argname], criteria):
 onError(argname, criteria)

 elif argname in positionals: # Passed by posit
 position = positionals.index(argname)
 if failif(pargs[position], criteria):
 onError(argname, criteria)
 else: # Not passed-dflt
 if trace:
 print('Argument "%s" defaulted' % argname)
 return func(*pargs, **kargs) # OK: run original call
 return onCall
 return onDecorator

if __name__ == '__main__':
 import sys
 def fails(test):
 try: result = test()
 except: print('[%s]' % sys.exc_info()[1])
 else: print('?%s?' % result)

 print('--')
 # Canned use cases: ranges, types

 @rangetest(m=(1, 12), d=(1, 31), y=(1900, 2013))
 def date(m, d, y):
 print('date = %s/%s/%s' % (m, d, y))

 date(1, 2, 1960)
 fails(lambda: date(1, 2, 3))

 @typetest(a=int, c=float)
 def sum(a, b, c, d):
 print(a + b + c + d)

 sum(1, 2, 3.0, 4)
 sum(1, d=4, b=2, c=3.0)
 fails(lambda: sum('spam', 2, 99, 4))
 fails(lambda: sum(1, d=4, b=2, c=99))

 print('--')
 # Arbitrary/mixed tests

 @valuetest(word1=str.islower, word2=(lambda x: x[0].isupper()))
 def msg(word1='mighty', word2='Larch', label='The'):
 print('%s %s %s' % (label, word1, word2))

 msg() # word1 and word2 defaulted
 msg('majestic', 'Moose')
 fails(lambda: msg('Giant', 'Redwood'))
 fails(lambda: msg('great', word2='elm'))

 print('--')
 # Manual type and range tests

 @valuetest(A=lambda x: isinstance(x, int), B=lambda x: x > 0 and x < 10)
 def manual(A, B):
 print(A + B)

 manual(100, 2)
 fails(lambda: manual(1.99, 2))
 fails(lambda: manual(100, 20))

 print('--')
 # Nesting: runs both, by nesting proxies on original.
 # Open issue: outer levels do not validate positionals due
 # to call proxy function's differing argument signature;
 # when trace=True, in all but the last of these "X" is
 # classified as defaulted due to the proxy's signature.

 @rangetest(X=(1, 10))
 @typetest(Z=str) # Only innermost validates positional args
 def nester(X, Y, Z):
 return('%s-%s-%s' % (X, Y, Z))

 print(nester(1, 2, 'spam')) # Original function runs properly
 fails(lambda: nester(1, 2, 3)) # Nested typetest is run: positional
 fails(lambda: nester(1, 2, Z=3)) # Nested typetest is run: keyword
 fails(lambda: nester(0, 2, 'spam')) # <==Outer rangetest not run: posit.
 fails(lambda: nester(X=0, Y=2, Z='spam')) # Outer rangetest is run: keyword
This module’s self-test output in both 3.X and 2.X follows (some
 2.X object displays vary slightly): as usual, correlate with the
 source for more insights.
c:\code> py −3 argtest.py
--
date = 1/2/1960
[date argument "y" not (1900, 2013)]
10.0
10.0
[sum argument "a" not <class 'int'>]
[sum argument "c" not <class 'float'>]
--
The mighty Larch
The majestic Moose
[msg argument "word1" not <method 'islower' of 'str' objects>]
[msg argument "word2" not <function <lambda> at 0x0000000002A096A8>]
--
102
[manual argument "A" not <function <lambda> at 0x0000000002A09950>]
[manual argument "B" not <function <lambda> at 0x0000000002A09B70>]
--
1-2-spam
[nester argument "Z" not <class 'str'>]
[nester argument "Z" not <class 'str'>]
?0-2-spam?
[onCall argument "X" not (1, 10)]
Finally, as we’ve learned, this decorator’s coding structure
 works for both functions and methods:
File argtest_testmeth.py
from argtest import rangetest, typetest

class C:
 @rangetest(a=(1, 10))
 def meth1(self, a):
 return a * 1000

 @typetest(a=int)
 def meth2(self, a):
 return a * 1000

>>> from argtest_testmeth import C
>>> X = C()
>>> X.meth1(5)
5000
>>> X.meth1(20)
TypeError: meth1 argument "a" not (1, 10)
>>> X.meth2(20)
20000
>>> X.meth2(20.9)
TypeError: meth2 argument "a" not <class 'int'>

Chapter 40. Metaclasses
In the prior chapter, we explored decorators and studied various
 examples of their use. In this final technical chapter of the book, we’re
 going to continue our tool-builders focus and investigate another advanced
 topic: metaclasses.
In a sense, metaclasses simply extend the code-insertion model of decorators. As we
 learned in the prior chapter, function and class decorators allow us to
 intercept and augment function calls and class instance creation calls. In a
 similar spirit, metaclasses allow us to intercept and augment
 class creation—they provide an API for inserting extra
 logic to be run at the conclusion of a class statement, albeit in different ways than
 decorators. Accordingly, they provide a general protocol for managing class
 objects in a program.
Like all the subjects dealt with in this part of the book, this is an
 advanced topic that can be investigated on an as-needed
 basis. In practice, metaclasses allow us to gain a high level of control
 over how a set of classes works. This is a powerful concept, and metaclasses
 are not intended for most application programmers. Nor, frankly, is this a
 topic for the faint of heart—some parts of this chapter may warrant extra
 focus (and others might even owe attribution to Dr. Seuss!).
On the other hand, metaclasses open the door to a variety of coding
 patterns that may be difficult or impossible to achieve otherwise, and they
 are especially of interest to programmers seeking to write flexible
 APIs or programming tools for others to use. Even if
 you don’t fall into that category, though, metaclasses can teach you much
 about Python’s class model in general (as we’ll see, they even impact
 inheritance), and are prerequisite to understanding
 code that employs them. Like other advanced tools, metaclasses have begun
 appearing in Python programs more often than their creators may have
 intended.
As in the prior chapter, part of our goal here is also to show more
 realistic code examples than we did earlier in this book. Although
 metaclasses are a core language topic and not themselves an application
 domain, part of this chapter’s agenda is to spark your interest in exploring
 larger application-programming examples after you finish this book.
Because this is the final technical chapter in this book, it also
 begins to wrap up some threads concerning Python itself that we’ve met often
 along the way and will finalize in the conclusion that follows. Where you go
 after this book is up to you, of course, but in an open source project it’s
 important to keep the big picture in mind while hacking the small
 details.
To Metaclass or Not to Metaclass
Metaclasses are perhaps the most advanced topic in this book, if not the
 Python language as a whole. To borrow a quote from the
 comp.lang.python newsgroup by veteran Python core
 developer Tim Peters (who is also the author of the famous “import this”
 Python motto):
[Metaclasses] are deeper magic than 99% of users should ever worry
 about. If you wonder whether you need them, you don’t (the people who
 actually need them know with certainty that they need them, and don’t
 need an explanation about why).

In other words, metaclasses are primarily intended for a subset of
 programmers building APIs and tools for others to use. In many (if not
 most) cases, they are probably not the best choice in applications work.
 This is especially true if you’re developing code that other people will
 use in the future. Coding something “because it seems cool” is not
 generally a reasonable justification, unless you are experimenting or
 learning.
Still, metaclasses have a wide variety of potential roles, and it’s
 important to know when they can be useful. For example, they can be used
 to enhance classes with features like tracing, object persistence,
 exception logging, and more. They can also be used to construct portions
 of a class at runtime based upon configuration files, apply function
 decorators to every method of a class generically, verify conformance to
 expected interfaces, and so on.
In their more grandiose incarnations, metaclasses can even be used
 to implement alternative coding patterns such as aspect-oriented
 programming, object/relational mappers (ORMs) for databases, and more.
 Although there are often alternative ways to achieve such results—as we’ll
 see, the roles of class decorators and metaclasses
 often intersect—metaclasses provide a formal model tailored to those
 tasks. We don’t have space to explore all such applications first-hand in
 this chapter, of course, but you should feel free to search the Web for
 additional use cases after studying the basics here.
Probably the reason for studying metaclasses most relevant to this
 book is that this topic can help demystify Python’s class mechanics in
 general. For instance, we’ll see that they are an intrinsic part of the
 language’s new-style inheritance model finally formalized in full here.
 Although you may or may not code or reuse them in your work, a cursory
 understanding of metaclasses can impart a deeper understanding of Python at large.1
Increasing Levels of “Magic”
Most of this book has focused on straightforward
 application-coding techniques—the modules, functions, and classes that
 most programmers spend their time writing to achieve real-world goals.
 The majority of Python’s users may use classes and make instances, and
 might even do a bit of operator overloading, but they probably won’t get
 too deep into the details of how their classes actually work.
However, in this book we’ve also seen a variety of tools that
 allow us to control Python’s behavior in generic ways, and that often
 have more to do with Python internals or tool building than with
 application-programming domains. As a review, and to help us place
 metaclasses in the tools spectrum:
	Introspection attributes and tools
	Special attributes like __class__ and __dict__ allow us to inspect internal
 implementation aspects of Python objects, in order to process them
 generically—to list all attributes of an object, display a class’s
 name, and so on. As we’ve also seen, tools such as dir and getattr can serve similar roles when
 “virtual” attributes such as slots must be supported.

	Operator overloading methods
	Specially named methods such as __str__ and __add__ coded in classes intercept and
 provide behavior for built-in operations applied to class
 instances, such as printing, expression operators, and so on. They
 are run automatically in response to built-in operations and allow
 classes to conform to expected interfaces.

	Attribute interception methods
	A special category of operator overloading methods provides
 a way to intercept attribute accesses on instances generically:
 __getattr__, __setattr__, __delattr__, and __getattribute__ allow wrapper (a.k.a.
 proxy) classes to insert automatically run code that may validate
 attribute requests and delegate them to embedded objects. They
 allow any number of attributes of an object to be computed when
 accessed—either selected attributes, or all of them.

	Class properties
	The property built-in
 allows us to associate code with a specific class attribute that
 is automatically run when the attribute is fetched, assigned, or
 deleted. Though not as generic as the prior paragraph’s tools,
 properties allow for automatic code invocation on access to
 specific attributes.

	Class attribute descriptors
	Really, property is a
 succinct way to define an attribute descriptor that runs functions
 on access automatically. Descriptors allow us to code in a
 separate class __get__,
 __set__, and __delete__ handler methods that are run
 automatically when an attribute assigned to an instance of that
 class is accessed. They provide a general way to insert arbitrary
 code that is run implicitly when a specific attribute is accessed
 as part of the normal attribute lookup procedure.

	Function and class decorators
	As we saw in Chapter 39, the special
 @callable syntax for decorators
 allows us to add logic to be automatically run when a function is
 called or a class instance is created. This wrapper logic can
 trace or time calls, validate arguments, manage all instances of a
 class, augment instances with extra behavior such as attribute
 fetch validation, and more. Decorator syntax inserts
 name-rebinding logic to be run at the end of function and class
 definition statements—decorated function and class names may be
 rebound to either augmented original objects, or to object proxies
 that intercept later calls.

	Metaclasses
	The last topic of magic introduced in Chapter 32, which we take up here.

As mentioned in this chapter’s introduction,
 metaclasses are a continuation of this story—they
 allow us to insert logic to be run automatically at the end of a
 class statement, when a class object
 is being created. Though strongly reminiscent of class decorators, the
 metaclass mechanism doesn’t rebind the class name to a decorator
 callable’s result, but rather routes creation of the class
 itself to specialized logic.

A Language of Hooks
In other words, metaclasses are ultimately just another way to
 define automatically run code. With the tools
 listed in the prior section, Python provides ways for us to interject
 logic in a variety of contexts—at operator evaluation, attribute access,
 function calls, class instance creation, and now class object creation.
 It’s a language with hooks galore—a feature open to
 abuse like any other, but one that also offers the flexibility that some
 programmers desire, and that some programs may require.
As we’ve also seen, many of these advanced Python tools have
 intersecting roles. For example, attributes can
 often be managed with properties, descriptors, or attribute interception
 methods. As we’ll see in this chapter, class decorators and metaclasses
 can often be used interchangeably as well. By way of preview:
	Although class decorators are often used
 to manage instances, they can also be used to manage classes
 instead, much like metaclasses.

	Similarly, while metaclasses are designed
 to augment class construction, they can also insert proxies to
 manage instances instead, much like class decorators.

In fact, the main functional difference between these two tools is
 simply their place in the timing of class creation.
 As we saw in the prior chapter, class decorators run
 after the decorated class has already been created.
 Thus, they are often used to add logic to be run at
 instance creation time. When they do provide
 behavior for a class, it is typically through changes or proxies,
 instead of a more direct relationship.
As we’ll see here, metaclasses, by contrast, run
 during class creation to make and return the new
 client class. Therefore, they are often used for managing or augmenting
 classes themselves, and can even provide methods to
 process the classes that are created from them, via a direct instance
 relationship.
For example, metaclasses can be used to add decoration to all
 methods of classes automatically, register all classes in use to an API,
 add user-interface logic to classes automatically, create or extend
 classes from simplified specifications in text files, and so on. Because
 they can control how classes are made—and by proxy the behavior their
 instances acquire—metaclass applicability is potentially very
 wide.
As we’ll also see here, though, these two tools are more similar
 than different in many common roles. Since tool choices are sometimes
 partly subjective, knowledge of the alternatives can help you pick the
 right tool for a given task. To understand the options better, let’s see
 how metaclasses stack up.

The Downside of “Helper” Functions
Also like the decorators of the prior chapter, metaclasses are often optional from a theoretical
 perspective. We can usually achieve the same effect by passing class
 objects through manager functions—sometimes known
 as helper functions—much as we can achieve the
 goals of decorators by passing functions and instances through manager
 code. Just like decorators, though, metaclasses:
	Provide a more formal and explicit structure

	Help ensure that application programmers won’t forget to
 augment their classes according to an API’s requirements

	Avoid code redundancy and its associated maintenance costs by
 factoring class customization logic into a single location, the
 metaclass

To illustrate, suppose we want to automatically insert a method
 into a set of classes. Of course, we could do this with simple
 inheritance, if the subject method is known when we
 code the classes. In that case, we can simply code the method in a
 superclass and have all the classes in question inherit from it:
class Extras:
 def extra(self, args): # Normal inheritance: too static
 ...

class Client1(Extras): ... # Clients inherit extra methods
class Client2(Extras): ...
class Client3(Extras): ...

X = Client1() # Make an instance
X.extra() # Run the extra methods
Sometimes, though, it’s impossible to predict such augmentation
 when classes are coded. Consider the case where classes are augmented in
 response to choices made in a user interface at runtime, or to
 specifications typed in a configuration file. Although we could code
 every class in our imaginary set to manually check
 these, too, it’s a lot to ask of clients (required is abstract here—it’s something to be
 filled in):
def extra(self, arg): ...

class Client1: ... # Client augments: too distributed
if required():
 Client1.extra = extra

class Client2: ...
if required():
 Client2.extra = extra

class Client3: ...
if required():
 Client3.extra = extra

X = Client1()
X.extra()
We can add methods to a class after the class statement like this because a
 class-level method is just a function that is associated with a class
 and has a first argument to receive the self instance. Although this works, it might
 become untenable for larger method sets, and puts all the burden of
 augmentation on client classes (and assumes they’ll remember to do this
 at all!).
It would be better from a maintenance perspective to isolate the
 choice logic in a single place. We might encapsulate some of this extra
 work by routing classes through a manager
 function—such a manager function would extend the class as
 required and handle all the work of runtime testing and
 configuration:
def extra(self, arg): ...

def extras(Class): # Manager function: too manual
 if required():
 Class.extra = extra

class Client1: ...
extras(Client1)

class Client2: ...
extras(Client2)

class Client3: ...
extras(Client3)

X = Client1()
X.extra()
This code runs the class through a manager function immediately
 after it is created. Although manager functions like this one can
 achieve our goal here, they still put a fairly heavy burden on class
 coders, who must understand the requirements and adhere to them in their
 code. It would be better if there was a simple way to enforce the
 augmentation in the subject classes, so that they don’t need to deal
 with the augmentation so explicitly, and would be less likely to forget
 to use it altogether. In other words, we’d like to be able to insert
 some code to run automatically at the end of a
 class statement, to augment the
 class.
This is exactly what metaclasses do—by
 declaring a metaclass, we tell Python to route the creation of the class
 object to another class we provide:
def extra(self, arg): ...

class Extras(type):
 def __init__(Class, classname, superclasses, attributedict):
 if required():
 Class.extra = extra

class Client1(metaclass=Extras): ... # Metaclass declaration only (3.X form)
class Client2(metaclass=Extras): ... # Client class is instance of meta
class Client3(metaclass=Extras): ...

X = Client1() # X is instance of Client1
X.extra()
Because Python invokes the metaclass automatically at the end of
 the class statement when the new
 class is created, it can augment, register, or otherwise manage the
 class as needed. Moreover, the only requirement for the client classes
 is that they declare the metaclass; every class that does so will
 automatically acquire whatever augmentation the metaclass provides, both
 now and in the future if the metaclass changes.
Of course, this is the standard rationale, which you’ll need to
 judge for yourself—in truth, clients might forget to list a metaclass
 just as easily as they could forget to call a manager function! Still,
 the explicit nature of metaclasses may make this less likely. Moreover,
 metaclasses have additional potentials we haven’t yet seen. Although it
 may be difficult to glean from this small example, metaclasses generally
 handle such tasks better than more manual approaches.

Metaclasses Versus Class Decorators: Round 1
Having said that, it’s also important to note that the class
 decorators described in the preceding chapter sometimes
 overlap with metaclasses—in terms of both utility and benefit. Although
 they are often used for managing instances, class decorators can also
 augment classes, independent of any created instances. Their syntax
 makes their usage similarly explicit, and arguably more obvious than
 manager function calls.
For example, suppose we coded our manager function to return the
 augmented class, instead of simply modifying it in place. This would
 allow a greater degree of flexibility, because the manager would be free
 to return any type of object that implements the class’s expected
 interface:
def extra(self, arg): ...

def extras(Class):
 if required():
 Class.extra = extra
 return Class

class Client1: ...
Client1 = extras(Client1)

class Client2: ...
Client2 = extras(Client2)

class Client3: ...
Client3 = extras(Client3)

X = Client1()
X.extra()
If you think this is starting to look reminiscent of class
 decorators, you’re right. In the prior chapter we emphasized class
 decorators’ role in augmenting instance creation
 calls. Because they work by automatically rebinding a class name to the
 result of a function, though, there’s no reason that we can’t use them
 to augment the class by changing it before any instances are ever
 created. That is, class decorators can apply extra logic to
 classes, not just instances,
 at class creation time:
def extra(self, arg): ...

def extras(Class):
 if required():
 Class.extra = extra
 return Class

@extras
class Client1: ... # Client1 = extras(Client1)

@extras
class Client2: ... # Rebinds class independent of instances

@extras
class Client3: ...

X = Client1() # Makes instance of augmented class
X.extra() # X is instance of original Client1
Decorators essentially automate the prior example’s manual name
 rebinding here. Just as for metaclasses, because this decorator returns
 the original class, instances are made from it, not from a wrapper
 object. In fact, instance creation is not intercepted at all in this
 example.
In this specific case—adding methods to a class when it’s
 created—the choice between metaclasses and decorators is somewhat
 arbitrary. Decorators can be used to manage both instances and classes,
 and intersect most strongly with metaclasses in the second of these
 roles, but this discrimination is not absolute. In fact, the roles of
 each are determined in part by their mechanics.
As we’ll see ahead, decorators technically correspond to metaclass
 __init__ methods, used to initialize
 newly created classes. Metaclasses have additional customization hooks
 beyond class initialization, though, and may perform arbitrary class
 construction tasks that might be more difficult with decorators. This
 can make them more complex, but also better suited for augmenting
 classes as they are being formed.
For example, metaclasses also have a __new__ method used to create a class, which
 has no analogy in decorators; making a new class in a decorator would
 incur an extra step. Moreover, metaclasses may also provide behavior
 acquired by classes in the form of methods, which
 have no direct counterpart in decorators either; decorators must provide
 class behavior in less direct ways.
Conversely, because metaclasses are designed to manage classes,
 applying them to managing instances alone is less
 optimal. Because they are also responsible for making the class itself,
 metaclasses incur this as an extra step in instance
 management roles.
We’ll explore these differences in code later in this chapter, and
 will flesh out this section’s partial code into a real working example
 later in this chapter. To understand how metaclasses do their work,
 though, we first need to get a clearer picture of their underlying
 model.
There’s Magic, and Then There’s Magic
This chapter’s “Increasing Levels of Magic” list deals with
 types of magic beyond those widely seen as beneficial by programmers.
 Some might add Python’s functional tools like
 closures and generators, and even its basic OOP
 support, to this list—the former relying on scope retention and
 automatic generator object creation, and the latter on inheritance
 attribute search and a special first function argument. Though based
 on magic too, these represent paradigms that ease the task of
 programming by providing abstractions above and beyond the underlying
 hardware architecture.
For example, OOP—Python’s earlier
 paradigm—is broadly accepted in the software world. It provides a
 model for writing programs that is more complete, explicit, and richly
 structured than functional tools. That is, some levels of magic are
 considered more warranted than others; after all, if it were not for
 some magic, programs would still consist of machine code (or physical
 switches).
It’s usually the accumulation of new magic
 that puts systems at risk of breaching a complexity threshold—such as
 adding a functional paradigm to what was always an OO language, or
 adding redundant or advanced ways to achieve goals that are rarely
 pursued in the common practice of most users. Such magic can set the
 entry bar far too high for a large part of your tool’s
 audience.
Moreover, some magic is imposed on its users more than others.
 The translation step of a compiler, for instance, does not generally
 require its users to be compiler developers. By contrast, Python’s
 super assumes full mastery and
 deployment of the arguably obscure and artificial MRO algorithm. The
 new-style inheritance algorithm presented in this
 chapter similarly assumes descriptors, metaclasses, and the MRO as its
 prerequisites—all advanced tools in their own right. Even implicit
 “hooks” like descriptors remain implicit only until their first
 failure or maintenance cycle. Such magic exposed
 escalates a tool’s prerequisites and downgrades its usability.
In open source systems, only time and downloads can determine
 where such thresholds may lie. Finding the proper
 balance of power and complexity depends as much
 on shifting opinion as on technology. Subjective factors aside,
 though, new magic that imposes itself on users inevitably skews a
 system’s learning curve higher—a topic we’ll return to in the next
 chapter’s final words.

The Metaclass Model
To understand metaclasses, you first need to understand a bit more about
 Python’s type model and what happens at the end of a class statement. As we’ll see here, the two are
 intimately related.
Classes Are Instances of type
So far in this book, we’ve done most of our work by making instances of built-in
 types like lists and strings, as well as instances of classes we code
 ourselves. As we’ve seen, instances of classes have
 some state information attributes of their own, but they also inherit
 behavioral attributes from the classes from which they are made. The
 same holds true for built-in types; list instances,
 for example, have values of their own, but they inherit methods from the
 list type.
While we can get a lot done with such instance objects, Python’s
 type model turns out to be a bit richer than I’ve formally described.
 Really, there’s a hole in the model we’ve seen thus far: if instances
 are created from classes, what is it that creates our
 classes? It turns out that classes are instances of
 something, too:
	In Python 3.X, user-defined class objects
 are instances of the object named type, which is itself a class.

	In Python 2.X, new-style classes inherit
 from object, which is a subclass
 of type; classic classes are
 instances of type and are not
 created from a class.

We explored the notion of types in Chapter 9 and the
 relationship of classes to types in Chapter 32, but let’s review the basics here so
 we can see how they apply to metaclasses.
Recall that the type built-in
 returns the type of any object (which is itself an object) when called
 with a single argument. For built-in types like lists, the type of the
 instance is the built-in list type, but the type of the list type is the
 type type itself—the type object at the top of the hierarchy
 creates specific types, and specific types create instances. You can see
 this for yourself at the interactive prompt. In Python 3.X, for example,
 the type of a list instance is the list class, and the type of the list
 class is the type class:
C:\code> py −3 # In 3.X:
>>> type([]), type(type([])) # List instance is created from list class
(<class 'list'>, <class 'type'>) # List class is created from type class
>>> type(list), type(type) # Same, but with type names
(<class 'type'>, <class 'type'>) # Type of type is type: top of hierarchy
As we learned when studying new-style class changes in Chapter 32, the same is generally true in Python
 2.X, but types are not quite the same as classes—type is a unique kind of built-in object that
 caps the type hierarchy and is used to construct types:
C:\code> py −2
>>> type([]), type(type([])) # In 2.X, type is a bit different
(<type 'list'>, <type 'type'>)
>>> type(list), type(type)
(<type 'type'>, <type 'type'>)
As it happens, the type/instance relationship holds true for
 user-defined classes as well: instances are created from classes, and
 classes are created from type. In
 Python 3.X, though, the notion of a “type” is merged with the notion of
 a “class.” In fact, the two are essentially synonyms—classes
 are types, and types are classes. That is:
	Types are defined by classes that derive from type.

	User-defined classes are instances of type classes.

	User-defined classes are types that generate instances of
 their own.

As we saw earlier, this equivalence affects code that tests the
 type of instances: the type of an instance is the class from which it
 was generated. It also has implications for the way that classes are
 created that turn out to be the key to this chapter’s subject. Because
 classes are normally created from a root type class by default, most
 programmers don’t need to think about this type/class equivalence.
 However, it opens up new possibilities for customizing both classes and
 their instances.
For example, all user-defined classes in 3.X (and new-style
 classes in 2.X) are instances of the type class, and instance objects are instances
 of their classes; in fact, classes now have a __class__ that links to type, just as an instance has a __class__ that links to the class from which
 it was made:
C:\code> py −3
>>> class C: pass # 3.X class object (new-style)
>>> X = C() # Class instance object

>>> type(X) # Instance is instance of class
<class '__main__.C'>
>>> X.__class__ # Instance's class
<class '__main__.C'>

>>> type(C) # Class is instance of type
<class 'type'>
>>> C.__class__ # Class's class is type
<class 'type'>
Notice especially the last two lines here—classes are instances of
 the type class, just as normal
 instances are instances of a user-defined class. This works the same for
 both built-ins and user-defined class types in 3.X. In fact, classes are
 not really a separate concept at all: they are simply user-defined
 types, and type itself is defined by
 a class.
In Python 2.X, things work similarly for new-style classes derived
 from object, because this enables 3.X
 class behavior (as we’ve seen, 3.X adds object to the __bases__ superclass tuple of top-level root
 classes automatically to qualify them as new-style):
C:\code> py −2
>>> class C(object): pass # In 2.X new-style classes,
>>> X = C() # classes have a class too

>>> type(X)
<class '__main__.C'>
>>> X.__class__
<class '__main__.C'>

>>> type(C)
<type 'type'>
>>> C.__class__
<type 'type'>
Classic classes in 2.X are a bit different, though—because they
 reflect the original class model in older Pythons, they do not have a
 __class__ link, and like built-in
 types in 2.X they are instances of type, not a type class (I’ve shortened some of
 the hex addresses in object displays in this chapter for clarity):
C:\code> py −2
>>> class C: pass # In 2.X classic classes,
>>> X = C() # classes have no class themselves

>>> type(X)
<type 'instance'>
>>> X.__class__
<class __main__.C at 0x005F85A0>

>>> type(C)
<type 'classobj'>
>>> C.__class__
AttributeError: class C has no attribute '__class__'

Metaclasses Are Subclasses of Type
Why would we care that classes are instances of a type class in 3.X? It turns out that this is
 the hook that allows us to code metaclasses. Because the notion of
 type is the same as class
 today, we can subclass type to customize it with
 normal object-oriented techniques and class syntax. And because classes
 are really instances of the type
 class, creating classes from customized subclasses of type allows us to implement custom kinds of
 classes. In full detail, this all works out quite naturally—in 3.X, and
 in 2.X new-style classes:
	type is a class that
 generates user-defined classes.

	Metaclasses are subclasses of the type class.

	Class objects are instances of the type class, or a subclass thereof.

	Instance objects are generated from a class.

In other words, to control the way classes are created and augment
 their behavior, all we need to do is specify that a user-defined class
 be created from a user-defined metaclass instead of the normal type class.
Notice that this type instance relationship
 is not quite the same as normal inheritance.
 User-defined classes may also have superclasses from which they and
 their instances inherit attributes as usual. As we’ve seen, inheritance
 superclasses are listed in parentheses in the class statement and show up in a class’s
 __bases__ tuple. The type from which
 a class is created, though, and of which it is an instance, is a
 different relationship. Inheritance searches instance and class
 namespace dictionaries, but classes may also acquire behavior from their
 type that is not exposed to the normal inheritance search.
To lay the groundwork for understanding this distinction, the next
 section describes the procedure Python follows to implement this
 instance-of type relationship.

Class Statement Protocol
Subclassing the type class to
 customize it is really only half of the magic behind
 metaclasses. We still need to somehow route a class’s creation to the
 metaclass, instead of the default type. To fully understand how this is
 arranged, we also need to know how class statements do their
 business.
We’ve already learned that when Python reaches a class statement, it runs its nested block of
 code to create its attributes—all the names assigned at the top level of
 the nested code block generate attributes in the resulting class object.
 These names are usually method functions created by nested defs, but they can also be arbitrary
 attributes assigned to create class data shared by all instances.
Technically speaking, Python follows a standard protocol to make
 this happen: at the end of a
 class statement, and
 after running all its nested code in a namespace dictionary
 corresponding to the class’s local scope, Python calls the type object to create the class object like this:
class = type(classname, superclasses, attributedict)
The type object in turn defines
 a __call__ operator overloading
 method that runs two other methods when the type object is called:
type.__new__(typeclass, classname, superclasses, attributedict)
type.__init__(class, classname, superclasses, attributedict)
The __new__ method creates and
 returns the new class object, and
 then the __init__ method initializes
 the newly created object. As we’ll see in a moment, these are the hooks
 that metaclass subclasses of type
 generally use to customize classes.
For example, given a class definition like the following for
 Spam:
class Eggs: ... # Inherited names here

class Spam(Eggs): # Inherits from Eggs
 data = 1 # Class data attribute
 def meth(self, arg): # Class method attribute
 return self.data + arg
Python will internally run the nested code block to create two
 attributes of the class (data and
 meth), and then call the type object to generate the class object at the end of the class statement:
Spam = type('Spam', (Eggs,), {'data': 1, 'meth': meth, '__module__': '__main__'})
In fact, you can call type this
 way yourself to create a class dynamically—albeit here with a fabricated
 method function and empty superclasses tuple (Python adds object automatically in both 3.X and
 2.X):
>>> x = type('Spam', (), {'data': 1, 'meth': (lambda x, y: x.data + y)})
>>> i = x()
>>> x, i
(<class '__main__.Spam'>, <__main__.Spam object at 0x029E7780>)
>>> i.data, i.meth(2)
(1, 3)
The class produced is exactly like that you’d get from running a
 class statement:
>>> x.__bases__
(<class 'object'>,)
>>> [(a, v) for (a, v) in x.__dict__.items() if not a.startswith('__')]
[('data', 1), ('meth', <function <lambda> at 0x0297A158>)]
Because this type call is made
 automatically at the end of the class
 statement, though, it’s an ideal hook for augmenting or otherwise
 processing a class. The trick lies in replacing the default type with a custom subclass that will
 intercept this call. The next section shows how.

Declaring Metaclasses
As we’ve just seen, classes are created by the type class by default. To tell Python to create
 a class with a custom metaclass instead, you simply need to declare a
 metaclass to intercept the normal instance creation call in a user-defined
 class. How you do so depends on which Python version you are using.
Declaration in 3.X
In Python 3.X, list the desired metaclass as a keyword
 argument in the class header:
class Spam(metaclass=Meta): # 3.X version (only)
Inheritance superclasses can be listed in the header as well. In
 the following, for example, the new class Spam inherits from superclass Eggs, but is also an instance of and is
 created by metaclass Meta:
class Spam(Eggs, metaclass=Meta): # Normal supers OK: must list first
In this form, superclasses must be listed before the metaclass; in
 effect, the ordering rules used for keyword arguments in function calls
 apply here.

Declaration in 2.X
We can get the same effect in Python 2.X, but we must specify the
 metaclass differently—using a class attribute
 instead of a keyword argument:
class Spam(object): # 2.X version (only), object optional?
 __metaclass__ = Meta

class Spam(Eggs, object): # Normal supers OK: object suggested
 __metaclass__ = Meta
Technically, some classes in 2.X do not have
 to derive from object explicitly to
 make use of metaclasses. The generalized metaclass dispatch mechanism
 was added at the same time as new-style classes, but is not itself bound
 to them. It does, however, produce them—in the
 presence of a __metaclass__
 declaration, 2.X makes the resulting class new-style automatically,
 adding object to its __bases__ sequence. In the absence of this
 declaration, 2.X simply uses the classic class creator as the metaclass
 default. Because of this, some classes in 2.X require only the __metaclass__ attribute.
On the other hand, notice that metaclasses
 imply that your class will be new-style in 2.X even
 without an explicit object. They’ll
 behave somewhat differently as outlined in Chapter 32, and as we’ll see ahead 2.X may
 require that they or their superclasses derive from object explicitly, because a new-style class
 cannot have only classic superclasses in this context. Given this,
 deriving from object doesn’t hurt as
 a sort of warning about the class’s nature, and may be required to avoid
 potential problems.
Also in 2.X, a module level __metaclass__ global variable is available to
 link all classes in the module to a metaclass. This is no longer
 supported in 3.X, as it was intended as a temporary measure to make it
 easier to default to new-style classes without deriving every class from
 object. Python 3.X also ignores the
 2.X class attribute, and the 3.X keyword form is a syntax error in 2.X,
 so there is no simple portability route. Apart from differing syntax,
 though, metaclass declaration in 2.X and 3.X has the same effect, which
 we turn to next.

Metaclass Dispatch in Both 3.X and 2.X
When a specific metaclass is declared per the prior sections’
 syntax, the call to create the class
 object run at the end of the class
 statement is modified to invoke the metaclass
 instead of the type default:
class = Meta(classname, superclasses, attributedict)
And because the metaclass is a subclass of type, the type class’s __call__ delegates the calls to create and
 initialize the new class object to
 the metaclass, if it defines custom versions of these methods:
Meta.__new__(Meta, classname, superclasses, attributedict)
Meta.__init__(class, classname, superclasses, attributedict)
To demonstrate, here’s the prior section’s example again,
 augmented with a 3.X metaclass specification:
class Spam(Eggs, metaclass=Meta): # Inherits from Eggs, instance of Meta
 data = 1 # Class data attribute
 def meth(self, arg): # Class method attribute
 return self.data + arg
At the end of this class
 statement, Python internally runs the following to create the class object—again, a call you could make
 manually too, but automatically run by Python’s class machinery:
Spam = Meta('Spam', (Eggs,), {'data': 1, 'meth': meth, '__module__': '__main__'})
If the metaclass defines its own versions of __new__ or __init__, they will be invoked in turn during
 this call by the inherited type
 class’s __call__ method, to create
 and initialize the new class. The net effect is to automatically run
 methods the metaclass provides, as part of the class construction
 process. The next section shows how we might go about coding this final
 piece of the metaclass puzzle.
Note
This chapter uses Python 3.X metaclass keyword argument syntax,
 not the 2.X class attribute. 2.X readers will need to translate, but
 version neutrality is not straightforward here—3.X doesn’t recognize
 the attribute and 2.X doesn’t allow keyword syntax—and listing
 examples twice doesn’t address portability (or chapter size!).

Coding Metaclasses
So far, we’ve seen how Python routes class creation calls to a metaclass, if
 one is specified and provided. How, though, do we actually code a
 metaclass that customizes type?
It turns out that you already know most of the story—metaclasses are
 coded with normal Python class
 statements and semantics. By definition, they are simply classes that
 inherit from type. Their only
 substantial distinctions are that Python calls them
 automatically at the end of a class statement, and that they must adhere to
 the interface expected by the type superclass.
A Basic Metaclass
Perhaps the simplest metaclass you can code is simply a subclass of type with a
 __new__ method that creates the class
 object by running the default version in type. A metaclass __new__ like this is run by the __call__ method inherited from type; it typically performs whatever
 customization is required and calls the type superclass’s __new__ method to create and return the new
 class object:
class Meta(type):
 def __new__(meta, classname, supers, classdict):
 # Run by inherited type.__call__
 return type.__new__(meta, classname, supers, classdict)
This metaclass doesn’t really do anything (we might as well let
 the default type class create the
 class), but it demonstrates the way a metaclass taps into the metaclass
 hook to customize—because the metaclass is called at the end of a
 class statement, and because the
 type object’s __call__ dispatches to the __new__ and __init__ methods, code we provide in these methods can manage all the
 classes created from the metaclass.
Here’s our example in action again, with prints added to the
 metaclass and the file at large to trace (again, some filenames are
 implied by later command lines in this chapter):
class MetaOne(type):
 def __new__(meta, classname, supers, classdict):
 print('In MetaOne.new:', meta, classname, supers, classdict, sep='\n...')
 return type.__new__(meta, classname, supers, classdict)

class Eggs:
 pass

print('making class')
class Spam(Eggs, metaclass=MetaOne): # Inherits from Eggs, instance of MetaOne
 data = 1 # Class data attribute
 def meth(self, arg): # Class method attribute
 return self.data + arg

print('making instance')
X = Spam()
print('data:', X.data, X.meth(2))
Here, Spam inherits from
 Eggs and is an instance of MetaOne, but X is an instance of and inherits from Spam. When this code is run with Python 3.X,
 notice how the metaclass is invoked at the end of
 the class statement, before we ever
 make an instance—metaclasses are for processing
 classes, and classes are for processing normal
 instances:
c:\code> py −3 metaclass1.py
making class
In MetaOne.new:
...<class '__main__.MetaOne'>
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x02A191E0>, '__module__': '__main__'}
making instance
data: 1 3
Presentation note: I’m truncating addresses and omitting some
 irrelevant built-in __X__ names in namespace dictionaries in this
 chapter for brevity, and as noted earlier am forgoing 2.X portability
 due to differing declaration syntax. To run in 2.X, use the class
 attribute form, and change print operations as desired. This example
 works in 2.X with the following modifications, in the file metaclass1-2x.py; notice that either Eggs or Spam must be derived from object explicitly, or else 2.X issues a
 warning because new-style class can’t have only classic bases here—when
 in doubt, use object in 2.X
 metaclasses clients:
from __future__ import print_function # To run the same in 2.X (only)
class Eggs(object): # One of the "object" optional
class Spam(Eggs, object):
 __metaclass__ = MetaOne

Customizing Construction and Initialization
Metaclasses can also tap into the __init__
 protocol invoked by the type object’s __call__. In general, __new__ creates and returns the class object,
 and __init__ initializes the already
 created class passed in as an argument. Metaclasses can use either or
 both hooks to manage the class at creation time:
class MetaTwo(type):
 def __new__(meta, classname, supers, classdict):
 print('In MetaTwo.new: ', classname, supers, classdict, sep='\n...')
 return type.__new__(meta, classname, supers, classdict)

 def __init__(Class, classname, supers, classdict):
 print('In MetaTwo.init:', classname, supers, classdict, sep='\n...')
 print('...init class object:', list(Class.__dict__.keys()))

class Eggs:
 pass

print('making class')
class Spam(Eggs, metaclass=MetaTwo): # Inherits from Eggs, instance of MetaTwo
 data = 1 # Class data attribute
 def meth(self, arg): # Class method attribute
 return self.data + arg

print('making instance')
X = Spam()
print('data:', X.data, X.meth(2))
In this case, the class initialization method is run after the
 class construction method, but both run at the end of the class statement before any instances are made.
 Conversely, an __init__ in Spam would run at
 instance creation time, and is not affected or run
 by the metaclass’s __init__:
c:\code> py −3 metaclass2.py
making class
In MetaTwo.new:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x02967268>, '__module__': '__main__'}
In MetaTwo.init:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x02967268>, '__module__': '__main__'}
...init class object: ['__qualname__', 'data', '__module__', 'meth', '__doc__']
making instance
data: 1 3

Other Metaclass Coding Techniques
Although redefining the type
 superclass’s __new__ and __init__ methods is the most common way to
 insert logic into the class object creation process with the metaclass
 hook, other schemes are possible.
Using simple factory functions
For example, metaclasses need not really be classes at all. As we’ve learned, the
 class statement issues a simple
 call to create a class at the conclusion of its processing. Because of
 this, any callable object can in principle be
 used as a metaclass, provided it accepts the arguments passed and
 returns an object compatible with the intended class. In fact, a
 simple object factory function may serve just as well as a type subclass:
A simple function can serve as a metaclass too

def MetaFunc(classname, supers, classdict):
 print('In MetaFunc: ', classname, supers, classdict, sep='\n...')
 return type(classname, supers, classdict)

class Eggs:
 pass

print('making class')
class Spam(Eggs, metaclass=MetaFunc): # Run simple function at end
 data = 1 # Function returns class
 def meth(self, arg):
 return self.data + arg

print('making instance')
X = Spam()
print('data:', X.data, X.meth(2))
When run, the function is called at the end of the declaring
 class statement, and it returns the
 expected new class object. The function is simply catching the call
 that the type object’s __call__ normally intercepts by
 default:
c:\code> py −3 metaclass3.py
making class
In MetaFunc:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x029471E0>, '__module__': '__main__'}
making instance
data: 1 3

Overloading class creation calls with normal classes
Because normal class instances can respond to call operations with operator
 overloading, they can serve in some metaclass roles too, much like the
 preceding function. The output of the following is similar to the
 prior class-based versions, but it’s based on a simple class—one that
 doesn’t inherit from type at all,
 and provides a __call__ for its
 instances that catches the metaclass call using normal operator
 overloading. Note that __new__ and
 __init__ must have different names
 here, or else they will run when the Meta instance is
 created, not when it is later called in the role
 of metaclass:
A normal class instance can serve as a metaclass too

class MetaObj:
 def __call__(self, classname, supers, classdict):
 print('In MetaObj.call: ', classname, supers, classdict, sep='\n...')
 Class = self.__New__(classname, supers, classdict)
 self.__Init__(Class, classname, supers, classdict)
 return Class

 def __New__(self, classname, supers, classdict):
 print('In MetaObj.new: ', classname, supers, classdict, sep='\n...')
 return type(classname, supers, classdict)

 def __Init__(self, Class, classname, supers, classdict):
 print('In MetaObj.init:', classname, supers, classdict, sep='\n...')
 print('...init class object:', list(Class.__dict__.keys()))

class Eggs:
 pass

print('making class')
class Spam(Eggs, metaclass=MetaObj()): # MetaObj is normal class instance
 data = 1 # Called at end of statement
 def meth(self, arg):
 return self.data + arg

print('making instance')
X = Spam()
print('data:', X.data, X.meth(2))
When run, the three methods are dispatched via the normal
 instance’s __call__ inherited from
 its normal class, but without any dependence on type dispatch mechanics or semantics:
c:\code> py −3 metaclass4.py
making class
In MetaObj.call:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x029492F0>, '__module__': '__main__'}
In MetaObj.new:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x029492F0>, '__module__': '__main__'}
In MetaObj.init:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x029492F0>, '__module__': '__main__'}
...init class object: ['__module__', '__doc__', 'data', '__qualname__', 'meth']
making instance
data: 1 3
In fact, we can use normal superclass inheritance to acquire the
 call interceptor in this coding model—the superclass here is serving
 essentially the same role as type,
 at least in terms of metaclass dispatch:
Instances inherit from classes and their supers normally

class SuperMetaObj:
 def __call__(self, classname, supers, classdict):
 print('In SuperMetaObj.call: ', classname, supers, classdict, sep='\n...')
 Class = self.__New__(classname, supers, classdict)
 self.__Init__(Class, classname, supers, classdict)
 return Class

class SubMetaObj(SuperMetaObj):
 def __New__(self, classname, supers, classdict):
 print('In SubMetaObj.new: ', classname, supers, classdict, sep='\n...')
 return type(classname, supers, classdict)

 def __Init__(self, Class, classname, supers, classdict):
 print('In SubMetaObj.init:', classname, supers, classdict, sep='\n...')
 print('...init class object:', list(Class.__dict__.keys()))

class Spam(Eggs, metaclass=SubMetaObj()): # Invoke Sub instance via Super.__call__
 ...rest of file unchanged...

c:\code> py −3 metaclass4-super.py
making class
In SuperMetaObj.call:
...as before...
In SubMetaObj.new:
...as before...
In SubMetaObj.init:
...as before...
making instance
data: 1 3
Although such alternative forms work, most metaclasses get their
 work done by redefining the type
 superclass’s __new__ and __init__; in practice, this is usually as
 much control as is required, and it’s often simpler than other
 schemes. Moreover, metaclasses have access to additional tools, such
 as class methods we’ll explore ahead, which can
 influence class behavior more directly than some other schemes.
Still, we’ll see later that a simple callable-based metaclass
 can often work much like a class decorator, which allows the
 metaclasses to manage instances as well as classes. First, though, the
 next section presents an example drawn from the Python “Twilight Zone”
 to introduce metaclass name resolution concepts.

Overloading class creation calls with metaclasses
Since they participate in normal OOP mechanics, it’s also possible for metaclasses to catch the
 creation call at the end of a class
 statement directly, by redefining the type object’s __call__. The redefinitions of both __new__ and __call__ must be careful to call back to
 their defaults in type if they mean
 to make a class in the end, and __call__ must invoke type to kick off the other two here:
Classes can catch calls too (but built-ins look in metas, not supers!)

class SuperMeta(type):
 def __call__(meta, classname, supers, classdict):
 print('In SuperMeta.call: ', classname, supers, classdict, sep='\n...')
 return type.__call__(meta, classname, supers, classdict)

 def __init__(Class, classname, supers, classdict):
 print('In SuperMeta init:', classname, supers, classdict, sep='\n...')
 print('...init class object:', list(Class.__dict__.keys()))

print('making metaclass')
class SubMeta(type, metaclass=SuperMeta):
 def __new__(meta, classname, supers, classdict):
 print('In SubMeta.new: ', classname, supers, classdict, sep='\n...')
 return type.__new__(meta, classname, supers, classdict)

 def __init__(Class, classname, supers, classdict):
 print('In SubMeta init:', classname, supers, classdict, sep='\n...')
 print('...init class object:', list(Class.__dict__.keys()))

class Eggs:
 pass

print('making class')
class Spam(Eggs, metaclass=SubMeta): # Invoke SubMeta, via SuperMeta.__call__
 data = 1
 def meth(self, arg):
 return self.data + arg

print('making instance')
X = Spam()
print('data:', X.data, X.meth(2))
This code has some oddities I’ll explain in a moment. When run,
 though, all three redefined methods run in turn for Spam as in the prior section. This is again
 essentially what the type object
 does by default, but there’s an additional metaclass call for the
 metaclass subclass (metasubclass?):
c:\code> py −3 metaclass5.py
making metaclass
In SuperMeta init:
...SubMeta
...(<class 'type'>,)
...{'__init__': <function SubMeta.__init__ at 0x028F92F0>, ...}
...init class object: ['__doc__', '__module__', '__new__', '__init__, ...]
making class
In SuperMeta.call:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x028F9378>, '__module__': '__main__'}
In SubMeta.new:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x028F9378>, '__module__': '__main__'}
In SubMeta init:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x028F9378>, '__module__': '__main__'}
...init class object: ['__qualname__', '__module__', '__doc__', 'data', 'meth']
making instance
data: 1 3
This example is complicated by the fact that it overrides a
 method invoked by a built-in operation—in this
 case, the call run automatically to create a class. Metaclasses are
 used to create class objects, but only generate instances of
 themselves when called in a metaclass role. Because of this, name
 lookup with metaclasses may be somewhat different than what we are
 accustomed to. The __call__ method,
 for example, is looked up by built-ins in the class (a.k.a. type) of
 an object; for metaclasses, this means the metaclass of a
 metaclass!
As we’ll see ahead, metaclasses also
 inherit names from other metaclasses normally,
 but as for normal classes, this seems to apply to
 explicit name fetches only, not to the
 implicit lookup of names for built-in operations
 such as calls. The latter appears to look in the metaclass’s
 class, available in its __class__ link—which is either the default
 type or a metaclass. This is the
 same built-ins routing issue we’ve seen so often in this book for
 normal class instances. The metaclass in SubMeta is required to set this link, though
 this also kicks off a metaclass construction step for the metaclass
 itself.
Trace the invocations in the output. SuperMeta’s __call__ method is not
 run for the call to SuperMeta when
 making SubMeta (this goes to
 type instead), but
 is run for the SubMeta call when making Spam. Inheriting normally from SuperMeta does not suffice to catch SubMeta calls, and for reasons we’ll see
 later is actually the wrong thing to do for operator overloading
 methods: SuperMeta’s __call__ is then acquired by Spam, causing Spam instance creation calls to fail before
 any instance is ever created. Subtle but true!
Here’s an illustration of the issue in simpler terms—a normal
 superclass is skipped for built-ins, but not for
 explicit fetches and calls, the latter relying on
 normal attribute name inheritance:
class SuperMeta(type):
 def __call__(meta, classname, supers, classdict): # By name, not built-in
 print('In SuperMeta.call:', classname)
 return type.__call__(meta, classname, supers, classdict)

class SubMeta(SuperMeta): # Created by type default
 def __init__(Class, classname, supers, classdict): # Overrides type.__init__
 print('In SubMeta init:', classname)

print(SubMeta.__class__)
print([n.__name__ for n in SubMeta.__mro__])
print()
print(SubMeta.__call__) # Not a data descriptor if found by name
print()
SubMeta.__call__(SubMeta, 'xxx', (), {}) # Explicit calls work: class inheritance
print()
SubMeta('yyy', (), {}) # But implicit built-in calls do not: type

c:\code> py −3 metaclass5b.py
<class 'type'>
['SubMeta', 'SuperMeta', 'type', 'object']

<function SuperMeta.__call__ at 0x029B9158>

In SuperMeta.call: xxx
In SubMeta init: xxx

In SubMeta init: yyy
Of course, this specific example is a special case: catching a
 built-in run on a metaclass, a likely rare usage related to __call__ here. But it underscores a core
 asymmetry and apparent inconsistency: normal attribute
 inheritance is not fully used for built-in dispatch—for
 both instances and classes.
To truly understand this example’s subtleties, though, we need
 to get more formal about what metaclasses mean for Python name
 resolution in general.

Inheritance and Instance
Because metaclasses are specified in similar ways to inheritance superclasses, they
 can be a bit confusing at first glance. A few key points should help
 summarize and clarify the model:
	Metaclasses inherit from the type class (usually)
	Although they have a special role, metaclasses are coded with class statements and follow the usual OOP
 model in Python. For example, as subclasses of type, they can redefine the type object’s
 methods, overriding and customizing them as needed. Metaclasses
 typically redefine the type
 class’s __new__ and __init__ to customize class creation and
 initialization. Although it’s less common, they can also redefine
 __call__ if they wish to catch
 the end-of-class creation call directly (albeit with the
 complexities we saw in the prior section), and can even be simple
 functions or other callables that return arbitrary objects, instead
 of type subclasses.

	Metaclass declarations are inherited by subclasses
	The metaclass=M
 declaration in a user-defined class is
 inherited by the class’s normal subclasses,
 too, so the metaclass will run for the construction of each class
 that inherits this specification in a superclass inheritance
 chain.

	Metaclass attributes are not inherited by class instances
	Metaclass declarations specify an
 instance relationship, which is not the same as
 what we’ve called inheritance thus far. Because classes are
 instances of metaclasses, the behavior defined in a metaclass
 applies to the class, but not the class’s later instances. Instances
 obtain behavior from their classes and superclasses, but not from
 any metaclasses. Technically, attribute inheritance for normal
 instances usually searches only the __dict__ dictionaries of the instance, its
 class, and all its superclasses; metaclasses are
 not included in inheritance lookup for normal
 instances.

	Metaclass attributes are acquired by classes
	By contrast, classes do acquire methods
 of their metaclasses by virtue of the instance relationship. This is
 a source of class behavior that processes classes themselves.
 Technically, classes acquire metaclass attributes through the
 class’s __class__ link just as
 normal instances acquire names from their class, but inheritance via
 __dict__ search is attempted
 first: when the same name is available to a class in
 both a metaclass and a superclass, the
 superclass (inheritance) version is used instead of that on a
 metaclass (instance). The class’s __class__, however, is not followed for
 its own instances: metaclass attributes are made available to their
 instance classes, but not to instances of those instance classes
 (and see the earlier reference to Dr. Seuss...).

This may be easier to understand in code than in prose. To
 illustrate all these points, consider the following example:
File metainstance.py

class MetaOne(type):
 def __new__(meta, classname, supers, classdict): # Redefine type method
 print('In MetaOne.new:', classname)
 return type.__new__(meta, classname, supers, classdict)
 def toast(self):
 return 'toast'

class Super(metaclass=MetaOne): # Metaclass inherited by subs too
 def spam(self): # MetaOne run twice for two classes
 return 'spam'

class Sub(Super): # Superclass: inheritance versus instance
 def eggs(self): # Classes inherit from superclasses
 return 'eggs' # But not from metaclasses for instance access
When this code is run (as a script or module), the metaclass handles
 construction of both client classes, and
 instances inherit class attributes but
 not metaclass attributes:
>>> from metainstance import * # Runs class statements: metaclass run twice
In MetaOne.new: Super
In MetaOne.new: Sub

>>> X = Sub() # Normal instance of user-defined class
>>> X.eggs() # Inherited from Sub
'eggs'
>>> X.spam() # Inherited from Super
'spam'
>>> X.toast() # Not inherited from metaclass
AttributeError: 'Sub' object has no attribute 'toast'
By contrast, classes both inherit names from
 their superclasses, and acquire names from their metaclass (which in this
 example is itself inherited from a
 superclass):
>>> Sub.eggs(X) # Own method
'eggs'
>>> Sub.spam(X) # Inherited from Super
'spam'
>>> Sub.toast() # Acquired from metaclass
'toast'
>>> Sub.toast(X) # Not a normal class method
TypeError: toast() takes 1 positional argument but 2 were given
Notice how the last of the preceding calls fails when we pass in an
 instance, because the name resolves to a metaclass method, not a normal
 class method. In fact, both the object you fetch a name from and its
 source become crucial here. Methods acquired from metaclasses are bound to
 the subject class, while methods from normal classes
 are unbound if fetched through the class but
 bound when fetched through the instance:
>>> Sub.toast
<bound method MetaOne.toast of <class 'metainstance.Sub'>>
>>> Sub.spam
<function Super.spam at 0x0298A2F0>
>>> X.spam
<bound method Sub.spam of <metainstance.Sub object at 0x02987438>>
We’ve studied the last two of these rules before in Chapter 31’s bound method coverage; the first is
 new, but reminiscent of class methods. To understand why this works the
 way it does, we need to explore the metaclass instance relationship
 further.
Metaclass Versus Superclass
In even simpler terms, watch what happens in the following: as an
 instance of the A metaclass type, class B acquires A’s attribute, but this attribute is not made
 available for inheritance by B’s own
 instances—the acquisition of names by metaclass instances is
 distinct from the normal inheritance used for class
 instances:
>>> class A(type): attr = 1
>>> class B(metaclass=A): pass # B is meta instance and acquires meta attr
>>> I = B() # I inherits from class but not meta!
>>> B.attr
1
>>> I.attr
AttributeError: 'B' object has no attribute 'attr'
>>> 'attr' in B.__dict__, 'attr' in A.__dict__
(False, True)
By contrast, if A morphs from
 metaclass to superclass, then names inherited from
 an A superclass become available to
 later instances of B, and are located
 by searching namespace dictionaries in classes in the tree—that is, by
 checking the __dict__ of objects in
 the method resolution order (MRO), much like the mapattrs example we coded back in Chapter 32:
>>> class A: attr = 1
>>> class B(A): pass # I inherits from class and supers
>>> I = B()
>>> B.attr
1
>>> I.attr
1
>>> 'attr' in B.__dict__, 'attr' in A.__dict__
(False, True)
This is why metaclasses often do their work by manipulating a new
 class’s namespace dictionary, if they wish to influence the behavior of
 later instance objects—instances will see names in a class, but not its
 metaclass. Watch what happens, though, if the same name is available in
 both attribute sources—the
 inheritance name is used instead of instance
 acquisition:
>>> class M(type): attr = 1
>>> class A: attr = 2
>>> class B(A, metaclass=M): pass # Supers have precedence over metas
>>> I = B()
>>> B.attr, I.attr
(2, 2)
>>> 'attr' in B.__dict__, 'attr' in A.__dict__, 'attr' in M.__dict__
(False, True, True)
This is true regardless of the relative height of the inheritance
 and instance sources—Python checks the __dict__ of each class on the MRO
 (inheritance), before falling back on metaclass
 acquisition (instance):
>>> class M(type): attr = 1
>>> class A: attr = 2
>>> class B(A): pass
>>> class C(B, metaclass=M): pass # Super two levels above meta: still wins
>>> I = C()
>>> I.attr, C.attr
(2, 2)
>>> [x.__name__ for x in C.__mro__] # See Chapter 32 for all things MRO
['C', 'B', 'A', 'object']
In fact, classes acquire metaclass attributes through their
 __class__ link, in the same way that
 normal instances inherit from classes through their __class__, which makes sense, given that
 classes are also instances of metaclasses. The chief distinction is that
 instance inheritance does not follow a class’s __class__, but instead restricts its scope to
 the __dict__ of each class in a tree
 per the MRO—following __bases__ at
 each class only, and using only the instance’s __class__ link once:
>>> I.__class__ # Followed by inheritance: instance's class
<class '__main__.C'>
>>> C.__bases__ # Followed by inheritance: class's supers
(<class '__main__.B'>,)
>>> C.__class__ # Followed by instance acquisition: metaclass
<class '__main__.M'>
>>> C.__class__.attr # Another way to get to metaclass attributes
1
If you study this, you’ll probably notice a nearly glaring
 symmetry here, which leads us to the next section.

Inheritance: The Full Story
As it turns out, instance inheritance works in similar ways, whether the
 “instance” is created from a normal class, or is a class created from a
 metaclass subclass of type—a single
 attribute search rule, which fosters the grander and parallel notion of
 metaclass inheritance hierarchies. To illustrate the basics of this
 conceptual merger, in the following, the instance inherits from all its
 classes; the class inherits from both classes and metaclasses; and
 metaclasses inherit from higher metaclasses
 (supermetaclasses?):
>>> class M1(type): attr1 = 1 # Metaclass inheritance tree
>>> class M2(M1): attr2 = 2 # Gets __bases__, __class__, __mro__

>>> class C1: attr3 = 3 # Superclass inheritance tree
>>> class C2(C1,metaclass=M2): attr4 = 4 # Gets __bases__, __class__, __mro__

>>> I = C2() # I gets __class__ but not others
>>> I.attr3, I.attr4 # Instance inherits from super tree
(3, 4)
>>> C2.attr1, C2.attr2, C2.attr3, C2.attr4 # Class gets names from both trees!
(1, 2, 3, 4)
>>> M2.attr1, M2.attr2 # Metaclass inherits names too!
(1, 2)
Both inheritance paths—class and metaclass—employ the same links,
 though not recursively: instances do not inherit their class’s metaclass
 names, but may request them explicitly:
>>> I.__class__ # Links followed at instance with no __bases__
<class '__main__.C2'>
>>> C2.__bases__
(<class '__main__.C1'>,)

>>> C2.__class__ # Links followed at class after __bases__
<class '__main__.M2'>
>>> M2.__bases__
(<class '__main__.M1'>,)

>>> I.__class__.attr1 # Route inheritance to the class's meta tree
1
>>> I.attr1 # Though class's __class__ not followed normally
AttributeError: 'C2' object has no attribute 'attr1'

>>> M2.__class__ # Both trees have MROs and instance links
<class 'type'>
>>> [x.__name__ for x in C2.__mro__] # __bases__ tree from I.__class__
['C2', 'C1', 'object']
>>> [x.__name__ for x in M2.__mro__] # __bases__ tree from C2.__class__
['M2', 'M1', 'type', 'object']
If you care about metaclasses, or must use code that does, study
 these examples, and then study them again. In effect, inheritance
 follows __bases__ before following a
 single __class__; normal instances
 have no __bases__; and classes have
 both—whether normal or metaclass. In fact, understanding this example is
 important to Python name resolution in general, as the next section
 explains.
Python’s inheritance algorithm: The simple version
Now that we know about metaclass acquisition, we’re finally able
 to formalize the inheritance rules that they augment. Technically,
 inheritance deploys two distinct but similar lookup routines, and is
 based on MROs. Because __bases__
 are used to construct the __mro__ ordering at class creation time, and
 because a class’s __mro__ includes
 itself, the prior section’s generalization is the same
 as the following—a first-cut definition of Python’s new-style
 inheritance algorithm:
To look up an explicit attribute
 name:
	From an instance I, search the
 instance, then its class, and then all its superclasses,
 using:
	The __dict__ of the
 instance I

	The __dict__ of all
 classes on the __mro__
 found at I’s __class__,
 from left to right

	From a class C, search the class, then
 all its superclasses, and then its metaclasses tree, using:
	The __dict__ of all
 classes on the __mro__
 found at C itself, from left to right

	The __dict__ of all
 metaclasses on the __mro__
 found at C’s __class__,
 from left to right

	In both rule 1 and 2, give precedence to data
 descriptors located in step b
 sources (see ahead).

	In both rule 1 and 2, skip step a and
 begin the search at step b for
 built-in operations (see ahead).

The first two steps are followed for normal, explicit attribute
 fetch only. There are exceptions for both
 built-ins and descriptors,
 both of which we’ll clarify in a moment. In addition, a __getattr__ or __getattribute__ may also be used for
 missing or all names, respectively, per Chapter 38.
Most programmers need only be aware of the first of these rules,
 and perhaps the first step of the second—which taken together
 correspond to 2.X classic class inheritance.
 There’s an extra acquisition step added for metaclasses
 (2b), but it’s essentially the same as others—a
 fairly subtle equivalence to be sure, but metaclass acquisition is not
 as novel as it may seem. In fact, it’s just one component of the
 larger model.

The descriptors special case
At least that’s the normal—and simplistic—case. I listed step
 3 in the prior section specially, because it
 doesn’t apply to most code, and complicates the algorithm
 substantially. It turns out, though, that inheritance also has a
 special case interaction with Chapter 38’s
 attribute descriptors. In short, some descriptors known as
 data descriptors—those that define __set__ methods to intercept assignments—are
 given precedence, such that their names override other inheritance
 sources.
This exception serves some practical roles. For example, it is
 used to ensure that the special __class__ and __dict__ attributes cannot be redefined by
 the same names in an instance’s own __dict__:
>>> class C: pass # Inheritance special case #1...
>>> I = C() # Class data descriptors have precedence
>>> I.__class__, I.__dict__
(<class '__main__.C'>, {})

>>> I.__dict__['name'] = 'bob' # Dynamic data in the instance
>>> I.__dict__['__class__'] = 'spam' # Assign keys, not attributes
>>> I.__dict__['__dict__'] = {}

>>> I.name # I.name comes from I.__dict__ as usual
'bob' # But I.__class__ and I.__dict__ do not!
>>> I.__class__, I.__dict__
(<class '__main__.C'>, {'__class__': 'spam', '__dict__': {}, 'name': 'bob'})
This data descriptor exception is tested before the preceding
 two inheritance rules as a preliminary step, may be more important to
 Python implementers than Python programmers, and can be reasonably
 ignored by most application code in any event—that is, unless
 you code data descriptors of your own, which
 follow the same inheritance special case precedence rule:
>>> class D:
 def __get__(self, instance, owner): print('__get__')
 def __set__(self, instance, value): print('__set__')

>>> class C: d = D() # Data descriptor attribute
>>> I = C()
>>> I.d # Inherited data descriptor access
__get__
>>> I.d = 1
__set__
>>> I.__dict__['d'] = 'spam' # Define same name in instance namespace dict
>>> I.d # But doesn't hide data descriptor in class!
__get__
Conversely, if this descriptor did not
 define a __set__, the name in the
 instance’s dictionary would hide the name in its class instead, per
 normal inheritance:
>>> class D:
 def __get__(self, instance, owner): print('__get__')

>>> class C: d = D()
>>> I = C()
>>> I.d # Inherited nondata descriptor access
__get__
>>> I.__dict__['d'] = 'spam' # Hides class names per normal inheritance rules
>>> I.d
'spam'
In both cases, Python automatically runs the descriptor’s
 __get__ when it’s found by
 inheritance, rather than returning the descriptor object itself—part
 of the attribute magic we met earlier in the book. The special status
 afforded to data descriptors, however, also modifies the meaning of
 attribute inheritance, and thus the meaning of
 names in your code.

Python’s inheritance algorithm: The somewhat-more-complete
 version
With both the data descriptor special case and general
 descriptor invocation factored in with class and metaclass trees,
 Python’s full new-style inheritance algorithm can be stated as
 follows—a complex procedure, which assumes knowledge of descriptors,
 metaclasses, and MROs, but is the final arbiter of attribute names
 nonetheless (in the following, items are attempted in sequence either
 as numbered, or per their left-to-right order in “or”
 conjunctions):
To look up an explicit attribute
 name:
	From an instance I, search the
 instance, its class, and its superclasses, as follows:
	Search the __dict__
 of all classes on the __mro__ found at I’s __class__

	If a data descriptor was found in step
 a, call its __get__
 and exit

	Else, return a value in the __dict__ of the instance I

	Else, call a nondata descriptor or return a value found
 in step a

	From a class C, search the class, its
 superclasses, and its metaclasses tree, as follows:
	Search the __dict__
 of all metaclasses on the __mro__ found at C’s __class__

	If a data descriptor was found in step
 a, call its __get__
 and exit

	Else, call a descriptor or return a value in the
 __dict__ of a class on C’s
 own __mro__

	Else, call a nondata descriptor or return a value found
 in step a

	In both rule 1 and 2, built-in
 operations essentially use just step a
 sources (see ahead)

Note here again that this applies to normal,
 explicit attribute fetch only. The
 implicit lookup of method names for
 built-ins doesn’t follow these rules, and
 essentially uses just step a sources in both
 cases, as the next section will demonstrate.
As always, the implied object superclass
 provides some defaults at the top of every class and metaclass tree
 (that is, at the end of every MRO). And beyond all this, method
 __getattr__ may be run if defined
 when an attribute is not found, and method __getattribute__ may be run for every
 attribute fetch, though they are special-case extensions to the name
 lookup model. See Chapter 38 for more on
 these tools and descriptors, and Chapter 32 for the super
 special-case MRO scan.

Assignment inheritance
Also note that the prior section defines inheritance in terms of
 attribute reference (lookup), but
 parts of it apply to attribute assignment as well. As we’ve learned,
 assignment normally changes attributes in the subject object itself,
 but inheritance is also invoked on assignment to test first for some
 of Chapter 38’s attribute management tools,
 including descriptors and properties. When present, such tools
 intercept attribute assignment, and may route it arbitrarily.
For example, when an attribute assignment is run for new-style
 classes, a data descriptor with a __set__ method is
 acquired from a class by inheritance using the MRO, and has precedence
 over the normal storage model. In terms of the prior section’s
 rules:
	When applied to an instance, such assignments essentially
 follow steps a through
 c of rule 1, searching the
 instance’s class tree, though step b calls __set__
 instead of __get__, and step c stops and stores in the instance
 instead of attempting a fetch.

	When applied to a class,
 such assignments run the same procedure on the class’s metaclass
 tree: roughly the same as rule 2, but step c stops and stores in the class.

Because descriptors are also the basis for other advanced
 attribute tools such as properties and slots, this inheritance
 pre-check on assignment is utilized in multiple contexts. The net
 effect is that descriptors are treated as an inheritance special case
 in new-style classes, for both
 reference and assignment.

The built-ins special case
At least that’s almost the full story. As
 we’ve seen, built-ins don’t follow these rules.
 Instances and classes may both be skipped for built-in operations
 only, as a special case that differs from normal or explicit name
 inheritance. Because this is a context-specific
 divergence, it’s easier to demonstrate in code than to weave into a
 single algorithm. In the following, str is the built-in, __str__ is its explicit name equivalent, and
 the instance is skipped for the built-in only:
>>> class C: # Inheritance special case #2...
 attr = 1 # Built-ins skip a step
 def __str__(self): return('class')

>>> I = C()
>>> I.__str__(), str(I) # Both from class if not in instance
('class', 'class')

>>> I.__str__ = lambda: 'instance'
>>> I.__str__(), str(I) # Explicit=>instance, built-in=>class!
('instance', 'class')

>>> I.attr # Asymmetric with normal or explicit names
1
>>> I.attr = 2; I.attr
2
As we saw in metaclass5.py
 earlier, the same holds true for classes:
 explicit names start at the class, but built-ins start at the class’s
 class, which is its metaclass, and defaults to type:
>>> class D(type):
 def __str__(self): return('D class')

>>> class C(D):
 pass
>>> C.__str__(C), str(C) # Explicit=>super, built-in=>metaclass!
('D class', "<class '__main__.C'>")

>>> class C(D):
 def __str__(self): return('C class')
>>> C.__str__(C), str(C) # Explicit=>class, built-in=>metaclass!
('C class', "<class '__main__.C'>")

>>> class C(metaclass=D):
 def __str__(self): return('C class')
>>> C.__str__(C), str(C) # Built-in=>user-defined metaclass
('C class', 'D class')
In fact, it can sometimes be nontrivial to know
 where a name comes from in this model, since all
 classes also inherit from object—including the default type metaclass. In the following’s explicit
 call, C appears to get a default
 __str__ from object instead of the metaclass, per the
 first source of class inheritance (the class’s own MRO); by contrast,
 the built-in skips ahead to the metaclass as before:
>>> class C(metaclass=D):
 pass
>>> C.__str__(C), str(C) # Explicit=>object, built-in=>metaclass
("<class '__main__.C'>", 'D class')

>>> C.__str__
<slot wrapper '__str__' of 'object' objects>

>>> for k in (C, C.__class__, type): print([x.__name__ for x in k.__mro__])
['C', 'object']
['D', 'type', 'object']
['type', 'object']
All of which leads us to this book’s final import this quote—a tenet that seems to
 conflict with the status given to descriptors and built-ins in the
 attribute inheritance mechanism of new-style classes:
Special cases aren’t special enough to break the rules.

Some practical needs warrant exceptions, of course. We’ll forgo
 rationales here, but you should carefully consider the implications of
 an object-oriented language that applies inheritance—its
 foundational operation—in such an uneven and inconsistent
 fashion. At a minimum, this should underscore the importance of
 keeping your code simple, to avoid making it
 dependent on such convoluted rules. As always, your code’s users and
 maintainers will be glad you did.
For more fidelity on this story, see Python’s internal
 implementation of inheritance—a complete saga chronicled today in its
 object.c and typeobject.c, the former for normal
 instances, and the latter for classes. Delving into internals
 shouldn’t be required to use Python, of course, but it’s the ultimate
 source of truth in a complex and evolving system, and sometimes the
 best you’ll find. This is especially true in boundary cases born of
 accrued exceptions. For our purposes here, let’s move on to the last
 bit of metaclass magic.

Metaclass Methods
Just as important as the inheritance of names,
 methods in metaclasses process their instance
 classes—not the normal instance objects we’ve known
 as “self,” but classes themselves. This makes them similar in spirit and
 form to the class methods we studied in Chapter 32, though they again are available in the
 metaclasses instance realm only, not to normal instance inheritance. The
 failure at the end of the following, for example, stems from the explicit
 name inheritance rules of the prior section:
>>> class A(type):
 def x(cls): print('ax', cls) # A metaclass (instances=classes)
 def y(cls): print('ay', cls) # y is overridden by instance B

>>> class B(metaclass=A):
 def y(self): print('by', self) # A normal class (normal instances)
 def z(self): print('bz', self) # Namespace dict holds y and z

>>> B.x # x acquired from metaclass
<bound method A.x of <class '__main__.B'>>
>>> B.y # y and z defined in class itself
<function B.y at 0x0295F1E0>
>>> B.z
<function B.z at 0x0295F378>
>>> B.x() # Metaclass method call: gets cls
ax <class '__main__.B'>

>>> I = B() # Instance method calls: get inst
>>> I.y()
by <__main__.B object at 0x02963BE0>
>>> I.z()
bz <__main__.B object at 0x02963BE0>
>>> I.x() # Instance doesn't see meta names
AttributeError: 'B' object has no attribute 'x'
Metaclass Methods Versus Class Methods
Though they differ in inheritance visibility, much like class methods, metaclass methods are
 designed to manage class-level data. In fact, their
 roles can overlap—much as metaclasses do in general with class
 decorators—but metaclass methods are not accessible except through the
 class, and do not require an explicit classmethod class-level data declaration in
 order to be bound with the class. In other words, metaclass methods can
 be thought of as implicit class methods, with limited visibility:
>>> class A(type):
 def a(cls): # Metaclass method: gets class
 cls.x = cls.y + cls.z

>>> class B(metaclass=A):
 y, z = 11, 22
 @classmethod # Class method: gets class
 def b(cls):
 return cls.x

>>> B.a() # Call metaclass method; visible to class only
>>> B.x # Creates class data on B, accessible to normal instances
33

>>> I = B()
>>> I.x, I.y, I.z
(33, 11, 22)

>>> I.b() # Class method: sends class, not instance; visible to instance
33
>>> I.a() # Metaclass methods: accessible through class only
AttributeError: 'B' object has no attribute 'a'

Operator Overloading in Metaclass Methods
Just like normal classes, metaclasses may also employ operator overloading to make
 built-in operations applicable to their instance classes. The __getitem__ indexing method in the following
 metaclass, for example, is a metaclass method designed to process
 classes themselves—the classes that are instances
 of the metaclass, not those classes’ own later instances. In fact, per
 the inheritance algorithms sketched earlier, normal class instances
 don’t inherit names acquired via the metaclass instance relationship at
 all, though they can access names present on their own classes:
>>> class A(type):
 def __getitem__(cls, i): # Meta method for processing classes:
 return cls.data[i] # Built-ins skip class, use meta
 # Explicit names search class + meta
>>> class B(metaclass=A): # Data descriptors in meta used first
 data = 'spam'

>>> B[0] # Metaclass instance names: visible to class only
's'
>>> B.__getitem__
<bound method A.__getitem__ of <class '__main__.B'>>

>>> I = B()
>>> I.data, B.data # Normal inheritance names: visible to instance and class
('spam', 'spam')
>>> I[0]
TypeError: 'B' object does not support indexing
It’s possible to define a __getattr__ on a metaclass too, but it can be used to process its instance
 classes only, not their normal instances—as usual,
 it’s not even acquired by a class’s instances:
>>> class A(type):
 def __getattr__(cls, name): # Acquired by class B getitem
 return getattr(cls.data, name) # But not run same by built-ins

>>> class B(metaclass=A):
 data = 'spam'

>>> B.upper()
'SPAM'
>>> B.upper
<built-in method upper of str object at 0x029E7420>
>>> B.__getattr__
<bound method A.__getattr__ of <class '__main__.B'>>

>>> I = B()
>>> I.upper
AttributeError: 'B' object has no attribute 'upper'
>>> I.__getattr__
AttributeError: 'B' object has no attribute '__getattr__'
Moving the __getattr__ to a
 metaclass doesn’t help with its built-in interception shortcomings,
 though. In the following continuation, explicit attributes are routed to
 the metaclass’s __getattr__, but
 built-ins are not, despite that fact the indexing
 is routed to a metaclass’s __getitem__ in the first example of the
 section—strongly suggesting that new-style __getattr__ is a special case of a
 special case, and further recommending code simplicity that
 avoids dependence on such boundary cases:
>>> B.data = [1, 2, 3]
>>> B.append(4) # Explicit normal names routed to meta's getattr
>>> B.data
[1, 2, 3, 4]
>>> B.__getitem__(0) # Explicit special names routed to meta's gettarr
1
>>> B[0] # But built-ins skip meta's gettatr too?!
TypeError: 'A' object does not support indexing
As you can probably tell, metaclasses are interesting to explore,
 but it’s easy to lose track of their big picture. In the interest of
 space, we’ll omit additional fine points here. For the purposes of this
 chapter, it’s more important to show why you’d care to use such a tool
 in the first place. Let’s move on to some larger examples to sample the
 roles of metaclasses in action. As we’ll find, like so many tools in
 Python, metaclasses are first and foremost about easing maintenance work
 by eliminating redundancy.

Example: Adding Methods to Classes
In this and the following section, we’re going to study examples of two common use cases for
 metaclasses: adding methods to a class, and decorating all methods
 automatically. These are just two of the many metaclass roles, which
 unfortunately will consume the space we have left for this chapter; again,
 you should consult the Web for more advanced applications. These examples
 are representative of metaclasses in action, though, and they suffice to
 illustrate their application.
Moreover, both give us an opportunity to contrast class decorators
 and metaclasses—our first example compares metaclass- and decorator-based
 implementations of class augmentation and instance wrapping, and the
 second applies a decorator with a metaclass first and then with another
 decorator. As you’ll see, the two tools are often interchangeable, and
 even complementary.
Manual Augmentation
Earlier in this chapter, we looked at skeleton code that augmented classes by adding methods
 to them in various ways. As we saw, simple class-based inheritance
 suffices if the extra methods are statically known when the class is
 coded. Composition via object embedding can often achieve the same
 effect too. For more dynamic scenarios, though, other techniques are
 sometimes required—helper functions can usually suffice, but metaclasses
 provide an explicit structure and minimize the maintenance costs of
 changes in the future.
Let’s put these ideas in action here with working code. Consider
 the following example of manual class augmentation—it adds two methods
 to two classes, after they have been created:
Extend manually - adding new methods to classes

class Client1:
 def __init__(self, value):
 self.value = value
 def spam(self):
 return self.value * 2

class Client2:
 value = 'ni?'

def eggsfunc(obj):
 return obj.value * 4

def hamfunc(obj, value):
 return value + 'ham'

Client1.eggs = eggsfunc
Client1.ham = hamfunc

Client2.eggs = eggsfunc
Client2.ham = hamfunc

X = Client1('Ni!')
print(X.spam())
print(X.eggs())
print(X.ham('bacon'))

Y = Client2()
print(Y.eggs())
print(Y.ham('bacon'))
This works because methods can always be assigned to a class after
 it’s been created, as long as the methods assigned are functions with an
 extra first argument to receive the subject self instance—this argument can be used to
 access state information accessible from the class instance, even though
 the function is defined independently of the class.
When this code runs, we receive the output of a method coded
 inside the first class, as well as the two methods added to the classes
 after the fact:
c:\code> py −3 extend-manual.py
Ni!Ni!
Ni!Ni!Ni!Ni!
baconham
ni?ni?ni?ni?
baconham
This scheme works well in isolated cases and can be used to fill
 out a class arbitrarily at runtime. It suffers from a potentially major
 downside, though: we have to repeat the augmentation code for every
 class that needs these methods. In our case, it wasn’t too onerous to
 add the two methods to both classes, but in more complex scenarios this
 approach can be time-consuming and error-prone. If we ever forget to do
 this consistently, or we ever need to change the augmentation, we can
 run into problems.

Metaclass-Based Augmentation
Although manual augmentation works, in larger programs it would be
 better if we could apply such changes to an entire set of classes
 automatically. That way, we’d avoid the chance of the augmentation being
 botched for any given class. Moreover, coding the augmentation in a
 single location better supports future changes—all classes in the set
 will pick up changes automatically.
One way to meet this goal is to use metaclasses. If we code the
 augmentation in a metaclass, every class that declares that metaclass
 will be augmented uniformly and correctly and will automatically pick up
 any changes made in the future. The following code demonstrates:
Extend with a metaclass - supports future changes better

def eggsfunc(obj):
 return obj.value * 4

def hamfunc(obj, value):
 return value + 'ham'

class Extender(type):
 def __new__(meta, classname, supers, classdict):
 classdict['eggs'] = eggsfunc
 classdict['ham'] = hamfunc
 return type.__new__(meta, classname, supers, classdict)

class Client1(metaclass=Extender):
 def __init__(self, value):
 self.value = value
 def spam(self):
 return self.value * 2

class Client2(metaclass=Extender):
 value = 'ni?'

X = Client1('Ni!')
print(X.spam())
print(X.eggs())
print(X.ham('bacon'))

Y = Client2()
print(Y.eggs())
print(Y.ham('bacon'))
This time, both of the client classes are extended with the new
 methods because they are instances of a metaclass that performs the
 augmentation. When run, this version’s output is the same as before—we
 haven’t changed what the code does, we’ve just refactored it to
 encapsulate the augmentation more cleanly:
c:\code> py −3 extend-meta.py
Ni!Ni!
Ni!Ni!Ni!Ni!
baconham
ni?ni?ni?ni?
baconham
Notice that the metaclass in this example still performs a fairly
 static task: adding two known methods to every class that declares it.
 In fact, if all we need to do is always add the same two methods to a
 set of classes, we might as well code them in a normal superclass and
 inherit in subclasses. In practice, though, the metaclass structure
 supports much more dynamic behavior. For instance, the subject class
 might also be configured based upon arbitrary logic at runtime:
Can also configure class based on runtime tests

class MetaExtend(type):
 def __new__(meta, classname, supers, classdict):
 if sometest():
 classdict['eggs'] = eggsfunc1
 else:
 classdict['eggs'] = eggsfunc2
 if someothertest():
 classdict['ham'] = hamfunc
 else:
 classdict['ham'] = lambda *args: 'Not supported'
 return type.__new__(meta, classname, supers, classdict)

Metaclasses Versus Class Decorators: Round 2
Keep in mind again that the prior chapter’s class decorators often overlap with this
 chapter’s metaclasses in terms of functionality. This derives from the
 fact that:
	Class decorators rebind class names to
 the result of a function at the end of a class statement, after the new class has
 been created.

	Metaclasses work by routing class object
 creation through an object at the end of a class statement, in order to create the
 new class.

Although these are slightly different models, in practice they can
 often achieve the same goals, albeit in different ways. As you’ve now
 seen, class decorators correspond directly to metaclass __init__ methods called to initialize newly
 created classes. Decorators have no direct analog to the metaclass
 __new__ (called to make classes in
 the first place) or to metaclass methods (used to process instance
 classes), but many or most use cases for these tools do not require
 these extra steps.
Because of this, both tools in principle can be used to manage
 both instances of a class and the class itself. In practice, though,
 metaclasses incur extra steps to manage instances, and decorators incur
 extra steps to create new classes. Hence, while their roles often
 overlap, metaclasses are probably best used for class object management.
 Let’s translate these ideas to code.
Decorator-based augmentation
In pure augmentation cases, decorators can often stand in for metaclasses. For
 example, the prior section’s metaclass example, which adds methods to
 a class on creation, can also be coded as a class decorator; in this
 mode, decorators roughly correspond to the __init__ method of metaclasses, since the
 class object has already been created by the time the decorator is
 invoked. Also as for metaclasses, the original class type is retained,
 since no wrapper object layer is inserted. The output of the
 following, file extend-deco.py,
 is the same as that of the prior metaclass code:
Extend with a decorator: same as providing __init__ in a metaclass

def eggsfunc(obj):
 return obj.value * 4

def hamfunc(obj, value):
 return value + 'ham'

def Extender(aClass):
 aClass.eggs = eggsfunc # Manages class, not instance
 aClass.ham = hamfunc # Equiv to metaclass __init__
 return aClass

@Extender
class Client1: # Client1 = Extender(Client1)
 def __init__(self, value): # Rebound at end of class stmt
 self.value = value
 def spam(self):
 return self.value * 2

@Extender
class Client2:
 value = 'ni?'

X = Client1('Ni!') # X is a Client1 instance
print(X.spam())
print(X.eggs())
print(X.ham('bacon'))

Y = Client2()
print(Y.eggs())
print(Y.ham('bacon'))
In other words, at least in certain cases, decorators can manage
 classes as easily as metaclasses. The converse isn’t quite so
 straightforward, though; metaclasses can be used to manage instances,
 but only with a certain amount of extra magic. The next section
 demonstrates.

Managing instances instead of classes
As we’ve just seen, class decorators can often serve the same
 class-management role as metaclasses. Metaclasses
 can often serve the same instance-management role
 as decorators, too, but this requires extra code and may seem less
 natural. That is:
	Class decorators can manage both
 classes and instances, but don’t create classes normally.

	Metaclasses can manage both classes and
 instances, but instances require extra work.

That said, certain applications may be better coded in one or
 the other. For example, consider the following class decorator example
 from the prior chapter; it’s used to print a trace message whenever
 any normally named attribute of a class instance is fetched:
Class decorator to trace external instance attribute fetches

def Tracer(aClass): # On @ decorator
 class Wrapper:
 def __init__(self, *args, **kargs): # On instance creation
 self.wrapped = aClass(*args, **kargs) # Use enclosing scope name
 def __getattr__(self, attrname):
 print('Trace:', attrname) # Catches all but .wrapped
 return getattr(self.wrapped, attrname) # Delegate to wrapped object
 return Wrapper

@Tracer
class Person: # Person = Tracer(Person)
 def __init__(self, name, hours, rate): # Wrapper remembers Person
 self.name = name
 self.hours = hours
 self.rate = rate # In-method fetch not traced
 def pay(self):
 return self.hours * self.rate

bob = Person('Bob', 40, 50) # bob is really a Wrapper
print(bob.name) # Wrapper embeds a Person
print(bob.pay()) # Triggers __getattr__
When this code is run, the decorator uses class name rebinding
 to wrap instance objects in an object that produces the trace lines in
 the following output:
c:\code> py −3 manage-inst-deco.py
Trace: name
Bob
Trace: pay
2000
Although it’s possible for a metaclass to achieve the same
 effect, it seems less straightforward conceptually. Metaclasses are
 designed explicitly to manage class object creation, and they have an
 interface tailored for this purpose. To use a metaclass just to manage
 instances, we have to also take on responsibility for creating the
 class too—an extra step if normal class creation would otherwise
 suffice. The following metaclass, in file manage-inst-meta.py, has the same effect as
 the prior decorator:
Manage instances like the prior example, but with a metaclass

def Tracer(classname, supers, classdict): # On class creation call
 aClass = type(classname, supers, classdict) # Make client class
 class Wrapper:
 def __init__(self, *args, **kargs): # On instance creation
 self.wrapped = aClass(*args, **kargs)
 def __getattr__(self, attrname):
 print('Trace:', attrname) # Catches all but .wrapped
 return getattr(self.wrapped, attrname) # Delegate to wrapped object
 return Wrapper

class Person(metaclass=Tracer): # Make Person with Tracer
 def __init__(self, name, hours, rate): # Wrapper remembers Person
 self.name = name
 self.hours = hours
 self.rate = rate # In-method fetch not traced
 def pay(self):
 return self.hours * self.rate

bob = Person('Bob', 40, 50) # bob is really a Wrapper
print(bob.name) # Wrapper embeds a Person
print(bob.pay()) # Triggers __getattr__
This works, but it relies on two tricks. First, it must use a
 simple function instead of a class, because type subclasses must adhere to object
 creation protocols. Second, it must manually create the subject class
 by calling type manually; it needs
 to return an instance wrapper, but metaclasses are also responsible
 for creating and returning the subject class. Really, we’re using the
 metaclass protocol to imitate decorators in this example, rather than
 vice versa; because both run at the conclusion of a class statement, in many roles they are just
 variations on a theme. This metaclass version produces the same output
 as the decorator when run live:
c:\code> py −3 manage-inst-meta.py
Trace: name
Bob
Trace: pay
2000
You should study both versions of these examples for yourself to
 weigh their tradeoffs. In general, though, metaclasses are probably
 best suited to class management, due to their design; class decorators
 can manage either instances or classes, though they may not be the
 best option for more advanced metaclass roles that we don’t have space
 to cover in this book. See the Web for more metaclass examples, but
 keep in mind that some are more appropriate than others (and some of
 their authors may know less of Python than you do!).

Metaclass and class decorator equivalence?
The preceding section illustrated that metaclasses incur an
 extra step to create the class when used in instance management roles,
 and hence can’t quite subsume decorators in all use cases. But what
 about the inverse—are decorators a replacement for metaclasses?
Just in case this chapter has not yet managed to make your head
 explode, consider the following metaclass coding alternative too—a
 class decorator that returns a metaclass instance:
A decorator can call a metaclass, though not vice versa without type()

>>> class Metaclass(type):
 def __new__(meta, clsname, supers, attrdict):
 print('In M.__new__:')
 print([clsname, supers, list(attrdict.keys())])
 return type.__new__(meta, clsname, supers, attrdict)

>>> def decorator(cls):
 return Metaclass(cls.__name__, cls.__bases__, dict(cls.__dict__))

>>> class A:
 x = 1

>>> @decorator
 class B(A):
 y = 2
 def m(self): return self.x + self.y

In M.__new__:
['B', (<class '__main__.A'>,), ['__qualname__', '__doc__', 'm', 'y', '__module__']]
>>> B.x, B.y
(1, 2)
>>> I = B()
>>> I.x, I.y, I.m()
(1, 2, 3)
This nearly proves the equivalence of the two tools, but really
 just in terms of dispatch at class construction
 time. Again, decorators essentially serve the same role as metaclass
 __init__ methods. Because this
 decorator returns a metaclass instance, metaclasses—or at least their
 type superclass—are still assumed
 here. Moreover, this winds up triggering an
 additional metaclass call after the class is
 created, and isn’t an ideal scheme in real code—you might as well move
 this metaclass to the first creation step:
>>> class B(A, metaclass=Metaclass): ... # Same effect, but makes just one class
Still, there is some tool redundancy here, and decorator and
 metaclass roles often overlap in practice. And although decorators
 don’t directly support the notion of class-level methods in
 metaclasses discussed earlier, methods and state in
 proxy objects created by decorators can achieve
 similar effects, though for space we’ll leave this last observation in
 the suggested explorations column.
The inverse may not seem applicable—a
 metaclass can’t generally defer to a nonmetaclass decorator, because
 the class doesn’t yet exist until the metaclass call
 completes—although a metaclass can take the form
 of a simple callable that invokes type to create the class directly and passes
 it on to the decorator. In other words, the crucial hook in the model
 is the type call issued for class
 construction. Given that, metaclasses and class decorators are often
 functionally equivalent, with varying dispatch
 protocol models:
>>> def Metaclass(clsname, supers, attrdict):
 return decorator(type(clsname, supers, attrdict))

>>> def decorator(cls): ...
>>> class B(A, metaclass=Metaclass): ... # Metas can call decos and vice versa
In fact, metaclasses need not necessarily return a type instance
 either—any object compatible with the class
 coder’s expectations will do—and this further blurs the
 decorator/metaclass distinction:
>>> def func(name, supers, attrs):
 return 'spam'

>>> class C(metaclass=func): # A class whose metaclass makes it a string!
 attr = 'huh?'

>>> C, C.upper()
('spam', 'SPAM')

>>> def func(cls):
 return 'spam'

>>> @func
 class C: # A class whose decorator makes it a string!
 attr = 'huh?'

>>> C, C.upper()
('spam', 'SPAM')
Odd metaclass and decorator tricks like these aside, timing
 often determines roles in practice, as stated earlier:
	Because decorators run after a class is
 created, they incur an extra runtime step in
 class creation roles.

	Because metaclasses must create
 classes, they incur an extra coding step in
 instance management roles.

In other words, neither completely subsumes the other. Strictly
 speaking, metaclasses might be a functional superset, as they can call
 decorators during class creation; but metaclasses can also be
 substantially heavier to understand and code, and many roles intersect
 completely. In practice, the need to take over class creation entirely
 is probably much less important than tapping into the process in
 general.
Rather than follow this rabbit hole further, though, let’s move
 on to explore metaclass roles that may be a bit more typical and
 practical. The next section concludes this chapter with one more
 common use case—applying operations to a class’s methods automatically
 at class creation time.

Example: Applying Decorators to Methods
As we saw in the prior section, because they are both run at the end of a class statement, metaclasses and decorators can
 often be used interchangeably, albeit with different
 syntax. The choice between the two is arbitrary in many contexts. It’s
 also possible to use them in combination, as
 complementary tools. In this section, we’ll explore an example of just
 such a combination—applying a function decorator to all the methods of a
 class.
Tracing with Decoration Manually
In the prior chapter we coded two function decorators, one that
 traced and counted all calls made to a decorated function and another
 that timed such calls. They took various forms there, some of which were
 applicable to both functions and methods and some of which were not. The
 following collects both decorators’ final forms into a module file for
 reuse and reference here:
File decotools.py: assorted decorator tools
import time

def tracer(func): # Use function, not class instance with __call__
 calls = 0 # Else self is decorator instance only
 def onCall(*args, **kwargs):
 nonlocal calls
 calls += 1
 print('call %s to %s' % (calls, func.__name__))
 return func(*args, **kwargs)
 return onCall

def timer(label='', trace=True): # On decorator args: retain args
 def onDecorator(func): # On @: retain decorated func
 def onCall(*args, **kargs): # On calls: call original
 start = time.clock() # State is scopes + func attr
 result = func(*args, **kargs)
 elapsed = time.clock() - start
 onCall.alltime += elapsed
 if trace:
 format = '%s%s: %.5f, %.5f'
 values = (label, func.__name__, elapsed, onCall.alltime)
 print(format % values)
 return result
 onCall.alltime = 0
 return onCall
 return onDecorator
As we learned in the prior chapter, to use these decorators
 manually, we simply import them from the module and code the decoration
 @ syntax before each method we wish
 to trace or time:
from decotools import tracer

class Person:
 @tracer
 def __init__(self, name, pay):
 self.name = name
 self.pay = pay

 @tracer
 def giveRaise(self, percent): # giveRaise = tracer(giverRaise)
 self.pay *= (1.0 + percent) # onCall remembers giveRaise

 @tracer
 def lastName(self): # lastName = tracer(lastName)
 return self.name.split()[-1]

bob = Person('Bob Smith', 50000)
sue = Person('Sue Jones', 100000)
print(bob.name, sue.name)
sue.giveRaise(.10) # Runs onCall(sue, .10)
print('%.2f' % sue.pay)
print(bob.lastName(), sue.lastName()) # Runs onCall(bob), remembers lastName
When this code is run, we get the following output—calls to
 decorated methods are routed to logic that intercepts and then delegates
 the call, because the original method names have been bound to the
 decorator:
c:\code> py −3 decoall-manual.py
call 1 to __init__
call 2 to __init__
Bob Smith Sue Jones
call 1 to giveRaise
110000.00
call 1 to lastName
call 2 to lastName
Smith Jones

Tracing with Metaclasses and Decorators
The manual decoration scheme of the prior section works, but it
 requires us to add decoration syntax before each
 method we wish to trace and to later remove that syntax when we no
 longer desire tracing. If we want to trace every method of a class, this
 can become tedious in larger programs. In more dynamic contexts where
 augmentations depend upon runtime parameters, it may not be possible at
 all. It would be better if we could somehow apply the tracer decorator
 to all of a class’s methods automatically.
With metaclasses, we can do exactly that—because they are run when
 a class is constructed, they are a natural place to add decoration
 wrappers to a class’s methods. By scanning the class’s attribute
 dictionary and testing for function objects there, we can automatically
 run methods through the decorator and rebind the original names to the
 results. The effect is the same as the automatic method name rebinding
 of decorators, but we can apply it more globally:
Metaclass that adds tracing decorator to every method of a client class

from types import FunctionType
from decotools import tracer

class MetaTrace(type):
 def __new__(meta, classname, supers, classdict):
 for attr, attrval in classdict.items():
 if type(attrval) is FunctionType: # Method?
 classdict[attr] = tracer(attrval) # Decorate it
 return type.__new__(meta, classname, supers, classdict) # Make class

class Person(metaclass=MetaTrace):
 def __init__(self, name, pay):
 self.name = name
 self.pay = pay
 def giveRaise(self, percent):
 self.pay *= (1.0 + percent)
 def lastName(self):
 return self.name.split()[-1]

bob = Person('Bob Smith', 50000)
sue = Person('Sue Jones', 100000)
print(bob.name, sue.name)
sue.giveRaise(.10)
print('%.2f' % sue.pay)
print(bob.lastName(), sue.lastName())
When this code is run, the results are the same as before—calls to
 methods are routed to the tracing decorator first for tracing, and then
 propagated on to the original method:
c:\code> py −3 decoall-meta.py
call 1 to __init__
call 2 to __init__
Bob Smith Sue Jones
call 1 to giveRaise
110000.00
call 1 to lastName
call 2 to lastName
Smith Jones
The result you see here is a combination of
 decorator and metaclass work—the metaclass automatically applies the
 function decorator to every method at class creation time, and the
 function decorator automatically intercepts method calls in order to
 print the trace messages in this output. The combination “just works,”
 thanks to the generality of both tools.

Applying Any Decorator to Methods
The prior metaclass example works for just one specific function
 decorator—tracing. However, it’s trivial to generalize this to apply
 any decorator to all the methods of a class. All we
 have to do is add an outer scope layer to retain the desired decorator,
 much like we did for decorators in the prior chapter. The following, for
 example, codes such a generalization and then uses it to apply the
 tracer decorator again:
Metaclass factory: apply any decorator to all methods of a class

from types import FunctionType
from decotools import tracer, timer

def decorateAll(decorator):
 class MetaDecorate(type):
 def __new__(meta, classname, supers, classdict):
 for attr, attrval in classdict.items():
 if type(attrval) is FunctionType:
 classdict[attr] = decorator(attrval)
 return type.__new__(meta, classname, supers, classdict)
 return MetaDecorate

class Person(metaclass=decorateAll(tracer)): # Apply a decorator to all
 def __init__(self, name, pay):
 self.name = name
 self.pay = pay
 def giveRaise(self, percent):
 self.pay *= (1.0 + percent)
 def lastName(self):
 return self.name.split()[-1]

bob = Person('Bob Smith', 50000)
sue = Person('Sue Jones', 100000)
print(bob.name, sue.name)
sue.giveRaise(.10)
print('%.2f' % sue.pay)
print(bob.lastName(), sue.lastName())
When this code is run as it is, the output is again the same as
 that of the previous examples—we’re still ultimately decorating every
 method in a client class with the tracer function decorator, but we’re
 doing so in a more generic fashion:
c:\code> py −3 decoall-meta-any.py
call 1 to __init__
call 2 to __init__
Bob Smith Sue Jones
call 1 to giveRaise
110000.00
call 1 to lastName
call 2 to lastName
Smith Jones
Now, to apply a different decorator to the
 methods, we can simply replace the decorator name in the class header line. To use the timer function
 decorator shown earlier, for example, we could use either of the last
 two header lines in the following when defining our class—the first
 accepts the timer’s default arguments, and the second specifies label
 text:
class Person(metaclass=decorateAll(tracer)): # Apply tracer

class Person(metaclass=decorateAll(timer())): # Apply timer, defaults
class Person(metaclass=decorateAll(timer(label='**'))): # Decorator arguments
Notice that this scheme cannot support nondefault decorator
 arguments differing per method in the client class, but it can pass in
 decorator arguments that apply to all such methods, as done here. To
 test, use the last of these metaclass declarations to apply the timer,
 and add the following lines at the end of the script to see the timer’s
 extra informational attributes:
If using timer: total time per method

print('-'*40)
print('%.5f' % Person.__init__.alltime)
print('%.5f' % Person.giveRaise.alltime)
print('%.5f' % Person.lastName.alltime)
The new output is as follows—the metaclass wraps methods in timer
 decorators now, so we can tell how long each and every call takes, for
 every method of the class:
c:\code> py −3 decoall-meta-any2.py
**__init__: 0.00001, 0.00001
**__init__: 0.00001, 0.00001
Bob Smith Sue Jones
**giveRaise: 0.00002, 0.00002
110000.00
**lastName: 0.00002, 0.00002
**lastName: 0.00002, 0.00004
Smith Jones
--
0.00001
0.00002
0.00004

Metaclasses Versus Class Decorators: Round 3 (and Last)
As you might expect, class decorators intersect with metaclasses here, too. The
 following version replaces the preceding example’s metaclass with a
 class decorator. That is, it defines and uses a class
 decorator that applies a function decorator to all methods of
 a class. Although the prior sentence may sound more like a Zen statement
 than a technical description, this all works quite naturally—Python’s
 decorators support arbitrary nesting and combinations:
Class decorator factory: apply any decorator to all methods of a class

from types import FunctionType
from decotools import tracer, timer

def decorateAll(decorator):
 def DecoDecorate(aClass):
 for attr, attrval in aClass.__dict__.items():
 if type(attrval) is FunctionType:
 setattr(aClass, attr, decorator(attrval)) # Not __dict__
 return aClass
 return DecoDecorate

@decorateAll(tracer) # Use a class decorator
class Person: # Applies func decorator to methods
 def __init__(self, name, pay): # Person = decorateAll(..)(Person)
 self.name = name # Person = DecoDecorate(Person)
 self.pay = pay
 def giveRaise(self, percent):
 self.pay *= (1.0 + percent)
 def lastName(self):
 return self.name.split()[-1]

bob = Person('Bob Smith', 50000)
sue = Person('Sue Jones', 100000)
print(bob.name, sue.name)
sue.giveRaise(.10)
print('%.2f' % sue.pay)
print(bob.lastName(), sue.lastName())
When this code is run as it is, the class decorator applies the
 tracer function decorator to every method and produces a trace message
 on calls (the output is the same as that of the preceding metaclass
 version of this example):
c:\code> py −3 decoall-deco-any.py
call 1 to __init__
call 2 to __init__
Bob Smith Sue Jones
call 1 to giveRaise
110000.00
call 1 to lastName
call 2 to lastName
Smith Jones
Notice that the class decorator returns the original, augmented
 class, not a wrapper layer for it (as is common when wrapping instance
 objects instead). As for the metaclass version, we retain the type of
 the original class—an instance of Person is an instance of Person, not of some wrapper class. In fact,
 this class decorator deals with class creation only; instance creation
 calls are not intercepted at all.
This distinction can matter in programs that require type testing
 for instances to yield the original class, not a wrapper. When
 augmenting a class instead of an instance, class decorators can retain
 the original class type. The class’s methods are not their original
 functions because they are rebound to decorators, but this is likely
 less important in practice, and it’s true in the metaclass alternative
 as well.
Also note that, like the metaclass version, this structure cannot
 support function decorator arguments that differ per method in the
 decorated class, but it can handle such arguments if they apply to all
 such methods. To use this scheme to apply the timer decorator, for
 example, either of the last two decoration lines in the following will
 suffice if coded just before our class definition—the first uses
 decorator argument defaults, and the second provides one
 explicitly:
@decorateAll(tracer) # Decorate all with tracer

@decorateAll(timer()) # Decorate all with timer, defaults
@decorateAll(timer(label='@@')) # Same but pass a decorator argument
As before, let’s use the last of these decorator lines and add the
 following at the end of the script to test our example with a different
 decorator (better schemes are possible on both the testing and timing
 fronts here, of course, but we’re at chapter end; improve as
 desired):
If using timer: total time per method

print('-'*40)
print('%.5f' % Person.__init__.alltime)
print('%.5f' % Person.giveRaise.alltime)
print('%.5f' % Person.lastName.alltime)
The same sort of output appears—for every method we get timing
 data for each and all calls, but we’ve passed a different label argument
 to the timer decorator:
c:\code> py −3 decoall-deco-any2.py
@@__init__: 0.00001, 0.00001
@@__init__: 0.00001, 0.00001
Bob Smith Sue Jones
@@giveRaise: 0.00002, 0.00002
110000.00
@@lastName: 0.00002, 0.00002
@@lastName: 0.00002, 0.00004
Smith Jones
--
0.00001
0.00002
0.00004
Finally, it’s possible to combine decorators
 such that each runs per method call, but it will likely require changes
 to those we’ve coded here. As is, nesting calls to them directly winds
 up tracing or timing the other’s creation-time application, listing the
 two on separate lines results in tracing or timing the other’s wrapper
 before running the original method, and metaclasses seem to fare no
 better on this front:
@decorateAll(tracer(timer(label='@@'))) # Traces applying the timer
class Person:

@decorateAll(tracer) # Traces onCall wrapper, times methods
@decorateAll(timer(label='@@'))
class Person:

@decorateAll(timer(label='@@'))
@decorateAll(tracer) # Times onCall wrapper, traces methods
class Person:
Pondering this further will have to remain suggested study—both
 because we’re out of space and time, and because this may quite possibly
 be illegal in some states!
As you can see, metaclasses and class decorators are not only
 often interchangeable, but also commonly complementary. Both provide
 advanced but powerful ways to customize and manage both class and
 instance objects, because both ultimately allow you to insert code into
 the class creation process. Although some more advanced applications may
 be better coded with one or the other, the way you choose or combine
 these two tools in many cases is largely up to you.

Chapter Summary
In this chapter, we studied metaclasses and explored examples of
 them in action. Metaclasses allow us
 to tap into the class creation protocol of Python, in order to manage or
 augment user-defined classes. Because they automate this process, they may
 provide better solutions for API writers than manual code or helper
 functions; because they encapsulate such code, they may minimize
 maintenance costs better than some other approaches.
Along the way, we also saw how the roles of class decorators and
 metaclasses often intersect: because both run at the conclusion of a
 class statement, they can sometimes be
 used interchangeably. Class decorators and metaclasses can both be used to
 manage both class and instance objects, though each tool may present
 tradeoffs in some use cases.
Since this chapter covered an advanced topic, we’ll work through
 just a few quiz questions to review the basics (candidly, if you’ve made
 it this far in a chapter on metaclasses, you probably already deserve
 extra credit!). Because this is the last part of the book, we’ll forgo the
 end-of-part exercises. Be sure to see the appendixes that follow for
 Python changes, the solutions to the prior parts’ exercises, and more; the
 last of these includes a sampling of typical application-level programs
 for self-study.
Once you finish the quiz, you’ve officially reached the end of this
 book’s technical material. The next and final chapter offers some brief
 closing thoughts to wrap up the book at large. I’ll see you there in the
 Python benediction after you work through this final quiz.

Test Your Knowledge: Quiz
	What is a metaclass?

	How do you declare the metaclass of a class?

	How do class decorators overlap with metaclasses for managing
 classes?

	How do class decorators overlap with metaclasses for managing
 instances?

	Would you rather count decorators or metaclasses amongst your
 weaponry? (And please phrase your answer in terms of a popular Monty
 Python skit.)

Test Your Knowledge: Answers
	A metaclass is a class used to create a class. Normal new-style
 classes are instances of the type
 class by default. Metaclasses are usually subclasses of the type class, which redefines class creation
 protocol methods in order to customize the class creation call issued
 at the end of a class statement;
 they typically redefine the methods __new__ and __init__ to tap into the class creation
 protocol. Metaclasses can also be coded other ways—as simple
 functions, for example—but they are always responsible for making and
 returning an object for the new class. Metaclasses may have methods
 and data to provide behavior for their classes too—and constitute a
 secondary pathway for inheritance search—but their attributes are
 accessible only to their class instances, not to their instance’s
 instances.

	In Python 3.X, use a keyword argument in the class header line: class C(metaclass=M). In Python 2.X, use a class attribute
 instead: __metaclass__ =
 M. In 3.X, the class header line can also name normal
 superclasses before the metaclass
 keyword argument; in 2.X you generally should derive from object too, though this is sometimes
 optional.

	Because both are automatically triggered at the end of a
 class statement, class decorators
 and metaclasses can both be used to manage classes. Decorators rebind
 a class name to a callable’s result and metaclasses route class
 creation through a callable, but both hooks can be used for similar
 purposes. To manage classes, decorators simply augment and return the
 original class objects. Metaclasses augment a class after they create
 it. Decorators may have a slight disadvantage in this role if a new
 class must be defined, because the original class has already been
 created.

	Because both are automatically triggered at the end of a
 class statement, we can use both
 class decorators and metaclasses to manage class instances, by
 inserting a wrapper (proxy) object to catch instance creation calls.
 Decorators may rebind the class name to a callable run on instance
 creation that retains the original class object. Metaclasses can do
 the same, but may have a slight disadvantage in this role, because
 they must also create the class object.

	Our chief weapon is decorators...decorators and
 metaclasses...metaclasses and decorators... Our two weapons are
 metaclasses and decorators...and ruthless efficiency... Our
 three weapons are metaclasses, decorators, and
 ruthless efficiency...and an almost fanatical devotion to Python...
 Our four...no... Amongst our
 weapons... Amongst our weaponry...are such elements as metaclasses,
 decorators... I’ll come in again...

1 And to quote a Python 3.3 error message I just came across:
 “TypeError: metaclass conflict: the metaclass of a derived class must
 be a (non-strict) subclass of the metaclasses of all its bases” (!).
 This reflects an erroneous use of a module as a superclass, but
 metaclasses may not be as optional as developers imply—a theme we’ll
 revisit in the next chapter’s conclusion to this book.

Chapter 41. All Good Things
Welcome to the end of the book! Now that you’ve made it this far, I
 want to say a few words in closing about Python’s evolution before turning
 you loose on the software field. This topic is subjective by nature, of
 course, but vital to all Python users nonetheless.
You’ve now had a chance to see the entire language yourself—including
 some advanced features that may seem at odds with its scripting paradigm.
 Though many will understandably accept this as status quo, in an open source
 project it’s crucial that some ask the “why” questions too. Ultimately, the
 trajectory of the Python story—and its true conclusion—is at least in part
 up to you.
The Python Paradox
If you’ve read this book, or reasonable subsets of it, you should now be able to weigh
 Python’s tradeoffs fairly. As you’ve seen, Python is a powerful,
 expressive, and even fun programming language, which will serve as an
 enabling technology for wherever you choose to go next. At the same time,
 you’ve also seen that today’s Python is something of a paradox: it has
 expanded to incorporate tools that many consider both needlessly redundant
 and curiously advanced—and at a rate that appears to be only
 accelerating.
For my part, as one of Python’s earliest advocates, I’ve watched it
 morph over the years from simple to sophisticated tool, with a steadily
 shifting scope. By most measures, it seems to have grown at least as
 complex as other languages that drove many of us to Python in the first
 place. And just as in those other languages, this has inevitably fostered
 a growing culture in which obscurity is a badge of honor.
That’s as contrary to Python’s original goals as it could be. Run an
 import this in any Python interactive
 session to see what I mean—the creed I’ve quoted from repeatedly in this
 book in contexts where it was clearly violated. On many levels, its core
 ideals of explicitness, simplicity, and lack of redundancy have been
 either naively forgotten or carelessly abandoned.
The end result is a language and community that could in part be
 described today in some of the same terms I used in the Perl sidebar of
 Chapter 1. While Python still has much to
 offer, this trend threatens to negate much of its perceived advantage, as
 the next section explains.
On “Optional” Language Features
I included a quote near the start of the prior chapter about
 metaclasses not being of interest to 99% of Python programmers, to
 underscore their perceived obscurity. That statement is not quite
 accurate, though, and not just numerically so. The quote’s author is a
 noted Python contributor and friend from the early days of Python, and I
 don’t mean to pick on anyone unfairly. Moreover, I’ve often made such
 statements about language feature obscurity myself—in the various
 editions of this very book, in fact.
The problem, though, is that such statements really apply only to
 people who work alone and only ever use code that they’ve written
 themselves. As soon as an “optional” advanced language feature is used
 by anyone in an organization, it is no longer
 optional—it is effectively imposed on everyone in
 the organization. The same holds true for externally developed software
 you use in your systems—if the software’s author uses an advanced or
 extraneous language feature, it’s no longer entirely optional for you,
 because you have to understand the feature to reuse or change the
 code.
This observation applies to all the advanced
 topics covered in this book, including those listed as “magic” hooks
 near the beginning of the prior chapter, and many others:
Generators, decorators, slots, properties, descriptors,
 metaclasses, context managers, closures, super, namespace packages, Unicode, function
 annotations, relative imports, keyword-only arguments, class and
 static methods, and even obscure applications of comprehensions and
 operator overloading

If any person or program you need to work with uses such tools,
 they automatically become part of your required knowledge
 base too.
To see just how daunting this can be, one need only consider Chapter 40’s new-style inheritance
 procedure—a horrifically convoluted model that can make descriptors and
 metaclasses prerequisite to understanding even basic name resolution.
 Chapter 32’s super similarly ups the intellectual
 ante—imposing an obscenely implicit and artificial MRO algorithm on
 readers of any code that uses this tool.
The net effect of such over-engineering is to either escalate
 learning requirements radically, or foster a user base that only
 partially understands the tools they employ. This is obviously less than
 ideal for those hoping to use Python in simpler ways, and contradictory
 to the scripting motif.

Against Disquieting Improvements
This observation also applies to the many
 redundant features we’ve seen, such as Chapter 7’s str.format method and Chapter 34’s with statement—tools borrowed from other
 languages, and overlapping with others long present in Python. When
 programmers use multiple ways to achieve the same goal, all become
 required knowledge.
Let’s be honest: Python has grown rife with redundancy in recent
 years. As I suggested in the preface—and as you’ve now seen
 first-hand—today’s Python world comes replete with all the functional
 duplications and expansions chronicled in Table 41-1, among others
 we’ve seen in this book.
Table 41-1. A sampling of redundancy and feature explosion in
 Python	Category	Specifics
	3 major
 paradigms
	Procedural, functional,
 object-oriented

	2 incompatible
 lines
	2.X and 3.X, with
 new-style classes in both

	3 string formatting
 tools
	% expression, str.format,
 string.Template

	4 attribute accessor
 tools
	__getattr__,
 __getattribute__, properties, descriptors

	2 finalization
 statements
	try/finally,
 with

	4 varieties of
 comprehension
	List, generator, set,
 dictionary

	3 class augmentation
 tools
	Function calls,
 decorators, metaclasses

	4 kinds of
 methods
	Instance, static, class,
 metaclass

	2 attribute storage
 systems
	Dictionaries,
 slots

	4 flavors of
 imports
	Module, package, package
 relative, namespace package

	2 superclass dispatch
 protocols
	Direct calls, super +
 MRO

	5 assignment statement
 forms
	Basic, multiname,
 augmented, sequence, starred

	2 types of
 functions
	Normal,
 generator

	5 function argument
 forms
	Basic, name=value,
 *pargs, **kargs, keyword-only

	2 class behavior
 sources
	Superclasses,
 metaclasses

	4 state retention
 options
	Classes, closures,
 function attributes, mutables

	2 class
 models
	Classic + new-style in
 2.X, mandated new-style in 3.X

	2 Unicode
 models
	Optional in 2.X, mandated
 in 3.X

	2 PyDoc
 modes
	GUI client, required
 all-browser in recent 3.X

	2 byte code storage
 schemes
	Original, __pycache__
 only in recent 3.X

If you care about Python, you should take a moment to browse this
 table. It reflects a virtual explosion in functionality and toolbox
 size—59 concepts that are all fair game for newcomers. Most of its
 categories began with just one original member in
 Python; many were expanded in part to imitate other languages; and only
 the last few can be simplified by pretending that the latest Python is
 the only Python that matters to its programmers.
I’ve stressed avoiding unwarranted complexity in this book, but in
 practice, both advanced and new tools tend to encourage their own
 adoption—often for no better reason than a programmer’s personal desire
 to demonstrate prowess. The net result is that much Python code today is
 littered with these complex and extraneous tools. That is,
 nothing is truly “optional” if nothing is truly
 optional.

Complexity Versus Power
This is why some Python old-timers (myself included) sometimes
 worry that Python seems to have grown larger and more complex over time.
 New features added by veterans, converts, and even amateurs may have
 raised the intellectual bar for newcomers. Although Python’s core ideas,
 like dynamic typing and built-in types, have remained essentially the
 same, its advanced additions can become required reading for any Python
 programmer. I chose to cover these topics here for this reason, despite
 their omission in early editions. It’s not possible to skip the advanced
 stuff if it’s in code you have to understand.
On the other hand, as mentioned in Chapter 1, to most
 observers Python is still noticeably simpler than most of its
 contemporaries, and perhaps only as complex as its many roles require. Though it’s acquired
 many of the same tools as Java, C#, and C++, they tend
 to be lighter weight in the context of a dynamically typed scripting language. For all its
 growth over the years, Python is still relatively easy to learn and use when compared to the
 alternatives, and new learners can often pick up advanced topics as needed.
And frankly, application programmers tend to spend most of their
 time dealing with libraries and extensions, not
 advanced and sometimes-arcane language features. For instance, the book
 Programming
 Python—a follow-up to this one—deals mostly with the marriage of
 Python to application libraries for tasks such as GUIs, databases, and
 the Web, not with esoteric language tools (though Unicode still forces
 itself onto many stages, and the odd generator expression and yield crop up along the way).
Moreover, the flipside of this growth is that Python has become
 more powerful. When used well, tools like
 decorators and metaclasses are not only arguably “cool,” but allow
 creative programmers to build more flexible and useful APIs for other
 programmers to use. As we’ve seen, they can also provide good solutions
 to problems of encapsulation and maintenance.

Simplicity Versus Elitism
Whether this justifies the potential expansion of required Python
 knowledge is up to you to decide. For better or worse, a person’s skill
 level often decides this issue by default—more advanced programmers like
 more advanced tools and tend to forget about their impact on other
 camps. Fortunately, though, this isn’t an absolute; good programmers
 also understand that simplicity is good
 engineering, and advanced tools should be used only when
 warranted. This is true in any programming language, but especially in
 one like Python that is frequently exposed to new or novice programmers
 as an extension tool.
And if you’re still not buying this, keep in mind that many people using Python are not
 comfortable with even basic OOP. Trust me on this; I’ve met thousands
 of them. Although Python was never a trivial subject, the reports from the software trenches
 are very clear on this point: unwarranted added complexity is never a welcome feature,
 especially when it is driven by the personal preferences of an unrepresentative few. Whether
 intended or not, this is often understandably perceived as elitism—a
 mindset that is both unproductive and rude, and has no place in a tool as widely used as
 Python.
This is also a social issue, of course, and pertains as much to
 individual programmers as to language designers. In the “real world”
 where open source software is measured, though, Python-based systems
 that require their users to master the nuances of metaclasses,
 descriptors, and the like should probably scale their market
 expectations accordingly. Hopefully, if this book has done its job,
 you’ll find the importance of simplicity in programming to be one of its
 most important and lasting takeaways.

Closing Thoughts
So there you have it—some observations from someone who has been
 using, teaching, and advocating Python for two decades, and still wishes
 nothing but the best for its future. None of these concerns are entirely
 new, of course. Indeed, the growth of this very book over the years
 seems testament to the effect of Python’s own growth—if not an
 ironic eulogy to its original conception as a tool
 that would simplify programming and be accessible to both experts and
 nonspecialists alike. Judging by language heft alone, that dream seems
 to have been either neglected or abandoned entirely.
That said, Python’s present rise in
 popularity seems to show no signs of abating—a
 powerful counterargument to complexity concerns. Today’s Python world
 may be understandably less concerned with its original and perhaps
 idealistic goals than with applying its present form in their work.
 Python gets many a job done in the practical world of complex
 programming requirements, and this is still ample cause to recommend it
 for many tasks. Original goals aside, mass appeal does qualify as one
 form of success, though one whose significance will have to await the
 verdict of time.
If you’re interested in musing further over Python’s evolution and
 learning curve, I wrote a more in-depth article in 2012 on such things:
 Answer Me These Questions Three..., available
 online at http://learning-python.com/pyquestions3.html.
 These are important pragmatic questions that are crucial to Python’s
 future, and deserve more attention than I’ve given here. But these are
 highly subjective issues; this is not a philosophy text; and this book
 has already exceeded its page-count targets.
More importantly, in an open source project like Python the
 answers to such questions must be formed anew by each wave of newcomers.
 I hope the wave you ride in will have as much common sense as fun while
 plotting Python’s future.

Where to Go From Here
And that’s a wrap, folks. You’ve officially reached the end of this
 book. Now that you know Python inside and out, your next step, should you
 choose to take it, is to explore the libraries, techniques, and tools
 available in the application domains in which you work.
Because Python is so widely used, you’ll find ample resources for
 using it in almost any application you can think of—from GUIs, the Web,
 and databases to numeric programming, robotics, and system administration.
 See Chapter 1 and your favorite web browser
 for pointers to popular tools and topics.
This is where Python starts to become truly fun, but this is also
 where this book’s story ends, and others’ begin. For pointers on where to
 turn after this book, see the recommended follow-up texts mentioned in the
 preface. I hope to see you in an applications programming domain
 soon.
Good luck with your journey. And of course, “Always look on the
 bright side of Life!”

Encore: Print Your Own Completion Certificate!
And one last thing: in lieu of exercises for this part of the book, I’m going to
 post a bonus script here for you to study and run on your own. I can’t
 provide completion certificates for readers of this book (and the
 certificates would be worthless if I could), but I can include an arguably
 cheesy Python script that does—the following file, certificate.py, is a Python 2.X and 3.X script
 that creates a simple book completion certificate in both text and HTML
 file forms, and pops them up in a web browser on your machine by
 default.
#!/usr/bin/python
"""
File certificate.py: a Python 2.X and 3.X script.
Generate a bare-bones class completion certificate: printed,
and saved in text and html files displayed in a web browser.
"""
from __future__ import print_function # 2.X compatibility
import time, sys, webbrowser

if sys.version_info[0] == 2: # 2.X compatibility
 input = raw_input
 import cgi
 htmlescape = cgi.escape
else:
 import html
 htmlescape = html.escape

maxline = 60 # For seperator lines
browser = True # Display in a browser
saveto = 'Certificate.txt' # Output filenames
template = """
%s

 ===> Official Certificate <===

Date: %s

This certifies that:

\t%s

has survived the massive tome:

\t%s

and is now entitled to all privileges thereof, including
the right to proceed on to learning how to develop Web
sites, desktop GUIs, scientific models, and assorted apps,
with the possible assistance of follow-up applications
books such as Programming Python (shameless plug intended).

--Mark Lutz, Instructor

(Note: certificate void where obtained by skipping ahead.)

%s
"""

Interact, setup
for c in 'Congratulations!'.upper():
 print(c, end=' ')
 sys.stdout.flush() # Else some shells wait for \n
 time.sleep(0.25)
print()

date = time.asctime()
name = input('Enter your name: ').strip() or 'An unknown reader'
sept = '*' * maxline
book = 'Learning Python 5th Edition'

Make text file version
file = open(saveto, 'w')
text = template % (sept, date, name, book, sept)
print(text, file=file)
file.close()

Make html file version
htmlto = saveto.replace('.txt', '.html')
file = open(htmlto, 'w')

tags = text.replace(sept, '<hr>') # Insert a few tags
tags = tags.replace('===>', '<h1 align=center>')
tags = tags.replace('<===', '</h1>')

tags = tags.split('\n') # Line-by-line mods
tags = ['<p>' if line == ''
 else line for line in tags]
tags = ['<i>%s</i>' % htmlescape(line) if line[:1] == '\t'
 else line for line in tags]
tags = '\n'.join(tags)

link = '<i>Book support site</i>\n'
foot = '<table>\n<td>\n<td>%s</table>\n' % link
tags = '<html><body bgcolor=beige>' + tags + foot + '</body></html>'

print(tags, file=file)
file.close()

Display results
print('[File: %s]' % saveto, end='')
print('\n' * 2, open(saveto).read())

if browser:
 webbrowser.open(saveto, new=True)
 webbrowser.open(htmlto, new=False)

if sys.platform.startswith('win'):
 input('[Press Enter]') # Keep window open if clicked on Windows
Run this script on your own, and study its code for a summary of
 some of the ideas we’ve covered in this book. Fetch it from this book’s
 website described in the preface if you wish. You won’t find any
 descriptors, decorators, metaclasses, or super calls in this code, but it’s typical
 Python nonetheless.
When run, it generates the web page captured in the fully gratuitous
 Figure 41-1. This could be
 much more grandiose, of course; see the Web for pointers to Python support
 for PDFs and other document tools such as Sphinx surveyed in Chapter 15. But hey: if you’ve made it to
 the end of this book, you deserve another joke or two...
Figure 41-1. Web page created and opened by certificate.py.

Part IX. Appendixes

Appendix A. Installation and Configuration
This appendix provides additional installation and configuration
 details as a resource for people new to these topics. It’s located here
 because not all readers will need to deal with these subjects up front.
 Because it covers some peripheral topics such as environment variables and
 command-line arguments, though, this material probably merits at least a
 quick scan for most readers.
Installing the Python Interpreter
Because you need the Python interpreter to run Python scripts, the first step in
 using Python is usually installing Python. Unless one is already available
 on your machine, you’ll need to fetch, install, and possibly configure a
 recent version of Python on your computer. You’ll only need to do this
 once per machine, and if you will be running a frozen binary (described in
 Chapter 2) or self-installing system,
 your setup tasks may be trivial or null.
Is Python Already Present?
Before you do anything else, check whether you already have a
 recent Python on your machine. If you are working on Linux, Mac OS X, or
 some Unix systems, Python is probably already installed on your
 computer, though it may be one or two releases behind the cutting edge.
 Here’s how to check:
	On Windows 7 and earlier, check whether
 there is a Python entry in the Start button’s All Programs menu (at
 the bottom left of the screen). On Windows 8,
 look for Python in a Start screen tile, your Search tool, the “All
 apps” display on your Start screen, or a File Explorer in desktop
 mode (more on Windows 8 in an upcoming sidebar).

	On Mac OS X, open a Terminal window
 (Applications→Utilities→Terminal) and type python at the prompt. Python, IDLE, and
 its tkinter GUI toolkit are standard components of this
 system.

	On Linux and Unix,
 type python at a shell prompt
 (a.k.a. terminal window), and see what happens. Alternatively, try
 searching for “python” in the usual places—/usr/bin, /usr/local/bin, etc. As on Macs, Python
 is a standard part of Linux systems.

If you find a Python, make sure it’s a recent version. Although
 any recent Python will do for most of this text, this edition focuses on
 Python 3.3 and 2.7 specifically, so you may want to install one of these
 to run some of the examples in this book.
Speaking of versions, per the preface, I
 recommend starting out with Python 3.3 or later if you’re learning
 Python anew and don’t need to deal with existing 2.X code; otherwise,
 you should generally use Python 2.7. Some popular Python-based systems
 still use older releases, though (2.6 and even 2.5 are still
 widespread), so if you’re working with existing systems be sure to use a
 version relevant to your needs; the next section describes locations
 where you can fetch a variety of Python versions.

Where to Get Python
If there is no Python on your machine, you will need to install
 one yourself. The good news is that Python is an open source system that
 is freely available on the Web and very easy to install on most
 platforms.
You can always fetch the latest and greatest standard
 Python release from http://www.python.org, Python’s
 official website. Look for the Downloads link on that page, and choose a
 release for the platform on which you will be working. You’ll find
 prebuilt self-installer files for Windows (run to
 install), Installer Disk Images for Mac OS X
 (installed per Mac conventions), the full source code distribution
 (typically compiled on Linux, Unix, or OS X machines to generate an
 interpreter), and more.
Although Python is standard on Linux these
 days, you can also find RPMs for Linux on the Web (unpack them with
 rpm). Python’s website also has links to pages
 where versions for other platforms are maintained, either at Python.org
 (http://www.python.org) itself or offsite. For example,
 you can find third-party Python installers for Google’s
 Android, as well as apps to install Python on
 Apple’s iOS.
A Google web search is another great way to find Python
 installation packages. Among other platforms, you can find Python
 prebuilt for iPods, Palm handhelds, Nokia cell phones, PlayStation and
 PSP, Solaris, AS/400, and Windows Mobile, though some of these are
 typically a few releases behind the curve.
If you find yourself pining for a Unix environment on a Windows
 machine, you might also be interested in installing
 Cygwin and its version of Python (see http://www.cygwin.com).
 Cygwin is a GPL-licensed library and toolset that provides full Unix
 functionality on Windows machines, and it includes a prebuilt Python
 that makes use of all the Unix tools provided.
You can also find Python on CD-ROMs supplied with Linux
 distributions, included with some products and computer systems, and
 enclosed with some other Python books. These tend to lag behind the
 current release somewhat, but usually not seriously so.
In addition, you can find Python in some free and commercial
 development bundles. At this writing, this alternative
 distributions category includes:
	ActiveState ActivePython
	A package that combines Python with extensions for
 scientific, Windows, and other development needs, including
 PyWin32 and the PythonWin IDE

	Enthought Python Distribution
	A combination of Python and a host of additional libraries
 and tools oriented toward scientific computing needs

	Portable Python
	A blend of Python and add-on packages configured to run
 directly from a portable device

	Pythonxy
	A scientific-oriented Python distribution based on Qt and
 Spyder

	Conceptive Python SDK
	A bundle targeted at business, desktop, and database
 applications

	PyIMSL Studio
	A commercial distribution for numerical analysis

	Anaconda Python
	A distribution for analysis and visualization of large data
 sets

This set is prone to change, so search the Web for details on all of the above, and
 others. Some of these are free, some are not, and some have both free and nonfree versions.
 All combine the standard Python freely available at
 http://www.python.org with additional tools, but can simplify
 install tasks for many.
Finally, if you are interested in alternative Python
 implementations, run a web search to check out
 Jython (the Python port to the Java environment)
 and IronPython (Python for the C#/.NET world), both
 of which are described in Chapter 2.
 Installation of these systems is beyond the scope of this book.

Installation Steps
Once you’ve downloaded Python, you need to install it.
 Installation steps are very platform-specific, but here are a few
 pointers for the major Python platforms (biased in volume toward
 Windows, only because that is the platform where most Python newcomers
 are likely to encounter the language first):
	Windows
	For Windows (including XP, Vista, 7, and 8), Python comes as a
 self-installer MSI program file—simply
 double-click on its file icon, and answer Yes or Next at every
 prompt to perform a default install. The default install includes
 Python’s documentation set and support for tkinter (Tkinter in Python 2.X) GUIs, shelve
 databases, and the IDLE development GUI. Python 3.3 and 2.7 are
 normally installed in the directories C:\Python33 and C:\Python27 though this can be changed
 at install time.
For convenience, on Windows 7 and earlier Python shows up
 after the install in the Start button’s All
 Programs menu (see ahead for Windows 8 notes). Python’s menu there
 has five entries that give quick access to common tasks: starting
 the IDLE user interface, reading module documentation, starting an
 interactive session, reading Python’s standard manuals, and
 uninstalling. Most of these options involve concepts explored in
 detail elsewhere in this text.
When installed on Windows, Python also automatically uses
 filename associations to register itself to
 be the program that opens Python files when their icons are
 clicked (a program launch technique described in Chapter 3). It is also possible to build
 Python from its source code on Windows, but this is not commonly
 done so we’ll skip the details here (see python.org).
Three additional install-related notes for Windows users:
 first, be sure to see the next appendix for an introduction to the
 new Windows launcher shipped with 3.3; it
 changes some of the rules for installation, file associations, and
 command lines, but can be an asset if you have multiple Python
 versions on your computer (e.g., both 2.X and 3.X). Per Appendix B, Python 3.3’s MSI
 installer also has an option to set your PATH variable to include
 Python’s directory.
Second, Windows 8 users should see the
 sidebar in this appendix “Using Python on Windows 8”. Standard Python installs
 and works the same on Windows 8, where it runs in desktop mode,
 but you won’t get the Start button menu described earlier, and the
 tablet interface on top is not yet directly supported.
Finally, some Windows Vista users may
 run into install issues related to security features. This seems
 to have been resolved over time (and Vista is relatively rare
 these days), but if running the MSI installer file directly
 doesn’t work as expected, it’s probably because MSI files are not
 true executables and do not correctly inherit administrator
 permissions (they run per the registry). To fix, run the installer
 from a command line with appropriate permissions: Select Command
 Prompt, choose “Run as administrator,” cd to the directory where
 your Python MSI file resides, and run the MSI installer with a
 command line of the form: msiexec /i
 python-2.5.1.msi.

	Linux
	For Linux, if Python or your desired flavor of it is
 not already present, you can probably obtain it as
 one or more RPM files, which you unpack in the usual way (consult
 the RPM manpage for details). Depending on which RPMs you
 download, there may be one for Python itself, and another that
 adds support for tkinter GUIs
 and the IDLE environment. Because Linux is a Unix-like system, the
 next paragraph applies as well.

	Unix
	For Unix systems, Python is usually compiled from its
 full C source code distribution. This usually only
 requires you to unpack the file and run simple configure and make commands; Python configures its own
 build procedure automatically, according to the system on which it
 is being compiled. However, be sure to see the package’s README file for more details on this
 process. Because Python is open source, its source code may be
 used and distributed free of charge.

On other platforms the installation details can differ widely, but
 they generally follow the platform’s normal conventions. For example,
 installing the “Pippy” port of Python for PalmOS required a hotsync
 operation with your PDA, and Python for the Sharp Zaurus Linux-based PDA
 was one or more .ipk files, which
 you simply ran to install (these likely still work, though finding the
 devices today may be a logistical challenge!).
More recently, Python can be installed and used on Android and
 iOS platforms too, but installation and usage
 techniques are too platform-specific to cover here. For additional
 install procedures and the latest on available ports, try both Python’s
 website and a web search.
Using Python on Windows 8
Windows 8 was released as this edition was being written. As mentioned in the
 preface, this book was developed on both Windows 7 and 8, but mostly
 under Windows 7 because the choice is irrelevant to almost everything
 in this book—both Python 2.X and 3.X presently work only in
 desktop mode on Windows 8, but install and run
 there the same as in Windows 7, Vista, XP, and others. Once you
 navigate past the tablet-like layer at the top, usage is almost
 entirely as before.
The only notable exception to this is Windows 8’s lack of a
 Start button menu in desktop mode. You don’t get
 the nice menu of Python options automatically, though you can simulate
 it manually. Although this story is prone to change (and you should
 take this sidebar as an early report), here are a few Windows 8 usage
 notes.
At this writing, the standard Python Windows MSI installer
 program installs Python on Windows 8 correctly, and exactly as in the
 past: you get the same filename associations for icon clicks, access
 from command lines, and so on. The installer also creates a Start
 screen button on Windows 8, but Python itself runs in Windows 8’s
 desktop mode, which is essentially the same as Windows 7 without a
 Start button menu. For example, the Windows 8 Start screen button
 created by the Python install simply switches control to desktop mode
 to open a Python interactive shell.
The upside to this is that all existing Python software works on
 Windows 8’s desktop just as before. One downside is that you’ll need
 to create shortcuts for the user-friendly Start button menu items
 created automatically on former Windows versions. This includes the
 former menu’s links to the IDLE GUI, PyDoc, Python’s command-line
 interface, and Python’s manuals set.
This isn’t a showstopper—you can emulate the former Start button
 menu’s items with either tiles on the Start screen or shortcuts on the
 desktop taskbar. To do so, you might look up these tools in a variety
 of ways:
	By navigating to their corresponding filename in a File
 Explorer, opened by right-clicking the screen’s lower-left
 corner.

	By searching for their name in the Search “charm,” opened by
 pulling down the screen’s top-right corner.

	By finding their entry after right-clicking on the Start
 screen to open the All apps display, which is
 reminiscent of the former Start button menus.

	By locating their tiles on your Start screen, if they have
 any.

For example, you can locate IDLE by
 navigating to the file idle.py in
 C:\Python33\Lib, by searching on
 “idle,” by finding IDLE in “All apps,” or by clicking a Start screen
 tile if one exists. You can find Python itself in the same ways (and
 probably others). This isn’t quite as nice as the original Start
 button menus out of the box, but it suffices.
Probably the bigger potential downside on
 Windows 8 is that while Python runs fine in desktop mode, it doesn’t
 yet have an official port to run as a Start screen style “app.” That
 is, standard Python does not yet run programs in the
 WinRT (formerly known as
 Metro) environment—the tile-based media
 consumption layer that appears first when you start Windows 8, and
 before you can click your way to the desktop. This may be a temporary
 state, though, as a number of options either already exist or are
 being actively explored.
On one front, it’s not impossible that Python’s
 installer may be enhanced for Windows 8’s
 nondesktop mode. There has already been work on porting Python to run
 as a Start screen “app,” though this may appear as a separate
 installer package due to differences in the underlying libraries (in
 short, WinRT runs programs in a classic “sandbox” model, with a
 restricted subset of the libraries available normally).
On other fronts, the C#/.NET-based IronPython system may offer
 additional Windows 8 “app” development options, and some of Python’s major GUI
 toolkits such as tkinter, wxPython, and PyQt could eventually provide
 portability to the Windows 8 “apps” environment as well. The Qt library underlying the
 latter of these seems to have already showed some progress in this department.
For now, existing Python software runs fine
 in Windows 8’s desktop mode unchanged. Developing or running Python
 code in the Start screen “apps” environment will likely require
 special handling and platform-specific APIs not unlike those required
 to run Python on other tablet- and phone-oriented platforms based on
 Google’s Android and Apple’s
 iOS (iPhone and iPad) operating systems.
Also note that much of this sidebar applies to Window 8, but not
 Windows RT. The latter does not run third-party
 desktop mode applications directly, and may need to await a sanctioned
 Python installer that supports the WinRT “app” API in general.
Then again, the Windows 8 story remains to be told. Be sure to
 watch for developments in both Windows and Python’s installer for it.
 For now, a simple tile click or Windows-key press to hop into desktop
 mode will allow most Python programmers on Windows to safely ignore
 the tablet-like interface on top—at least until “apps” trounce
 “programs” altogether.1

Configuring Python
After you’ve installed Python, you may want to configure some system settings that
 impact the way Python runs your code. (If you are just getting started
 with the language, you can probably skip this section completely; there is
 usually no need to specify any system settings for basic programs.)
Generally speaking, parts of the Python interpreter’s behavior can
 be configured with environment variable settings and command-line options.
 In this section, we’ll take a brief look at both, but be sure to see other
 documentation sources for more details on the topics we introduce
 here.
Python Environment Variables
Environment variables—known to some as shell variables, or DOS variables—are
 system-wide settings that live outside Python and thus can be used to
 customize the interpreter’s behavior each time it is run on a given
 computer. Python recognizes a handful of environment variable settings,
 but only a few are used often enough to warrant explanation here. Table A-1 summarizes the main
 Python-related environment variable settings (you’ll find information on
 others in Python reference resources).
Table A-1. Important environment variables	Variable	Role
	PATH (or path)
	System shell search path (for finding “python”)

	PYTHONPATH
	Python module search path (for imports)

	PYTHONSTARTUP
	Path to Python interactive startup file

	TCL_LIBRARY, TK_LIBRARY
	GUI extension variables (tkinter)

	PY_PYTHON, PY_PYTHON3, PY_PYTHON2
	Windows launcher defaults (see Appendix B)

These variables are straightforward to use, but here are a few
 pointers:
	PATH
	The PATH setting lists a
 set of directories that the operating system
 searches for executable programs, when they are invoked without a
 full directory path. It should normally include the directory
 where your Python interpreter lives (the
 python program on Unix, or the python.exe file on Windows).
You don’t need to set this variable at all if you are
 willing to work in the directory where Python resides, or type the
 full path to Python in command lines. On Windows, for instance,
 the PATH is irrelevant if you
 run a cd C:\Python33 before
 running any code (to change to the directory where Python
 lives—though you shouldn’t generally store your own code in this
 directory per Chapter 3), or always
 type C:\Python33\python
 instead of just python
 (giving a full path).
Also note that PATH
 settings are mostly for launching programs from command lines;
 they are usually irrelevant when launching via icon clicks and
 IDEs—the former uses filename associations, and the latter uses
 built-in mechanisms, and doesn’t generally require this
 configuration step. See also Appendix B for details on 3.3’s
 automatic PATH setting option
 at install time.

	PYTHONPATH
	The PYTHONPATH setting
 serves a role similar to PATH: the Python interpreter consults
 the PYTHONPATH variable to
 locate module files when you import them in a
 program. If used, this variable is set to a platform-dependent
 list of directory names, separated by colons on Unix and
 semicolons on Windows. This list normally includes just your own
 source code directories. Its content is merged into the sys.path module import search path,
 along with the script’s container directory, any .pth path file settings, and standard
 library directories.
You don’t need to set this variable unless you will be
 performing cross-directory imports—because
 Python always searches the home directory of the program’s
 top-level file automatically, this setting is required only if a
 module needs to import another module that lives in a different
 directory. See also the discussion of .pth path files later in this appendix
 for an alternative to PYTHONPATH. For more on the module
 search path, refer to Chapter 22.

	PYTHONSTARTUP
	If PYTHONSTARTUP is set
 to the pathname of a file of Python code, Python executes the file’s code
 automatically whenever you start the interactive interpreter, as
 though you had typed it at the interactive command line. This is a
 rarely used but handy way to make sure you always load certain
 utilities when working interactively; it saves an import each time
 you start a Python session.

	tkinter settings
	If you wish to use the tkinter GUI toolkit (named Tkinter in 2.X), you might have to set the two GUI variables in the last line
 of Table A-1 to the names
 of the source library directories of the Tcl and Tk systems (much
 like PYTHONPATH). However,
 these settings are not required on Windows systems (where tkinter support is installed alongside
 Python), and are usually not required on Mac OS X and Linux
 systems, unless the underlying Tcl and Tk libraries are either
 invalid or reside in nonstandard directories (see python.org’s
 Download page for more details).

	PY_PYTHON, PY_PYTHON3, PY_PYTHON2
	These settings are used to specify default Pythons when you are using the new
 (at this writing) Windows launcher that ships with Python 3.3 and
 is available separately for other versions. Since we’ll be
 exploring the launcher in Appendix B, I’ll postpone
 further details here.

Note that because these environment settings are external to
 Python itself, when you set them is usually
 irrelevant: this can be done before or after Python is installed, as
 long as they are set the way you require before Python is actually
 run—be sure to restart your Python IDEs and
 interactive sessions after making such changes if you want them to
 apply.
tkinter and IDLE GUIs on Linux and Macs
The IDLE interface described in Chapter 3 is
 a Python tkinter GUI program. The
 tkinter module (named Tkinter in 2.X) is a GUI toolkit that is
 automatically installed with standard Python on Windows, and is an
 inherent part of Mac OS X and most Linux installations.
On some Linux systems, though, the
 underlying GUI library may not be a standard installed component. To
 add GUI support to your Python on Linux if needed, try running a
 command line of the form yum
 install tkinter to automatically install tkinter’s underlying libraries. This should
 work on Linux distributions (and some other systems) on which the
 yum installation program is available; for
 others, see your platform’s installation documentation.
As also discussed in Chapter 3, on
 Mac OS X IDLE probably lives in the MacPython (or Python N.M) folder of your Applications folder (along with
 PythonLauncher, used for starting programs with clicks in Finder), but
 be sure to see the Download page at python.org if IDLE has problems;
 you may need to install an update on some OS X versions (see Chapter 3).

How to Set Configuration Options
The way to set Python-related environment variables, and what to
 set them to, depends on the type of computer you’re working on. And
 again, remember that you won’t necessarily have to set these at all
 right away; especially if you’re working in IDLE (described in Chapter 3) and save all your files in the same
 directory, configuration is probably not required up front.
But suppose, for illustration, that you have generally useful
 module files in directories called utilities and package1 somewhere on your machine, and you
 want to be able to import these modules from files located in other
 directories. That is, to load a file called spam.py in either the utilities or package1 directories, you want to be able to
 say this in another file in another directory:
import spam
To make this work, you’ll have to configure your module search
 path one way or another to include the directory containing spam.py. Here are a few tips on this process
 using PYTHONPATH as an example; do
 the same for other settings like PATH
 as needed (though 3.3 can set PATH
 automatically: see Appendix B).
Unix/Linux shell variables
On Unix systems, the way to set environment variables depends on the shell
 you use. Under the csh shell, you might add a
 line like the following in your .cshrc or .login file to set the Python module search
 path:
setenv PYTHONPATH /usr/home/pycode/utilities:/usr/lib/pycode/package1
This tells Python to look for imported modules in two
 user-defined directories. Alternatively, if you’re using the
 ksh shell, the setting might instead appear in
 your .kshrc file and look like
 this:
export PYTHONPATH="/usr/home/pycode/utilities:/usr/lib/pycode/package1"
Other shells may use different (but analogous) syntax.

DOS variables (and older Windows)
If you are using MS-DOS or some now fairly old flavors of Windows, you may need to
 add an environment variable configuration command to your C:\autoexec.bat file, and reboot your
 machine for the changes to take effect. The configuration command on
 such machines has a syntax unique to DOS:
set PYTHONPATH=c:\pycode\utilities;d:\pycode\package1
You can type such a command in a DOS console window, too, but
 the setting will then be active only for that one console window.
 Changing your .bat file makes the
 change permanent and global to all programs, though this technique has
 been superseded in recent years by that described in the next
 section.

Windows environment variable GUI
On all recent versions of Windows (including XP, Vista, 7, and
 8), you can instead set PYTHONPATH
 and other variables via the system environment variable GUI
 without having to edit files, type command lines, or reboot. Select
 the Control Panel (in your Start button in Windows 7 and earlier, and
 in the desktop mode’s Settings “charm” on Windows 8), choose the
 System icon, pick the Advanced settings tab or link, and click the
 Environment Variables button at the bottom to edit or add new
 variables (PYTHONPATH is usually a
 new user variable). Use the same variable name and values syntax shown
 in the DOS set command in the
 preceding section. On Vista you may have to verify operations along
 the way.
You do not need to reboot your machine after this, but be sure
 to restart Python if it’s open so that it picks up your changes—it
 configures its import search path at startup time only. If you’re
 working in a Windows Command Prompt window, you’ll probably need to
 restart that to pick up your changes as well.

Windows registry
If you are an experienced Windows user, you may also be able to
 configure the module search path by using the Windows Registry Editor. To open this tool, type
 regedit in the Start→Run...
 interface on some Windows, in the search field at the bottom of the
 Start button display on Windows 7, and in a Command Prompt window on
 Windows 8 and others (among other routes). Assuming the typical
 registry tool is available on your machine, you can then navigate to
 Python’s entries and make your changes. This is a delicate and
 error-prone procedure, though, so unless you’re familiar with the
 registry, I suggest using other options (indeed, this is akin to
 performing brain surgery on your computer, so be careful!).

Path files
Finally, if you choose to extend the module search path with a .pth path file instead of the PYTHONPATH variable, you might instead code
 a text file that looks like the following on Windows (e.g., file
 C:\Python33\mypath.pth):
c:\pycode\utilities
d:\pycode\package1
Its contents will differ per platform, and its container
 directory may differ per both platform and Python release. Python
 locates this file automatically when it starts up.
Directory names in path files may be absolute, or relative to
 the directory containing the path file; multiple .pth files can be used (all their
 directories are added), and .pth
 files may appear in various automatically checked directories that are
 platform- and version-specific. In general, a Python release numbered
 Python N.M typically looks for path files in
 C:\PythonNM and C:\PythonNM\Lib\site-packages on Windows,
 and in /usr/local/lib/pythonN.M/site-packages and
 /usr/local/lib/site-python on
 Unix and Linux. See Chapter 22
 for more on using path files to configure the sys.path import search path.
Because environment settings are often optional, and because
 this isn’t a book on operating system shells, I’ll defer to other
 sources for further details. Consult your system shell’s manpages or
 other documentation for more information, and if you have trouble
 figuring out what your settings should be, ask your system
 administrator or another local expert for help.

Python Command-Line Arguments
When you start Python from a system command line (a.k.a. a shell prompt,
 or Command Prompt window), you can pass in a variety of option flags to
 control how Python runs your code. Unlike the system-wide environment
 variables of the prior section, command-line arguments can be different
 each time you run a script. The complete form of a Python command-line
 invocation in 3.3 looks like this (2.7 is roughly the same, with a few
 differences described ahead):
python [-bBdEhiOqsSuvVWxX] [-c command | -m module-name | script | -] [args]
The rest of this section briefly demonstrates some of Python’s
 most commonly used arguments. For more details on available command-line
 options not covered here, see the Python manuals or reference texts. Or
 better yet, ask Python itself—run a command-line form like this:
C:\code> python -h
to request Python’s help display, which documents all available
 command-line options. If you deal with complex command lines, be sure to
 also check out the standard library modules in this domain: the original
 getop, the newer argparse, and the now-deprecated (since 3.2)
 optparse, which support more
 sophisticated command-line processing. Also see Python’s library manuals
 and other references for more on the pdb and profile modules the following tour
 deploys.
Running script files with arguments
Most command lines make use of only the
 script and args
 parts of the last section’s Python command-line format, to run a
 program’s source file with arguments to be used by the program itself.
 To illustrate, consider the following script—a text file named
 showargs.py, created in directory
 C:\code or another of your
 choosing—which prints the command-line arguments made available to the
 script as sys.argv, a Python list
 of Python strings (if you don’t yet know how to create or run Python
 script files, see the full coverage in Chapter 2 and Chapter 3; we’re interested only in
 command-line arguments here):
File showargs.py
import sys
print(sys.argv)
In the following command line, both python and showargs.py can also be complete directory
 paths—the former is assumed to be on your PATH here, and the latter is assumed to be
 in the current directory. The three arguments (a b –c) meant for the script show up in the
 sys.argv list and can be inspected
 by your script’s code there; the first item in sys.argv is always the script file’s name,
 when it is known:
C:\code> python showargs.py a b -c # Most common: run a script file
['showargs.py', 'a', 'b', '-c']
As covered elsewhere in this book, Python
 lists print in square brackets and
 strings display in quotes.

Running code given in arguments and standard input
Other code format specification options allow you to give Python
 code to be run on the command line itself (-c), and accept code to run from the
 standard input stream (a – means
 read from a pipe or redirected input stream file, terms also defined
 in full elsewhere in this text):
C:\code> python -c "print(2 ** 100)" # Read code from command argument
1267650600228229401496703205376

C:\code> python -c "import showargs" # Import a file to run its code
['-c']

C:\code> python - < showargs.py a b -c # Read code from standard input
['-', 'a', 'b', '-c']

C:\code> python - a b -c < showargs.py # Same effect as prior line
['-', 'a', 'b', '-c']

Running modules on the search path
The –m code specification
 locates a module on Python’s module search path and then runs it as a top-level script (as module
 __main__). That is, it looks up a
 script the same way import operations do, using the directory list
 normally known as sys.path, which
 includes the current directory, PYTHONPATH settings, and standard libraries.
 Leave off the “.py” suffix here, as the filename is treated as a
 module.
C:\code> python -m showargs a b -c # Locate/run module as script
['c:\\code\\showargs.py', 'a', 'b', '-c']
The –m option also supports
 running tools, modules in packages with and without relative import
 syntax, and modules located in .zip archives. For instance, this switch is
 commonly used to run the pdb
 debugger and profile profiler
 modules from a command line for a script invocation, rather than
 interactively:
C:\code> python # Interactive debugger session
>>> import pdb
>>> pdb.run('import showargs')
...more omitted: see pdb docs

C:\code> python -m pdb showargs.py a b -c # Debugging a script (c=continue)
> C:\code\showargs.py(2)<module>()
-> import sys
(Pdb) c
['showargs.py', 'a', 'b', '-c']
...more omitted: q to exit
The profiler runs and times your code; its output can vary per
 Python, operating system, and computer:
C:\code> python -m profile showargs.py a b -c # Profiling a script
['showargs.py', 'a', 'b', '-c']
 9 function calls in 0.016 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)
 2 0.000 0.000 0.000 0.000 :0(charmap_encode)
 1 0.000 0.000 0.000 0.000 :0(exec)
...more omitted: see profile docs
You might also use the -m
 switch to spawn Chapter 3’s IDLE GUI
 program located in the standard library from any other directory, and
 to start the pydoc and timeit tools modules with command lines as we do in this book in
 Chapter 15 and Chapter 21 (see those chapters for more
 details on the tools launched here):
c:\code> python -m idlelib.idle -n # Run IDLE in package, no subprocess

c:\code> python -m pydoc -b # Run pydoc and timeit tools modules

c:\code> python -m timeit -n 1000 -r 3 -s "L = [1,2,3,4,5]" "M = [x + 1 for x in L]"

Optimized and unbuffered modes
Immediately after the “python” and before the designation of
 code to be run, Python accepts additional arguments that control its
 own behavior. These arguments are consumed by Python itself and are
 not meant for the script being run. For example, -O runs Python in optimized mode and
 -u forces standard streams to be
 unbuffered—with the latter, any printed text will be finalized
 immediately, and won’t be delayed in a buffer:
C:\code> python -O showargs.py a b -c # Optimized: make/run ".pyo" byte code

C:\code> python -u showargs.py a b -c # Unbuffered standard output stream

Post-run interactive mode
Finally, the –i flag enters
 interactive mode after running a script—especially useful as a
 debugging tool, because you can print variables’ final values after a
 successful run to get more details:
C:\code> python -i showargs.py a b -c # Go to interactive mode on script exit
['showargs.py', 'a', 'b', '-c']
>>> sys # Final value of sys: imported module
<module 'sys' (built-in)>
>>> ^Z
You can also print variables this way after an exception shuts
 down your script to see what they looked like when the exception
 occurred, even if not running in debug mode—though you can start the
 debugger’s postmortem tool here as well (type is the Windows file display command;
 try a cat or other
 elsewhere):
C:\code> type divbad.py
X = 0
print(1 / X)

C:\code> python divbad.py # Run the buggy script
...error text omitted
ZeroDivisionError: division by zero

C:\code> python -i divbad.py # Print variable values at error
...error text omitted
ZeroDivisionError: division by zero
>>> X
0
>>> import pdb # Start full debugger session now
>>> pdb.pm()
> C:\code\divbad.py(2)<module>()
-> print(1 / X)
(Pdb) quit

Python 2.X command-line arguments
Besides those just mentioned, Python 2.7 supports additional
 options that promote 3.X compatibility (−3 to warn about incompatibilities, and
 –Q to control division operator
 models) and detecting inconsistent tab indentation usage, which is
 always detected and reported in 3.X (-t; see Chapter 12). Again, you can always ask
 Python 2.X itself for more on the subject as needed:
C:\code> c:\python27\python -h

Python 3.3 Windows Launcher Command Lines
Technically, the preceding section described the arguments you can pass to
 the Python interpreter itself—the program usually named python.exe on Windows, and python on Linux (the .exe is normally omitted on Windows). As we’ll
 see in the next appendix, the Windows launcher shipped with Python 3.3
 augments this story for users of 3.3 and later or the standalone
 launcher package. It adds new executables that accept Python version
 numbers as arguments in command lines used to start Python and your
 scripts (file what.py is listed and
 described in the next appendix, and simply prints the Python version
 number):
C:\code> py what.py # Windows launcher command lines
3.3.0

C:\code> py −2 what.py # Version number switch
2.7.3

C:\code> py −3.3 -i what.py -a -b -c # Arguments for all 3: py, python, script
3.3.0
>>> ^Z
In fact, as the last run of the preceding example shows, command
 lines using the launcher can give arguments for the launcher itself
 (−3.3), Python itself (-i), and your script (-a, -b, and
 -c). The launcher can also parse
 version numbers out of #! Unix lines
 at the top of script files instead. Because the next appendix is devoted
 to this launcher entirely, though, you’ll have to read on for the rest
 of this story.

For More Help
Python’s standard manual set today includes valuable pointers for usage on
 various platforms. The standard manual set is available in your Start
 button on Windows 7 and earlier after Python is installed (option “Python
 Manuals”), and online at http://www.python.org. Look for the manual set’s top-level
 section titled “Using Python” for more platform-specific pointers and
 hints, as well as up-to-date cross-platform environment and command-line
 details.
As always, the Web is your ally, too, especially in a field that
 often evolves faster than books like this can be updated. Given Python’s
 widespread adoption, chances are good that answers to any high-level usage
 questions you may have can be found with a web search.

1 Lest that seem too sarcastic, I should note that Windows 8.1
 may address some launch screen and Start button (if not menu)
 concerns per late-breaking rumors, and this edition’s new Windows
 8 sidebar replaces one in prior editions that discussed a Windows
 Vista issue. Any similarities you might deduce from that are
 officially coincidental.

Appendix B. The Python 3.3 Windows Launcher
This appendix describes the new Windows launcher for Python, installed
 with Python 3.3 automatically, and available separately on the Web for use
 with older versions. This new launcher provides an extra layer of code that chooses and starts an installed Python. Though it comes with some pitfalls, the launcher
 provides some much-needed coherence for program execution when multiple
 Pythons coexist on the same computer.
I’ve written this page for programmers using Python on Windows. Though
 it is platform-specific by nature, it’s targeted at both Python beginners
 (most of whom get started on this platform), as well as Python developers
 who write code to work portably between Windows and Unix. As we will see,
 the new launcher changes the rules on Windows radically enough to impact
 everyone who uses Python on Windows, or may in the
 future.
The Unix Legacy
To fully understand the launcher’s protocols, we have to begin with a short history
 lesson. Unix developers long ago devised a protocol for designating a
 program to run a script’s code. On Unix systems (including Linux and Mac
 OS X), the first line in a script’s text file is special if it begins with
 a two-character sequence: #!, sometimes
 called a shebang (an arguably silly phrase I promise
 not to repeat from here on).
Chapter 3 gives a brief overview of
 this topic, but here’s another look. In Unix scripts, such lines designate
 a program to run the rest of the script’s contents, by coding it after the
 #!—using either the directory path to
 the desired program itself, or an invocation of the env Unix utility that looks up the target per
 your PATH setting, the customizable
 system environment variable that lists directories to be searched for
 executables:
#!/usr/local/bin/python
...script's code # Run under this specific program

#!/usr/bin/env python
...script's code # Run under "python" found on PATH
By making such a script executable (e.g., via chmod +x script.py), you can run it by giving
 just its filename in a command line; the #! line at the top then directs the Unix shell
 to a program that will run the rest of the file’s code. Depending on the
 platform’s install structure, the python that these #! lines name might be a real executable, or a
 symbolic link to a version-specific executable located elsewhere. These
 lines might also name a more specific executable explicitly, such as
 python3. Either way, by changing
 #! lines, symbolic links, or PATH settings, Unix developers can route a
 script to the appropriate installed Python.
None of this applies to Windows itself, of course, where #! lines have no inherent meaning. Python itself
 has historically ignored such lines as comments if present on Windows (“#”
 starts a comment in the language). Still, the idea of selecting Python
 executables on a per-file basis is a compelling feature in a world where
 Python 2.X and 3.X often coexist on the same machine. Given that many
 programmers coded #! lines for
 portability to Unix anyhow, the idea seemed ripe for emulating.

The Windows Legacy
The install model has been very different on the other side of the fence. In the past
 (well, in every Python until 3.3), the Windows installer updated the
 global Windows registry such that the latest Python version installed on
 your computer was the version that opened Python files when they were
 clicked or run by direct filename in command lines.
Some Windows users may know this registry as filename
 associations, configurable in Control Panel’s Default
 Programs dialog. You do not need to give files executable privileges for
 this to work, as you do for Unix scripts. In fact, there’s no such concept
 on Windows—filename associations and commands suffice to launch files as
 programs.
Under this install model, if you wished to open a file with a
 different version than the latest install, you had to run a command line
 giving the full path to the Python you wanted, or update your filename
 associations manually to use the desired version. You could also point
 generic python command lines to a
 specific Python by setting or changing your PATH setting, but Python didn’t set this for
 you, and this wouldn’t apply to scripts launched by icon clicks and other
 contexts.
This reflects the natural order on Windows (when you click on a
 .doc file, Windows usually opens it
 in the latest Word installed), and has been the state of things ever since
 there was a Python on Windows. It’s less ideal if you have Python scripts
 that require different versions on the same machine, though—a situation
 that has become increasingly common, and perhaps even normal in the dual
 Python 2.X/3.X era. Running multiple Pythons on Windows prior to 3.3 can
 be tedious for developers, and discouraging for newcomers.

Introducing the New Windows Launcher
The new Windows launcher, shipped and installed automatically with Python 3.3 (and
 presumably later), and available as a standalone package for use with
 other versions, addresses these deficits in the former install model by
 providing two new executables:
	py.exe for console
 programs

	pyw.exe for nonconsole
 (typically GUI) programs

These two programs are registered to open .py and .pyw files, respectively, via Windows filename
 associations. Like Python’s original python.exe main program (which they do not
 deprecate but can largely subsume), these new executables are also
 registered to open byte code files launched directly. Amongst their
 weapons, these two new executables:
	Automatically open Python source and byte-code files launched by
 icon clicks or filename commands, via Windows associations

	Are normally installed on your system search path and do not
 require a directory path or PATH
 settings when used as command lines

	Allow Python version numbers to be passed in easily as
 command-line arguments, when starting both scripts and interactive
 sessions

	Attempt to parse Unix-style #! comment lines at the top of scripts to
 determine which Python version should be used to run a file’s
 code

The net effect is that under the new launcher, when multiple Pythons
 are installed on Windows, you are no longer limited to either the latest
 version installed or explicit/full command lines. Instead, you can now
 select versions explicitly on both a per-file and per-command basis, and
 specify versions in either partial or full form in both contexts. Here’s
 how this works:
	To select versions per file, use Unix-style
 top-of-script comments like these:
	#!python2
	#!/usr/bin/python2.7
	#!/usr/bin/env
 python3

	To select versions per command, use command
 lines of the following forms:
	py −2 m.py
	py −2.7 m.py
	py −3 m.py

For example, the first of these techniques can
 serve as a sort of directive to declare which Python version the script
 depends upon, and will be applied by the launcher whenever the script is
 run by command line or icon click (these are variants of a file named
 script.py):
#!python3
...
...a 3.X script # Runs under latest 3.X installed
...

#!python2
...
...a 2.X script # Runs under latest 2.X installed
...

#!python2.6
...
...a 2.6 script # Runs under 2.6 (only)
...
On Windows, command lines are typed in a Command Prompt window,
 designated by its C:\code> prompt in
 this appendix. The first of the following is the same as both the second
 and an icon click, because of filename associations:
C:\code> script.py # Run per file's #! line if present, else per default
C:\code> py script.py # Ditto, but py.exe is run explicitly
Alternatively, the second technique just listed
 can select versions with argument switches in command lines
 instead:
C:\code> py −3 script.py # Runs under latest 3.X
C:\code> py −2 script.py # Runs under latest 2.X
C:\code> py −2.6 script.py # Runs under 2.6 (only)
This works when both launching scripts, and starting the interactive
 interpreter (when no script is named):
C:\code> py −3 # Starts latest 3.X, interactive
C:\code> py −2 # Starts latest 2.X, interactive
C:\code> py −3.1 # Starts 3.1 (only), interactive
C:\code> py # Starts default Python (initially 2.X: see ahead)
If there are both #! lines in the file and a version number switch
 in the command line used to start it, the command line’s version overrides
 that in the file’s directive:
#! python3.2
...
...a 3.X script
...

C\code> py script.py # Runs under 3.2, per file directive
C\code> py −3.1 script.py # Runs under 3.1, even if 3.2 present
The launcher also applies heuristics to select
 a specific Python version when it is missing or only partly described. For
 instance, the latest 2.X is run when only a 2 is specified, and a 2.X is preferred for files
 that do not name a version in a #! line
 when launched by icon click or generic command lines (e.g., py m.py, m.py), unless you configure the default to use
 3.X instead by setting PY_PYTHON or a
 configuration file entry (more on this ahead).
Especially in the current dual 2.X/3.X Python world, explicit
 version selection seems a useful addition for Windows, where many (and
 probably most) newcomers get their first exposure to the language.
 Although it is not without potential pitfalls—including failures on
 unrecognized Unix #! lines and a
 puzzling 2.X default—it does allow for a more graceful coexistence of 2.X
 and 3.X files on the same machine, and provides a rational approach to
 version control in command lines.
For the complete story on the Windows launcher, including more
 advanced features and use cases I’ll either condense or largely omit here,
 see Python’s release notes and try a web search to find the PEP (the
 proposal document). Among other things, the launcher also allows selecting
 between 32- and 64-bit installs, specifying defaults in configuration
 files, and defining custom #! command
 string expansion.

A Windows Launcher Tutorial
Some readers familiar with Unix scripting may find the prior section
 enough to get started. For others, this section provides additional
 context in the form of a tutorial, which gives concrete examples of the
 launcher in action for you to trace through. This section also discloses
 additional launcher details along the way, though, so even well-seasoned
 Unix veterans may benefit from a quick scan here before FTPing all their
 Python scripts to the local Windows box.
To get started, we’ll be using the following simple script,
 what.py, which can be run under both
 2.X and 3.X to echo the version number of the Python that runs its code.
 It uses sys.version—a string whose
 first component after splitting on whitespace is Python’s version
 number:
#!python3
import sys
print(sys.version.split()[0]) # First part of string
If you want to work along, type this script’s code in your favorite
 text file editor, open a Command Prompt window for typing the command
 lines we’ll be running, and cd to the
 directory where you’ve save the script (C:\code is where I’m working, but feel free to
 save this wherever you wish, and see Chapter 3 for more Windows usage pointers).
This script’s first-line comment serves to designate the required
 Python version; it must begin with #! per Unix convention,
 and allows for a space before the python3 or not. On my machine I currently have
 Pythons 2.7, 3.1, 3.2, and 3.3 all installed; let’s watch which version is
 invoked as the script’s first line is modified in the following sections,
 exploring file directives, command lines, and defaults along the
 way.
Step 1: Using Version Directives in Files
As this script is coded, when run by icon click or command line,
 the first line directs the registered py.exe launcher to run using the latest 3.X
 installed:
#! python3
import sys
print(sys.version.split()[0])

C:\code> what.py # Run per file directive
3.3.0

C:\code> py what.py # Ditto: latest 3.X
3.3.0
Again, the space after #! is
 optional; I added a space to demonstrate the point here. Note that the
 first what.py command here is
 equivalent to both an icon click and a full py
 what.py, because the py.exe
 program is registered to open .py
 files automatically in the Windows filename associations registry when
 the launcher is installed.
Also note that when launcher documentation (including this
 appendix) talks about the latest version, it means
 the highest-numbered version. That is, it refers to
 the latest released, not the latest installed on your computer (e.g., if
 you install 3.1 after 3.3, #!python3
 selects the latter). The launcher cycles through the Pythons on your
 computer to find the highest-numbered version that matches your
 specification or defaults; this differs from the former
 last-installed-wins model.
Now, changing the first line name to python2 triggers the latest (really,
 highest-numbered) 2.X installed instead. Here’s this change at work;
 I’ll omit the last two lines of our script from this point on because
 they won’t be altered:
#! python2
...rest of script unchanged

C:\code> what.py # Run with latest 2.X per #!
2.7.3
And you can request a more specific version if needed—for example,
 if you don’t want the latest in a Python line:
#! python3.1
...

C:\code> what.py # Run with 3.1 per #!
3.1.4
This is true even if the requested version is not
 installed—which is treated as an error case by the
 launcher:
#! python2.6
...

C:\code> what.py
Requested Python version (2.6) is not installed
Unrecognized Unix #! lines are also treated as errors, unless
 you give a version number as a command-line switch to compensate, as the
 next section describes in more detail (and as the section on launcher
 issues will revisit as a pitfall):
#!/bin/python
...

C:\code> what.py
Unable to create process using '/bin/python "C:\code\what.py" '

C:\code> py what.py
Unable to create process using '/bin/python what.py'

C:\code> py −3 what.py
3.3.0
Technically, the launcher recognizes
 Unix-style #! lines at the top of
 script files that follow one of the following four patterns:
#!/usr/bin/env python*
#!/usr/bin/python*
#!/usr/local/bin/python*
#!python*
Any #! line that does not take
 one of these recognized and parseable forms is assumed to be a fully
 specified command line to start a process to run the file, which is
 passed to Windows as is, and generates the error message we saw
 previously if it is not a valid Windows command. (The launcher also
 supports “customized” command expansions via its configuration files,
 which are attempted before passing unrecognized commands on to Windows,
 but we’ll gloss over these here.)
In recognizable #! lines,
 directory paths are coded per Unix convention, for portability to that
 platform. The * part at the end of
 the four preceding recognized patterns denotes an optional Python
 version number, in one of three forms:
	Partial (e.g., python3)
	To run the version installed with the highest minor release
 number among those with the major release number given

	Full (e.g., python3.1)
	To run that specific version only, optionally suffixed by
 −32 to prefer a 32-bit version
 (e.g., python3.1-32)

	Omitted (e.g., python)
	To run the launcher’s default version, which is 2 unless changed (e.g., by setting the
 PY_PYTHON environment variable
 to 3), another pitfall
 described ahead

Files with no #! line at all behave the same as those that
 name just a generic python—the
 aforementioned omitted case—and are influenced by PY_PYTHON default settings. The first case,
 partials, may also be affected by version-specific environment settings
 (e.g., set PY_PYTHON3 to 3.1 to select 3.1 for python3, and set PY_PYTHON2 to 2.6 to pick 2.6 for python2). We’ll revisit defaults later in this
 tutorial.
First, though, note that anything after the * part in a #! line’s format is assumed to be command-line
 arguments to Python itself (i.e., program python.exe), unless you also give arguments in
 a py command line that are deemed to
 supersede #! line arguments by the
 launcher:
#!python3 [any python.exe arguments go here]
...
These include all the Python command-line arguments we met in
 Appendix A. But this leads us to
 launcher command lines in general, and will suffice as a natural segue
 to the next section.

Step 2: Using Command-Line Version Switches
As mentioned, version switches on command lines can be used to
 select a Python version if one isn’t present in the file. You run a
 py or pyw command line to pass them a switch this
 way, instead of relying on filename associations in the registry, and
 instead of (or in addition to) giving versions in #! lines in files. In the following, we modify
 our script so that it has no #!
 directive:
not a launcher directive
...

C:\code> py −3 what.py # Run per command-line switch
3.3.0

C:\code> py −2 what.py # Ditto: latest 2.X installed
2.7.3

C:\code> py −3.2 what.py # Ditto: 3.2 specifically (and only)
3.2.3

C:\code> py what.py # Run per launcher's default (ahead)
2.7.3
But command-line switches also take precedence over a version
 designation in a file’s directive:
#! python3.1
...

C:\code> what.py # Run per file directive
3.1.4

C:\code> py what.py # Ditto
3.1.4

C:\code> py −3.2 what.py # Switches override directives
3.2.3

C:\code> py −2 what.py # Ditto
2.7.3
Formally, the launcher accepts the following
 command-line argument types (which exactly mirror the * part at the end of a file’s #! line described in the prior
 section):
−2 Launch the latest Python 2.X version
-3 Launch the latest Python 3.X version
-X.Y Launch the specified Python version (X is 2 or 3)
-X.Y−32 Launch the specified 32-bit Python version
And the launcher’s command lines take the following general
 form:
py [py.exe arg] [python.exe args] script.py [script.py args]
Anything following the launcher’s own argument (if present) is
 treated as though it were passed to the python.exe program—typically, this includes
 any arguments for Python itself, followed by the script filename,
 followed by any arguments meant for the script.
The usual -m mod, -c cmd, and - program specification forms work in a
 py command line too, as do all the
 other Python command-line arguments covered in Appendix A. As mentioned earlier,
 arguments to python.exe can also
 appear at the end of the #! directive
 line in a file, if used, though arguments in py command lines override them.
To see how this works, let’s write a new script that extends the
 prior to display command-line arguments; sys.argv is the script’s own arguments, and
 I’m using the Python (python.exe)
 -i switch, which directs it to the
 interactive prompt (>>>)
 after a script runs:
args.py, show my arguments too
import sys
print(sys.version.split()[0])
print(sys.argv)

C:\code> py −3 -i args.py -a 1 -b -c # −3: py, -i: python, rest: script
3.3.0
['args.py', '-a', '1', '-b', '-c']
>>> ^Z

C:\code> py -i args.py -a 1 -b -c # Args to python, script
2.7.3
['args.py', '-a', '1', '-b', '-c']
>>> ^Z

C:\code> py −3 -c print(99) # −3 to py, rest to python: "-c cmd"
99

C:\code> py −2 -c "print 99"
99
Notice how the first two launches run the default Python unless a
 version is given in the command line, because no #! line appears in the script itself. Somewhat
 coincidentally, that leads us to the last topic of this tutorial.

Step 3: Using and Changing Defaults
As also mentioned, the launcher defaults to 2.X for a generic
 python in a #! directive with no specific version number.
 This is true whether this generic form appears in a full Unix path
 (e.g., #!/usr/bin/python) or not
 (#!python). Here’s the latter case in
 action, coded in our original what.py script:
#!python
... # Same as #!/usr/bin/python

C:\code> what.py # Run per launcher default
2.7.3
The default is also applied when no directive is present at
 all—perhaps the most common case for code written to be used on Windows
 primarily or exclusively:
not a launcher directive
...

C:\code> what.py # Also run per default
2.7.3

C:\code> py what.py # Ditto
2.7.3
But you can set the launcher’s default to 3.X with initialization
 file or environment variable settings, which will apply to both files
 run from command lines and by icon clicks via their name’s association
 with py.exe or pyw.exe in the Windows registry:
not a launcher directive
...

C:\code> what.py # Run per default
2.7.3

C:\code> set PY_PYTHON=3 # Or via Control Panel/System
C:\code> what.py # Run per changed default
3.3.0
As suggested earlier, for more fine-grained control you can also
 set version-specific environment variables to direct
 partial selections to a specific release, instead
 of falling back on the installed release with the highest minor
 number:
#!python3
...

C:\code> py what.py # Runs "latest" 3.X
3.3.0

C:\code> set PY_PYTHON3=3.1 # Use PY_PYTHON2 for 2.X
C:\code> py what.py # Override highest-minor choice
3.1.4
The set used in these
 interactions applies to its Command Prompt window only; making such
 settings in the Control Panel’s System window will make them apply
 globally across your machine (see Appendix A for help with these
 settings). You may or may not want to set defaults this way depending on
 the majority of the Python code you’ll be running. Many Python 2.X users
 can probably rely on defaults unchanged, and override them in #! lines or py command lines as needed.
However, the setting used for directive-less files, PY_PYTHON, seems fairly crucial. Most
 programmers who have used Python on Windows in the past will probably
 expect 3.X to be the default after installing 3.3, especially given that
 the launcher is installed by 3.3 in the first place—a seeming paradox,
 which leads us to the next section.

Pitfalls of the New Windows Launcher
Though the new Windows launcher in 3.3 is a nice addition, like much in 3.X
 it may have been nicer had it appeared years ago. Unfortunately, it comes
 with some backward incompatibilities, which may be an inevitable byproduct
 of today’s multiversion Python world, but which may also break some
 existing programs. This includes examples in books I’ve written, and
 probably many others. While porting code to 3.3, I’ve come across three
 launcher issues worth noting:
	Unrecognized Unix #! lines
 now make scripts fail on Windows.

	The launcher defaults to using 2.X unless
 told otherwise.

	The new PATH extension is off
 by default and seems contradictory.

The rest of this section gives a rundown of each of these three
 issues in turn. In the following, I use the programs in my book Programming Python, 4th
 Edition, as an example to illustrate the impacts of launcher
 incompatibilities, because porting these 3.1/3.2 examples to 3.3 was my
 first exposure to the new launcher. In my specific case, installing 3.3
 broke numerous book examples that worked formerly under 3.2 and 3.1. The
 causes for these failures outlined here may break your code too.
Pitfall 1: Unrecognized Unix #! Lines Fail
The new Windows launcher recognizes Unix #! lines that begin with #!/usr/bin/env python but
 not the other common Unix form #!/bin/env python (which is actually mandated
 on some Unixes). Scripts that use the latter of these, including some of
 my book examples, worked on Windows in the past because their #! lines coded for Unix compatibility have
 been ignored as comments by all Windows Pythons to date. These scripts
 now fail to run in 3.3 because the new launcher doesn’t recognize their
 directive’s format and posts an error message.
More generally, scripts with any #! Unix line not recognized will now fail to
 run on Windows. This includes scripts having any first line that begins
 with a #! that is not followed by one
 of the four recognized patterns described earlier: /usr/bin/env python*, /usr/bin/python*, /usr/local/bin/python*, or python*. Anything else won’t work, and
 requires code changes. For instance, a somewhat common #!/bin/python line also causes a script to now
 fail on Windows, unless a version number is given in command-line
 switches.
Unix-style #! lines probably
 aren’t present in Windows-only programs, but can be common in programs
 meant to be run on Unix too. Treating unrecognized Unix directives as
 errors on Windows seems a bit extreme, especially given that this is new
 behavior in 3.3, and will likely be unexpected. Why not just ignore
 unrecognized #! lines and run the
 file with the default Python—like every Windows Python to date has? It’s
 possible that this might be improved in a future 3.X release (there may
 be some pushback on this), but today you must change any files using a
 #!/bin/env or other unrecognized
 pattern, if you want them to run under the launcher installed with
 Python 3.3 on Windows.
Book examples impact and fix
With respect to the book examples I ported to 3.3, this broke
 roughly a dozen scripts that started with #!/bin/env python. Regrettably, this
 includes some of the book’s user-friendly and top-level demo launcher
 scripts (PyGadgets and
 PyDemos). To fix, I changed these to use the
 accepted #!/usr/bin/env python form
 instead. Altering your Windows file associations to omit the launcher
 altogether may be another option (e.g., associating .py files with python.exe instead of py.exe), but this negates the launcher’s
 benefits, and seems a bit much to ask of users, especially
 newcomers.
One open issue here: strangely, passing any
 command-line switch to the launcher, even a python.exe argument, seems to negate this
 effect and fall back on the default Python—m.py and py
 m.py both issue errors on unrecognized #! lines, but py -i
 m.py runs such a file with the default Python. This seems a
 possible launcher bug, but also relies on the default, the subject of
 the next issue.

Pitfall 2: The Launcher Defaults to 2.X
Oddly, the Windows 3.3 launcher defaults to using an installed
 Python 2.X when running scripts that don’t select 3.X explicitly. That
 is, scripts that either have no #!
 directive or use one that names python generically will be run by a 2.X Python
 by default when launched by icon clicks, direct filename command lines
 (m.py), or launcher command lines
 that give no version switch (py
 m.py). This is true even if 3.3 is installed after a 2.X on
 your machine, and has the potential to make many 3.X scripts fail
 initially.
The implications of this are potentially broad. As one example,
 clicking the icon of a directive-less 3.X file just after installing 3.3
 may now fail, because the associated launcher assumes you mean to use
 2.X by default. This probably won’t be a pleasant first encounter for
 some Python newcomers! This assumes the 3.X file has no #! directive that provides an explicit
 python3 version number, but most
 scripts meant to run on Windows won’t have a #! line at all, and many files coded before
 the launcher came online won’t accommodate its version number
 expectations. Most 3.X users will be basically compelled to set PY_PYTHON after installing 3.3—hardly a
 usability win.
Program launches that don’t give an explicit version number might
 be arguably ambiguous on Unix too, and often rely on symbolic links from
 python to a specific version (which
 is most likely 2.X today—a state the new Windows launcher seems to
 emulate). But as for the prior issue, this probably shouldn’t trigger a
 new error on Windows in 3.3 for scripts that worked
 there formerly. Most programmers wouldn’t expect Unix comment lines to
 matter on Windows, and wouldn’t expect 2.X to be used by default just
 after installing 3.X.
Book examples impact and fix
In terms of my book examples port, this 2.X default caused
 multiple 3.X script failures after installing 3.3, for both scripts
 with no #! line, as well as scripts
 with a Unix-compatible #!/usr/bin/python line. To fix just the
 latter, change all scripts in this category to name python3 explicitly instead of just python. To fix both the former and the
 latter in a single step, set the Windows launcher’s default to be 3.X
 globally with either a py.ini
 configuration file (see the launcher’s documentation for details) or a
 PY_PYTHON environment variable
 setting as shown in the earlier examples (e.g., set PY_PYTHON=3). As mentioned in the prior
 point, manually changing your file associations is another solution,
 but none of these options seem simpler than those imposed by prior
 install schemes.

Pitfall 3: The New PATH Extension Option
Besides installing the new launcher, the Windows Python 3.3
 installer can automatically add the directory containing 3.3’s python.exe executable to your system PATH setting. The reasoning behind this is
 that it might make life easier for some Windows beginners—they can type
 just python instead of the full
 directory path to it. This isn’t a feature of the launcher per se, and
 shouldn’t cause scripts to fail in general. It had no impact on the book
 examples. But it seems to clash with the launcher’s operation and goals,
 and may be best avoided. This is a bit subtle, but I’ll explain
 why.
As described, the new launcher’s py and pyw
 executables are by default installed on your system search path, and
 running them requires neither directory paths nor PATH settings. If you start scripts with
 py instead of python command lines, the new PATH feature is irrelevant. In fact, py completely subsumes
 python in most contexts. Given that
 file associations will launch py or
 pyw instead of python anyhow, you probably should too—using
 python instead of py may prove redundant and inconsistent, and
 might even launch a version different than that used in launcher
 contexts should the two schemes’ settings grow out of sync. In short,
 adding python to PATH seems contradictory
 to the new launcher’s worldview, and potentially error-prone.
Also note that updating your PATH assumes you want a
 python command to run 3.3 normally,
 and this feature is disabled by default; be sure to
 select this in the install screen if you want this to work (but not if
 you don’t!). Due to the second pitfall mentioned earlier, many users may
 still need to set PY_PYTHON to
 3 for programs run by icon clicks
 that invoke the new launcher, which seems no simpler than setting
 PATH, a step that the launcher was
 meant to remove. You may be better served by using just the launcher’s
 executables, and changing just PY_PYTHON as
 needed.

Conclusions: A Net Win for Windows
To be fair, some of the prior section’s pitfalls may be an inevitable consequence of
 trying to simultaneously support a Unix feature on Windows and multiple
 installed versions. In exchange, it provides a coherent way to manage
 mixed-version scripts and installations. You’ll probably find the Windows
 launcher shipped with 3.3 and later to be a major asset once you start
 using it, and get past any initial incompatibilities you may
 encounter.
In fact, you may also want to start getting into the habit of coding
 compatible Unix-style #! lines in your
 Windows scripts, with explicit version numbers (e.g., #!/usr/bin/python3). Not only does this declare
 your code’s requirements and arrange for its proper execution on Windows,
 it will also subvert the launcher’s defaults, and may also make your
 script usable as a Unix executable in the future.
But you should be aware that the launcher may break some formerly
 valid scripts having #! lines, may
 choose a default version that you don’t expect and your scripts can’t use,
 and may require configuration and code changes on the order of those it
 was intended to obviate. The new boss is better than the old boss, but
 seems to have gone to the same school.
For more on Windows usage, see Appendix A for installation and
 configuration, Chapter 3 for general
 concepts, and platform-specific documents in Python’s manuals set.

Appendix C. Python Changes and This Book
This appendix briefly summarizes changes made in recent releases of Python
 organized by the book editions where they first appeared, and gives links to
 their coverage in this book. It is intended as a reference for both readers
 of prior editions, as well as developers migrating from prior Python
 releases.
Here’s how changes in Python relate to this book’s recent
 editions:
	This fifth edition of 2013 covers Python 3.3
 and 2.7.

	The fourth edition of 2009 covered Python 2.6
 and 3.0 (with some 3.1 features).

	The third edition of 2007 covered Python
 2.5.

	The first and second
 editions of 1999 and 2003 covered Pythons 2.0 and 2.2.

	The predecessor of this book, 1996’s Programming
 Python, covered Python 1.3.

Hence, to see changes made in just this fifth
 edition, see the Python 2.7, 3.2, and 3.3 changes listed ahead. For changes
 incorporated into both the fourth and fifth editions
 (that is, since the third), also see Python 2.6, 3.0,
 and 3.1 changes here. Third edition language changes are listed very briefly
 too, though this seems of only historical value today.
Also note that this appendix focuses on major changes and book
 impacts, and is not intended as a complete guide to Python’s evolution. For
 the fuller story on changes applied in each new Python release, consult the
 “What’s New” documents that are part of its standard documentation set, and
 available at the Documentation page of python.org. Chapter 15 covers Python documentation and its
 manuals set.
Major 2.X/3.X Differences
Much of this appendix relates Python changes to book coverage. If
 you’re instead looking for a quick summary of the most prominent 2.X/3.X
 distinctions, the following may suffice. Note that this section primarily
 compares the latest 3.X and 2.X releases—3.3 and 2.7. Many 3.X features
 are not listed here because they were either also added to 2.6 (e.g., the
 with statement and class decorators),
 or back-ported later to 2.7 (e.g., set and dictionary comprehensions), but
 are not available in earlier 2.X releases. See later sections for more
 fine-grained information about changes in earlier versions, and see
 Python’s “What’s New” documents for changes that may appear in future
 releases.
3.X Differences
The following summarizes tools that differ across Python
 lines.
	Unicode string model: In 3.X, normal
 str strings support all Unicode
 text including ASCII, and the separate bytes type represents raw 8-bit byte
 sequences. In 2.X, normal str
 strings support both 8-bit text including ASCII, and a separate
 unicode type represents richer
 Unicode text as an option.

	File model: In 3.X, files created by
 open are specialized by
 content—text files implement Unicode encodings and represent content
 as str strings, and binary files
 represent content as bytes
 strings. In 2.X, files use distinct interfaces—files created by
 open represent content as
 str strings for content that is
 either 8-bit text or bytes-based data, and codecs.open implements Unicode text
 encodings.

	Class model: In 3.X, all classes derive
 from object automatically and
 acquire the numerous changes and extensions of
 new-style classes, including their differing
 inheritance algorithm, built-ins dispatch, and MRO search order for
 diamond-pattern trees. In 2.X, normal classes follow the
 classic model, and explicit inheritance from
 object or other built-in types
 enables the new-style model as an option.

	Built-in iterables: In 3.X, map, zip, range, filter, and dictionary keys, values, and items are all iterable objects that
 generate values on request. In 2.X, these calls create physical
 lists.

	Printing: 3.X provides a built-in
 function with keyword arguments for configuration, while 2.X
 provides a statement with special syntax for configuration.

	Relative imports: Both 2.X and 3.X
 support from . relative import
 statements, but 3.X changes the search rule to skip a package’s own
 directory for normal imports.

	True division: Both 2.X and 3.X support
 the // floor division operator,
 but the / is true division in 3.X
 and retains fractional remainders, while / is type-specific in 2.X.

	Integer types: 3.X has a single integer
 type that supports extended precision. 2.X has both normal int and extended long, and automatic conversion to long.

	Comprehension scopes: In 3.X, all
 comprehension forms—list, set, dictionary, generator—localize
 variables to the expression. In 2.X, list comprehensions do
 not.

	PyDoc: An all-browser pydoc –b interface is supported as of 3.2
 and required as of 3.3. In 2.X, the original pydoc –g GUI client interface may be used
 instead.

	Byte code storage: As of 3.2, 3.X stores
 byte code files in a __pycache__
 subdirectory of the source directory, with version-identifying
 names. In 2.X, byte code is stored in the source file directory with
 generic names.

	Built-in system exceptions: As of 3.3,
 3.X has a reworked exception hierarchy for OS and IO classes that
 includes additional categories and granularity. In 2.X, exception
 attributes must sometimes be inspected on system errors.

	Comparisons and sorts: In 3.X, relative
 magnitude comparisons of both mixed-types and dictionaries are
 errors, and sorts do not support mixed types or general comparison
 functions (use key mappers
 instead). In 2.X all these forms work.

	String exceptions and module functions:
 String-based exceptions are fully removed in 3.X, though they are
 also gone in 2.X as of 2.6 (use classes instead). string module functions redundant with
 string object methods are also removed in 3.X.

	Language removals: Per Table C-2, 3.X removes, renames, or
 relocates many 2.X language items: reload, apply, `x`, <>, 0177, 999L, dict.has_key,
 raw_input, xrange, file, reduce, and file.xreadlines.

3.X-Only Extensions
The following summarizes tools available in 3.X only.
	Extended sequence assignment: 3.X allows
 a * in sequence assignment
 targets to collect remaining unmatched iterable items in a list. 2.X
 can achieve similar effects with slicing.

	Nonlocal: 3.X provides a nonlocal statement, which allows names in
 enclosing function scopes to be changed from within nested
 functions. 2.X can achieve similar effects with function attributes,
 mutable objects, and class state.

	Function annotations: 3.X allows function
 arguments and return types to be annotated with objects that are
 retained in the function but not otherwise used. 2.X may often
 achieve similar effects with extra objects or decorator
 arguments.

	Keyword-only arguments: 3.X allows
 specification of function arguments that must be passed as keywords,
 typically used for extra configuration options. 2.X may often
 achieve similar effects with argument analysis and dictionary
 pops.

	Chained exceptions: 3.X allows exceptions
 to be chained and thus appear in error messages, with a raise from extension; 3.3 allows a
 None to cancel the chain.

	Yield from: As of 3.3, the yield statement may delegate to a nested
 generator with from. 2.X can
 often achieve similar results with a for loop in simpler use cases.

	Namespace packages: As of 3.3, the
 package model is extended to allow packages that span multiple
 directories with no initialization file, as a fallback option. 2.X
 might achieve similar effects with import extensions.

	Windows launcher: As of 3.3, a launcher
 is shipped with Python for Windows, though this is also available
 separately for use on other Pythons, including 2.X.

	Internals: As of 3.2, threading is
 implemented with time slices instead of virtual machine instruction
 counts, and 3.3 stores Unicode text in a variable-length scheme
 instead of fixed-size bytes. 2.X’s string model minimizes Unicode
 use in general.

General Remarks: 3.X Changes
Although the Python 3.X line covered in the two most recent editions
 of this book is largely the same language as its 2.X predecessor, it
 differs in some crucial ways. As discussed in the preface and summarized
 in the preceding section, 3.X’s nonoptional Unicode model, mandatory
 new-style classes, and broader emphasis on generators and other functional
 tools alone can make it a materially different experience.
On the whole, Python 3.X may be a cleaner
 language, but it is also in many ways a more
 sophisticated language, relying upon concepts that
 are substantially more advanced. In fact, some of its changes seem to
 assume you must already know Python in order to learn Python. The preface
 mentioned some of the more prominent circular knowledge dependencies in
 3.X that imply forward topic dependencies.
As a random example, the rationale for wrapping dictionary views in
 a list call in 3.X is incredibly subtle
 and requires substantial foreknowledge—of views, generators, and the
 iteration protocol, at the least. Keyword arguments are similarly required
 in simple tools (e.g., printing, string formatting, dictionary creation,
 and sorting) that crop up long before a newcomer learns enough about
 functions to understand them fully. One of this book’s goals is to help
 bridge this knowledge gap in today’s 2.X/3.X dual-version world.
Changes in Libraries and Tools
There are additional changes in Python 3.X not listed in this
 appendix, simply because they don’t affect this book. For example, some
 standard libraries and development tools are outside this book’s core
 language scope, though some are mentioned along the way (e.g., timeit), and others have always been covered
 here (e.g., PyDoc).
For completeness, the following sections note 3.X developments in
 these categories. Some of the changes in these categories are also
 listed later in this appendix, in conjunction with the book edition and
 Python version in which they were introduced.
Standard library changes
Formally speaking, the Python standard library is not a part of
 this book’s core language subject, even though it’s always available
 with Python, and permeates realistic Python programs. In fact, the
 libraries were not subject to the temporary 3.X language changes
 moratorium enacted during 3.2’s development.
Because of this, changes in the standard library have a larger
 impact on applications-focused books like Programming
 Python than they do here. Although most standard library
 functionality is still present, Python 3.X takes further liberties
 with renaming modules, grouping them into packages, and changing API
 call patterns.
Some library changes are much broader, though. Python 3.X’s
 Unicode model, for example, creates widespread
 differences in 3.X’s standard library—it potentially impacts any
 program that processes file content, filenames, directory walkers,
 pipes, descriptor files, sockets, text in GUIs, Internet protocols
 such as FTP and email, CGI scripts, web content of many kinds, and
 even some persistence tools such as DBM files, shelves, and
 pickles.
For a more comprehensive list of changes in 3.X’s standard
 libraries, see the “What’s New” documents for 3.X releases (especially
 3.0) in Python’s standard manual set. Because it uses Python 3.X
 throughout, the aforementioned Programming
 Python can also serve as a guide to 3.X library
 changes.

Tools changes
Though most development tools are the same between 2.X and 3.X
 (e.g., for debugging, profiling, timing, and testing), a few have
 undergone changes in 3.X along with the language and library. Among
 these, the PyDoc module documentation system has
 moved away from its former GUI client model in 3.2 and earlier,
 replacing it with an all web browser interface.
Other noteworthy changes in this category: the distutils package,
 used to distribute and install third-party software, is to be subsumed by a new
 packaging system in 3.X; the new __pycache__ byte code storage scheme described in this book, though an
 improvement, potentially impacts many Python tools and programs; and the internal
 implementation of threading changed as of 3.2 to reduce contention by
 modifying the global interpreter lock (GIL) to use absolute time slices instead of a
 virtual machine instruction counter.

Migrating to 3.X
If you are migrating from Python 2.X to Python 3.X, be sure to
 also see the 2to3 automatic code conversion script
 that is shipped with Python 3.X. It’s currently available in Python’s
 Tools\Scripts install folder, or via
 a web search. This script cannot translate everything, and attempts to
 translate core language code primarily—3.X standard library APIs may
 differ further. Still, it does a reasonable job of converting much 2.X
 code to run under 3.X.
Conversely, the 3to2 back-conversion program,
 currently available in the third-party domain, can also translate much
 Python 3.X code to run in 2.X environments. Depending on your goals and
 constraints, either 2to3 or
 3to2 may prove useful if you must maintain code for
 both Python lines; see the Web for details, and additional tools and
 techniques.
It’s also possible to write code that runs
 portably on both 2.X and 3.X using techniques
 presented in this book—importing 3.X features from __future__, avoiding version-specific tools,
 and so on. Many of the examples in this book are platform-neutral. For
 examples, see the benchmarking tools in Chapter 21, the module reloaders and comma
 formatter in Chapter 25, the class tree
 listers in Chapter 31, most of the larger
 decorator examples in Chapter 38 and Chapter 39, the joke script at the end of Chapter 41, and more. As long as you understand
 2.X/3.X core language differences, coding around them is often
 straightforward.
If you’re interested in writing code for both 2.X and 3.X, see
 also six—a library of cross-version mapping and
 renaming tools, which currently lives at http://packages.python.org/six.
 Naturally, this package can’t offset every difference in language
 semantics and library APIs, and in many cases you must use its library
 tools instead of straight Python to realize its portability gains. In
 exchange, though, your programs become much more version-neutral when
 using this library’s tools.

Fifth Edition Python Changes: 2.7, 3.2, 3.3
The following specific changes were made in the Python 2.X and 3.X
 lines after the fourth edition was published, and have been incorporated
 into this edition. Specifically, this section documents Python
 book-related changes in Pythons 2.7, 3.2, and 3.3.
Changes in Python 2.7
On the technical front, Python 2.7 mostly incorporates as
 back-ports a handful of 3.X features that were covered in the prior
 edition of this book, but formerly as 3.X-only features. This new fifth
 edition presents these as 2.7 tools as well. Among these:
	Set literals:
{1, 4, 2, 3, 4}

	Set and dictionary comprehensions:
{c * 4 for c in 'spam'}, {c: c * 4 for c in 'spam'}

	Dictionary views, incorporated as optional methods:
dict.viewkeys(), dict.viewvalues(), dict.viewitems()

	Comma separators and field autonumbering in str.format (from 3.1):
'{:,.2f} {}'.format(1234567.891, 'spam')

	Nested with statement context managers (from
 3.1):
with X() as x, Y() as y: ...

	Float object repr display
 improvements (back-ported from 3.1: see ahead)

To see where these topics are covered in the book, look for their
 entries in the 3.0 changes list of Table C-1, or the Python 3.1 changes
 section, both ahead. They were already present for 3.X, but have been
 updated to reflect their availability in 2.7 as well.
On the logistical front, per current plans 2.7 will be the last
 major 2.X series release, but will have a long maintenance period in
 which it will continue to be used in production work. After 2.7, new
 development is to shift to the Python 3.X line.
That said, it’s impossible to foresee how this official posture
 will stand the test of time, given 2.X’s still very wide user base. See
 the preface for more on this; the optimized PyPy implementation, for
 example, is still Python 2.X only. Or, to borrow a Monty Python line,
 “I’m not dead yet...”—stay tuned for developments
 on the Python 2.X story.

Changes in Python 3.3
Python 3.3 includes a surprisingly large number of changes for a point release. Some of
 these are not entirely compatible with code written for prior releases in the 3.X line.
 Among these, the new Windows launcher, installed as a mandatory part of 3.3, has broad
 potential to break existing 3.X scripts run on Windows.
Here’s a brief rundown of noteworthy 3.3 changes, along with their
 location in this book where applicable. Python 3.3 comes with:
	A reduced memory footprint that is more
 in line with 2.X, thanks mainly to its new variable-length string
 storage scheme, and also to its attribute name-sharing dictionaries
 system (see Chapter 37 and Chapter 32)

	A new namespace package model, where
 new-style packages may span multiple directories and require no
 __init__.py file (see Chapter 24)

	New syntax for delegating to subgenerators: yield from ... (see Chapter 20)

	New syntax for suppressing exception context: raise ... from None (see Chapter 34)

	New syntax for accepting 2.X’s Unicode literal form to ease
 migration: 3.3 now treats 2.X’s Unicode literal u'xxxx' the same as its normal string
 'xxxx', similar to the way 2.X
 treats 3.X’s bytes literal b'xxxx' the same as its normal string
 'xxxx' (see Chapter 4, Chapter 7, and Chapter 37)

	Reworked OS and IO exception hierarchies,
 which provide more inclusive general superclasses, as well as new
 subclasses for common errors that can obviate the need to inspect
 exception object attributes (see Chapter 35)

	An all-web-browser-based interface to PyDoc
 documentation started via pydoc
 -b, replacing its former standalone GUI client search
 interface, which was in the Windows 7 and earlier Start button and
 invoked by pydoc –g (see Chapter 15)

	Changes to some longstanding standard library modules,
 including ftplib, time, and email, and potentially
 distutils; impacts in this book: time has new portable calls in 3.X (see Chapter 21 and Chapter 39)

	An implementation of the __import__ function in importlib.__import__, in part to unify and
 more clearly expose its implementation (see Chapter 22 and Chapter 25)

	A new capability in the Windows 3.3 installer that extends the
 system PATH setting to include
 3.3’s directory as an install-time option to simplify some command
 lines (see Appendixes A and B)

	A new Windows launcher, which attempts to
 interpret Unix-style #! lines for
 dispatching Python scripts on Windows, and allows both #! lines and new py command lines to select between Python
 2.X and 3.X versions explicitly on both a per-file and per-command
 basis (see the new Appendix B)

Changes in Python 3.2
Python 3.2 continued the 3.X line’s evolution. It was developed
 during a moratorium on 3.X core language changes, so its relevant
 changes were minor. Here’s a quick review of major 3.2 changes, and
 their location in this fifth edition where relevant:
	Byte-code files storage model change: __pycache__ (see Chapter 2 and Chapter 22)

	The struct module’s
 autoencoding for strings is gone (see Chapter 9 and Chapter 37)

	3.X str/bytes split supported better by Python
 itself (not relevant to this book)

	The cgi.escape call was to
 be moved in 3.2+ (not relevant to this book)

	Threading implementation change: time slices (not relevant to
 this book)

Fourth Edition Python Changes: 2.6, 3.0, 3.1
The fourth edition was updated to cover Python
 3.0 and 2.6, and incorporated a
 small number of major changes made in 3.1. Its 3.0
 and 3.1 changes apply to all future releases in the 3.X line including
 this fifth edition’s Python 3.3, and its 2.6 changes are also part of this
 edition’s 2.7. As noted earlier, some of the changes described here as 3.X
 changes also later found their way into Python 2.7 as back-ports (e.g.,
 set literals, and set and dictionary comprehensions).
Changes in Python 3.1
In addition to the 3.0 and 2.6 changes listed in upcoming
 sections, shortly before going to press the fourth edition was also
 augmented with notes about prominent extensions in the then upcoming
 Python 3.1 release, including:
	Comma separators and automatic field numbering in string
 format method calls (Chapter 7)

	Multiple context manager syntax in with statements (Chapter 34)

	New methods for number objects (Chapter 5)

	(Not added until this fifth edition) Floating-point display
 changes (Chapter 4 and
 Chapter 5)

This fifth edition covers these topics in the chapters just noted.
 Because Python 3.1 was targeted primarily at optimization and was
 released relatively soon after 3.0, the fourth edition also applied
 directly to 3.1. In fact, because Python 3.1 superseded 3.0 entirely,
 and because the latest Python is usually the best Python to fetch and
 use anyhow, whenever that edition used the term “Python 3.0” it
 generally referred to the language variations introduced by Python 3.0
 but that are present in the entire 3.X line, including this edition’s
 Python 3.3.
One notable exception: the fourth edition did
 not incorporate 3.1’s new repr display scheme for
 floating-point numbers. The new display algorithm
 attempts to display floating-point numbers more intelligently when
 possible, usually with fewer (but occasionally with more) decimal
 digits—a change that is reflected in this fifth edition.

Changes in Python 3.0 and 2.6
The fourth edition’s language changes stem from Python 3.0 and
 2.6. All of its 2.6 and many of its 3.0 changes are shared by Python 2.7
 and 3.3 today. Python 2.7 was extended with some 3.0 features not
 present in 2.6 (see earlier in this appendix), and Python 3.3 inherits
 all the features introduced by 3.0.
Because there were so many changes in the initial 3.X release,
 they are noted only briefly in tables here, with links to more details
 in this book. Table C-1
 provides the first set of 3.X changes, listing the most prominent new
 language features covered in the fourth edition, along with the primary
 chapters in the current fifth edition in which they appear.
Table C-1. Extensions in Python 2.6 and 3.0	Extension	Covered in
 chapter(s)
	The print function in 3.0
	11

	The nonlocal x,y statement in
 3.0
	17

	The str.format method in 2.6 and
 3.0
	7

	String types in 3.0:
 str for Unicode text,
 bytes for binary
 data
	7, 37

	Text and binary file
 distinctions in 3.0
	9, 37

	Class decorators in 2.6
 and 3.0: @private('age')
	32, 39

	New iterators in 3.0:
 range, map, zip
	14, 20

	Dictionary views in 3.0:
 D.keys, D.values, D.items
	8, 14

	Division operators in
 3.0: remainders, / and
 //
	5

	Set literals in 3.0:
 {a, b, c}
	5

	Set comprehensions in 3.0: {x**2 for x in seq}
	4, 5, 14, 20

	Dictionary comprehensions
 in 3.0: {x: x**2 for x in seq}
	4, 8, 14, 20

	Binary digit-string
 support in 2.6 and 3.0: 0b0101, bin(I)
	5

	The fraction number type
 in 2.6 and 3.0: Fraction(1, 3)
	5

	Function annotations in
 3.0: def f(a:99, b:str)->int
	19

	Keyword-only arguments in
 3.0: def f(a, *b, c, **d)
	18, 20

	Extended sequence
 unpacking in 3.0: a, *b = seq
	11, 13

	Relative import syntax
 for packages enabled in 3.0: from .
	24

	Context managers enabled
 in 2.6 and 3.0: with/as
	34, 36

	Exception syntax changes
 in 3.0: raise, except/as, superclass
	34, 35

	Exception chaining in
 3.0: raise e2 from e1
	34

	Reserved word changes in
 2.6 and 3.0
	11

	New-style class cutover
 in 3.0
	32

	Property decorators in
 2.6 and 3.0: @property
	38

	Descriptor use in 2.6 and
 3.0
	32, 38

	Metaclass use in 2.6 and
 3.0
	32, 40

	Abstract base classes
 support in 2.6 and 3.0
	29

Specific Language Removals in 3.0
In addition to extensions, a number of 2.X language tools have
 been removed in 3.X in an effort to clean up its design. Table C-2 summarizes the 3.X
 removals that impact this book, covered in various chapters of this
 edition as noted. As also shown in this table, many of the 3.X removals
 have direct replacements, some of which are also available in 2.6 and
 2.7 to support future migration to 3.X.
Table C-2. Removals in Python 3.0 that impact this book	Removed	Replacement	Covered in
 chapter(s)
	reload(M)
	imp.reload(M) (or exec)
	3, 23

	apply(f, ps, ks)
	f(*ps, **ks)
	18

	`X`
	repr(X)
	5

	X <> Y
	X != Y
	5

	long
	int
	5

	9999L
	9999
	5

	D.has_key(K)
	K in D (or D.get(key) != None)
	8

	raw_input
	input
	3, 10

	old input
	eval(input())
	3

	xrange
	range
	13, 14

	file
	open (and io module classes)
	9

	X.next
	X.__next__, called by next(X)
	14, 20, 30

	X.__getslice__
	X.__getitem__ passed a slice object
	7, 30

	X.__setslice__
	X.__setitem__ passed a slice object
	7, 30

	reduce
	functools.reduce (or loop
 code)
	14, 19

	execfile(filename)
	exec(open(filename).read())
	3

	exec open(filename)
	exec(open(filename).read())
	3

	0777
	0o777
	5

	print x, y
	print(x, y)
	11

	print >> F, x, y
	print(x, y, file=F)
	11

	print x, y,
	print(x, y, end=' ')
	11

	u'ccc' (back in 3.3)
	'ccc'
	4, 7, 37

	'bbb' for byte strings
	b'bbb'
	4, 7, 9,
 37

	raise E, V
	raise E(V)
	33, 34, 35

	except E, X:
	except E as X:
	33, 34, 35

	def f((a, b)):
	def f(x): (a, b) = x
	11, 18, 20

	file.xreadlines
	for line in file: (or X=iter(file))
	13, 14

	D.keys(), etc. as lists
	list(D.keys()) (dictionary
 views)
	8, 14

	map(), range(), etc. as lists
	list(map()), list(range())
 (built-ins)
	14

	map(None, ...)
	zip (or manual code to pad
 results)
	13, 20

	X=D.keys(); X.sort()
	sorted(D) (or list(D.keys()))
	4, 8, 14

	cmp(x, y)
	(x > y) - (x < y)
	30

	X.__cmp__(y)
	__lt__, __gt__, __eq__, etc.
	30

	X.__nonzero__
	X.__bool__
	30

	X.__hex__, X.__oct__
	X.__index__
	30

	Sort comparison
 functions
	Use key=transform or reverse=True
	8

	Dictionary <, >, <=, >=
	Compare sorted(D.items()) (or loop
 code)
	8, 9

	types.ListType
	list (types is for non-built-in names
 only)
	9

	__metaclass__ = M
	class C(metaclass=M):
	29, 32, 40

	__builtin__
	builtins (renamed)
	17

	Tkinter
	tkinter (renamed)
	18, 19, 25, 30, 31

	sys.exc_type, exc_value
	sys.exc_info()[0], [1]
	35, 36

	function.func_code
	function.__code__
	19, 39

	__getattr__ run by
 built-ins
	Redefine __X__ methods in wrapper
 classes
	31, 38, 39

	-t, –tt command-line
 switches
	Inconsistent tabs/spaces
 use is always an error
	10, 12

	from ... *, within a
 function
	May only appear at the
 top level of a file
	23

	import mod, in same
 package
	from . import mod, package-relative
 form
	24

	class MyException:
	class MyException(Exception):
	35

	exceptions module
	Built-in scope, library
 manual
	35

	thread, Queue modules
	_thread, queue (both renamed)
	17

	anydbm module
	dbm (renamed)
	28

	cPickle module
	_pickle (renamed, used
 automatically)
	9

	os.popen2/3/4
	subprocess.Popen (os.popen retained)
	14

	String-based
 exceptions
	Class-based exceptions
 (also required in 2.6)
	33, 34, 35

	String module
 functions
	String object
 methods
	7

	Unbound
 methods
	Functions (staticmethod to call via
 instance)
	31, 32

	Mixed type comparisons,
 sorts
	Nonnumeric mixed type
 magnitude comparisons (and sorts) are errors
	5, 9

Third Edition Python Changes: 2.3, 2.4, 2.5
The third edition of this book was thoroughly updated to reflect
 Python 2.5 and all changes to the language made after
 the publication of the second edition in late 2003. (The second edition
 was based largely on Python 2.2, with some 2.3
 features grafted on at the end of the project.) In addition, brief
 discussions of anticipated changes in the upcoming Python 3.0 release were
 incorporated where appropriate. Here are some of the major language topics
 for which new or expanded coverage was provided (chapter numbers here have
 been updated to reflect this fifth edition):
	The new B if A else C
 conditional expression (Chapter 12,
 Chapter 19)

	with/as context managers (Chapter 34)

	try/except/finally unification (Chapter 34)

	Relative import syntax (Chapter 24)

	Generator expressions (Chapter 20)

	New generator function features (Chapter 20)

	Function decorators (Chapter 32, Chapter 39)

	The set object type (Chapter 5)

	New built-in functions: sorted, sum, any,
 all, enumerate (Chapter 13 and Chapter 14)

	The decimal fixed-precision object type (Chapter 5)

	Files, list comprehensions, and iterators (Chapter 14 and Chapter 20)

	New development tools: Eclipse, distutils, unittest and doctest, IDLE enhancements, Shed Skin, and
 so on (Chapter 2 and Chapter 36)

Smaller language changes (for instance, the widespread use of
 True and False; the new sys.exc_info for fetching exception details; and
 the demise of string-based exceptions, string methods, and the apply and reduce built-ins) were incorporated throughout
 the book. The third edition also expanded coverage of some of the features
 that were new in the second edition, including three-limit slices and the
 arbitrary arguments call syntax that subsumed apply.

Earlier and Later Python Changes
Each edition before the third also incorporated Python changes
 too—the first two editions from 1999 and 2003 covered Pythons 2.0 and 2.2,
 and their 1996 Programming Python 1st Edition
 predecessor, from which my three later books were all derived, began the
 process with Python 1.3—but I’ve omitted these here because they are now
 ancient history (well, in computer field terms, at least).
See the first and second editions for more details, if you can
 manage to scare one up. While it’s impossible to predict the future, given
 how much has stood the test of time, it’s likely that the core ideas
 stressed in this book will likely apply to future Pythons as well.

Appendix D. Solutions to End-of-Part Exercises
Part I, Getting Started
See “Test Your Knowledge: Part I Exercises” in
 Chapter 3 for the exercises.
	Interaction. Assuming Python is configured properly, the interaction should
 look something like the following (you can run this any way you like
 (in IDLE, from a shell prompt, and so on):
% python
...copyright information lines...
>>> "Hello World!"
'Hello World!'
>>> # Use Ctrl-D or Ctrl-Z to exit, or close window

	Programs. Your code (i.e., module) file
 module1.py and the operating
 system shell interactions should look like this:
print('Hello module world!')

% python module1.py
Hello module world!
Again, feel free to run this other ways—by clicking the file’s
 icon, by using IDLE’s Run→Run Module menu option, and so on.

	Modules. The following interaction listing
 illustrates running a module file by importing it:
% python
>>> import module1
Hello module world!
>>>
Remember that you will need to reload the module to run it again
 without stopping and restarting the interpreter. The question about
 moving the file to a different directory and importing it again is a
 trick question: if Python generates a module1.pyc file in the original directory,
 it uses that when you import the module, even if the source code
 (.py) file has been moved to a
 directory not in Python’s search path. The .pyc file is written automatically if
 Python has access to the source file’s directory; it contains the
 compiled byte code version of a module. See Chapter 3 for more on modules.

	Scripts. Assuming your platform supports
 the #! trick, your solution will
 look like the following (although your #! line may need to list another path on
 your machine). Note that these lines are significant under the Windows
 launcher shipped and installed with Python 3.3, where they are parsed
 to select a version of Python to run the script, along with a default
 setting; see Appendix B for
 details and examples.
#!/usr/local/bin/python (or #!/usr/bin/env python)
print('Hello module world!')
% chmod +x module1.py

% module1.py
Hello module world!

	Errors. The following interaction (run in
 Python 3.X) demonstrates the sorts of error messages you’ll get when
 you complete this exercise. Really, you’re triggering Python
 exceptions; the default exception-handling behavior terminates the
 running Python program and prints an error message and stack trace on
 the screen. The stack trace shows where you were in a program when the
 exception occurred (if function calls are active when the error
 happens, the “Traceback” section displays all active call levels). In
 Chapter 10 and Part VII, you will learn that you can catch
 exceptions using try statements and
 process them arbitrarily; you’ll also see there that Python includes a
 full-blown source code debugger for special error-detection
 requirements. For now, notice that Python gives meaningful messages
 when programming errors occur, instead of crashing silently:
% python
>>> 2 ** 500
32733906078961418700131896968275991522166420460430647894832913680961337964046745
54883270092325904157150886684127560071009217256545885393053328527589376
>>>
>>> 1 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: int division or modulo by zero
>>>
>>> spam
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'spam' is not defined

	Breaks and cycles. When you type this
 code:
L = [1, 2]
L.append(L)
you create a cyclic data structure in Python. In Python releases
 before 1.5.1, the Python printer wasn’t smart enough to detect cycles
 in objects, and it would print an unending stream of [1, 2, [1, 2, [1, 2, [1, 2, and so on, until
 you hit the break-key combination on your machine (which, technically,
 raises a keyboard-interrupt exception that prints a default message).
 Beginning with Python 1.5.1, the printer is clever enough to detect
 cycles and prints [[...]] instead
 to let you know that it has detected a loop in the object’s structure
 and avoided getting stuck printing forever.
The reason for the cycle is subtle and requires information you
 will glean in Part II, so this is
 something of a preview. But in short, assignments in Python always
 generate references to objects, not copies of
 them. You can think of objects as chunks of memory and of references
 as implicitly followed pointers. When you run the first assignment
 above, the name L becomes a named
 reference to a two-item list object—a pointer to a piece of memory.
 Python lists are really arrays of object references, with an append method that changes the array in
 place by tacking on another object reference at the end. Here, the
 append call adds a reference to the
 front of L at the end of L, which leads to the cycle illustrated in
 Figure D-1: a pointer
 at the end of the list that points back to the front of the
 list.
Besides being printed specially, as you’ll learn in Chapter 6 cyclic objects must also be
 handled specially by Python’s garbage collector, or their space will
 remain unreclaimed even when they are no longer in use. Though rare in
 practice, in some programs that traverse arbitrary objects or
 structures you might have to detect such cycles yourself by keeping
 track of where you’ve been to avoid looping. Believe it or not, cyclic
 data structures can sometimes be useful, despite their special-case
 printing.

Figure D-1. A cyclic object, created by appending a list to itself. By
 default, Python appends a reference to the original list, not a copy of
 the list.

Part II, Types and Operations
See “Test Your Knowledge: Part II Exercises” in
 Chapter 9 for the
 exercises.
	The basics. Here are the sorts of results you should get, along with a few
 comments about their meaning. Again, note that ; is used in a few of these to squeeze more
 than one statement onto a single line (the ; is a statement separator), and commas
 build up tuples displayed in parentheses. Also keep in mind that the
 / division result near the top
 differs in Python 2.X and 3.X (see Chapter 5
 for details), and the list wrapper
 around dictionary method calls is needed to display results in 3.X,
 but not 2.X (see Chapter 8):
Numbers

>>> 2 ** 16 # 2 raised to the power 16
65536
>>> 2 / 5, 2 / 5.0 # Integer / truncates in 2.X, but not 3.X
(0.40000000000000002, 0.40000000000000002)

Strings

>>> "spam" + "eggs" # Concatenation
'spameggs'
>>> S = "ham"
>>> "eggs " + S
'eggs ham'
>>> S * 5 # Repetition
'hamhamhamhamham'
>>> S[:0] # An empty slice at the front -- [0:0]
'' # Empty of same type as object sliced

>>> "green %s and %s" % ("eggs", S) # Formatting
'green eggs and ham'
>>> 'green {0} and {1}'.format('eggs', S)
'green eggs and ham'

Tuples

>>> ('x',)[0] # Indexing a single-item tuple
'x'
>>> ('x', 'y')[1] # Indexing a two-item tuple
'y'

Lists

>>> L = [1,2,3] + [4,5,6] # List operations
>>> L, L[:], L[:0], L[-2], L[-2:]
([1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [], 5, [5, 6])
>>> ([1,2,3]+[4,5,6])[2:4]
[3, 4]
>>> [L[2], L[3]] # Fetch from offsets; store in a list
[3, 4]
>>> L.reverse(); L # Method: reverse list in place
[6, 5, 4, 3, 2, 1]
>>> L.sort(); L # Method: sort list in place
[1, 2, 3, 4, 5, 6]
>>> L.index(4) # Method: offset of first four (search)
3

Dictionaries

>>> {'a':1, 'b':2}['b'] # Index a dictionary by key
2
>>> D = {'x':1, 'y':2, 'z':3}
>>> D['w'] = 0 # Create a new entry
>>> D['x'] + D['w']
1
>>> D[(1,2,3)] = 4 # A tuple used as a key (immutable)

>>> D
{'w': 0, 'z': 3, 'y': 2, (1, 2, 3): 4, 'x': 1}

>>> list(D.keys()), list(D.values()), (1,2,3) in D # Methods, key test
(['w', 'z', 'y', (1, 2, 3), 'x'], [0, 3, 2, 4, 1], True)

Empties

>>> [[]], ["",[],(),{},None] # Lots of nothings: empty objects
([[]], ['', [], (), {}, None])

	Indexing and slicing. Indexing out of
 bounds (e.g., L[4]) raises an
 error; Python always checks to make sure that all offsets are within
 the bounds of a sequence.
On the other hand, slicing out of bounds (e.g., L[-1000:100]) works because Python scales
 out-of-bounds slices so that they always fit (the limits are set to
 zero and the sequence length, if required).
Extracting a sequence in reverse, with the lower bound greater
 than the higher bound (e.g., L[3:1]), doesn’t really work. You get back
 an empty slice ([]) because Python
 scales the slice limits to make sure that the lower bound is always
 less than or equal to the upper bound (e.g., L[3:1] is scaled to L[3:3], the empty insertion point at offset
 3). Python slices are always
 extracted from left to right, even if you use negative indexes (they
 are first converted to positive indexes by adding the sequence
 length). Note that Python 2.3’s three-limit slices modify this
 behavior somewhat. For instance, L[3:1:-1] does extract from right to
 left:
>>> L = [1, 2, 3, 4]
>>> L[4]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range
>>> L[-1000:100]
[1, 2, 3, 4]
>>> L[3:1]
[]
>>> L
[1, 2, 3, 4]
>>> L[3:1] = ['?']
>>> L
[1, 2, 3, '?', 4]

	Indexing, slicing, and del. Your
 interaction with the interpreter should look something like the
 following code. Note that assigning an empty list to an offset stores
 an empty list object there, but assigning an empty list to a slice
 deletes the slice. Slice assignment expects another sequence, or
 you’ll get a type error; it inserts items inside
 the sequence assigned, not the sequence itself:
>>> L = [1,2,3,4]
>>> L[2] = []
>>> L
[1, 2, [], 4]
>>> L[2:3] = []
>>> L
[1, 2, 4]
>>> del L[0]
>>> L
[2, 4]
>>> del L[1:]
>>> L
[2]
>>> L[1:2] = 1
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation

	Tuple assignment. The values of X and Y
 are swapped. When tuples appear on the left and right of an assignment
 symbol (=), Python assigns objects
 on the right to targets on the left according to their positions. This
 is probably easiest to understand by noting that the targets on the
 left aren’t a real tuple, even though they look like one; they are
 simply a set of independent assignment targets. The items on the right
 are a tuple, which gets unpacked during the assignment (the tuple
 provides the temporary assignment needed to achieve the swap
 effect):
>>> X = 'spam'
>>> Y = 'eggs'
>>> X, Y = Y, X
>>> X
'eggs'
>>> Y
'spam'

	Dictionary keys. Any immutable object can
 be used as a dictionary key, including integers, tuples, strings, and
 so on. This really is a dictionary, even though some of its keys look
 like integer offsets. Mixed-type keys work fine, too:
>>> D = {}
>>> D[1] = 'a'
>>> D[2] = 'b'
>>> D[(1, 2, 3)] = 'c'
>>> D
{1: 'a', 2: 'b', (1, 2, 3): 'c'}

	Dictionary indexing. Indexing a nonexistent
 key (D['d']) raises an error;
 assigning to a nonexistent key (D['d']='spam') creates a new dictionary
 entry. On the other hand, out-of-bounds indexing for lists raises an
 error too, but so do out-of-bounds assignments. Variable names work
 like dictionary keys; they must have already been assigned when
 referenced, but they are created when first assigned. In fact,
 variable names can be processed as dictionary keys if you wish
 (they’re made visible in module namespace or stack-frame
 dictionaries):
>>> D = {'a':1, 'b':2, 'c':3}
>>> D['a']
1
>>> D['d']
Traceback (innermost last):
 File "<stdin>", line 1, in ?
KeyError: d
>>> D['d'] = 4
>>> D
{'b': 2, 'd': 4, 'a': 1, 'c': 3}
>>>
>>> L = [0, 1]
>>> L[2]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range
>>> L[2] = 3
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list assignment index out of range

	Generic operations. Question
 answers:
	The + operator doesn’t
 work on different/mixed types (e.g., string + list, list + tuple).

	+ doesn’t work for
 dictionaries, as they aren’t sequences.

	The append method works
 only for lists, not strings, and keys works only on dictionaries.
 append assumes its target is
 mutable, since it’s an in-place extension; strings are
 immutable.

	Slicing and concatenation always return a new object of the
 same type as the objects processed:
>>> "x" + 1
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation
>>>
>>> {} + {}
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: bad operand type(s) for +
>>>
>>> [].append(9)
>>> "".append('s')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: attribute-less object
>>>
>>> list({}.keys()) # list() needed in 3.X, not 2.X
[]
>>> [].keys()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: keys
>>>
>>> [][:]
[]
>>> ""[:]
''

	String indexing. This is a bit of a trick
 question—because strings are collections of one-character strings,
 every time you index a string, you get back a string that can be
 indexed again. S[0][0][0][0][0]
 just keeps indexing the first character over and over. This generally
 doesn’t work for lists (lists can hold arbitrary objects) unless the
 list contains strings:
>>> S = "spam"
>>> S[0][0][0][0][0]
's'
>>> L = ['s', 'p']
>>> L[0][0][0]
's'

	Immutable types. Either of the following
 solutions works. Index assignment doesn’t, because strings are
 immutable:
>>> S = "spam"
>>> S = S[0] + 'l' + S[2:]
>>> S
'slam'
>>> S = S[0] + 'l' + S[2] + S[3]
>>> S
'slam'
(See also the Python 3.X and 2.6+ bytearray string type in Chapter 37—it’s a mutable sequence of small
 integers that is essentially processed the same as a string.)

	Nesting. Here is a sample:
>>> me = {'name':('John', 'Q', 'Doe'), 'age':'?', 'job':'engineer'}
>>> me['job']
'engineer'
>>> me['name'][2]
'Doe'

	Files. Here’s one way to create and read
 back a text file in Python (ls is a
 Unix command; use dir on
 Windows):
File: maker.py
file = open('myfile.txt', 'w')
file.write('Hello file world!\n') # Or: open().write()
file.close() # close not always needed

File: reader.py
file = open('myfile.txt') # 'r' is default open mode
print(file.read()) # Or print(open().read())

% python maker.py
% python reader.py
Hello file world!

% ls -l myfile.txt
-rwxrwxrwa 1 0 0 19 Apr 13 16:33 myfile.txt

Part III, Statements and Syntax
See “Test Your Knowledge: Part III Exercises” in
 Chapter 15 for the exercises.
	Coding basic loops. As you work through this exercise, you’ll wind up with code
 that looks like the following:
>>> S = 'spam'
>>> for c in S:
... print(ord(c))
...
115
112
97
109

>>> x = 0
>>> for c in S: x += ord(c) # Or: x = x + ord(c)
...
>>> x
433

>>> x = []
>>> for c in S: x.append(ord(c))
...
>>> x
[115, 112, 97, 109]

>>> list(map(ord, S)) # list() required in 3.X, not 2.X
[115, 112, 97, 109]
>>> [ord(c) for c in S] # map and listcomps automate list builders
[115, 112, 97, 109]

	Backslash characters. The example prints
 the bell character (\a) 50 times;
 assuming your machine can handle it, and when it’s run outside of
 IDLE, you may get a series of beeps (or one sustained tone, if your
 machine is fast enough). Hey—I warned you.

	Sorting dictionaries. Here’s one way to
 work through this exercise (see Chapter 8 or Chapter 14 if this doesn’t make
 sense). Remember, you really do have to split up the keys and sort calls like this because sort returns None. In Python 2.2 and later, you can
 iterate through dictionary keys directly without calling keys (e.g., for key
 in D:), but the keys list will not be sorted like it is by
 this code. In more recent Pythons, you can achieve the same effect
 with the sorted built-in,
 too:
>>> D = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5, 'f':6, 'g':7}
>>> D
{'f': 6, 'c': 3, 'a': 1, 'g': 7, 'e': 5, 'd': 4, 'b': 2}
>>>
>>> keys = list(D.keys()) # list() required in 3.X, not in 2.X
>>> keys.sort()
>>> for key in keys:
... print(key, '=>', D[key])
...
a => 1
b => 2
c => 3
d => 4
e => 5
f => 6
g => 7

>>> for key in sorted(D): # Better, in more recent Pythons
... print(key, '=>', D[key])

	Program logic alternatives. Here’s some
 sample code for the solutions. For step e, assign the result of 2 ** X to a variable outside the loops of
 steps a and b, and use it inside the loop. Your results
 may vary a bit; this exercise is mostly designed to get you playing
 with code alternatives, so anything reasonable gets full
 credit:
a

L = [1, 2, 4, 8, 16, 32, 64]
X = 5

i = 0
while i < len(L):
 if 2 ** X == L[i]:
 print('at index', i)
 break
 i += 1
else:
 print(X, 'not found')

b

L = [1, 2, 4, 8, 16, 32, 64]
X = 5

for p in L:
 if (2 ** X) == p:
 print((2 ** X), 'was found at', L.index(p))
 break
else:
 print(X, 'not found')

c

L = [1, 2, 4, 8, 16, 32, 64]
X = 5

if (2 ** X) in L:
 print((2 ** X), 'was found at', L.index(2 ** X))
else:
 print(X, 'not found')

d

X = 5
L = []
for i in range(7): L.append(2 ** i)
print(L)

if (2 ** X) in L:
 print((2 ** X), 'was found at', L.index(2 ** X))
else:
 print(X, 'not found')

f

X = 5
L = list(map(lambda x: 2**x, range(7))) # Or [2**x for x in range(7)]
print(L) # list() to print all in 3.X, not 2.X

if (2 ** X) in L:
 print((2 ** X), 'was found at', L.index(2 ** X))
else:
 print(X, 'not found')

	Code maintenance. There is no fixed
 solution to show here; see mypydoc.py in the book’s examples package
 for my edits on this code as one example.

Part IV, Functions and Generators
See “Test Your Knowledge: Part IV Exercises” in
 Chapter 21 for the exercises.
	The basics. There’s not much to this one, but notice that using print (and hence your function) is
 technically a polymorphic operation, which does
 the right thing for each type of object:
% python
>>> def func(x): print(x)
...
>>> func("spam")
spam
>>> func(42)
42
>>> func([1, 2, 3])
[1, 2, 3]
>>> func({'food': 'spam'})
{'food': 'spam'}

	Arguments. Here’s a sample solution.
 Remember that you have to use print
 to see results in the test calls because a file isn’t the same as code
 typed interactively; Python doesn’t normally echo the results of
 expression statements in files:
def adder(x, y):
 return x + y

print(adder(2, 3))
print(adder('spam', 'eggs'))
print(adder(['a', 'b'], ['c', 'd']))

% python mod.py
5
spameggs
['a', 'b', 'c', 'd']

	varargs. Two alternative adder functions are shown in the following
 file, adders.py. The hard part
 here is figuring out how to initialize an accumulator to an empty
 value of whatever type is passed in. The first solution uses manual
 type testing to look for an integer, and an empty slice of the first
 argument (assumed to be a sequence) if the argument is determined not
 to be an integer. The second solution uses the first argument to
 initialize and scan items 2 and beyond, much like one of the min function variants shown in Chapter 18.
The second solution is better. Both of these assume all
 arguments are of the same type, and neither works on dictionaries (as
 we saw in Part II, + doesn’t work on mixed types or
 dictionaries). You could add a type test and special code to allow
 dictionaries, too, but that’s extra credit.
def adder1(*args):
 print('adder1', end=' ')
 if type(args[0]) == type(0): # Integer?
 sum = 0 # Init to zero
 else: # else sequence:
 sum = args[0][:0] # Use empty slice of arg1
 for arg in args:
 sum = sum + arg
 return sum

def adder2(*args):
 print('adder2', end=' ')
 sum = args[0] # Init to arg1
 for next in args[1:]:
 sum += next # Add items 2..N
 return sum

for func in (adder1, adder2):
 print(func(2, 3, 4))
 print(func('spam', 'eggs', 'toast'))
 print(func(['a', 'b'], ['c', 'd'], ['e', 'f']))

% python adders.py
adder1 9
adder1 spameggstoast
adder1 ['a', 'b', 'c', 'd', 'e', 'f']
adder2 9
adder2 spameggstoast
adder2 ['a', 'b', 'c', 'd', 'e', 'f']

	Keywords. Here is my solution to the first
 and second parts of this exercise (coded in the file mod.py). To iterate over keyword arguments,
 use the **args form in the function
 header and use a loop (e.g., for x in
 args.keys(): use args[x]), or use args.values() to make this the same as
 summing *args positionals:
def adder(good=1, bad=2, ugly=3):
 return good + bad + ugly

print(adder())
print(adder(5))
print(adder(5, 6))
print(adder(5, 6, 7))
print(adder(ugly=7, good=6, bad=5))

% python mod.py
6
10
14
18
18

Second part solutions

def adder1(*args): # Sum any number of positional args
 tot = args[0]
 for arg in args[1:]:
 tot += arg
 return tot

def adder2(**args): # Sum any number of keyword args
 argskeys = list(args.keys()) # list needed in 3.X!
 tot = args[argskeys[0]]
 for key in argskeys[1:]:
 tot += args[key]
 return tot

def adder3(**args): # Same, but convert to list of values
 args = list(args.values()) # list needed to index in 3.X!
 tot = args[0]
 for arg in args[1:]:
 tot += arg
 return tot

def adder4(**args): # Same, but reuse positional version
 return adder1(*args.values())

print(adder1(1, 2, 3), adder1('aa', 'bb', 'cc'))
print(adder2(a=1, b=2, c=3), adder2(a='aa', b='bb', c='cc'))
print(adder3(a=1, b=2, c=3), adder3(a='aa', b='bb', c='cc'))
print(adder4(a=1, b=2, c=3), adder4(a='aa', b='bb', c='cc'))

	(and 6.) Dictionary tools. Here are my
 solutions to exercises 5 and 6 (file dicts.py). These are just coding exercises,
 though, because Python 1.5 added the dictionary methods D.copy() and D1.update(D2) to handle things like copying
 and adding (merging) dictionaries. See Chapter 8 for dict.update examples, and Python’s library
 manual or O’Reilly’s Python Pocket
 Reference for more details. X[:] doesn’t work for dictionaries, as
 they’re not sequences (see Chapter 8
 for details). Also, remember that if you assign (e = d) rather than copying, you generate a
 reference to a shared dictionary object; changing
 d changes e, too:
def copyDict(old):
 new = {}
 for key in old.keys():
 new[key] = old[key]
 return new

def addDict(d1, d2):
 new = {}
 for key in d1.keys():
 new[key] = d1[key]
 for key in d2.keys():
 new[key] = d2[key]
 return new

% python
>>> from dicts import *
>>> d = {1: 1, 2: 2}
>>> e = copyDict(d)
>>> d[2] = '?'
>>> d
{1: 1, 2: '?'}
>>> e
{1: 1, 2: 2}

>>> x = {1: 1}
>>> y = {2: 2}
>>> z = addDict(x, y)
>>> z
{1: 1, 2: 2}

	See #5.

	More argument-matching examples. Here is
 the sort of interaction you should get, along with comments that
 explain the matching that goes on:
def f1(a, b): print(a, b) # Normal args

def f2(a, *b): print(a, b) # Positional varargs

def f3(a, **b): print(a, b) # Keyword varargs

def f4(a, *b, **c): print(a, b, c) # Mixed modes

def f5(a, b=2, c=3): print(a, b, c) # Defaults

def f6(a, b=2, *c): print(a, b, c) # Defaults and positional varargs

% python
>>> f1(1, 2) # Matched by position (order matters)
1 2
>>> f1(b=2, a=1) # Matched by name (order doesn't matter)
1 2

>>> f2(1, 2, 3) # Extra positionals collected in a tuple
1 (2, 3)

>>> f3(1, x=2, y=3) # Extra keywords collected in a dictionary
1 {'x': 2, 'y': 3}

>>> f4(1, 2, 3, x=2, y=3) # Extra of both kinds
1 (2, 3) {'x': 2, 'y': 3}

>>> f5(1) # Both defaults kick in
1 2 3
>>> f5(1, 4) # Only one default used
1 4 3

>>> f6(1) # One argument: matches "a"
1 2 ()
>>> f6(1, 3, 4) # Extra positional collected
1 3 (4,)

	Primes revisited. Here is the primes
 example, wrapped up in a function and a module (file primes.py) so it can be run multiple times.
 I added an if test to trap
 negatives, 0, and 1. I also changed / to //
 in this edition to make this solution immune to the Python 3.X
 / true division changes we studied
 in Chapter 5, and to enable it to support
 floating-point numbers (uncomment the from statement and change // to /
 to see the differences in 2.X):
#from __future__ import division

def prime(y):
 if y <= 1: # For some y > 1
 print(y, 'not prime')
 else:
 x = y // 2 # 3.X / fails
 while x > 1:
 if y % x == 0: # No remainder?
 print(y, 'has factor', x)
 break # Skip else
 x -= 1
 else:
 print(y, 'is prime')

prime(13); prime(13.0)
prime(15); prime(15.0)
prime(3); prime(2)
prime(1); prime(-3)
Here is the module in action; the // operator allows it to work for
 floating-point numbers too, even though it perhaps should not:
% python primes.py
13 is prime
13.0 is prime
15 has factor 5
15.0 has factor 5.0
3 is prime
2 is prime
1 not prime
-3 not prime
This function still isn’t very reusable—it could return values,
 instead of printing—but it’s enough to run experiments. It’s also not
 a strict mathematical prime (floating points work), and it’s still
 inefficient. Improvements are left as exercises for more
 mathematically minded readers. (Hint: a for loop over range(y, 1, −1) may be a bit quicker than
 the while, but the algorithm is the
 real bottleneck here.) To time alternatives, use the homegrown
 timer or standard library timeit modules and coding patterns like
 those used in Chapter 21’s timing
 sections (and see Solution 10).

	Iterations and comprehensions. Here is the
 sort of code you should write; I may have a preference, but yours may
 vary:
>>> values = [2, 4, 9, 16, 25]
>>> import math

>>> res = []
>>> for x in values: res.append(math.sqrt(x))
...
>>> res
[1.4142135623730951, 2.0, 3.0, 4.0, 5.0]

>>> list(map(math.sqrt, values))
[1.4142135623730951, 2.0, 3.0, 4.0, 5.0]

>>> [math.sqrt(x) for x in values]
[1.4142135623730951, 2.0, 3.0, 4.0, 5.0]

>>> list(math.sqrt(x) for x in values)
[1.4142135623730951, 2.0, 3.0, 4.0, 5.0]

	Timing tools. Here is some code I wrote to
 time the three square root options, along with the results in CPythons
 3.3 and 2.7 and PyPy 1.9 (which implements Python 2.7). Each test
 takes the best of three runs; each run takes the total time required
 to call the test function 1,000 times; and each test function iterates
 1,000 times. The last result of each function is printed to verify
 that all three do the same work:
File timer2.py (2.X and 3.X)
...same as listed in Chapter 21...

File timesqrt.py
import sys, timer2
reps = 10000
repslist = range(reps) # Pull out range list time for 2.X

from math import sqrt # Not math.sqrt: adds attr fetch time
def mathMod():
 for i in repslist:
 res = sqrt(i)
 return res

def powCall():
 for i in repslist:
 res = pow(i, .5)
 return res

def powExpr():
 for i in repslist:
 res = i ** .5
 return res

print(sys.version)
for test in (mathMod, powCall, powExpr):
 elapsed, result = timer2.bestoftotal(test, _reps1=3, _reps=1000)
 print ('%s: %.5f => %s' % (test.__name__, elapsed, result))
Following are the test results for the three Pythons. The 3.3
 and 2.7 results are roughly twice as fast as 3.0 and 2.6 in the prior
 edition, due largely to a faster test machine. For each Python tested,
 it looks like the math module is
 quicker than the ** expression,
 which is quicker than the pow call;
 however, you should try this with your code and on your own machine
 and version of Python. Also, note that Python 3.3 is essentially twice
 as slow as 2.7 on this test, and PyPy is a rough order of magnitude
 (10X) faster than both CPythons, despite the fact that this is running
 floating-point math and iterations. Later versions of any of these
 Pythons might differ, so time this in the future to see for
 yourself:
c:\code> py −3 timesqrt.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
mathMod: 2.04481 => 99.99499987499375
powCall: 3.40973 => 99.99499987499375
powExpr: 2.56458 => 99.99499987499375

c:\code> py −2 timesqrt.py
2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMD64)]
mathMod: 1.04337 => 99.994999875
powCall: 2.57516 => 99.994999875
powExpr: 1.89560 => 99.994999875

c:\code> c:\pypy\pypy-1.9\pypy timesqrt.py
2.7.2 (341e1e3821ff, Jun 07 2012, 15:43:00)
[PyPy 1.9.0 with MSC v.1500 32 bit]
mathMod: 0.07491 => 99.994999875
powCall: 0.85678 => 99.994999875
powExpr: 0.85453 => 99.994999875
To time the relative speeds of Python 3.X and 2.7
 dictionary comprehensions and equivalent for loops interactively, you can run a
 session like the following. It appears that the two are roughly the
 same in this regard under Python 3.3; unlike list comprehensions,
 though, manual loops are slightly faster than dictionary
 comprehensions today (though the difference isn’t exactly
 earth-shattering—at the end we save half a second when making 50
 dictionaries of 1,000,000 items each). Again, rather than taking these
 results as gospel you should investigate further on your own, on your
 computer and with your Python:
C:\code> c:\python33\python
>>>
>>> def dictcomp(I):
 return {i: i for i in range(I)}

>>> def dictloop(I):
 new = {}
 for i in range(I): new[i] = i
 return new

>>> dictcomp(10)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9}
>>> dictloop(10)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9}
>>>
>>> from timer2 import total, bestof
>>> bestof(dictcomp, 10000)[0] # 10,000-item dict
0.0017095345403959072
>>> bestof(dictloop, 10000)[0]
0.002097576400046819
>>>
>>> bestof(dictcomp, 100000)[0] # 100,000-items: 10X slower
0.012716923463358398
>>> bestof(dictloop, 100000)[0]
0.014129806355413166
>>>
>>> bestof(dictcomp, 1000000)[0] # 1 of 1M-items: 10X time
0.11614425187337929
>>> bestof(dictloop, 1000000)[0]
0.1331144855439561
>>>
>>> total(dictcomp, 1000000, _reps=50)[0] # Total to make 50 1M-item dicts
5.8162020671780965
>>> total(dictloop, 1000000, _reps=50)[0]
6.626680761285343

	Recursive functions. I coded this function
 as follows; a simple range,
 comprehension, or map will do the
 job here as well, but recursion is useful enough to experiment with
 here (print is a function in 3.X
 only, unless you import it from __future__ or code your own
 equivalent):
def countdown(N):
 if N == 0:
 print('stop') # 2.X: print 'stop'
 else:
 print(N, end=' ') # 2.X: print N,
 countdown(N-1)

>>> countdown(5)
5 4 3 2 1 stop
>>> countdown(20)
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 stop

Nonrecursive options:
>>> list(range(5, 0, −1))
[5, 4, 3, 2, 1]

On 3.X only:
>>> t = [print(i, end=' ') for i in range(5, 0, −1)]
5 4 3 2 1
>>> t = list(map(lambda x: print(x, end=' '), range(5, 0, −1)))
5 4 3 2 1
I didn’t include a generator-based solution
 in this exercise on the grounds of merit (and humanity!), but one is
 listed below; all the other techniques seem much simpler in this
 case—a good example of cases where generators should probably be
 avoided. Remember that generators produce no results until iterated,
 so we need a for or yield from here (yield from works in 3.3 and later
 only):
def countdown2(N): # Generator function, recursive
 if N == 0:
 yield 'stop'
 else:
 yield N
 for x in countdown2(N-1): yield x # 3.3+: yield from countdown2(N-1)

>>> list(countdown2(5))
[5, 4, 3, 2, 1, 'stop']

Nonrecursive options:
>>> def countdown3(): # Generator function, simpler
 yield from range(5, 0, −1) # Pre 3.3: for x in range(): yield x

>>> list(countdown3())
[5, 4, 3, 2, 1]

>>> list(x for x in range(5, 0, −1)) # Equivalent generator expression
[5, 4, 3, 2, 1]

>>> list(range(5, 0, −1)) # Equivalent nongenerator form
[5, 4, 3, 2, 1]

	Computing factorials. The following file shows how I coded this exercise; it runs on Python
 3.X and 2.X, and its output on 3.3 is given in a string literal at the end of
 the file. Naturally, there are many possible variations on its code; its ranges,
 for instance, could run from 2..N+1 to skip
 an iteration, and fact2 could use reduce(operator.mul, range(N, 1, −1)) to avoid a lambda.
#!python
from __future__ import print_function # File factorials.py
from functools import reduce
from timeit import repeat
import math

def fact0(N): # Recursive
 if N == 1: # Fails at 999 by default
 return N
 else:
 return N * fact0(N-1)

def fact1(N):
 return N if N == 1 else N * fact1(N-1) # Recursive, one-liner

def fact2(N): # Functional
 return reduce(lambda x, y: x * y, range(1, N+1))

def fact3(N):
 res = 1
 for i in range(1, N+1): res *= i # Iterative
 return res

def fact4(N):
 return math.factorial(N) # Stdlib "batteries"

Tests
print(fact0(6), fact1(6), fact2(6), fact3(6), fact4(6)) # 6*5*4*3*2*1: all 720
print(fact0(500) == fact1(500) == fact2(500) == fact3(500) == fact4(500)) # True

for test in (fact0, fact1, fact2, fact3, fact4):
 print(test.__name__, min(repeat(stmt=lambda: test(500), number=20, repeat=3)))

r"""
C:\code> py −3 factorials.py
720 720 720 720 720
True
fact0 0.003990868798355564
fact1 0.003901433457907475
fact2 0.002732909419593966
fact3 0.002052614370939676
fact4 0.0003401475243271501
"""
Conclusions: recursion is slowest on my Python and machine, and
 fails once N reaches 999 due to the
 default stack size setting in sys;
 per Chapter 19, this limit can be
 increased, but simple loops or the standard library tool seem the best
 route here in any event.
This general finding holds true often. For instance, ''.join(reversed(S)) may be the preferred
 way to reverse a string, even though recursive solutions are possible.
 Time the following to see how: as for factorials in 3.X, recursion is
 today an order of magnitude slower in CPython, though these results vary in PyPy:
def rev1(S):
 if len(S) == 1:
 return S
 else:
 return S[-1] + rev1(S[:-1]) # Recursive: 10x slower in CPython today

def rev2(S):
 return ''.join(reversed(S)) # Nonrecursive iterable: simpler, faster

def rev3(S):
 return S[::-1] # Even better?: sequence reversal by slice

Part V, Modules and Packages
See “Test Your Knowledge: Part V Exercises” in
 Chapter 25 for the exercises.
	Import basics. When you’re done, your file (mymod.py) and interaction should look
 similar to the following; remember that Python can read a whole file
 into a list of line strings, and the len built-in returns the lengths of strings
 and lists:
def countLines(name):
 file = open(name)
 return len(file.readlines())

def countChars(name):
 return len(open(name).read())

def test(name): # Or pass file object
 return countLines(name), countChars(name) # Or return a dictionary

% python
>>> import mymod
>>> mymod.test('mymod.py')
(10, 291)
Your counts may vary, as mine may or may not include comments
 and an extra line at the end. Note that these functions load the
 entire file in memory all at once, so they won’t work for
 pathologically large files too big for your machine’s memory. To be
 more robust, you could read line by line with iterators instead and
 count as you go:
def countLines(name):
 tot = 0
 for line in open(name): tot += 1
 return tot

def countChars(name):
 tot = 0
 for line in open(name): tot += len(line)
 return tot
A generator expression can have the same effect (though the
 instructor might take off points for excessive magic!):
def countlines(name): return sum(+1 for line in open(name))
def countchars(name): return sum(len(line) for line in open(name))
On Unix, you can verify your output with a wc command; on Windows, right-click on your
 file to view its properties. Note that your script may report fewer
 characters than Windows does—for portability, Python converts Windows
 \r\n line-end markers to \n, thereby dropping 1 byte (character) per
 line. To match byte counts with Windows exactly, you must open in
 binary mode ('rb'), or add the
 number of bytes corresponding to the number of lines. See Chapter 9 and Chapter 37 for more on end-of-line
 translations in text files.
The “ambitious” part of this exercise (passing in a file object
 so you only open the file once), will require you to use the seek method of the built-in file object. It
 works like C’s fseek call (and may
 call it behind the scenes): seek
 resets the current position in the file to a passed-in offset. After a
 seek, future input/output
 operations are relative to the new position. To rewind to the start of
 a file without closing and reopening it, call file.seek(0); the file read methods all pick up at the current
 position in the file, so you need to rewind to reread. Here’s what
 this tweak would look like:
def countLines(file):
 file.seek(0) # Rewind to start of file
 return len(file.readlines())

def countChars(file):
 file.seek(0) # Ditto (rewind if needed)
 return len(file.read())

def test(name):
 file = open(name) # Pass file object
 return countLines(file), countChars(file) # Open file only once

>>> import mymod2
>>> mymod2.test("mymod2.py")
(11, 392)

	from/from *. Here’s the from * part; replace * with countChars to do the rest:
% python
>>> from mymod import *
>>> countChars("mymod.py")
291

	__main__. If you code it
 properly, this file works in either mode—program run or module
 import:
def countLines(name):
 file = open(name)
 return len(file.readlines())

def countChars(name):
 return len(open(name).read())

def test(name): # Or pass file object
 return countLines(name), countChars(name) # Or return a dictionary

if __name__ == '__main__':
 print(test('mymod.py'))

% python mymod.py
(13, 346)
This is where I would probably begin to consider using
 command-line arguments or user input to provide the filename to be
 counted, instead of hardcoding it in the script (see Chapter 25 for more on sys.argv, and Chapter 10 for more on input—and use raw_input instead in 2.X):
if __name__ == '__main__':
 print(test(input('Enter file name:')) # Console (raw_input in 2.X)

if __name__ == '__main__':
 import sys # Command line
 print(test(sys.argv[1]))

	Nested imports. Here is my solution (file
 myclient.py):
from mymod import countLines, countChars
print(countLines('mymod.py'), countChars('mymod.py'))

% python myclient.py
13 346
As for the rest of this one, mymod’s functions are accessible (that is,
 importable) from the top level of myclient, since from simply assigns to names in the importer
 (it works as if mymod’s defs appeared in myclient). For example, another file can
 say:
import myclient
myclient.countLines(...)

from myclient import countChars
countChars(...)
If myclient used import instead of from, you’d need to use a path to get to the
 functions in mymod through myclient:
import myclient
myclient.mymod.countLines(...)

from myclient import mymod
mymod.countChars(...)
In general, you can define collector
 modules that import all the names from other modules so they’re
 available in a single convenience module. The following partial code,
 for example, creates three different copies of the name somename—mod1.somename, collector.somename, and __main__.somename; all three share the same
 integer object initially, and only the name somename exists at the interactive prompt as
 is:
File mod1.py
somename = 42

File collector.py
from mod1 import * # Collect lots of names here
from mod2 import * # from assigns to my names
from mod3 import *

>>> from collector import somename

	Package imports. For this, I put the
 mymod.py solution file listed for
 exercise 3 into a directory package. The following is what I did in a
 Windows console interface to set up the directory and the __init__.py file that it’s required to have
 until Python 3.3; you’ll need to interpolate for other platforms
 (e.g., use cp and vi instead of copy and notepad). This works in any directory (I’m
 using my own code directory here), and you can do some of this from a
 file explorer GUI, too.
When I was done, I had a mypkg subdirectory that
 contained the files __init__.py and
 mymod.py. Until Python 3.3’s namespace
 package extension, you need an __init__.py
 in the mypkg directory, but not in its
 parent; technically, mypkg is located in
 the home directory component of the module search path. Notice how a print statement coded in the directory’s
 initialization file fires only the first time it is imported, not the second;
 raw strings are also used here to avoid escape issues in the file paths:
C:\code> mkdir mypkg
C:\code> copy mymod.py mypkg\mymod.py
C:\code> notepad mypkg__init__.py
...coded a print statement...

C:\code> python
>>> import mypkg.mymod
initializing mypkg
>>> mypkg.mymod.countLines(r'mypkg\mymod.py')
13
>>> from mypkg.mymod import countChars
>>> countChars(r'mypkg\mymod.py')
346

	Reloads. This exercise just asks you to
 experiment with changing the changer.py example in the book, so there’s
 nothing to show here.

	Circular imports. The short story is that
 importing recur2 first works
 because the recursive import then happens at the import in recur1, not at a from in recur2.
The long story goes like this: importing recur2 first works because the recursive
 import from recur1 to recur2 fetches recur2 as a whole, instead of getting
 specific names. recur2 is
 incomplete when it’s imported from recur1, but because it uses import instead of from, you’re safe: Python finds and returns
 the already created recur2 module
 object and continues to run the rest of recur1 without a glitch. When the recur2 import resumes, the second from finds the name Y in recur1 (it’s been run completely), so no
 error is reported.
Running a file as a script is not the same
 as importing it as a module; these cases are the same as running the
 first import or from in the script interactively. For
 instance, running recur1 as a
 script works, because it is the same as importing recur2 interactively, as recur2 is the first module imported in
 recur1. Running recur2 as a script fails for the same
 reason—it’s the same as running its first import interactively.

Part VI, Classes and OOP
See “Test Your Knowledge: Part VI Exercises” in
 Chapter 32 for the exercises.
	Inheritance. Here’s the solution code for this exercise (file adder.py), along with some interactive
 tests. The __add__ overload has to
 appear only once, in the superclass, as it invokes type-specific
 add methods in subclasses:
class Adder:
 def add(self, x, y):
 print('not implemented!')
 def __init__(self, start=[]):
 self.data = start
 def __add__(self, other): # Or in subclasses?
 return self.add(self.data, other) # Or return type?

class ListAdder(Adder):
 def add(self, x, y):
 return x + y

class DictAdder(Adder):
 def add(self, x, y):
 new = {}
 for k in x.keys(): new[k] = x[k]
 for k in y.keys(): new[k] = y[k]
 return new

% python
>>> from adder import *
>>> x = Adder()
>>> x.add(1, 2)
not implemented!
>>> x = ListAdder()
>>> x.add([1], [2])
[1, 2]
>>> x = DictAdder()
>>> x.add({1:1}, {2:2})
{1: 1, 2: 2}

>>> x = Adder([1])
>>> x + [2]
not implemented!
>>>
>>> x = ListAdder([1])
>>> x + [2]
[1, 2]
>>> [2] + x
In 3.3: TypeError: can only concatenate list (not "ListAdder") to list
Earlier: TypeError: __add__ nor __radd__ defined for these operands
Notice in the last test that you get an error for expressions
 where a class instance appears on the right of a +; if you want to fix this, use __radd__ methods, as described in “Operator
 Overloading” in Chapter 30.
If you are saving a value in the instance anyhow, you might as
 well rewrite the add method to take
 just one argument, in the spirit of other examples in this part of the
 book (this is adder2.py):
class Adder:
 def __init__(self, start=[]):
 self.data = start
 def __add__(self, other): # Pass a single argument
 return self.add(other) # The left side is in self
 def add(self, y):
 print('not implemented!')

class ListAdder(Adder):
 def add(self, y):
 return self.data + y

class DictAdder(Adder):
 def add(self, y):
 d = self.data.copy() # Change to use self.data instead of x
 d.update(y) # Or "cheat" by using quicker built-ins
 return d

x = ListAdder([1, 2, 3])
y = x + [4, 5, 6]
print(y) # Prints [1, 2, 3, 4, 5, 6]

z = DictAdder(dict(name='Bob')) + {'a':1}
print(z) # Prints {'name': 'Bob', 'a': 1}
Because values are attached to objects rather than passed
 around, this version is arguably more object-oriented. And, once
 you’ve gotten to this point, you’ll probably find that you can get rid
 of add altogether and simply define
 type-specific __add__ methods in
 the two subclasses.

	Operator overloading. The solution code
 (file mylist.py) uses a handful
 of operator overloading methods we explored in Chapter 30. Copying the initial value in
 the constructor is important because it may be mutable; you don’t want
 to change or have a reference to an object that’s possibly shared
 somewhere outside the class. The __getattr__ method routes calls to the
 wrapped list. For hints on an easier way to code this in Python 2.2
 and later, see “Extending Types by Subclassing” in
 Chapter 32:
class MyList:
 def __init__(self, start):
 #self.wrapped = start[:] # Copy start: no side effects
 self.wrapped = list(start) # Make sure it's a list here
 def __add__(self, other):
 return MyList(self.wrapped + other)
 def __mul__(self, time):
 return MyList(self.wrapped * time)
 def __getitem__(self, offset): # Also passed a slice in 3.X
 return self.wrapped[offset] # For iteration if no __iter__
 def __len__(self):
 return len(self.wrapped)
 def __getslice__(self, low, high): # Ignored in 3.X: uses __getitem__
 return MyList(self.wrapped[low:high])
 def append(self, node):
 self.wrapped.append(node)
 def __getattr__(self, name): # Other methods: sort/reverse/etc
 return getattr(self.wrapped, name)
 def __repr__(self): # Catchall display method
 return repr(self.wrapped)

if __name__ == '__main__':
 x = MyList('spam')
 print(x)
 print(x[2])
 print(x[1:])
 print(x + ['eggs'])
 print(x * 3)
 x.append('a')
 x.sort()
 print(' '.join(c for c in x))

c:\code> python mylist.py
['s', 'p', 'a', 'm']
a
['p', 'a', 'm']
['s', 'p', 'a', 'm', 'eggs']
['s', 'p', 'a', 'm', 's', 'p', 'a', 'm', 's', 'p', 'a', 'm']
a a m p s
Note that it’s important to copy the start value by calling
 list instead of slicing here,
 because otherwise the result may not be a true list and so will not
 respond to expected list methods, such as append (e.g., slicing a string returns
 another string, not a list). You would be able to copy a MyList start value by slicing because its
 class overloads the slicing operation and provides the expected list
 interface; however, you need to avoid slice-based copying for objects
 such as strings.

	Subclassing. My solution (mysub.py) appears as follows. Your solution
 should be similar:
from mylist import MyList

class MyListSub(MyList):
 calls = 0 # Shared by instances
 def __init__(self, start):
 self.adds = 0 # Varies in each instance
 MyList.__init__(self, start)

 def __add__(self, other):
 print('add: ' + str(other))
 MyListSub.calls += 1 # Class-wide counter
 self.adds += 1 # Per-instance counts
 return MyList.__add__(self, other)

 def stats(self):
 return self.calls, self.adds # All adds, my adds

if __name__ == '__main__':
 x = MyListSub('spam')
 y = MyListSub('foo')
 print(x[2])
 print(x[1:])
 print(x + ['eggs'])
 print(x + ['toast'])
 print(y + ['bar'])
 print(x.stats())

c:\code> python mysub.py
a
['p', 'a', 'm']
add: ['eggs']
['s', 'p', 'a', 'm', 'eggs']
add: ['toast']
['s', 'p', 'a', 'm', 'toast']
add: ['bar']
['f', 'o', 'o', 'bar']
(3, 2)

	Attribute methods. I worked through this
 exercise as follows. Notice that in Python 2.X’s classic classes,
 operators try to fetch attributes through __getattr__, too; you need to return a value
 to make them work. As noted in Chapter 32 and elsewhere, __getattr__ is not
 called for built-in operations in Python 3.X (and in 2.X if new-style
 classes are used), so the expressions aren’t intercepted at all here;
 in new-style classes, a class like this must redefine __X__ operator overloading methods explicitly.
 More on this in Chapter 28, Chapter 31, Chapter 32, Chapter 38, and Chapter 39: it
 can impact much code!
c:\code> py −2
>>> class Attrs:
 def __getattr__(self, name):
 print('get %s' % name)
 def __setattr__(self, name, value):
 print('set %s %s' % (name, value))

>>> x = Attrs()
>>> x.append
get append
>>> x.spam = 'pork'
set spam pork
>>> x + 2
get __coerce__
TypeError: 'NoneType' object is not callable
>>> x[1]
get __getitem__
TypeError: 'NoneType' object is not callable
>>> x[1:5]
get __getslice__
TypeError: 'NoneType' object is not callable

c:\code> py −3
>>> ...same startup code...
>>> x + 2
TypeError: unsupported operand type(s) for +: 'Attrs' and 'int'
>>> x[1]
TypeError: 'Attrs' object does not support indexing
>>> x[1:5]
TypeError: 'Attrs' object is not subscriptable

	Set objects. Here’s the sort of interaction
 you should get. Comments explain which methods are called. Also, note
 that sets are a built-in type in Python today, so this is largely just
 a coding exercise (see Chapter 5 for more on
 sets).
% python
>>> from setwrapper import Set
>>> x = Set([1, 2, 3, 4]) # Runs __init__
>>> y = Set([3, 4, 5])

>>> x & y # __and__, intersect, then __repr__
Set:[3, 4]
>>> x | y # __or__, union, then __repr__
Set:[1, 2, 3, 4, 5]

>>> z = Set("hello") # __init__ removes duplicates
>>> z[0], z[-1], z[2:] # __getitem__
('h', 'o', ['l', 'o'])

>>> for c in z: print(c, end=' ') # __iter__ (else __getitem__) [3.X print]
...
h e l o
>>> ''.join(c.upper() for c in z) # __iter__ (else __getitem__)
'HELO'
>>> len(z), z # __len__, __repr__
(4, Set:['h', 'e', 'l', 'o'])

>>> z & "mello", z | "mello"
(Set:['e', 'l', 'o'], Set:['h', 'e', 'l', 'o', 'm'])
My solution to the multiple-operand extension subclass looks
 like the following class (file multiset.py). It needs to replace only two
 methods in the original set. The class’s documentation string explains
 how it works:
from setwrapper import Set

class MultiSet(Set):
 """
 Inherits all Set names, but extends intersect and union to support
 multiple operands; note that "self" is still the first argument
 (stored in the *args argument now); also note that the inherited
 & and | operators call the new methods here with 2 arguments, but
 processing more than 2 requires a method call, not an expression;
 intersect doesn't remove duplicates here: the Set constructor does;
 """
 def intersect(self, *others):
 res = []
 for x in self: # Scan first sequence
 for other in others: # For all other args
 if x not in other: break # Item in each one?
 else: # No: break out of loop
 res.append(x) # Yes: add item to end
 return Set(res)

 def union(*args): # self is args[0]
 res = []
 for seq in args: # For all args
 for x in seq: # For all nodes
 if not x in res:
 res.append(x) # Add new items to result
 return Set(res)
Your interaction with the extension will look something like the
 following. Note that you can intersect by using & or calling intersect, but you must call intersect for three or more operands;
 & is a binary (two-sided)
 operator. Also, note that we could have called MultiSet simply Set to make this change more transparent if
 we used setwrapper.Set to refer to
 the original within multiset (the
 as clause in an import could rename
 the class too if desired):
>>> from multiset import *
>>> x = MultiSet([1, 2, 3, 4])
>>> y = MultiSet([3, 4, 5])
>>> z = MultiSet([0, 1, 2])

>>> x & y, x | y # Two operands
(Set:[3, 4], Set:[1, 2, 3, 4, 5])

>>> x.intersect(y, z) # Three operands
Set:[]
>>> x.union(y, z)
Set:[1, 2, 3, 4, 5, 0]
>>> x.intersect([1,2,3], [2,3,4], [1,2,3]) # Four operands
Set:[2, 3]
>>> x.union(range(10)) # Non-MultiSets work, too
Set:[1, 2, 3, 4, 0, 5, 6, 7, 8, 9]

>>> w = MultiSet('spam') # String sets
>>> w
Set:['s', 'p', 'a', 'm']
>>> ''.join(w | 'super')
'spamuer'
>>> (w | 'super') & MultiSet('slots')
Set:['s']

	Class tree links. Here is the way I changed
 the lister classes, and a rerun of the test to show its format. Do the
 same for the dir-based version, and
 also do this when formatting class objects in the tree climber
 variant:
class ListInstance:
 def __attrnames(self):
 ...unchanged...

 def __str__(self):
 return '<Instance of %s(%s), address %s:\n%s>' % (
 self.__class__.__name__, # My class's name
 self.__supers(), # My class's own supers
 id(self), # My address
 self.__attrnames()) # name=value list

 def __supers(self):
 names = []
 for super in self.__class__.__bases__: # One level up from class
 names.append(super.__name__) # name, not str(super)
 return ', '.join(names)

 # Or: ', '.join(super.__name__ for super in self.__class__.__bases__)

c:\code> py listinstance-exercise.py
<Instance of Sub(Super, ListInstance), address 43671000:
 data1=spam
 data2=eggs
 data3=42
>

	Composition. My solution is as follows
 (file lunch.py), with comments
 from the description mixed in with the code. This is one case where
 it’s probably easier to express a problem in Python than it is in
 English:
class Lunch:
 def __init__(self): # Make/embed Customer, Employee
 self.cust = Customer()
 self.empl = Employee()
 def order(self, foodName): # Start Customer order simulation
 self.cust.placeOrder(foodName, self.empl)
 def result(self): # Ask the Customer about its Food
 self.cust.printFood()

class Customer:
 def __init__(self): # Initialize my food to None
 self.food = None
 def placeOrder(self, foodName, employee): # Place order with Employee
 self.food = employee.takeOrder(foodName)
 def printFood(self): # Print the name of my food
 print(self.food.name)

class Employee:
 def takeOrder(self, foodName): # Return Food, with desired name
 return Food(foodName)

class Food:
 def __init__(self, name): # Store food name
 self.name = name

if __name__ == '__main__':
 x = Lunch() # Self-test code
 x.order('burritos') # If run, not imported
 x.result()
 x.order('pizza')
 x.result()

% python lunch.py
burritos
pizza

	Zoo animal hierarchy. Here is the way I
 coded the taxonomy in Python (file zoo.py); it’s artificial, but the general
 coding pattern applies to many real structures, from GUIs to employee
 databases to spacecraft. Notice that the self.speak reference in Animal triggers an independent inheritance
 search, which finds speak in a
 subclass. Test this interactively per the exercise description. Try
 extending this hierarchy with new classes, and making instances of
 various classes in the tree:
class Animal:
 def reply(self): self.speak() # Back to subclass
 def speak(self): print('spam') # Custom message

class Mammal(Animal):
 def speak(self): print('huh?')

class Cat(Mammal):
 def speak(self): print('meow')

class Dog(Mammal):
 def speak(self): print('bark')

class Primate(Mammal):
 def speak(self): print('Hello world!')

class Hacker(Primate): pass # Inherit from Primate

	The Dead Parrot Sketch. Here’s how I
 implemented this one (file parrot.py). Notice how the line method in the Actor superclass works: by accessing
 self attributes twice, it sends
 Python back to the instance twice, and hence invokes
 two inheritance searches—self.name and self.says() find information in the specific
 subclasses:
class Actor:
 def line(self): print(self.name + ':', repr(self.says()))

class Customer(Actor):
 name = 'customer'
 def says(self): return "that's one ex-bird!"

class Clerk(Actor):
 name = 'clerk'
 def says(self): return "no it isn't..."

class Parrot(Actor):
 name = 'parrot'
 def says(self): return None

class Scene:
 def __init__(self):
 self.clerk = Clerk() # Embed some instances
 self.customer = Customer() # Scene is a composite
 self.subject = Parrot()

 def action(self):
 self.customer.line() # Delegate to embedded
 self.clerk.line()
 self.subject.line()

Part VII, Exceptions and Tools
See “Test Your Knowledge: Part VII Exercises” in
 Chapter 36 for the exercises.
	try/except. My version of the oops function
 (file oops.py) follows. As for
 the noncoding questions, changing oops to raise a KeyError instead of an IndexError means that the try handler won’t catch the exception—it
 “percolates” to the top level and triggers Python’s default error
 message. The names KeyError and
 IndexError come from the outermost
 built-in names scope (the B in “LEGB”). Import
 builtins in 3.X (and __builtin__ in Python 2.X) and pass it as an
 argument to the dir function to see
 this for yourself.
def oops():
 raise IndexError()

def doomed():
 try:
 oops()
 except IndexError:
 print('caught an index error!')
 else:
 print('no error caught...')

if __name__ == '__main__': doomed()

% python oops.py
caught an index error!

	Exception objects and lists. Here’s the way
 I extended this module for an exception of my own, file oops2.py:
from __future__ import print_function # 2.X

class MyError(Exception): pass

def oops():
 raise MyError('Spam!')

def doomed():
 try:
 oops()
 except IndexError:
 print('caught an index error!')
 except MyError as data:
 print('caught error:', MyError, data)
 else:
 print('no error caught...')

if __name__ == '__main__':
 doomed()

% python oops2.py
caught error: <class '__main__.MyError'> Spam!
Like all class exceptions, the instance is accessible via the
 as variable data; the error message shows both the class
 (<...>) and its instance
 (Spam!). The instance must be
 inheriting both an __init__ and a
 __repr__ or __str__ from Python’s Exception class, or it would print much like
 the class does. See Chapter 35 for details
 on how this works in built-in exception classes.

	Error handling. Here’s one way to solve
 this one (file exctools.py). I
 did my tests in a file, rather than interactively, but the results are
 similar enough for full credit. Notice that the empty except and sys.exc_info approach used here will catch
 exit-related exceptions that listing Exception with an as variable won’t; that’s probably not ideal
 in most applications code, but might be useful in a tool like this
 designed to work as a sort of exceptions firewall.
import sys, traceback

def safe(callee, *pargs, **kargs):
 try:
 callee(*pargs, **kargs) # Catch everything else
 except: # Or "except Exception as E:"
 traceback.print_exc()
 print('Got %s %s' % (sys.exc_info()[0], sys.exc_info()[1]))

if __name__ == '__main__':
 import oops2
 safe(oops2.oops)

c:\code> py −3 exctools.py
Traceback (most recent call last):
 File "C:\code\exctools.py", line 5, in safe
 callee(*pargs, **kargs) # Catch everything else
 File "C:\code\oops2.py", line 6, in oops
 raise MyError('Spam!')
oops2.MyError: Spam!
Got <class 'oops2.MyError'> Spam!
The following sort of code could turn this into a
 function decorator that could wrap and catch
 exceptions raised by any function, using techniques introduced in
 Chapter 32, but covered more fully in
 Chapter 39 in the next part of the book—it augments
 a function, rather than expecting it to be passed in
 explicitly:
import sys, traceback

def safe(callee):
 def callproxy(*pargs, **kargs):
 try:
 return callee(*pargs, **kargs)
 except:
 traceback.print_exc()
 print('Got %s %s' % (sys.exc_info()[0], sys.exc_info()[1]))
 raise
 return callproxy

if __name__ == '__main__':
 import oops2

 @safe
 def test():
 oops2.oops()

 test()

	Self-study examples. Here are a few examples for you to study as
 time allows; for more, see follow-up books—such as Programming Python, from which these examples were borrowed or
 derived—and the Web:
Find the largest Python source file in a single directory

import os, glob
dirname = r'C:\Python33\Lib'

allsizes = []
allpy = glob.glob(dirname + os.sep + '*.py')
for filename in allpy:
 filesize = os.path.getsize(filename)
 allsizes.append((filesize, filename))

allsizes.sort()
print(allsizes[:2])
print(allsizes[-2:])

Find the largest Python source file in an entire directory tree

import sys, os, pprint
if sys.platform[:3] == 'win':
 dirname = r'C:\Python33\Lib'
else:
 dirname = '/usr/lib/python'

allsizes = []
for (thisDir, subsHere, filesHere) in os.walk(dirname):
 for filename in filesHere:
 if filename.endswith('.py'):
 fullname = os.path.join(thisDir, filename)
 fullsize = os.path.getsize(fullname)
 allsizes.append((fullsize, fullname))

allsizes.sort()
pprint.pprint(allsizes[:2])
pprint.pprint(allsizes[-2:])

Find the largest Python source file on the module import search path

import sys, os, pprint
visited = {}
allsizes = []
for srcdir in sys.path:
 for (thisDir, subsHere, filesHere) in os.walk(srcdir):
 thisDir = os.path.normpath(thisDir)
 if thisDir.upper() in visited:
 continue
 else:
 visited[thisDir.upper()] = True
 for filename in filesHere:
 if filename.endswith('.py'):
 pypath = os.path.join(thisDir, filename)
 try:
 pysize = os.path.getsize(pypath)
 except:
 print('skipping', pypath)
 allsizes.append((pysize, pypath))

allsizes.sort()
pprint.pprint(allsizes[:3])
pprint.pprint(allsizes[-3:])

Sum columns in a text file separated by commas

filename = 'data.txt'
sums = {}

for line in open(filename):
 cols = line.split(',')
 nums = [int(col) for col in cols]
 for (ix, num) in enumerate(nums):
 sums[ix] = sums.get(ix, 0) + num

for key in sorted(sums):
 print(key, '=', sums[key])

Similar to prior, but using lists instead of dictionaries for sums

import sys
filename = sys.argv[1]
numcols = int(sys.argv[2])
totals = [0] * numcols

for line in open(filename):
 cols = line.split(',')
 nums = [int(x) for x in cols]
 totals = [(x + y) for (x, y) in zip(totals, nums)]

print(totals)

Test for regressions in the output of a set of scripts

import os
testscripts = [dict(script='test1.py', args=''), # Or glob script/args dir
 dict(script='test2.py', args='spam')]

for testcase in testscripts:
 commandline = '%(script)s %(args)s' % testcase
 output = os.popen(commandline).read()
 result = testcase['script'] + '.result'
 if not os.path.exists(result):
 open(result, 'w').write(output)
 print('Created:', result)
 else:
 priorresult = open(result).read()
 if output != priorresult:
 print('FAILED:', testcase['script'])
 print(output)
 else:
 print('Passed:', testcase['script'])

Build GUI with tkinter (Tkinter in 2.X) with buttons that change color and grow

from tkinter import * # Use Tkinter in 2.X
import random
fontsize = 25
colors = ['red', 'green', 'blue', 'yellow', 'orange', 'white', 'cyan', 'purple']

def reply(text):
 print(text)
 popup = Toplevel()
 color = random.choice(colors)
 Label(popup, text='Popup', bg='black', fg=color).pack()
 L.config(fg=color)

def timer():
 L.config(fg=random.choice(colors))
 win.after(250, timer)

def grow():
 global fontsize
 fontsize += 5
 L.config(font=('arial', fontsize, 'italic'))
 win.after(100, grow)

win = Tk()
L = Label(win, text='Spam',
 font=('arial', fontsize, 'italic'), fg='yellow', bg='navy',
 relief=RAISED)
L.pack(side=TOP, expand=YES, fill=BOTH)
Button(win, text='press', command=(lambda: reply('red'))).pack(side=BOTTOM, fill=X)
Button(win, text='timer', command=timer).pack(side=BOTTOM, fill=X)
Button(win, text='grow', command=grow).pack(side=BOTTOM, fill=X)
win.mainloop()

Similar to prior, but use classes so each window has own state information

from tkinter import *
import random

class MyGui:
 """
 A GUI with buttons that change color and make the label grow
 """
 colors = ['blue', 'green', 'orange', 'red', 'brown', 'yellow']

 def __init__(self, parent, title='popup'):
 parent.title(title)
 self.growing = False
 self.fontsize = 10
 self.lab = Label(parent, text='Gui1', fg='white', bg='navy')
 self.lab.pack(expand=YES, fill=BOTH)
 Button(parent, text='Spam', command=self.reply).pack(side=LEFT)
 Button(parent, text='Grow', command=self.grow).pack(side=LEFT)
 Button(parent, text='Stop', command=self.stop).pack(side=LEFT)

 def reply(self):
 "change the button's color at random on Spam presses"
 self.fontsize += 5
 color = random.choice(self.colors)
 self.lab.config(bg=color,
 font=('courier', self.fontsize, 'bold italic'))

 def grow(self):
 "start making the label grow on Grow presses"
 self.growing = True
 self.grower()

 def grower(self):
 if self.growing:
 self.fontsize += 5
 self.lab.config(font=('courier', self.fontsize, 'bold'))
 self.lab.after(500, self.grower)

 def stop(self):
 "stop the button growing on Stop presses"
 self.growing = False

class MySubGui(MyGui):
 colors = ['black', 'purple'] # Customize to change color choices

MyGui(Tk(), 'main')
MyGui(Toplevel())
MySubGui(Toplevel())
mainloop()

Email inbox scanning and maintenance utility

"""
scan pop email box, fetching just headers, allowing
deletions without downloading the complete message
"""

import poplib, getpass, sys

mailserver = 'your pop email server name here' # pop.server.net
mailuser = 'your pop email user name here'
mailpasswd = getpass.getpass('Password for %s?' % mailserver)

print('Connecting...')
server = poplib.POP3(mailserver)
server.user(mailuser)
server.pass_(mailpasswd)

try:
 print(server.getwelcome())
 msgCount, mboxSize = server.stat()
 print('There are', msgCount, 'mail messages, size ', mboxSize)
 msginfo = server.list()
 print(msginfo)
 for i in range(msgCount):
 msgnum = i+1
 msgsize = msginfo[1][i].split()[1]
 resp, hdrlines, octets = server.top(msgnum, 0) # Get hdrs only
 print('-'*80)
 print('[%d: octets=%d, size=%s]' % (msgnum, octets, msgsize))
 for line in hdrlines: print(line)

 if input('Print?') in ['y', 'Y']:
 for line in server.retr(msgnum)[1]: print(line) # Get whole msg
 if input('Delete?') in ['y', 'Y']:
 print('deleting')
 server.dele(msgnum) # Delete on srvr
 else:
 print('skipping')
finally:
 server.quit() # Make sure we unlock mbox
input('Bye.') # Keep window up on Windows

CGI server-side script to interact with a web browser

#!/usr/bin/python
import cgi
form = cgi.FieldStorage() # Parse form data
print("Content-type: text/html\n") # hdr plus blank line
print("<HTML>")
print("<title>Reply Page</title>") # HTML reply page
print("<BODY>")
if not 'user' in form:
 print("<h1>Who are you?</h1>")
else:
 print("<h1>Hello <i>%s</i>!</h1>" % cgi.escape(form['user'].value))
print("</BODY></HTML>")

Database script to populate a shelve with Python objects

see also Chapter 28 shelve and Chapter 31 pickle examples

rec1 = {'name': {'first': 'Bob', 'last': 'Smith'},
 'job': ['dev', 'mgr'],
 'age': 40.5}

rec2 = {'name': {'first': 'Sue', 'last': 'Jones'},
 'job': ['mgr'],
 'age': 35.0}

import shelve
db = shelve.open('dbfile')
db['bob'] = rec1
db['sue'] = rec2
db.close()

Database script to print and update shelve created in prior script

import shelve
db = shelve.open('dbfile')
for key in db:
 print(key, '=>', db[key])

bob = db['bob']
bob['age'] += 1
db['bob'] = bob
db.close()

Database script to populate and query a MySql database

from MySQLdb import Connect
conn = Connect(host='localhost', user='root', passwd='XXXXXXX')
curs = conn.cursor()
try:
 curs.execute('drop database testpeopledb')
except:
 pass # Did not exist

curs.execute('create database testpeopledb')
curs.execute('use testpeopledb')
curs.execute('create table people (name char(30), job char(10), pay int(4))')

curs.execute('insert people values (%s, %s, %s)', ('Bob', 'dev', 50000))
curs.execute('insert people values (%s, %s, %s)', ('Sue', 'dev', 60000))
curs.execute('insert people values (%s, %s, %s)', ('Ann', 'mgr', 40000))

curs.execute('select * from people')
for row in curs.fetchall():
 print(row)

curs.execute('select * from people where name = %s', ('Bob',))
print(curs.description)
colnames = [desc[0] for desc in curs.description]
while True:
 print('-' * 30)
 row = curs.fetchone()
 if not row: break
 for (name, value) in zip(colnames, row):
 print('%s => %s' % (name, value))

conn.commit() # Save inserted records

Fetch and open/play a file by FTP

import webbrowser, sys
from ftplib import FTP # Socket-based FTP tools
from getpass import getpass # Hidden password input
if sys.version[0] == '2': input = raw_input # 2.X compatibility

nonpassive = False # Force active mode FTP for server?
filename = input('File?') # File to be downloaded
dirname = input('Dir? ') or '.' # Remote directory to fetch from
sitename = input('Site?') # FTP site to contact
user = input('User?') # Use () for anonymous
if not user:
 userinfo = ()
else:
 from getpass import getpass # Hidden password input
 userinfo = (user, getpass('Pswd?'))

print('Connecting...')
connection = FTP(sitename) # Connect to FTP site
connection.login(*userinfo) # Default is anonymous login
connection.cwd(dirname) # Xfer 1k at a time to localfile
if nonpassive: # Force active FTP if server requires
 connection.set_pasv(False)

print('Downloading...')
localfile = open(filename, 'wb') # Local file to store download
connection.retrbinary('RETR ' + filename, localfile.write, 1024)
connection.quit()
localfile.close()

print('Playing...')
webbrowser.open(filename)

Index
Symbols
	# character	comments, What Not to Type: Prompts and Comments, A First Script, Variables and Basic Expressions, Python Documentation Sources, # Comments
	directives, What Not to Type: Prompts and Comments

	#! characters, Unix Script Basics, The Python 3.3 Windows Launcher: #! Comes to Windows-The Python 3.3 Windows Launcher: #! Comes to Windows, Icon-Click Basics, A Windows Launcher Tutorial-Step 1: Using Version Directives in Files
	% (percent sign)	formatting expression operator, Formatting Expression Basics, Comparison to the % Formatting Expression-Comparison to the % Formatting Expression, Method Calls
	numeric modulus operator, Comprehensions, Python Expression Operators, Variables and Basic Expressions, Formatting Expression Basics, continue, Loop else, Adding Tests and Nested Loops: filter
	system shell prompt, Starting an Interactive Session, What Not to Type: Prompts and Comments, Running Files with Command Lines

	() (parentheses)	comprehensions and, Comprehensions
	expression operators and, Parentheses group subexpressions
	statements and, Parentheses are optional, Statement rule special cases
	superclasses and, Classes Are Customized by Inheritance
	tuples and, Tuple syntax peculiarities: Commas and parentheses

	* (multiplication) operator	multiplying numbers, Numbers
	repeating lists, Basic List Operations
	repeating strings, Sequence Operations, Basic Operations

	+ (plus) operator	adding numbers, Numbers
	concatenating lists, Basic List Operations, Example: Catching Built-in Exceptions
	concatenating strings, Sequence Operations, Basic Operations, Example: Catching Built-in Exceptions

	+= in-place addition, In-Place Addition, bytearrays in Action
	, (comma), Tuple syntax peculiarities: Commas and parentheses
	/ / operator, Division: Classic, Floor, and True-Why does truncation matter?
	/ operator, Division: Classic, Floor, and True-Why does truncation matter?
	: (colon), What Python Adds
	; (semicolon), End-of-line is end of statement, Statement rule special cases
	<< (left-shift) operator, Character code conversions
	== (equivalence) operator, Comparisons, Equality, and Truth
	>>> prompt	about, Starting an Interactive Session, Running Code Interactively
	common usage mistakes, Usage Notes: The Interactive Prompt

	@ symbol	about, Using Static and Class Methods, Function Decorator Basics
	function decorators and, Property basics, Function Decorator Basics, Usage

	[] (square brackets), Python’s Core Data Types, Adding Keys, Attributes, and Offsets, Statement rule special cases
	\ (backslash)	escape sequences and, Other Ways to Code Strings, Escape Sequences Represent Special Characters-Raw Strings Suppress Escapes
	multiline statements and, Statement rule special cases, Statement Delimiters: Lines and Continuations

	_ (underscore)	class names, Name Considerations in Tool Classes
	module names, The Grander Module Story: Attributes, Minimizing from * Damage: _X and __all__
	name mangling and, Name Mangling Overview
	operator overloading, Getting Help, Classes Can Intercept Python Operators
	showing name values, Usage variation: Showing underscore name values

	{ } (curly braces), Mapping Operations, Statement rule special cases

A
	abs built-in function, Other Built-in Numeric Tools
	absolute imports, Relative Import Basics, Relative imports versus absolute package paths, Selecting modules with relative and absolute imports, Fix 2: Full path absolute import
	abstract superclasses, Abstract Superclasses-Abstract superclasses in Python 3.X and 2.6+: Preview, Stream Processors Revisited
	access-by-key databases and filesystems	dictionary interfaces, The shelve module
	exploring interactively, Exploring Shelves Interactively-Exploring Shelves Interactively
	iterations and, Other Built-in Type Iterables
	object persistence and, Nesting Revisited, Pickles and Shelves
	pickle module, Storing Native Python Objects: pickle
	storing objects on, The has_key method is dead in 3.X: Long live in!, Storing Objects on a Shelve Database
	updating objects, Updating Objects on a Shelve

	accessor functions, Program Design: Minimize Cross-File Changes, Function Design Concepts
	__add__ method, Getting Help, A Third Example, Common Operator Overloading Methods, Reusing __add__ in __radd__
	addition operation, Numbers
	all built-in function, Other Iteration Contexts
	__all__ variable, Package initialization file roles, Minimizing from * Damage: _X and __all__
	Android platform, Installation Steps
	annotations, Function Annotations in 3.X-Function Annotations in 3.X, Decorator Arguments Versus Function Annotations-Decorator Arguments Versus Function Annotations
	__annotations__
 attribute, Function Annotations in 3.X
	anonymous functions (see lambda expressions)
	any built-in function, Other Iteration Contexts
	anydbm module, Pickles and Shelves
	apply built-in function, The defunct apply built-in (Python 2.X), Classes Are Objects: Generic Object Factories
	arbitrary arguments, Arbitrary Arguments Examples-The defunct apply built-in (Python 2.X), Arbitrary arguments
	arbitrary expressions, Sequence Operations
	arbitrary structures, Handling Arbitrary Structures-More recursion examples
	argparse module, Example: Dual Mode Code
	arguments, Argument Matching Basics	(see also keyword arguments)
	about, Argument-Passing Basics
	arbitrary, Arbitrary Arguments Examples-The defunct apply built-in (Python 2.X), Arbitrary arguments
	avoiding changes, Avoiding Mutable Argument Changes
	calculating lengths of, Coding your own zip(...) and map(None, ...)
	call expressions and, Method Call Syntax
	coding functions, Coding Functions
	decorator, Decorator Arguments, Adding Decorator Arguments-Timing with decorator arguments, Example: Validating Function Arguments-Other Applications: Type Testing (If You Insist!), Decorator Arguments Versus Function Annotations-Decorator Arguments Versus Function Annotations
	default values, Argument Matching Basics, Keyword and Default Examples-Combining keywords and defaults, Defaults and Mutable Objects-Defaults and Mutable Objects
	intersecting sequences example, Generalized Set Functions-Generalized Set Functions
	matching, Special Argument-Matching Modes-The Gritty Details, Emulating the Python 3.X print Function-Using Keyword-Only Arguments
	positional, Argument Matching Basics, Headers: Collecting arguments, A Basic Range-Testing Decorator for Positional Arguments-Other Applications: Type Testing (If You Insist!)
	quiz questions and answers, Test Your Knowledge: Quiz
	running script files with, Running script files with arguments
	self, Function Design Concepts, Scopes: lambdas Can Be Nested Too, The World’s Simplest Python Class, Coding Constructors, Why the Special Methods?
	shared references and, Arguments and Shared References-Arguments and Shared References
	simulating multiple results, Simulating Output Parameters and Multiple Results
	simulating output parameters, Simulating Output Parameters and Multiple Results
	unpacking, Simulating Output Parameters and Multiple Results, Calls: Unpacking arguments
	usage example, The min Wakeup Call!-The Punch Line...

	ArithmeticError class, Built-in Exception Classes, Built-in Exception Categories
	arrays, lists and, Type-Specific Operations
	as extension for import/from statements, The as Extension for import and from
	ascii built-in function, Advanced Formatting Method Syntax
	ASCII character set	about, Character Encoding Schemes
	character code conversions, Character code conversions
	encoding, Coding ASCII Text
	encoding and decoding, Escape Sequences Represent Special Characters
	usage example, List Comprehensions Versus map

	aspect-oriented programming, Why Decorators?
	assert statement	about, Python’s Statements, Exception Basics, The assert Statement
	special-case handling, Exception Roles
	triggering exceptions, Raising Exceptions
	usage example, Example: Trapping Constraints (but Not Errors!)

	AssertionError exception, The assert Statement
	assignment statements	about, Python’s Statements, Assignment Statements, Nested Scope Details
	augmented assignments, Assignment Statement Forms, Augmented Assignments-Augmented assignment and shared references
	extended sequence unpacking, Assignment Statement Forms, Extended Sequence Unpacking in Python 3.X-Application to for loops, Python 3.X extended sequence assignment in for loops
	list-unpacking assignments, Assignment Statement Forms
	multiple-target assignments, Assignment Statement Forms, Multiple-Target Assignments-Multiple-target assignment and shared references
	quiz questions and answers, Test Your Knowledge: Quiz
	sequence assignments, Assignment Statement Forms-Advanced sequence assignment patterns
	syntax patterns, Assignment Statement Forms-Assignment Statement Forms
	tuple-unpacking assignments, Assignment Statement Forms, Tuple assignment in for loops-Tuple assignment in for loops, On the other hand: performance, conciseness,
 expressiveness
	variable name rules, Variable Name Rules-Names have no type, but objects do

	asterisk (*), Numbers, Sequence Operations, Basic Operations, Basic List Operations
	atexit module, Debugging with Outer try Statements
	attribute fetches	about, Method Call Syntax, Other Ways to Combine Classes
	attribute name qualification and, Attribute Name Qualification
	built-in types and, New-Style Class Changes, Attribute Fetch for Built-ins Skips Instances-For more details

	AttributeError exception, Attribute Reference, The Basics
	attributes, Attribute Assignment and Deletion	(see also specific types of attributes)
	about, The Grander Module Story: Attributes, Class Objects Provide Default Behavior
	accessing, Inserting Code to Run on Attribute Access
	assigning and deleting, Attribute Assignment and Deletion
	attribute tools, __getattribute__ and Descriptors: Attribute Tools
	built-in, Other Ways to Combine Classes, Intercepting Built-in Operation Attributes-Delegation-based managers revisited
	data, Example
	descriptors and, Descriptors-Descriptors and slots and more
	handling generically, Handling slots and other “virtual” attributes
 generically-Handling slots and other “virtual” attributes
 generically
	inheritance and, Attribute Inheritance Search-Attribute Inheritance Search, Classes Are Customized by Inheritance, Listing inherited attributes with dir-Listing inherited attributes with dir
	listing per object, Listing attributes per object in class trees-Running the tree lister
	managing, Other Attribute Management Tools, Why Manage Attributes?-Inserting Code to Run on Attribute Access
	mapping to inheritance sources, Example: Mapping Attributes to Inheritance Sources-Example: Mapping Attributes to Inheritance Sources
	modules and, The Grander Module Story: Attributes-Modules and namespaces, How to Structure a Program-Imports and Attributes, Classes Are Attributes in Modules
	name qualification for, Attribute Name Qualification
	namespaces and, Attribute Names: Object Namespaces
	operator overloading and, Attribute Access: __getattr__ and __setattr__-Emulating Privacy for Instance Attributes: Part 1, __getattr__ and __getattribute__-Delegation-based managers revisited
	privacy considerations, Emulating Privacy for Instance Attributes: Part 1
	properties for, Properties-Setter and deleter decorators
	quiz questions and answers, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	referencing, Attribute Reference
	special class, Special Class Attributes-Special Class Attributes
	string method calls and, Flexible reference syntax: Extra complexity and functional
 overlap
	validating, Example: Attribute Validations-Using __getattribute__ to Validate

	augmented assignments, Assignment Statement Forms, Augmented Assignments-Augmented assignment and shared references
	augmented classes, Manual Augmentation-Metaclass-Based Augmentation, Decorator-based augmentation
	automatic memory management, It’s Powerful
	awk utility, Generating Both Offsets and Items: enumerate

B
	backslash (\)	escape sequences and, Other Ways to Code Strings, Escape Sequences Represent Special Characters-Raw Strings Suppress Escapes
	multiline statements and, Statement rule special cases, Statement Delimiters: Lines and Continuations

	backtracking, exception handlers and, Exception Roles
	base classes, Attribute Inheritance Search
	BaseException class, Exception Objects, Built-in Exception Classes
	__bases__ attribute	about, The World’s Simplest Python Class, Namespace Dictionaries: Review
	inheritance and, Instance Versus Class Attributes, Listing attributes per object in class trees, Python’s inheritance algorithm: The simple version

	BDFL (Benevolent Dictator for Life), It’s Free
	benchmarking	pystone.py program, Other Benchmarking Topics: pystones
	quiz questions and answers, Test Your Knowledge: Quiz
	timeit module, Benchmark Module and Script: timeit-Room for improvement: Setup
	timing iteration, Timing Iteration Alternatives-Room for improvement: Setup
	usage examples, More Fun with Benchmarks

	Benevolent Dictator for Life (BDFL), It’s Free
	big-endian format, Handling the BOM in 3.X-Dropping the BOM in Python
	bin built-in function, Numeric Literals, Character code conversions
	binary files	about, Unicode Strings, Binary Bytes Files, Text and Binary Files-Text and Binary Files, Using Text and Binary Files
	escape sequences and, Escape Sequences Represent Special Characters
	frozen executables, Frozen Binaries, Frozen Binary Executables
	storing data, Storing Packed Binary Data: struct
	struct module and, The struct Binary Data Module-The struct Binary Data Module
	text files and, Binary Bytes Files
	version considerations, Text and Binary Files: The Short Story, Text and Binary Modes in 2.X and 3.X

	binary formatting, Extra features: Special-case “batteries” versus general
 techniques
	binary notation, Numeric Literals, Hex, Octal, Binary: Literals and Conversions-Hex, Octal, Binary: Literals and Conversions
	binary operator methods, Right-Side and In-Place Uses: __radd__ and __iadd__-In-Place Addition
	bitwise operations, Python Expression Operators, Bitwise Operations-Bitwise Operations
	blank lines	common usage mistakes, Usage Notes: The Interactive Prompt
	statements and, Entering multiline statements, Python Syntax Revisited

	block strings, Triple Quotes Code Multiline Block Strings-Triple Quotes Code Multiline Block Strings
	blocks of code	delimiting, Block Delimiters: Indentation Rules-Avoid mixing tabs and spaces: New error checking in 3.X
	indenting, Block Delimiters: Indentation Rules-Avoid mixing tabs and spaces: New error checking in 3.X
	loop coding techniques, Loop Coding Techniques-Generating Both Offsets and Items: enumerate
	nesting, Nesting Code Three Levels Deep, Block Delimiters: Indentation Rules-Avoid mixing tabs and spaces: New error checking in 3.X
	special case rules, Block rule special case

	BOM (byte order mark), Text and Binary Files, Handling the BOM in 3.X-Dropping the BOM in Python
	__bool__ method, Common Operator Overloading Methods, Boolean Tests: __bool__ and __len__-Boolean Methods in Python 2.X
	Booleans (bool type)	about, Other Core Types, The if/else Ternary Expression
	operator overloading and, Boolean Tests: __bool__ and __len__-Boolean Methods in Python 2.X
	truth test and, Booleans, The bool type, Truth Values and Boolean Tests-Truth Values and Boolean Tests
	version considerations, Boolean Methods in Python 2.X

	bound methods, Scopes: lambdas Can Be Nested Too, Methods Are Objects: Bound or Unbound-Other callables, Static Methods in 2.X and 3.X
	bounds checking for lists, Bounds Checking
	branching in if statements, Multiway Branching-Handling larger actions
	break statement	about, Python’s Statements, break, continue, pass, and the Loop else
	nested loops and, break, Breaking Out of Multiple Nested Loops: “go to”

	bsddb extension module, Exploring Shelves Interactively
	built-in attributes, Other Ways to Combine Classes, Intercepting Built-in Operation Attributes-Delegation-based managers revisited
	built-in exception classes	about, Built-in Exception Classes
	built-in categories, Built-in Exception Categories
	default printing and state, Default Printing and State-Default Printing and State

	built-in exceptions, User-Defined Exceptions, Example: Catching Built-in Exceptions
	built-in object types	about, It’s Powerful, Why Use Built-in Types?, Core Types Review and Summary
	attribute fetches for, New-Style Class Changes, Attribute Fetch for Built-ins Skips Instances-For more details
	class decorators and, Applying class decorators to built-in types
	common usage mistakes, Built-in Type Gotchas-Immutable Types Can’t Be Changed in Place
	comparison operations, Comparisons, Equality, and Truth-Python 2.X and 3.X dictionary comparisons
	core data types, Python’s Core Data Types, Core Types Review and Summary
	dictionaries (see dictionaries)
	equality and, Comparisons, Equality, and Truth-Python 2.X and 3.X dictionary comparisons
	extending, Extending Built-in Types-Extending Types by Subclassing
	files (see files)
	general type categories, General Type Categories-Mutable Types Can Be Changed in Place
	generation in, Generation in Built-in Types, Tools, and Classes-Preview: User-defined iterables in classes
	iteration and, Other Built-in Type Iterables-Other Built-in Type Iterables
	lists (see lists)
	metaclasses and, The built-ins special case-The built-ins special case
	numbers (see numbers)
	object flexibility, Object Flexibility
	references versus copies, References Versus Copies-References Versus Copies, Assignment Creates References, Not Copies
	strings (see strings)
	tuples (see tuples)
	type hierarchies, Python’s Type Hierarchies-Other Types in Python

	built-in scope	about, Scope Details, The Built-in Scope-Redefining built-in names: For better or worse
	LEGB rule and, Name Resolution: The LEGB Rule

	__builtin__ module, Other Built-in Numeric Tools, Redefining built-in names: For better or worse
	builtins module, Other Built-in Numeric Tools, The Built-in Scope-Redefining built-in names: For better or worse
	byte code	about, Byte code compilation-Byte code compilation
	modules and, Byte Code Files: __pycache__ in Python 3.2+-Byte Code File Models in Action
	optimizing, Optimized byte code files
	PVM and, The Python Virtual Machine (PVM)
	Python versions and, Byte code compilation
	source changes and, Byte code compilation

	byte order mark (BOM), Text and Binary Files, Handling the BOM in 3.X-Dropping the BOM in Python
	bytearray string type	about, Unicode Strings, Unicode: The Short Story, String Changes in 3.X, Python’s String Types-Why the different string types?, Using 3.X/2.6+ bytearray Objects-Python 3.X String Types Summary
	changing strings, Immutability, Changing Strings I, String Method Examples: Changing Strings II

	bytes built-in function, Type Objects
	bytes string type	about, Unicode Strings, Text and Binary Files: The Short Story, Python’s String Types-Why the different string types?, Using 3.X bytes Objects
	bytearray string type and, Unicode: The Short Story
	encoded text, Byte String Literals: Encoded Text
	making bytes objects, Other Ways to Make bytes Objects
	method calls, Method Calls
	mixing string types, Mixing String Types
	pickle module and, Storing Native Python Objects: pickle
	quiz questions and answers, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	sequence operations, Sequence Operations
	type and content mismatches, Type and Content Mismatches in 3.X

C
	C language	argument-passing model, Argument-Passing Basics
	#define directive, Why Decorators?
	error checks, Termination Actions
	#include directive, Why Decorators?
	memory address pointers, Variables, Objects, and References
	while loops, More on the loop else

	C++ language, Example, Methods, Pseudoprivate Class Attributes
	call expressions, Method Call Syntax, Call Expressions: __call__-Function Interfaces and Callback-Based Code
	__call__ method	about, Common Operator Overloading Methods, Call Expressions: __call__-Function Interfaces and Callback-Based Code
	bound methods and, Other callables-Other callables
	class decorators and, Implementation, Class Blunders II: Retaining Multiple Instances
	class objects and, Scopes: lambdas Can Be Nested Too
	function decorators and, A First Look at User-Defined Function Decorators, Implementation, Using descriptors to decorate methods

	case considerations	case conversion for strings, String Basics
	variable name rules, Variable Name Rules

	certificate, completion, Encore: Print Your Own Completion Certificate!-Encore: Print Your Own Completion Certificate!
	cgi.FieldStorage class, The has_key method is dead in 3.X: Long live in!
	chaining	exceptions, Python 3.X Exception Chaining: raise from-Python 3.X Exception Chaining: raise from
	methods, Using List Comprehensions on Files
	numeric comparisons, Comparisons: Normal and Chained-Comparisons: Normal and Chained

	character code conversions, Character code conversions
	character sets, Character Encoding Schemes, Character Encoding Schemes	(see also ASCII character set; Unicode character set)

	chr built-in function, Character code conversions, List Comprehensions Versus map, Character Encoding Schemes, Coding Non-ASCII Text
	circular references, Objects Are Garbage-Collected
	__class__ attribute	about, Special Class Attributes, Namespace Dictionaries: Review, Type Model Changes
	coding exception classes, Coding Exceptions Classes
	comparing class instances, Type Objects
	exception type and, More on sys.exc_info
	inheritance and, Instance Versus Class Attributes
	listing attributes in class trees, Listing attributes per object in class trees

	class attributes	about, Instance Versus Class Attributes
	abstract superclasses and, Abstract superclasses in Python 3.X and 2.6+: Preview
	class gotchas, Changing Class Attributes Can Have Side Effects-Changing Mutable Class Attributes Can Have Side Effects,
 Too
	creating, Attribute Tree Construction
	function decorators and, Class instance attributes
	instance attributes versus, Instance Versus Class Attributes
	pseudoprivate, Name Considerations in Tool Classes, Pseudoprivate Class Attributes-Why Use Pseudoprivate Attributes?, Development Tools for Larger Projects, Using __X pseudoprivate names
	special, Special Class Attributes
	usage examples, Namespace Dictionaries: Review

	class decorators	about, OOP and Delegation: “Wrapper” Proxy Objects, Decorators and Metaclasses: Part 1, What’s a Decorator?, Class Decorators
	built-in types and, Applying class decorators to built-in types
	coding, Coding Class Decorators-Why Decorators? (Revisited)
	implementing, Implementation-Implementation
	manager functions versus, Decorators Versus Manager Functions
	metaclasses and, Decorators and Metaclasses: Part 1, A First Look at Class Decorators and Metaclasses-A First Look at Class Decorators and Metaclasses, Metaclasses Versus Class Decorators: Round 1-Metaclasses Versus Class Decorators: Round 1, Metaclasses Versus Class Decorators: Round 2-Metaclass and class decorator equivalence?, Metaclasses Versus Class Decorators: Round 3 (and Last)-Metaclasses Versus Class Decorators: Round 3 (and Last)
	multiple instances and, Supporting multiple instances, Class Blunders II: Retaining Multiple Instances
	singleton classes, Singleton Classes-Coding alternatives
	state retention options, State retention and enclosing scopes
	tracing object interfaces, Tracing Object Interfaces-Applying class decorators to built-in types
	usage considerations, Usage, Why Decorators? (Revisited)

	class methods	about, Static and Class Methods
	counting instances, Counting Instances with Class Methods-Counting instances per class with class methods
	metaclass methods versus, Metaclass Methods Versus Class Methods
	usage considerations, Using Static and Class Methods-Using Static and Class Methods

	class statement	about, Python’s Statements, Coding Class Trees-Coding Class Trees, Class Objects Provide Default Behavior, The class Statement
	decorators and, Managing Calls and Instances, Usage, Applying class decorators to built-in types
	general form, General Form
	inheritance and, Inheritance-Abstract superclasses in Python 3.X and 2.6+: Preview
	local scope and, Other Python scopes: Preview
	metaclasses and, Class Statement Protocol
	methods and, Methods-Other Method Call Possibilities
	modules and, Classes Are Attributes in Modules
	objects and, And Everything Else
	properties for, Class Objects Provide Default Behavior, Example, Property basics
	usage examples, A First Example-A First Example, A Second Example, Example

	classes	about, Python’s Core Data Types, Why Use Classes?, The World’s Simplest Python Class-The World’s Simplest Python Class
	augmented, Manual Augmentation-Metaclass-Based Augmentation, Decorator-based augmentation
	class instances, Type Objects
	closures versus, Closures versus classes, round 1
	coding class trees, Coding Class Trees-Coding Class Trees
	coding gotchas, Class Gotchas-KISS Revisited: “Overwrapping-itis”
	combining, Other Ways to Combine Classes-Other Ways to Combine Classes
	customizing behavior, Step 4: Customizing Behavior by Subclassing-OOP: The Big Idea
	customizing constructors, Step 5: Customizing Constructors, Too-Other Ways to Combine Classes
	decorators and, Managing Functions and Classes, Decorators Manage Functions and Classes, Too, Managing Functions and Classes Directly-Managing Functions and Classes Directly
	descriptors and, Descriptors
	dictionaries versus, Records Revisited: Classes Versus Dictionaries-Records Revisited: Classes Versus Dictionaries
	docstrings and, Documentation Strings Revisited
	exception, Exception Objects-Test Your Knowledge: Answers
	explicit attributes and, State with Classes: Explicit Attributes (Preview)
	extending built-in types, Extending Built-in Types-Extending Types by Subclassing
	functions and, Classes and Instances, Method Calls, Example
	generators and, Generation in Built-in Types, Tools, and Classes-Preview: User-defined iterables in classes, Classes versus generators
	inheritance and, Coding Class Trees, Classes Are Customized by Inheritance-Classes Are Attributes in Modules, Classes Are Customized by Inheritance, Inheritance-Abstract superclasses in Python 3.X and 2.6+: Preview, Multiple Inheritance: “Mix-in” Classes-Room for improvement: MRO, slots, GUIs
	instances (see instances)
	intercepting operators, Classes Can Intercept Python Operators-Why Use Operator Overloading?, Step 3: Operator Overloading-Providing Print Displays
	introspection tools, Step 6: Using Introspection Tools-Our Classes’ Final Form
	listing attributes in class trees, Listing attributes per object in class trees-Running the tree lister
	methods and, Method Calls, Step 2: Adding Behavior Methods-Coding Methods, Methods-Other Method Call Possibilities
	mix-in, Multiple Inheritance: “Mix-in” Classes-Room for improvement: MRO, slots, GUIs, Coupling: Application to mix-in classes-Coupling: Application to mix-in classes
	modules and, Classes and Instances, Classes Are Attributes in Modules, Example, Classes Versus Modules
	MRO ordering, Augmenting Methods: The Good Way, Multiple Inheritance: “Mix-in” Classes
	name considerations, Name Considerations in Tool Classes
	namespaces and, Example, Namespaces: The Conclusion-Namespace Links: A Tree Climber
	nesting, Nested Classes: The LEGB Scopes Rule Revisited-Nested Classes: The LEGB Scopes Rule Revisited
	new-style (see new-style classes)
	objects and, Classes Are Objects: Generic Object Factories-Why Factories?, The “New Style” Class Model
	operator overloading, Getting Help
	persistence and, Stream Processors Revisited
	polymorphism and, Polymorphism and classes-Polymorphism and classes, Polymorphism in Action
	proxy (see proxy classes)
	quiz questions and answers, Test Your Knowledge: Quiz, Test Your Knowledge: Quiz-Test Your Knowledge: Answers, Test Your Knowledge: Quiz, Test Your Knowledge: Quiz, Test Your Knowledge: Quiz
	scopes in, Scopes in Methods and Classes
	singleton, Singleton Classes-Coding alternatives
	storing objects in databases, Step 7 (Final): Storing Objects in a Database-Updating Objects on a Shelve
	subclasses (see subclasses)
	superclasses (see superclasses)
	type object and, Classes Are Instances of type-Classes Are Instances of type
	usage examples, A First Example-A First Example, A Second Example, A Third Example-Returning results, or not, Our Classes’ Final Form-Our Classes’ Final Form
	user-defined, User-Defined Classes
	version considerations, The “New Style” Class Model

	classmethod built-in function, Static and Class Methods, Using Static and Class Methods-Using Static and Class Methods
	client module, A Tale of Three Systems
	closures (see factory functions)
	__cmp__ method, Comparisons: __lt__, __gt__, and Others-The __cmp__ Method in Python 2.X
	code points, Unicode Strings, Escape Sequences Represent Special Characters, Character code conversions, How Python Stores Strings in Memory
	codecs module	about, Unicode Strings
	open method, Unicode Text Files, Files, Text and Binary Files: The Short Story, Unicode Files in 2.X

	coding (see development considerations)
	cohesion	in functions, Function Design Concepts
	in modules, Module Design Concepts

	collections module	namedtuple function, More Dictionary Methods, Records Revisited: Named Tuples
	OrderedDict subclass, More Dictionary Methods

	colon (:), What Python Adds
	comma (,), Tuple syntax peculiarities: Commas and parentheses
	command lines and files (see system command lines and files)
	command-line arguments, Extended slicing: The third limit and slice objects, Example: Dual Mode Code, Python Command-Line Arguments-Python 2.X command-line arguments
	comments	# character, What Not to Type: Prompts and Comments, A First Script, Variables and Basic Expressions, Python Documentation Sources, # Comments
	#! characters, The Python 3.3 Windows Launcher: #! Comes to Windows-The Python 3.3 Windows Launcher: #! Comes to Windows
	statements and, Python Syntax Revisited

	comparison operations	built-in object types, Comparisons, Equality, and Truth-Python 2.X and 3.X dictionary comparisons
	dictionaries, Dictionary magnitude comparisons no longer work in 3.X, Comparisons, Equality, and Truth
	lists, Comparisons, Equality, and Truth
	numbers, Comparisons: Normal and Chained-Comparisons: Normal and Chained, Comparisons, Equality, and Truth
	operator overloading and, Comparisons: __lt__, __gt__, and Others-The __cmp__ Method in Python 2.X
	recursive, Comparisons, Equality, and Truth
	sets, Comparisons, Equality, and Truth
	strings, Comparisons, Equality, and Truth
	testing truth values, Truth Values and Boolean Tests-Truth Values and Boolean Tests
	tuples, Comparisons, Equality, and Truth
	version considerations, More on sorting lists, Python 2.X and 3.X mixed-type comparisons and sorts

	compile built-in function, Direct Calls: Two Options
	compiled extensions, OK, but What’s the Downside?
	completion certificate, Encore: Print Your Own Completion Certificate!-Encore: Print Your Own Completion Certificate!
	complex built-in function, Numeric Literals, Type Objects
	complex numbers, Numbers, Complex Numbers
	component coupling, Coupling: Application to mix-in classes
	component integration, Component Integration
	composition	about, Why Use Classes?
	combining classes, Other Ways to Combine Classes-Other Ways to Combine Classes
	OOP considerations, OOP and Composition: “Has-a” Relationships-Stream Processors Revisited

	compound object types, Object Flexibility
	compound statements, if Tests and Syntax Rules	(see also specific statements)
	about, if Tests and Syntax Rules, Python Syntax Revisited
	colon character, What Python Adds
	common usage mistakes, Usage Notes: The Interactive Prompt, Entering multiline statements
	special case rules, Statement rule special cases-Statement rule special cases, A Few Special Cases-A Few Special Cases
	terminating, Python Syntax Revisited
	timing, Timing multiline statements

	comprehension variables, Other Python scopes: Preview, Scopes and Comprehension Variables
	comprehensions, Test Your Knowledge: Quiz	(see also list comprehensions)
	dictionary, Other Ways to Make Dictionaries, Dictionary comprehensions in 3.X and 2.7-Dictionary comprehensions in 3.X and 2.7, Other Iteration Contexts, Comprehending Set and Dictionary Comprehensions-Extended Comprehension Syntax for Sets and Dictionaries
	iterables versus, Generator Expressions: Iterables Meet Comprehensions-Generator expressions versus filter
	quiz questions and answers, Test Your Knowledge: Quiz, Test Your Knowledge: Quiz
	set, Set literals in Python 3.X and 2.7, Set comprehensions in Python 3.X and 2.7, Other Iteration Contexts, Comprehending Set and Dictionary Comprehensions-Extended Comprehension Syntax for Sets and Dictionaries
	syntax summary, Comprehension Syntax Summary-Extended Comprehension Syntax for Sets and Dictionaries

	concatenating	lists, Basic List Operations, Example: Catching Built-in Exceptions
	strings, Sequence Operations, Getting Help, Basic Operations, Example: Catching Built-in Exceptions
	tuples, Tuples
	virtual concatenation, Namespace Packages in Action

	conflict resolution, diamond inheritance trees, Explicit conflict resolution-Explicit conflict resolution
	constants, Python’s Core Data Types
	constructors	class gotchas, You usually want to call superclass constructors
	coding, Coding Constructors
	customizing, Step 5: Customizing Constructors, Too-Other Ways to Combine Classes
	__init__ method and, Coding Constructors, Calling Superclass Constructors
	operator overloading and, Constructors and Expressions: __init__ and __sub__
	superclass, Calling Superclass Constructors

	__contains__ method, Polymorphism Revisited, Common Operator Overloading Methods, Membership: __contains__, __iter__, and __getitem__-Membership: __contains__, __iter__, and __getitem__
	__context__ attribute, Python 3.X Exception Chaining: raise from
	context managers	about, with/as Context Managers-The Context Management Protocol
	closing files and server connections, Closing Files and Server Connections
	decimals, Decimal context manager
	files, Using Files, File Context Managers
	implementing, Exception Basics, Termination Actions
	multiple, Multiple Context Managers in 3.1, 2.7, and Later-Multiple Context Managers in 3.1, 2.7, and Later
	version considerations, Multiple Context Managers in 3.1, 2.7, and Later-Multiple Context Managers in 3.1, 2.7, and Later

	contextlib module, The Context Management Protocol
	continuation lines in statements, Statement rule special cases, Statement Delimiters: Lines and Continuations
	continue statement, Python’s Statements, break, continue, pass, and the Loop else, continue
	control flows	exceptions and, Exception Roles
	nesting, Example: Control-Flow Nesting

	control languages, Is Python a “Scripting Language”?, OK, but What’s the Downside?, Component Integration
	control-flow statements, Python Syntax Revisited
	conversions	case, String Basics
	for encodings, Converting Encodings
	fraction, Fraction conversions and mixed types
	hex, octal, binary notation, Hex, Octal, Binary: Literals and Conversions-Hex, Octal, Binary: Literals and Conversions
	integer, Hex, Octal, Binary: Literals and Conversions
	mixed types, Mixed types are converted up, Fraction conversions and mixed types
	storing objects in files, Storing Python Objects in Files: Conversions-Storing Python Objects in Files: Conversions
	string, Hex, Octal, Binary: Literals and Conversions, String Conversion Tools-Character code conversions
	string types, Mixing String Types
	3to2
 converter, 2to3 converter
	tuple, Conversions, methods, and immutability-Conversions, methods, and immutability
	2to3
 converter, 2to3 converter

	copy module, References Versus Copies
	core data types (see built-in object types)
	coupling	component, Coupling: Application to mix-in classes
	functions, Function Design Concepts
	modules, Module Design Concepts
	super built-in function, Coupling: Application to mix-in classes-Coupling: Application to mix-in classes

	cPickle module, Storing Native Python Objects: pickle
	CPython system	about, Python Implementation Alternatives, CPython: The standard
	timeit module and, Interactive usage and API calls-Command-line usage

	CSV file format, String Method Examples: Parsing Text, Storing Python Objects in JSON Format
	csv module, String Method Examples: Parsing Text, Storing Python Objects in JSON Format
	curly braces { }, Mapping Operations, Statement rule special cases
	currency symbols, Currency Symbols: Unicode in Action-Currency Symbols: Unicode in Action
	current working directory (CWD), Imports outside packages, Imports are still relative to the CWD, Imports are still relative to the CWD, again
	CWD (current working directory), Imports outside packages, Imports are still relative to the CWD, Imports are still relative to the CWD, again
	cx_freeze tool, Frozen Binaries
	cycles, recursive calls and, Cycles, paths, and stack limits
	cyclic data structures, Beware of Cyclic Data Structures
	cyclic references, Objects Are Garbage-Collected
	Cygwin system, Starting an Interactive Session
	Cython system, Python Implementation Alternatives, Cython: A Python/C hybrid

D
	data attributes, Example
	data structures	about, Why Use Built-in Types?
	arbitrary, Handling Arbitrary Structures-More recursion examples
	built-in object types and, Why Use Built-in Types?
	cyclic, Beware of Cyclic Data Structures
	dictionaries and, Using dictionaries for sparse data structures: Tuple
 keys
	empty, The Meaning of True and False in Python

	data types (see object types)
	database programming, Database Programming
	databases, access-by-key (see access-by-key databases and filesystems)
	dbm module, Pickles and Shelves
	__debug__ built-in
 variable, The assert Statement, A Basic Range-Testing Decorator for Positional Arguments
	debugging Python code	about, Which Option Should I Use?-Which Option Should I Use?
	IDLE debugger, Advanced IDLE Tools
	string issues, Usage variation: Showing underscore name values
	tools supporting, Development Tools for Larger Projects
	with try statement, Debugging with Outer try Statements

	decimal module, Decimal basics
	decimals (decimal object)	about, Numbers, Other Core Types, Decimal Type-Decimal basics
	context manager, Decimal context manager
	from_float method, Decimal basics
	getcontext method, Setting decimal precision globally
	localcontext method, Decimal context manager
	numeric accuracy in, Numeric accuracy in fractions and decimals
	resetting precision temporarily, Decimal context manager
	setting precision globally, Setting decimal precision globally

	decoding (see encoding and decoding)
	decorators, Decorators and Metaclasses: Part 1	(see also class decorators; function decorators)
	about, Decorators and Metaclasses: Part 1, What’s a Decorator?
	abstract superclasses and, Abstract superclasses in Python 3.X and 2.6+: Preview
	arguments and, Decorator Arguments, Adding Decorator Arguments-Timing with decorator arguments, Example: Validating Function Arguments-Other Applications: Type Testing (If You Insist!), Decorator Arguments Versus Function Annotations-Decorator Arguments Versus Function Annotations
	coding properties, Coding Properties with Decorators-Setter and deleter decorators
	defining, Using and Defining Decorators
	encapsulation and, Why Decorators? (Revisited)
	macros versus, Why Decorators?
	manager functions versus, Decorators Versus Manager Functions
	managing calls and instances, Managing Calls and Instances
	managing functions and classes, Managing Functions and Classes, Decorators Manage Functions and Classes, Too, Managing Functions and Classes Directly-Managing Functions and Classes Directly
	methods and, Class Blunders I: Decorating Methods-Using descriptors to decorate methods, Example: Applying Decorators to Methods-Metaclasses Versus Class Decorators: Round 3 (and Last)
	nesting, Decorator Nesting-Decorator Nesting, Decorator nesting
	private and public attributes, Example: “Private” and “Public” Attributes-Python Isn’t About Control
	quiz questions and answers, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	range-testing for positional arguments, A Basic Range-Testing Decorator for Positional Arguments-Other Applications: Type Testing (If You Insist!)
	timing alternatives, Timing Script
	usage considerations, Using and Defining Decorators-Why Decorators?, Why Decorators? (Revisited)

	def statement	about, Python’s Statements, def Statements
	class statement and, The class Statement
	coding functions, Coding Functions
	decorators and, Managing Calls and Instances, Usage
	lambda expressions and, Nested scopes, defaults, and lambdas
	name resolution and, Name Resolution: The LEGB Rule
	nesting, def Executes at Runtime, Loop variables may require defaults, not scopes, Coding Class Trees
	runtime execution, def Executes at Runtime
	scope and, Python Scope Basics, Scope Details, Name Resolution: The LEGB Rule

	default exception handler, Default Exception Handler
	__del__ method	about, Common Operator Overloading Methods
	descriptors and, Using descriptors to decorate methods
	managing attributes, A First Example
	object destruction and, Object Destruction: __del__-Destructor Usage Notes

	del statement, Other common list operations, Python’s Statements
	__delattr__
 method, Common Operator Overloading Methods, __getattr__ and __getattribute__
	delegation	about, OOP and Delegation: “Wrapper” Proxy Objects
	class gotchas, Delegation-based classes in 3.X: __getattr__ and
 built-ins
	function decorators and, Decorators and Metaclasses: Part 1
	inheritance versus, Inheritance versus delegation
	OOP considerations, OOP and Delegation: “Wrapper” Proxy Objects-OOP and Delegation: “Wrapper” Proxy Objects
	operator overloading and, Caveat: Implicitly run operator overloading methods fail to
 delegate under 3.X-Implementation alternatives: __getattribute__ inserts, call
 stack inspection
	proxy classes and, Why the lookup change?

	__delete__ method, Common Operator Overloading Methods, A First Example
	deleting	dictionary items, Dictionaries
	list items, Other common list operations

	delimiters	blocks of code, Block Delimiters: Indentation Rules-Avoid mixing tabs and spaces: New error checking in 3.X
	statement, Statement Delimiters: Lines and Continuations

	__delitem__
 method, Common Operator Overloading Methods
	deprecation protocol for Python, Variable Name Rules
	depth-first, left-to-right (DFLR) path, Multiple Inheritance: “Mix-in” Classes, Diamond Inheritance Change
	derived classes, Attribute Inheritance Search, All Classes Derive from “object”-Implications for defaults
	descriptors	about, Example, __getattribute__ and Descriptors: Attribute Tools, Descriptors-Descriptors and slots and more
	attribute access and, Inserting Code to Run on Attribute Access
	builtins routing mixin, Coding variations: Routers, descriptors, automation
	decorating methods with, Using descriptors to decorate methods-Using descriptors to decorate methods
	inheritance and, Attribute Tree Construction, The descriptors special case-Assignment inheritance
	management techniques compared, Management Techniques Compared-Management Techniques Compared
	managing attributes, Other Attribute Management Tools
	metaclasses and, The descriptors special case
	properties and, How Properties and Descriptors Relate-Descriptors and slots and more
	read-only, Read-only descriptors
	slots and, Descriptors and slots and more
	state information in, Using State Information in Descriptors-Using State Information in Descriptors
	validating with, Using Descriptors to Validate-Option 2: Validating with per-client-instance state

	design patterns, Factory Functions: Closures-Closures versus classes, round 1
	destructor method, Object Destruction: __del__-Destructor Usage Notes
	development considerations	built-in type gotchas, Built-in Type Gotchas-Immutable Types Can’t Be Changed in Place
	class gotchas, Class Gotchas-KISS Revisited: “Overwrapping-itis”
	code reuse, OOP Is About Code Reuse-Programming by customization
	coding class decorators, Coding Class Decorators-Why Decorators? (Revisited)
	coding class trees, Coding Class Trees-Coding Class Trees
	coding constructors, Coding Constructors
	coding exception classes, Coding Exceptions Classes-Coding Exceptions Classes
	coding exception details, Exception Coding Details-Test Your Knowledge: Answers, Designing with Exceptions-Test Your Knowledge: Part VII Exercises
	coding function decorators, Coding Function Decorators-Timing with decorator arguments
	coding functions, Coding Functions-def Executes at Runtime, Coding Alternatives, How (Not) to Obfuscate Your Python Code-How (Not) to Obfuscate Your Python Code
	coding metaclasses, Coding Metaclasses-Overloading class creation calls with metaclasses
	coding methods, Coding Methods-Coding Methods
	coding strings, Coding Basic Strings-String Type Conversions
	coding subclasses, Coding Subclasses
	common coding gotchas, Common Coding Gotchas-Common Coding Gotchas
	database programming, Database Programming
	development community, How Is Python Developed and Supported?
	EIBTI acronym, Don’t Abuse Generators: EIBTI-On the other hand: Space and time, conciseness,
 expressiveness
	function gotchas, Function Gotchas-Hiding built-ins by assignment: Shadowing
	improvement suggestions, Room for improvement: MRO, slots, GUIs-Room for improvement: MRO, slots, GUIs
	for larger projects, Development Tools for Larger Projects-Development Tools for Larger Projects
	minimizing cross-file changes, Program Design: Minimize Cross-File Changes-Program Design: Minimize Cross-File Changes
	minimizing global variables, Program Design: Minimize Global Variables
	module coding, Module Coding Basics-Test Your Knowledge: Answers
	program execution, Development implications
	rapid development cycle, Is Python a “Scripting Language”?, Development implications
	rapid prototyping, Rapid Prototyping

	DFLR (depth-first, left-to-right) path, Multiple Inheritance: “Mix-in” Classes, Diamond Inheritance Change
	diamond patterns	about, Multiple Inheritance: “Mix-in” Classes
	attribute searches, Multiple Inheritance: “Mix-in” Classes
	inheritance search order, New-Style Class Changes, Diamond Inheritance Change-Example: Mapping Attributes to Inheritance Sources

	__dict__ attribute	about, Special Class Attributes, Instance Versus Class Attributes
	listing attributes in class trees, Listing attributes per object in class trees
	listing instance attributes, Listing instance attributes with __dict__-Listing instance attributes with __dict__
	metaprogram example, Example: Modules Are Objects
	namespace dictionaries and, Namespace Dictionaries: __dict__
	namespaces and, How (Not) to Obfuscate Your Python Code, Files Generate Namespaces
	private attributes and, Using __dict__ and __slots__ (and other virtual names)
	slots and, Slots and namespace dictionaries-Slots and namespace dictionaries
	usage example, Example: Modules Are Objects, The World’s Simplest Python Class
	wrapper classes and, OOP and Delegation: “Wrapper” Proxy Objects

	dict built-in function, Type Objects, Other Iteration Contexts
	dictionaries (dict object)	about, Python’s Core Data Types, Dictionaries, Dictionaries-Dictionaries
	adding keys, Adding Keys, Attributes, and Offsets
	alternate ways to make, Other Ways to Make Dictionaries
	changing in place, Changing Dictionaries in Place
	classes versus, Records Revisited: Classes Versus Dictionaries-Records Revisited: Classes Versus Dictionaries
	clear method, Dictionaries
	common operations, Dictionaries, Basic Dictionary Operations
	comparison operations, Dictionary magnitude comparisons no longer work in 3.X, Comparisons, Equality, and Truth
	copy method, Dictionaries, References Versus Copies
	data structures and, Using dictionaries for sparse data structures: Tuple
 keys
	deleting items, Dictionaries
	dictionary views, Dictionary views in 3.X (and 2.7 via new methods)-Dictionary views and sets, Dictionary View Iterables-Dictionary View Iterables
	empty dictionaries, Dictionaries
	fromkeys method, Dictionary comprehensions in 3.X and 2.7
	get method, Missing Keys: if Tests, Dictionaries, More Dictionary Methods, Avoiding missing-key errors
	has_key method, Missing Keys: if Tests, Dictionary Changes in Python 3.X and 2.7, The has_key method is dead in 3.X: Long live in!
	indexing, Mapping Operations, Dictionaries, Dictionary Usage Notes
	interface considerations, The has_key method is dead in 3.X: Long live in!
	items method, Python Expression Operators, Dictionaries, More Dictionary Methods, Dictionary Changes in Python 3.X and 2.7, Dictionary views in 3.X (and 2.7 via new methods), Python 2.X and 3.X dictionary comparisons, Tuple assignment in for loops, New Iterables in Python 3.X
	iteration in, Iteration and Optimization, Basic Dictionary Operations, Other Built-in Type Iterables, Dictionary View Iterables-Dictionary View Iterables
	keys method, Sorting Keys: for Loops, Dictionaries, Basic Dictionary Operations, More Dictionary Methods, Dictionary Changes in Python 3.X and 2.7, Dictionary views in 3.X (and 2.7 via new methods), Sorting dictionary keys in 3.X, Other Built-in Type Iterables, New Iterables in Python 3.X
	keyword arguments, Mapping Operations
	lists versus, Using dictionaries to simulate flexible lists: Integer
 keys, Other Ways to Make Dictionaries
	literals, Python’s Core Data Types, Dictionaries
	mapping operations, Mapping Operations, Missing Keys: if Tests-Missing Keys: if Tests, Preview: Mapping values to keys
	missing keys, Missing Keys: if Tests-Missing Keys: if Tests
	movie database example, Example: Movie Database-Preview: Mapping values to keys
	mutable nature of, Dictionaries
	nesting, Nesting Revisited, Dictionaries, Changing Dictionaries in Place, Nesting in dictionaries
	optimization in, Iteration and Optimization
	OrderedDict subclass, More Dictionary Methods
	pop method, Dictionaries, More Dictionary Methods, Using Keyword-Only Arguments
	popitem method, Dictionaries
	quiz questions and answers, Test Your Knowledge: Quiz
	sequence operations and, Dictionary Usage Notes
	setdefault method, Dictionaries
	sorting keys, Sorting Keys: for Loops-Sorting Keys: for Loops, Sorting dictionary keys in 3.X
	string formatting expressions, Dictionary-Based Formatting Expressions
	type-specific methods, Dictionaries, More Dictionary Methods-More Dictionary Methods
	update method, Dictionaries, More Dictionary Methods
	usage considerations, Dictionary Usage Notes-Nesting in dictionaries
	values method, Dictionaries, More Dictionary Methods, Dictionary Changes in Python 3.X and 2.7, Dictionary views in 3.X (and 2.7 via new methods), New Iterables in Python 3.X, Generators and function application
	version considerations, Dictionary Changes in Python 3.X and 2.7-The has_key method is dead in 3.X: Long live in!, Python 2.X and 3.X dictionary comparisons
	viewitems method, Dictionary Changes in Python 3.X and 2.7
	viewkeys method, Dictionaries, Dictionary Changes in Python 3.X and 2.7
	viewvalues method, Dictionary Changes in Python 3.X and 2.7
	zip built-in function and, Dictionary construction with zip

	dictionary comprehensions, Other Ways to Make Dictionaries, Dictionary comprehensions in 3.X and 2.7-Dictionary comprehensions in 3.X and 2.7, Other Iteration Contexts, Comprehending Set and Dictionary Comprehensions-Extended Comprehension Syntax for Sets and Dictionaries
	dir built-in function	about, Getting Help
	customizing version of, Example: Modules Are Objects
	as documentation
 source, Python Documentation Sources-The dir Function
	inheritance and, Instance Versus Class Attributes, Listing inherited attributes with dir-Listing inherited attributes with dir
	inspecting namespaces, Files Generate Namespaces

	directives, What Not to Type: Prompts and Comments
	directories, file precedence over, Files Still Have Precedence over Directories-Files Still Have Precedence over Directories
	diretory walkers, Generators and library tools: Directory walkers
	display formats	generic display tool, A Generic Display Tool
	neutralizing difference with code, Neutralizing display differences with code-Neutralizing display differences with code
	numeric, Numeric Display Formats
	print operations, Providing Print Displays-Providing Print Displays, Custom Print Displays

	distutils modules, Optimized byte code files, Fix 2: Full path absolute import, Development Tools for Larger Projects
	division operations	about, Division: Classic, Floor, and True
	floor division, Division: Classic, Floor, and True-Why does truncation matter?
	truncating division, Division: Classic, Floor, and True-Why does truncation matter?
	version considerations, Division: Classic, Floor, and True-Supporting either Python

	__ doc__ attribute, Python Documentation Sources, Docstrings: __doc__-Built-in docstrings
	__doc__ attribute, Namespace Dictionaries: Review, Documentation Strings Revisited
	doctest module, Mixed Usage Modes: __name__ and __main__, Development Tools for Larger Projects
	documentation	# comments, What Not to Type: Prompts and Comments, A First Script, Variables and Basic Expressions, Python Documentation Sources, # Comments
	about, Python Documentation Sources
	additional resources, Python Documentation Sources, The Standard Manual Set-Published Books, Standard Library Modules
	dir built-in function, Getting Help, Python Documentation Sources-The dir Function
	docstrings, Triple Quotes Code Multiline Block Strings, Python Syntax Revisited, Python Documentation Sources, Docstrings: __doc__-Built-in docstrings
	help built-in function, Getting Help, Other Common String Methods in Action, Python Documentation Sources, PyDoc: The help Function-PyDoc: The help Function
	PyDoc system, Getting Help, Python Documentation Sources, PyDoc: The help Function-Python 3.2 and earlier: GUI client
	quiz questions and answers, Test Your Knowledge: Quiz
	Sphinx tool, Python Documentation Sources, Beyond docstrings: Sphinx

	documentation strings	about, Python Documentation Sources, Docstrings: __doc__-Built-in docstrings, Documentation Strings Revisited, Development Tools for Larger Projects
	modules and, Docstrings: Module Documentation at Work
	triple-quoted strings, Triple Quotes Code Multiline Block Strings
	usage considerations, Python Syntax Revisited

	DOM parsing, XML Parsing Tools
	dot path syntax, Packages and Search Path Settings
	duck typing, Polymorphism in Python
	dynamic typing	about, It’s Powerful, Python’s Core Data Types, The Case of the Missing Declaration Statements, Dynamic Typing Is Everywhere
	objects and, Variables, Objects, and References-Objects Are Garbage-Collected
	quiz questions and answers, Test Your Knowledge: Quiz
	references and, Variables, Objects, and References, Shared References-Shared References and Equality
	variables and, Variables, Objects, and References-Types Live with Objects, Not Variables

E
	Easter eggs, Software Quality
	EBCDIC encoding, Other Encoding Schemes
	Eclipse IDE, Other IDEs
	EIBTI acronym, Don’t Abuse Generators: EIBTI-On the other hand: Space and time, conciseness,
 expressiveness
	ElementTree package, XML Parsing Tools, XML Parsing Tools
	else clause (loop blocks), break, continue, pass, and the Loop else, Loop else-More on the loop else
	embedded programs, Embedding Calls
	empty data structures, The Meaning of True and False in Python
	empty dictionaries, Dictionaries
	empty lists, Lists
	empty strings, String Basics
	empty tuples, Tuples
	encapsulation	about, Python and OOP
	decorators and, Why Decorators? (Revisited)
	polymorphism and, Polymorphism and classes

	enclosing scope	about, Scope Details
	function-related gotchas, Enclosing scopes and loop variables: Factory functions
	LEGB rule and, Name Resolution: The LEGB Rule
	nonlocal statement and, Function Interfaces and Callback-Based Code, Enclosing scopes and globals-Enclosing scopes and nonlocals, Coding alternatives
	retaining state with defaults, Retaining Enclosing Scope State with Defaults-Arbitrary scope nesting
	state retention and, State retention and enclosing scopes

	encoding and decoding	about, Character Encoding Schemes-Character Encoding Schemes
	additional schemes, Other Encoding Schemes
	ASCII, Escape Sequences Represent Special Characters, Coding ASCII Text
	byte string literals, Byte String Literals: Encoded Text
	character set declarations, Source File Character Set Encoding Declarations-Source File Character Set Encoding Declarations
	converting, Converting Encodings
	EBCDIC, Other Encoding Schemes
	filenames, Unicode Filenames and Streams
	non-ASCII text, Coding Non-ASCII Text-Encoding and Decoding Non-ASCII text
	Unicode, Binary Bytes Files, Unicode: The Short Story, String Basics, Coding Unicode Strings-Source File Character Set Encoding Declarations, Using Unicode Files-Stream content: PYTHONIOENCODING

	encodings module, Character Encoding Schemes
	endianness, Handling the BOM in 3.X-Dropping the BOM in Python
	__enter__ method, Common Operator Overloading Methods, The Context Management Protocol
	enumerate built-in function	about, Loop Coding Techniques, Generating Both Offsets and Items: enumerate
	iteration and, Other Iteration Contexts
	usage example, Other Built-in Type Iterables

	env program, The Unix env Lookup Trick
	environment variables	about, Python Environment Variables-Python Environment Variables
	PATH, The System Path, New Windows Options in 3.3: PATH, Launcher, Command-Line Usage Variations, The Unix env Lookup Trick, Python Environment Variables, Python Environment Variables
	PYTHONIOENCODING, Stream content: PYTHONIOENCODING
	PYTHONPATH, Usage Notes: import and reload, Python 3.2 and earlier: GUI client, The Module Search Path, Packages and Search Path Settings, Changing the Module Search Path, Python Environment Variables, Python Environment Variables, Windows environment variable GUI
	PYTHONSTARTUP, Python Environment Variables, Python Environment Variables
	PY_PYTHON, The Python 3.3 Windows Launcher: #! Comes to Windows, Python Environment Variables, Python Environment Variables
	PY_PYTHON2, Python Environment Variables, Python Environment Variables
	PY_PYTHON3, Python Environment Variables, Python Environment Variables
	TCL_LIBRARY, Python Environment Variables
	TK_LIBRARY, Python Environment Variables

	EOFError exception, Exceptions Aren’t Always Errors
	__eq__ method, Common Operator Overloading Methods, Comparisons: __lt__, __gt__, and Others
	equality	built-in object types, Comparisons, Equality, and Truth-Python 2.X and 3.X dictionary comparisons
	shared references and, Shared References and Equality-Shared References and Equality
	testing truth values, Truth Values and Boolean Tests-Truth Values and Boolean Tests
	value equality operators, Python Expression Operators

	equivalence (==) operator, Comparisons, Equality, and Truth
	errno module, Built-in Exception Categories
	error handling	displaying errors and tracebacks, Displaying Errors and Tracebacks
	exceptions and, Exception Roles, Termination Actions
	missing keys, Missing Keys: if Tests-Missing Keys: if Tests, Avoiding missing-key errors
	scripts and, Other Icon-Click Limitations
	testing inputs, Handling Errors by Testing Inputs
	with try statements, Handling Errors with try Statements-Supporting floating-point numbers

	escape sequences, Other Ways to Code Strings, String Basics, Escape Sequences Represent Special Characters-Raw Strings Suppress Escapes
	etree package, XML Parsing Tools
	eval built-in function	jump tables and, Multiway branch switches: The finale
	strings and, Hex, Octal, Binary: Literals and Conversions, String Conversion Tools, Storing Python Objects in Files: Conversions

	event notification, Exception Roles
	Exception class	about, Coding Exceptions Classes, Built-in Exception Classes
	as catchall, Catching all: The empty except and Exception, Built-in Exception Categories, More on sys.exc_info
	user-defined exceptions and, User-Defined Exceptions

	exception classes	about, Exception Objects-Class-Based Exceptions
	built-in, Built-in Exception Classes-Default Printing and State
	coding, Coding Exceptions Classes-Coding Exceptions Classes
	custom data and behavior, Custom Data and Behavior-Providing Exception Methods
	custom print displays, Custom Print Displays
	hierarchies in, Why Exception Hierarchies?-Why Exception Hierarchies?
	quiz questions and answers, Test Your Knowledge: Quiz
	version considerations, Exception Objects

	exception handlers, Why Use Exceptions?	(see also specific statements)
	about, Why Use Exceptions?
	backtracking and, Exception Roles
	default, Default Exception Handler
	defining methods for, Providing Exception Methods-Providing Exception Methods
	interactive prompt and, Catching Exceptions
	nesting, Nesting Exception Handlers-Example: Syntactic Nesting
	termination actions and, Default Exception Handler, Termination Actions

	exception variables, Other Python scopes: Preview
	exceptions, Exception Basics	(see also specific exceptions and specific statements)
	about, Exception Basics
	built-in, User-Defined Exceptions, Example: Catching Built-in Exceptions
	catching, Catching Exceptions, Termination Actions, Catching any and all exceptions-Catching all: The empty except and Exception, Example: Catching Built-in Exceptions
	catching too little, Catching Too Little: Use Class-Based Categories
	catching too much, Catching Too Much: Avoid Empty except and Exception-Catching Too Much: Avoid Empty except and Exception
	chaining, Python 3.X Exception Chaining: raise from-Python 3.X Exception Chaining: raise from
	class-based, Exception Objects-Test Your Knowledge: Answers
	coding details, Exception Coding Details-Test Your Knowledge: Answers
	common roles, Exception Roles
	design tips and gotchas, Exception Design Tips and Gotchas-Catching Too Little: Use Class-Based Categories
	errors versus, Exceptions Aren’t Always Errors
	propagating, Propagating Exceptions with raise
	quiz questions and answers, Test Your Knowledge: Quiz, Test Your Knowledge: Quiz, Test Your Knowledge: Quiz
	raising, Using Keyword-Only Arguments, User-Defined Iterables, Raising Exceptions, Raising Exceptions
	string-based, String Exceptions Are Right Out!
	usage considerations, Why Use Exceptions?, Exception Idioms-Displaying Errors and Tracebacks
	user-defined, User-Defined Exceptions, Default Printing and State, Functions Can Signal Conditions with raise

	exceptions module, Built-in Exception Classes
	exec built-in function, Using exec to Run Module Files-Using exec to Run Module Files
	execfile built-in function, Using exec to Run Module Files
	executable scripts	#! comment in Windows, The Python 3.3 Windows Launcher: #! Comes to Windows-The Python 3.3 Windows Launcher: #! Comes to Windows
	about, Unix Script Basics
	env program, The Unix env Lookup Trick

	executing programs (see program execution)
	exercises	part I, Test Your Knowledge: Part I Exercises-Test Your Knowledge: Part I Exercises, Part I, Getting Started-Part I, Getting Started
	part II, Test Your Knowledge: Part II Exercises-Test Your Knowledge: Part II Exercises, Part II, Types and Operations-Part II, Types and Operations
	part III, Test Your Knowledge: Part III Exercises-Test Your Knowledge: Part III Exercises, Part III, Statements and Syntax-Part III, Statements and Syntax
	part IV, Test Your Knowledge: Part IV Exercises-Test Your Knowledge: Part IV Exercises, Part IV, Functions and Generators-Part IV, Functions and Generators
	part V, Test Your Knowledge: Part V Exercises-Test Your Knowledge: Part V Exercises, Part V, Modules and Packages-Part V, Modules and Packages
	part VI, Test Your Knowledge: Part VI Exercises-Test Your Knowledge: Part VI Exercises, Part VI, Classes and OOP-Part VI, Classes and OOP
	part VII, Test Your Knowledge: Part VII Exercises, Part VII, Exceptions and Tools-Part VII, Exceptions and Tools

	__exit__ method, Common Operator Overloading Methods, The Context Management Protocol
	explicit attributes, State with Classes: Explicit Attributes (Preview)
	exponentiation operation, Numbers
	expression operators	converting mixed types, Mixed types are converted up
	grouping with parentheses, Parentheses group subexpressions
	listed, Python Expression Operators
	operator overloading, Preview: Operator overloading and polymorphism
	operator precedence, Mixed operators follow operator precedence
	polymorphism and, Preview: Operator overloading and polymorphism
	set operations and, Set basics in Python 2.6 and earlier
	version considerations, Python Expression Operators

	expressions, Python Expression Operators	(see also lambda expressions)
	about, Python Expression Operators
	arbitrary, Sequence Operations
	call, Method Call Syntax, Call Expressions: __call__-Function Interfaces and Callback-Based Code
	code examples, Running Code Interactively
	expression operators, Python Expression Operators-Preview: Operator overloading and polymorphism
	functions versus, Functions versus expressions: A minor convenience, Expression Statements
	generator, Multiple Versus Single Pass Iterators, Other Iteration Topics, Generator Functions and Expressions, Generator Expressions: Iterables Meet Comprehensions-Generator Functions Versus Generator Expressions
	indexing, Sequence Operations
	numbers in, Variables and Basic Expressions-Variables and Basic Expressions
	objects and, The Python Conceptual Hierarchy
	operator overloading and, Constructors and Expressions: __init__ and __sub__
	quiz questions and answers, Test Your Knowledge: Quiz
	slice, Intercepting Slices
	statements and, The Python Conceptual Hierarchy, Expression Statements-Expression Statements and In-Place Changes
	string formatting, String Formatting Expressions-Dictionary-Based Formatting Expressions
	variables and, Variables, Objects, and References

	extended sequence unpacking	about, Assignment Statement Forms, Extended Sequence Unpacking in Python 3.X-Application to for loops
	for loops and, Python 3.X extended sequence assignment in for loops

	extending built-in types	about, Extending Built-in Types
	by embedding, Extending Types by Embedding
	by subclassing, Extending Types by Subclassing-Extending Types by Subclassing

	extension modules, Other Kinds of Modules

F
	factorials, On the other hand: Space and time, conciseness,
 expressiveness, Test Your Knowledge: Part IV Exercises, Part IV, Functions and Generators
	factory functions	about, Factory Functions: Closures-Closures versus classes, round 1
	generic, Classes Are Objects: Generic Object Factories-Why Factories?
	gotchas, Enclosing scopes and loop variables: Factory functions
	metaclasses and, Using simple factory functions

	false value in Python	Booleans and, Booleans, The Meaning of True and False in Python-The bool type, Truth Values and Boolean Tests-Truth Values and Boolean Tests
	built-in scope and, Redefining built-in names: For better or worse
	operator overloading and, Boolean Tests: __bool__ and __len__-Boolean Methods in Python 2.X

	FieldStorage class, The has_key method is dead in 3.X: Long live in!
	FIFO (first-in-first-out), Recursion versus queues and stacks
	__file__ attribute, Example: Modules Are Objects
	files (file object), Files in Action	(see also binary files; text files)
	about, Files, Files
	close method, Files, Using Files
	closing, Closing Files and Server Connections
	common operations, Files, Files in Action
	context manager, Using Files
	context managers, File Context Managers
	flush method, Files, Other File Tools
	generating namespaces, Files Generate Namespaces
	__init__.py files, Package __init__.py Files-Package initialization file roles
	inspecting, XML Parsing Tools
	iteration in, Files in Action, The Iteration Protocol: File Iterators-The Iteration Protocol: File Iterators, On the other hand: performance, conciseness,
 expressiveness
	list comprehensions and, Using List Comprehensions on Files
	literals, Python’s Core Data Types
	minimizing cross-file changes, Program Design: Minimize Cross-File Changes-Program Design: Minimize Cross-File Changes
	module filenames, Module Filenames
	next method, The Iteration Protocol: File Iterators, Manual Iteration: iter and next, Using List Comprehensions on Files
	__next__ method, The Iteration Protocol: File Iterators, Manual Iteration: iter and next
	open built-in function and, Files, Other File-Like Tools, Opening Files
	precedence over directories, Files Still Have Precedence over Directories-Files Still Have Precedence over Directories
	print operations and, Print Operations
	quiz questions and answers, Test Your Knowledge: Quiz
	read method, Files, Files, Files in Action, Nested for loops
	readline method, Files, Files, Files in Action, The Iteration Protocol: File Iterators
	readlines method, Files, Nested for loops, The Iteration Protocol: File Iterators, Using List Comprehensions on Files, Polymorphism Revisited
	seek method, Files, Files, Polymorphism Revisited
	storing objects in files, Storing Python Objects in Files: Conversions-Storing Python Objects in Files: Conversions
	tools supporting, Other File Tools
	type-specific methods, Files, Files in Action
	usage considerations, Usage Notes: Command Lines and Files, Using Files-Using Files
	write method, Files, Storing Python Objects in Files: Conversions
	writelines method, Files
	xreadlines method, Nested for loops

	filesystems, access-by-key (see access-by-key databases and filesystems)
	filter built-in function	generator expressions versus, Generator expressions versus filter
	iteration and, Other Iteration Contexts, New Iterables in Python 3.X, The map, zip, and filter Iterables, Selecting Items in Iterables: filter
	list comprehensions and, Comprehensions, Adding Tests and Nested Loops: filter-Formal comprehension syntax

	filtering test results, Filter clauses: if
	first-class object model, Indirect Function Calls: “First Class” Objects, Functional Programming Tools
	first-in-first-out (FIFO), Recursion versus queues and stacks
	float built-in function, String Conversion Tools, Type Objects
	floating-point numbers (float type)	about, Numbers, Other Core Types, Numeric Literals
	as_integer_ratio method, Built-in Numeric Tools
	is_integer method, Built-in Numeric Tools
	try statements and, Supporting floating-point numbers

	FloatingPointError exception, Built-in Exception Classes
	floor division, Division: Classic, Floor, and True-Why does truncation matter?
	for statement	about, Python’s Statements, for Loops
	extended sequence unpacking, Application to for loops
	filter clauses, Filter clauses: if
	general format, General Format
	iteration and, Iterations: A First Look, The Iteration Protocol: File Iterators, The full iteration protocol, Other Built-in Type Iterables
	list comprehensions and, Nested for loops, Iterations and Comprehensions, List Comprehensions: A First Detailed Look
	nested loops, Nested loops: for
	nesting, Nested for loops-Nested for loops
	parallel traversals, Parallel Traversals: zip and map-Dictionary construction with zip
	quiz questions and answers, Test Your Knowledge: Quiz
	range built-in function and, Advanced sequence assignment patterns
	recursion versus, Loop Statements Versus Recursion
	sequence scans, Sequence Scans: while and range Versus for
	sorting keys, Sorting Keys: for Loops-Sorting Keys: for Loops
	terminating, Entering multiline statements
	usage examples, Examples-Nested for loops

	format built-in function, Advanced Formatting Method Syntax, Advanced Formatting Method Examples
	__format__
 method, Advanced Formatting Method Syntax
	formatting strings (see string formatting)
	fractions (fraction object)	about, Other Core Types, Fraction Type
	conversions and mixed types, Fraction conversions and mixed types
	from_float method, Fraction conversions and mixed types
	numeric accuracy in, Numeric accuracy in fractions and decimals

	fractions module, Fraction basics
	freeze tool, Frozen Binaries
	from * statement	about, The from * Statement
	modules and, The from * Statement
	namespace pollution and, Minimizing from * Damage: _X and __all__
	package imports and, Package initialization file roles
	variables and, from * Can Obscure the Meaning of Variables

	from statement	about, The Grander Module Story: Attributes, Python’s Statements, Modules: The Big Picture, The from Statement, import and from Are Assignments-When import is required
	as extension, The as Extension for import and from
	copying names, from Copies Names but Doesn’t Link
	exec built-in function and, Using exec to Run Module Files
	import statement versus, import and from Equivalence, from Versus import with Packages, Recursive from Imports May Not Work
	package imports and, Package Import Basics
	potential pitfalls, Potential Pitfalls of the from Statement-When import is required
	relative imports model and, Module Packages
	reload built-in function and, reload May Not Impact from Imports-reload, from, and Interactive Testing
	testing and, reload, from, and Interactive Testing

	frozen binaries, Frozen Binaries, Frozen Binary Executables
	frozenset built-in function, Immutable constraints and frozen sets, Core Types Review and Summary
	function attributes, State with Function Attributes: 3.X and 2.X-State with mutables: Obscure ghost of Pythons past?, Function Attributes-Function Attributes, Function attributes
	function decorators	about, OOP and Delegation: “Wrapper” Proxy Objects, Decorators and Metaclasses: Part 1-Function Decorator Basics, What’s a Decorator?
	adding arguments, Adding Decorator Arguments-Timing with decorator arguments
	coding, Coding Function Decorators-Timing with decorator arguments
	implementing, Implementation
	manager functions versus, Decorators Versus Manager Functions
	method blunders, Class Blunders I: Decorating Methods-Using descriptors to decorate methods
	method declaration and, Supporting method decoration
	properties and, Property basics
	state retention options, Decorator State Retention Options-Function attributes
	timing calls, Timing Calls-Timing with decorator arguments
	tracing calls, Tracing Calls-Tracing Calls
	usage considerations, Function Decorators
	user-defined, A First Look at User-Defined Function Decorators
	validating arguments, Example: Validating Function Arguments-Other Applications: Type Testing (If You Insist!)

	functional programming	built-in functions for, Functional Programming Tools-Combining Items in Iterables: reduce
	classes, Classes Generate Multiple Instance Objects
	closures, Factory Functions: Closures-Closures versus classes, round 1
	list comprehensions, List Comprehensions and Functional Tools-On the other hand: performance, conciseness,
 expressiveness

	functions, Python’s Core Data Types	(see also specific functions)
	about, Python’s Core Data Types, Function Basics-Why Use Functions?
	accessor, Program Design: Minimize Cross-File Changes, Function Design Concepts
	annotations and, Function Annotations in 3.X-Function Annotations in 3.X, Decorator Arguments Versus Function Annotations-Decorator Arguments Versus Function Annotations
	anonymous, Anonymous Functions: lambda-Scopes: lambdas Can Be Nested Too
	applying generically, Applying functions generically-Applying functions generically
	*arg form, Other Iteration Contexts, Arbitrary Arguments Examples-The defunct apply built-in (Python 2.X), Why keyword-only arguments?
	**args form, The Gritty Details, Arbitrary Arguments Examples-The defunct apply built-in (Python 2.X), Why keyword-only arguments?
	calling, Calls
	classes and, Classes and Instances, Method Calls, Example
	coding, Coding Functions-def Executes at Runtime, Coding Alternatives, How (Not) to Obfuscate Your Python Code-How (Not) to Obfuscate Your Python Code
	cohesion in, Function Design Concepts
	common pitfalls, Function Gotchas-Hiding built-ins by assignment: Shadowing
	coupling, Function Design Concepts
	decorators and, Managing Functions and Classes, Decorators Manage Functions and Classes, Too, Managing Functions and Classes Directly-Managing Functions and Classes Directly
	defining, Definition
	design concepts, Function Design Concepts-Function Design Concepts
	expressions versus, Functions versus expressions: A minor convenience, Expression Statements
	factory, Factory Functions: Closures-Closures versus classes, round 1, Enclosing scopes and loop variables: Factory functions, Classes Are Objects: Generic Object Factories-Why Factories?, Using simple factory functions
	first-class object model, Indirect Function Calls: “First Class” Objects, Functional Programming Tools
	generator, Multiple Versus Single Pass Iterators, Other Iteration Topics, Generator Functions and Expressions-Extended generator function protocol: send versus next, Generator Functions Versus Generator Expressions-Generator Functions Versus Generator Expressions
	helper, Decorators Versus Manager Functions, The Downside of “Helper” Functions-The Downside of “Helper” Functions
	intersecting sequences, A Second Example: Intersecting Sequences-Local Variables, Generalized Set Functions-Generalized Set Functions
	introspection tools, Function Introspection, Function introspection
	**kargs form, Coding your own zip(...) and map(None, ...), Tracing interfaces with class decorators, Generalizing for Keywords and Defaults, Too, Matching algorithm
	keyword arguments, Mapping Operations
	manager, Decorators Versus Manager Functions, The Downside of “Helper” Functions-The Downside of “Helper” Functions
	mapping operations, Mapping Functions over Iterables: map-Mapping Functions over Iterables: map
	metafunctions, Decorators and Metaclasses: Part 1-Function Decorator Basics, Usage
	methods and, A First Example
	nesting, Scopes and Nested Functions-Arbitrary scope nesting, Scopes: lambdas Can Be Nested Too, Using nested functions to decorate methods
	*pargs form, Generalizing for Keywords and Defaults, Too, Matching algorithm
	polymorphism in, Polymorphism in Python, Polymorphism Revisited
	programming tools, Functional Programming Tools-Combining Items in Iterables: reduce
	quiz questions and answers, Test Your Knowledge: Quiz, Test Your Knowledge: Quiz
	recursive, Scope Details, Recursive Functions-More recursion examples, A Recursive Reloader-Testing recursive reloads, Recursive from Imports May Not Work, Namespace Links: A Tree Climber
	scope considerations, Scope Details
	signaling conditions with, Functions Can Signal Conditions with raise
	unbound methods as, Unbound Methods Are Functions in 3.X

	functools module, Combining Items in Iterables: reduce
	__future__ module, Supporting either Python, Importing from __future__, Enabling Future Language Features: __future__

G
	garbage collection	about, Nesting Revisited, Changing Strings I
	exception variables and, Other Python scopes: Preview
	objects and, Objects Are Garbage-Collected, Object Destruction: __del__-Destructor Usage Notes

	gc module, Objects Are Garbage-Collected
	__ge__ method, Common Operator Overloading Methods
	generators	about, Comprehensions, Generator Functions and Expressions
	classes and, Generation in Built-in Types, Tools, and Classes-Preview: User-defined iterables in classes, Classes versus generators
	EIBTI acronym, Don’t Abuse Generators: EIBTI-On the other hand: Space and time, conciseness,
 expressiveness
	functions versus expressions, Generator Functions Versus Generator Expressions-Generator Functions Versus Generator Expressions
	generating scrambled sequences, Example: Generating Scrambled Sequences-Permutations: All possible combinations
	iterables versus comprehensions, Generator Expressions: Iterables Meet Comprehensions-Generator expressions versus filter
	iteration and, Iteration and Optimization, Multiple Versus Single Pass Iterators, Other Iteration Topics, Iteration protocol integration, Generators Are Single-Iteration Objects-Generators Are Single-Iteration Objects, Example: Emulating zip and map with Iteration Tools-Coding your own zip(...) and map(None, ...)
	multithreading and, Why generator functions?
	__next__ method, Iteration protocol integration
	quiz questions and answers, Test Your Knowledge: Quiz
	recursive calls, Listing attributes per object in class trees
	send method, Extended generator function protocol: send versus next
	yield versus return statement, Generator Functions: yield Versus return-Extended generator function protocol: send versus next

	__get__ method	about, Common Operator Overloading Methods
	descriptors and, Other Attribute Management Tools, Using descriptors to decorate methods
	managing attributes, Descriptor method arguments

	getattr built-in function, Other Ways to Combine Classes, OOP and Delegation: “Wrapper” Proxy Objects
	__getattr__ method	about, Common Operator Overloading Methods, Attribute Access: __getattr__ and __setattr__-Emulating Privacy for Instance Attributes: Part 1, Inserting Code to Run on Attribute Access
	attribute fetches and, Other Ways to Combine Classes
	attribute interception and, Implications for attribute interception
	class decorators and, Implementation, Tracing Object Interfaces-Applying class decorators to built-in types
	emulating privacy, Pseudoprivate Class Attributes
	__getattribute__
 method comparison, __getattr__ and __getattribute__ Compared
	implementation alternatives, Implementation alternatives: __getattribute__ inserts, call
 stack inspection-Implementation alternatives: __getattribute__ inserts, call
 stack inspection
	intercepting built-in operation attributes, Intercepting Built-in Operation Attributes-Delegation-based managers revisited
	managing attributes, __getattr__ and __getattribute__-Delegation-based managers revisited
	metaclasses and, Operator Overloading in Metaclass Methods
	new-style classes and, Attribute Fetch for Built-ins Skips Instances
	validating with, Using __getattr__ to Validate-Using __getattr__ to Validate
	wrapper classes and, OOP and Delegation: “Wrapper” Proxy Objects

	__getattribute__
 method	about, Common Operator Overloading Methods, Other Attribute Management Tools, __getattribute__ and Descriptors: Attribute Tools, Inserting Code to Run on Attribute Access
	attribute fetches and, Other Ways to Combine Classes
	__getattr__ method
 comparison, __getattr__ and __getattribute__ Compared
	intercepting built-in operation attributes, Intercepting Built-in Operation Attributes-Delegation-based managers revisited
	managing attributes, __getattr__ and __getattribute__-Delegation-based managers revisited
	new-style classes and, Attribute Fetch for Built-ins Skips Instances
	recursive looping and, More recursion examples
	validating with, Using __getattribute__ to Validate

	__getitem__ method	about, Common Operator Overloading Methods, Indexing and Slicing: __getitem__ and __setitem__-But 3.X’s __index__ Is Not Indexing!
	index iteration and, Index Iteration: __getitem__-Index Iteration: __getitem__
	membership and, Membership: __contains__, __iter__, and __getitem__-Membership: __contains__, __iter__, and __getitem__
	user defined class and, Other Iteration Topics
	user defined iterables and, Preview: User-defined iterables in classes

	getopt module, Example: Dual Mode Code
	__getslice__ method, Slicing and Indexing in Python 2.X, The __cmp__ Method in Python 2.X
	global scope	about, Scope Details
	LEGB rule and, Name Resolution: The LEGB Rule, Simple Names: Global Unless Assigned
	state retention and, State with Globals: A Single Copy Only

	global statement	about, Python’s Statements, Scope Details, The global Statement, nonlocal Basics
	coding functions, Coding Functions

	global variables	alternatives for accessing, Other Ways to Access Globals
	minimizing, Program Design: Minimize Global Variables
	modules and, Module Design Concepts

	go to statements, Breaking Out of Multiple Nested Loops: “go to”
	Graphical User Interface (GUI), GUIs, Future Directions
	__gt__ method, Common Operator Overloading Methods, Comparisons: __lt__, __gt__, and Others
	GUI (Graphical User Interface), GUIs, Future Directions

H
	hash character (#)	comments, What Not to Type: Prompts and Comments, A First Script, Variables and Basic Expressions, Python Documentation Sources, # Comments
	directives, What Not to Type: Prompts and Comments

	help built-in function	about, Getting Help, Other Common String Methods in Action, Python Documentation Sources
	PyDoc system and, PyDoc: The help Function-PyDoc: The help Function, Documentation Strings Revisited, Development Tools for Larger Projects

	helper functions, Decorators Versus Manager Functions, The Downside of “Helper” Functions-The Downside of “Helper” Functions
	hex built-in function, Numeric Literals
	__hex__ method, But 3.X’s __index__ Is Not Indexing!
	hexadecimal notation	integers, Numeric Literals, Hex, Octal, Binary: Literals and Conversions-Hex, Octal, Binary: Literals and Conversions
	string escape sequences, Other Ways to Code Strings

	HTML reports, PyDoc: HTML Reports-Python 3.2 and earlier: GUI client

I
	-i command-line
 argument, Which Option Should I Use?
	__iadd__ method, Common Operator Overloading Methods, Right-Side and In-Place Uses: __radd__ and __iadd__-In-Place Addition, bytearrays in Action
	icon clicks	about, Icon-Click Basics
	limitations, The input Trick on Windows-Other Icon-Click Limitations
	Windows platform, Clicking Icons on Windows-The input Trick on Windows

	id built-in function, Listing instance attributes with __dict__
	IDEs (integrated development environments)	about, The IDLE User Interface, Development Tools for Larger Projects
	alternative, Other IDEs-Other IDEs

	IDLE user interface	about, The IDLE User Interface, The dir Function, Python Environment Variables
	advanced tools, Advanced IDLE Tools
	basic usage, IDLE Basic Usage-IDLE Basic Usage
	common usage mistakes, Usage Notes: Command Lines and Files, Usage Notes: IDLE-Usage Notes: IDLE
	multiline block strings, Triple Quotes Code Multiline Block Strings
	startup details, IDLE Startup Details
	usability features, IDLE Usability Features

	if (elif/else) statement	about, Python’s Statements, A Tale of Two ifs, if Statements
	basic examples, Basic Examples
	filter clauses, Filter clauses: if
	general format, General Format
	interactive loops example, A Simple Interactive Loop, Handling Errors by Testing Inputs
	missing keys tests, Missing Keys: if Tests-Missing Keys: if Tests
	multiway branching, Multiway Branching-Handling larger actions, Multiway branch switches: The finale
	quiz questions and answers, Test Your Knowledge: Quiz
	terminating, Entering multiline statements

	if/else ternary expression, Python Expression Operators, The if/else Ternary Expression-The if/else Ternary Expression
	immutable objects	about, Immutability, Changing Strings I
	changing in place, Core Types Review and Summary, Immutable Types Can’t Be Changed in Place
	constraints with, Immutable constraints and frozen sets
	immutable sequences, String Basics

	imp.reload function, Import and Reload Basics-The Grander Module Story: Attributes, Usage Notes: import and reload, Usage Notes: IDLE, Modules: The Big Picture
	implementation-related object types, Python’s Core Data Types
	implicit assignments, Changing mutables in modules
	__import__ built-in
 function, Import hooks and ZIP files, Direct Calls: Two Options
	import statement, Package Import Basics	(see also package imports)
	about, Import and Reload Basics-The Grander Module Story: Attributes, Python’s Statements, Modules: The Big Picture, Imports and Attributes-Imports and Attributes, The import Statement
	as extension, The as Extension for import and from
	as one-time occurrence, Imports Happen Only Once
	common usage mistakes, Usage Notes: import and reload, Usage Notes: IDLE
	dot path syntax, Packages and Search Path Settings
	enabling context managers, with/as Context Managers
	as executable
 statement, import and from Are Assignments
	from statement versus, import and from Equivalence, from Versus import with Packages, Recursive from Imports May Not Work
	importing modules by name string, Importing Modules by Name String-Direct Calls: Two Options
	packages and, Package Import Basics
	potential pitfalls, Potential Pitfalls of the from Statement-When import is required
	process overview, How Imports Work-3. Run It
	scopes versus, Imports Versus Scopes

	import this command, Software Quality, Don’t Abuse List Comprehensions: KISS
	importlib.import_module function, Import hooks and ZIP files, Direct Calls: Two Options
	in operator	dictionaries and, Missing Keys: if Tests, Basic Dictionary Operations
	sets and, Other Core Types
	strings and, Other Common String Methods in Action

	in-place change operations	avoiding mutable argument changes, Avoiding Mutable Argument Changes
	dictionaries and, Changing Dictionaries in Place
	expression statements and, Expression Statements and In-Place Changes
	immutable objects and, Core Types Review and Summary, Immutable Types Can’t Be Changed in Place
	lists and, Changing Lists in Place-Other common list operations, Expression Statements and In-Place Changes
	scope and, Scope Details
	shared references and, Shared References and In-Place Changes-Shared References and In-Place Changes

	indenting	blocks of code, Block Delimiters: Indentation Rules-Avoid mixing tabs and spaces: New error checking in 3.X
	common usage mistakes, Usage Notes: The Interactive Prompt
	statements, End of indentation is end of block-Why Indentation Syntax?

	__index__ method, Common Operator Overloading Methods, But 3.X’s __index__ Is Not Indexing!
	IndexError exception, Iterable Objects: __iter__ and __next__, Default Exception Handler, Raising Exceptions
	indexing	dictionaries, Mapping Operations, Dictionaries, Dictionary Usage Notes
	lists, Indexing, Slicing, and Matrixes, Index and slice assignments-Index and slice assignments
	operator overloading and, Indexing and Slicing: __getitem__ and __setitem__-But 3.X’s __index__ Is Not Indexing!
	strings, Sequence Operations, Indexing and Slicing-Extended slicing: The third limit and slice objects
	tuples, Tuples

	indirect function calls, Indirect Function Calls: “First Class” Objects
	inheritance, Multiple Inheritance: “Mix-in” Classes	(see also multiple inheritance)
	about, OOP: The Big Picture-OOP from 30,000 Feet, Inheritance, Python and OOP
	abstract superclasses, Abstract Superclasses-Abstract superclasses in Python 3.X and 2.6+: Preview
	assignment and, Assignment inheritance
	attribute tree construction, Attribute Tree Construction
	attributes and, Attribute Inheritance Search-Attribute Inheritance Search, Classes Are Customized by Inheritance, Listing inherited attributes with dir-Listing inherited attributes with dir
	built-ins and, The built-ins special case
	class interface techniques, Class Interface Techniques-Class Interface Techniques
	classes and, Classes Are Customized by Inheritance-Classes Are Attributes in Modules, Classes Are Customized by Inheritance, Multiple Inheritance: “Mix-in” Classes-Room for improvement: MRO, slots, GUIs
	delegation versus, Inheritance versus delegation
	descriptors and, Attribute Tree Construction, The descriptors special case-Assignment inheritance
	formal definition and algorithm, Inheritance: The Full Story-The built-ins special case
	instances and, Instance Objects Are Concrete Items
	mapping attributes to sources, Example: Mapping Attributes to Inheritance Sources-Example: Mapping Attributes to Inheritance Sources
	metaclasses and, Attribute Tree Construction, Inheritance and Instance-The built-ins special case
	multiple, Coding Class Trees
	namespaces and, Inheritance
	OOP considerations, OOP and Inheritance: “Is-a” Relationships-OOP and Inheritance: “Is-a” Relationships
	specializing inherited methods, Specializing Inherited Methods
	subclasses and, A Third Example
	type object and, Inheritance and Instance
	usage examples, A Second Example

	__init__ method	about, Operator Overloading, Common Operator Overloading Methods
	attribute validation and, Using Properties to Validate
	class decorators and, Implementation, Class Blunders II: Retaining Multiple Instances
	coding multiple, Calling Superclass Constructors
	constructors and, Coding Constructors, Calling Superclass Constructors, Constructors and Expressions: __init__ and __sub__
	inheritance and, A Third Example
	metaclasses and, A Basic Metaclass

	__init__.py files, Package __init__.py Files-Package initialization file roles, Namespace Package Semantics-Impacts on Regular Packages: Optional __init__.py
	input built-in function	input trick on Windows, The input Trick on Windows, The input Trick on Windows
	prompting for test inputs, Example: Dual Mode Code
	usage example, A Simple Interactive Loop

	installing Python, Introducing the Python Interpreter, Installing the Python Interpreter-Installation Steps
	instance attributes, Instance Versus Class Attributes	class attributes versus, Instance Versus Class Attributes
	creating, Attribute Tree Construction
	emulating privacy for, Emulating Privacy for Instance Attributes: Part 1
	function decorators and, Class instance attributes
	listing with __dict__, Listing instance attributes with __dict__-Listing instance attributes with __dict__
	usage examples, Namespace Dictionaries: Review

	instance methods, Other Method Call Possibilities
	instances	about, Why Use Classes?, Instance Objects Are Concrete Items
	about and, Classes and Instances
	counting with class methods, Counting Instances with Class Methods-Counting instances per class with class methods
	counting with static methods, Counting Instances with Static Methods
	creating, Instance Objects Are Concrete Items, Step 1: Making Instances-Using Code Two Ways
	decorators managing, Managing Calls and Instances
	inheritance and, Instance Objects Are Concrete Items
	metaclasses and, Inheritance and Instance-The built-ins special case, Managing instances instead of classes-Managing instances instead of classes
	multiple, Classes Generate Multiple Instance Objects-A First Example, Supporting multiple instances, Class Blunders II: Retaining Multiple Instances
	namespaces and, Instance Objects Are Concrete Items
	raising with raise statement, Coding Exceptions Classes
	type object and, Classes Are Instances of type-Classes Are Instances of type
	usage examples, A First Example-A First Example

	int built-in function	about, Hex, Octal, Binary: Literals and Conversions, String Conversion Tools, Type Objects
	alternatives to, Character code conversions
	interactive loops example, Handling Errors by Testing Inputs

	integers (int type)	about, Numbers, Numeric Literals
	bit_length method, Bitwise Operations
	converting to strings, Hex, Octal, Binary: Literals and Conversions
	hex, octal, binary notation, Numeric Literals, Hex, Octal, Binary: Literals and Conversions-Hex, Octal, Binary: Literals and Conversions
	integer keys, Using dictionaries to simulate flexible lists: Integer
 keys
	precision in, Integer Precision

	integrated development environments (IDEs)	about, The IDLE User Interface, Development Tools for Larger Projects
	alternative, Other IDEs-Other IDEs

	interactive loops, A Quick Example: Interactive Loops-Nesting Code Three Levels Deep
	interactive prompt	about, Byte code compilation, The Interactive Prompt
	code directories, Where to Run: Code Directories
	common usage mistakes, Usage Notes: The Interactive Prompt-Entering multiline statements
	exception handling and, Catching Exceptions
	as experimenting
 tool, Experimenting
	new Windows options, New Windows Options in 3.3: PATH, Launcher
	printing values at, Expression Statements
	prompts and comments and, What Not to Type: Prompts and Comments
	recursive reload example, Testing recursive reloads
	running code interactively, Running Code Interactively
	scope and, Scope Details
	starting interactive sessions, Starting an Interactive Session
	system path, The System Path
	terminating compound statements, Entering multiline statements
	as testing tool, Testing

	Internet scripting, Internet Scripting
	interpreters (see Python interpreter)
	introspection tools	classes, Step 6: Using Introspection Tools-Our Classes’ Final Form
	functions, Function Introspection, Function introspection

	iOS platform, Installation Steps
	IronPython system, Python Implementation Alternatives, IronPython: Python for .NET
	is operator, Python Expression Operators, Comparisons, Equality, and Truth
	isinstance built-in function, Type Objects, Propagating class type, Listing inherited attributes with dir
	iter built-in function	about, Iteration and Optimization, Manual Iteration: iter and next-Manual iteration, Multiple Versus Single Pass Iterators
	user defined iterables and, Preview: User-defined iterables in classes

	__iter__ method	about, Preview: User-defined iterables in classes, Common Operator Overloading Methods
	coding example, Coding Alternative: __iter__ plus yield-Multiple iterators with yield
	iterable objects and, Iterable Objects: __iter__ and __next__-Multiple iterators with yield
	membership and, Membership: __contains__, __iter__, and __getitem__-Membership: __contains__, __iter__, and __getitem__
	user defined classes and, Other Iteration Topics

	iteration	about, Iteration and Optimization, Iterations: A First Look
	additional contexts, Other Iteration Contexts-Other Iteration Contexts
	additional information, Other Iteration Topics
	built-in functions and, Other Iteration Contexts, New Iterables in Python 3.X, The map, zip, and filter Iterables, Mapping Functions over Iterables: map-Mapping Functions over Iterables: map, Example: Emulating zip and map with Iteration Tools-Coding your own zip(...) and map(None, ...)
	built-in types supported, Other Built-in Type Iterables-Other Built-in Type Iterables
	comprehensions versus, Generator Expressions: Iterables Meet Comprehensions-Generator expressions versus filter
	in dictionaries, Iteration and Optimization, Basic Dictionary Operations, Other Built-in Type Iterables, Dictionary View Iterables-Dictionary View Iterables
	in files, Files in Action, The Iteration Protocol: File Iterators-The Iteration Protocol: File Iterators, On the other hand: performance, conciseness,
 expressiveness
	generators and, Iteration and Optimization, Multiple Versus Single Pass Iterators, Other Iteration Topics, Iteration protocol integration, Generators Are Single-Iteration Objects-Generators Are Single-Iteration Objects, Example: Emulating zip and map with Iteration Tools-Coding your own zip(...) and map(None, ...)
	in lists, List Iteration and Comprehensions
	loop coding techniques, Loop Coding Techniques-Generating Both Offsets and Items: enumerate, Iterations: A First Look-Other Built-in Type Iterables
	manual, Manual Iteration: iter and next-Manual iteration
	multiple versus single pass, Multiple Versus Single Pass Iterators
	one-shot, Coding your own zip(...) and map(None, ...)
	operator overloading and, Index Iteration: __getitem__-Multiple iterators with yield
	quiz questions and answers, Test Your Knowledge: Quiz
	timing iteration alternatives, Timing Iteration Alternatives-Room for improvement: Setup
	in tuples, Tuples
	version considerations, The Iteration Protocol: File Iterators, New Iterables in Python 3.X-Dictionary View Iterables

J
	JIT (just-in-time) compiler, PyPy: Python for speed, Psyco: The original just-in-time compiler
	JSON format	about, Nesting Revisited, The has_key method is dead in 3.X: Long live in!
	storing objects in, Storing Python Objects in JSON Format-Storing Python Objects in JSON Format

	json module, Database Programming, Nesting Revisited, The has_key method is dead in 3.X: Long live in!, Storing Python Objects in JSON Format
	jump tables, Why Use lambda?, Multiway branch switches: The finale
	just-in-time (JIT) compiler, PyPy: Python for speed, Psyco: The original just-in-time compiler
	Jython system, Python Implementation Alternatives, Jython: Python for Java

K
	KeyboardInterrupt exception, Exceptions Aren’t Always Errors
	keys, Sorting dictionary keys in 3.X	(see also access-by-key databases and filesystems)
	access-by-key databases and filesystems, Nesting Revisited
	dictionary, Sorting Keys: for Loops, Adding Keys, Attributes, and Offsets, Dictionaries, Basic Dictionary Operations, Dictionary Usage Notes, Sorting dictionary keys in 3.X
	integer-based, Using dictionaries to simulate flexible lists: Integer
 keys
	mapping values to, Preview: Mapping values to keys
	missing, Missing Keys: if Tests-Missing Keys: if Tests, Avoiding missing-key errors
	sorting, Sorting Keys: for Loops-Sorting Keys: for Loops, More Dictionary Methods, Sorting dictionary keys in 3.X
	string method calls and, Flexible reference syntax: Extra complexity and functional
 overlap
	tuple-based, Using dictionaries for sparse data structures: Tuple
 keys
	usage notes, Dictionary Usage Notes

	keyword arguments	about, Argument Matching Basics, Keyword and Default Examples-Combining keywords and defaults
	abstract superclasses and, Abstract superclasses in Python 3.X and 2.6+: Preview
	decorators and, Class instance attributes
	homegrown timing module, Using keyword-only arguments in 3.X
	mapping operations and, Mapping Operations
	modifying sort behavior, More on sorting lists
	printing example, Using Keyword-Only Arguments
	usage examples, Testing As You Go
	version considerations, Python 3.X Keyword-Only Arguments-Why keyword-only arguments?

	KISS principle, Don’t Abuse List Comprehensions: KISS-On the other hand: performance, conciseness,
 expressiveness, KISS Revisited: “Overwrapping-itis”
	Komodo IDE, Other IDEs

L
	lambda expressions	about, Nested scopes, defaults, and lambdas, Anonymous Functions: lambda-How (Not) to Obfuscate Your Python Code
	callbacks and, Function Interfaces and Callback-Based Code
	coding functions, Coding Functions, How (Not) to Obfuscate Your Python Code-How (Not) to Obfuscate Your Python Code
	def statement and, Nested scopes, defaults, and lambdas
	inline callbacks, Scopes: lambdas Can Be Nested Too
	multiway branching and, Handling larger actions, Multiway branch switches: The finale
	nesting, Loop variables may require defaults, not scopes, Scopes: lambdas Can Be Nested Too
	scope and, Scope Details, Name Resolution: The LEGB Rule, Scopes: lambdas Can Be Nested Too
	unpacking arguments, Simulating Output Parameters and Multiple Results
	usage example, Python Expression Operators

	language features, enabling in modules, Enabling Future Language Features: __future__
	last-in-first-out (LIFO), Other common list methods, Recursion versus queues and stacks
	Latin-1 character set, Character Encoding Schemes
	__le__ method, Common Operator Overloading Methods
	left-shift (<<) operator, Character code conversions
	LEGB rule	built-in scope and, The Built-in Scope
	name resolution, Name Resolution: The LEGB Rule-Other Python scopes: Preview
	namespaces and, Simple Names: Global Unless Assigned
	nested classes, Nested Classes: The LEGB Scopes Rule Revisited-Nested Classes: The LEGB Scopes Rule Revisited

	len built-in function	dictionaries and, Basic Dictionary Operations
	sequence shufflers, Sequence Shufflers: range and len
	strings, Numbers
	strings and, Escape Sequences Represent Special Characters, Raw Strings Suppress Escapes, Basic Operations, How Python Stores Strings in Memory

	__len__ method, Common Operator Overloading Methods, Boolean Tests: __bool__ and __len__-Boolean Methods in Python 2.X
	lexical scoping, Python Scope Basics
	LIFO (last-in-first-out), Other common list methods, Recursion versus queues and stacks
	Linux platform	configuring Python, Unix/Linux shell variables
	frozen binaries and, Frozen Binaries
	GUI support, GUIs
	icon clicks, Icon-Click Basics
	IDLE startup details, IDLE Startup Details
	installing Python, Introducing the Python Interpreter, Installation Steps
	system shell prompt, Starting an Interactive Session
	working directory, Where to Run: Code Directories

	list built-in function	about, String Method Examples: Changing Strings II
	converting objects to lists, Conversions, methods, and immutability
	iteration protocol and, Dictionary views in 3.X (and 2.7 via new methods), Other Built-in Type Iterables, Other Iteration Contexts, Other Iteration Contexts, Impacts on 2.X Code: Pros and Cons, Dictionary View Iterables
	type customization and, Type Objects

	list comprehensions	about, Comprehensions-Comprehensions, List Comprehensions: A First Detailed Look-List Comprehension Basics, List Comprehensions and Functional Tools
	extended syntax, Extended List Comprehension Syntax-Nested loops: for
	files and, Using List Comprehensions on Files
	filter built-in function and, Comprehensions, Adding Tests and Nested Loops: filter-Formal comprehension syntax
	for statement and, Nested for loops, Iterations and Comprehensions, List Comprehensions: A First Detailed Look
	functional tools, List Comprehensions and Functional Tools-On the other hand: performance, conciseness,
 expressiveness
	generator expressions and, Other Iteration Topics
	map built-in function versus, Comprehensions, List Iteration and Comprehensions, List Comprehensions Versus map, On the other hand: performance, conciseness,
 expressiveness
	matrixes and, Example: List Comprehensions and Matrixes-Example: List Comprehensions and Matrixes
	range built-in function and, Comprehensions, List Iteration and Comprehensions, Changing Lists: range Versus Comprehensions
	usage considerations, Don’t Abuse List Comprehensions: KISS-On the other hand: performance, conciseness,
 expressiveness

	list-unpacking assignments, Assignment Statement Forms
	lists (list object)	about, Python’s Core Data Types, Lists, Lists-Lists
	append method, Type-Specific Operations, List method calls, More on sorting lists, Other common list methods, Advanced sequence assignment patterns, Other Iteration Contexts
	bounds checking, Bounds Checking
	changing in place, Changing Lists in Place-Other common list operations, Expression Statements and In-Place Changes
	common operations, Lists, Basic List Operations, Other common list operations
	comparison operations, Comparisons, Equality, and Truth
	concatenating, Basic List Operations, Example: Catching Built-in Exceptions
	copy method, Other common list operations, References Versus Copies
	count method, Other common list methods
	deleting items, Other common list operations
	dictionaries versus, Using dictionaries to simulate flexible lists: Integer
 keys, Other Ways to Make Dictionaries
	empty lists, Lists
	extend method, Type-Specific Operations, Index and slice assignments, Other common list methods, Other Iteration Contexts
	index method, Other common list methods
	indexing, Indexing, Slicing, and Matrixes, Index and slice assignments-Index and slice assignments
	insert method, Type-Specific Operations, Index and slice assignments, Other common list methods
	iteration in, List Iteration and Comprehensions
	literals, Python’s Core Data Types, Lists
	matrixes and, Indexing, Slicing, and Matrixes
	mutable nature of, Lists, Lists
	nesting, Nesting, Indexing, Slicing, and Matrixes
	pop method, Type-Specific Operations, Index and slice assignments, Other common list methods, Advanced sequence assignment patterns
	quiz questions and answers, Test Your Knowledge: Quiz
	remove method, Type-Specific Operations, Index and slice assignments, Other common list methods
	repeating, Basic List Operations
	reverse method, Type-Specific Operations, More on sorting lists, Other common list methods
	sequence operations, Sequence Operations, Indexing, Slicing, and Matrixes
	slicing, Indexing, Slicing, and Matrixes, Index and slice assignments-Index and slice assignments
	sort method, Type-Specific Operations, Sorting Keys: for Loops, More on sorting lists-More on sorting lists
	tuples versus, Why Lists and Tuples?
	type-specific methods, List method calls-Other common list methods
	type-specific operations, Type-Specific Operations

	literals	about, Python’s Core Data Types
	built-in object type examples, Python’s Core Data Types
	byte string, Byte String Literals: Encoded Text
	dictionary, Python’s Core Data Types, Dictionaries
	file, Python’s Core Data Types
	hex, octal, binary notation, Hex, Octal, Binary: Literals and Conversions-Hex, Octal, Binary: Literals and Conversions
	integer objects, Numeric Literals, Hex, Octal, Binary: Literals and Conversions-Hex, Octal, Binary: Literals and Conversions
	list, Python’s Core Data Types, Lists
	numeric, Python’s Core Data Types, Numeric Literals-Numeric Literals
	set, Python’s Core Data Types, Set literals in Python 3.X and 2.7
	string, Python’s Core Data Types, String Basics-Triple Quotes Code Multiline Block Strings, Statement Delimiters: Lines and Continuations, Python 3.X String Literals-Python 2.X String Literals
	tuple, Python’s Core Data Types, Tuples
	Unicode, Unicode Strings, Unicode: The Short Story, Python 2.X Unicode literals in Python 3.3

	little-endian format, Handling the BOM in 3.X-Dropping the BOM in Python
	local scope	about, Scope Details
	class statement and, Other Python scopes: Preview
	LEGB rule and, Name Resolution: The LEGB Rule, Simple Names: Global Unless Assigned

	local variables, Local Variables
	logical operations, Python Expression Operators
	LookupError class, Built-in Exception Classes
	loops, A Quick Example: Interactive Loops	(see also specific statements)
	attribute interception methods and, Avoiding loops in attribute interception methods
	breaking out of, Breaking Out of Multiple Nested Loops: “go to”
	coding techniques for, Loop Coding Techniques-Generating Both Offsets and Items: enumerate
	else clause, break, continue, pass, and the Loop else, Loop else-More on the loop else
	function-related gotchas, Enclosing scopes and loop variables: Factory functions
	interactive, A Quick Example: Interactive Loops-Nesting Code Three Levels Deep
	iterations and, Loop Coding Techniques-Generating Both Offsets and Items: enumerate, Iterations: A First Look-Other Built-in Type Iterables
	nesting, Filter clauses: if-Nested loops: for, Loop variables may require defaults, not scopes, Adding Tests and Nested Loops: filter-Formal comprehension syntax, Breaking Out of Multiple Nested Loops: “go to”
	quiz questions and answers, Test Your Knowledge: Quiz
	recursion versus, Loop Statements Versus Recursion

	__lt__ method, Common Operator Overloading Methods, Comparisons: __lt__, __gt__, and Others

M
	Mac OS X platform	frozen binaries and, Frozen Binaries
	GUI support, GUIs
	icon clicks, Icon-Click Basics
	IDLE startup details, IDLE Startup Details
	installing Python, Introducing the Python Interpreter
	launch options, Still Other Launch Options
	system shell prompt, Starting an Interactive Session
	working directory, Where to Run: Code Directories

	macros, decorators versus, Why Decorators?
	__main__ module, Mixed Usage Modes: __name__ and __main__-Unit Tests with __name__, Exploring Shelves Interactively
	manager functions, Decorators Versus Manager Functions, The Downside of “Helper” Functions-The Downside of “Helper” Functions
	map built-in function	benchmarking, A win for map and a rare loss for PyPy
	generator expressions versus, Generator expressions versus map-Generator expressions versus map
	homegrown timing module and, Timing Results-The impact of function calls: map
	iteration and, Other Iteration Contexts, New Iterables in Python 3.X, The map, zip, and filter Iterables, Mapping Functions over Iterables: map-Mapping Functions over Iterables: map, Example: Emulating zip and map with Iteration Tools-Coding your own zip(...) and map(None, ...)
	list comprehensions versus, Comprehensions, List Iteration and Comprehensions, List Comprehensions Versus map, On the other hand: performance, conciseness,
 expressiveness
	loop coding techniques and, Loop Coding Techniques, Parallel Traversals: zip and map-Dictionary construction with zip
	parallel traversals, Parallel Traversals: zip and map-Dictionary construction with zip
	timing calls example, Timing Calls
	version considerations, map equivalence in Python 2.X

	mapattrs module, Room for improvement: MRO, slots, GUIs
	mapping operations	about, Dictionaries
	dictionaries and, Mapping Operations, Missing Keys: if Tests-Missing Keys: if Tests, Preview: Mapping values to keys
	functions and, Mapping Functions over Iterables: map-Mapping Functions over Iterables: map
	mapping attributes to inheritance sources, Example: Mapping Attributes to Inheritance Sources-Example: Mapping Attributes to Inheritance Sources
	mapping values to keys, Preview: Mapping values to keys
	missing keys, Missing Keys: if Tests-Missing Keys: if Tests

	math module	about, Numbers
	built-in numeric tools, Other Built-in Numeric Tools
	floor function, Floor versus truncation
	trunc function, Floor versus truncation

	mathematical operations	about, Numbers
	division, Division: Classic, Floor, and True-Why does truncation matter?
	expression operators, Python Expression Operators
	nesting, Numbers

	Matlab numeric programming system, Why Do People Use Python?, Nesting
	matrixes	list comprehensions and, Example: List Comprehensions and Matrixes-Example: List Comprehensions and Matrixes
	nested lists and, Indexing, Slicing, and Matrixes

	max built-in function, Other Built-in Numeric Tools, Other Iteration Contexts
	membership	in operator and, Missing Keys: if Tests, Other Core Types, Other Common String Methods in Action, Basic Dictionary Operations
	operator overloading and, Membership: __contains__, __iter__, and __getitem__-Membership: __contains__, __iter__, and __getitem__

	memory management	automatic, It’s Powerful
	garbage collection, Nesting Revisited, Objects Are Garbage-Collected, Changing Strings I
	generator expressions and, Why generator expressions?
	storing strings, How Python Stores Strings in Memory

	metaclasses	about, Metaclasses
	built-in object types and, The built-ins special case-The built-ins special case
	call pattern issues and, Why the lookup change?
	class decorators and, Decorators and Metaclasses: Part 1, A First Look at Class Decorators and Metaclasses-A First Look at Class Decorators and Metaclasses, Metaclasses Versus Class Decorators: Round 1-Metaclasses Versus Class Decorators: Round 1, Metaclasses Versus Class Decorators: Round 2-Metaclass and class decorator equivalence?, Metaclasses Versus Class Decorators: Round 3 (and Last)-Metaclasses Versus Class Decorators: Round 3 (and Last)
	class statement and, Class Statement Protocol
	coding, Coding Metaclasses-Overloading class creation calls with metaclasses
	customizing construction and initialization, Customizing Construction and Initialization
	declaring, Declaring Metaclasses-Metaclass Dispatch in Both 3.X and 2.X
	descriptors and, The descriptors special case
	factory functions and, Using simple factory functions
	inheritance and, Attribute Tree Construction, Inheritance and Instance-The built-ins special case
	instances and, Inheritance and Instance-The built-ins special case, Managing instances instead of classes-Managing instances instead of classes
	methods in, Metaclass Methods-Metaclasses Versus Class Decorators: Round 3 (and Last)
	model overview, The Metaclass Model-Class Statement Protocol
	operator overloading and, Overloading class creation calls with normal classes-Overloading class creation calls with metaclasses, Operator Overloading in Metaclass Methods
	superclasses versus, Metaclass Versus Superclass
	type object and, Metaclasses Are Subclasses of Type
	usage considerations, To Metaclass or Not to Metaclass-Metaclasses Versus Class Decorators: Round 1
	usage examples, Example: Adding Methods to Classes-Metaclasses Versus Class Decorators: Round 3 (and Last)
	version considerations, Declaration in 3.X-Metaclass Dispatch in Both 3.X and 2.X

	metafunctions, Decorators and Metaclasses: Part 1-Function Decorator Basics, Usage
	metaprograms, Example: Modules Are Objects-Example: Modules Are Objects
	method resolution order (see MRO)
	methods, Step 2: Adding Behavior Methods	(see also operator overloading)
	about, Method Calls, Methods
	adding, Step 2: Adding Behavior Methods-Coding Methods, Example: Adding Methods to Classes-Metaclass and class decorator equivalence?
	attribute fetches, Method Call Syntax
	augmenting, Augmenting Methods: The Bad Way-Augmenting Methods: The Good Way
	binary operator, Right-Side and In-Place Uses: __radd__ and __iadd__-In-Place Addition
	bound, Scopes: lambdas Can Be Nested Too, Methods Are Objects: Bound or Unbound-Other callables, Static Methods in 2.X and 3.X
	chaining, Using List Comprehensions on Files
	coding, Coding Methods-Coding Methods
	decorators and, Class Blunders I: Decorating Methods-Using descriptors to decorate methods, Example: Applying Decorators to Methods-Metaclasses Versus Class Decorators: Round 3 (and Last)
	dictionary, Dictionaries, More Dictionary Methods-More Dictionary Methods
	exception handler, Providing Exception Methods-Providing Exception Methods
	expressions and, Expression Statements
	file, Files, Files in Action
	functions and, A First Example
	instance, Other Method Call Possibilities
	list, Type-Specific Operations, List method calls-Other common list methods
	metaclass, Metaclass Methods-Metaclasses Versus Class Decorators: Round 3 (and Last)
	number-specific, Built-in Numeric Tools
	as objects, Methods Are Objects: Bound or Unbound-Other callables
	scopes in, Scopes in Methods and Classes
	static, Other Method Call Possibilities
	string, Type-Specific Methods, String Basics, String Methods-The Original string Module’s Functions (Gone in 3.X), The Original string Module’s Functions (Gone in 3.X)-The Original string Module’s Functions (Gone in 3.X)
	string formatting, String Formatting Method Calls-Functions versus expressions: A minor convenience
	superclass constructors, Calling Superclass Constructors
	tuple, Conversions, methods, and immutability-Conversions, methods, and immutability
	unbound, Methods Are Objects: Bound or Unbound-Other callables, Static Methods in 2.X and 3.X
	underscores in, Classes Can Intercept Python Operators
	usage examples, Method Example

	microthreads, Stackless: Python for concurrency
	min built-in function, Other Built-in Numeric Tools, Other Iteration Contexts, Timing Module: Homegrown
	missing keys, Missing Keys: if Tests-Missing Keys: if Tests, Avoiding missing-key errors
	mix-in classes, Multiple Inheritance: “Mix-in” Classes-Room for improvement: MRO, slots, GUIs, Coupling: Application to mix-in classes-Coupling: Application to mix-in classes
	__mod__ method, Method Calls
	module search path	about, Usage Notes: import and reload, The Module Search Path-Optimized byte code files, Path files
	changing, Changing the Module Search Path-Changing the Module Search Path
	lookup rules summary, Module Lookup Rules Summary
	running modules, Running modules on the search path

	modules, Module Packages	(see also from statement; import statement; packages)
	about, System Command Lines and Files, Python’s Core Data Types, Numbers, Modules: The Big Picture-Why Use Modules?
	as extension for import/from statements, The as Extension for import and from
	attributes and, The Grander Module Story: Attributes-Modules and namespaces, How to Structure a Program-Imports and Attributes, Classes Are Attributes in Modules
	byte code files, Byte Code Files: __pycache__ in Python 3.2+-Byte Code File Models in Action
	classes and, Classes and Instances, Classes Are Attributes in Modules, Example, Classes Versus Modules
	common usage mistakes, Usage Notes: import and reload, Usage Notes: IDLE
	copying names, The from Statement, import and from Are Assignments-When import is required, from Copies Names but Doesn’t Link
	creating, Module Creation-Other Kinds of Modules
	data hiding in, Data Hiding in Modules
	design concepts, Module Design Concepts-Module Design Concepts
	dual mode code example, Example: Dual Mode Code-Docstrings: Module Documentation at Work
	embedding calls, Embedding Calls
	enabling future language features, Enabling Future Language Features: __future__
	exec built-in function and, Using exec to Run Module Files
	extension, Other Kinds of Modules
	importing, Module Packages
	mixed usage modes, Mixed Usage Modes: __name__ and __main__-Unit Tests with __name__
	module search path, Usage Notes: import and reload, The Module Search Path-Optimized byte code files, Module Lookup Rules Summary, Changing the Module Search Path-Changing the Module Search Path, Path files, Running modules on the search path
	name clashes, Module Name Clashes: Package and Package-Relative Imports
	namespaces and, Modules and namespaces, Why Use Modules?, Module Namespaces-Namespace Nesting
	as objects, Example: Modules Are Objects-Example: Modules Are Objects
	potential gotchas, Module Gotchas-Recursive from Imports May Not Work
	programs and, System Command Lines and Files, The Python Conceptual Hierarchy
	Python program architecture and, Python Program Architecture-Standard Library Modules
	quiz questions and answers, Test Your Knowledge: Quiz, Test Your Knowledge: Quiz, Test Your Knowledge: Quiz
	reloading, Import and Reload Basics-The Grander Module Story: Attributes, Usage Notes: import and reload, Usage Notes: IDLE, Reloading Modules-reload Example, Example: Transitive Module Reloads-Testing reload variants
	scope considerations, Scope Details
	statements and, System Command Lines and Files, The Python Conceptual Hierarchy, Statement Order Matters in Top-Level Code
	usage considerations, Module Usage-When import is required, Usage variation: Running on larger modules

	modulus operator, Comprehensions, Python Expression Operators, Variables and Basic Expressions, Formatting Expression Basics, continue, Loop else, Adding Tests and Nested Loops: filter
	mod_python package, Internet Scripting
	MongoDB database, Nesting Revisited
	movie database example, Example: Movie Database-Preview: Mapping values to keys
	MRO (method resolution order)	about, New-Style Class Changes, Diamond Inheritance Change-Example: Mapping Attributes to Inheritance Sources
	new-style classes and, Multiple Inheritance: “Mix-in” Classes, Room for improvement: MRO, slots, GUIs
	super built-in function and, Augmenting Methods: The Good Way, Cooperative Multiple Inheritance Method Dispatch-Coupling: Application to mix-in classes

	__mro__ attribute	about, Room for improvement: MRO, slots, GUIs, New-Style Class Changes, More on the MRO: Method Resolution Order-Tracing the MRO
	inheritance and, Python’s inheritance algorithm: The simple version

	multiline block strings, Triple Quotes Code Multiline Block Strings-Triple Quotes Code Multiline Block Strings
	multiline statements (see compound statements)
	multiple context managers, Multiple Context Managers in 3.1, 2.7, and Later-Multiple Context Managers in 3.1, 2.7, and Later
	multiple inheritance	about, Coding Class Trees
	class gotchas, Multiple Inheritance: Order Matters-Multiple Inheritance: Order Matters
	diamond patterns of, New-Style Class Changes, Diamond Inheritance Change-Example: Mapping Attributes to Inheritance Sources
	mix-in classes and, Multiple Inheritance: “Mix-in” Classes-Room for improvement: MRO, slots, GUIs
	super built-in function and, Odd semantics: A magic proxy in Python 3.X-Pitfall: Adding multiple inheritance naively, Cooperative Multiple Inheritance Method Dispatch-Customization: Same-argument constraints

	multiple instances, Classes Generate Multiple Instance Objects-A First Example, Supporting multiple instances, Class Blunders II: Retaining Multiple Instances
	multiple-target assignments, Assignment Statement Forms, Multiple-Target Assignments-Multiple-target assignment and shared references
	multiplication (*) operator	multiplying numbers, Numbers
	repeating lists, Basic List Operations
	repeating strings, Sequence Operations, Basic Operations

	multithreading, Program Design: Minimize Global Variables, Why generator functions?
	multiway branching in if statements, Multiway Branching-Handling larger actions, Multiway branch switches: The finale
	mutable objects	avoiding argument changes, Avoiding Mutable Argument Changes
	changing in modules, Changing mutables in modules
	default values for arguments, Combining keywords and defaults
	dictionaries as, Dictionaries
	function gotchas, Defaults and Mutable Objects-Defaults and Mutable Objects
	lists as, Lists, Lists

N
	__name__ attribute	about, Listing instance attributes with __dict__
	functions and, Applying functions generically
	inspecting inheritance hierarchies, Namespace Links: A Tree Climber
	metaprogram example, Example: Modules Are Objects
	mixed usage modes, Mixed Usage Modes: __name__ and __main__-Unit Tests with __name__
	modules and, Example: Application to module self-test code (preview), Example: Modules Are Objects, Using Code Two Ways
	preset value, Class Interface Techniques

	name collisions, Modules and namespaces
	name mangling, Pseudoprivate Class Attributes, Using __X pseudoprivate names
	name resolution, Name Resolution: The LEGB Rule-Other Python scopes: Preview
	named tuples, Why Tuples?, More Dictionary Methods, Tuples, Records Revisited: Named Tuples-Records Revisited: Named Tuples
	namespace declarations, The global Statement
	namespace dictionaries	about, Namespace Dictionaries: Review-Namespace Dictionaries: Review
	__dict__ attribute, Namespace Dictionaries: __dict__
	slots and, Slots and namespace dictionaries-Slots and namespace dictionaries

	namespace package model	about, Module Packages, Module Lookup Rules Summary, Python 3.3 Namespace Packages
	file precedence in, Files Still Have Precedence over Directories-Files Still Have Precedence over Directories
	nesting, Namespace Package Nesting
	semantics, Namespace Package Semantics-Impacts on Regular Packages: Optional __init__.py
	usage examples, Namespace Packages in Action-Namespace Packages in Action

	namespaces	about, The Grander Module Story: Attributes, Modules and namespaces, Python Scope Basics, Classes and Instances, Namespaces: The Conclusion
	assigning names, The “Zen” of Namespaces: Assignments Classify Names-The “Zen” of Namespaces: Assignments Classify Names
	attribute names and, Attribute Names: Object Namespaces
	classes and, Example
	__dict__ attribute, How (Not) to Obfuscate Your Python Code, Files Generate Namespaces, The World’s Simplest Python Class
	files generating, Files Generate Namespaces
	inheritance and, Inheritance
	instances and, Instance Objects Are Concrete Items
	LEGB rule and, Simple Names: Global Unless Assigned, Nested Classes: The LEGB Scopes Rule Revisited-Nested Classes: The LEGB Scopes Rule Revisited
	minimizing namespace pollution, Minimizing from * Damage: _X and __all__
	modules and, Modules and namespaces, Why Use Modules?, Module Namespaces-Namespace Nesting
	nested classes and, Nested Classes: The LEGB Scopes Rule Revisited-Nested Classes: The LEGB Scopes Rule Revisited
	nesting, Namespace Nesting
	scope and, Python Scope Basics

	naming conventions and rules	classes, Name Considerations in Tool Classes
	LEGB rule, Name Resolution: The LEGB Rule-Other Python scopes: Preview, The Built-in Scope, Simple Names: Global Unless Assigned, Nested Classes: The LEGB Scopes Rule Revisited-Nested Classes: The LEGB Scopes Rule Revisited
	scope and, Python Scope Basics
	for variables, Variable Name Rules-Names have no type, but objects do
	_x name prefix, Minimizing from * Damage: _X and __all__

	__ne__ method, Common Operator Overloading Methods, Comparisons: __lt__, __gt__, and Others
	nesting	blocks of code, Nesting Code Three Levels Deep, Block Delimiters: Indentation Rules-Avoid mixing tabs and spaces: New error checking in 3.X
	classes, Nested Classes: The LEGB Scopes Rule Revisited-Nested Classes: The LEGB Scopes Rule Revisited
	control flows, Example: Control-Flow Nesting
	decorators, Decorator Nesting-Decorator Nesting, Decorator nesting
	def statement, def Executes at Runtime, Loop variables may require defaults, not scopes, Coding Class Trees
	dictionaries, Nesting Revisited, Dictionaries, Changing Dictionaries in Place, Nesting in dictionaries
	exception handlers, Nesting Exception Handlers-Example: Syntactic Nesting
	for statement, Nested for loops-Nested for loops
	functions, Scopes and Nested Functions-Arbitrary scope nesting, Scopes: lambdas Can Be Nested Too, Using nested functions to decorate methods
	lambda expressions, Loop variables may require defaults, not scopes, Scopes: lambdas Can Be Nested Too
	lists, Nesting, Indexing, Slicing, and Matrixes
	loops, Filter clauses: if-Nested loops: for, Loop variables may require defaults, not scopes, Adding Tests and Nested Loops: filter-Formal comprehension syntax, Breaking Out of Multiple Nested Loops: “go to”
	mathematical operations, Numbers
	namespace packages, Namespace Package Nesting
	namespaces, Namespace Nesting
	string formatting, Advanced Formatting Method Syntax
	try/except/finally statement, Combining finally and except by Nesting, Example: Syntactic Nesting-Example: Syntactic Nesting
	tuples, Tuples

	NetBeans IDE, Other IDEs
	__new__ method, Common Operator Overloading Methods, Object Destruction: __del__, A Basic Metaclass
	new-style classes	about, Other Ways to Combine Classes, The “New Style” Class Model-Just How New Is New-Style?
	attribute tools, __getattribute__ and Descriptors: Attribute Tools
	changes in, New-Style Class Changes-Example: Mapping Attributes to Inheritance Sources, Other Class Changes and Extensions
	class tools, New-Style Class Changes, Example: Mapping Attributes to Inheritance Sources-Example: Mapping Attributes to Inheritance Sources
	extensions to, New-Style Class Extensions-Other Class Changes and Extensions
	MRO and, Multiple Inheritance: “Mix-in” Classes, Room for improvement: MRO, slots, GUIs
	multiple inheritance in, Multiple Inheritance: “Mix-in” Classes
	properties, Properties: Attribute Accessors-Property basics
	slots, Example: Mapping Attributes to Inheritance Sources, Slots: Attribute Declarations-What about slots speed?

	next built-in function, Iteration and Optimization, Manual Iteration: iter and next-Manual iteration, Preview: User-defined iterables in classes
	__next__ method	about, Manual Iteration: iter and next, Common Operator Overloading Methods
	file iterators and, The Iteration Protocol: File Iterators
	generator functions and, Iteration protocol integration
	iterable objects and, Iterable Objects: __iter__ and __next__-Multiple iterators with yield
	user defined iterables and, Preview: User-defined iterables in classes

	None object, Other Core Types, The None object
	nonlocal statement	about, Python’s Statements, Scope Details, The global Statement, The nonlocal Statement in 3.X-Boundary cases
	boundary cases, Boundary cases
	coding functions, Coding Functions
	enclosing scope and, Function Interfaces and Callback-Based Code, Enclosing scopes and globals-Enclosing scopes and nonlocals, Coding alternatives
	state retention options, Why nonlocal? State Retention Options-State with mutables: Obscure ghost of Pythons past?
	version considerations, The nonlocal Statement in 3.X-Boundary cases

	normal versus chained comparisons, Comparisons: Normal and Chained-Comparisons: Normal and Chained
	NotImplemented object, Propagating class type
	NotImplementedError exception, Abstract Superclasses
	numbers	about, Numbers-Numbers, Numeric Type Basics
	bitwise operations, Bitwise Operations-Bitwise Operations
	Booleans (see Booleans)
	built-in tools, Built-in Numeric Tools, Other Built-in Numeric Tools-Other Built-in Numeric Tools
	comparison operations, Comparisons: Normal and Chained-Comparisons: Normal and Chained, Comparisons, Equality, and Truth
	complex, Numbers, Complex Numbers
	decimals (see decimals)
	division operation, Division: Classic, Floor, and True-Why does truncation matter?
	expression operators, Python Expression Operators-Preview: Operator overloading and polymorphism
	in expressions, Variables and Basic Expressions-Variables and Basic Expressions
	floating-point (see floating-point numbers)
	fractions (see fractions)
	integers (see integers)
	numeric display formats, Numeric Display Formats
	numeric extensions, Numeric Extensions
	numeric literals, Python’s Core Data Types, Numeric Literals-Numeric Literals
	quiz questions and answers, Test Your Knowledge: Quiz
	rational, Numbers, Other Core Types
	sequence operations, Numbers
	sets (see sets)
	in variables, Variables and Basic Expressions-Variables and Basic Expressions

	numeric programming, Numeric and Scientific Programming
	NumPy numeric programming extension	about, Why Do People Use Python?, OK, but What’s the Downside?, Numeric and Scientific Programming
	customer base, Numeric Extensions
	matrix support, Nesting

O
	object persistence, Nesting Revisited	(see also specific modules)
	about, Nesting Revisited, Step 7 (Final): Storing Objects in a Database
	classes and, Stream Processors Revisited
	database programming and, Database Programming
	implementing, Pickles and Shelves

	object relational mappers (ORMs), Database Programming, Future Directions
	object serialization, The pickle Object Serialization Module-The pickle Object Serialization Module
	object superclass, Namespace Links: A Tree Climber, New-Style Class Changes, All Classes Derive from “object”-Implications for defaults
	object types	built-in (see built-in object types)
	compound, Object Flexibility
	dictionaries (see dictionaries)
	dynamic typing, It’s Powerful, Python’s Core Data Types, The Dynamic Typing Interlude-Test Your Knowledge: Answers
	files (see files)
	general type categories, General Type Categories-Mutable Types Can Be Changed in Place
	implementation-related, Python’s Core Data Types
	lists (see lists)
	numbers (see numbers)
	quiz questions and answers, Test Your Knowledge: Quiz
	strings (see strings)
	strong typing, Python’s Core Data Types
	testing, New-Style Class Changes, Type Model Changes-Implications for type testing, Other Applications: Type Testing (If You Insist!)
	tuples (see tuples)

	object-oriented programming (see OOP)
	objects, Introducing Python Object Types	(see also immutable objects; mutable objects)
	about, Introducing Python Object Types, Why Use Built-in Types?, Variables, Objects, and References
	attributes for, Attribute Inheritance Search-Attribute Inheritance Search
	classes and, Classes Are Objects: Generic Object Factories-Why Factories?, The “New Style” Class Model
	dynamic typing, It’s Powerful, Python’s Core Data Types, The Dynamic Typing Interlude-Test Your Knowledge: Answers
	expressions and, The Python Conceptual Hierarchy
	garbage collection, Nesting Revisited, Objects Are Garbage-Collected
	iterable, Iteration and Optimization, Iterations: A First Look, The full iteration protocol, Other Built-in Type Iterables, Iterable Objects: __iter__ and __next__-Multiple iterators with yield
	listing attributes per, Listing attributes per object in class trees-Running the tree lister
	methods as, Methods Are Objects: Bound or Unbound-Other callables
	modules as, Example: Modules Are Objects-Example: Modules Are Objects
	optimizing, Iteration and Optimization
	reference counters, Variables, Objects, and References, Objects Are Garbage-Collected
	shared references and, Shared References-Shared References and Equality
	slice, Intercepting Slices
	strong typing, Python’s Core Data Types
	type designators, Variables, Objects, and References
	updating on shelves, Updating Objects on a Shelve
	variables and, Variables, Objects, and References

	oct built-in function, Numeric Literals, Hex, Octal, Binary: Literals and Conversions
	__oct__ method, But 3.X’s __index__ Is Not Indexing!
	octal notation, Numeric Literals, Hex, Octal, Binary: Literals and Conversions-Hex, Octal, Binary: Literals and Conversions
	OOP (object-oriented programming)	about, OOP: The Big Idea
	attribute inheritance, Attribute Inheritance Search-Attribute Inheritance Search
	bound and unbound methods, Methods Are Objects: Bound or Unbound-Other callables
	class gotchas, Class Gotchas-KISS Revisited: “Overwrapping-itis”
	classes and instances, Why Use Classes?, Classes and Instances
	code reuse, OOP Is About Code Reuse-Programming by customization
	coding class trees, Coding Class Trees-Coding Class Trees
	coding classes, Class Coding Basics-Test Your Knowledge: Answers, Class Coding Details-Test Your Knowledge: Answers
	composition and, OOP and Composition: “Has-a” Relationships-Stream Processors Revisited
	by customization, Programming by customization
	decorators and metaclasses, Decorators and Metaclasses: Part 1-For More Details
	delegation and, OOP and Delegation: “Wrapper” Proxy Objects-OOP and Delegation: “Wrapper” Proxy Objects
	exception classes, Exception Objects-Test Your Knowledge: Answers
	extending built-in types, Extending Built-in Types-Extending Types by Subclassing
	generic object factories, Classes Are Objects: Generic Object Factories-Why Factories?
	important concepts in, OOP Is Simpler Than You May Think
	inheritance and, OOP and Inheritance: “Is-a” Relationships-OOP and Inheritance: “Is-a” Relationships
	KISS principle, KISS Revisited: “Overwrapping-itis”
	metaclasses, Overloading class creation calls with metaclasses
	method calls, Method Calls
	mix-in classes, Multiple Inheritance: “Mix-in” Classes-Room for improvement: MRO, slots, GUIs
	new-style classes, The “New Style” Class Model-Other Class Changes and Extensions
	operator overloading, Operator Overloading, Operator Overloading-Test Your Knowledge: Answers
	polymorphism and, Polymorphism Means Interfaces, Not Call Signatures
	pseudoprivate class attributes, Pseudoprivate Class Attributes-Why Use Pseudoprivate Attributes?
	Python and, It’s Object-Oriented and Functional, User-Defined Classes, Function Design Concepts, Python and OOP
	quiz questions and answers, Test Your Knowledge: Quiz
	realistic example of classes, A More Realistic Example-Test Your Knowledge: Answers
	state information, Using State Information in Descriptors
	static and class methods, Static and Class Methods-Counting instances per class with class methods
	super built-in function, The super Built-in Function: For Better or Worse?-The super Summary

	open built-in function	customizing, State with mutables: Obscure ghost of Pythons past?-State with mutables: Obscure ghost of Pythons past?
	file processing and, Files, Other File-Like Tools, Opening Files
	version considerations, Text and Binary Files: The Short Story
	Windows platform and, Files in Action

	operations (see specific operations)
	operator module, Combining Items in Iterables: reduce
	operator overloading	about, Core Types Review and Summary, Why Use Classes?, Operator Overloading, Classes Can Intercept Python Operators, The Basics, __getattr__ and __getattribute__
	attributes and, Attribute Access: __getattr__ and __setattr__-Emulating Privacy for Instance Attributes: Part 1, __getattr__ and __getattribute__-Delegation-based managers revisited
	binary operator methods, Right-Side and In-Place Uses: __radd__ and __iadd__-In-Place Addition
	Boolean tests and, Boolean Tests: __bool__ and __len__-Boolean Methods in Python 2.X
	call expressions and, Call Expressions: __call__-Function Interfaces and Callback-Based Code
	common methods, Common Operator Overloading Methods-Common Operator Overloading Methods
	comparisons and, Comparisons: __lt__, __gt__, and Others-The __cmp__ Method in Python 2.X
	constructors and expressions, Constructors and Expressions: __init__ and __sub__
	delegation and, Caveat: Implicitly run operator overloading methods fail to
 delegate under 3.X
	display formats and, Neutralizing display differences with code
	double underscores and, Getting Help
	indexing and slicing, Indexing and Slicing: __getitem__ and __setitem__-But 3.X’s __index__ Is Not Indexing!
	iteration and, Index Iteration: __getitem__-Multiple iterators with yield
	membership and, Membership: __contains__, __iter__, and __getitem__-Membership: __contains__, __iter__, and __getitem__
	metaclasses and, Overloading class creation calls with normal classes-Overloading class creation calls with metaclasses, Operator Overloading in Metaclass Methods
	object destruction, Object Destruction: __del__-Destructor Usage Notes
	polymorphism and, Preview: Operator overloading and polymorphism
	quiz questions and answers, Test Your Knowledge: Quiz
	string representation and, String Representation: __repr__ and __str__-Display Usage Notes
	super built-in function and, Limitation: Operator overloading
	usage considerations, Why Use Operator Overloading?
	usage examples, A Third Example-Returning results, or not, Step 3: Operator Overloading-Providing Print Displays
	validating methods, Should operator methods be validated?

	operator precedence, Mixed operators follow operator precedence
	optimizing objects	about, Iteration and Optimization, Development Tools for Larger Projects
	byte code files, Optimized byte code files
	execution optimization tools, Execution Optimization Tools-Psyco: The original just-in-time compiler

	optparse module, Example: Dual Mode Code
	__or__ method, Common Operator Overloading Methods
	or operator, The if/else Ternary Expression
	ord built-in function, Character code conversions, List Comprehensions Versus map, Character Encoding Schemes
	OrderedDict subclass, More Dictionary Methods
	ordering (see sorting)
	ORMs (object relational mappers), Database Programming, Future Directions
	os module	descriptor files, Other File Tools
	_exit function, Catching Too Much: Avoid Empty except and Exception
	popen function, Other File Tools, Nested for loops, Generating Both Offsets and Items: enumerate, Other Built-in Type Iterables, Generators and library tools: Directory walkers, Benchmark Script Results, Running In-Process Tests
	system function, Generating Both Offsets and Items: enumerate, Running In-Process Tests
	walk function, Other Built-in Type Iterables, Generators and library tools: Directory walkers

	OSError class, Built-in Exception Categories
	OverflowError exception, Built-in Exception Classes, Built-in Exception Categories

P
	package imports	about, Module Packages-Package initialization file roles
	__all__
 variable, Package initialization file roles
	from versus import statement, from Versus import with Packages
	__init__.py files, Package __init__.py Files-Package initialization file roles
	relative imports model, Module Packages, Package Relative Imports-Example: Application to module self-test code (preview)
	search path settings, Packages and Search Path Settings, Relative Import Basics
	usage considerations, Why Use Package Imports?-A Tale of Three Systems
	usage example, Package Import Example-from Versus import with Packages
	version considerations, Changes in Python 3.X

	packages	about, Module Packages, A Tale of Three Systems
	__all__
 variable, Package initialization file roles
	namespace package model, Module Packages, Module Lookup Rules Summary, Python 3.3 Namespace Packages-Files Still Have Precedence over Directories
	package imports, Package Import Basics-A Tale of Three Systems
	quiz questions and answers, Test Your Knowledge: Quiz
	relative imports model, Module Packages, Package Relative Imports-Example: Application to module self-test code (preview)
	search path settings, Packages and Search Path Settings, Relative Import Basics

	parameters (see arguments)
	parentheses ()	comprehensions and, Comprehensions
	expression operators and, Parentheses group subexpressions
	statements and, Parentheses are optional, Statement rule special cases
	superclasses and, Classes Are Customized by Inheritance
	tuples and, Tuple syntax peculiarities: Commas and parentheses

	Parrot project, Future Possibilities?
	parsing text in strings, String Method Examples: Parsing Text
	pass statement, Python’s Statements, break, continue, pass, and the Loop else-pass
	passing-arguments-by-pointer, Argument-Passing Basics
	passing-arguments-by-value, Argument-Passing Basics
	PATH environment variable	about, Python Environment Variables, Python Environment Variables
	env program and, The Unix env Lookup Trick
	new Windows options, New Windows Options in 3.3: PATH, Launcher
	setting, The System Path, Command-Line Usage Variations

	paths	module search paths, Usage Notes: import and reload, The Module Search Path-Optimized byte code files, Module Lookup Rules Summary, Changing the Module Search Path-Changing the Module Search Path, Path files, Running modules on the search path
	package imports, Package Import Basics
	package search paths, Packages and Search Path Settings, Relative Import Basics
	recording for recursive calls, Cycles, paths, and stack limits

	pattern matching in strings	about, Pattern Matching
	re module and, Pattern Matching, Other Common String Methods in Action, The re Pattern-Matching Module

	pdb command-line debugger, Which Option Should I Use?, Development Tools for Larger Projects
	PEP (Python Enhancement Proposal), How Is Python Developed and Supported?
	percent sign (%)	formatting expression operator, Formatting Expression Basics, Comparison to the % Formatting Expression-Comparison to the % Formatting Expression, Method Calls
	system shell prompt, Starting an Interactive Session, What Not to Type: Prompts and Comments, Running Files with Command Lines

	performance considerations, On the other hand: performance, conciseness,
 expressiveness	(see also benchmarking)
	list comprehensions, On the other hand: performance, conciseness,
 expressiveness
	MRO and, Scope of search order change
	program execution, Performance implications
	Python alternatives, PyPy: Python for speed
	slots, What about slots speed?

	Perl programming language, Test Your Knowledge: Answers
	permutations, Permutations: All possible combinations-Permutations: All possible combinations
	persistence (see object persistence)
	Peters, Tim, Full Credit
	pexpect system, Other File Tools
	pickle module	about, Pickles and Shelves
	object persistence and, Database Programming, Nesting Revisited
	object serialization and, The pickle Object Serialization Module-The pickle Object Serialization Module
	persistence and, Stream Processors Revisited
	storing objects, Storing Native Python Objects: pickle, Other File Tools

	plus (+) operator	adding numbers, Numbers
	concatenating lists, Basic List Operations, Example: Catching Built-in Exceptions
	concatenating strings, Sequence Operations, Basic Operations, Example: Catching Built-in Exceptions

	PMW extension package, GUIs
	polymorphism	about, Sequence Operations, How to Break Your Code’s Flexibility, Python and OOP
	classes and, Polymorphism and classes-Polymorphism and classes, Polymorphism in Action
	in functions, Polymorphism in Python, Polymorphism Revisited
	OOP considerations, Polymorphism Means Interfaces, Not Call Signatures
	operator overloading and, Preview: Operator overloading and polymorphism
	testing exception types, More on sys.exc_info

	portability, It’s Portable
	positional arguments, Argument Matching Basics, Headers: Collecting arguments, A Basic Range-Testing Decorator for Positional Arguments-Other Applications: Type Testing (If You Insist!)
	pow built-in function, Other Built-in Numeric Tools
	pprint module	pformat function, Example: Mapping Attributes to Inheritance Sources
	pprint function, Example: Mapping Attributes to Inheritance Sources
	usage considerations, Example: Mapping Attributes to Inheritance Sources

	precedence rules, Mixed operators follow operator precedence
	print built-in function, Running Code Interactively, The Python 3.X print Function-The 3.X print function in action, Emulating the Python 3.X print Function-Using Keyword-Only Arguments
	print operations, Running Code Interactively	(see also print statement)
	about, Print Operations
	built-in exception classes and, Default Printing and State-Default Printing and State
	completion certificate, Encore: Print Your Own Completion Certificate!-Encore: Print Your Own Completion Certificate!
	custom displays, Custom Print Displays
	display formats, Providing Print Displays-Providing Print Displays
	expression statements and, Expression Statements
	file object methods and, Print Operations
	print built-in function, Running Code Interactively, The Python 3.X print Function-The 3.X print function in action, Emulating the Python 3.X print Function-Using Keyword-Only Arguments
	print stream redirection, Print Stream Redirection-Automatic stream redirection
	quiz questions and answers, Test Your Knowledge: Quiz
	standard output stream, Other File Tools, Print Operations, Neutralizing display differences with code
	version considerations, The Python 3.X print Function-The 2.X print statement in action, Emulating the Python 3.X print Function-Using Keyword-Only Arguments, Using Code Two Ways
	version-neutral, Version-Neutral Printing-Neutralizing display differences with code

	print statement	about, Running Code Interactively, The Python 2.X print Statement-The 2.X print statement in action
	common usage mistakes, Usage Notes: The Interactive Prompt, Usage Notes: Command Lines and Files
	debugging code and, Which Option Should I Use?
	numeric display formats and, Numeric Display Formats

	private attributes, Implementing Private Attributes-Using __dict__ and __slots__ (and other virtual names)
	procedures (see functions)
	profile module, Iteration and Optimization, Other Suggestions, Development Tools for Larger Projects
	program architecture	about, Import and Reload Basics
	conceptual hierarchy, The Python Conceptual Hierarchy, The Python Conceptual Hierarchy Revisited
	modules and, Python Program Architecture-Standard Library Modules

	program execution	about, How Python Runs Programs
	alternative IDEs, Other IDEs-Other IDEs
	alternative launch options, Other Launch Options-Future Possibilities?
	byte code compilation and, Byte code compilation-Byte code compilation
	clicking file icons, Clicking File Icons-Other Icon-Click Limitations
	debugging code, Which Option Should I Use?-Which Option Should I Use?
	development considerations, Development implications
	embedding calls, Embedding Calls
	exec built-in function and, Using exec to Run Module Files-Using exec to Run Module Files
	frozen binaries, Frozen Binaries, Frozen Binary Executables
	future possibilities, Future Possibilities?, Future Possibilities?
	IDLE user interface, The IDLE User Interface-Usage Notes: IDLE
	interactive prompt, Byte code compilation, The Interactive Prompt-Entering multiline statements
	interpreters and, Introducing the Python Interpreter-Introducing the Python Interpreter, Python’s View
	model variations in, Execution Model Variations-Future Possibilities?
	module imports and reloads, Module Imports and Reloads-Usage Notes: import and reload
	optimization tools, Execution Optimization Tools-Psyco: The original just-in-time compiler
	performance considerations, Performance implications
	programmer's perspective, The Programmer’s View-The Programmer’s View
	PVM and, The Python Virtual Machine (PVM)
	quiz questions and answers, Test Your Knowledge: Quiz, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	selecting from options, Which Option Should I Use?
	system command lines and files, System Command Lines and Files-Usage Notes: Command Lines and Files
	text editor launch options, Text Editor Launch Options
	Unix-style scripts, Unix-Style Executable Scripts: #!-The Python 3.3 Windows Launcher: #! Comes to Windows

	program units, Python’s Core Data Types, Python’s Core Data Types	(see also classes; functions; modules)

	Programming Python (Lutz), Just How New Is New-Style?
	programs	about, System Command Lines and Files
	metaprograms, Example: Modules Are Objects-Example: Modules Are Objects
	modules and, System Command Lines and Files, The Python Conceptual Hierarchy

	prompts (see interactive prompt; system prompt)
	properties	about, Properties: Attribute Accessors-Property basics
	attribute, Properties-Setter and deleter decorators
	class statement, Class Objects Provide Default Behavior, Example, Property basics
	coding with decorators, Coding Properties with Decorators-Setter and deleter decorators
	descriptors and, How Properties and Descriptors Relate-Descriptors and slots and more
	validating with, Using Properties to Validate-Testing code

	property built-in function, Property basics, Function Decorator Basics, Inserting Code to Run on Attribute Access, How Properties and Descriptors Relate
	prototyping systems, Rapid Prototyping
	proxy classes (wrappers)	about, OOP and Delegation: “Wrapper” Proxy Objects-OOP and Delegation: “Wrapper” Proxy Objects
	decorators installing, Managing Calls and Instances
	delegation and, Why the lookup change?

	pseudoprivate class attributes	about, Name Considerations in Tool Classes, Pseudoprivate Class Attributes-Why Use Pseudoprivate Attributes?
	larger projects and, Development Tools for Larger Projects
	public attributes and, Using __X pseudoprivate names

	PSF (Python Software Foundation), How Is Python Developed and Supported?
	pstats module, Development Tools for Larger Projects
	Psyco system, PyPy: Python for speed, Psyco: The original just-in-time compiler
	.pth file extension, Packages and Search Path Settings
	public attributes, Generalizing for Public Declarations, Too-Decorator tradeoffs
	PVM (Python Virtual Machine), The Python Virtual Machine (PVM)
	.py file extension	about, The Programmer’s View, 2. Compile It (Maybe), Module Filenames
	common usage mistakes, Usage Notes: IDLE
	imported files and, A First Script

	py2app tool, Frozen Binaries
	py2exe tool, Frozen Binaries
	.pyc file extension, Byte code compilation, 2. Compile It (Maybe), Byte Code Files: __pycache__ in Python 3.2+
	__pycache__
 subdirectory, Byte code compilation, Clicking Icons on Windows, 2. Compile It (Maybe), Byte Code Files: __pycache__ in Python 3.2+-Byte Code File Models in Action
	PyChecker tool, Hiding built-ins by assignment: Shadowing, Development Tools for Larger Projects
	PyDev IDE, Other IDEs
	PyDoc system	about, Getting Help, Python Documentation Sources
	changing colors in, Python 3.2 and later: PyDoc’s all-browser mode
	help function, PyDoc: The help Function-PyDoc: The help Function, Documentation Strings Revisited, Development Tools for Larger Projects
	HTML reports, PyDoc: HTML Reports-Python 3.2 and earlier: GUI client
	version considerations, PyDoc: HTML Reports-Python 3.2 and earlier: GUI client

	pydoc.py script, Python 3.2 and earlier: GUI client
	pygame toolkit, Frozen Binaries
	PyInstaller tool, Frozen Binaries, Development Tools for Larger Projects
	PyLint system, Development Tools for Larger Projects
	PyMongo interface, Nesting Revisited
	.pyo file extension, Optimized byte code files
	PyPy system	about, OK, but What’s the Downside?, Python Implementation Alternatives
	benchmarking, A win for map and a rare loss for PyPy
	performance considerations, PyPy: Python for speed
	timeit module and, Interactive usage and API calls-Command-line usage

	Pyrolog interpreter, PyPy: Python for speed
	PySerial extension, Other File Tools
	PySolFC program, And More: Gaming, Images, Data Mining, Robots, Excel...
	pystone.py program, Other Benchmarking Topics: pystones
	Python Enhancement Proposal (PEP), How Is Python Developed and Supported?
	Python interpreter	about, Introducing the Python Interpreter, Python’s View
	additional information, For More Help
	alternatives to, PyPy: Python for speed
	byte code and, Byte code compilation-Byte code compilation
	configuring, Configuring Python-Python 3.3 Windows Launcher Command Lines
	development considerations, Development implications
	installing, Introducing the Python Interpreter, Installing the Python Interpreter-Installation Steps
	locating with env program, The Unix env Lookup Trick
	performance considerations, Performance implications
	PVM and, The Python Virtual Machine (PVM)

	Python programming language	additional information, For More Help
	advantages of, Why Do People Use Python?-Developer Productivity
	common applications of, What Can I Do with Python?-And More: Gaming, Images, Data Mining, Robots, Excel...
	compared to other languages, How Does Python Stack Up to Language X?-How Does Python Stack Up to Language X?
	compared to Perl, Test Your Knowledge: Answers
	development community, How Is Python Developed and Supported?
	execution speed, OK, but What’s the Downside?
	future directions, Future Directions-Future Directions
	implementation alternatives, Python Implementation Alternatives-PyPy: Python for speed
	new Windows options, New Windows Options in 3.3: PATH, Launcher
	paradox of, The Python Paradox-Where to Go From Here
	pillars of programming, The Python Conceptual Hierarchy
	portability, It’s Portable
	quiz questions and answers, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	scripting and, Is Python a “Scripting Language”?
	technical strengths, What Are Python’s Technical Strengths?-It’s Named After Monty Python
	tools supporting, What Can I Do with Python?-And More: Gaming, Images, Data Mining, Robots, Excel..., It’s Powerful, The Python Toolset
	tradeoffs using, OK, but What’s the Downside?, Open Source Tradeoffs
	user base, Who Uses Python Today?-Who Uses Python Today?, Stackless: Python for concurrency
	version considerations (see version considerations for Python)

	Python Software Foundation (PSF), How Is Python Developed and Supported?
	Python Virtual Machine (PVM), The Python Virtual Machine (PVM)
	PYTHONIOENCODING environment variable, Stream content: PYTHONIOENCODING
	PythonLauncher, Icon-Click Basics
	PYTHONPATH environment variable	about, Python Environment Variables, Python Environment Variables
	module search paths, Usage Notes: import and reload, The Module Search Path, Changing the Module Search Path
	package search paths, Packages and Search Path Settings
	PyDoc HTML reports, Python 3.2 and earlier: GUI client
	Windows platform and, Windows environment variable GUI

	PYTHONSTARTUP environment variable, Python Environment Variables, Python Environment Variables
	PythonWin IDE, Other IDEs
	PyUnit tool, Development Tools for Larger Projects
	.pyw file extension, New Windows Options in 3.3: PATH, Launcher
	PY_PYTHON environment variable, The Python 3.3 Windows Launcher: #! Comes to Windows, Python Environment Variables, Python Environment Variables
	PY_PYTHON2 environment variable, Python Environment Variables, Python Environment Variables
	PY_PYTHON3 environment variable, Python Environment Variables, Python Environment Variables

Q
	queue module, Program Design: Minimize Global Variables
	queues	best-first searches, Recursion versus queues and stacks
	FIFO, Recursion versus queues and stacks
	recursion versus, Recursion versus queues and stacks, Alternative Codings

	quiz questions and answers	chapter 1:
 Python Q&A session, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	chapter 2:
 program execution, Test Your Knowledge: Quiz
	chapter 3:
 program execution, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	chapter 4: object
 types, Test Your Knowledge: Quiz
	chapter 5:
 numbers, Test Your Knowledge: Quiz
	chapter 6: dynamic
 typing, Test Your Knowledge: Quiz
	chapter 7:
 strings, Test Your Knowledge: Quiz
	chapter 8:
 lists and dictionaries, Test Your Knowledge: Quiz
	chapter 9:
 tuples, files, and everything else, Test Your Knowledge: Quiz
	chapter 10: statements, Test Your Knowledge: Quiz
	chapter 11: assignments, expressions, and
 prints, Test Your Knowledge: Quiz
	chapter 12: if tests and syntax rules, Test Your Knowledge: Quiz
	chapter 13: while and for loops, Test Your Knowledge: Quiz
	chapter 14: iterations and comprehensions, Test Your Knowledge: Quiz
	chapter 15: documentation, Test Your Knowledge: Quiz
	chapter 16: functions, Test Your Knowledge: Quiz
	chapter 17: scopes, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	chapter 18: arguments, Test Your Knowledge: Quiz
	chapter 19: functions, Test Your Knowledge: Quiz
	chapter 20: comprehensions and generators, Test Your Knowledge: Quiz
	chapter 21: benchmarking, Test Your Knowledge: Quiz
	chapter 22: modules, Test Your Knowledge: Quiz
	chapter 23: modules, Test Your Knowledge: Quiz
	chapter 24: module packages, Test Your Knowledge: Quiz
	chapter 25: modules, Test Your Knowledge: Quiz
	chapter 26: OOP, Test Your Knowledge: Quiz
	chapter 27: classes, Test Your Knowledge: Quiz
	chapter 28: classes, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	chapter 29: classes, Test Your Knowledge: Quiz
	chapter 30: operator overloading, Test Your Knowledge: Quiz
	chapter 31: classes, Test Your Knowledge: Quiz
	chapter 32: classes, Test Your Knowledge: Quiz
	chapter 33: exceptions, Test Your Knowledge: Quiz
	chapter 34: exceptions, Test Your Knowledge: Quiz
	chapter 35: exception classes, Test Your Knowledge: Quiz
	chapter 36: exceptions, Test Your Knowledge: Quiz
	chapter 37: Unicode and byte strings, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	chapter 38: attributes, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	chapter 39: decorators, Test Your Knowledge: Quiz-Test Your Knowledge: Answers

	quotation marks	interchangeable, Single- and Double-Quoted Strings Are the Same
	multiline block strings, Triple Quotes Code Multiline Block Strings-Triple Quotes Code Multiline Block Strings
	strings in, Other Ways to Code Strings, String Basics

R
	r file processing mode, Files, Files
	__radd__ method, Common Operator Overloading Methods, Right-Side and In-Place Uses: __radd__ and __iadd__-In-Place Addition
	raise statement	about, Python’s Statements, Exception Basics, The raise Statement
	built-in exceptions and, User-Defined Exceptions
	chaining exceptions, Python 3.X Exception Chaining: raise from-Python 3.X Exception Chaining: raise from
	from clause, Python 3.X Exception Chaining: raise from-Python 3.X Exception Chaining: raise from
	propagating exceptions, Propagating Exceptions with raise
	raising exceptions, Using Keyword-Only Arguments, User-Defined Iterables, Raising Exceptions, Raising Exceptions
	raising instances, Coding Exceptions Classes
	signaling conditions with, Functions Can Signal Conditions with raise
	version considerations, The raise Statement

	random module	about, Numbers, Other Built-in Numeric Tools
	generator example, On the other hand: Space and time, conciseness,
 expressiveness

	range built-in function	counter loops, Counter Loops: range
	iteration and, Other Iteration Contexts, New Iterables in Python 3.X, The range Iterable
	list comprehensions and, Comprehensions, List Iteration and Comprehensions, Changing Lists: range Versus Comprehensions
	loop coding techniques and, Advanced sequence assignment patterns, Loop Coding Techniques-Changing Lists: range Versus Comprehensions
	nonexhaustive traversals, Nonexhaustive Traversals: range Versus Slices
	sequence scans, Sequence Scans: while and range Versus for
	sequence shufflers, Sequence Shufflers: range and len
	timing calls example, Testing subtleties

	rapid development cycle, Is Python a “Scripting Language”?, Development implications
	rational numbers, Numbers, Other Core Types
	raw_input built-in function, The input Trick on Windows, The input Trick on Windows, A Simple Interactive Loop
	re module	about, Python’s Core Data Types
	findall function, XML Parsing Tools
	match function, String Basics, XML Parsing Tools
	pattern matching and, Pattern Matching, Other Common String Methods in Action, The re Pattern-Matching Module
	search function, XML Parsing Tools

	read-only descriptors, Read-only descriptors
	recursive comparisons, Comparisons, Equality, and Truth
	recursive functions	about, Scope Details, Recursive Functions, Namespace Links: A Tree Climber
	coding alternatives, Coding Alternatives
	from statement and, Recursive from Imports May Not Work
	generators and, Listing attributes per object in class trees
	handling arbitrary structures, Handling Arbitrary Structures-More recursion examples
	loops versus, Loop Statements Versus Recursion
	reloaders, A Recursive Reloader-Testing recursive reloads
	summation with, Summation with Recursion
	usage examples, More recursion examples

	reduce built-in function, Other Iteration Contexts, Combining Items in Iterables: reduce
	reference counters, Variables, Objects, and References, Objects Are Garbage-Collected
	references, Shared References	(see also shared references)
	about, Variables, Objects, and References, Variables, Objects, and References, Nested Scope Details
	assignments and, Assignment Statements
	attribute, Attribute Reference
	circular, Objects Are Garbage-Collected
	copies versus, References Versus Copies-References Versus Copies, Assignment Creates References, Not Copies
	cyclic, Objects Are Garbage-Collected
	dynamic typing and, Variables, Objects, and References, Shared References-Shared References and Equality
	string method calls, Flexible reference syntax: Extra complexity and functional
 overlap
	weak, Dynamic Typing Is Everywhere

	relative imports model	about, Module Packages, Package Relative Imports-Relative Import Basics
	absolute imports versus, Relative imports versus absolute package paths
	lookup rules summary, Module Lookup Rules Summary
	pitfalls of, Pitfalls of Package-Relative Imports: Mixed Use-Example: Application to module self-test code (preview)
	scope of, The Scope of Relative Imports
	usage considerations, Why Relative Imports?-Relative imports versus absolute package paths
	usage examples, Relative Imports in Action-Imports are still relative to the CWD, again
	version considerations, The relative imports solution in 3.X

	reload built-in function	about, Import and Reload Basics-The Grander Module Story: Attributes, Reloading Modules-reload Example
	common usage mistakes, Usage Notes: import and reload, Usage Notes: IDLE
	from statement and, reload May Not Impact from Imports-reload, from, and Interactive Testing
	usage examples, Example: Transitive Module Reloads-Testing reload variants

	repetition	as programming
 pillar, The Python Conceptual Hierarchy
	in lists, Basic List Operations
	in strings, Sequence Operations, Basic Operations
	in tuples, Tuples
	usage considerations, Repetition Adds One Level Deep

	repr built-in function	about, String Conversion Tools
	display formats, Numeric Display Formats
	string formatting method calls and, Advanced Formatting Method Syntax
	version considerations, Python Expression Operators

	__repr__ method	about, Common Operator Overloading Methods, String Representation: __repr__ and __str__-Display Usage Notes
	custom print displays, Custom Print Displays
	inheritance and, A Generic Display Tool, Listing inherited attributes with dir
	print display example, Providing Print Displays-Providing Print Displays
	recursive looping and, More recursion examples

	reserved words, Variable Name Rules
	reStructuredText markup language, Beyond docstrings: Sphinx
	return statement	about, Python’s Statements, def Statements
	coding functions, Coding Functions
	function gotchas, Functions Without returns
	returning multiple values, Simulating Output Parameters and Multiple Results
	yield statement versus, Generator Functions: yield Versus return-Extended generator function protocol: send versus next

	reversed built-in function, Other common list methods, Nested for loops
	RIAs (rich Internet applications), Internet Scripting
	rich Internet applications (RIAs), Internet Scripting
	__rmod__ method, Method Calls
	round built-in function, Floor versus truncation, Other Built-in Numeric Tools
	running programs (see program execution)

S
	SAX parsing, XML Parsing Tools
	ScientificPython programming extension, Numeric and Scientific Programming
	SciPy programming extension, Numeric and Scientific Programming, Nesting
	scopes	about, Python Scope Basics-Scope Details
	accessing global variables, Other Ways to Access Globals
	builtins module, The Built-in Scope-Redefining built-in names: For better or worse
	comprehension variables and, Scopes and Comprehension Variables
	function-related gotchas, Enclosing scopes and loop variables: Factory functions
	global statement, Python’s Statements, Coding Functions, Scope Details, The global Statement, nonlocal Basics
	imports versus, Imports Versus Scopes
	LEGB rule and, Name Resolution: The LEGB Rule, The Built-in Scope, Simple Names: Global Unless Assigned, Nested Classes: The LEGB Scopes Rule Revisited-Nested Classes: The LEGB Scopes Rule Revisited
	in methods and
 classes, Scopes in Methods and Classes
	minimizing cross-file changes, Program Design: Minimize Cross-File Changes-Program Design: Minimize Cross-File Changes
	minimizing global variables, Program Design: Minimize Global Variables
	modules and, Files Generate Namespaces
	name resolution and, Name Resolution: The LEGB Rule-Other Python scopes: Preview
	nested functions and, Scopes and Nested Functions-Arbitrary scope nesting, Scopes: lambdas Can Be Nested Too
	nonlocal statement, Python’s Statements, Coding Functions, Scope Details, The global Statement, The nonlocal Statement in 3.X-State with mutables: Obscure ghost of Pythons past?
	quiz questions and answers, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	relative imports model, The Scope of Relative Imports
	try/except statement and, Scopes and try except Variables
	usage example, Scope Example

	screen scraping technique, Future Directions
	scripts and scripting	about, Is Python a “Scripting Language”?
	common usage mistakes, Usage Notes: IDLE
	error handling, Other Icon-Click Limitations
	executable, Unix-Style Executable Scripts: #!-The Python 3.3 Windows Launcher: #! Comes to Windows
	Internet, Internet Scripting
	launching scripts with icon clicks, Clicking File Icons-Other Icon-Click Limitations
	modules and, System Command Lines and Files
	Python support, It’s Object-Oriented and Functional
	running with arguments, Running script files with arguments
	terminating compound statements, Entering multiline statements
	timeit module and, Command-line usage, Benchmark Module and Script: timeit-Benchmark Script Results
	timing script, Timing Script
	writing scripts, A First Script

	search path	modules, Usage Notes: import and reload, The Module Search Path-Optimized byte code files, Changing the Module Search Path-Changing the Module Search Path, Path files, Running modules on the search path
	packages, Packages and Search Path Settings, Relative Import Basics

	selection as programming pillar, The Python Conceptual Hierarchy
	self argument	about, Function Design Concepts, Methods
	coding constructors, Coding Constructors
	lambda callbacks and, Scopes: lambdas Can Be Nested Too
	static methods and, Why the Special Methods?
	usage considerations, The World’s Simplest Python Class

	semicolon (;), End-of-line is end of statement, Statement rule special cases
	sentinel value, Functions Can Signal Conditions with raise
	sequence assignments	about, Assignment Statement Forms-Sequence Assignments
	advanced patterns, Advanced sequence assignment patterns-Advanced sequence assignment patterns

	sequence operations	bytes string type, Sequence Operations
	dictionaries and, Dictionary Usage Notes
	generating scrambled sequences, Example: Generating Scrambled Sequences-Permutations: All possible combinations
	iteration and, Impacts on 2.X Code: Pros and Cons
	lists, Sequence Operations
	loop coding techniques, Sequence Scans: while and range Versus for-Sequence Shufflers: range and len
	numbers, Numbers
	statement execution, Python Syntax Revisited
	strings, Sequence Operations-Sequence Operations

	sequences	about, Strings
	escape, Other Ways to Code Strings, String Basics, Escape Sequences Represent Special Characters-Raw Strings Suppress Escapes
	intersecting, A Second Example: Intersecting Sequences-Local Variables, Generalized Set Functions-Generalized Set Functions
	list, Lists, Indexing, Slicing, and Matrixes
	as programming
 pillar, The Python Conceptual Hierarchy
	repeating, Repetition Adds One Level Deep
	string, Strings
	tuple, Tuples

	server connections, closing, Closing Files and Server Connections
	set built-in function, Other Core Types, Set literals in Python 3.X and 2.7, Type Objects
	set comprehensions, Set literals in Python 3.X and 2.7, Set comprehensions in Python 3.X and 2.7, Other Iteration Contexts, Comprehending Set and Dictionary Comprehensions-Extended Comprehension Syntax for Sets and Dictionaries
	__set__ method	about, Common Operator Overloading Methods
	descriptors and, Other Attribute Management Tools, Using descriptors to decorate methods
	managing attributes, The Basics

	set notation, Comprehensions
	setattr built-in function, How (Not) to Obfuscate Your Python Code
	__setattr__ method	about, Common Operator Overloading Methods, Attribute Access: __getattr__ and __setattr__-Emulating Privacy for Instance Attributes: Part 1, Inserting Code to Run on Attribute Access, __getattr__ and __getattribute__
	attribute assignments and, Example
	emulating privacy, Pseudoprivate Class Attributes
	private attributes and, Using __dict__ and __slots__ (and other virtual names)
	recursive looping and, More recursion examples

	__setitem__
 method, Common Operator Overloading Methods, Indexing and Slicing: __getitem__ and __setitem__-But 3.X’s __index__ Is Not Indexing!, bytearrays in Action
	sets	about, Numbers, Other Core Types, Sets, Why sets?-Why sets?, Generalized Set Functions
	comparison operations, Comparisons, Equality, and Truth
	copy method, References Versus Copies
	creating, Other Core Types
	dictionary views and, Dictionary views and sets
	frozen, Immutable constraints and frozen sets
	immutable constraints, Immutable constraints and frozen sets
	literals, Python’s Core Data Types, Set literals in Python 3.X and 2.7
	version considerations, Set basics in Python 2.6 and earlier-Set comprehensions in Python 3.X and 2.7

	__setslice__ method, Slicing and Indexing in Python 2.X
	shadowing, Hiding built-ins by assignment: Shadowing
	shared references	about, Shared References-Shared References
	arguments and, Arguments and Shared References-Arguments and Shared References
	augmented assignments and, Augmented assignment and shared references
	equality and, Shared References and Equality-Shared References and Equality
	in-place changes and, Shared References and In-Place Changes-Shared References and In-Place Changes
	multiple-target assignments and, Multiple-target assignment and shared references

	Shed Skin system, Python Implementation Alternatives, Shed Skin: A Python-to-C++ translator
	shell tools and commands, Is Python a “Scripting Language”?, Is Python a “Scripting Language”?, Systems Programming, Generating Both Offsets and Items: enumerate-Generating Both Offsets and Items: enumerate	(see also system command lines and files)

	shelve module	about, Polymorphism and classes, Pickles and Shelves, The shelve module
	dictionary interfaces and, The has_key method is dead in 3.X: Long live in!
	exploring shelves interactively, Exploring Shelves Interactively-Exploring Shelves Interactively
	object persistence and, Nesting Revisited, Stream Processors Revisited
	open function, Exploring Shelves Interactively
	pickle module and, The pickle Object Serialization Module-The pickle Object Serialization Module
	storing objects on database, Storing Objects on a Shelve Database
	updating objects, Updating Objects on a Shelve

	shelves (see access-by-key databases and filesystems)
	singleton classes, Singleton Classes-Coding alternatives
	slice expressions, Intercepting Slices
	slice objects, Intercepting Slices
	slicing	lists, Indexing, Slicing, and Matrixes, Index and slice assignments-Index and slice assignments
	nonexhaustive traversals, Nonexhaustive Traversals: range Versus Slices
	operator overloading and, Indexing and Slicing: __getitem__ and __setitem__-Slicing and Indexing in Python 2.X
	strings, Sequence Operations, Indexing and Slicing-Extended slicing: The third limit and slice objects
	tuples, Tuples

	slots	about, Example: Mapping Attributes to Inheritance Sources, Slots: Attribute Declarations
	descriptors and, Descriptors and slots and more
	example impacts of, Example impacts of slots: ListTree and mapattrs
	handling generically, Handling slots and other “virtual” attributes
 generically-Handling slots and other “virtual” attributes
 generically
	managing attributes, Other Attribute Management Tools
	namespace dictionaries and, Slots and namespace dictionaries-Slots and namespace dictionaries
	private attributes and, Using __dict__ and __slots__ (and other virtual names)
	speed considerations, What about slots speed?
	superclasses and, Multiple __slot__ lists in superclasses
	usage rules, Slot usage rules

	socket module, Python’s Core Data Types
	sorted built-in function	about, Sorting Keys: for Loops
	dictionaries and, Sorting dictionary keys in 3.X, Python 2.X and 3.X dictionary comparisons
	iteration and, Other Iteration Contexts
	lists and, More on sorting lists
	tuples and, Conversions, methods, and immutability

	sorting	keys, Sorting Keys: for Loops-Sorting Keys: for Loops, More Dictionary Methods, Sorting dictionary keys in 3.X
	lists, More on sorting lists-More on sorting lists
	version considerations, More on sorting lists, Python 2.X and 3.X mixed-type comparisons and sorts

	source code	about, Byte code compilation
	timestamps in, Byte code compilation

	spaces versus tabs, Avoid mixing tabs and spaces: New error checking in 3.X
	Sphinx tool, Python Documentation Sources, Beyond docstrings: Sphinx
	SQL database API, On the other hand: performance, conciseness,
 expressiveness
	square brackets [], Python’s Core Data Types, Adding Keys, Attributes, and Offsets, Statement rule special cases
	square roots, Other Built-in Numeric Tools
	stack traces, Default Exception Handler, Example: Default Behavior
	Stackless Python, Systems Programming, Stackless: Python for concurrency
	stacks	inspecting, Implementation alternatives: __getattribute__ inserts, call
 stack inspection-Implementation alternatives: __getattribute__ inserts, call
 stack inspection
	LIFO, Other common list methods, Recursion versus queues and stacks
	limiting depth of, Cycles, paths, and stack limits
	recursion versus, Recursion versus queues and stacks, Alternative Codings

	standard error stream (stderr), Automatic stream redirection, Destructor Usage Notes
	standard input stream (stdin), Neutralizing display differences with code
	standard library	about, Why Do People Use Python?
	launch options, Still Other Launch Options

	standard output stream (stdout), Other File Tools, Print Operations, Neutralizing display differences with code
	state information	about, User-Defined Classes
	built-in exception classes and, Default Printing and State-Default Printing and State
	class decorators and, State retention and enclosing scopes
	in descriptors, Using State Information in Descriptors-Using State Information in Descriptors
	factory functions and, Factory Functions: Closures
	function attributes and, Function Attributes
	function decorators and, Decorator State Retention Options-Function attributes
	generator functions, State suspension
	nonlocal statement and, Why nonlocal? State Retention Options-State with mutables: Obscure ghost of Pythons past?
	recursive functions and, Cycles, paths, and stack limits
	validating with descriptors and, Option 1: Validating with shared descriptor instance
 state-Option 2: Validating with per-client-instance state

	statements	about, Introducing Python Statements
	assignment, Python’s Statements, Assignment Statements-Test Your Knowledge: Answers
	colon character and, What Python Adds
	common usage mistakes, Usage Notes: The Interactive Prompt
	compound (see compound statements)
	continuation lines in, Statement rule special cases, Statement Delimiters: Lines and Continuations
	control-flow, Python Syntax Revisited
	delimiting, Statement Delimiters: Lines and Continuations
	expressions and, The Python Conceptual Hierarchy, Expression Statements-Expression Statements and In-Place Changes
	indenting, End of indentation is end of block-Why Indentation Syntax?
	interactive loops example, A Quick Example: Interactive Loops-Nesting Code Three Levels Deep
	listed, Python’s Statements-Python’s Statements
	modules and, System Command Lines and Files, The Python Conceptual Hierarchy, Statement Order Matters in Top-Level Code
	parentheses and, Parentheses are optional, Statement rule special cases
	Python syntax model, A Tale of Two ifs-Block rule special case
	quiz questions and answers, Test Your Knowledge: Quiz
	semicolon and, End-of-line is end of statement
	special case rules, Statement rule special cases-Block rule special case, A Few Special Cases-A Few Special Cases
	syntax rules, Python Syntax Revisited-A Few Special Cases
	terminating, End-of-line is end of statement
	version considerations, Python’s Statements

	static methods	about, Other Method Call Possibilities, Static and Class Methods
	alternatives for, Static Method Alternatives
	counting instances, Counting Instances with Static Methods
	usage considerations, Using Static and Class Methods-Using Static and Class Methods
	version considerations, Static Methods in 2.X and 3.X-Static Methods in 2.X and 3.X

	staticmethod built-in function, Unbound Methods Are Functions in 3.X, Static and Class Methods, Using Static and Class Methods-Using Static and Class Methods
	steps in slicing, Extended slicing: The third limit and slice objects
	StopIteration exception, The Iteration Protocol: File Iterators, The full iteration protocol, Iteration protocol integration
	storing objects and data	binary data, Storing Packed Binary Data: struct
	class building example, Step 7 (Final): Storing Objects in a Database-Updating Objects on a Shelve
	class gotchas, Choose per-instance or class storage wisely
	in files, Storing Python Objects in Files: Conversions-Storing Python Objects in Files: Conversions
	in JSON format, Storing Python Objects in JSON Format-Storing Python Objects in JSON Format
	pickle module, Storing Native Python Objects: pickle, Other File Tools
	on shelve database, Storing Objects on a Shelve Database
	strings, How Python Stores Strings in Memory
	struct module, Storing Packed Binary Data: struct

	str built-in function	about, String Conversion Tools, Type Objects
	display formats, Numeric Display Formats
	string formatting method calls and, Advanced Formatting Method Syntax
	usage example, Numbers
	version considerations, Python Expression Operators

	__str__ method	about, Common Operator Overloading Methods, String Representation: __repr__ and __str__-Display Usage Notes
	custom print displays, Custom Print Displays
	inheritance and, A Third Example, Listing inherited attributes with dir
	print display example, Providing Print Displays-Providing Print Displays, A Generic Display Tool

	str string type	about, Python’s String Types-Why the different string types?
	converting, Mixing String Types
	encoded text, Byte String Literals: Encoded Text
	re module and, The re Pattern-Matching Module
	text files and, Text and Binary Files: The Short Story
	Unicode literals, Unicode Strings, Unicode: The Short Story, Python 2.X Unicode literals in Python 3.3
	version considerations, Escape Sequences Represent Special Characters

	stream redirection, Command-Line Usage Variations
	strides in slicing, Extended slicing: The third limit and slice objects
	string formatting	about, Type-Specific Methods, Numeric Display Formats, Method Calls
	converting integers to strings, Hex, Octal, Binary: Literals and Conversions
	expressions technique, String Formatting Expressions-Dictionary-Based Formatting Expressions
	literals, String Basics
	method calls technique, String Formatting Method Calls-Functions versus expressions: A minor convenience
	nesting, Advanced Formatting Method Syntax
	type codes, Advanced Formatting Expression Syntax-Advanced Formatting Expression Syntax

	string module	about, The Original string Module’s Functions (Gone in 3.X)-The Original string Module’s Functions (Gone in 3.X)
	relative imports examples, Relative Import Basics-Relative imports versus absolute package paths, Imports outside packages-Imports are still relative to the CWD, again

	strings (str object)	about, Python’s Core Data Types, Strings, String Fundamentals, String Basics-Text and Binary Files
	__add__ method, Getting Help
	alternate ways to code, Other Ways to Code Strings
	backslash characters, Escape Sequences Represent Special Characters-Raw Strings Suppress Escapes
	casefold method, More on sorting lists
	changing, Immutability, Changing Strings I, String Method Examples: Changing Strings II-String Method Examples: Changing Strings II
	coding, Coding Basic Strings-String Type Conversions
	common operations, String Basics-Basic Operations
	comparison operations, Comparisons, Equality, and Truth
	concatenating, Sequence Operations, Getting Help, Basic Operations, Example: Catching Built-in Exceptions
	converting, Hex, Octal, Binary: Literals and Conversions, String Basics, String Conversion Tools-Character code conversions
	debugging, Usage variation: Showing underscore name values
	decode method, String Basics, String Type Conversions
	documentation, Triple Quotes Code Multiline Block Strings, Python Syntax Revisited, Python Documentation Sources, Docstrings: __doc__-Built-in docstrings
	empty strings, String Basics
	encode method, String Basics, Character Encoding Schemes, String Type Conversions
	endswith method, String Basics, Other Common String Methods in Action
	exceptions based on, String Exceptions Are Right Out!
	find method, Type-Specific Methods, String Basics, Basic Operations, String Method Examples: Changing Strings II
	format method, Formatting Method Basics, Advanced Formatting Method Syntax, Advanced Formatting Method Examples, Comparison to the % Formatting Expression-Functions versus expressions: A minor convenience, Listing attributes per object in class trees
	formatting (see string formatting)
	garbage collection and, Changing Strings I
	immutable, Immutability, String Basics, Changing Strings I
	importing modules by name string, Importing Modules by Name String-Direct Calls: Two Options
	indexing, Sequence Operations, Indexing and Slicing-Extended slicing: The third limit and slice objects
	isdigit method, String Basics, Handling Errors by Testing Inputs
	join method, String Basics, String Method Examples: Changing Strings II, Other Iteration Contexts, Generator Expressions: Iterables Meet Comprehensions
	literals, Python’s Core Data Types, String Basics-Triple Quotes Code Multiline Block Strings, Statement Delimiters: Lines and Continuations, Python 3.X String Literals-Python 2.X String Literals
	lower method, String Basics, More on sorting lists
	multiline block strings, Triple Quotes Code Multiline Block Strings-Triple Quotes Code Multiline Block Strings
	nonexhaustive traversals, Nonexhaustive Traversals: range Versus Slices
	operator overloading and, String Representation: __repr__ and __str__-Display Usage Notes
	parsing text, String Method Examples: Parsing Text
	pattern matching, Pattern Matching, The Original string Module’s Functions (Gone in 3.X)
	quiz questions and answers, Test Your Knowledge: Quiz, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	repeating, Sequence Operations, Basic Operations
	replace method, Type-Specific Methods, String Basics, Changing Strings I, String Method Examples: Changing Strings II
	rstrip method, String Basics, Extended slicing: The third limit and slice objects, Storing Python Objects in Files: Conversions, Using List Comprehensions on Files
	sequence operations, Sequence Operations-Sequence Operations
	slicing, Sequence Operations, Indexing and Slicing-Extended slicing: The third limit and slice objects
	split method, String Basics, String Method Examples: Parsing Text, Storing Python Objects in Files: Conversions
	tool changes, Other String Tool Changes in 3.X-XML Parsing Tools
	type and content mismatches, Type and Content Mismatches in 3.X
	type-specific methods, Type-Specific Methods, String Basics, String Methods-The Original string Module’s Functions (Gone in 3.X)
	Unicode, Unicode Strings-Unicode Strings, Unicode: The Short Story, Currency Symbols: Unicode in Action-Currency Symbols: Unicode in Action, Coding Unicode Strings-Source File Character Set Encoding Declarations
	upper method, Type-Specific Methods, Timing Module: Homegrown
	version considerations, Unicode: The Short Story, Escape Sequences Represent Special Characters, The Original string Module’s Functions (Gone in 3.X)-The Original string Module’s Functions (Gone in 3.X), Comparison to the % Formatting Expression, Listing attributes per object in class trees, Unicode and Byte Strings-String Changes in 3.X, Unicode Files in 2.X

	strong typing, Python’s Core Data Types
	struct module, Binary Bytes Files, Storing Packed Binary Data: struct, Why the different string types?, The struct Binary Data Module-The struct Binary Data Module
	__sub__ method, Constructors and Expressions: __init__ and __sub__
	subclasses	about, Attribute Inheritance Search
	class interface techniques, Class Interface Techniques-Class Interface Techniques
	coding, Coding Subclasses
	customizing behavior, Classes Are Customized by Inheritance, Step 4: Customizing Behavior by Subclassing-OOP: The Big Idea
	extending built-in types, Extending Types by Subclassing-Extending Types by Subclassing
	inheritance and, A Third Example, Specializing Inherited Methods
	type object and, Metaclasses Are Subclasses of Type

	subprocess module, Other File Tools, Generating Both Offsets and Items: enumerate
	substitution operations in string formatting, Type-Specific Methods
	sum built-in function, Comprehensions, Other Built-in Numeric Tools, Summation with Recursion
	super built-in function	about, Augmenting Methods: The Good Way, Other Method Call Possibilities, The super Built-in Function: For Better or Worse?
	basic usage and tradeoffs, Basic super Usage and Its Tradeoffs-The super Upsides: Tree Changes and Dispatch
	debates about, The Great super Debate-The Great super Debate
	multiple inheritance and, Odd semantics: A magic proxy in Python 3.X-Pitfall: Adding multiple inheritance naively, Cooperative Multiple Inheritance Method Dispatch-Customization: Same-argument constraints
	operator overloading and, Limitation: Operator overloading
	runtime class changes, Runtime Class Changes and super
	summary of, The super Summary
	version considerations, Use differs in Python 2.X: Verbose calls

	superclasses	about, Attribute Inheritance Search
	abstract, Abstract Superclasses-Abstract superclasses in Python 3.X and 2.6+: Preview, Stream Processors Revisited
	class gotchas, You usually want to call superclass constructors
	class interface techniques, Class Interface Techniques-Class Interface Techniques
	constructor methods, Calling Superclass Constructors
	customizing, Inherit, Customize, and Extend
	inheritance and, Specializing Inherited Methods
	metaclasses versus, Metaclass Versus Superclass
	multiple inheritance and, Multiple Inheritance: “Mix-in” Classes
	operator overloading methods and, Mix-in superclasses
	parentheses and, Classes Are Customized by Inheritance
	slots and, Multiple __slot__ lists in superclasses
	traditional forms, Traditional Superclass Call Form: Portable, General

	sys module	argv attribute, Extended slicing: The third limit and slice objects, Benchmark Script Results, Example: Dual Mode Code
	excepthook function, Debugging with Outer try Statements
	exc_info function, Providing Exception Methods, Debugging with Outer try Statements, Running In-Process Tests-Displaying Errors and Tracebacks
	exit function, Exceptions Aren’t Always Errors, Catching Too Much: Avoid Empty except and Exception
	file name settings, Unicode Filenames and Streams
	getrecursionlimit function, Cycles, paths, and stack limits
	modules dictionary, Other Ways to Access Globals, 3. Run It, Example: Modules Are Objects
	path list, Usage Notes: import and reload, The sys.path List, Relative Import Basics, Module Lookup Rules Summary, Changing the Module Search Path
	platform attribute, A First Script, Adding Keys, Attributes, and Offsets, Timing Module: Homegrown
	setrecursionlimit function, Cycles, paths, and stack limits
	stderr attribute, Automatic stream redirection, Destructor Usage Notes
	stdin attribute, Neutralizing display differences with code
	stdout attribute, Other File Tools, Print Operations, The Python “hello world” program-Automatic stream redirection, Neutralizing display differences with code

	system command lines and files	about, System Command Lines and Files, Python Command-Line Arguments-Python 3.3 Windows Launcher Command Lines
	common usage mistakes, Usage Notes: Command Lines and Files
	running files with command lines, Running Files with Command Lines
	running in Python, Other File Tools, Generating Both Offsets and Items: enumerate-Generating Both Offsets and Items: enumerate, Other Built-in Type Iterables, Benchmark Script Results, Testing reload variants
	starting interactive sessions, Starting an Interactive Session
	system shell prompt, Starting an Interactive Session, What Not to Type: Prompts and Comments
	timeit module and, Command-line usage
	usage variations, Command-Line Usage Variations
	writing scripts, A First Script

	system shell prompt	about, Starting an Interactive Session, What Not to Type: Prompts and Comments
	running files, Running Files with Command Lines

	SystemExit exception, Exceptions Aren’t Always Errors, Catching Too Much: Avoid Empty except and Exception
	systeminfo command, Generating Both Offsets and Items: enumerate
	systems programming, Systems Programming

T
	-t command-line
 flag, Avoid mixing tabs and spaces: New error checking in 3.X
	tabs versus spaces, Avoid mixing tabs and spaces: New error checking in 3.X
	TCL_LIBRARY environment variable, Python Environment Variables
	termination actions	about, Exception Roles, Termination Actions-Termination Actions
	default exception handler and, Default Exception Handler
	try/finally statement and, Exception Roles, Termination Actions-Termination Actions, The try/finally Statement-Example: Coding Termination Actions with try/finally, What Should Be Wrapped
	with/as statement and, Exception Roles, Termination Actions, What Should Be Wrapped

	testing	error handling, Handling Errors by Testing Inputs-Supporting floating-point numbers
	filtering results, Filter clauses: if
	from statement and, reload, from, and Interactive Testing
	interactive prompt and, Testing
	list comprehensions and, Adding Tests and Nested Loops: filter-Formal comprehension syntax
	for missing keys, Missing Keys: if Tests
	with __name__
 attribute, Unit Tests with __name__
	for positional
 arguments, A Basic Range-Testing Decorator for Positional Arguments-Other Applications: Type Testing (If You Insist!)
	processes, Testing As You Go-Testing As You Go, Running In-Process Tests
	reloading variants, Testing reload variants
	timing calls example, Testing subtleties
	truth values, Booleans, The bool type, Truth Values and Boolean Tests-Truth Values and Boolean Tests, Boolean Tests: __bool__ and __len__-Boolean Methods in Python 2.X
	type, New-Style Class Changes, Type Model Changes-Implications for type testing, Other Applications: Type Testing (If You Insist!)

	text editor launch options, Text Editor Launch Options
	text files	about, Unicode Strings, Text and Binary Files-Text and Binary Files, Using Text and Binary Files
	binary files and, Binary Bytes Files
	creating, Files
	Unicode, Unicode Text Files-Unicode Text Files, Unicode: The Short Story, Currency Symbols: Unicode in Action-Currency Symbols: Unicode in Action
	version considerations, Text and Binary Files: The Short Story, Text and Binary Modes in 2.X and 3.X

	_thread module, Program Design: Minimize Global Variables
	threading module, Program Design: Minimize Global Variables
	3to2 converter, 2to3 converter
	time module	about, Iteration and Optimization, Full Credit
	clock function, Timing Module: Homegrown, Timing Module: Homegrown, Command-line usage, Decorators versus per-call timing
	homegrown timing module and, Timing Module: Homegrown
	perf_counter function, Timing Module: Homegrown, Decorators versus per-call timing
	process_time function, Timing Module: Homegrown
	time function, Timing Module: Homegrown, Timing Module: Homegrown

	timeit module	about, Iteration and Optimization, Full Credit, Other Suggestions, Timing Iterations and Pythons with timeit-Other usage modes: Setup, totals, and objects
	benchmark and script, Benchmark Module and Script: timeit-Benchmark Script Results
	other examples, Common Operator Overloading Methods, What about slots speed?, Decorators versus per-call timing, Running modules on the search path, Part IV, Functions and Generators
	repeat function, Interactive usage and API calls
	setup code, Other usage modes: Setup, totals, and objects, Room for improvement: Setup

	timestamps in source code, Byte code compilation
	timing calls with function decorators, Timing Calls-Timing with decorator arguments
	timing iterations	alternatives for, Timing Iteration Alternatives-Other Suggestions
	timeit module, Timing Iterations and Pythons with timeit-Room for improvement: Setup

	timsort algorithm, Full Credit
	tkinter GUI toolkit	about, GUIs
	callbacks and, Function Interfaces and Callback-Based Code, Other callables
	common usage mistakes, Usage Notes: IDLE
	configuring Python and, Python Environment Variables
	IDLE and, IDLE Startup Details
	keyword arguments and, Using Keyword-Only Arguments
	lambda callbacks, Scopes: lambdas Can Be Nested Too
	quit function, Usage Notes: IDLE
	testing reloading variants, Testing reload variants

	TK_LIBRARY environment variable, Python Environment Variables
	traceback module, Displaying Errors and Tracebacks
	traceback objects, More on sys.exc_info, Displaying Errors and Tracebacks
	translation (see encoding and decoding)
	triple quotes, Triple Quotes Code Multiline Block Strings-Triple Quotes Code Multiline Block Strings
	true value in Python	Booleans and, Booleans, The Meaning of True and False in Python-The bool type, Truth Values and Boolean Tests-Truth Values and Boolean Tests
	built-in scope and, Redefining built-in names: For better or worse
	operator overloading and, Boolean Tests: __bool__ and __len__-Boolean Methods in Python 2.X

	truncating division, Division: Classic, Floor, and True-Why does truncation matter?
	try statement	about, The try/except/else Statement-How try Statements Work
	catching built-in exceptions, Example: Catching Built-in Exceptions
	clauses supported, try Statement Clauses-The try else Clause
	debugging with, Debugging with Outer try Statements
	default behavior, Example: Default Behavior
	wrapping statements with, What Should Be Wrapped

	try/except statement	about, Python’s Statements, Exception Basics
	catching exceptions, Catching Exceptions, Termination Actions, Catching any and all exceptions-Catching all: The empty except and Exception, Example: Catching Built-in Exceptions
	error handling, Handling Errors with try Statements-Supporting floating-point numbers
	nesting, Nesting Exception Handlers-Example: Syntactic Nesting
	scopes and, Scopes and try except Variables

	try/except/else statement, The try/except/else Statement-Example: Catching Built-in Exceptions, Functions Can Signal Conditions with raise, Running In-Process Tests
	try/except/finally statement, Unified try/except/finally-Unified try Example, Example: Syntactic Nesting-Example: Syntactic Nesting
	try/finally statement	about, Python’s Statements, Exception Basics
	closing files and server connections, Closing Files and Server Connections
	closing files example, File Context Managers
	termination actions, Exception Roles, Termination Actions-Termination Actions, The try/finally Statement-Example: Coding Termination Actions with try/finally, What Should Be Wrapped

	-tt command-line
 flag, Avoid mixing tabs and spaces: New error checking in 3.X
	tuple built-in function, Conversions, methods, and immutability, Type Objects, Other Iteration Contexts
	tuple-unpacking assignments, Assignment Statement Forms, Tuple assignment in for loops-Tuple assignment in for loops
	tuples	about, The Grander Module Story: Attributes, Tuples-Why Tuples?, Tuples
	assignments and, On the other hand: performance, conciseness,
 expressiveness
	common operations, Tuples, Tuples in Action-Conversions, methods, and immutability
	comparison operations, Comparisons, Equality, and Truth
	concatenating, Tuples
	converting, Conversions, methods, and immutability-Conversions, methods, and immutability
	count method, Tuples, Conversions, methods, and immutability
	empty, Tuples
	exception hierarchies and, Why Exception Hierarchies?
	immutable, Tuples, Conversions, methods, and immutability-Conversions, methods, and immutability
	index method, Tuples, Conversions, methods, and immutability
	indexing, Tuples
	iteration in, Tuples
	lists versus, Why Lists and Tuples?
	literals, Python’s Core Data Types, Tuples
	named, Why Tuples?, More Dictionary Methods, Tuples, Records Revisited: Named Tuples-Records Revisited: Named Tuples
	nesting, Tuples
	quiz questions and answers, Test Your Knowledge: Quiz
	repeating, Tuples
	slicing, Tuples
	tuple keys, Using dictionaries for sparse data structures: Tuple
 keys
	type-specific methods, Conversions, methods, and immutability-Conversions, methods, and immutability

	2to3 converter, 2to3 converter
	type built-in function, How to Break Your Code’s Flexibility, Type Objects, New-Style Class Changes, Type Model Changes-Implications for type testing
	type designators, Variables, Objects, and References
	type object	classes as instances of, Classes Are Instances of type-Classes Are Instances of type
	inheritance and, Inheritance and Instance
	metaclasses as subclasses of, Metaclasses Are Subclasses of Type

	TypeError exception, Example: Catching Built-in Exceptions, To Metaclass or Not to Metaclass
	types module, Type Objects, A Recursive Reloader

U
	unbound methods, Methods Are Objects: Bound or Unbound-Other callables, Static Methods in 2.X and 3.X
	underscore (_)	class names, Name Considerations in Tool Classes
	module names, The Grander Module Story: Attributes, Minimizing from * Damage: _X and __all__
	name mangling and, Name Mangling Overview
	operator overloading, Getting Help, Classes Can Intercept Python Operators
	showing name values, Usage variation: Showing underscore name values

	Unicode character set	character code conversions, Character code conversions
	code points, Unicode Strings, Escape Sequences Represent Special Characters, Character code conversions, How Python Stores Strings in Memory
	currency symbols, Currency Symbols: Unicode in Action-Currency Symbols: Unicode in Action
	encoding and decoding, Binary Bytes Files, Unicode: The Short Story, String Basics, Coding Unicode Strings-Source File Character Set Encoding Declarations, Using Unicode Files-Stream content: PYTHONIOENCODING
	JSON format and, Storing Python Objects in JSON Format
	literals and, Unicode Strings, Unicode: The Short Story, Python 2.X Unicode literals in Python 3.3
	quiz questions and answers, Test Your Knowledge: Quiz-Test Your Knowledge: Answers
	strings and, Unicode Strings-Unicode Strings, Unicode: The Short Story, Currency Symbols: Unicode in Action-Currency Symbols: Unicode in Action, Coding Unicode Strings-Source File Character Set Encoding Declarations
	text files and, Unicode Text Files-Unicode Text Files, Unicode: The Short Story, Currency Symbols: Unicode in Action-Currency Symbols: Unicode in Action

	unicode string type	about, Unicode Strings, Unicode: The Short Story, Text and Binary Files: The Short Story, Python’s String Types-Why the different string types?
	coding strings with, Coding Unicode Strings in Python 2.X-Mixing string types in 2.X
	converting, Mixing String Types
	re module and, The re Pattern-Matching Module

	unittest module, Mixed Usage Modes: __name__ and __main__, Development Tools for Larger Projects
	Unix platform	awk utility, Generating Both Offsets and Items: enumerate
	configuring Python, Unix/Linux shell variables
	env program, The Unix env Lookup Trick
	executable scripts, Unix-Style Executable Scripts: #!-The Python 3.3 Windows Launcher: #! Comes to Windows
	frozen binaries, Frozen Binaries
	GUI support, GUIs
	icon clicks, Icon-Click Basics
	IDLE startup details, IDLE Startup Details
	installing Python, Introducing the Python Interpreter, Installation Steps
	system shell prompt, Starting an Interactive Session
	Windows launcher and, The Unix Legacy
	working directory, Where to Run: Code Directories

	Unladen Swallow project, Future Possibilities?
	unpacking arguments, Simulating Output Parameters and Multiple Results, Calls: Unpacking arguments
	user-defined classes, User-Defined Classes
	user-defined exceptions, User-Defined Exceptions, Default Printing and State, Functions Can Signal Conditions with raise
	UTF-16 encoding, How Python Stores Strings in Memory
	UTF-8 encoding, Character Encoding Schemes

V
	validating	attributes, Example: Attribute Validations-Using __getattribute__ to Validate
	function arguments, Example: Validating Function Arguments-Other Applications: Type Testing (If You Insist!)
	operator overloading methods, Should operator methods be validated?

	value equality operators, Python Expression Operators
	van Rossum, Guido, It’s Free
	varargs, Argument Matching Basics, Applying functions generically-Applying functions generically
	variables	about, Variables, Objects, and References
	assigning values to, Running Code Interactively, Sequence Operations, Variables, Objects, and References, Types Live with Objects, Not Variables
	attributes and, The Grander Module Story: Attributes
	comprehension, Other Python scopes: Preview, Scopes and Comprehension Variables
	creating, Sequence Operations, Variables, Objects, and References
	dynamic typing and, Variables, Objects, and References-Types Live with Objects, Not Variables
	exception, Other Python scopes: Preview
	expressions and, Variables, Objects, and References
	from * statement and, from * Can Obscure the Meaning of Variables
	function-related gotchas, Enclosing scopes and loop variables: Factory functions
	global, Program Design: Minimize Global Variables, Other Ways to Access Globals, Module Design Concepts
	local, Local Variables
	name collisions and, Modules and namespaces
	name rules for, Variable Name Rules-Names have no type, but objects do
	numbers in, Variables and Basic Expressions-Variables and Basic Expressions
	objects and, Variables, Objects, and References
	scope of, Python Scope Basics
	shared references and, Shared References-Shared References and Equality
	try/except statement and, Scopes and try except Variables

	version considerations for Python	about, The Python 2.X and 3.X Lines-Which Python Should I Use?
	abstract superclasses, Abstract superclasses in Python 3.X and 2.6+: Preview
	Booleans, Boolean Methods in Python 2.X
	builtins module, Other Built-in Numeric Tools, Redefining built-in names: For better or worse
	classes, The “New Style” Class Model
	comparisons and sorts, More on sorting lists, Python 2.X and 3.X mixed-type comparisons and sorts
	context managers, Multiple Context Managers in 3.1, 2.7, and Later-Multiple Context Managers in 3.1, 2.7, and Later
	dictionaries, Dictionary Changes in Python 3.X and 2.7-The has_key method is dead in 3.X: Long live in!, Python 2.X and 3.X dictionary comparisons
	division operations, Division: Classic, Floor, and True-Supporting either Python
	exception classes, Exception Objects
	expression operators, Python Expression Operators
	files, Text and Binary Files: The Short Story, Text and Binary Modes in 2.X and 3.X
	function attributes, State with Function Attributes: 3.X and 2.X-State with mutables: Obscure ghost of Pythons past?
	iteration, The Iteration Protocol: File Iterators, New Iterables in Python 3.X-Dictionary View Iterables, Iterable Objects: __iter__ and __next__
	keyword arguments, Python 3.X Keyword-Only Arguments-Why keyword-only arguments?
	map built-in function, map equivalence in Python 2.X
	metaclasses, Declaration in 3.X-Metaclass Dispatch in Both 3.X and 2.X
	next method, Iteration protocol integration
	nonlocal statement, The nonlocal Statement in 3.X-Boundary cases
	package imports, Changes in Python 3.X
	printing, The Python 3.X print Function-The 2.X print statement in action, Emulating the Python 3.X print Function-Using Keyword-Only Arguments, Using Code Two Ways
	PyDoc system, PyDoc: HTML Reports-Python 3.2 and earlier: GUI client
	raise statement, The raise Statement
	relative imports model, The relative imports solution in 3.X
	sets, Set basics in Python 2.6 and earlier-Set comprehensions in Python 3.X and 2.7
	statements, Python’s Statements
	static methods, Static Methods in 2.X and 3.X-Static Methods in 2.X and 3.X
	storing strings in memory, How Python Stores Strings in Memory
	strings, Unicode: The Short Story, Escape Sequences Represent Special Characters, The Original string Module’s Functions (Gone in 3.X)-The Original string Module’s Functions (Gone in 3.X), Comparison to the % Formatting Expression, Listing attributes per object in class trees, Unicode and Byte Strings-String Changes in 3.X, Unicode Files in 2.X
	summarized, Python Changes and This Book-Earlier and Later Python Changes
	super built-in function, Use differs in Python 2.X: Verbose calls
	threading, Program Design: Minimize Global Variables
	unbound methods, Unbound Methods Are Functions in 3.X
	wrapper classes, OOP and Delegation: “Wrapper” Proxy Objects

	view objects, Dictionary views in 3.X (and 2.7 via new methods)-Dictionary views and sets, Dictionary View Iterables-Dictionary View Iterables
	virtual attributes, Handling slots and other “virtual” attributes
 generically-Handling slots and other “virtual” attributes
 generically
	virtual concatenation, Namespace Packages in Action

W
	w file processing mode, Files, Files
	warnings module, Exceptions Aren’t Always Errors
	weak references, Dynamic Typing Is Everywhere
	weakref module, Dynamic Typing Is Everywhere
	websites, Web Resources, Future Directions
	while statement	about, Sorting Keys: for Loops, Python’s Statements, while Loops
	C language, More on the loop else
	general format, General Format
	interactive loops example, A Simple Interactive Loop
	iteration and, The Iteration Protocol: File Iterators
	quiz questions and answers, Test Your Knowledge: Quiz
	recursion versus, Loop Statements Versus Recursion
	sequence scans, Sequence Scans: while and range Versus for
	usage examples, Examples

	whitespace, String Basics
	win32all package, A Tale of Three Systems
	Windows launcher	#! comment support, The Python 3.3 Windows Launcher: #! Comes to Windows-The Python 3.3 Windows Launcher: #! Comes to Windows
	about, New Windows Options in 3.3: PATH, Launcher, Command-Line Usage Variations, Introducing the New Windows Launcher-Introducing the New Windows Launcher, Conclusions: A Net Win for Windows
	command lines, Python 3.3 Windows Launcher Command Lines
	icon clicks, Icon-Click Basics
	pitfalls, Pitfalls of the New Windows Launcher-Pitfall 3: The New PATH Extension Option
	tutorial on, A Windows Launcher Tutorial-Step 3: Using and Changing Defaults
	Unix legacy, The Unix Legacy
	Windows legacy, The Windows Legacy

	Windows platform	#! comment support, The Python 3.3 Windows Launcher: #! Comes to Windows-The Python 3.3 Windows Launcher: #! Comes to Windows
	command-line interface, Starting an Interactive Session, Command-Line Usage Variations
	common usage mistakes, Usage Notes: Command Lines and Files
	configuring Python, DOS variables (and older Windows)
	frozen binaries and, Frozen Binaries
	GUI support, GUIs
	icon clicks, Icon-Click Basics, Clicking Icons on Windows-The input Trick on Windows
	IDLE startup details, IDLE Startup Details
	installing Python, Introducing the Python Interpreter, Installation Steps, Installation Steps-Installation Steps
	new options, New Windows Options in 3.3: PATH, Launcher
	open built-in function, Files in Action
	Python documentation, The Standard Manual Set
	system shell prompt, Starting an Interactive Session
	systeminfo command, Generating Both Offsets and Items: enumerate
	win32all package, A Tale of Three Systems
	working directory, Where to Run: Code Directories

	Windows Registry Editor, Windows registry
	Wing IDE, Other IDEs
	Winpdb system, Which Option Should I Use?
	with/as statement	about, Python’s Statements, Exception Basics, with/as Context Managers-The Context Management Protocol
	closing files and server connections, Closing Files and Server Connections
	file objects and, Using Files, File Context Managers
	resetting precision, Decimal context manager
	termination actions, Exception Roles, Termination Actions, What Should Be Wrapped
	version considerations, Multiple Context Managers in 3.1, 2.7, and Later-Multiple Context Managers in 3.1, 2.7, and Later

	working directory, Where to Run: Code Directories
	wrappers (proxy classes)	about, OOP and Delegation: “Wrapper” Proxy Objects-OOP and Delegation: “Wrapper” Proxy Objects
	decorators installing, Managing Calls and Instances
	delegation and, Why the lookup change?

	writing scripts, A First Script
	wxPython GUI API, GUIs

X
	_x naming convention, Minimizing from * Damage: _X and __all__, Using __X pseudoprivate names
	XML parsing tools, XML Parsing Tools-XML Parsing Tools
	xrange built-in function, Counter Loops: range, The range Iterable

Y
	yield operator, Python Expression Operators
	yield statement	about, Python’s Statements
	coding example, Coding Alternative: __iter__ plus yield-Multiple iterators with yield
	coding functions, Coding Functions
	extended syntax, Generators Are Single-Iteration Objects
	function gotchas, Functions Without returns
	generator functions and, Generator Functions and Expressions
	iteration and, Other Built-in Type Iterables, Other Iteration Topics
	return statement versus, Generator Functions: yield Versus return-Extended generator function protocol: send versus next

Z
	ZeroDivisionError exception, Built-in Exception Classes, Built-in Exception Categories
	zip built-in function	dictionary keys and, Other Ways to Make Dictionaries, Dictionary comprehensions in 3.X and 2.7
	iteration and, Other Iteration Contexts, Other Iteration Contexts, New Iterables in Python 3.X, The map, zip, and filter Iterables, Example: Emulating zip and map with Iteration Tools-Coding your own zip(...) and map(None, ...)
	loop coding techniques and, Loop Coding Techniques, Parallel Traversals: zip and map-Dictionary construction with zip
	parallel traversals, Parallel Traversals: zip and map-Dictionary construction with zip

	.zip file extension, Import hooks and ZIP files
	ZODB object-oriented database system, Future Directions

About the Author

Mark Lutz is a leading Python trainer, the author of Python’s earliest and best-selling texts, and a pioneering figure in the Python world.

Mark is the author of the three O’Reilly books Learning Python, Programming Python, and Python Pocket Reference, all currently in fourth or fifth editions. He has been using and promoting Python since 1992, started writing Python books in 1995, and began teaching Python classes in 1997. As of Summer 2015, Mark has instructed 260 Python training sessions, taught roughly 4,000 students in live classes, and written Python books that have sold over 500,000 units and been translated to at least a dozen languages.

Together, his two decades of Python efforts have helped to establish it as one of the most widely used programming languages in the world today. In addition, Mark has been in the software field for 30 years. He holds BS and MS degrees in computer science from the University of Wisconsin where he explored implementations of the Prolog language, and over his career has worked as a professional software developer on compilers, programming tools, scripting applications, and assorted client/server systems.

Mark maintains a training website and an additional book support site on the Web.

 Colophon

 The animal on the cover of Learning Python, Fifth Edition, is a wood
 rat (Neotoma Muridae). The wood rat lives in a wide range of conditions
 (mostly rocky, scrub, and desert areas) over much of North and Central America, generally at
 some distance from humans. Wood rats are good climbers, nesting in trees or bushes up to six
 meters off the ground; some species burrow underground or in rock crevices or inhabit other
 species’ abandoned holes.

 These grayish-beige, medium-size rodents are the original pack rats: they carry anything and
 everything into their homes, whether or not it’s needed, and are especially attracted to shiny
 objects such as tin cans, glass, and silverware.

 Many of the animals on O’Reilly covers are endangered; all of them are important to the world.

 The cover image is a 19th-century engraving from Cuvier’s Animals. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

assets/lp5e_2501.png
Modules Other modules
(Python or ()

Variables
Functions
(lasses/Types

import

Other modules
(Python or ()

Variables
Functions
(lasses/Types

Methods

assets/lp5e_3201.png
Animal

Mammal

|

(at

Dog

Primate

Hacker

assets/lp5e_1504.png
[Python: module glot x

= - C' | [localhost:7464/glob.html
) Mark Lutz's Boo... [’} Home - MarkL..) Python Program... & OReilly Media -... Other bookmarks

index

Filename globbing utilicy.

‘glob(pathname)

Return a list of paths matching a pathname pattern.
The pattern may contain simple shell-style wildcards a la famatch.

iglob(pathname)

Return an iterator which yields the paths matching a pathname pactern.

The pattern may contain simple shell-style wildcards a la famatch.

assets/lp5e_ad01.png
Names

Objects

\ 4

'||.|u]
v oy

assets/lp5e_0601.png
Names References Objects

=

~

assets/cover.png
Powerful Object-Oriented Programmin,

Learning

O’REILLY" Mark Lutz

toc01.html
		Preface		This Book’s “Ecosystem”

		About This Fifth Edition

		The Python 2.X and 3.X Lines		The 2.X/3.X Story Today

		Coverage for Both 3.X and 2.X

		Which Python Should I Use?

		This Book’s Prerequisites and Effort

		This Book’s Structure

		What This Book Is Not		It’s Not a Reference or a Guide to Specific Applications

		It’s Not the Short Story for People in a Hurry

		It’s as Linear as Python Allows

		This Book’s Programs		Python Versions

		Platforms

		Fetching This Book’s Code

		Using This Book’s Code

		Font Conventions

		Book Updates and Resources

		Acknowledgments		The Backstory

		Python Thanks

		Personal Thanks

		I. Getting Started

		1. A Python Q&A Session		Why Do People Use Python?		Software Quality

		Developer Productivity

		Is Python a “Scripting Language”?

		OK, but What’s the Downside?

		Who Uses Python Today?

		What Can I Do with Python?		Systems Programming

		GUIs

		Internet Scripting

		Component Integration

		Database Programming

		Rapid Prototyping

		Numeric and Scientific Programming

		And More: Gaming, Images, Data Mining, Robots, Excel...

		How Is Python Developed and Supported?		Open Source Tradeoffs

		What Are Python’s Technical Strengths?		It’s Object-Oriented and Functional

		It’s Free

		It’s Portable

		It’s Powerful

		It’s Mixable

		It’s Relatively Easy to Use

		It’s Relatively Easy to Learn

		It’s Named After Monty Python

		How Does Python Stack Up to Language X?

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		2. How Python Runs Programs		Introducing the Python Interpreter

		Program Execution		The Programmer’s View

		Python’s View

		Execution Model Variations		Python Implementation Alternatives

		Execution Optimization Tools

		Frozen Binaries

		Future Possibilities?

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		3. How You Run Programs		The Interactive Prompt		Starting an Interactive Session

		The System Path

		New Windows Options in 3.3: PATH, Launcher

		Where to Run: Code Directories

		What Not to Type: Prompts and Comments

		Running Code Interactively

		Why the Interactive Prompt?

		Usage Notes: The Interactive Prompt

		System Command Lines and Files		A First Script

		Running Files with Command Lines

		Command-Line Usage Variations

		Usage Notes: Command Lines and Files

		Unix-Style Executable Scripts: #!		Unix Script Basics

		The Unix env Lookup Trick

		The Python 3.3 Windows Launcher: #! Comes to Windows

		Clicking File Icons		Icon-Click Basics

		Clicking Icons on Windows

		The input Trick on Windows

		Other Icon-Click Limitations

		Module Imports and Reloads		Import and Reload Basics

		The Grander Module Story: Attributes

		Usage Notes: import and reload

		Using exec to Run Module Files

		The IDLE User Interface		IDLE Startup Details

		IDLE Basic Usage

		IDLE Usability Features

		Advanced IDLE Tools

		Usage Notes: IDLE

		Other IDEs

		Other Launch Options		Embedding Calls

		Frozen Binary Executables

		Text Editor Launch Options

		Still Other Launch Options

		Future Possibilities?

		Which Option Should I Use?

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		Test Your Knowledge: Part I Exercises

		II. Types and Operations

		4. Introducing Python Object Types		The Python Conceptual Hierarchy

		Why Use Built-in Types?

		Python’s Core Data Types

		Numbers

		Strings		Sequence Operations

		Immutability

		Type-Specific Methods

		Getting Help

		Other Ways to Code Strings

		Unicode Strings

		Pattern Matching

		Lists		Sequence Operations

		Type-Specific Operations

		Bounds Checking

		Nesting

		Comprehensions

		Dictionaries		Mapping Operations

		Nesting Revisited

		Missing Keys: if Tests

		Sorting Keys: for Loops

		Iteration and Optimization

		Tuples		Why Tuples?

		Files		Binary Bytes Files

		Unicode Text Files

		Other File-Like Tools

		Other Core Types		How to Break Your Code’s Flexibility

		User-Defined Classes

		And Everything Else

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		5. Numeric Types		Numeric Type Basics		Numeric Literals

		Built-in Numeric Tools

		Python Expression Operators

		Numbers in Action		Variables and Basic Expressions

		Numeric Display Formats

		Comparisons: Normal and Chained

		Division: Classic, Floor, and True

		Integer Precision

		Complex Numbers

		Hex, Octal, Binary: Literals and Conversions

		Bitwise Operations

		Other Built-in Numeric Tools

		Other Numeric Types		Decimal Type

		Fraction Type

		Sets

		Booleans

		Numeric Extensions

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		6. The Dynamic Typing Interlude		The Case of the Missing Declaration Statements		Variables, Objects, and References

		Types Live with Objects, Not Variables

		Objects Are Garbage-Collected

		Shared References		Shared References and In-Place Changes

		Shared References and Equality

		Dynamic Typing Is Everywhere

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		7. String Fundamentals		This Chapter’s Scope		Unicode: The Short Story

		String Basics

		String Literals		Single- and Double-Quoted Strings Are the Same

		Escape Sequences Represent Special Characters

		Raw Strings Suppress Escapes

		Triple Quotes Code Multiline Block Strings

		Strings in Action		Basic Operations

		Indexing and Slicing

		String Conversion Tools

		Changing Strings I

		String Methods		Method Call Syntax

		Methods of Strings

		String Method Examples: Changing Strings II

		String Method Examples: Parsing Text

		Other Common String Methods in Action

		The Original string Module’s Functions (Gone in 3.X)

		String Formatting Expressions		Formatting Expression Basics

		Advanced Formatting Expression Syntax

		Advanced Formatting Expression Examples

		Dictionary-Based Formatting Expressions

		String Formatting Method Calls		Formatting Method Basics

		Adding Keys, Attributes, and Offsets

		Advanced Formatting Method Syntax

		Advanced Formatting Method Examples

		Comparison to the % Formatting Expression

		Why the Format Method?

		General Type Categories		Types Share Operation Sets by Categories

		Mutable Types Can Be Changed in Place

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		8. Lists and Dictionaries		Lists

		Lists in Action		Basic List Operations

		List Iteration and Comprehensions

		Indexing, Slicing, and Matrixes

		Changing Lists in Place

		Dictionaries

		Dictionaries in Action		Basic Dictionary Operations

		Changing Dictionaries in Place

		More Dictionary Methods

		Example: Movie Database

		Dictionary Usage Notes

		Other Ways to Make Dictionaries

		Dictionary Changes in Python 3.X and 2.7

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		9. Tuples, Files, and Everything Else		Tuples		Tuples in Action

		Why Lists and Tuples?

		Records Revisited: Named Tuples

		Files		Opening Files

		Using Files

		Files in Action

		Text and Binary Files: The Short Story

		Storing Python Objects in Files: Conversions

		Storing Native Python Objects: pickle

		Storing Python Objects in JSON Format

		Storing Packed Binary Data: struct

		File Context Managers

		Other File Tools

		Core Types Review and Summary		Object Flexibility

		References Versus Copies

		Comparisons, Equality, and Truth

		The Meaning of True and False in Python

		Python’s Type Hierarchies

		Type Objects

		Other Types in Python

		Built-in Type Gotchas		Assignment Creates References, Not Copies

		Repetition Adds One Level Deep

		Beware of Cyclic Data Structures

		Immutable Types Can’t Be Changed in Place

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		Test Your Knowledge: Part II Exercises

		III. Statements and Syntax

		10. Introducing Python Statements		The Python Conceptual Hierarchy Revisited

		Python’s Statements

		A Tale of Two ifs		What Python Adds

		What Python Removes

		Why Indentation Syntax?

		A Few Special Cases

		A Quick Example: Interactive Loops		A Simple Interactive Loop

		Doing Math on User Inputs

		Handling Errors by Testing Inputs

		Handling Errors with try Statements

		Nesting Code Three Levels Deep

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		11. Assignments, Expressions, and Prints		Assignment Statements		Assignment Statement Forms

		Sequence Assignments

		Extended Sequence Unpacking in Python 3.X

		Multiple-Target Assignments

		Augmented Assignments

		Variable Name Rules

		Expression Statements		Expression Statements and In-Place Changes

		Print Operations		The Python 3.X print Function

		The Python 2.X print Statement

		Print Stream Redirection

		Version-Neutral Printing

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		12. if Tests and Syntax Rules		if Statements		General Format

		Basic Examples

		Multiway Branching

		Python Syntax Revisited		Block Delimiters: Indentation Rules

		Statement Delimiters: Lines and Continuations

		A Few Special Cases

		Truth Values and Boolean Tests

		The if/else Ternary Expression

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		13. while and for Loops		while Loops		General Format

		Examples

		break, continue, pass, and the Loop else		General Loop Format

		pass

		continue

		break

		Loop else

		for Loops		General Format

		Examples

		Loop Coding Techniques		Counter Loops: range

		Sequence Scans: while and range Versus for

		Sequence Shufflers: range and len

		Nonexhaustive Traversals: range Versus Slices

		Changing Lists: range Versus Comprehensions

		Parallel Traversals: zip and map

		Generating Both Offsets and Items: enumerate

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		14. Iterations and Comprehensions		Iterations: A First Look		The Iteration Protocol: File Iterators

		Manual Iteration: iter and next

		Other Built-in Type Iterables

		List Comprehensions: A First Detailed Look		List Comprehension Basics

		Using List Comprehensions on Files

		Extended List Comprehension Syntax

		Other Iteration Contexts

		New Iterables in Python 3.X		Impacts on 2.X Code: Pros and Cons

		The range Iterable

		The map, zip, and filter Iterables

		Multiple Versus Single Pass Iterators

		Dictionary View Iterables

		Other Iteration Topics

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		15. The Documentation Interlude		Python Documentation Sources		# Comments

		The dir Function

		Docstrings: __doc__

		PyDoc: The help Function

		PyDoc: HTML Reports

		Beyond docstrings: Sphinx

		The Standard Manual Set

		Web Resources

		Published Books

		Common Coding Gotchas

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		Test Your Knowledge: Part III Exercises

		IV. Functions and Generators

		16. Function Basics		Why Use Functions?

		Coding Functions		def Statements

		def Executes at Runtime

		A First Example: Definitions and Calls		Definition

		Calls

		Polymorphism in Python

		A Second Example: Intersecting Sequences		Definition

		Calls

		Polymorphism Revisited

		Local Variables

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		17. Scopes		Python Scope Basics		Scope Details

		Name Resolution: The LEGB Rule

		Scope Example

		The Built-in Scope

		The global Statement		Program Design: Minimize Global Variables

		Program Design: Minimize Cross-File Changes

		Other Ways to Access Globals

		Scopes and Nested Functions		Nested Scope Details

		Nested Scope Examples

		Factory Functions: Closures

		Retaining Enclosing Scope State with Defaults

		The nonlocal Statement in 3.X		nonlocal Basics

		nonlocal in Action

		Why nonlocal? State Retention Options		State with nonlocal: 3.X only

		State with Globals: A Single Copy Only

		State with Classes: Explicit Attributes (Preview)

		State with Function Attributes: 3.X and 2.X

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		18. Arguments		Argument-Passing Basics		Arguments and Shared References

		Avoiding Mutable Argument Changes

		Simulating Output Parameters and Multiple Results

		Special Argument-Matching Modes		Argument Matching Basics

		Argument Matching Syntax

		The Gritty Details

		Keyword and Default Examples

		Arbitrary Arguments Examples

		Python 3.X Keyword-Only Arguments

		The min Wakeup Call!		Full Credit

		Bonus Points

		The Punch Line...

		Generalized Set Functions

		Emulating the Python 3.X print Function		Using Keyword-Only Arguments

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		19. Advanced Function Topics		Function Design Concepts

		Recursive Functions		Summation with Recursion

		Coding Alternatives

		Loop Statements Versus Recursion

		Handling Arbitrary Structures

		Function Objects: Attributes and Annotations		Indirect Function Calls: “First Class” Objects

		Function Introspection

		Function Attributes

		Function Annotations in 3.X

		Anonymous Functions: lambda		lambda Basics

		Why Use lambda?

		How (Not) to Obfuscate Your Python Code

		Scopes: lambdas Can Be Nested Too

		Functional Programming Tools		Mapping Functions over Iterables: map

		Selecting Items in Iterables: filter

		Combining Items in Iterables: reduce

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		20. Comprehensions and Generations		List Comprehensions and Functional Tools		List Comprehensions Versus map

		Adding Tests and Nested Loops: filter

		Example: List Comprehensions and Matrixes

		Don’t Abuse List Comprehensions: KISS

		Generator Functions and Expressions		Generator Functions: yield Versus return

		Generator Expressions: Iterables Meet Comprehensions

		Generator Functions Versus Generator Expressions

		Generators Are Single-Iteration Objects

		Generation in Built-in Types, Tools, and Classes

		Example: Generating Scrambled Sequences

		Don’t Abuse Generators: EIBTI

		Example: Emulating zip and map with Iteration Tools

		Comprehension Syntax Summary		Scopes and Comprehension Variables

		Comprehending Set and Dictionary Comprehensions

		Extended Comprehension Syntax for Sets and Dictionaries

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		21. The Benchmarking Interlude		Timing Iteration Alternatives		Timing Module: Homegrown

		Timing Script

		Timing Results

		Timing Module Alternatives

		Other Suggestions

		Timing Iterations and Pythons with timeit		Basic timeit Usage

		Benchmark Module and Script: timeit

		Benchmark Script Results

		More Fun with Benchmarks

		Other Benchmarking Topics: pystones

		Function Gotchas		Local Names Are Detected Statically

		Defaults and Mutable Objects

		Functions Without returns

		Miscellaneous Function Gotchas

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		Test Your Knowledge: Part IV Exercises

		V. Modules and Packages

		22. Modules: The Big Picture		Why Use Modules?

		Python Program Architecture		How to Structure a Program

		Imports and Attributes

		Standard Library Modules

		How Imports Work		1. Find It

		2. Compile It (Maybe)

		3. Run It

		Byte Code Files: __pycache__ in Python 3.2+		Byte Code File Models in Action

		The Module Search Path		Configuring the Search Path

		Search Path Variations

		The sys.path List

		Module File Selection

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		23. Module Coding Basics		Module Creation		Module Filenames

		Other Kinds of Modules

		Module Usage		The import Statement

		The from Statement

		The from * Statement

		Imports Happen Only Once

		import and from Are Assignments

		import and from Equivalence

		Potential Pitfalls of the from Statement

		Module Namespaces		Files Generate Namespaces

		Namespace Dictionaries: __dict__

		Attribute Name Qualification

		Imports Versus Scopes

		Namespace Nesting

		Reloading Modules		reload Basics

		reload Example

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		24. Module Packages		Package Import Basics		Packages and Search Path Settings

		Package __init__.py Files

		Package Import Example		from Versus import with Packages

		Why Use Package Imports?		A Tale of Three Systems

		Package Relative Imports		Changes in Python 3.X

		Relative Import Basics

		Why Relative Imports?

		The Scope of Relative Imports

		Module Lookup Rules Summary

		Relative Imports in Action

		Pitfalls of Package-Relative Imports: Mixed Use

		Python 3.3 Namespace Packages		Namespace Package Semantics

		Impacts on Regular Packages: Optional __init__.py

		Namespace Packages in Action

		Namespace Package Nesting

		Files Still Have Precedence over Directories

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		25. Advanced Module Topics		Module Design Concepts

		Data Hiding in Modules		Minimizing from * Damage: _X and __all__

		Enabling Future Language Features: __future__

		Mixed Usage Modes: __name__ and __main__		Unit Tests with __name__

		Example: Dual Mode Code		Currency Symbols: Unicode in Action

		Docstrings: Module Documentation at Work

		Changing the Module Search Path

		The as Extension for import and from

		Example: Modules Are Objects

		Importing Modules by Name String		Running Code Strings

		Direct Calls: Two Options

		Example: Transitive Module Reloads		A Recursive Reloader

		Alternative Codings

		Module Gotchas		Module Name Clashes: Package and Package-Relative Imports

		Statement Order Matters in Top-Level Code

		from Copies Names but Doesn’t Link

		from * Can Obscure the Meaning of Variables

		reload May Not Impact from Imports

		reload, from, and Interactive Testing

		Recursive from Imports May Not Work

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		Test Your Knowledge: Part V Exercises

		VI. Classes and OOP

		26. OOP: The Big Picture		Why Use Classes?

		OOP from 30,000 Feet		Attribute Inheritance Search

		Classes and Instances

		Method Calls

		Coding Class Trees

		Operator Overloading

		OOP Is About Code Reuse

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		27. Class Coding Basics		Classes Generate Multiple Instance Objects		Class Objects Provide Default Behavior

		Instance Objects Are Concrete Items

		A First Example

		Classes Are Customized by Inheritance		A Second Example

		Classes Are Attributes in Modules

		Classes Can Intercept Python Operators		A Third Example

		Why Use Operator Overloading?

		The World’s Simplest Python Class		Records Revisited: Classes Versus Dictionaries

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		28. A More Realistic Example		Step 1: Making Instances		Coding Constructors

		Testing As You Go

		Using Code Two Ways

		Step 2: Adding Behavior Methods		Coding Methods

		Step 3: Operator Overloading		Providing Print Displays

		Step 4: Customizing Behavior by Subclassing		Coding Subclasses

		Augmenting Methods: The Bad Way

		Augmenting Methods: The Good Way

		Polymorphism in Action

		Inherit, Customize, and Extend

		OOP: The Big Idea

		Step 5: Customizing Constructors, Too		OOP Is Simpler Than You May Think

		Other Ways to Combine Classes

		Step 6: Using Introspection Tools		Special Class Attributes

		A Generic Display Tool

		Instance Versus Class Attributes

		Name Considerations in Tool Classes

		Our Classes’ Final Form

		Step 7 (Final): Storing Objects in a Database		Pickles and Shelves

		Storing Objects on a Shelve Database

		Exploring Shelves Interactively

		Updating Objects on a Shelve

		Future Directions

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		29. Class Coding Details		The class Statement		General Form

		Example

		Methods		Method Example

		Calling Superclass Constructors

		Other Method Call Possibilities

		Inheritance		Attribute Tree Construction

		Specializing Inherited Methods

		Class Interface Techniques

		Abstract Superclasses

		Namespaces: The Conclusion		Simple Names: Global Unless Assigned

		Attribute Names: Object Namespaces

		The “Zen” of Namespaces: Assignments Classify Names

		Nested Classes: The LEGB Scopes Rule Revisited

		Namespace Dictionaries: Review

		Namespace Links: A Tree Climber

		Documentation Strings Revisited

		Classes Versus Modules

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		30. Operator Overloading		The Basics		Constructors and Expressions: __init__ and __sub__

		Common Operator Overloading Methods

		Indexing and Slicing: __getitem__ and __setitem__		Intercepting Slices

		Slicing and Indexing in Python 2.X

		But 3.X’s __index__ Is Not Indexing!

		Index Iteration: __getitem__

		Iterable Objects: __iter__ and __next__		User-Defined Iterables

		Multiple Iterators on One Object

		Coding Alternative: __iter__ plus yield

		Membership: __contains__, __iter__, and __getitem__

		Attribute Access: __getattr__ and __setattr__		Attribute Reference

		Attribute Assignment and Deletion

		Other Attribute Management Tools

		Emulating Privacy for Instance Attributes: Part 1

		String Representation: __repr__ and __str__		Why Two Display Methods?

		Display Usage Notes

		Right-Side and In-Place Uses: __radd__ and __iadd__		Right-Side Addition

		In-Place Addition

		Call Expressions: __call__		Function Interfaces and Callback-Based Code

		Comparisons: __lt__, __gt__, and Others		The __cmp__ Method in Python 2.X

		Boolean Tests: __bool__ and __len__		Boolean Methods in Python 2.X

		Object Destruction: __del__		Destructor Usage Notes

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		31. Designing with Classes		Python and OOP		Polymorphism Means Interfaces, Not Call Signatures

		OOP and Inheritance: “Is-a” Relationships

		OOP and Composition: “Has-a” Relationships		Stream Processors Revisited

		OOP and Delegation: “Wrapper” Proxy Objects

		Pseudoprivate Class Attributes		Name Mangling Overview

		Why Use Pseudoprivate Attributes?

		Methods Are Objects: Bound or Unbound		Unbound Methods Are Functions in 3.X

		Bound Methods and Other Callable Objects

		Classes Are Objects: Generic Object Factories		Why Factories?

		Multiple Inheritance: “Mix-in” Classes		Coding Mix-in Display Classes

		Other Design-Related Topics

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		32. Advanced Class Topics		Extending Built-in Types		Extending Types by Embedding

		Extending Types by Subclassing

		The “New Style” Class Model		Just How New Is New-Style?

		New-Style Class Changes		Attribute Fetch for Built-ins Skips Instances

		Type Model Changes

		All Classes Derive from “object”

		Diamond Inheritance Change

		More on the MRO: Method Resolution Order

		Example: Mapping Attributes to Inheritance Sources

		New-Style Class Extensions		Slots: Attribute Declarations

		Properties: Attribute Accessors

		__getattribute__ and Descriptors: Attribute Tools

		Other Class Changes and Extensions

		Static and Class Methods		Why the Special Methods?

		Static Methods in 2.X and 3.X

		Static Method Alternatives

		Using Static and Class Methods

		Counting Instances with Static Methods

		Counting Instances with Class Methods

		Decorators and Metaclasses: Part 1		Function Decorator Basics

		A First Look at User-Defined Function Decorators

		A First Look at Class Decorators and Metaclasses

		For More Details

		The super Built-in Function: For Better or Worse?		The Great super Debate

		Traditional Superclass Call Form: Portable, General

		Basic super Usage and Its Tradeoffs

		The super Upsides: Tree Changes and Dispatch

		Runtime Class Changes and super

		Cooperative Multiple Inheritance Method Dispatch

		The super Summary

		Class Gotchas		Changing Class Attributes Can Have Side Effects

		Changing Mutable Class Attributes Can Have Side Effects,
 Too

		Multiple Inheritance: Order Matters

		Scopes in Methods and Classes

		Miscellaneous Class Gotchas

		KISS Revisited: “Overwrapping-itis”

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		Test Your Knowledge: Part VI Exercises

		VII. Exceptions and Tools

		33. Exception Basics		Why Use Exceptions?		Exception Roles

		Exceptions: The Short Story		Default Exception Handler

		Catching Exceptions

		Raising Exceptions

		User-Defined Exceptions

		Termination Actions

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		34. Exception Coding Details		The try/except/else Statement		How try Statements Work

		try Statement Clauses

		The try else Clause

		Example: Default Behavior

		Example: Catching Built-in Exceptions

		The try/finally Statement		Example: Coding Termination Actions with try/finally

		Unified try/except/finally		Unified try Statement Syntax

		Combining finally and except by Nesting

		Unified try Example

		The raise Statement		Raising Exceptions

		Scopes and try except Variables

		Propagating Exceptions with raise

		Python 3.X Exception Chaining: raise from

		The assert Statement		Example: Trapping Constraints (but Not Errors!)

		with/as Context Managers		Basic Usage

		The Context Management Protocol

		Multiple Context Managers in 3.1, 2.7, and Later

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		35. Exception Objects		Exceptions: Back to the Future		String Exceptions Are Right Out!

		Class-Based Exceptions

		Coding Exceptions Classes

		Why Exception Hierarchies?

		Built-in Exception Classes		Built-in Exception Categories

		Default Printing and State

		Custom Print Displays

		Custom Data and Behavior		Providing Exception Details

		Providing Exception Methods

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		36. Designing with Exceptions		Nesting Exception Handlers		Example: Control-Flow Nesting

		Example: Syntactic Nesting

		Exception Idioms		Breaking Out of Multiple Nested Loops: “go to”

		Exceptions Aren’t Always Errors

		Functions Can Signal Conditions with raise

		Closing Files and Server Connections

		Debugging with Outer try Statements

		Running In-Process Tests

		More on sys.exc_info

		Displaying Errors and Tracebacks

		Exception Design Tips and Gotchas		What Should Be Wrapped

		Catching Too Much: Avoid Empty except and Exception

		Catching Too Little: Use Class-Based Categories

		Core Language Summary		The Python Toolset

		Development Tools for Larger Projects

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		Test Your Knowledge: Part VII Exercises

		VIII. Advanced Topics

		37. Unicode and Byte Strings		String Changes in 3.X

		String Basics		Character Encoding Schemes

		How Python Stores Strings in Memory

		Python’s String Types

		Text and Binary Files

		Coding Basic Strings		Python 3.X String Literals

		Python 2.X String Literals

		String Type Conversions

		Coding Unicode Strings		Coding ASCII Text

		Coding Non-ASCII Text

		Encoding and Decoding Non-ASCII text

		Other Encoding Schemes

		Byte String Literals: Encoded Text

		Converting Encodings

		Coding Unicode Strings in Python 2.X

		Source File Character Set Encoding Declarations

		Using 3.X bytes Objects		Method Calls

		Sequence Operations

		Other Ways to Make bytes Objects

		Mixing String Types

		Using 3.X/2.6+ bytearray Objects		bytearrays in Action

		Python 3.X String Types Summary

		Using Text and Binary Files		Text File Basics

		Text and Binary Modes in 2.X and 3.X

		Type and Content Mismatches in 3.X

		Using Unicode Files		Reading and Writing Unicode in 3.X

		Handling the BOM in 3.X

		Unicode Files in 2.X

		Unicode Filenames and Streams

		Other String Tool Changes in 3.X		The re Pattern-Matching Module

		The struct Binary Data Module

		The pickle Object Serialization Module

		XML Parsing Tools

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		38. Managed Attributes		Why Manage Attributes?		Inserting Code to Run on Attribute Access

		Properties		The Basics

		A First Example

		Computed Attributes

		Coding Properties with Decorators

		Descriptors		The Basics

		A First Example

		Computed Attributes

		Using State Information in Descriptors

		How Properties and Descriptors Relate

		__getattr__ and __getattribute__		The Basics

		A First Example

		Computed Attributes

		__getattr__ and __getattribute__ Compared

		Management Techniques Compared

		Intercepting Built-in Operation Attributes

		Example: Attribute Validations		Using Properties to Validate

		Using Descriptors to Validate

		Using __getattr__ to Validate

		Using __getattribute__ to Validate

		Chapter Summary

		Test Your Knowledge: Quiz		Test Your Knowledge: Answers

		39. Decorators		What’s a Decorator?		Managing Calls and Instances

		Managing Functions and Classes

		Using and Defining Decorators

		Why Decorators?

		The Basics		Function Decorators

		Class Decorators

		Decorator Nesting

		Decorator Arguments

		Decorators Manage Functions and Classes, Too

		Coding Function Decorators		Tracing Calls

		Decorator State Retention Options

		Class Blunders I: Decorating Methods

		Timing Calls

		Adding Decorator Arguments

		Coding Class Decorators		Singleton Classes

		Tracing Object Interfaces

		Class Blunders II: Retaining Multiple Instances

		Decorators Versus Manager Functions

		Why Decorators? (Revisited)

		Managing Functions and Classes Directly

		Example: “Private” and “Public” Attributes		Implementing Private Attributes

		Implementation Details I

		Generalizing for Public Declarations, Too

		Implementation Details II

		Open Issues

		Python Isn’t About Control

		Example: Validating Function Arguments		The Goal

		A Basic Range-Testing Decorator for Positional Arguments

		Generalizing for Keywords and Defaults, Too

		Implementation Details

		Open Issues

		Decorator Arguments Versus Function Annotations

		Other Applications: Type Testing (If You Insist!)

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		40. Metaclasses		To Metaclass or Not to Metaclass		Increasing Levels of “Magic”

		A Language of Hooks

		The Downside of “Helper” Functions

		Metaclasses Versus Class Decorators: Round 1

		The Metaclass Model		Classes Are Instances of type

		Metaclasses Are Subclasses of Type

		Class Statement Protocol

		Declaring Metaclasses		Declaration in 3.X

		Declaration in 2.X

		Metaclass Dispatch in Both 3.X and 2.X

		Coding Metaclasses		A Basic Metaclass

		Customizing Construction and Initialization

		Other Metaclass Coding Techniques

		Inheritance and Instance		Metaclass Versus Superclass

		Inheritance: The Full Story

		Metaclass Methods		Metaclass Methods Versus Class Methods

		Operator Overloading in Metaclass Methods

		Example: Adding Methods to Classes		Manual Augmentation

		Metaclass-Based Augmentation

		Metaclasses Versus Class Decorators: Round 2

		Example: Applying Decorators to Methods		Tracing with Decoration Manually

		Tracing with Metaclasses and Decorators

		Applying Any Decorator to Methods

		Metaclasses Versus Class Decorators: Round 3 (and Last)

		Chapter Summary

		Test Your Knowledge: Quiz

		Test Your Knowledge: Answers

		41. All Good Things		The Python Paradox		On “Optional” Language Features

		Against Disquieting Improvements

		Complexity Versus Power

		Simplicity Versus Elitism

		Closing Thoughts

		Where to Go From Here

		Encore: Print Your Own Completion Certificate!

		IX. Appendixes

		A. Installation and Configuration		Installing the Python Interpreter		Is Python Already Present?

		Where to Get Python

		Installation Steps

		Configuring Python		Python Environment Variables

		How to Set Configuration Options

		Python Command-Line Arguments

		Python 3.3 Windows Launcher Command Lines

		For More Help

		B. The Python 3.3 Windows Launcher		The Unix Legacy

		The Windows Legacy

		Introducing the New Windows Launcher

		A Windows Launcher Tutorial		Step 1: Using Version Directives in Files

		Step 2: Using Command-Line Version Switches

		Step 3: Using and Changing Defaults

		Pitfalls of the New Windows Launcher		Pitfall 1: Unrecognized Unix #! Lines Fail

		Pitfall 2: The Launcher Defaults to 2.X

		Pitfall 3: The New PATH Extension Option

		Conclusions: A Net Win for Windows

		C. Python Changes and This Book		Major 2.X/3.X Differences		3.X Differences

		3.X-Only Extensions

		General Remarks: 3.X Changes		Changes in Libraries and Tools

		Migrating to 3.X

		Fifth Edition Python Changes: 2.7, 3.2, 3.3		Changes in Python 2.7

		Changes in Python 3.3

		Changes in Python 3.2

		Fourth Edition Python Changes: 2.6, 3.0, 3.1		Changes in Python 3.1

		Changes in Python 3.0 and 2.6

		Specific Language Removals in 3.0

		Third Edition Python Changes: 2.3, 2.4, 2.5

		Earlier and Later Python Changes

		D. Solutions to End-of-Part Exercises		Part I, Getting Started

		Part II, Types and Operations

		Part III, Statements and Syntax

		Part IV, Functions and Generators

		Part V, Modules and Packages

		Part VI, Classes and OOP

		Part VII, Exceptions and Tools

		Index

		About the Author

assets/lp5e_0602.png
References

vy

Objects

.-

~

assets/lp5e_1201.png
Block0

Block1

Header-line:

Block1

Block0

assets/lp5e_3202.png
action —»

\ 4 \ 4 \ 4

assets/lp5e_1505.png
[Python: module doc:

= = €' | [localhost:7464/docstrings.html
[Home - Mark L. # Python Program... & O'Reilly Media -... » (3 Other bookmarks

Mark Lutz's Boo..

docstrings

Module documentation
Words Go Here

builtins object
Employee

class Employee(builins object)

class documentation

I

Data descriptors defined here:

diet
Gictionary for instance varisbles (if defined)

_weakref__
1ist of weak zeferences to the object (if defined)

square(x)
function documentation
can we nave your liver cthen?

loader_ = <importiib._bootstrap._SourceFileL oader object>
0

assets/lp5e_1502.png
[Pydoc: module pybe x
« - € [localhost:64710/pybench.html
€ Mark Lutz's Boo... & Home - MarkL.. # Python Program... & O'Reilly Media

Python 3.3.0 [3.3.0:bd8afb90ebf2, MSC v.1600 64 bit (AMD64)]
Windows-7

> (3 Other bookmarks

Module Index : Topics : Keywords

[Pydoc: module timer x
€ - C [localhost:64710/timer.html wl =

& Mark Lutz's Boo... & Home - MarkL..) Python Program... & O'Reilly Media -.. > (Other bookmarks
pybench.py: Test speed of of

code-stzing benchmazks. A Rl Python 3.3.0 [v3.3.0:bd8afb90ebf2, MSC v.1600 64 bit (AMD64)] Module Index : Topics : Keywords
This system itself runs on i o . o [=

Uses timeit to test either
calls, or a set of Pychons B
(0s.pepen) with Pychon's —m
Replaces S1istifs with o 11| Likkbial
empty scring for 2.X, =0 3.
mode only, must split mult:
argument per line so all w:
only), and replace all in

Homegrown timing tools for function calls.
Does total time, best-of time, and best-of-totals time

Caveats: command-line mode
quotes, quoted stmt string

bestof(reps, func, *pargs. **kargs)
Quickest func() among reps runs.
Returns (best time, last result)

bestoftotal(reps1, reps2, func, *pargs, **kargs)
Best of totals:
(best of repsl runs of (total of

reps2 runs of func))

timer = clock(...)

clock() -> floating point number

Return the CPU time or real time since the start of the process or since
the first call to clock(). This has as much precision as the system
records.

total(reps, func, *pargs, **kargs)

Total time to run func() reps times.
Returns (total time, last result)

assets/lp5e_2601.png
.name

assets/lp5e_0301.png
Home Share View v e

(© - 1 b » Computer » Local Disk(C) » code » v ¢ | search code
% Documents A Name Date modified Type
Music
i it . _pycache_ 10/31/2012 327 PM il folder
ictures
.) brian 10/31/2012 316 PM File
B videos .
A robin2.py 10/31/20123:15PM Python File
4 robin34 10/31/2012 3:15PM_ Python File
W Compurer A Py 1317 Pyt
- [scriptt.py 10/30/2012 336 PM_ Python File
% Local Disk (C)
B scriptipyc 10/31/2012328PM Compiled Python File

© coorive @) U3: i 10/30/20123:36 PM Python File (i le)
somegui : n File (no console)
Removable Disk (o o

- v < I—— >
7items 1item selected 211 bytes

assets/lp5e_0603.png
Names References

assets/lp5e_1401.png
[teration Tool/Context

for, comprehension, map, ...

J

Iterator Object

__next__(nextin2.X)

A

iter()

Iterable Object
_iter__
file, list, generator, ...

assets/lp5e_0902.png
Objects

assets/lp5e_2901.png
Objects Program

I Superclass | | Superclass | class S1:

| class 52:

(cass X(S1, 52):
def attr(self,...):
self.attr=V

[object =X()

object.attr?

assets/lp5e_2201.png
Top-level Modules

op
b.py >
Standard
‘ a.py library
modules
cpy >
I

assets/lp5e_2703.png
a + 3]
e

I_I_|I_I_|
[__add__(self, other)]

assets/lp5e_1701.png
Built-in (Python)
Names preassigned in the built-in names module: open, range,
SyntaxError....

Global (module)
Names assigned at the top-level of a module file, or declared
globalin a def within the file.

Enclosing function locals
Names in the local scope of any and all enclosing functions
(def or lambda), from inner to outer.

Local (function)
Names assigned in any way within a function (def
or lambda),and not declared global in that function.

assets/lp5e_1501.png
[Pydoc: Index of Mod x
“ 9 € [localhost6219 b

) Mark Lutz's Boo... [') Home - MarkL.. ® Python Program... & OReilly Media -... [} 7-Day Forecast ... » (3 Other bookmarks
Python 3.3.0 [3.3.0:bd8afb90ebf2, MSC v.1600 64 bit (AMD64)] Module Index : Topics : Kevwords -
Windows-7 [jzor J (at] [sting | (Search]

Index of Modules

Built-in Modules

json

timeseqs

dicttable myfle fimeseqs2
domparse patternparse fimeseqs2B
ctrecparse pybench fimeseqs3

xes pybench? fimeseqs_fimer)
formats sobin2 fimeseqs_fimer3
future sobin3 fimesart

il saxparse

assets/lp5e_0901.png
o M [

assets/lp5e_2702.png
is-a

Z (instance)
- data

-

Second(lass
- display

FirstClass

- setdata
- display

v,

2

assets/lp5e_1901.png
Inputs Outputs

Global variables
Files/streams

Other functions '

Return statement

Function

Mutable arguments

Global variables

e

assets/lp5e_0701.png
[start:end)
Indexes refer to places the knife “cuts.”

0 1 2

A\ A\ A\

{k
[:

Defaults are beginning of sequence and end of sequence.

assets/lp5e_0903.png
&m
[Mappings] [Sets]
A4 y

(Mutable] | Dictionary | | Set |

)
~—r’

Immutable

v v
String | List |
| Unicode (2.X) I (I;th‘/e;r;iy)

Callables

[Integers] | Float

(_ Gallables |
| Function |
Method <

| Unbound (2.X)|

I Long (2.X) Decimal |

Boolean Fraction |

Module		e
instance		code
il		Fame
[] []

UbuntuMono-BoldItalic.otf

UbuntuMono-Italic.otf

UbuntuMono-Regular.otf

css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

css_assets/beaver_epub.png

assets/lp5e_3602.png
try:
func1 ()
finally:

»def funci():

try:
func2()-
finally:

»def func2():

raise E

<«

assets/lp5e_1506.png
[Python v3.3.0 documentation
e D@

Hide Locate EBack Fomard Home

A -
Font Print _ Options

Contents | index | Search| Favorttes |

[£133.0 Documentation
[Python Module Index
&3 What's Newin Python

he Python Language Reference.

he Python Standard Library
Extending and Embedding the Python
Python/C API Reference Manual

Python Frequently Asked Questions
[E Glossary

Aboutthese documents

Reporting Bugs.

[Copyright

History and License.

Python v3.3.0 documentation

Welcome! This is the documentation for Python 3.3.0, last updated Sep 29, 2012.

Parts of the documentation:

What's new in Python 3.3?

or all "What's new" documents since 2.0

Tutorial
start here

Library Reference
keep this under your pillow

Language Reference
describes syntax and language elements

Python Setup and Usage
‘how to use Python on different platforms

Python HOWTOs
in-depth documents on specific topics

and tables:

Extending and Embedding

tutorial for C/C++ programmers

Python/C API

reference for C/C++ programmers

Installing Python Modules
i ion for ir & sys-admir

Distributing Python Modules

'sharing modules with others
FAQs
q ly asked (with]

DejaVuSans-Bold.otf

DejaVuSerif.otf

assets/lp5e_4101.png
Certificate.htm! x
C [filey///C:/code/Certificate.html Q| =
& Mark Lutz's Boo... & Home - MarkL.. ®) Python Program... @ OReilly Media -... > [Other bookmarks

Official Certificate

Date: Fri Jan 25 15:04:09 2013
This certifies that:
Bob Smith

has survived the massive tome:

m

Learning Python Sth Edition
and is now entitled to all privileges thereof, including the right to proceed on to learning how to develop

Web sites, desktop GUIS, scientific models, and assorted Apps, with the possible assistance of follow-up
applications books such as Programming Python (shameless plug intended).

--Mark Lutz, Instructor

(Note: certificate void where obtained by skipping ahead.)

SN

Book support site

UbuntuMono-Bold.otf

assets/lp5e_3601.png
try: e i-def funci(): greeeeeed - def func2():

funca () -eeefieeeeed try:
except E: func2 () -t raise E
except E:

[

assets/lp5e_2502.png
') Six: Python 2and 3 € x Y\ #) Usage Statistics for & x) [Pydoc: module form: x
€ > € [localhost:56217/formats.html N N N
& Mark Lutz's Boo... & Home - MarkL..) Python Program... & O'Reilly Media -... > [Other bookmarks

Python 3.3.0 [+3.3.0:bd8afb90ebf2, MSC v.1600 64 bit (AMD64)] Module Index : Topics : Keywords =l
Windows-7

- - - % =

File: formats.py (2.X and 3.X)
Various specialized string display formatting utilities.
Test me with canned self-test or command-line arguments.
To do: add parens for negative money, add more features.

commas(N)
Fomat positive integez-like N for display with
commas between digit groupings: "x,yyy,zzz".

‘money(N, numwidth=0, currency='5)
Format number N for display with commas, 2 decimal digits,
leading § and sign, and optional padding: "§ -XxXX,yyy.zz".
numwidth=0 for no space padding, currency='' to omit symbol,
and non-ASCIT for others (e.g., pound=u's' or u't'). L

assets/lp5e_0201.png
Maintenance
Microsoft Office
Microsoft Silverlight
Mozilla Sunbird
PlayMemories Home
Python 2.7

Python 3.1

Python 3.2

Python 33

A IDLE (Python GUD
4 Module Docs

I Python (command line)
@ Python Manuals
42 Uninstall Python
Reader for PC

Roxio Creator LU
Skype

Sony

Startup

Back

mark

Documents

Pictures

Music

Computer

Control Panel

Devices and Printers

Default Programs

Help and Support

Shutdown | |

assets/lp5e_0303.png
File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel)] on win32
"credits" or "license()" for more information.

>>> 'Spam!' * 15

' Spam! Spam! Spam! Spam! Spam! Spam! Spam! Spam! Spam! Spam! Spam! Spam! Spam! Spam! Spam! *
>>> X = 'spam’

>>> X + 'NI'

' spamNI'

>>> RESTART
>>>

win32

1267650600228229401496703205376

Span! Span! Span! Span! Span! Span! Span! Spam!

>>>

>>> import os, sys

>>> os.getcwd ()

'c:\\code "

>>> sys.platform

'win32'

>>> sys.path

['Cc:\\code', 'C:\\Python33\\Lib\\idlelib', 'C:\\WINDOWS\\SYSTEM32\\python33.zip', 'C:\\Python33\\DLLs', '

€:\\Python33\\lib', 'C:\\Python33', 'C:\\Python33\\lib\\site-packages']
>>>

>>> help (bin)

Help on built-in function bin in module builtins:

bin(...)
bin (number) -> string

Return the binary representation of an integer.

>>> import this|

Ln: 32/Col: 15,

assets/lp5e_0202.png
Source

S
m.py

Runtime

assets/lp5e_0302.png
C:\WINDOWS\py.

win32
1267650600228229401496703205376
Spam t Spamt Spam! Span t Spam t Span? Spam! Spam ¢

assets/lp5e_1503.png
Python documentation server at
http://localhost 7464/

go to selected hide resuits

assets/lp5e_1801.png

assets/lp5e_2701.png
-data

-data

is-a

is-a

FirstClass

- setdata
- display

