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Preface
If you’re standing in a bookstore looking for the short story on this
  book, try this:
	Python is a powerful multiparadigm computer
      programming language, optimized for programmer productivity, code
      readability, and software quality.

	This book provides a comprehensive and
      in-depth introduction to the Python language itself. Its goal is to help
      you master Python fundamentals before moving on to apply them in your
      work. Like all its prior editions, this book is designed to serve as a
      single, all-inclusive learning resource for all Python newcomers,
      whether they will be using Python 2.X, Python 3.X, or both.

	This edition has been brought up to date with
      Python releases 3.3 and 2.7, and has been expanded substantially to
      reflect current practice in the Python world.


This preface describes this book’s goals, scope,
  and structure in more detail. It’s optional reading, but is designed to
  provide some orientation before you get started with the book at
  large.
This Book’s “Ecosystem”
Python is a popular open source programming language used for both
    standalone programs and scripting applications in a wide variety of
    domains. It is free, portable, powerful, and is both relatively easy and
    remarkably fun to use. Programmers from every corner of the software
    industry have found Python’s focus on developer productivity and software
    quality to be a strategic advantage in projects both large and
    small.
Whether you are new to programming or are a professional developer,
    this book is designed to bring you up to speed on the Python language in
    ways that more limited approaches cannot. After reading this book, you
    should know enough about Python to apply it in whatever application
    domains you choose to explore.
By design, this book is a tutorial that emphasizes the
    core Python language itself, rather than specific
    applications of it. As such, this book is intended to serve as the first
    in a two-volume set:
	Learning
        Python, this book, teaches Python itself, focusing on language
        fundamentals that span domains.

	Programming
        Python, among others, moves on to show what you can do with
        Python after you’ve learned it.


This division of labor is deliberate. While application goals can
    vary per reader, the need for useful language fundamentals coverage does
    not. Applications-focused books such as Programming
    Python pick up where this book leaves off, using realistically
    scaled examples to explore Python’s role in common domains such as the
    Web, GUIs, systems, databases, and text. In addition, the book Python Pocket
    Reference provides reference materials not included here, and it
    is designed to supplement this book.
Because of this book’s focus on foundations, though, it is able to
    present Python language fundamentals with more depth than many programmers
    see when first learning the language. Its bottom-up approach and
    self-contained didactic examples are designed to teach readers the entire
    language one step at a time.
The core language skills you’ll gain in the process will apply to
    every Python software system you’ll encounter—be it today’s popular tools
    such as Django, NumPy, and App Engine, or others that may be a part of
    both Python’s future and your programming career.
Because it’s based upon a three-day Python training class with
    quizzes and exercises throughout, this book also serves as a self-paced
    introduction to the language. Although its format lacks the live
    interaction of a class, it compensates in the extra depth and flexibility
    that only a book can provide. Though there are many ways to use this book,
    linear readers will find it roughly equivalent to a semester-long Python
    class.

About This Fifth Edition
The prior fourth edition of this book published
    in 2009 covered Python versions 2.6 and 3.0.1 It addressed the many and sometimes incompatible changes
    introduced in the Python 3.X line in general. It also introduced a new OOP
    tutorial, and new chapters on advanced topics such as Unicode text,
    decorators, and metaclasses, derived from both the live classes I teach
    and evolution in Python “best practice.”
This fifth edition completed in 2013 is a
    revision of the prior, updated to cover both Python 3.3 and
    2.7, the current latest releases in the 3.X and 2.X lines. It
    incorporates all language changes introduced in each line since the prior
    edition was published, and has been polished throughout to update and
    sharpen its presentation. Specifically:
	Python 2.X coverage here has been updated
        to include features such as dictionary and set comprehensions that
        were formerly for 3.X only, but have been back-ported for use in
        2.7.

	Python 3.X coverage has been augmented for
        new yield and raise syntax; the __pycache__ bytecode model; 3.3 namespace
        packages; PyDoc’s all-browser mode; Unicode literal and storage
        changes; and the new Windows launcher shipped with 3.3.

	Assorted new or expanded coverage for JSON,
        timeit, PyPy, os.popen, generators, recursion, weak
        references, __mro__, __iter__, super, __slots__, metaclasses, descriptors,
        random, Sphinx, and more has been
        added, along with a general increase in 2.X compatibility in both
        examples and narrative.


This edition also adds a new conclusion as
    Chapter 41 (on Python’s evolution), two new
    appendixes (on recent Python changes and the new
    Windows launcher), and one new chapter (on
    benchmarking: an expanded version of the former code timing example). See
    Appendix C for a concise summary of
    Python changes between the prior edition and this
    one, as well as links to their coverage in the book. This appendix also
    summarizes initial differences between 2.X and 3.X in general that were
    first addressed in the prior edition, though some, such as new-style
    classes, span versions and simply become mandated in 3.X (more on what the
    X’s mean in a moment).
Per the last bullet in the preceding list, this edition has also
    experienced some growth because it gives fuller coverage to more
    advanced language features—which many of us have
    tried very hard to ignore as optional for the last decade, but which have
    now grown more common in Python code. As we’ll see, these tools make
    Python more powerful, but also raise the bar for newcomers, and may shift
    Python’s scope and definition. Because you might encounter any of these,
    this book covers them head-on, instead of pretending they do not
    exist.
Despite the updates, this edition retains most of the structure and
    content of the prior edition, and is still designed to be a comprehensive
    learning resource for both the 2.X and 3.X Python lines. While it is
    primarily focused on users of Python 3.3 and 2.7—the latest in the 3.X
    line and the likely last in the 2.X line—its historical perspective also
    makes it relevant to older Pythons that still see
    regular use today.
Though it’s impossible to predict the future, this book stresses
    fundamentals that have been valid for nearly two decades, and will likely
    apply to future Pythons too. As usual, I’ll be
    posting Python updates that impact this book at the book’s website
    described ahead. The “What’s New” documents in Python’s manuals set can
    also serve to fill in the gaps as Python surely evolves after this book is
    published.

The Python 2.X and 3.X Lines
Because it bears heavily on this book’s content, I need to say a few more
    words about the Python 2.X/3.X story up front. When the fourth
    edition of this book was written in 2009, Python had just
    become available in two flavors:
	Version 3.0 was the first in the line of an emerging and
        incompatible mutation of the language known generically as
        3.X.

	Version 2.6 retained backward compatibility with the vast body
        of existing Python code, and was the latest in the line known
        collectively as 2.X.


While 3.X was largely the same language, it ran almost no code
    written for prior releases. It:
	Imposed a Unicode model with broad consequences for strings,
        files, and libraries

	Elevated iterators and generators to a more pervasive role, as
        part of fuller functional paradigm

	Mandated new-style classes, which merge with types, but grow
        more powerful and complex

	Changed many fundamental tools and libraries, and replaced or
        removed others entirely


The mutation of print from
    statement to function alone, aesthetically sound as it may be, broke
    nearly every Python program ever written. And strategic potential aside,
    3.X’s mandatory Unicode and class models and ubiquitous generators made
    for a different programming experience.
Although many viewed Python 3.X as both an improvement and the
    future of Python, Python 2.X was still very widely used and was to be
    supported in parallel with Python 3.X for years to come. The majority of
    Python code in use was 2.X, and migration to 3.X seemed to be shaping up
    to be a slow process.
The 2.X/3.X Story Today
As this fifth edition is being written in
      2013, Python has moved on to versions 3.3 and 2.7, but this 2.X/3.X
      story is still largely unchanged. In fact, Python
      is now a dual-version world, with many users running
      both 2.X and 3.X according to their software goals
      and dependencies. And for many newcomers, the choice between 2.X and 3.X
      remains one of existing software versus the language’s cutting edge.
      Although many major Python packages have been ported to 3.X, many others
      are still 2.X-only today.
To some observers, Python 3.X is now seen as a
      sandbox for exploring new ideas, while 2.X is
      viewed as the tried-and-true Python, which doesn’t
      have all of 3.X’s features but is still more pervasive. Others still see
      Python 3.X as the future, a view that seems supported by current core
      developer plans: Python 2.7 will continue to be supported but is to be
      the last 2.X, while 3.3 is the latest in the 3.X line’s continuing
      evolution. On the other hand, initiatives such as
      PyPy—today a still 2.X-only implementation of
      Python that offers stunning performance improvements—represent a 2.X
      future, if not an outright faction.
All opinions aside, almost five years after its release, 3.X has
      yet to supersede 2.X, or even match its user base. As one metric, 2.X is
      still downloaded more often than 3.X for Windows at python.org today,
      despite the fact that this measure would be naturally skewed to
      new users and the most recent
      release. Such statistics are prone to change, of course, but after five
      years are indicative of 3.X uptake nonetheless. The existing 2.X
      software base still trumps 3.X’s language extensions for many. Moreover,
      being last in the 2.X line makes 2.7 a sort of de facto
      standard, immune to the constant pace of change in the 3.X
      line—a positive to those who seek a stable base, and a negative to those
      who seek growth and ongoing relevance.
Personally, I think today’s Python world is large enough to
      accommodate both 3.X and 2.X; they seem to satisfy
      different goals and appeal to different camps, and there is precedence
      for this in other language families (C and C++, for example, have a
      longstanding coexistence, though they may differ more than Python 2.X
      and 3.X). Moreover, because they are so similar, the skills gained by
      learning either Python line transfer almost entirely to the other,
      especially if you’re aided by dual-version resources like this book. In
      fact, as long as you understand how they diverge, it’s often possible to
      write code that runs on both.
At the same time, this split presents a substantial
      dilemma for both programmers and book authors,
      which shows no signs of abating. While it would be easier for a book to
      pretend that Python 2.X never existed and cover 3.X only, this would not
      address the needs of the large Python user base that exists today. A
      vast amount of existing code was written for Python 2.X, and it won’t be
      going away anytime soon. And while some newcomers to the language can
      and should focus on Python 3.X, anyone who must use code written in the
      past needs to keep one foot in the Python 2.X world today. Since it may
      still be years before many third-party libraries and extensions are
      ported to Python 3.X, this fork might not be entirely temporary.

Coverage for Both 3.X and 2.X
To address this dichotomy and to meet the needs of all potential
      readers, this book has been updated to cover both
      Python 3.3 and Python 2.7, and should apply to later releases in both
      the 3.X and 2.X lines. It’s intended for programmers using Python 2.X,
      programmers using Python 3.X, and programmers stuck somewhere between
      the two.
That is, you can use this book to learn
      either Python line. Although 3.X is often
      emphasized, 2.X differences and tools are also noted along the way for
      programmers using older code. While the two versions are largely
      similar, they diverge in some important ways, and I’ll point these out
      as they crop up.
For instance, I’ll use 3.X print calls in most examples, but will also
      describe the 2.X print statement so
      you can make sense of earlier code, and will often use portable printing
      techniques that run on both lines. I’ll also freely introduce new
      features, such as the nonlocal
      statement in 3.X and the string format method available as of 2.6 and 3.0, and
      will point out when such extensions are not present in older
      Pythons.
By proxy, this edition addresses other Python version 2.X and 3.X
      releases as well, though some older version 2.X code may not be able to
      run all the examples here. Although class decorators are available as of
      both Python 2.6 and 3.0, for example, you cannot use them in an older
      Python 2.X that did not yet have this feature. Again, see the change
      tables in Appendix C for summaries
      of recent 2.X and 3.X changes.

Which Python Should I Use?
Version choice may be mandated by your organization, but if you’re
      new to Python and learning on your own, you may be wondering which
      version to install. The answer here depends on your goals. Here are a
      few suggestions on the choice.
	When to choose 3.X: new features, evolution
	If you are learning Python for the first time and don’t need
            to use any existing 2.X code, I encourage you to begin with Python
            3.X. It cleans up some longstanding warts in the language and
            trims some dated cruft, while retaining all the original core
            ideas and adding some nice new tools. For example, 3.X’s seamless
            Unicode model and broader use of generators and functional
            techniques are seen by many users as assets. Many popular Python
            libraries and tools are already available for Python 3.X, or will
            be by the time you read these words, especially given the
            continual improvements in the 3.X line. All new language evolution
            occurs in 3.X only, which adds features and keeps Python relevant,
            but also makes language definition a constantly moving target—a
            tradeoff inherent on the leading edge.

	When to choose 2.X: existing code, stability
	If you’ll be using a system based on Python 2.X, the 3.X
            line may not be an option for you today. However, you’ll find that
            this book addresses your concerns, too, and will help if you
            migrate to 3.X in the future. You’ll also find that you’re in
            large company. Every group I taught in 2012 was using 2.X only,
            and I still regularly see useful Python software in 2.X-only form.
            Moreover, unlike 3.X, 2.X is no longer being changed—which is
            either an asset or liability, depending on whom you ask. There’s
            nothing wrong with using and writing 2.X code, but you may wish to
            keep tabs on 3.X and its ongoing evolution as you do. Python’s
            future remains to be written, and is largely up to its users,
            including you.

	When to choose both: version-neutral code
	Probably the best news here is that Python’s fundamentals
            are the same in both its lines—2.X and 3.X differ in ways that
            many users will find minor, and this book is designed to help you
            learn both. In fact, as long as you understand their differences,
            it’s often straightforward to write version-neutral code that runs
            on both Pythons, as we regularly will in this book. See Appendix C for pointers on 2.X/3.X
            migration and tips on writing code for both Python lines and
            audiences.


Regardless of which version or versions you choose to focus on
      first, your skills will transfer directly to wherever your Python work
      leads you.
Note
About the Xs: Throughout this book, “3.X”
        and “2.X” are used to refer collectively to all releases in these two
        lines. For instance, 3.X includes 3.0 through
        3.3, and future 3.X releases; 2.X means all from
        2.0 through 2.7 (and presumably no others). More specific releases are
        mentioned when a topic applies to it only (e.g., 2.7’s set literals
        and 3.3’s launcher and namespace packages). This notation may
        occasionally be too broad—some features labeled 2.X here may not be
        present in early 2.X releases rarely used today—but it accommodates a
        2.X line that has already spanned 13 years. The 3.X label is more
        easily and accurately applied to this younger five-year-old
        line.



This Book’s Prerequisites and Effort
It’s impossible to give absolute prerequisites for this book,
    because its utility and value can depend as much on reader motivation as
    on reader background. Both true beginners and crusty programming veterans
    have used this book successfully in the past. If you are motivated to
    learn Python, and willing to invest the time and focus it requires, this
    text will probably work for you.
Just how much time is required to learn Python? Although this will
    vary per learner, this book tends to work best when
    read. Some readers may use this book as an on-demand
    reference resource, but most people seeking Python mastery should expect
    to spend at least weeks and probably
    months going through the material here, depending on
    how closely they follow along with its examples. As mentioned, it’s
    roughly equivalent to a full-semester course on the Python language
    itself.
That’s the estimate for learning just Python itself and the software
    skills required to use it well. Though this book may suffice for basic
    scripting goals, readers hoping to pursue software development at large as
    a career should expect to devote additional time after this book to
    large-scale project experience, and possibly to follow-up texts such as
    Programming
    Python.2
That may not be welcome news to people looking for instant
    proficiency, but programming is not a trivial skill (despite what you may
    have heard!). Today’s Python, and software in general, are both
    challenging and rewarding enough to merit the effort implied by
    comprehensive books such as this. Here are a few pointers on using this
    book for readers on both sides of the experience spectrum:
	To experienced programmers
	You have an initial advantage and can move quickly through
          some earlier chapters; but you shouldn’t skip the core ideas, and
          may need to work at letting go of some baggage. In general terms,
          exposure to any programming or scripting before this book might be
          helpful because of the analogies it may provide. On the other hand,
          I’ve also found that prior programming experience can be a handicap
          due to expectations rooted in other languages (it’s far too easy to
          spot the Java or C++ programmers in classes by the first Python code
          they write!). Using Python well requires adopting its mindset. By
          focusing on key core concepts, this book is designed to help you
          learn to code Python in Python.

	To true beginners
	You can learn Python here too, as well as programming itself;
          but you may need to work a bit harder, and may wish to supplement
          this text with gentler introductions. If you don’t consider yourself
          a programmer already, you will probably find this book useful too,
          but you’ll want to be sure to proceed slowly and work through the
          examples and exercises along the way. Also keep in mind that this
          book will spend more time teaching Python itself than programming
          basics. If you find yourself lost here, I encourage you to explore
          an introduction to programming in general before tackling this book.
          Python’s website has links to many helpful resources for
          beginners.


Formally, this book is designed to serve as a first Python
    text for newcomers of all kinds. It may not be an ideal
    resource for someone who has never touched a computer before (for
    instance, we’re not going to spend any time exploring what a computer is),
    but I haven’t made many assumptions about your programming background or
    education.
On the other hand, I won’t insult readers by assuming they are
    “dummies,” either, whatever that means—it’s easy to do useful things in
    Python, and this book will show you how. The text occasionally contrasts
    Python with languages such as C, C++, Java, and others, but you can safely
    ignore these comparisons if you haven’t used such languages in the
    past.

This Book’s Structure
To help orient you, this section provides a quick rundown of the
    content and goals of the major parts of this book. If you’re anxious to
    get to it, you should feel free to skip this section (or browse the table
    of contents instead). To some readers, though, a book this large probably
    merits a brief roadmap up front.
By design, each part covers a major functional
    area of the language, and each part is composed of
    chapters focusing on a specific topic or aspect of
    the part’s area. In addition, each chapter ends with
    quizzes and their answers, and each part ends with
    larger exercises, whose solutions show up in Appendix D.
Note
Practice matters: I strongly recommend that
      readers work through the quizzes and exercises in this book, and work
      along with its examples in general if you can. In programming, there’s
      no substitute for practicing what you’ve read. Whether you do it with
      this book or a project of your own, actual coding is crucial if you want
      the ideas presented here to stick.

Overall, this book’s presentation is bottom-up
    because Python is too. The examples and topics grow more challenging as we
    move along. For instance, Python’s classes are largely just packages of
    functions that process built-in types. Once you’ve mastered built-in types
    and functions, classes become a relatively minor intellectual leap.
    Because each part builds on those preceding it this way, most readers will
    find a linear reading makes the most sense. Here’s a
    preview of the book’s main parts you’ll find along the way:
	Part I
	We begin with a general overview of Python that answers
          commonly asked initial questions—why people use the language, what
          it’s useful for, and so on. The first chapter introduces the major
          ideas underlying the technology to give you some background context.
          The rest of this part moves on to explore the ways that both Python
          and programmers run programs. The main goal here is to give you just
          enough information to be able to follow along with later examples
          and exercises.

	Part II
	Next, we begin our tour of the Python language, studying
          Python’s major built-in object types and what you can do with them
          in depth: numbers, lists, dictionaries, and so on. You can get a lot
          done with these tools alone, and they are at the heart of every
          Python script. This is the most substantial part of the book because
          we lay groundwork here for later chapters. We’ll also explore
          dynamic typing and its references—keys to using Python well—in this
          part.

	Part III
	The next part moves on to introduce Python’s
          statements—the code you type to create and
          process objects in Python. It also presents Python’s general syntax
          model. Although this part focuses on syntax, it also introduces some
          related tools (such as the PyDoc system), takes a first look at
          iteration concepts, and explores coding alternatives.

	Part IV
	This part begins our look at Python’s higher-level program
          structure tools. Functions turn out to be a
          simple way to package code for reuse and avoid code redundancy. In
          this part, we will explore Python’s scoping rules, argument-passing
          techniques, the sometimes-notorious lambda, and more. We’ll also
          revisit iterators from a functional programming perspective,
          introduce user-defined generators, and learn how to time Python code
          to measure performance here.

	Part V
	Python modules let you organize
          statements and functions into larger components, and this part
          illustrates how to create, use, and reload modules. We’ll also look
          at some more advanced topics here, such as module packages, module
          reloading, package-relative imports, 3.3’s new namespace packages,
          and the __name__ variable.

	Part VI
	Here, we explore Python’s object-oriented programming tool,
          the class—an optional but powerful way to
          structure code for customization and reuse, which almost naturally
          minimizes redundancy. As you’ll see, classes mostly reuse ideas we
          will have covered by this point in the book, and OOP in Python is
          mostly about looking up names in linked objects with a special first
          argument in functions. As you’ll also see, OOP is optional in
          Python, but most find Python’s OOP to be much simpler than others,
          and it can shave development time substantially, especially for
          long-term strategic project development.

	Part VII
	We conclude the language fundamentals coverage in this text
          with a look at Python’s exception handling model and statements,
          plus a brief overview of development tools that will become more
          useful when you start writing larger programs (debugging and testing
          tools, for instance). Although exceptions are a fairly lightweight
          tool, this part appears after the discussion of classes because
          user-defined exceptions should now all be classes. We also cover
          some more advanced topics, such as context managers, here.

	Part VIII
	In the final part, we explore some advanced topics: Unicode
          and byte strings, managed attribute tools like properties and
          descriptors, function and class decorators, and metaclasses. These
          chapters are all optional reading, because not all programmers need
          to understand the subjects they address. On the other hand, readers
          who must process internationalized text or binary data, or are
          responsible for developing APIs for other programmers to use, should
          find something of interest in this part. The examples here are also
          larger than most of those in this book, and can serve as self-study
          material.

	Part IX
	The book wraps up with a set of four appendixes that give
          platform-specific tips for installing and using Python on various
          computers; present the new Windows launcher that ships with Python
          3.3; summarize changes in Python addressed by recent editions and
          give links to their coverage here; and provide solutions to the
          end-of-part exercises. Solutions to end-of-chapter quizzes appear in
          the chapters themselves.


See the table of contents for a finer-grained look at this book’s
    components.

What This Book Is Not
Given its relatively large audience over the years, some have
    inevitably expected this book to serve a role outside its scope. So now
    that I’ve told you what this book is, I also want to be clear on what it
    isn’t:
	This book is a tutorial, not a
        reference.

	This book covers the language itself, not
        applications, standard libraries, or third-party tools.

	This book is a comprehensive look at a substantial topic,
        not a watered-down overview.


Because these points are key to this book’s content, I want to say a
    few more words about them up front.
It’s Not a Reference or a Guide to Specific Applications
This book is a language tutorial, not a
      reference, and not an applications book. This is by design:
      today’s Python—with its built-in types, generators,
      closures, comprehensions, Unicode, decorators, and blend of procedural,
      object-oriented, and functional programming paradigms—makes the core
      language a substantial topic all by itself, and a prerequisite to all
      your future Python work, in whatever domains you pursue. When you are
      ready for other resources, though, here are a few suggestions and
      reminders:
	Reference resources
	As implied by the preceding structural description, you can
            use the index and table of contents to hunt for details, but there
            are no reference appendixes in this book. If you are looking for
            Python reference resources (and most readers probably will be very
            soon in their Python careers), I suggest the previously mentioned
            book that I also wrote as a companion to this one—Python Pocket
            Reference—as well as other reference books you’ll find
            with a quick search, and the standard Python reference manuals
            maintained at http://www.python.org. The latter of these are
            free, always up to date, and available both on the Web and on your
            computer after a Windows install.

	Applications and libraries
	As also discussed earlier, this book is not a guide to
            specific applications such as the Web, GUIs,
            or systems programming. By proxy, this includes the libraries and
            tools used in applications work; although some standard
            libraries and tools are introduced here—including
            timeit, shelve, pickle, struct, json, pdb, os, urllib, re, xml, random, PyDoc and
            IDLE—they are not officially in this book’s
            primary scope. If you’re looking for more coverage on such topics
            and are already proficient with Python, I recommend the follow-up
            book Programming
            Python, among others. That book assumes this one as its
            prerequisite, though, so be sure you have a firm grasp of the core
            language first. Especially in an engineering domain like software,
            one must walk before one runs.



It’s Not the Short Story for People in a Hurry
As you can tell from its size, this book also doesn’t skimp on the
      details: it presents the full Python language, not
      a brief look at a simplified subset. Along the way it also covers
      software principles that are essential to writing
      good Python code. As mentioned, this is a multiple-week or -month book,
      designed to impart the skill level you’d acquire from a full-term class
      on Python.
This is also deliberate. Many of this book’s readers don’t need to
      acquire full-scale software development skills, of course, and some can
      absorb Python in a piecemeal fashion. At the same time, because
      any part of the language may be used in code you
      will encounter, no part is truly optional for most programmers.
      Moreover, even casual scripters and hobbyists need to know basic
      principles of software development in order to code well, and even to
      use precoded tools properly.
This book aims to address both of these needs—language
      and principles—in enough depth to be useful. In the end,
      though, you’ll find that Python’s more advanced tools, such as its
      object-oriented and functional programming support, are relatively easy
      to learn once you’ve mastered their prerequisites—and you will, if you
      work through this book one chapter at a time.

It’s as Linear as Python Allows
Speaking of reading order, this edition also
      tries hard to minimize forward references, but
      Python 3.X’s changes make this impossible in some cases (in fact, 3.X
      sometimes seems to assume you already know Python while you’re learning
      it!). As a handful of representative examples:
	Printing, sorts, the string format method, and some dict calls rely on function
          keyword arguments.

	Dictionary key lists and tests, and the list calls used around many tools, imply
          iteration concepts.

	Using exec to run code now
          assumes knowledge of file objects and
          interfaces.

	Coding new exceptions requires
          classes and OOP fundamentals.

	And so on—even basic inheritance broaches
          advanced topics such as metaclasses and
          descriptors.


Python is still best learned as a progression from simple to
      advanced, and a linear reading here still makes the
      most sense. Still, some topics may require nonlinear jumps and random
      lookups. To minimize these, this book will point out forward
      dependencies when they occur, and will ease their impacts as much as
      possible.
Note
But if your time is tight: Though depth is
        crucial to mastering Python, some readers may have limited time. If
        you are interested in starting out with a quick Python
        tour, I suggest Chapter 1,
        Chapter 4, Chapter 10, and Chapter 28 (and perhaps 26)—a short survey
        that will hopefully pique your interest in the more complete story
        told in the rest of the book, and which most readers will need in
        today’s Python software world. In general, this book is intentionally
        layered this way to make its material easier to
        absorb—with introductions followed by details, so you can start with
        overviews, and dig deeper over time. You don’t need to read this book
        all at once, but its gradual approach is designed to help you tackle
        its material eventually.



This Book’s Programs
In general, this book has always strived to be agnostic about both
    Python versions and platforms. It’s designed to be useful to all Python
    users. Nevertheless, because Python changes over time and platforms tend
    to differ in pragmatic ways, I need to describe the specific systems
    you’ll see in action in most examples here.
Python Versions
This fifth edition of this book, and all the program examples in
      it, are based on Python versions 3.3 and 2.7. In
      addition, many of its examples run under prior 3.X and 2.X releases, and
      notes about the history of language changes in earlier versions are
      mixed in along the way for users of older Pythons.
Because this text focuses on the core language, however, you can
      be fairly sure that most of what it has to say won’t change very much in
      future releases of Python, as noted earlier. Most
      of this book applies to earlier Python versions,
      too, except when it does not; naturally, if you try using extensions
      added after a release you’re using, all bets are off. As a rule of
      thumb, the latest Python is the best Python if you are able to
      upgrade.
Because this book focuses on the core language, most of it also
      applies to both Jython and
      IronPython, the Java- and .NET-based Python
      language implementations, as well as other Python implementations such
      as Stackless and PyPy
      (described in Chapter 2). Such
      alternatives differ mostly in usage details, not language.

Platforms
The examples in this book were run on a Windows 7 and
      8 ultrabook,3 though Python’s portability makes this mostly a moot
      point, especially in this fundamentals-focused book. You’ll notice a few
      Windows-isms—including command-line prompts, a handful of screenshots,
      install pointers, and an appendix on the new Windows launcher in 3.3—but
      this reflects the fact that most Python newcomers will probably get
      started on this platform, and these can be safely ignored by users of
      other operating systems.
I also give a few launching details for other platforms like
      Linux, such as “#!” line use, but as we’ll see in Chapter 3 and Appendix B, the 3.3 Windows launcher
      makes even this a more portable technique.

Fetching This Book’s Code
Source code for the book’s examples, as well as exercise
      solutions, can be fetched as a zip file from the book’s website at the
      following address:
	http://oreil.ly/LearningPython-5E

This site includes both all the code in this book as well as
      package usage instructions, so I’ll defer to it for more details. Of
      course, the examples work best in the context of their appearance in
      this book, and you’ll need some background knowledge on running Python
      programs in general to make use of them. We’ll study startup details in
      Chapter 3, so please stay tuned for
      information on this front.

Using This Book’s Code
The code in my Python books is designed to teach, and I’m glad
      when it assists readers in that capacity. O’Reilly itself has an
      official policy regarding reusing the book’s examples in general, which
      I’ve pasted into the rest of this section for reference:
This book is here to help you get your job done. In general, you
        may use the code in this book in your programs and documentation. You
        do not need to contact us for permission unless you’re reproducing a
        significant portion of the code. For example, writing a program that
        uses several chunks of code from this book does not require
        permission. Selling or distributing a CD-ROM of examples from O’Reilly
        books does require permission. Answering a
        question by citing this book and quoting example code does not require
        permission. Incorporating a significant amount of example code from
        this book into your product’s documentation does
        require permission.
We appreciate, but do not require, attribution. An attribution
        usually includes the title, author, publisher, and ISBN. For example:
        “Learning Python, Fifth Edition, by Mark Lutz.
        Copyright 2013 Mark Lutz, 978-1-4493-5573-9.”
If you feel your use of code examples falls outside fair use or
        the permission given above, feel free to contact us at
        permissions@oreilly.com.



Font Conventions
This book’s mechanics will make more sense once you start reading
    it, of course, but as a reference, this book uses the following
    typographical conventions:
	Italic
	Used for email addresses, URLs, filenames, pathnames, and
          emphasizing new terms when they are first introduced

	Constant width
	Used for program code, the contents of files and the output
          from commands, and to designate modules, methods, statements, and
          system commands

	Constant width
        bold
	Used in code sections to show commands or text that would be
          typed by the user, and, occasionally, to highlight portions of
          code

	Constant width italic
	Used for replaceables and some comments in code
          sections


Note
Indicates a tip, suggestion, or general note relating to the
      nearby text.

Warning
Indicates a warning or caution relating to the nearby text.

You’ll also find occasional sidebars (delimited
    by boxes) and footnotes (at page end) throughout,
    which are often optional reading, but provide additional context on the
    topics being presented. The application sidebars, such as “Why You Will Care: Slices”, often give
    example use cases for the subjects being explored.

Book Updates and Resources
Improvements happen (and so do mis^H^H^H typos). Updates, supplements, and
    corrections (a.k.a. errata) for this book will be
    maintained on the Web, and may be suggested at either the publisher’s
    website or by email. Here are the main coordinates:
	Publisher’s site: http://oreil.ly/LearningPython-5E
	This site will maintain this edition’s official list of book
          errata, and chronicle specific patches applied
          to the text in reprints. It’s also the official site for the book’s
          examples as described earlier.

	Author’s site: http://learning-python.com/books/about-lp5e.html
	This site will be used to post more general
          updates related to this text or Python itself—a hedge
          against future changes, which should be considered a sort of virtual
          appendix to this book.


My publisher also has an email address for comments and technical
    questions about this book:
	bookquestions@oreilly.com

For more information about my publisher’s books, conferences,
    Resource Centers, and the O’Reilly Network, see its general
    website:
	http://www.oreilly.com

For more on my books, see my own book support site:
	http://learning-python.com/books

Also be sure to search the Web if any of the preceding links become
    invalid over time; if I could become more clairvoyant, I would, but the
    Web changes faster than published books.
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1 And 2007’s short-lived third edition covered Python 2.5, and its
        simpler—and shorter—single-line Python world. See
        http://learning-python.com/books for more on this book’s
        history. Over the years, this book has grown in size and complexity in
        direct proportion to Python’s own growth. Per Appendix C, Python 3.0 alone introduced
        27 additions and 57 changes in the language that found their way into
        this book, and Python 3.3 continues this trend. Today’s Python
        programmer faces two incompatible lines, three major paradigms, a
        plethora of advanced tools, and a blizzard of feature redundancy—most
        of which do not divide neatly between the 2.X and 3.X lines. That’s
        not as daunting as it may sound (many tools are variations on a
        theme), but all are fair game in an inclusive, comprehensive Python
        text.
2 The standard disclaimer: I wrote this and another book mentioned
        earlier, which work together as a set: Learning
        Python for language fundamentals, Programming
        Python for applications basics, and Python Pocket
        Reference as a companion to the other two. All three derive
        from 1995’s original and broad Programming
        Python. I encourage you to explore the many Python books
        available today (I stopped counting at 200 at Amazon.com just now
        because there was no end in sight, and this didn’t include related
        subjects like Django). My own publisher has recently produced
        Python-focused books on instrumentation, data mining, App Engine,
        numeric analysis, natural language processing, MongoDB, AWS, and
        more—specific domains you may wish to explore once you’ve mastered
        Python language fundamentals here. The Python story today is far too
        rich for any one book to address alone.
3 Mostly under Windows 7, but it’s irrelevant to this book. At
          this writing, Python installs on Windows 8 and runs in its desktop
          mode, which is essentially the same as Windows 7 without a Start
          button as I write this (you may need to create shortcuts for former
          Start button menu items). Support for WinRT/Metro “apps” is still
          pending. See Appendix A for
          more details. Frankly, the future of Windows 8 is unclear as I type
          these words, so this book will be as version-neutral as
          possible.








Part I. Getting Started








Chapter 1. A Python Q&A Session
If you’ve bought this book, you may already know what Python is and
  why it’s an important tool to learn. If you don’t, you probably won’t be
  sold on Python until you’ve learned the language by reading the rest of this
  book and have done a project or two. But before we jump into details, this
  first chapter of this book will briefly introduce some of the main reasons
  behind Python’s popularity. To begin sculpting a definition of Python, this
  chapter takes the form of a question-and-answer session, which poses some of
  the most common questions asked by beginners.
Why Do People Use Python?
Because there are many programming languages available today, this is the
    usual first question of newcomers. Given that there are roughly 1 million
    Python users out there at the moment, there really is no way to answer
    this question with complete accuracy; the choice of development tools is
    sometimes based on unique constraints or personal preference.
But after teaching Python to roughly 260 groups and over 4,000
    students during the last 16 years, I have seen some common themes emerge.
    The primary factors cited by Python users seem to be these:
	Software quality
	For many, Python’s focus on readability, coherence, and
          software quality in general sets it apart from other tools in the
          scripting world. Python code is designed to be
          readable, and hence reusable and
          maintainable—much more so than traditional scripting languages. The
          uniformity of Python code makes it easy to understand, even if you
          did not write it. In addition, Python has deep support for more
          advanced software reuse mechanisms, such as
          object-oriented (OO) and functional programming.

	Developer productivity
	Python boosts developer productivity many times beyond
          compiled or statically typed languages such as C, C++, and Java.
          Python code is typically one-third to one-fifth
          the size of equivalent C++ or Java code. That means there is less to
          type, less to debug, and less to maintain after the fact. Python
          programs also run immediately, without the lengthy compile and link
          steps required by some other tools, further boosting programmer
          speed.

	Program portability
	Most Python programs run unchanged on all major
          computer platforms. Porting Python code between Linux and
          Windows, for example, is usually just a matter of copying a script’s
          code between machines. Moreover, Python offers multiple options for
          coding portable graphical user interfaces, database access programs,
          web-based systems, and more. Even operating system interfaces,
          including program launches and directory processing, are as portable
          in Python as they can possibly be.

	Support libraries
	Python comes with a large collection of prebuilt and portable
          functionality, known as the standard library. This
          library supports an array of application-level programming tasks,
          from text pattern matching to network scripting. In addition, Python
          can be extended with both homegrown libraries and a vast collection
          of third-party application support software. Python’s
          third-party domain offers tools for website
          construction, numeric programming, serial port access, game
          development, and much more (see ahead for a sampling). The
          NumPy extension, for instance, has been described as a
          free and more powerful equivalent to the Matlab numeric programming system.

	Component integration
	Python scripts can easily communicate with other parts of an
          application, using a variety of integration mechanisms. Such
          integrations allow Python to be used as a product
          customization and extension tool. Today, Python
          code can invoke C and C++ libraries, can be called from C and C++
          programs, can integrate with Java and .NET components, can
          communicate over frameworks such as COM and Silverlight, can
          interface with devices over serial ports, and can interact over
          networks with interfaces like SOAP, XML-RPC, and CORBA. It is not a
          standalone tool.

	Enjoyment
	Because of Python’s ease of use and built-in toolset, it can
          make the act of programming more pleasure than
          chore. Although this may be an intangible benefit, its
          effect on productivity is an important asset.


Of these factors, the first two (quality and productivity) are
    probably the most compelling benefits to most Python users, and merit a
    fuller description.
Software Quality
By design, Python implements a deliberately simple and readable
      syntax and a highly coherent programming model. As a slogan at a past
      Python conference attests, the net result is that Python seems to “fit
      your brain”—that is, features of the language interact in consistent and
      limited ways and follow naturally from a small set of core concepts.
      This makes the language easier to learn, understand, and remember. In
      practice, Python programmers do not need to constantly refer to manuals
      when reading or writing code; it’s a consistently designed system that
      many find yields surprisingly uniform code.
By philosophy, Python adopts a somewhat minimalist approach. This
      means that although there are usually multiple ways to accomplish a
      coding task, there is usually just one obvious way, a few less obvious
      alternatives, and a small set of coherent interactions everywhere in the
      language. Moreover, Python doesn’t make arbitrary decisions for you;
      when interactions are ambiguous, explicit intervention is preferred over
      “magic.” In the Python way of thinking, explicit is better than
      implicit, and simple is better than complex.1
Beyond such design themes, Python includes tools such as modules
      and OOP that naturally promote code reusability. And because Python is
      focused on quality, so too, naturally, are Python programmers.

Developer Productivity
During the great Internet boom of the mid-to-late 1990s, it was
      difficult to find enough programmers to implement software projects;
      developers were asked to implement systems as fast as the Internet
      evolved. In later eras of layoffs and economic recession, the picture
      shifted. Programming staffs were often asked to accomplish the same
      tasks with even fewer people.
In both of these scenarios, Python has shined as a tool that
      allows programmers to get more done with less effort. It is deliberately
      optimized for speed of development—its simple
      syntax, dynamic typing, lack of compile steps, and built-in toolset
      allow programmers to develop programs in a fraction of the time needed
      when using some other tools. The net effect is that Python typically
      boosts developer productivity many times beyond the levels supported by
      traditional languages. That’s good news in both boom and bust times, and
      everywhere the software industry goes in between.


Is Python a “Scripting Language”?
Python is a general-purpose programming language that is often applied in scripting
    roles. It is commonly defined as an object-oriented scripting
    language—a definition that blends support for OOP with an
    overall orientation toward scripting roles. If pressed for a one-liner,
    I’d say that Python is probably better known as a
    general-purpose programming language that blends procedural,
    functional, and object-oriented paradigms—a statement that
    captures the richness and scope of today’s Python.
Still, the term “scripting” seems to have stuck to Python like glue,
    perhaps as a contrast with larger programming effort required by some
    other tools. For example, people often use the word “script” instead of
    “program” to describe a Python code file. In keeping with this tradition,
    this book uses the terms “script” and “program” interchangeably, with a
    slight preference for “script” to describe a simpler top-level file and
    “program” to refer to a more sophisticated multifile application.
Because the term “scripting language” has so many different meanings
    to different observers, though, some would prefer that it not be applied
    to Python at all. In fact, people tend to make three very different
    associations, some of which are more useful than others, when they hear
    Python labeled as such:
	Shell tools
	Sometimes when people hear Python described as a scripting
          language, they think it means that Python is a tool for coding
          operating-system-oriented scripts. Such programs are often launched
          from console command lines and perform tasks such as processing text
          files and launching other programs.
Python programs can and do serve such roles, but this is just
          one of dozens of common Python application domains. It is not just a
          better shell-script language.

	Control language
	To others, scripting refers to a “glue” layer used to control and
          direct (i.e., script) other application components. Python programs
          are indeed often deployed in the context of larger applications. For
          instance, to test hardware devices, Python programs may call out to
          components that give low-level access to a device. Similarly,
          programs may run bits of Python code at strategic points to support
          end-user product customization without the need to ship and
          recompile the entire system’s source code.
Python’s simplicity makes it a naturally flexible control
          tool. Technically, though, this is also just a common Python role;
          many (perhaps most) Python programmers code standalone scripts
          without ever using or knowing about any integrated components. It is
          not just a control language.

	Ease of use
	Probably the best way to think of the term “scripting
          language” is that it refers to a simple language used for quickly
          coding tasks. This is especially true when the term is applied to
          Python, which allows much faster program development than compiled
          languages like C++. Its rapid development cycle fosters an exploratory,
          incremental mode of programming that has to be experienced to be
          appreciated.
Don’t be fooled, though—Python is not just for simple tasks.
          Rather, it makes tasks simple by its ease of use and flexibility.
          Python has a simple feature set, but it allows programs to scale up
          in sophistication as needed. Because of that, it is commonly used
          for quick tactical tasks and longer-term strategic
          development.


So, is Python a scripting language or not? It depends on whom you
    ask. In general, the term “scripting” is probably best used to describe
    the rapid and flexible mode of development that Python supports, rather
    than a particular application domain.

OK, but What’s the Downside?
After using it for 21 years, writing about it for 18, and teaching it for 16, I’ve found
    that the only significant universal downside to Python is that, as
    currently implemented, its execution speed may not
    always be as fast as that of fully compiled and lower-level languages such
    as C and C++. Though relatively rare today, for some tasks you may still
    occasionally need to get “closer to the iron” by using lower-level
    languages such as these that are more directly mapped to the underlying
    hardware architecture.
We’ll talk about implementation concepts in detail later in this
    book. In short, the standard implementations of Python today compile
    (i.e., translate) source code statements to an intermediate format known
    as byte code and then interpret the byte code. Byte
    code provides portability, as it is a platform-independent format.
    However, because Python is not normally compiled all the way down to
    binary machine code (e.g., instructions for an Intel chip), some programs
    will run more slowly in Python than in a fully compiled language like C.
    The PyPy system discussed in the next
    chapter can achieve a 10X to 100X speedup on some code by compiling
    further as your program runs, but it’s a separate, alternative
    implementation.
Whether you will ever care about the execution
    speed difference depends on what kinds of programs you write. Python has
    been optimized numerous times, and Python code runs fast enough by itself
    in most application domains. Furthermore, whenever you do something “real”
    in a Python script, like processing a file or constructing a graphical
    user interface (GUI), your program will actually run at C speed, since
    such tasks are immediately dispatched to compiled C code inside the Python
    interpreter. More fundamentally, Python’s speed-of-development gain is
    often far more important than any speed-of-execution loss, especially
    given modern computer speeds.
Even at today’s CPU speeds, though, there still are some domains
    that do require optimal execution speeds. Numeric programming and
    animation, for example, often need at least their core number-crunching
    components to run at C speed (or better). If you work in such a domain,
    you can still use Python—simply split off the parts of the application
    that require optimal speed into compiled extensions, and link
    those into your system for use in Python scripts.
We won’t talk about extensions much in this text, but this is really
    just an instance of the Python-as-control-language role we discussed earlier. A
    prime example of this dual language strategy is the NumPy numeric programming extension
    for Python; by combining compiled and optimized numeric extension
    libraries with the Python language, NumPy turns Python into a numeric
    programming tool that is simultaneously efficient and easy to use. When
    needed, such extensions provide a powerful optimization tool.
Other Python Tradeoffs: The Intangible Bits
I mentioned that execution speed is the only major downside to Python.
      That’s indeed the case for most Python users, and especially for
      newcomers. Most people find Python to be easy to learn and fun to use,
      especially when compared with its contemporaries like Java, C#, and C++.
      In the interest of full disclosure, though, I should also note up front
      some more abstract tradeoffs I’ve observed in my two decades in the
      Python world—both as an educator and developer.
As an educator, I’ve sometimes found the
      rate of change in Python and its libraries to be a
      negative, and have on occasion lamented its growth
      over the years. This is partly because trainers and book authors live on
      the front lines of such things—it’s been my job to teach the language
      despite its constant change, a task at times akin to chronicling the
      herding of cats! Still, it’s a broadly shared concern. As we’ll see in
      this book, Python’s original “keep it simple” motif is today often
      subsumed by a trend toward more sophisticated solutions at the expense
      of the learning curve of newcomers. This book’s size is indirect
      evidence of this trend.
On the other hand, by most measures Python is still much simpler
      than its alternatives, and perhaps only as complex as it needs to be
      given the many roles it serves today. Its overall coherence and open
      nature remain compelling features to most. Moreover, not everyone needs
      to stay up to date with the cutting edge—as Python 2.X’s ongoing
      popularity clearly shows.
As a developer, I also at times question the
      tradeoffs inherent in Python’s “batteries included”
      approach to development. Its emphasis on prebuilt tools can
      add dependencies (what if a battery you use is changed, broken, or
      deprecated?), and encourage special-case solutions over general
      principles that may serve users better in the long run (how can you
      evaluate or use a tool well if you don’t understand its purpose?). We’ll
      see examples of both of these concerns in this book.
For typical users, and especially for hobbyists and beginners,
      Python’s toolset approach is a major asset. But you shouldn’t be
      surprised when you outgrow precoded tools, and can benefit from the
      sorts of skills this book aims to impart. Or, to paraphrase a proverb:
      give people a tool, and they’ll code for a day; teach them how to build
      tools, and they’ll code for a lifetime. This book’s job is more the
      latter than the former.
As mentioned elsewhere in this chapter, both Python and its
      toolbox model are also susceptible to downsides common to open
      source projects in general—the potential triumph of the
      personal preference of the few over common usage of
      the many, and the occasional appearance of anarchy
      and even elitism—though these tend to be most
      grievous on the leading edge of new releases.
We’ll return to some of these tradeoffs at the end of the book,
      after you’ve learned Python well enough to draw your own conclusions. As
      an open source system, what Python “is” is up to its users to define. In
      the end, Python is more popular today than ever, and its growth shows no
      signs of abating. To some, that may be a more telling metric than
      individual opinions, both pro and con.


Who Uses Python Today?
At this writing, the best estimate anyone can seem to make of the size of the
    Python user base is that there are roughly 1 million Python users around
    the world today (plus or minus a few). This estimate is based on various
    statistics, like download rates, web statistics, and developer surveys.
    Because Python is open source, a more exact count is difficult—there are
    no license registrations to tally. Moreover, Python is automatically
    included with Linux distributions, Macintosh computers, and a wide range
    of products and hardware, further clouding the user-base picture.
In general, though, Python enjoys a large user base and a very
    active developer community. It is generally considered to be in
    the top 5 or top 10 most widely used programming
    languages in the world today (its exact ranking varies per source and
    date). Because Python has been around for over two
    decades and has been widely used, it is also very stable and
    robust.
Besides being leveraged by individual users, Python is also being
    applied in real revenue-generating products by real companies. For
    instance, among the generally known Python user base:
	Google makes extensive use of Python in its
        web search systems.

	The popular YouTube video sharing service
        is largely written in Python.

	The Dropbox storage service codes both its
        server and desktop client software primarily in Python.

	The Raspberry Pi single-board computer
        promotes Python as its educational language.

	EVE Online, a massively multiplayer online
        game (MMOG) by CCP Games, uses Python broadly.

	The widespread BitTorrent peer-to-peer file
        sharing system began its life as a Python program.

	Industrial Light & Magic,
        Pixar, and others use Python in the production of
        animated movies.

	ESRI uses Python as an end-user
        customization tool for its popular GIS mapping products.

	Google’s App Engine web development
        framework uses Python as an application language.

	The IronPort email server product uses more
        than 1 million lines of Python code to do its job.

	Maya, a powerful integrated 3D modeling and
        animation system, provides a Python scripting API.

	The NSA uses Python for cryptography and
        intelligence analysis.

	iRobot uses Python to develop commercial
        and military robotic devices.

	The Civilization IV game’s customizable
        scripted events are written entirely in Python.

	The One Laptop Per Child (OLPC) project
        built its user interface and activity model in Python.

	Netflix and Yelp have
        both documented the role of Python in their software
        infrastructures.

	Intel, Cisco,
        Hewlett-Packard, Seagate,
        Qualcomm, and IBM use Python
        for hardware testing.

	JPMorgan Chase, UBS,
        Getco, and Citadel apply
        Python to financial market forecasting.

	NASA, Los Alamos,
        Fermilab, JPL, and others
        use Python for scientific programming tasks.


And so on—though this list is representative, a full accounting is
    beyond this book’s scope, and is almost guaranteed to change over time.
    For an up-to-date sampling of additional Python users, applications, and
    software, try the following pages currently at Python’s site and
    Wikipedia, as well as a search in your favorite web browser:
	Success stories: http://www.python.org/about/success

	Application domains: http://www.python.org/about/apps

	User quotes: http://www.python.org/about/quotes

	Wikipedia page: http://en.wikipedia.org/wiki/List_of_Python_software


Probably the only common thread among the companies using Python
    today is that Python is used all over the map, in terms of application
    domains. Its general-purpose nature makes it applicable to almost all
    fields, not just one. In fact, it’s safe to say that virtually every
    substantial organization writing software is using Python, whether for
    short-term tactical tasks, such as testing and administration, or for
    long-term strategic product development. Python has proven to work well in
    both modes.

What Can I Do with Python?
In addition to being a well-designed programming language, Python is useful
    for accomplishing real-world tasks—the sorts of things developers do day
    in and day out. It’s commonly used in a variety of domains, as a tool for
    scripting other components and implementing standalone programs. In fact,
    as a general-purpose language, Python’s roles are virtually unlimited: you
    can use it for everything from website development and gaming to robotics
    and spacecraft control.
However, the most common Python roles currently seem to fall into a
    few broad categories. The next few sections describe some of Python’s most
    common applications today, as well as tools used in each domain. We won’t be able to explore the
    tools mentioned here in any depth—if you are interested in any of these
    topics, see the Python website or other resources for more details.
Systems Programming
Python’s built-in interfaces to operating-system services make it ideal for
      writing portable, maintainable system-administration tools and utilities
      (sometimes called shell tools). Python programs
      can search files and directory trees, launch other programs, do parallel
      processing with processes and threads, and so on.
Python’s standard library comes with POSIX bindings and support
      for all the usual OS tools: environment variables, files, sockets,
      pipes, processes, multiple threads, regular expression pattern matching,
      command-line arguments, standard stream interfaces, shell-command
      launchers, filename expansion, zip file utilities, XML and JSON parsers,
      CSV file handlers, and more. In addition, the bulk of Python’s system
      interfaces are designed to be portable; for example, a script that
      copies directory trees typically runs unchanged on all major Python
      platforms. The Stackless Python implementation,
      described in Chapter 2 and used by
      EVE Online, also offers advanced solutions to
      multiprocessing requirements.

GUIs
Python’s simplicity and rapid turnaround also make it a good match for graphical
      user interface programming on the desktop. Python comes with a standard
      object-oriented interface to the Tk GUI API called tkinter
      (Tkinter in 2.X) that allows Python programs to
      implement portable GUIs with a native look and feel. Python/tkinter GUIs
      run unchanged on Microsoft Windows, X Windows (on Unix and Linux), and the
      Mac OS (both Classic and OS X). A free extension package, PMW, adds advanced
      widgets to the tkinter toolkit. In addition, the wxPython GUI API, based on a C++
      library, offers an alternative toolkit for constructing portable GUIs in
      Python.
Higher-level toolkits such as Dabo are built
      on top of base APIs such as wxPython and tkinter. With the proper
      library, you can also use GUI support in other toolkits in Python, such
      as Qt with PyQt, GTK with
      PyGTK, MFC with PyWin32, .NET
      with IronPython, and Swing with Jython (the Java
      version of Python, described in Chapter 2) or JPype. For applications that
      run in web browsers or have simple interface requirements, both Jython
      and Python web frameworks and server-side CGI scripts, described in the
      next section, provide additional user interface options.

Internet Scripting
Python comes with standard Internet modules that allow Python programs to
      perform a wide variety of networking tasks, in client and server modes.
      Scripts can communicate over sockets; extract form information sent to
      server-side CGI scripts; transfer files by FTP; parse and generate XML
      and JSON documents; send, receive, compose, and parse email; fetch web
      pages by URLs; parse the HTML of fetched web pages; communicate over
      XML-RPC, SOAP, and Telnet; and more. Python’s libraries make these tasks
      remarkably simple.
In addition, a large collection of third-party tools are available
      on the Web for doing Internet programming in Python. For instance, the
      HTMLGen system generates HTML files from Python
      class-based descriptions, the mod_python package runs Python
      efficiently within the Apache web server and supports server-side
      templating with its Python Server Pages, and the Jython system provides
      for seamless Python/Java integration and supports coding of server-side
      applets that run on clients.
In addition, full-blown web development framework packages for
      Python, such as Django,
      TurboGears, web2py,
      Pylons, Zope, and
      WebWare, support quick construction of
      full-featured and production-quality websites with Python. Many of these
      include features such as object-relational mappers, a
      Model/View/Controller architecture, server-side scripting and
      templating, and AJAX support, to provide complete and enterprise-level
      web development solutions.
More recently, Python has expanded into rich Internet applications (RIAs), with tools such as
      Silverlight in IronPython, and
      pyjs (a.k.a. pyjamas) and its
      Python-to-JavaScript compiler, AJAX framework, and widget set. Python
      also has moved into cloud computing, with App
      Engine, and others described in the database section ahead.
      Where the Web leads, Python quickly follows.

Component Integration
We discussed the component integration role earlier when describing Python
      as a control language. Python’s ability to be extended by and embedded
      in C and C++ systems makes it useful as a flexible glue language for
      scripting the behavior of other systems and components. For instance,
      integrating a C library into Python enables Python to test and launch
      the library’s components, and embedding Python in a product enables
      onsite customizations to be coded without having to recompile the entire
      product (or ship its source code at all).
Tools such as the SWIG and
      SIP code generators can automate much of the work
      needed to link compiled components into Python for use in scripts, and
      the Cython system allows coders to mix Python and
      C-like code. Larger frameworks, such as Python’s
      COM support on Windows, the Jython
      Java-based implementation, and the IronPython
      .NET-based implementation provide alternative ways to script components.
      On Windows, for example, Python scripts can use frameworks to script
      Word and Excel, access Silverlight, and much
      more.

Database Programming
For traditional database demands, there are Python interfaces to all
      commonly used relational database systems—Sybase, Oracle, Informix,
      ODBC, MySQL, PostgreSQL, SQLite, and more. The Python world has also
      defined a portable database API for accessing SQL
      database systems from Python scripts, which looks the same on a variety
      of underlying database systems. For instance, because the vendor
      interfaces implement the portable API, a script written to work with the
      free MySQL system will work largely unchanged on other systems (such as
      Oracle); all you generally have to do is replace the underlying vendor
      interface. The in-process SQLite embedded SQL
      database engine is a standard part of Python itself since 2.5,
      supporting both prototyping and basic program storage needs.
In the non-SQL department, Python’s standard pickle module
      provides a simple object persistence system—it allows programs to easily
      save and restore entire Python objects to files and file-like objects.
      On the Web, you’ll also find third-party open source systems named
      ZODB and Durus that provide
      complete object-oriented database systems for Python scripts; others,
      such as SQLObject and
      SQLAlchemy, that implement object relational mappers (ORMs), which graft Python’s
      class model onto relational tables; and PyMongo, an
      interface to MongoDB, a high-performance, non-SQL,
      open source JSON-style document database, which
      stores data in structures very similar to Python’s own lists and
      dictionaries, and whose text may be parsed and created with Python’s own
      standard library json
      module.
Still other systems offer more specialized ways to store data,
      including the datastore in Google’s App Engine,
      which models data with Python classes and provides extensive
      scalability, as well as additional emerging cloud storage options such
      as Azure, PiCloud,
      OpenStack, and
      Stackato.

Rapid Prototyping
To Python programs, components written in Python and C look the same. Because
      of this, it’s possible to prototype systems in Python initially, and
      then move selected components to a compiled language such as C or C++
      for delivery. Unlike some prototyping tools, Python doesn’t require a
      complete rewrite once the prototype has solidified. Parts of the system
      that don’t require the efficiency of a language such as C++ can remain
      coded in Python for ease of maintenance and use.

Numeric and Scientific Programming
Python is also heavily used in numeric programming—a domain that would not traditionally
      have been considered to be in the scope of scripting languages, but has
      grown to become one of Python’s most compelling use cases. Prominent
      here, the NumPy high-performance numeric
      programming extension for Python mentioned earlier includes such
      advanced tools as an array object, interfaces to standard mathematical
      libraries, and much more. By integrating Python with numeric routines
      coded in a compiled language for speed, NumPy turns Python into a
      sophisticated yet easy-to-use numeric programming tool that can often
      replace existing code written in traditional compiled languages such as
      FORTRAN or C++.
Additional numeric tools for Python support animation, 3D
      visualization, parallel processing, and so on. The popular SciPy and
      ScientificPython extensions, for example, provide
      additional libraries of scientific programming tools and use NumPy as a
      core component. The PyPy implementation of Python
      (discussed in Chapter 2) has also
      gained traction in the numeric domain, in part because heavily
      algorithmic code of the sort that’s common in this domain can run
      dramatically faster in PyPy—often 10X to 100X quicker.

And More: Gaming, Images, Data Mining, Robots, Excel...
Python is commonly applied in more domains than can be covered
      here. For example, you’ll find tools that allow you to use Python to
      do:
	Game programming and multimedia with
          pygame, cgkit,
          pyglet, PySoy,
          Panda3D, and others

	Serial port communication on Windows, Linux, and more with the
          PySerial extension

	Image processing with PIL and its newer
          Pillow fork, PyOpenGL,
          Blender, Maya, and
          more

	Robot control programming with the PyRo
          toolkit

	Natural language analysis with the NLTK
          package

	Instrumentation on the Raspberry Pi and
          Arduino boards

	Mobile computing with ports of Python to the Google
          Android and Apple iOS
          platforms

	Excel spreadsheet function and macro programming with the
          PyXLL or DataNitro
          add-ins

	Media file content and metadata tag processing with
          PyMedia, ID3,
          PIL/Pillow, and
          more

	Artificial intelligence with the PyBrain
          neural net library and the Milk machine
          learning toolkit

	Expert system programming with PyCLIPS,
          Pyke, Pyrolog, and
          pyDatalog

	Network monitoring with zenoss, written
          in and customized with Python

	Python-scripted design and modeling with
          PythonCAD, PythonOCC,
          FreeCAD, and others

	Document processing and generation with
          ReportLab, Sphinx,
          Cheetah, PyPDF, and so
          on

	Data visualization with Mayavi,
          matplotlib, VTK,
          VPython, and more

	XML parsing with the xml
          library package, the xmlrpclib
          module, and third-party extensions

	JSON and CSV file processing with the json and csv modules

	Data mining with the Orange framework,
          the Pattern bundle,
          Scrapy, and custom code


You can even play solitaire with the PySolFC program. And of
      course, you can always code custom Python scripts in less buzzword-laden
      domains to perform day-to-day system administration, process your email,
      manage your document and media libraries, and so on. You’ll find links
      to the support in many fields at the PyPI website, and via web searches
      (search Google or http://www.python.org for links).
Though of broad practical use, many of these specific domains are
      largely just instances of Python’s component integration role in action
      again. Adding it as a frontend to libraries of components written in a
      compiled language such as C makes Python useful for scripting in a wide
      variety of domains. As a general-purpose language that supports
      integration, Python is widely applicable.


How Is Python Developed and Supported?
As a popular open source system, Python enjoys a large and active development community that
    responds to issues and develops enhancements with a speed that many
    commercial software developers might find remarkable. Python developers
    coordinate work online with a source-control system. Changes are developed
    per a formal protocol, which includes writing a PEP (Python Enhancement Proposal) or
    other document, and extensions to Python’s regression testing system. In
    fact, modifying Python today is roughly as involved as changing commercial
    software—a far cry from Python’s early days, when an email to its creator
    would suffice, but a good thing given its large user base today.
The PSF (Python Software Foundation), a formal nonprofit group, organizes conferences and deals
    with intellectual property issues. Numerous Python conferences are held
    around the world; O’Reilly’s OSCON and the PSF’s
    PyCon are the largest. The former of these addresses
    multiple open source projects, and the latter is a Python-only event that
    has experienced strong growth in recent years. PyCon 2012 and 2013 reached
    2,500 attendees each; in fact, PyCon 2013 had to cap
    its limit at this level after a surprise sell-out in 2012 (and managed to
    grab wide attention on both technical and nontechnical grounds that I
    won’t chronicle here). Earlier years often saw attendance double—from 586
    attendees in 2007 to over 1,000 in 2008, for example—indicative of
    Python’s growth in general, and impressive to those who remember early
    conferences whose attendees could largely be served around a single
    restaurant table.
Open Source Tradeoffs
Having said that, it’s important to note that while Python enjoys a vigorous development
      community, this comes with inherent tradeoffs. Open source software can
      also appear chaotic and even resemble anarchy at
      times, and may not always be as smoothly implemented as the prior
      paragraphs might imply. Some changes may still manage to defy official
      protocols, and as in all human endeavors, mistakes still happen despite
      the process controls (Python 3.2.0, for instance, came with a broken
      console input function on
      Windows).
Moreover, open source projects exchange commercial interests for
      the personal preferences of a current set of
      developers, which may or may not be the same as yours—you are not held
      hostage by a company, but you are at the mercy of those with spare time
      to change the system. The net effect is that open source software
      evolution is often driven by the few, but imposed on the many.
In practice, though, these tradeoffs impact those on the
      “bleeding” edge of new releases much more than those using established
      versions of the system, including prior releases in both Python 3.X and
      2.X. If you kept using classic classes in Python 2.X, for example, you
      were largely immune to the explosion of class
      functionality and change in new-style classes that occurred in the
      early-to-mid 2000s. Though these become mandatory in 3.X (along with
      much more), many 2.X users today still happily skirt the issue.


What Are Python’s Technical Strengths?
Naturally, this is a developer’s question. If you don’t already have a
    programming background, the language in the next few sections may be a bit
    baffling—don’t worry, we’ll explore all of these terms in more detail as
    we proceed through this book. For developers, though, here is a quick
    introduction to some of Python’s top technical features.
It’s Object-Oriented and Functional
Python is an object-oriented language, from the ground up. Its class
      model supports advanced notions such as polymorphism,
      operator overloading, and multiple inheritance; yet, in the context of
      Python’s simple syntax and typing, OOP is remarkably easy to apply. In
      fact, if you don’t understand these terms, you’ll find they are much
      easier to learn with Python than with just about any other OOP language
      available.
Besides serving as a powerful code structuring and reuse device,
      Python’s OOP nature makes it ideal as a scripting tool for other
      object-oriented systems languages. For example, with the appropriate
      glue code, Python programs can subclass (specialize) classes implemented
      in C++, Java, and C#.
Of equal significance, OOP is an option in
      Python; you can go far without having to become an object guru all at
      once. Much like C++, Python supports both procedural and object-oriented
      programming modes. Its object-oriented tools can be applied if and when
      constraints allow. This is especially useful in tactical development
      modes, which preclude design phases.
In addition to its original procedural
      (statement-based) and object-oriented (class-based)
      paradigms, Python in recent years has acquired built-in support for
      functional programming—a set that by most measures
      includes generators, comprehensions, closures, maps, decorators,
      anonymous function lambdas, and first-class function objects. These can
      serve as both complement and alternative to its OOP tools.

It’s Free
Python is completely free to use and distribute. As with other
      open source software, such as Tcl, Perl, Linux, and Apache, you can
      fetch the entire Python system’s source code for free on the Internet.
      There are no restrictions on copying it, embedding it in your systems,
      or shipping it with your products. In fact, you can even sell Python’s
      source code, if you are so inclined.
But don’t get the wrong idea: “free” doesn’t mean “unsupported.”
      On the contrary, the Python online community responds to user queries
      with a speed that most commercial software help desks would do well to
      try to emulate. Moreover, because Python comes with complete source
      code, it empowers developers, leading to the creation of a large team of
      implementation experts. Although studying or changing a programming
      language’s implementation isn’t everyone’s idea of fun, it’s comforting
      to know that you can do so if you need to. You’re not dependent on the
      whims of a commercial vendor, because the ultimate
      documentation—source code—is at your disposal as a
      last resort.
As mentioned earlier, Python development is performed by a
      community that largely coordinates its efforts over the Internet. It
      consists of Python’s original creator—Guido van
      Rossum, the officially anointed Benevolent Dictator for Life (BDFL)
      of Python—plus a supporting cast of thousands. Language changes must
      follow a formal enhancement procedure and be scrutinized by both other
      developers and the BDFL. This tends to make Python more conservative
      with changes than some other languages and systems. While the Python
      3.X/2.X split broke with this tradition soundly and deliberately, it
      still holds generally true within each Python line.

It’s Portable
The standard implementation of Python is written in portable ANSI C,
      and it compiles and runs on virtually every major platform currently in
      use. For example, Python programs run today on everything from PDAs to
      supercomputers. As a partial list, Python is available on:
	Linux and Unix systems

	Microsoft Windows (all modern flavors)

	Mac OS (both OS X and Classic)

	BeOS, OS/2, VMS, and QNX

	Real-time systems such as VxWorks

	Cray supercomputers and IBM mainframes

	PDAs running Palm OS, PocketPC, and Linux

	Cell phones running Symbian OS, and Windows Mobile

	Gaming consoles and iPods

	Tablets and smartphones running Google’s Android and Apple’s
          iOS

	And more


Like the language interpreter itself, the standard library modules
      that ship with Python are implemented to be as portable across platform
      boundaries as possible. Further, Python programs are automatically
      compiled to portable byte code, which runs the same on any platform with
      a compatible version of Python installed (more on this in the next
      chapter).
What that means is that Python programs using the core language
      and standard libraries run the same on Linux, Windows, and most other
      systems with a Python interpreter. Most Python ports also contain
      platform-specific extensions (e.g., COM support on Windows), but the
      core Python language and libraries work the same everywhere. As
      mentioned earlier, Python also includes an interface to the Tk GUI
      toolkit called tkinter (Tkinter in 2.X), which allows Python programs to
      implement full-featured graphical user interfaces that run on all major
      GUI desktop platforms without program changes.

It’s Powerful
From a features perspective, Python is something of a hybrid. Its
      toolset places it between traditional scripting languages (such as Tcl,
      Scheme, and Perl) and systems development languages (such as C, C++, and
      Java). Python provides all the simplicity and ease of use of a scripting
      language, along with more advanced software-engineering tools typically
      found in compiled languages. Unlike some scripting languages, this
      combination makes Python useful for large-scale development projects. As
      a preview, here are some of the main things you’ll find in Python’s
      toolbox:
	Dynamic typing
	Python keeps track of the kinds of objects your program uses when
            it runs; it doesn’t require complicated type and size declarations
            in your code. In fact, as you’ll see in Chapter 6, there is no such thing
            as a type or variable declaration anywhere in Python. Because
            Python code does not constrain data types, it is also usually
            automatically applicable to a whole range of objects.

	Automatic memory management
	Python automatically allocates objects and reclaims (“garbage collects”)
            them when they are no longer used, and most can grow and shrink on
            demand. As you’ll learn, Python keeps track of low-level memory
            details so you don’t have to.

	Programming-in-the-large support
	For building larger systems, Python includes tools such as
            modules, classes, and exceptions. These tools allow you to
            organize systems into components, use OOP to reuse and customize
            code, and handle events and errors gracefully. Python’s functional
            programming tools, described earlier, provide additional ways to
            meet many of the same goals.

	Built-in object types
	Python provides commonly used data structures such as lists,
            dictionaries, and strings as intrinsic parts of the language; as
            you’ll see, they’re both flexible and easy to use. For instance,
            built-in objects can grow and shrink on demand, can be arbitrarily
            nested to represent complex information, and more.

	Built-in tools
	To process all those object types, Python comes with powerful
            and standard operations, including concatenation (joining
            collections), slicing (extracting sections), sorting, mapping, and
            more.

	Library utilities
	For more specific tasks, Python also comes with a large
            collection of precoded library tools that support everything from
            regular expression matching to networking. Once you learn the
            language itself, Python’s library tools are where much of the
            application-level action occurs.

	Third-party utilities
	Because Python is open source, developers are encouraged to
            contribute precoded tools that support tasks beyond those
            supported by its built-ins; on the Web, you’ll find free support
            for COM, imaging, numeric programming, XML, database access, and
            much more.


Despite the array of tools in Python, it retains a remarkably
      simple syntax and design. The result is a powerful programming tool with
      all the usability of a scripting language.

It’s Mixable
Python programs can easily be “glued” to components written in
      other languages in a variety of ways. For example, Python’s C API lets C
      programs call and be called by Python programs flexibly. That means you
      can add functionality to the Python system as needed, and use Python
      programs within other environments or systems.
Mixing Python with libraries coded in languages such as C or C++,
      for instance, makes it an easy-to-use frontend language and
      customization tool. As mentioned earlier, this also makes Python good at
      rapid prototyping—systems may be implemented in Python first, to
      leverage its speed of development, and later moved to C for delivery,
      one piece at a time, according to performance demands.

It’s Relatively Easy to Use
Compared to alternatives like C++, Java, and C#, Python
      programming seems astonishingly simple to most observers. To run a
      Python program, you simply type it and run it. There are no intermediate
      compile and link steps, like there are for languages such as C or C++.
      Python executes programs immediately, which makes for an interactive
      programming experience and rapid turnaround after
      program changes—in many cases, you can witness the effect of a program
      change nearly as fast as you can type it.
Of course, development cycle turnaround is only one aspect of
      Python’s ease of use. It also provides a deliberately simple syntax and
      powerful built-in tools. In fact, some have gone so far as to call
      Python executable pseudocode. Because it eliminates
      much of the complexity in other tools, Python programs are simpler,
      smaller, and more flexible than equivalent programs in other popular
      languages.

It’s Relatively Easy to Learn
This brings us to the point of this book: especially when compared
      to other widely used programming languages, the core Python language is
      remarkably easy to learn. In fact, if you’re an experienced programmer,
      you can expect to be coding small-scale Python programs in a matter of
      days, and may be able to pick up some limited portions of the language
      in just hours—though you shouldn’t expect to become an expert quite that
      fast (despite what you may have heard from marketing
      departments!).
Naturally, mastering any topic as substantial as today’s Python is
      not trivial, and we’ll devote the rest of this book to this task. But
      the true investment required to master Python is worthwhile—in the end,
      you’ll gain programming skills that apply to nearly every computer
      application domain. Moreover, most find Python’s learning curve to be
      much gentler than that of other programming tools.
That’s good news for professional developers seeking to learn the
      language to use on the job, as well as for end users of systems that
      expose a Python layer for customization or control. Today, many systems
      rely on the fact that end users can learn enough Python to tailor their
      Python customization code onsite, with little or no support. Moreover,
      Python has spawned a large group of users who program for fun instead of
      career, and may never need full-scale software development skills.
      Although Python does have advanced programming tools, its core language
      essentials will still seem relatively simple to beginners and gurus
      alike.

It’s Named After Monty Python
OK, this isn’t quite a technical strength, but it does seem to be
      a surprisingly well-kept secret in the Python world that I wish to
      expose up front. Despite all the reptiles on Python books and icons, the
      truth is that Python is named after the British comedy group
      Monty Python—makers of the 1970s BBC comedy series
      Monty Python’s Flying Circus and a handful of later
      full-length films, including Monty Python and the Holy
      Grail, that are still widely popular today. Python’s original
      creator was a fan of Monty Python, as are many software developers
      (indeed, there seems to be a sort of symmetry between the two
      fields...).
This legacy inevitably adds a humorous quality to Python code
      examples. For instance, the traditional “foo” and “bar” for generic
      variable names become “spam” and “eggs” in the Python world. The
      occasional “Brian,” “ni,” and “shrubbery” likewise owe their appearances
      to this namesake. It even impacts the Python community at large: some
      events at Python conferences are regularly billed as “The Spanish
      Inquisition.”
All of this is, of course, very funny if you are familiar with the
      shows, but less so otherwise. You don’t need to be familiar with Monty
      Python’s work to make sense of examples that borrow references from it,
      including many you will see in this book, but at least you now know
      their root. (Hey—I’ve warned you.)


How Does Python Stack Up to Language X?
Finally, to place it in the context of what you may already know, people sometimes
    compare Python to languages such as Perl, Tcl, and Java. This section
    summarizes common consensus in this department.
I want to note up front that I’m not a fan of winning by disparaging
    the competition—it doesn’t work in the long run, and that’s not the goal
    here. Moreover, this is not a zero sum game—most programmers will use many
    languages over their careers. Nevertheless, programming tools present
    choices and tradeoffs that merit consideration. After all, if Python
    didn’t offer something over its alternatives, it would never have been
    used in the first place.
We talked about performance tradeoffs earlier, so here we’ll focus
    on functionality. While other languages are also useful tools to know and
    use, many people find that Python:
	Is more powerful than Tcl. Python’s strong
        support for “programming in the large” makes it applicable to the
        development of larger systems, and its library of application tools is
        broader.

	Is more readable than Perl. Python has a
        clear syntax and a simple, coherent design. This in turn makes Python
        more reusable and maintainable, and helps reduce program bugs.

	Is simpler and easier to use than Java and
        C#. Python is a scripting language, but Java and
        C# both inherit much of the complexity and syntax of larger OOP
        systems languages like C++.

	Is simpler and easier to use than C++.
        Python code is simpler than the equivalent C++ and often one-third to
        one-fifth as large, though as a scripting language, Python sometimes
        serves different roles.

	Is simpler and higher-level than C.
        Python’s detachment from underlying hardware architecture makes code
        less complex, better structured, and more approachable than C, C++’s
        progenitor.

	Is more powerful, general-purpose, and cross-platform than
        Visual Basic. Python is a richer language that is
        used more widely, and its open source nature means it is not
        controlled by a single company.

	Is more readable and general-purpose than
        PHP. Python is used to construct websites too,
        but it is also applied to nearly every other computer domain, from
        robotics to movie animation and gaming.

	Is more powerful and general-purpose than
        JavaScript. Python has a larger toolset, and is
        not as tightly bound to web development. It’s also used for scientific
        modeling, instrumentation, and more.

	Is more readable and established than Ruby.
        Python syntax is less cluttered, especially in nontrivial code, and
        its OOP is fully optional for users and projects to which it may not
        apply.

	Is more mature and broadly focused than
        Lua. Python’s larger feature set and more
        extensive library support give it a wider scope than Lua, an embedded
        “glue” language like Tcl.

	Is less esoteric than Smalltalk,
        Lisp, and Prolog. Python has
        the dynamic flavor of languages like these, but also has a traditional
        syntax accessible to both developers and end users of customizable
        systems.


Especially for programs that do more than scan text files, and that
    might have to be read in the future by others (or by you!), many people
    find that Python fits the bill better than any other scripting or
    programming language available today. Furthermore, unless your application
    requires peak performance, Python is often a viable alternative to systems
    development languages such as C, C++, and Java: Python code can often
    achieve the same goals, but will be much less difficult to write, debug,
    and maintain.
Of course, your author has been a card-carrying Python evangelist
    since 1992, so take these comments as you may (and other languages’
    advocates’ mileage may vary arbitrarily). They do, however, reflect the
    common experience of many developers who have taken time to explore what
    Python has to offer.

Chapter Summary
And that concludes the “hype” portion of this book. In this chapter,
    we’ve explored some of the reasons that people pick Python for their
    programming tasks. We’ve also seen how it is applied and looked at a
    representative sample of who is using it today. My goal is to teach
    Python, though, not to sell it. The best way to judge a language is to see
    it in action, so the rest of this book focuses entirely on the language
    details we’ve glossed over here.
The next two chapters begin our technical introduction to the
    language. In them, we’ll explore ways to run Python programs, peek at
    Python’s byte code execution model, and introduce the basics of module
    files for saving code. The goal will be to give you just enough
    information to run the examples and exercises in the rest of the book. You
    won’t really start programming per se until Chapter 4, but make sure you have a
    handle on the startup details before moving on.

Test Your Knowledge: Quiz
In this edition of the book, we will be closing each chapter with a
    quick open-book quiz about the material presented herein to help you
    review the key concepts. The answers for these quizzes appear immediately
    after the questions, and you are encouraged to read the answers once
    you’ve taken a crack at the questions yourself, as they sometimes give
    useful context.
In addition to these end-of-chapter quizzes, you’ll find lab
    exercises at the end of each part of the book,
    designed to help you start coding Python on your own. For now, here’s your
    first quiz. Good luck, and be sure to refer back to this chapter’s
    material as needed.
	What are the six main reasons that people choose to use
        Python?

	Name four notable companies or organizations using Python
        today.

	Why might you not want to use Python in an
        application?

	What can you do with Python?

	What’s the significance of the Python import this statement?

	Why does “spam” show up in so many Python examples in books and
        on the Web?

	What is your favorite color?



Test Your Knowledge: Answers
How did you do? Here are the answers I came up with, though there
    may be multiple solutions to some quiz questions. Again, even if you’re
    sure of your answer, I encourage you to look at mine for additional
    context. See the chapter’s text for more details if any of these responses
    don’t make sense to you.
	Software quality, developer productivity, program portability,
        support libraries, component integration, and simple enjoyment. Of
        these, the quality and productivity themes seem to be the main reasons
        that people choose to use Python.

	Google, Industrial Light & Magic, CCP Games, Jet Propulsion
        Labs, Maya, ESRI, and many more. Almost every organization doing
        software development uses Python in some fashion, whether for
        long-term strategic product development or for short-term tactical
        tasks such as testing and system administration.

	Python’s main downside is performance: it won’t run as quickly
        as fully compiled languages like C and C++. On the other hand, it’s
        quick enough for most applications, and typical Python code runs at
        close to C speed anyhow because it invokes linked-in C code in the
        interpreter. If speed is critical, compiled extensions are available
        for number-crunching parts of an application.

	You can use Python for nearly anything you can do with a
        computer, from website development and gaming to robotics and
        spacecraft control.

	This was mentioned in a footnote: import this triggers an Easter egg inside
        Python that displays some of the design philosophies underlying the
        language. You’ll learn how to run this statement in the next
        chapter.

	“Spam” is a reference from a famous Monty Python skit in which
        people trying to order food in a cafeteria are drowned out by a chorus
        of Vikings singing about spam. Oh, and it’s also a common variable
        name in Python scripts...

	Blue. No, yellow! (See the prior answer.)


Python Is Engineering, Not Art
When Python first emerged on the software scene in the early
      1990s, it spawned what is now something of a classic conflict between
      its proponents and those of another popular scripting language, Perl.
      Personally, I think the debate is tired and unwarranted today—developers
      are smart enough to draw their own conclusions. Still, this is one of
      the most common topics I’m asked about on the training road, and
      underscores one of the main reasons people choose to use Python; it
      seems fitting to say a few brief words about it here.
The short story is this: you can do everything in Python
      that you can in Perl, but you can read your code after you do
      it. That’s it—their domains largely overlap, but Python is
      more focused on producing readable code. For many, the enhanced
      readability of Python translates to better code reusability and
      maintainability, making Python a better choice for programs that will
      not be written once and thrown away. Perl code is easy to write, but can
      be difficult to read. Given that most software has a lifespan much
      longer than its initial creation, many see Python as the more effective
      tool.
The somewhat longer story reflects the backgrounds of the
      designers of the two languages. Python originated
      with a mathematician by training, who seems to have naturally produced
      an orthogonal language with a high degree of uniformity and coherence.
      Perl was spawned by a linguist, who created a
      programming tool closer to natural language, with its context
      sensitivities and wide variability. As a well-known Perl motto states,
      there’s more than one way to do it. Given this
      mindset, both the Perl language and its user community have historically
      encouraged untethered freedom of expression when writing code. One
      person’s Perl code can be radically different from another’s. In fact,
      writing unique, tricky code is often a source of pride among Perl
      users.
But as anyone who has done any substantial code maintenance should
      be able to attest, freedom of expression is great for art, but
      lousy for engineering. In engineering, we need a minimal
      feature set and predictability. In engineering, freedom of expression
      can lead to maintenance nightmares. As more than one Perl user has
      confided to me, the result of too much freedom is often code that is
      much easier to rewrite from scratch than to modify. This is clearly less
      than ideal.
Consider this: when people create a painting or a sculpture, they
      do so largely for themselves; the prospect of someone else changing
      their work later doesn’t enter into it. This is a critical difference
      between art and engineering. When people write
      software, they are not writing it for themselves.
      In fact, they are not even writing primarily for the computer. Rather,
      good programmers know that code is written for the next human being who
      has to read it in order to maintain or reuse it. If that person cannot
      understand the code, it’s all but useless in a realistic development
      scenario. In other words, programming is not about being clever and
      obscure—it’s about how clearly your program communicates its
      purpose.
This readability focus is where many people find that Python most
      clearly differentiates itself from other scripting languages. Because
      Python’s syntax model almost forces the creation of
      readable code, Python programs lend themselves more directly to the full
      software development cycle. And because Python emphasizes ideas such as
      limited interactions, code uniformity, and feature consistency, it more
      directly fosters code that can be used long after it is first
      written.
In the long run, Python’s focus on code
      quality in itself boosts programmer productivity, as well as
      programmer satisfaction. Python programmers can be wildly creative, too,
      of course, and as we’ll see, the language does offer multiple solutions
      for some tasks—sometimes even more than it should today, an issue we’ll
      confront head-on in this book too. In fact, this sidebar can also be
      read as a cautionary tale: quality turns out to be
      a fragile state, one that depends as much on people
      as on technology. Python has historically encouraged good engineering in
      ways that other scripting languages often did not, but the rest of the
      quality story is up to you.
At least, that’s some of the common consensus among many people
      who have adopted Python. You should judge such claims for yourself, of
      course, by learning what Python has to offer. To help you get started,
      let’s move on to the next chapter.


1 For a more complete look at the Python philosophy, type the
          command import this at any Python
          interactive prompt (you’ll see how in Chapter 3). This invokes an “Easter egg”
          hidden in Python—a collection of design principles underlying Python
          that permeate both the language and its user community. Among them,
          the acronym EIBTI is now fashionable jargon for the “explicit is
          better than implicit” rule. These principles are not religion, but
          are close enough to qualify as a Python motto and creed, which we’ll
          be quoting from often in this book.








Chapter 2. How Python Runs Programs
This chapter and the next take a quick look at program execution—how
  you launch code, and how Python runs it. In this chapter, we’ll study how
  the Python interpreter executes programs in general. Chapter 3 will then show you how to get your own
  programs up and running.
Startup details are inherently platform-specific, and some of the material in
  these two chapters may not apply to the platform you work on, so more
  advanced readers should feel free to skip parts not relevant to their
  intended use. Likewise, readers who have used similar tools in the past and
  prefer to get to the meat of the language quickly may want to file some of
  these chapters away as “for future reference.” For the rest of us, let’s
  take a brief look at the way that Python will run our code, before we learn
  how to write it.
Introducing the Python Interpreter
So far, I’ve mostly been talking about Python as a programming language. But, as currently
    implemented, it’s also a software package called an
    interpreter. An interpreter is a kind of program that
    executes other programs. When you write a Python program, the Python
    interpreter reads your program and carries out the instructions it
    contains. In effect, the interpreter is a layer of software logic between
    your code and the computer hardware on your machine.
When the Python package is installed on your machine, it generates a
    number of components—minimally, an interpreter and a support library.
    Depending on how you use it, the Python interpreter may take the form of
    an executable program, or a set of libraries linked into another program.
    Depending on which flavor of Python you run, the interpreter itself may be
    implemented as a C program, a set of Java classes, or something else.
    Whatever form it takes, the Python code you write must always be run by
    this interpreter. And to enable that, you must install a Python
    interpreter on your computer.
Python installation details vary by platform and are covered in more depth in Appendix A. In short:
	Windows users fetch and run a self-installing executable file that
        puts Python on their machines. Simply double-click and say Yes or Next
        at all prompts.

	Linux and Mac OS X users probably already have a usable Python preinstalled on
        their computers—it’s a standard component on these platforms
        today.

	Some Linux and Mac OS X users (and most Unix users) compile Python from its full source code distribution
        package.

	Linux users can also find RPM files, and Mac OS X users can find
        various Mac-specific installation packages.

	Other platforms have installation techniques relevant to those
        platforms. For instance, Python is available on cell phones, tablets,
        game consoles, and iPods, but installation details vary widely.


Python itself may be fetched from the downloads page on its main
    website, http://www.python.org. It may also be found through various
    other distribution channels. Keep in mind that you should always check to
    see whether Python is already present before installing it. If you’re
    working on Windows 7 and earlier, you’ll usually find Python in the Start
    menu, as captured in Figure 2-1; we’ll discuss the
    menu options shown here in the next chapter. On Unix and Linux, Python
    probably lives in your /usr directory
    tree.
Because installation details are so platform-specific, we’ll
    postpone the rest of this story here. For more details on the installation
    process, consult Appendix A. For
    the purposes of this chapter and the next, I’ll assume that you’ve got
    Python ready to go.

Program Execution
What it means to write and run a Python script depends on whether
    you look at these tasks as a programmer, or as a Python interpreter. Both
    views offer important perspectives on Python programming.
Figure 2-1. When installed on Windows 7 and earlier, this is how Python shows
      up in your Start button menu. This can vary across releases, but IDLE
      starts a development GUI, and Python starts a simple interactive
      session. Also here are the standard manuals and the PyDoc documentation
      engine (Module Docs). See Chapter 3 and
      Appendix A for pointers on
      Windows 8 and other platforms.

The Programmer’s View
In its simplest form, a Python program is just a text file containing
      Python statements. For example, the following file, named script0.py, is one of the simplest Python
      scripts I could dream up, but it passes for a fully functional Python
      program:
print('hello world')
print(2 ** 100)
This file contains two Python print statements, which simply print a string
      (the text in quotes) and a numeric expression result (2 to the power
      100) to the output stream. Don’t worry about the syntax of this code
      yet—for this chapter, we’re interested only in getting it to run. I’ll
      explain the print statement, and why
      you can raise 2 to the power 100 in Python without overflowing, in the
      next parts of this book.
You can create such a file of statements with any text editor you
      like. By convention, Python program files are given names that
      end in .py;
      technically, this naming scheme is required only for files that are
      “imported”—a term clarified in the next chapter—but most Python files
      have .py names for
      consistency.
After you’ve typed these statements into a text file, you must
      tell Python to execute the file—which simply means
      to run all the statements in the file from top to bottom, one after
      another. As you’ll see in the next chapter, you can launch Python
      program files by shell command lines, by clicking their icons, from
      within IDEs, and with other standard techniques. If all goes well, when
      you execute the file, you’ll see the results of the two print statements show up somewhere on your
      computer—by default, usually in the same window you were in when you ran
      the program:
hello world
1267650600228229401496703205376
For example, here’s what happened when I ran this script from a
      Command Prompt window’s command line on a Windows laptop, to make sure
      it didn’t have any silly typos:
C:\code> python script0.py
hello world
1267650600228229401496703205376
See Chapter 3 for the full story on
      this process, especially if you’re new to programming; we’ll get into
      all the gory details of writing and launching programs there. For our
      purposes here, we’ve just run a Python script that prints a string and a
      number. We probably won’t win any programming awards with this code, but
      it’s enough to capture the basics of program execution.

Python’s View
The brief description in the prior section is fairly standard for
      scripting languages, and it’s usually all that most Python programmers
      need to know. You type code into text files, and you run those files
      through the interpreter. Under the hood, though, a bit more happens when
      you tell Python to “go.” Although knowledge of Python internals is not
      strictly required for Python programming, a basic understanding of the
      runtime structure of Python can help you grasp the bigger picture of
      program execution.
When you instruct Python to run your script, there are a few steps
      that Python carries out before your code actually starts crunching away.
      Specifically, it’s first compiled to something called “byte code” and
      then routed to something called a “virtual machine.”
Byte code compilation
Internally, and almost completely hidden from you, when you execute a program
        Python first compiles your source code (the statements in
        your file) into a format known as byte code.
        Compilation is simply a translation step, and byte code is a
        lower-level, platform-independent representation of your source code.
        Roughly, Python translates each of your source statements into a group
        of byte code instructions by decomposing them into individual steps.
        This byte code translation is performed to speed execution—byte code
        can be run much more quickly than the original source code statements
        in your text file.
You’ll notice that the prior paragraph said that this is
        almost completely hidden from you. If the Python
        process has write access on your machine, it will store the byte code
        of your programs in files that end with a .pyc
        extension (“.pyc” means compiled “.py” source). Prior to Python 3.2,
        you will see these files show up on your computer after you’ve run a
        few programs alongside the corresponding source code files—that is, in
        the same directories. For instance, you’ll notice
        a script.pyc after importing a
        script.py.
In 3.2 and later, Python instead saves its .pyc byte code files in a subdirectory named __pycache__ located in the directory where
        your source files reside, and in files whose names identify the Python
        version that created them (e.g., script.cpython-33.pyc). The new __pycache__ subdirectory helps to avoid
        clutter, and the new naming convention for byte code files prevents
        different Python versions installed on the same computer from
        overwriting each other’s saved byte code. We’ll study these byte code
        file models in more detail in Chapter 22, though they are automatic
        and irrelevant to most Python programs, and are free to vary among the
        alternative Python implementations described ahead.
In both models, Python saves byte code like this as a startup
        speed optimization. The next time you run your program, Python will
        load the .pyc files and skip the
        compilation step, as long as you haven’t changed your source code
        since the byte code was last saved, and aren’t running with a
        different Python than the one that created the byte code. It works
        like this:
	Source changes: Python automatically checks the last-modified timestamps of
            source and byte code files to know when it must
            recompile—if you edit and resave your source code, byte code is
            automatically re-created the next time your program is run.

	Python versions: Imports also check to see if the file must be
            recompiled because it was created by a different Python version,
            using either a “magic” version number in the byte code file itself
            in 3.2 and earlier, or the information present in byte code
            filenames in 3.2 and later.


The result is that both source code changes and differing Python
        version numbers will trigger a new byte code file. If Python cannot
        write the byte code files to your machine, your program still
        works—the byte code is generated in memory and simply discarded on
        program exit. However, because .pyc files speed startup time, you’ll want
        to make sure they are written for larger programs. Byte code files are
        also one way to ship Python programs—Python is happy to run a program
        if all it can find are .pyc
        files, even if the original .py
        source files are absent. (See “Frozen Binaries” for
        another shipping option.)
Finally, keep in mind that byte code is saved in files only for
        files that are imported, not for the top-level
        files of a program that are only run as scripts (strictly speaking,
        it’s an import optimization). We’ll explore import basics in Chapter 3, and take a deeper look at imports
        in Part V. Moreover, a given file is
        only imported (and possibly compiled) once per
        program run, and byte code is also never saved for code typed at
        the interactive prompt—a programming
        mode we’ll learn about in Chapter 3.

The Python Virtual Machine (PVM)
Once your program has been compiled to byte code (or the byte code
        has been loaded from existing .pyc files), it is shipped off for
        execution to something generally known as the Python Virtual Machine
        (PVM, for the more acronym-inclined among you). The PVM sounds more
        impressive than it is; really, it’s not a separate program, and it
        need not be installed by itself. In fact, the PVM is just a big code
        loop that iterates through your byte code instructions, one by one, to
        carry out their operations. The PVM is the runtime engine of Python;
        it’s always present as part of the Python system, and it’s the
        component that truly runs your scripts. Technically, it’s just the
        last step of what is called the “Python interpreter.”
Figure 2-2
        illustrates the runtime structure described here. Keep in mind that
        all of this complexity is deliberately hidden from Python programmers.
        Byte code compilation is automatic, and the PVM is just part of the
        Python system that you have installed on your machine. Again,
        programmers simply code and run files of statements, and Python
        handles the logistics of running them.
Figure 2-2. Python’s traditional runtime execution model: source code you
          type is translated to byte code, which is then run by the Python
          Virtual Machine. Your code is automatically compiled, but then it is
          interpreted.


Performance implications
Readers with a background in fully compiled languages such as C and C++
        might notice a few differences in the Python model. For one thing,
        there is usually no build or “make” step in Python work: code runs
        immediately after it is written. For another, Python byte code is not
        binary machine code (e.g., instructions for an Intel or ARM chip).
        Byte code is a Python-specific representation.
This is why some Python code may not run as fast as C or C++
        code, as described in Chapter 1—the PVM
        loop, not the CPU chip, still must interpret the byte code, and byte
        code instructions require more work than CPU instructions. On the
        other hand, unlike in classic interpreters, there is still an internal
        compile step—Python does not need to reanalyze and reparse each source
        statement’s text repeatedly. The net effect is that pure Python code
        runs at speeds somewhere between those of a traditional compiled
        language and a traditional interpreted language. See Chapter 1 for more on Python performance
        tradeoffs.

Development implications
Another ramification of Python’s execution model is that there
        is really no distinction between the development and execution
        environments. That is, the systems that compile and execute your
        source code are really one and the same. This similarity may have a
        bit more significance to readers with a background in traditional
        compiled languages, but in Python, the compiler is always present at
        runtime and is part of the system that runs programs.
This makes for a much more rapid development cycle. There is no need to precompile
        and link before execution may begin; simply type and run the code.
        This also adds a much more dynamic flavor to the language—it is
        possible, and often very convenient, for Python programs to construct
        and execute other Python programs at runtime. The eval and exec built-ins, for instance, accept and run
        strings containing Python program code. This structure is also why
        Python lends itself to product customization—because Python code can
        be changed on the fly, users can modify the Python parts of a system
        onsite without needing to have or compile the entire system’s
        code.
At a more fundamental level, keep in mind that all we really
        have in Python is runtime—there is no initial
        compile-time phase at all, and everything happens as the program is
        running. This even includes operations such as the creation of
        functions and classes and the linkage of modules. Such events occur
        before execution in more static languages, but happen as programs
        execute in Python. As we’ll see, this makes for a much more dynamic
        programming experience than that to which some readers may be
        accustomed.



Execution Model Variations
Now that we’ve studied the internal execution flow described in the
    prior section, I should note that it reflects the standard implementation
    of Python today but is not really a requirement of the Python language
    itself. Because of that, the execution model is prone to changing with
    time. In fact, there are already a few systems that modify the picture in
    Figure 2-2 somewhat. Before
    moving on, let’s briefly explore the most prominent of these
    variations.
Python Implementation Alternatives
Strictly speaking, as this book edition is being written, there
      are at least five implementations of the Python language—CPython,
      Jython, IronPython,
      Stackless, and PyPy. Although
      there is much cross-fertilization of ideas and work between these
      Pythons, each is a separately installed software system, with its own
      developers and user base. Other potential candidates here include
      the Cython and Shed
      Skin systems, but they are discussed later as optimization
      tools because they do not implement the standard Python language (the
      former is a Python/C mix, and the latter is implicitly statically
      typed).
In brief, CPython is the standard implementation, and the system that most
      readers will wish to use (if you’re not sure, this probably includes
      you). This is also the version used in this book, though the core Python
      language presented here is almost entirely the same in the alternatives.
      All the other Python implementations have specific purposes and roles,
      though they can often serve in most of CPython’s capacities too. All
      implement the same Python language but execute programs in different
      ways.
For example, PyPy is a drop-in replacement for CPython, which can run most
      programs much quicker. Similarly, Jython and
      IronPython are completely independent implementations of Python that compile Python
      source for different runtime architectures, to provide direct access to
      Java and .NET components. It is also possible to access Java and .NET
      software from standard CPython programs—JPype and
      Python for .NET systems, for
      instance, allow standard CPython code to call out to Java and .NET
      components. Jython and IronPython offer more complete solutions, by
      providing full implementations of the Python language.
Here’s a quick rundown on the most prominent Python
      implementations available today.
CPython: The standard
The original, and standard, implementation of Python is usually called
        CPython when you want to contrast it with the other options (and just
        plain “Python” otherwise). This name comes from the fact that it is
        coded in portable ANSI C language code. This is the Python that you
        fetch from http://www.python.org, get with the ActivePython and
        Enthought distributions, and have automatically on most Linux and Mac
        OS X machines. If you’ve found a preinstalled version of Python on
        your machine, it’s probably CPython, unless your company or
        organization is using Python in more specialized ways.
Unless you want to script Java or .NET applications with Python
        or find the benefits of Stackless or PyPy compelling, you probably
        want to use the standard CPython system. Because it is the reference
        implementation of the language, it tends to run the fastest, be the
        most complete, and be more up-to-date and robust than the alternative
        systems. Figure 2-2
        reflects CPython’s runtime architecture.

Jython: Python for Java
The Jython system (originally known as JPython) is an alternative
        implementation of the Python language, targeted for integration with
        the Java programming language. Jython consists of Java classes that
        compile Python source code to Java byte code and then route the
        resulting byte code to the Java Virtual Machine (JVM). Programmers
        still code Python statements in .py text files as usual; the Jython system
        essentially just replaces the rightmost two bubbles in Figure 2-2 with Java-based
        equivalents.
Jython’s goal is to allow Python code to script Java
        applications, much as CPython allows Python to script C and C++
        components. Its integration with Java is remarkably seamless. Because
        Python code is translated to Java byte code, it looks and feels like a
        true Java program at runtime. Jython scripts can serve as web applets
        and servlets, build Java-based GUIs, and so on. Moreover, Jython
        includes integration support that allows Python code to import and use
        Java classes as though they were coded in Python, and Java code to run
        Python code as an embedded language. Because Jython is slower and less
        robust than CPython, though, it is usually seen as a tool of interest
        primarily to Java developers looking for a scripting language to serve
        as a frontend to Java code. See Jython’s website http://jython.org for more details.

IronPython: Python for .NET
A third implementation of Python, and newer than both CPython and Jython,
        IronPython is designed to allow Python programs to integrate with
        applications coded to work with Microsoft’s .NET Framework for
        Windows, as well as the Mono open source equivalent for Linux. .NET
        and its C# programming language runtime system are designed to be a
        language-neutral object communication layer, in the spirit of
        Microsoft’s earlier COM model. IronPython allows Python programs to
        act as both client and server components, gain accessibility both to
        and from other .NET languages, and leverage .NET technologies such as
        the Silverlight framework from their Python
        code.
By implementation, IronPython is very much like Jython (and, in
        fact, was developed by the same creator)—it replaces the last two
        bubbles in Figure 2-2
        with equivalents for execution in the .NET environment. Also like
        Jython, IronPython has a special focus—it is primarily of interest to
        developers integrating Python with .NET components. Formerly developed
        by Microsoft and now an open source project, IronPython might also be
        able to take advantage of some important optimization tools for better
        performance. For more details, consult http://ironpython.net and other resources to be had
        with a web search.

Stackless: Python for concurrency
Still other schemes for running Python programs have more focused goals. For
        example, the Stackless Python system is an
        enhanced version and reimplementation of the standard CPython language
        oriented toward concurrency. Because it does not
        save state on the C language call stack, Stackless Python can make
        Python easier to port to small stack architectures, provides efficient
        multiprocessing options, and fosters novel programming structures such
        as coroutines.
Among other things, the microthreads that Stackless
        adds to Python are an efficient and lightweight alternative to
        Python’s standard multitasking tools such as threads and processes,
        and promise better program structure, more readable code, and
        increased programmer productivity. CCP Games, the creator of EVE
        Online, is a well-known Stackless Python user, and a
        compelling Python user success story in general. Try http://stackless.com for more information.

PyPy: Python for speed
The PyPy system is another standard CPython reimplementation, focused on
        performance. It provides a fast Python
        implementation with a JIT (just-in-time)
        compiler, provides tools for a “sandbox” model that can run untrusted
        code in a secure environment, and by default includes support for the
        prior section’s Stackless Python systems and its
        microthreads to support massive concurrency.
PyPy is the successor to the original Psyco
        JIT, described ahead, and subsumes it with a complete Python
        implementation built for speed. A JIT is really just an extension to the PVM—the rightmost
        bubble in Figure 2-2—that translates
        portions of your byte code all the way to binary machine code for
        faster execution. It does this as your program is
        running, not in a prerun compile step, and is
        able to create type-specific machine code for the dynamic Python
        language by keeping track of the data types of
        the objects your program processes. By replacing portions of your byte
        code this way, your program runs faster and faster as it is executing.
        In addition, some Python programs may also take up less memory under
        PyPy.
At this writing, PyPy supports Python 2.7 code (not yet 3.X) and
        runs on Intel x86 (IA-32) and x86_64 platforms (including Windows,
        Linux, and recent Macs), with ARM and PPC support under development.
        It runs most CPython code, though C extension modules must generally
        be recompiled, and PyPy has some minor but subtle language
        differences, including garbage collection semantics that obviate some
        common coding patterns. For instance, its non-reference-count scheme
        means that temporary files may not close and flush output buffers
        immediately, and may require manual close calls in some cases.
In return, your code may run much quicker. PyPy currently claims
        a 5.7X speedup over CPython across a range of
        benchmark programs (per http://speed.pypy.org/). In some
        cases, its ability to take advantage of dynamic optimization
        opportunities can make Python code as quick as C code, and
        occasionally faster. This is especially true for heavily algorithmic
        or numeric programs, which might otherwise be recoded in C.
For instance, in one simple benchmark we’ll see in Chapter 21, PyPy today clocks in at
        10X faster than CPython 2.7, and
        100X faster than CPython 3.X. Though other
        benchmarks will vary, such speedups may be a compelling advantage in
        many domains, perhaps even more so than leading-edge language
        features. Just as important, memory space is also optimized in PyPy—in
        the case of one posted benchmark, requiring 247 MB and completing in
        10.3 seconds, compared to CPython’s 684 MB and 89 seconds.
PyPy’s tool chain is also general enough to support additional
        languages, including Pyrolog, a Prolog
        interpreter written in Python using the PyPy translator. Search for
        PyPy’s website for more. PyPy currently lives at http://pypy.org, though the usual web search may also
        prove fruitful over time. For an overview of its current performance,
        also see http://www.pypy.org/performance.html.
Note
Just after I wrote this, PyPy 2.0 was released in beta form,
          adding support for the ARM processor, and still a Python 2.X-only
          implementation. Per its 2.0 beta release notes:
“PyPy is a very compliant Python interpreter, almost a drop-in
          replacement for CPython 2.7.3. It’s fast due to its integrated
          tracing JIT compiler. This release supports x86 machines running
          Linux 32/64, Mac OS X 64 or Windows 32. It also supports ARM
          machines running Linux.”
The claims seem accurate. Using the timing tools we’ll study
          in Chapter 21, PyPy is often an
          order of magnitude (factor of 10) faster than CPython 2.X and 3.X on
          tests I’ve run, and sometimes even better. This is despite the fact
          that PyPy is a 32-bit build on my Windows test machine, while
          CPython is a faster 64-bit compile.
Naturally the only benchmark that truly matters is your own
          code, and there are cases where CPython wins the race; PyPy’s file
          iterators, for instance, may clock in slower today. Still, given
          PyPy’s focus on performance over language mutation, and especially
          its support for the numeric domain, many today see PyPy as an
          important path for Python. If you write CPU-intensive code, PyPy
          deserves your attention.



Execution Optimization Tools
CPython and most of the alternatives of the prior section all
      implement the Python language in similar ways: by compiling source code
      to byte code and executing the byte code on an appropriate virtual
      machine. Some systems, such as the Cython hybrid, the Shed Skin C++
      translator, and the just-in-time compilers in PyPy and Psyco instead
      attempt to optimize the basic execution model. These systems are not
      required knowledge at this point in your Python career, but a quick look
      at their place in the execution model might help demystify the model in
      general.
Cython: A Python/C hybrid
The Cython system (based on work done by the Pyrex
        project) is a hybrid language that combines Python code with the
        ability to call C functions and use C type declarations for variables,
        parameters, and class attributes. Cython code can be compiled to C
        code that uses the Python/C API, which may then be compiled
        completely. Though not completely compatible with standard Python,
        Cython can be useful both for wrapping external C libraries and for
        coding efficient C extensions for Python. See http://cython.org for current status and
        details.

Shed Skin: A Python-to-C++ translator
Shed Skin is an emerging system that takes a different approach to
        Python program execution—it attempts to translate Python source code
        to C++ code, which your computer’s C++ compiler then compiles to
        machine code. As such, it represents a platform-neutral approach to
        running Python code.
Shed Skin is still being actively developed as I write these
        words. It currently supports Python 2.4 to 2.6 code, and it limits
        Python programs to an implicit statically typed constraint that is
        typical of most programs but is technically not normal Python, so we
        won’t go into further detail here. Initial results, though, show that
        it has the potential to outperform both standard Python and Psyco-like
        extensions in terms of execution speed. Search the Web for details on
        the project’s current status.

Psyco: The original just-in-time compiler
The Psyco system is not another Python implementation, but rather a
        component that extends the byte code execution model to make programs
        run faster. Today, Psyco is something of an
        ex-project: it is still available for separate
        download, but has fallen out of date with Python’s evolution, and is
        no longer actively maintained. Instead, its ideas have been
        incorporated into the more complete PyPy system
        described earlier. Still, the ongoing importance of the ideas Psyco
        explored makes them worth a quick look.
In terms of Figure 2-2, Psyco is an
        enhancement to the PVM that collects and uses type information while
        the program runs to translate portions of the program’s byte code all
        the way down to true binary machine code for faster execution. Psyco
        accomplishes this translation without requiring changes to the code or
        a separate compilation step during development.
Roughly, while your program runs, Psyco collects information
        about the kinds of objects being passed around; that information can
        be used to generate highly efficient machine code tailored for those
        object types. Once generated, the machine code then replaces the
        corresponding part of the original byte code to speed your program’s
        overall execution. The result is that with Psyco, your program becomes
        quicker over time as it runs. In ideal cases, some Python code may
        become as fast as compiled C code under Psyco.
Because this translation from byte code happens at program
        runtime, Psyco is known as a just-in-time compiler. Psyco
        is different from the JIT compilers some readers may have seen for the
        Java language, though. Really, Psyco is a specializing JIT
        compiler—it generates machine code tailored to the data
        types that your program actually uses. For example, if a part of your
        program uses different data types at different times, Psyco may
        generate a different version of machine code to support each different
        type combination.
Psyco was shown to speed some Python code dramatically.
        According to its web page, Psyco provides “2X to 100X speed-ups,
        typically 4X, with an unmodified Python interpreter and unmodified
        source code, just a dynamically loadable C extension module.” Of equal
        significance, the largest speedups are realized for algorithmic code
        written in pure Python—exactly the sort of code you might normally
        migrate to C to optimize. For more on Psyco, search the Web or see its
        successor—the PyPy project described previously.


Frozen Binaries
Sometimes when people ask for a “real” Python compiler, what they’re
      really seeking is simply a way to generate standalone binary executables
      from their Python programs. This is more a packaging and shipping idea
      than an execution-flow concept, but it’s somewhat related. With the help
      of third-party tools that you can fetch off the Web, it is possible to
      turn your Python programs into true executables, known as
      frozen binaries in the Python world. These programs
      can be run without requiring a Python installation.
Frozen binaries bundle together the byte code of your program
      files, along with the PVM (interpreter) and any Python support files
      your program needs, into a single package. There are some variations on
      this theme, but the end result can be a single binary executable program
      (e.g., an .exe file on Windows)
      that can easily be shipped to customers. In Figure 2-2, it is as though the
      two rightmost bubbles—byte code and PVM—are merged into a single
      component: a frozen binary file.
Today, a variety of systems are capable of generating frozen
      binaries, which vary in platforms and features:
      py2exe for Windows only, but with broad Windows support; PyInstaller, which
      is similar to py2exe but also works on Linux and Mac OS X and is capable of generating
      self-installing binaries; py2app for creating Mac OS X applications; freeze, the original;
      and cx_freeze, which offers both Python 3.X and
      cross-platform support. You may have to fetch these tools separately
      from Python itself, but they are freely available.
These tools are also constantly evolving, so consult http://www.python.org
      or your favorite web search engine for more details and status. To give
      you an idea of the scope of these systems, py2exe can freeze standalone
      programs that use the tkinter, PMW, wxPython, and PyGTK GUI libraries;
      programs that use the pygame game programming toolkit;
      win32com client programs; and more.
Frozen binaries are not the same as the output of a true
      compiler—they run byte code through a virtual machine. Hence, apart from
      a possible startup improvement, frozen binaries run at the same speed as
      the original source files. Frozen binaries are also not generally small
      (they contain a PVM), but by current standards they are not unusually
      large either. Because Python is embedded in the frozen binary, though,
      it does not have to be installed on the receiving end to run your
      program. Moreover, because your code is embedded in the frozen binary,
      it is more effectively hidden from recipients.
This single file-packaging scheme is especially appealing to
      developers of commercial software. For instance, a Python-coded user
      interface program based on the tkinter toolkit can be frozen into an
      executable file and shipped as a self-contained program on a CD or on
      the Web. End users do not need to install (or even have to know about)
      Python to run the shipped program.

Future Possibilities?
Finally, note that the runtime execution model sketched here is really an
      artifact of the current implementation of Python, not of the language
      itself. For instance, it’s not impossible that a full, traditional
      compiler for translating Python source code to machine code may appear
      during the shelf life of this book (although the fact that one has not
      in over two decades makes this seem unlikely!).
New byte code formats and implementation variants may also be
      adopted in the future. For instance:
	The ongoing Parrot project aims to
          provide a common byte code format, virtual machine, and optimization
          techniques for a variety of programming languages, including Python.
          Python’s own PVM runs Python code more efficiently than Parrot (as
          famously demonstrated by a pie challenge at a software
          conference—search the Web for details), but it’s unclear how Parrot
          will evolve in relation to Python specifically. See http://parrot.org or the Web at large for
          details.

	The former Unladen Swallow project—an
          open source project developed by Google engineers—sought to make
          standard Python faster by a factor of at least 5, and fast enough to
          replace the C language in many contexts. This was an optimization
          branch of CPython (specifically Python 2.6), intended to be
          compatible yet faster by virtue of adding a JIT to standard Python.
          As I write this in 2012, this project seems to have drawn to a close
          (per its withdrawn Python PEP, it was “going the way of the
          Norwegian Blue”). Still, its lessons gained may be leveraged in
          other forms; search the Web for breaking developments.


Although future implementation schemes may alter the runtime
      structure of Python somewhat, it seems likely that the byte code
      compiler will still be the standard for some time to come. The
      portability and runtime flexibility of byte code are important features
      of many Python systems. Moreover, adding type constraint declarations to
      support static compilation would likely break much of the flexibility,
      conciseness, simplicity, and overall spirit of Python coding. Due to
      Python’s highly dynamic nature, any future implementation will likely
      retain many artifacts of the current PVM.


Chapter Summary
This chapter introduced the execution model of Python—how Python
    runs your programs—and explored some common variations on that model:
    just-in-time compilers and the like. Although you don’t really need to
    come to grips with Python internals to write Python scripts, a passing
    acquaintance with this chapter’s topics will help you truly understand how
    your programs run once you start coding them. In the next chapter, you’ll
    start actually running some code of your own. First, though, here’s the
    usual chapter quiz.

Test Your Knowledge: Quiz
	What is the Python interpreter?

	What is source code?

	What is byte code?

	What is the PVM?

	Name two or more variations on Python’s standard execution
        model.

	How are CPython, Jython, and IronPython different?

	What are Stackless and PyPy?



Test Your Knowledge: Answers
	The Python interpreter is a program that runs the Python
        programs you write.

	Source code is the statements you write for your program—it
        consists of text in text files that normally end with a .py extension.

	Byte code is the lower-level form of your program after Python
        compiles it. Python automatically stores byte code in files with a
        .pyc extension.

	The PVM is the Python Virtual Machine—the runtime engine of
        Python that interprets your compiled byte code.

	Psyco, Shed Skin, and frozen binaries are all variations on the
        execution model. In addition, the alternative implementations of
        Python named in the next two answers modify the model in some fashion
        as well—by replacing byte code and VMs, or by adding tools and
        JITs.

	CPython is the standard implementation of the language. Jython
        and IronPython implement Python programs for use in Java and .NET
        environments, respectively; they are alternative compilers for
        Python.

	Stackless is an enhanced version of Python aimed at concurrency,
        and PyPy is a reimplementation of Python targeted at speed. PyPy is
        also the successor to Psyco, and incorporates the JIT concepts that
        Psyco pioneered.










Chapter 3. How You Run Programs
OK, it’s time to start running some code. Now that you have a handle
  on the program execution model, you’re finally ready to start some real
  Python programming. At this point, I’ll assume that you have Python
  installed on your computer; if you don’t, see the start of the prior chapter
  and Appendix A for installation and
  configuration hints on various platforms. Our goal here is to learn how to
  run Python program code.
There are multiple ways to tell Python to execute the code you type.
  This chapter discusses all the program launching techniques in common use
  today. Along the way, you’ll learn how to both type code
  interactively, and how to save it in
  files to be run as often as you like in a variety of
  ways: with system command lines, icon clicks, module imports, exec calls, menu options in the IDLE GUI, and
  more.
As for the previous chapter, if you have prior programming experience
  and are anxious to start digging into Python itself, you may want to skim
  this chapter and move on to Chapter 4. But don’t skip this chapter’s
  early coverage of preliminaries and conventions, its overview of debugging
  techniques, or its first look at module imports—a topic essential to
  understanding Python’s program architecture, which we won’t revisit until a
  later part. I also encourage you to see the sections on IDLE and other IDEs,
  so you’ll know what tools are available when you start developing more
  sophisticated Python programs.
The Interactive Prompt
This section gets us started with interactive coding basics. Because it’s
    our first look at running code, we also cover some preliminaries here,
    such as setting up a working directory and the system path, so be sure to
    read this section first if you’re relatively new to programming. This
    section also explains some conventions used throughout the book, so most
    readers should probably take at least a quick look here.
Starting an Interactive Session
Perhaps the simplest way to run Python programs is to type them at
      Python’s interactive command line, sometimes called the
      interactive prompt. There are a variety of ways to
      start this command line: in an IDE, from a system console, and so on.
      Assuming the interpreter is installed as an executable program on your
      system, the most platform-neutral way to start an interactive
      interpreter session is usually just to type python at your operating system’s prompt,
      without any arguments. For example:
% python
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z
Typing the word “python” at your system shell prompt like this begins an interactive
      Python session; the “%” character at the start of this listing stands
      for a generic system prompt in this book—it’s not input that you type
      yourself. On Windows, a Ctrl-Z gets you out of this
      session; on Unix, try Ctrl-D instead.
The notion of a system shell prompt is
      generic, but exactly how you access it varies by platform:
	On Windows, you can type python
          in a DOS console window—a program named cmd.exe and usually known as
          Command Prompt. For more details on starting
          this program, see this chapter’s sidebar “Where Is Command Prompt on Windows?”.

	On Mac OS X, you can start a Python interactive interpreter by
          double-clicking on Applications→Utilities→Terminal, and then typing
          python in the window that
          opens up.

	On Linux (and other Unixes), you
          might type this command in a shell or terminal window
          (for instance, in an xterm or console running a
          shell such as ksh or
          csh).

	Other systems may use similar or platform-specific devices. On
          handheld devices, for example, you might click the Python icon in
          the home or application window to launch an interactive
          session.


On most platforms, you can start the interactive prompt in
      additional ways that don’t require typing a command, but they vary per
      platform even more widely:
	On Windows 7 and earlier, besides typing
          python in a shell window, you
          can also begin similar interactive sessions by starting the IDLE GUI
          (discussed later), or by selecting the “Python (command line)” menu
          option from the Start button menu for Python, as shown in Figure 2-1 in Chapter 2. Both spawn a Python
          interactive prompt with the same functionality obtained with a
          “python” command.

	On Windows 8, you don’t have a Start
          button (at least as I write this), but there are other ways to get
          to the tools described in the prior bullet, including tiles, Search,
          File Explorer, and the “All apps” interface on the Start screen. See
          Appendix A for more pointers
          on this platform.

	Other platforms have similar ways to start a Python
          interactive session without typing commands, but they’re too
          specific to get into here; see your system’s documentation for
          details.


Anytime you see the >>>
      prompt, you’re in an interactive Python interpreter session—you can type
      any Python statement or expression here and run it immediately. We will
      in a moment, but first we need to get a few startup details sorted out
      to make sure all readers are set to go.
Where Is Command Prompt on Windows?
So how do you start the command-line interface on Windows? Some Windows readers
        already know, but Unix developers and beginners may not; it’s not as
        prominent as terminal or console windows on Unix systems. Here are
        some pointers on finding your Command Prompt, which vary slightly per
        Windows version.
On Windows 7 and earlier, this is usually
        found in the Accessories section of the Start→All Programs menu, or
        you can run it by typing cmd in
        the Start→Run... dialog box or the Start menu’s search entry field.
        You can drag out a desktop shortcut to get to it quicker if
        desired.
On Windows 8, you can access Command Prompt
        in the menu opened by right-clicking on the preview in the screen’s
        lower-left corner; in the Windows System section of the “All apps”
        display reached by right-clicking your Start screen; or by typing
        cmd or command prompt in the input field of the Search
        charm pulled down from the screen’s upper-right corner. There are
        probably additional routes, and touch screens offer similar access.
        And if you want to forget all that, pin it to your desktop taskbar for
        easy access next time around.
These procedures are prone to vary over time, and possibly even
        per computer and user. I’m trying to avoid making this a book on
        Windows, though, so I’ll cut this topic short here. When in doubt, try
        the system Help interface (whose usage may differ as much as the tools
        it provides help for!).
A note to any Unix users reading this sidebar who may be
        starting to feel like a fish out of water: you may also be interested
        in the Cygwin system, which brings a
        full Unix command prompt to Windows. See Appendix A for more pointers.


The System Path
When we typed python in the
      last section to start an interactive session, we relied on the fact that
      the system located the Python program for us on its program search path.
      Depending on your Python version and platform, if you have not set your
      system’s PATH environment variable to
      include Python’s install directory, you may need to replace the word
      “python” with the full path to the Python executable on your machine. On
      Unix, Linux, and similar, something like /usr/local/bin/python or /usr/bin/python3 will often suffice. On
      Windows, try typing C:\Python33\python (for version 3.3):
c:\code> c:\python33\python
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z
Alternatively, you can run a “cd” change-directory command to go
      to Python’s install directory before typing python—try the cd
      c:\python33 command on Windows, for example:
c:\code> cd c:\python33
c:\Python33> python
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z
But you’ll probably want to set your PATH eventually, so a simple “python”
      suffices. If you don’t know what PATH
      is or how to set it, see Appendix A—it covers environment
      variables like this whose usage varies per platform, as well as Python
      command-line arguments we won’t be using much in this book. The short
      story for Windows users: see the Advanced settings in the System entry
      of your Control Panel. If you’re using Python 3.3 and later, this is now
      automatic on Windows, as the next section explains.

New Windows Options in 3.3: PATH, Launcher
The foregoing section and much of this chapter at large
      describe the generic state of play for all 2.X and 3.X Pythons prior to
      version 3.3. Starting with Python 3.3, the Windows installer has an
      option to automatically add Python 3.3’s directory
      to your system PATH, if
      enabled in the installer’s windows. If you use this option, you won’t
      need to type a directory path or issue a “cd” to run python commands as in the prior section. Be
      sure to select this option during the install if you want it, as it’s
      currently disabled by default.
More dramatically, Python 3.3 for Windows ships with and
      automatically installs the new Windows launcher—a system that
      comes with new executable programs, py with a console and pyw without, that
      are placed in directories on your system path, and so may be run out of
      the box without any PATH
      configurations, change-directory commands, or directory path
      prefixes:
c:\code> py
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

c:\code> py −2
Python 2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMD64)] ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

c:\code> py −3.1
Python 3.1.4 (default, Jun 12 2011, 14:16:16) [MSC v.1500 64 bit (AMD64)] ...
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z
As shown in the last two commands here, these executables also
      accept Python version numbers on the command line (and in Unix-style
      #! lines at the top of scripts, as
      discussed later), and are associated to open Python files when clicked
      just like the original python
      executable—which is still available and works as before, but is somewhat
      superseded by the launcher’s new programs.
The launcher is a standard part of Python 3.3, and is available
      standalone for use with other versions. We’ll see more on this new
      launcher in this and later chapters, including a brief look at its
      #! line support here. However,
      because it is of interest only to Windows users, and even for this group
      is present only in 3.3 or where installed separately, I’ve collected
      almost all of the details about the launcher in Appendix B.
If you’ll be working on Windows under Python 3.3 or later, I
      suggest taking a brief detour to that appendix now, as it provides an
      alternative, and in some ways better, way to run Python command lines
      and scripts. At a base level, launcher users can type py instead of python in most of the system commands shown
      in this book, and may avoid some configuration steps. Especially on
      computers with multiple Python versions, though, the new launcher gives
      you more explicit control over which Python runs your code.

Where to Run: Code Directories
Now that I’ve started showing you how to run code, I want
      to say a few words up front about where to run
      code. To keep things simple, in this chapter and book at large I’m going
      to be running code from a working directory (a.k.a.
      folder) I’ve created on my Windows computer called
      C:\code—a subdirectory at the top
      of my main drive. That’s where I’ll start most interactive sessions, and
      where I’ll be both saving and running most script files. This also means
      the files that examples will create will mostly show up in this
      directory.
If you’ll be working along, you should probably do something
      similar before we get started. Here are some pointers if you need help
      getting set up with a working directory on your computer:
	On Windows, you can make your working code directory in File Explorer or a
          Command Prompt window. In File Explorer, look for New Folder, see
          the File menu, or try a right-click. In Command Prompt, type and run
          a mkdir command, usually after
          you cd to your desired parent
          directory (e.g., cd c:\ and
          mkdir code). Your working
          directory can be located wherever you like and called whatever you
          wish, and doesn’t have to be C:\code (I chose this name because it’s
          short in prompts). But running out of one directory will help you
          keep track of your work and simplify some tasks. For more Windows
          hints, see this chapter’s sidebar on Command Prompt, as well as
          Appendix A.

	On Unix-based systems (including Mac OS X and
          Linux), your working directory might be in
          /usr/home and be created by a
          mkdir command in a shell window
          or file explorer GUI specific to your platform, but the same
          concepts apply. The Cygwin Unix-like system for Windows is similar
          too, though your directory names may vary (/home and /cygdrive/c are candidates).


You can store your code in Python’s install directory too (e.g.,
      C:\Python33 on Windows) to simplify
      some command lines before setting PATH, but you probably shouldn’t—this is for
      Python itself, and your files may not survive a move or
      uninstall.
Once you’ve made your working directory, always start there to
      work along with the examples in this book. The prompts in this book that
      show the directory that I’m running code in will reflect my Windows
      laptop’s working directory; when you see C:\code> or %, think the location and name of your own
      directory.

What Not to Type: Prompts and Comments
Speaking of prompts, this book sometimes shows system prompts as a generic %, and sometimes in full C:\code> Windows form. The former is meant
      to be platform agnostic (and derives from earlier editions’ use of
      Linux), and the latter is used in Windows-specific contexts. I also add
      a space after system prompts just for readability in this book. When
      used, the % character at the start of
      a system command line stands for the system’s prompt, whatever that may
      be on your machine. For instance, on my machine % stands for C:\code> in Windows Command Prompt, and
      just $ in my Cygwn install.
To beginners: don’t type the % character (or the
      C:\code system prompt it sometimes
      stands for) you see in this book’s interaction listings yourself—this is
      text the system prints. Type just the text after
      these system prompts. Similarly, do not type the >>> and ... characters shown at the start of lines in
      interpreter interaction listings—these are prompts that Python displays
      automatically as visual guides for interactive code entry. Type just the
      text after these Python prompts. For instance, the
      ... prompt is used for continuation
      lines in some shells, but doesn’t appear in IDLE, and shows up in some
      but not all of this book’s listings; don’t type it yourself if it’s
      absent in your interface.
To help you remember this, user inputs are shown in bold in this book, and prompts are not. In
      some systems these prompts may differ (for instance, the
      PyPy performance-focused implementation described
      in Chapter 2 uses four-character
      >>>> and ....), but the same rules apply. Also keep in
      mind that commands typed after these system and Python prompts are meant
      to be run immediately, and are not generally to be saved in the source
      files we will be creating; we’ll see why this distinction matters
      ahead.
In the same vein, you normally don’t need to type text that starts
      with a # character in
      listings in this book—as you’ll learn, these are
      comments, not executable code. Except when # is used to introduce a directive at the top of a script for Unix or
      the Python 3.3 Windows launcher, you can safely ignore the text that
      follows it (more on Unix and the launcher later in this chapter and in
      Appendix B).
Note
If you’re working along, interactive
        listings will drop most “...” continuation prompts as of Chapter 17 to aid cut-and-paste of larger code such as
        functions and classes from ebooks or other; until then, paste or type
        one line at a time and omit the prompts. At least initially, it’s
        important to type code manually, to get a feel for syntax details and
        errors. Some examples will be listed either by themselves or in named
        files available in the book’s examples package (per the preface), and
        we’ll switch between listing formats often; when in doubt, if you see
        “>>>”, it means the code is being typed interactively.


Running Code Interactively
With those preliminaries out of the way, let’s move on to typing some
      actual code. However it’s started, the Python interactive session begins
      by printing two lines of informational text giving the Python version
      number and a few hints shown earlier (which I’ll omit from most of this
      book’s examples to save space), then prompts for input with >>> when
      it’s waiting for you to type a new Python statement or
      expression.
When working interactively, the results of your code are displayed
      below the >>> input lines
      after you press the Enter key. For instance, here are the results of two
      Python print statements (print is really a function call in Python 3.X, but not in 2.X, so the parentheses
      here are required in 3.X only):
% python
>>> print('Hello world!')
Hello world!
>>> print(2 ** 8)
256
There it is—we’ve just run some Python code (were you expecting
      the Spanish Inquisition?). Don’t worry about the
      details of the print statements shown
      here yet; we’ll start digging into syntax in the next chapter. In short,
      they print a Python string and an integer, as shown by the output lines
      that appear after each >>>
      input line (2 ** 8 means 2 raised to
      the power 8 in Python).
When coding interactively like this, you can type as many Python
      commands as you like; each is run immediately after it’s entered.
      Moreover, because the interactive session automatically prints the
      results of expressions you type, you don’t usually need to say “print”
      explicitly at this prompt (the format of automatic prints can differ slightly, but you don’t yet need to care):
>>> lumberjack = 'okay'
>>> lumberjack
'okay'
>>> 2 ** 8
256
>>> ^Z                     # Use Ctrl-D (on Unix) or Ctrl-Z (on Windows) to exit
%
Here, the first line saves a value by assigning it to a variable (lumberjack), which is created by the
      assignment; and the last two lines typed are expressions (lumberjack and 2 **
      8), whose results are displayed automatically. Again, to exit
      an interactive session like this and return to your system shell prompt,
      type Ctrl-D on Unix-like machines, and Ctrl-Z on Windows. In the IDLE
      GUI discussed later, either type Ctrl-D or simply close the
      window.
Notice the italicized note about this on the
      right side of this listing (starting with “#” here). I’ll use these
      throughout to add remarks about what is being illustrated, but you don’t
      need to type this text yourself. In fact, just like system and Python
      prompts, you shouldn’t type this when it’s on a system command line; the
      “#” part is taken as a comment by Python but may be an error at a system
      prompt.
Now, we didn’t do much in this session’s code—just typed some
      Python print and assignment
      statements, along with a few expressions, which we’ll study in detail
      later. The main thing to notice is that the interpreter executes the
      code entered on each line immediately, when the Enter key is
      pressed.
For example, when we typed the first print statement at the >>> prompt, the output (a Python
      string) was echoed back right away. There was no need to create a source
      code file, and no need to run the code through a compiler and linker
      first, as you’d normally do when using a language such as C or C++. As
      you’ll see in later chapters, you can also run multiline statements at
      the interactive prompt; such a statement runs immediately after you’ve
      entered all of its lines and pressed Enter twice to add a blank
      line.

Why the Interactive Prompt?
The interactive prompt runs code and echoes results as you go, but
      it doesn’t save your code in a file. Although this means you won’t do
      the bulk of your coding in interactive sessions, the interactive prompt
      turns out to be a great place to both experiment
      with the language and test program files on the
      fly.
Experimenting
Because code is executed immediately, the interactive prompt is a
        perfect place to experiment with the language and will be used often
        in this book to demonstrate smaller examples. In fact, this is the
        first rule of thumb to remember: if you’re ever in doubt about how a
        piece of Python code works, fire up the interactive command line and
        try it out to see what happens.
For instance, suppose you’re reading a Python program’s code and
        you come across an expression like 'Spam!' *
        8 whose meaning you don’t understand. At this point, you can
        spend 10 minutes wading through manuals, books, and the Web to try to
        figure out what the code does, or you can simply run it
        interactively:
% python
>>> 'Spam!' * 8                                  # Learning by trying
'Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!'
The immediate feedback you receive at the interactive prompt is
        often the quickest way to deduce what a piece of code does. Here, it’s
        clear that it does string repetition: in Python * means multiply for numbers, but repeat for
        strings—it’s like concatenating a string to itself repeatedly (more on
        strings in Chapter 4).
Chances are good that you won’t break anything by experimenting
        this way—at least, not yet. To do real damage, like deleting files and
        running shell commands, you must really try, by importing modules
        explicitly (you also need to know more about Python’s system
        interfaces in general before you will become that dangerous!).
        Straight Python code is almost always safe to run.
For instance, watch what happens when you make a
        mistake at the interactive prompt:
>>> X                                            # Making mistakes
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'X' is not defined
In Python, using a variable before it has been assigned a value
        is always an error—otherwise, if names were filled in with defaults,
        some errors might go undetected. This means you must initialize
        counters to zero before you can add to them, must initialize lists
        before extending them, and so on; you don’t declare variables, but
        they must be assigned before you can fetch their values.
We’ll learn more about that later; the important point here is
        that you don’t crash Python or your computer when you make a mistake
        this way. Instead, you get a meaningful error message pointing out the
        mistake and the line of code that made it, and you can continue on in
        your session or script. In fact, once you get comfortable with Python,
        its error messages may often provide as much debugging support as
        you’ll need (you’ll learn more about debugging options in the sidebar
        “Debugging Python Code”).

Testing
Besides serving as a tool for experimenting while you’re learning the
        language, the interactive interpreter is also an ideal place to test
        code you’ve written in files. You can import your module files
        interactively and run tests on the tools they define by typing calls
        at the interactive prompt on the fly.
For instance, the following tests a function in a precoded
        module that ships with Python in its standard library (it prints the
        name of the directory you’re currently working in, with a doubled-up
        backslash that stands for just one), but you can do the same once you
        start writing module files of your own:
>>> import os
>>> os.getcwd()                                  # Testing on the fly
'c:\\code'
More generally, the interactive prompt is a place to test
        program components, regardless of their source—you can import and test
        functions and classes in your Python files, type calls to linked-in C
        functions, exercise Java classes under Jython, and more. Partly
        because of its interactive nature, Python supports an experimental and
        exploratory programming style you’ll find convenient when getting
        started. Although Python programmers also test with in-file code (and
        we’ll learn ways to make this simple later in the book), for many, the
        interactive prompt is still their first line of testing
        defense.


Usage Notes: The Interactive Prompt
Although the interactive prompt is simple to use, there are a few tips
      that beginners should keep in mind. I’m including lists of common
      mistakes like the following in this chapter for reference, but they
      might also spare you from a few headaches if you read them up
      front:
	Type Python commands only.
          First of all, remember that you can only type Python code at
          Python’s >>> prompt, not system
          commands. There are ways to run system commands from within Python
          code (e.g., with os.system), but
          they are not as direct as simply typing the commands
          themselves.

	print statements are required only in files.
          Because the interactive interpreter automatically prints the
          results of expressions, you do not need to type complete print statements interactively. This is a
          nice feature, but it tends to confuse users when they move on to
          writing code in files: within a code file, you must use print statements to see your output
          because expression results are not automatically echoed. Remember,
          you must say print in files, but
          it’s optional interactively.

	Don’t indent at the interactive prompt
          (yet). When typing Python programs, either interactively
          or into a text file, be sure to start all your unnested statements
          in column 1 (that is, all the way to the left). If you
          don’t, Python may print a “SyntaxError” message, because blank space
          to the left of your code is taken to be indentation that groups
          nested statements. Until Chapter 10, all statements you write
          will be unnested, so this includes everything for now. Remember, a
          leading space generates an error message, so don’t start with a
          space or tab at the interactive prompt unless it’s nested
          code.

	Watch out for prompt changes for
          compound statements. We won’t meet
          compound (multiline) statements until Chapter 4 and not in earnest until Chapter 10, but as a preview, you
          should know that when typing lines 2 and beyond of a compound
          statement interactively, the prompt may change. In the simple shell
          window interface, the interactive prompt changes to ... instead of >>> for lines 2 and beyond; in
          the IDLE GUI interface, lines after the first are instead
          automatically indented.
You’ll see why this matters in Chapter 10. For now, if you happen
          to come across a ... prompt or a
          blank line when entering your code, it probably means that you’ve
          somehow confused interactive Python into thinking you’re typing a
          multiline statement. Try hitting the Enter key or a Ctrl-C
          combination to get back to the main prompt. The >>> and ... prompt strings can also be changed
          (they are available in the built-in module sys), but I’ll assume they have not been
          in the book’s example listings.

	Terminate compound statements at the
          interactive prompt with a blank line. At the interactive
          prompt, inserting a blank line (by hitting the Enter key at the start of a
          line) is necessary to tell interactive Python that you’re done
          typing the multiline statement. That is, you must press Enter twice
          to make a compound statement run. By contrast, blank lines are not
          required in files and are simply ignored if present. If you don’t
          press Enter twice at the end of a compound statement when working
          interactively, you’ll appear to be stuck in a limbo state, because
          the interactive interpreter will do nothing at all—it’s waiting for
          you to press Enter again!

	The interactive prompt runs one
          statement at a time. At the interactive prompt,
          you must run one statement to completion before typing
          another. This is natural for simple statements, because pressing the
          Enter key runs the statement entered. For compound statements,
          though, remember that you must submit a blank line to terminate the
          statement and make it run before you can type the next
          statement.


Entering multiline statements
At the risk of repeating myself, I’ve received multiple emails from readers who’d gotten
        burned by the last two points, so they probably merit emphasis. I’ll
        introduce multiline (a.k.a. compound) statements in the next chapter,
        and we’ll explore their syntax more formally later in this book.
        Because their behavior differs slightly in files and at the
        interactive prompt, though, two cautions are in order here.
First, be sure to terminate multiline compound statements like for
        loops and if tests at the
        interactive prompt with a blank line. In other words, you
        must press the Enter key twice, to terminate the whole
        multiline statement and then make it run. For example (pun not
        intended):
>>> for x in 'spam':
...     print(x)              # Press Enter twice here to make this loop run
...
You don’t need the blank line after compound statements in a
        script file, though; this is required
        only at the interactive prompt. In a file, blank
        lines are not required and are simply ignored when present; at the
        interactive prompt, they terminate multiline statements. Reminder: the
        ... continuation line prompt in the
        preceding is printed by Python automatically as a visual guide; it may
        not appear in your interface (e.g., IDLE), and is sometimes omitted by
        this book, but do not type it yourself if it’s absent.
Also bear in mind that the interactive prompt runs just
        one statement at a time: you must press Enter
        twice to run a loop or other multiline statement before you can type
        the next statement:
>>> for x in 'spam':
...     print(x)              # Press Enter twice before a new statement
... print('done')
  File "<stdin>", line 3
    print('done')
        ^
SyntaxError: invalid syntax
This means you can’t cut and paste multiple lines of code into
        the interactive prompt, unless the code includes blank lines after
        each compound statement. Such code is better run in a
        file—which brings us to the next section’s
        topic.



System Command Lines and Files
Although the interactive prompt is great for experimenting and testing,
    it has one big disadvantage: programs you type there go away as soon as
    the Python interpreter executes them. Because the code you type
    interactively is never stored in a file, you can’t run it again without
    retyping it from scratch. Cut-and-paste and command recall can help some
    here, but not much, especially when you start writing larger programs. To
    cut and paste code from an interactive session, you would have to edit out
    Python prompts, program outputs, and so on—not exactly a modern software
    development methodology!
To save programs permanently, you need to write your code in files,
    which are usually known as modules. Modules are simply text
    files containing Python statements. Once they are coded, you can ask the Python
    interpreter to execute the statements in such a file any number of times,
    and in a variety of ways—by system command lines, by file icon clicks, by
    options in the IDLE user interface, and more. Regardless of how it is run,
    Python executes all the code in a module file from top to bottom each time
    you run the file.
Terminology in this domain can vary somewhat. For instance, module
    files are often referred to as programs in Python—that is, a program
    is considered to be a series of precoded statements stored
    in a file for repeated execution. Module files that are run directly are
    also sometimes called scripts—an informal term usually
    meaning a top-level program file. Some reserve the term “module” for a
    file imported from another file, and “script” for the main file of a
    program; we generally will here, too (though you’ll have to stay tuned for
    more on the meaning of “top-level,” imports, and main files later in this
    chapter).
Whatever you call them, the next few sections explore ways to run
    code typed into module files. In this section, you’ll learn how to run
    files in the most basic way: by listing their names in a python command line entered at your computer’s
    system prompt. Though it might seem primitive to some—and can often be
    avoided altogether by using a GUI like IDLE, discussed later—for many
    programmers a system shell command-line window, together with a text
    editor window, constitutes as much of an integrated development
    environment as they will ever need, and provides more direct control over
    programs.
A First Script
Let’s get started. Open your favorite text editor (e.g.,
      vi, Notepad, or the IDLE editor), type the
      following statements into a new text file named script1.py, and save it in your working code
      directory that you set up earlier:
# A first Python script
import sys                  # Load a library module
print(sys.platform)
print(2 ** 100)             # Raise 2 to a power
x = 'Spam!'
print(x * 8)                # String repetition
This file is our first official Python script (not counting the
      two-liner in Chapter 2). You shouldn’t
      worry too much about this file’s code, but as a brief description, this
      file:
	Imports a Python module (libraries of additional tools), to
          fetch the name of the platform

	Runs three print function
          calls, to display the script’s results

	Uses a variable named x,
          created when it’s assigned, to hold onto a string object

	Applies various object operations that we’ll begin studying in
          the next chapter


The sys.platform here is just a
      string that identifies the kind of computer you’re working on; it lives
      in a standard Python module called sys,
      which you must import to load (again, more on imports later).
For color, I’ve also added some formal Python comments here—the text after
      the # characters. I mentioned these
      earlier, but should be more formal now that they’re showing up in
      scripts. Comments can show up on lines by themselves, or to the right of
      code on a line. The text after a # is
      simply ignored as a human-readable comment and is not considered part of
      the statement’s syntax. If you’re copying this code, you can ignore the
      comments; they are just informative. In this book, we usually use a
      different formatting style to make comments more visually distinctive,
      but they’ll appear as normal text in your code.
Again, don’t focus on the syntax of the code in this file for now;
      we’ll learn about all of it later. The main point to notice is that
      you’ve typed this code into a file, rather than at the interactive
      prompt. In the process, you’ve coded a fully functional Python
      script.
Notice that the module file is called script1.py. As for all top-level files, it
      could also be called simply script,
      but files of code you want to import into a client
      have to end with a .py suffix.
      We’ll study imports later in this chapter. Because you may want to
      import them in the future, it’s a good idea to use .py suffixes for most Python files that you
      code. Also, some text editors detect Python files by their .py suffix; if the suffix is not present, you
      may not get features like syntax colorization and automatic
      indentation.

Running Files with Command Lines
Once you’ve saved this text file, you can ask Python to run it by listing
      its full filename as the first argument to a python command like the following typed at
      the system shell prompt (don’t type this
      at Python’s interactive prompt, and read on to the next paragraph if
      this doesn’t work right away for you):
% python script1.py
win32
1267650600228229401496703205376
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
Again, you can type such a system shell command in whatever your
      system provides for command-line entry—a Windows Command Prompt window,
      an xterm window, or similar. But be sure to run this in the same working
      directory where you’ve saved your script file (“cd” there first if
      needed), and be sure to run this at the system prompt, not Python’s
      “>>>” prompt. Also remember to replace the command’s word
      “python” with a full directory path as we did before if your PATH setting is not configured, though this
      isn’t required for the “py” Windows launcher program, and may not be
      required in 3.3 and later.
Another note to beginners: do not type any of the preceding text
      in the script1.py source file you
      created in the prior section. This text is a system command and program
      output, not program code. The first line here is the shell command used
      to run the source file, and the lines following it are the results
      produced by the source file’s print
      statements. And again, remember that the % stands for the system prompt—don’t type it yourself (not to nag, but it’s
      a remarkably common early mistake).
If all works as planned, this shell command makes Python run the
      code in this file line by line, and you will see the output of the
      script’s three print statements—the
      name of the underlying platform as known to Python, 2 raised to the
      power 100, and the result of the same string repetition expression we
      saw earlier (again, more on the meaning of the last two of these in
      Chapter 4).
If all didn’t work as planned, you’ll get an
      error message—make sure you’ve entered the code in your file exactly as
      shown, and try again. The next section has additional options and
      pointers on this process, and we’ll talk about debugging options in the
      sidebar “Debugging Python Code”, but at this point in
      the book your best bet is probably rote imitation. And if all else
      fails, you might also try running under the IDLE GUI discussed ahead—a
      tool that sugarcoats some launching details, though sometimes at the
      expense of the more explicit control you have when using command
      lines.
You can also fetch the code examples off the Web if copying grows
      too tedious or error-prone, though typing some code initially will help
      you learn to avoid syntax errors. See the preface for details on how to
      obtain the book’s example files.

Command-Line Usage Variations
Because this scheme uses shell command lines to start Python programs,
      all the usual shell syntax applies. For instance, you can route the
      printed output of a Python script to a file to save it for later use or
      inspection by using special shell syntax:
% python script1.py > saveit.txt
In this case, the three output lines shown in the prior run are
      stored in the file saveit.txt
      instead of being printed. This is generally known as stream redirection; it works
      for input and output text and is available on Windows and Unix-like
      systems. This is nice for testing, as you can write programs that watch
      for changes in other programs’ outputs. It also has little to do with
      Python, though (Python simply supports it), so we will skip further
      details on shell redirection syntax here.
If you are working on a Windows platform,
      this example works the same, but the system prompt is
      normally different as described earlier:
C:\code> python script1.py
win32
1267650600228229401496703205376
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
As usual, if you haven’t set your PATH environment variable to include the full directory path to python, be sure to include this in your
      command, or run a change-directory command to go to the path
      first:
C:\code> C:\python33\python script1.py
win32
1267650600228229401496703205376
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
Alternatively, if you’re using the Windows launcher new in Python
      3.3 (described earlier), a py command
      will have the same effect, but does not require a directory path or
      PATH settings, and allows you to
      specify Python version numbers on the command line too:
c:\code> py −3 script1.py
win32
1267650600228229401496703205376
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
On all recent versions of Windows, you can
      also type just the name of your script, and omit
      the name of Python itself. Because newer Windows systems use the Windows
      Registry (a.k.a. filename associations) to find a program with which to
      run a file, you don’t need to name “python” or “py” on the command line
      explicitly to run a .py file. The
      prior command, for example, could be simplified to the following on most
      Windows machines, and will automatically be run by python prior to 3.3, and by py in 3.3 and later—just as though you had
      clicked on the file’s icon in Explorer (more on this option
      ahead):
C:\code> script1.py
Finally, remember to give the full path to your script file if it
      lives in a different directory from the one in which you are working.
      For example, the following system command line, run from D:\other, assumes Python is in your system
      path but runs a file located elsewhere:
C:\code>  cd D:\other
D:\other> python c:\code\script1.py
If your PATH doesn’t include
      Python’s directory, you’re not using the Windows launcher’s py program, and neither Python nor your script
      file is in the directory you’re working in, use full paths for
      both:
D:\other> C:\Python33\python c:\code\script1.py

Usage Notes: Command Lines and Files
Running program files from system command lines is a fairly straightforward
      launch option, especially if you are familiar with command lines in
      general from prior work. It’s also perhaps the most portable way to run
      Python programs since nearly every computer has some notion of a command
      line and directory structure. For newcomers, though, here are a few
      pointers about common beginner traps that might help you avoid some
      frustration:
	Beware of automatic extensions on
          Windows and IDLE. If you use the Notepad program to code
          program files on Windows, be careful to pick the type All Files when
          it comes time to save your file, and give the file a
          .py suffix explicitly.
          Otherwise, Notepad will save your file with a .txt extension (e.g., as script1.py.txt), making it difficult to
          use in some schemes; it won’t be importable, for example.
Worse, Windows hides file extensions by default, so unless you
          have changed your view options you may not even notice that you’ve
          coded a text file and not a Python file. The file’s icon may give
          this away—if it doesn’t have a snake of some sort on it, you may
          have trouble. Uncolored code in IDLE and files that open to edit
          instead of run when clicked are other symptoms of this
          problem.
Microsoft Word similarly adds a .doc extension by default; much worse, it
          adds formatting characters that are not legal Python syntax. As a
          rule of thumb, always pick All Files when saving under Windows, or
          use a more programmer-friendly text editor such as IDLE. IDLE does
          not even add a .py suffix automatically—a feature some
          programmers tend to like, but some users do not.

	Use file extensions and directory
          paths at system prompts, but not for imports. Don’t
          forget to type the full name of your file in system command
          lines—that is, use python
          script1.py rather than python
          script1. By contrast, Python’s import statements, which we’ll meet later
          in this chapter, omit both the .py file suffix and the directory path
          (e.g., import script1). This may
          seem trivial, but confusing these two is a common mistake.
At the system prompt, you are in a system shell, not Python,
          so Python’s module file search rules do not apply. Because of that,
          you must include both the .py
          extension and, if necessary, the full directory path leading to the
          file you wish to run. For instance, to run a file that resides in a
          different directory from the one in which you are working, you would
          typically list its full path (e.g., python
          d:\tests\spam.py). Within Python code, however, you can
          just say import spam and rely on
          the Python module search path to locate your file, as described
          later.

	Use print statements
          in files. Yes, we’ve already been over this, but it is
          such a common mistake that it’s worth repeating at least once here.
          Unlike in interactive coding, you generally must use print statements to see output from
          program files. If you don’t see any output, make sure you’ve said
          “print” in your file. print
          statements are not required in an interactive
          session, since Python automatically echoes expression results;
          prints don’t hurt here, but are
          superfluous typing.




Unix-Style Executable Scripts: #!
Our next launching technique is really a specialized form of the prior, which,
    despite this section’s title, can apply to program files run on both Unix
    and Windows today. Since it has its roots on Unix, let’s begin this story
    there.
Unix Script Basics
If you are going to use Python on a Unix, Linux, or Unix-like system, you can
      also turn files of Python code into executable programs, much as you
      would for programs coded in a shell language such as csh or ksh. Such files are usually called
      executable scripts. In simple terms, Unix-style
      executable scripts are just normal text files containing Python
      statements, but with two special properties:
	Their first line is
          special. Scripts usually start with a line that begins
          with the characters #!
          (often called “hash bang” or “shebang”), followed by the path to the
          Python interpreter on your machine.

	They usually have executable
          privileges. Script files are usually marked as executable
          to tell the operating system that they may be run as top-level
          programs. On Unix systems, a command such as chmod +x
          file.py usually does the trick.


Let’s look at an example for Unix-like systems. Use your text
      editor again to create a file of Python code called brian:
#!/usr/local/bin/python
print('The Bright Side ' + 'of Life...')        # + means concatenate for strings
The special line at the top of the file tells the system where the
      Python interpreter lives. Technically, the first line is a Python
      comment. As mentioned earlier, all comments in Python programs start
      with a # and span to the end of the
      line; they are a place to insert extra information for human readers of
      your code. But when a comment such as the first line in this file
      appears, it’s special on Unix because the operating system shell uses it
      to find an interpreter for running the program code in the rest of the
      file.
Also, note that this file is called simply brian, without the .py suffix used for the module file earlier.
      Adding a .py to the name wouldn’t
      hurt (and might help you remember that this is a Python program file),
      but because you don’t plan on letting other modules import the code in
      this file, the name of the file is irrelevant. If you give the file
      executable privileges with a chmod +x
      brian shell command, you can run it from the operating system
      shell as though it were a binary program (for the following, either make
      sure ., the current directory, is in
      your system PATH setting, or run this
      with ./brian):
% brian
The Bright Side of Life...

The Unix env Lookup Trick
On some Unix systems, you can avoid hardcoding the path to the Python
      interpreter in your script file by writing the special first-line
      comment like this:
#!/usr/bin/env python
...script goes here...
When coded this way, the env
      program locates the Python interpreter according to your system search path
      settings (in most Unix shells, by looking in all the directories listed
      in your PATH environment
      variable). This scheme can be more portable, as you don’t need to
      hardcode a Python install path in the first line of all your scripts.
      That way, if your scripts ever move to a new machine, or your Python
      ever moves to a new location, you must update just PATH, not all your scripts.
Provided you have access to env
      everywhere, your scripts will run no matter where Python lives on your
      system. In fact, this env form is
      generally recommended today over even something as generic as /usr/bin/python, because some platforms may
      install Python elsewhere. Of course, this assumes that env lives in the same place everywhere (on
      some machines, it may be in /sbin,
      /bin, or elsewhere); if not, all
      portability bets are off!

The Python 3.3 Windows Launcher: #! Comes to Windows
A note for Windows users running Python 3.2 and earlier:
      the method described here is a Unix trick, and it may not work on your
      platform. Not to worry; just use the basic command-line technique
      explored earlier. List the file’s name on an explicit python command line:1
C:\code> python brian
The Bright Side of Life...
In this case, you don’t need the special #! comment at the top (although Python just
      ignores it if it’s present), and the file doesn’t need to be given
      executable privileges. In fact, if you want to run files portably
      between Unix and Microsoft Windows, your life will probably be simpler
      if you always use the basic command-line approach, not Unix-style
      scripts, to launch programs.
If you’re using Python 3.3 or later, though,
      or have its Windows launcher installed separately, it turns out that
      Unix-style #! lines
      do mean something on Windows too. Besides offering
      the py executable described earlier,
      the new Windows launcher mentioned earlier attempts to parse #! lines to determine which Python version to
      launch to run your script’s code. Moreover, it allows you to give the
      version number in full or partial forms, and recognizes most common Unix
      patterns for this line, including the /usr/bin/env form.
The launcher’s #! parsing
      mechanism is applied when you run scripts from command lines with the
      py program, and when you click Python
      file icons (in which case py is run
      implicitly by filename associations). Unlike Unix, you do not need to
      mark files with executable privileges for this to work on Windows,
      because filename associations achieve similar results.
For example, the first of the following is run by Python 3.X and
      the second by 2.X (without an explicit number, the launcher defaults to
      2.X unless you set a PY_PYTHON environment
      variable):
c:\code> type robin3.py
#!/usr/bin/python3
print('Run', 'away!...')            # 3.X function

c:\code> py robin3.py               # Run file per #! line version
Run away!...

c:\code> type robin2.py
#!python2
print 'Run', 'away more!...'        # 2.X statement

c:\code> py robin2.py               # Run file per #! line version
Run away more!...
This works in addition to passing versions on command lines—we saw
      this briefly earlier for starting the interactive prompt, but it works
      the same when launching a script file:
c:\code> py −3.1 robin3.py          # Run per command-line argument
Run away!...
The net effect is that the launcher allows Python versions to be
      specified on both a per-file and
      per-command basis, by using #! lines and command-line arguments,
      respectively. At least that’s the very short version of the launcher’s
      story. If you’re using Python 3.3 or later on Windows or may in the
      future, I recommend a side trip to the full launcher story in Appendix B if you haven’t made
      one already.


Clicking File Icons
If you’re not a fan of command lines, you can generally avoid them by launching
    Python scripts with file icon clicks, development GUIs, and other schemes
    that vary per platform. Let’s take a quick look at the first of these
    alternatives here.
Icon-Click Basics
Icon clicks are supported on most platforms in one form or another. Here’s
      a rundown of how these might be structured on your computer:
	Windows icon clicks
	On Windows, the Registry makes opening files with icon clicks easy. When
            installed, Python uses Windows filename
            associations to automatically register itself
            to be the program that opens Python program files when they are
            clicked. Because of that, it is possible to launch the Python
            programs you write by simply clicking (or double-clicking) on
            their file icons with your mouse cursor.
Specifically, a clicked file will be run by one of two
            Python programs, depending on its extension and the Python you’re
            running. In Pythons 3.2 and earlier, .py files are run by python.exe with a console (Command
            Prompt) window, and .pyw
            files are run by pythonw.exe
            without a console. Byte code files are also run by these
            programs if clicked. Per Appendix B, in Python 3.3 and
            later (and where it’s installed separately), the new Window’s launchers’s py.exe and pyw.exe programs serve the same roles,
            opening .py and .pyw files, respectively.

	Non-Windows icon clicks
	On non-Windows systems, you will
            probably be able to perform a similar feat, but the icons, file
            explorer navigation schemes, and more may differ slightly. On
            Mac OS X, for instance, you might use PythonLauncher in the MacPython (or Python N.M) folder of your Applications folder to run by clicking
            in Finder.
On some Linux and other Unix systems, you may need to register the .py extension with your file explorer
            GUI, make your script executable using the #! line
            scheme of the preceding section, or associate the file MIME type
            with an application or command by editing files, installing
            programs, or using other tools. See your file explorer’s
            documentation for more details.


In other words, icon clicks generally work as you’d expect for
      your platform, but be sure to see the platform usage documentation
      “Python Setup and Usage” in Python’s standard manual set for more
      details as needed.

Clicking Icons on Windows
To illustrate, let’s keep using the script we wrote earlier, script1.py, repeated here to minimize page
      flipping:
# A first Python script
import sys                  # Load a library module
print(sys.platform)
print(2 ** 100)             # Raise 2 to a power
x = 'Spam!'
print(x * 8)                # String repetition
As we’ve seen, you can always run this file from a system command
      line:
C:\code> python script1.py
win32
1267650600228229401496703205376
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
However, icon clicks allow you to run the file without any typing
      at all. To do so, you have to find this file’s icon on your computer. On
      Windows 8, you might right-click the screen’s lower-left corner to open
      a File Explorer. On earlier Windows, you can select Computer (or My
      Computer in XP) in your Start button’s menu. There are additional ways
      to open a file explorer; once you do, work your way down on the
      C drive to your working
      directory.
At this point, you should have a file explorer window similar to
      that captured in Figure 3-1 (Windows 8 is
      being used here). Notice how the icons for Python
      files show up:
	Source files have white backgrounds on Windows.

	Byte code files show with black backgrounds.


Figure 3-1. On Windows, Python program files show up as icons in file
        explorer windows and can automatically be run with a double-click of
        the mouse (though you might not see printed output or error messages
        this way).

Per the prior chapter, I created the byte code file in this figure
      by importing in Python 3.1; 3.2 and later instead store byte code files
      in the __pycache__
      subdirectory also shown here, which I created by importing in 3.3 too.
      You will normally want to click (or otherwise run) the white
      source code files in order to pick up your most
      recent changes, not the byte code files—Python won’t check the source
      code file for changes if you launch byte code directly. To launch the
      file here, simply click on the icon for script1.py.

The input Trick on Windows
Unfortunately, on Windows, the result of clicking on a file icon may not be
      incredibly satisfying. In fact, as it is, this example script might
      generate a perplexing “flash” when clicked—not exactly the sort of
      feedback that budding Python programmers usually hope for! This is not a
      bug, but has to do with the way the Windows version of Python handles
      printed output.
By default, Python generates a pop-up black DOS console window
      (Command Prompt) to serve as a clicked file’s input and output. If a
      script just prints and exits, well, it just prints and exits—the console
      window appears, and text is printed there, but the console window closes
      and disappears on program exit. Unless you are very fast, or your
      machine is very slow, you won’t get to see your output at all. Although
      this is normal behavior, it’s probably not what you had in mind.
Luckily, it’s easy to work around this. If you need your script’s
      output to stick around when you launch it with an icon click, simply put
      a call to the built-in input function
      at the very bottom of the script in 3.X (in 2.X use the
      name raw_input instead:
      see the note ahead). For example:
# A first Python script
import sys                  # Load a library module
print(sys.platform)
print(2 ** 100)             # Raise 2 to a power
x = 'Spam!'
print(x * 8)                # String repetition
input()                     # <== ADDED
In general, input reads and
      returns the next line of standard input, waiting if there is none yet
      available. The net effect in this context will be to pause the script,
      thereby keeping the output window shown in Figure 3-2 open until you
      press the Enter key.
Figure 3-2. When you click a program’s icon on Windows, you will be able to
        see its printed output if you include an input call at the very end of
        the script. But you only need to do so in this one context!

Now that I’ve shown you this trick, keep in mind that it is
      usually only required for Windows, and then only if your script prints
      text and exits and only if you will launch the script by clicking its
      file icon. You should add this call to the bottom of your top-level
      files if and only if all of these three conditions apply. There is no
      reason to add this call in any other contexts, such as scripts you’ll
      run in command lines or the IDLE GUI (unless you’re unreasonably fond of
      pressing your computer’s Enter key!).2 That may sound obvious, but it’s been another common
      mistake in live classes.
Before we move ahead, note that the input call applied here is the input
      counterpart of using the print
      function (and 2.X statement) for outputs. It is the simplest way to read
      user input, and it is more general than this example implies. For
      instance, input:
	Optionally accepts a string that will be printed as a prompt
          (e.g., input('Press Enter to
          exit'))

	Returns to your script a line of text read as a string (e.g.,
          nextinput = input())

	Supports input stream redirections at the system shell level
          (e.g., python spam.py <
          input.txt), just as the print statement does for output


We’ll use input in more
      advanced ways later in this text; for instance, Chapter 10 will apply it in an
      interactive loop. For now, it will help you see the output of simple
      scripts that you click to launch.
Note
Version skew note: If you are working in
        Python 2.X, use raw_input() instead
        of input() in this code. The former
        was renamed to the latter in Python 3.X. Technically, 2.X has an
        input function too, but it also
        evaluates strings as though they are program code
        typed into a script, and so will not work in this context (an empty
        string is an error). Python 3.X’s input (and 2.X’s raw_input) simply returns the entered text
        as a character string, unevaluated. To simulate 2.X’s input in 3.X, use eval(input()).
Be aware, though, that because this runs the entered text as
        though it were program code, this may have
        security implications that we’ll largely ignore here, except to say
        that you should trust the source of the entered text; if you don’t,
        stick to just plain input in 3.X
        and raw_input in 2.X.


Other Icon-Click Limitations
Even with the prior section’s input trick, clicking file icons is not
      without its perils. You also may not get to see Python error messages.
      If your script generates an error, the error message text is written to the pop-up console window—which then
      immediately disappears! Worse, adding an input call to your file will not help this
      time because your script will likely abort long before it reaches this
      call. In other words, you won’t be able to tell what went wrong.
When we discuss exceptions later in this
      book, you’ll learn that it is possible to write code to intercept,
      process, and recover from errors so that they do not terminate your
      programs. Watch for the discussion of the try statement later in this book for an
      alternative way to keep the console window from closing on errors. We’ll
      also learn how to redirect printed text to files for later inspection
      when we study print operations.
      Barring such support in your code, though, errors and prints disappear
      for clicked programs.
Because of these limitations, it is probably best to view icon
      clicks as a way to launch programs after they have been debugged, or
      have been instrumented to write their output to a file and catch and
      process any important errors. Especially when you’re starting out, I
      recommend using other techniques—such as system command lines and IDLE
      (discussed further in the section “The IDLE User Interface”)—so that you can see generated
      error messages and view your normal output without resorting to extra
      coding.


Module Imports and Reloads
So far, I’ve been talking about “importing modules” without really explaining
    what this term means. We’ll study modules and larger program architecture
    in depth in Part V, but because imports
    are also a way to launch programs, this section will introduce enough
    module basics to get you started.
Import and Reload Basics
In simple terms, every file of Python source code whose name ends in a
      .py extension is a module. No
      special code or syntax is required to make a file a module: any such
      file will do. Other files can access the items a module defines by
      importing that module—import operations essentially
      load another file and grant access to that file’s contents. The contents
      of a module are made available to the outside world through its
      attributes (a term I’ll define in the next section).
This module-based services model turns out to be the core idea
      behind program architecture in
      Python. Larger programs usually take the form of multiple module files,
      which import tools from other module files. One of the modules is
      designated as the main or top-level file, or
      “script”—the file launched to start the entire program, which runs line
      by line as usual. Below this level, it’s all modules importing
      modules.
We’ll delve into such architectural issues in more detail later in
      this book. This chapter is mostly interested in the fact that import
      operations run the code in a file that is being
      loaded as a final step. Because of this, importing a file is yet another
      way to launch it.
For instance, if you start an interactive session (from a system
      command line or otherwise), you can run the script1.py file you created earlier with a
      simple import (be sure to delete the input line you added in the prior section
      first, or you’ll need to press Enter for no reason):
C:\code> C:\python33\python
>>> import script1
win32
1267650600228229401496703205376
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
This works, but only once per session (really,
      process—a program run) by default. After the first
      import, later imports do nothing, even if you change and save the
      module’s source file again in another window:
...Change script1.py in a text edit window to print 2 ** 16...

>>> import script1
>>> import script1
This is by design; imports are too expensive an operation to
      repeat more than once per file, per program run. As you’ll learn in
      Chapter 22, imports must find
      files, compile them to byte code, and run the code.
If you really want to force Python to run the file again in the
      same session without stopping and restarting the session, you need to
      instead call the reload function
      available in the imp standard library
      module (this function is also a simple built-in in Python 2.X, but not
      in 3.X):
>>> from imp import reload           # Must load from module in 3.X (only)
>>> reload(script1)
win32
65536
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
<module 'script1' from '.\\script1.py'>
>>>
The from statement here simply
      copies a name out of a module (more on this soon). The reload function itself loads and runs the
      current version of your file’s code, picking up changes if you’ve
      modified and saved it in another window.
This allows you to edit and pick up new code on the fly within the
      current Python interactive session. In this session, for example, the
      second print statement in script1.py was changed in another window to
      print 2 ** 16 between the time of the
      first import and the reload call—hence the different result.
The reload function expects the
      name of an already loaded module object, so you have to have
      successfully imported a module once before you reload it (if the import
      reported an error, you can’t yet reload and must import again). Notice
      that reload also expects parentheses
      around the module object name, whereas import does not. reload is a function that is
      called, and import is a statement.
That’s why you must pass the module name to reload as an argument in parentheses, and
      that’s why you get back an extra output line when reloading—the last
      output line is just the display representation of the reload call’s return value, a Python module
      object. We’ll learn more about using functions in general in Chapter 16; for now, when you hear “function,”
      remember that parentheses are required to run a call.
Note
Version skew note: Python 3.X moved the
        reload built-in function to the
        imp standard library module. It
        still reloads files as before, but you must import it in order to use
        it. In 3.X, run an import imp and
        use imp.reload(M), or run a
        from imp import reload and use
        reload(M), as shown here. We’ll
        discuss import and from statements in the next section, and
        more formally later in this book.
If you are working in Python 2.X, reload is available as a built-in function,
        so no import is required. In Python 2.6 and 2.7, reload is available in
        both forms—built-in and module function—to aid
        the transition to 3.X. In other words, reloading is still available in
        3.X, but an extra line of code is required to fetch the reload call.
The move in 3.X was likely motivated in part by some well-known
        issues involving reload and
        from statements that we’ll
        encounter in the next section. In short, names loaded with a from are not directly updated by a reload, but names accessed with an import statement are. If your names don’t
        seem to change after a reload, try
        using import and
        module.attribute name
        references instead.


The Grander Module Story: Attributes
Imports and reloads provide a natural program launch option because
      import operations execute files as a last step. In the broader scheme of
      things, though, modules serve the role of libraries
      of tools, as you’ll learn in detail in Part V. The basic idea is straightforward,
      though: a module is mostly just a package of variable names, known
      as a namespace, and the names within
      that package are called attributes. An attribute is simply a variable name that is attached to a specific object (like a
      module).
In more concrete terms, importers gain access to all the names
      assigned at the top level of a module’s file. These names are usually
      assigned to tools exported by the module—functions, classes, variables,
      and so on—that are intended to be used in other files and other
      programs. Externally, a module file’s names can be fetched with two
      Python statements, import and
      from, as well as the reload call.
To illustrate, use a text editor to create a one-line Python
      module file called myfile.py in
      your working directory, with the following contents:
title = "The Meaning of Life"
This may be one of the world’s simplest Python modules (it
      contains a single assignment statement), but it’s enough to illustrate
      the point. When this file is imported, its code is run to generate the
      module’s attribute. That is, the assignment statement creates a variable
      and module attribute named title.
You can access this module’s title attribute in other components in two
      different ways. First, you can load the module as a whole with an
      import statement, and then
      qualify the module name with the attribute name to
      fetch it (note that we’re letting the interpreter print automatically
      here):
% python                           # Start Python
>>> import myfile                  # Run file; load module as a whole
>>> myfile.title                   # Use its attribute names: '.' to qualify
'The Meaning of Life'
In general, the dot expression syntax
      object.attribute lets you
      fetch any attribute attached to any object, and is one of the most
      common operations in Python code. Here, we’ve used it to access the
      string variable title inside the
      module myfile—in other words,
      myfile.title.
Alternatively, you can fetch (really, copy) names out of a module
      with from statements:
% python                           # Start Python
>>> from myfile import title       # Run file; copy its names
>>> title                          # Use name directly: no need to qualify
'The Meaning of Life'
As you’ll see in more detail later, from is just like an import, with an extra assignment to names in
      the importing component. Technically, from copies a module’s
      attributes, such that they become simple
      variables in the recipient—thus, you can simply
      refer to the imported string this time as title (a variable) instead of myfile.title (an attribute
      reference).3
Whether you use import or
      from to invoke an import operation,
      the statements in the module file myfile.py are executed, and the importing
      component (here, the interactive prompt) gains access to names assigned
      at the top level of the file. There’s only one such name in this simple
      example—the variable title, assigned
      to a string—but the concept will be more useful when you start defining
      objects such as functions and classes in your modules: such objects
      become reusable software components that can be
      accessed by name from one or more client modules.
In practice, module files usually define more than one name to be
      used in and outside the files. Here’s an example that defines
      three:
a = 'dead'                      # Define three attributes
b = 'parrot'                    # Exported to other files
c = 'sketch'
print(a, b, c)                  # Also used in this file (in 2.X: print a, b, c)
This file, threenames.py,
      assigns three variables, and so generates three attributes for the
      outside world. It also uses its own three variables in a 3.X print statement, as we see when we run this as
      a top-level file (in Python 2.X print
      differs slightly, so omit its outer parenthesis to match the output here
      exactly; watch for a more complete explanation of this in Chapter 11):
% python threenames.py
dead parrot sketch
All of this file’s code runs as usual the first time it is
      imported elsewhere, by either an import or from. Clients of this file that use import get a module with attributes, while
      clients that use from get copies of
      the file’s names:
% python
>>> import threenames                    # Grab the whole module: it runs here
dead parrot sketch
>>>
>>> threenames.b, threenames.c           # Access its attributes
('parrot', 'sketch')
>>>
>>> from threenames import a, b, c       # Copy multiple names out
>>> b, c
('parrot', 'sketch')
The results here are printed in parentheses because they are
      really tuples—a kind of object
      created by the comma in the inputs (and covered in the next part of this
      book)—that you can safely ignore for now.
Once you start coding modules with multiple names like this, the
      built-in dir function starts to come
      in handy—you can use it to fetch a list of all the names available
      inside a module. The following returns a Python list of strings in
      square brackets (we’ll start studying lists in the next chapter):
>>> dir(threenames)
['__builtins__', '__doc__', '__file__', '__name__', '__package__', 'a', 'b', 'c']
The contents of this list have been edited here because they vary
      per Python version. The point to notice here is that when the dir function is called with the name of an
      imported module in parentheses like this, it returns all the attributes
      inside that module. Some of the names it returns are names you get “for
      free”: names with leading and trailing double underscores (__X__) are built-in names that are always
      predefined by Python and have special meaning to the interpreter, but
      they aren’t important at this point in this book. The variables our code
      defined by assignment—a, b, and c—show up last in the dir result.
Modules and namespaces
Module imports are a way to run files of code, but, as we’ll expand on
        later in the book, modules are also the largest program structure in
        Python programs, and one of the first key concepts in the
        language.
As we’ve seen, Python programs are composed of multiple module
        files linked together by import statements, and each module file is a
        package of variables—that is, a namespace. Just as importantly,
        each module is a self-contained namespace: one
        module file cannot see the names defined in another file unless it
        explicitly imports that other file. Because of this, modules serve to
        minimize name collisions in your
        code—because each file is a self-contained namespace, the names in one
        file cannot clash with those in another, even if they are spelled the
        same way.
In fact, as you’ll see, modules are one of a handful of ways
        that Python goes to great lengths to package your variables into compartments to avoid name clashes. We’ll
        discuss modules and other namespace constructs—including local scopes
        defined by classes and functions—further later in the book. For now,
        modules will come in handy as a way to run your code many times
        without having to retype it, and will prevent your file’s names from
        accidentally replacing each other.
Note
import versus from: I should point out
          that the from statement in a
          sense defeats the namespace partitioning purpose of modules—because
          the from copies variables from
          one file to another, it can cause same-named variables in the
          importing file to be overwritten, and won’t warn you if it does.
          This essentially collapses namespaces together, at least in terms of
          the copied variables.
Because of this, some recommend always using import instead of from. I won’t go that far, though; not
          only does from involve less
          typing (an asset at the interactive prompt), but its purported
          problem is relatively rare in practice. Besides, this is something
          you control by listing the variables you want
          in the from; as long as you
          understand that they’ll be assigned to values in the target module,
          this is no more dangerous than coding assignment statements—another
          feature you’ll probably want to use!



Usage Notes: import and reload
For some reason, once people find out about running files using import and reload, many tend to focus on this alone and
      forget about other launch options that always run the current version of
      the code (e.g., icon clicks, IDLE menu options, and system command
      lines). This approach can quickly lead to confusion, though—you need to
      remember when you’ve imported to know if you can reload, you need to
      remember to use parentheses when you call reload (only), and you need to remember to use
      reload in the first place to get the
      current version of your code to run. Moreover, reloads aren’t
      transitive—reloading a module reloads that module only, not any modules
      it may import—so you sometimes have to reload multiple files.
Because of these complications (and others we’ll explore later,
      including the reload/from issue mentioned briefly in a prior note
      in this chapter), it’s generally a good idea to avoid the temptation to
      launch by imports and reloads for now. The IDLE Run→Run Module menu
      option described in the next section, for example, provides a simpler
      and less error-prone way to run your files, and always runs the current
      version of your code. System shell command lines offer similar benefits.
      You don’t need to use reload if you
      use any of these other techniques.
In addition, you may run into trouble if you use modules in
      unusual ways at this point in the book. For instance, if you want to
      import a module file that is stored in a directory other than the one
      you’re working in, you’ll have to skip ahead to Chapter 22 and learn about the
      module search path. For now, if you must import, try to keep all your files in the
      directory you are working in to avoid complications.4
That said, imports and reloads have proven to be a popular testing
      technique in Python classes, and you may prefer using this approach too.
      As usual, though, if you find yourself running into a wall, stop running
      into a wall!


Using exec to Run Module Files
Strictly speaking, there are more ways to run code stored in module files than
    have yet been presented here. For instance, the exec(open('module.py').read()) built-in function
    call is another way to launch files from the interactive prompt without
    having to import and later reload. Each such exec runs the current
    version of the code read from a file, without requiring later reloads
    (script1.py is as we left it after a
    reload in the prior section):
% python
>>> exec(open('script1.py').read())
win32
65536
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!

...Change script1.py in a text edit window to print 2 ** 32...

>>> exec(open('script1.py').read())
win32
4294967296
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
The exec call has an effect
    similar to an import, but it doesn’t actually import the module—by
    default, each time you call exec this
    way it runs the file’s code anew, as though you had pasted it in at the
    place where exec is called. Because of
    that, exec does not require module
    reloads after file changes—it skips the normal module import logic.
On the downside, because it works as if you’ve pasted code into the
    place where it is called, exec, like the
    from statement mentioned earlier, has
    the potential to silently overwrite variables you may currently be using.
    For example, our script1.py assigns
    to a variable named x. If that name is
    also being used in the place where exec
    is called, the name’s value is replaced:
>>> x = 999
>>> exec(open('script1.py').read())     # Code run in this namespace by default
...same output...
>>> x                                   # Its assignments can overwrite names here
'Spam!'
By contrast, the basic import
    statement runs the file only once per process, and it makes the file a
    separate module namespace so that its assignments will not change
    variables in your scope. The price you pay for the namespace partitioning
    of modules is the need to reload after changes.
Note
Version skew note: Python 2.X also includes
      an execfile('module.py') built-in
      function, in addition to allowing the form exec(open('module.py')), which both
      automatically read the file’s content. Both of these are equivalent to
      the exec(open('module.py').read())
      form, which is more complex but runs in both 2.X and 3.X.
Unfortunately, neither of these two simpler 2.X forms is available
      in 3.X, which means you must understand both files and their read
      methods to fully understand this technique today (this seems to be a
      case of aesthetics trouncing practicality in 3.X). In fact, the exec form in 3.X involves so much typing that
      the best advice may simply be not to do it—it’s usually easier to launch
      files by typing system shell command lines or by using the IDLE menu
      options described in the next section.
For more on the file interfaces used by the 3.X exec form, see Chapter 9. For more on
      exec and its cohorts, eval and compile, see Chapter 10 and Chapter 25.


The IDLE User Interface
So far, we’ve seen how to run Python code with the interactive prompt,
    system command lines, Unix-style scripts, icon clicks, module imports, and
    exec calls. If you’re looking for
    something a bit more visual, IDLE provides a
    graphical user interface for doing Python development, and it’s a standard
    and free part of the Python system. IDLE is usually referred to as an integrated development
    environment (IDE), because it binds together various
    development tasks into a single view.5
In short, IDLE is a desktop GUI that lets you edit, run, browse, and
    debug Python programs, all from a single interface. It runs portably on
    most Python platforms, including Microsoft Windows, X Windows (for Linux,
    Unix, and Unix-like platforms), and the Mac OS (both Classic and OS X).
    For many, IDLE represents an easy-to-use alternative to typing command
    lines, a less problem-prone alternative to clicking on icons, and a great
    way for newcomers to get started editing and running code. You’ll
    sacrifice some control in the bargain, but this typically becomes
    important later in your Python career.
IDLE Startup Details
Most readers should be able to use IDLE immediately, as it is a standard
      component on Mac OS X and most Linux installations today, and is
      installed automatically with standard Python on Windows. Because
      platforms specifics vary, though, I need to give a few pointers before
      we open the GUI.
Technically, IDLE is a Python program that uses the standard
      library’s tkinter GUI toolkit (named Tkinter in Python
      2.X) to build its windows. This makes IDLE portable—it works the same on
      all major desktop platforms—but it also means that you’ll need to have
      tkinter support in your Python to use IDLE. This support is standard on
      Windows, Macs, and Linux, but it comes with a few caveats on some
      systems, and startup can vary per platform. Here are a few
      platform-specific tips:
	On Windows 7 and earlier, IDLE is easy to start—it’s always present
          after a Python install, and has an entry in the Start button menu
          for Python in Windows 7 and earlier (see Figure 2-1, shown
          previously). You can also select it by right-clicking on a Python
          program icon, and launch it by clicking on the icon for the files
          idle.pyw or idle.py located in the idlelib subdirectory of Python’s
          Lib directory. In this mode,
          IDLE is a clickable Python script that lives in C:\Python33\Lib\idlelib, C:\Python27\Lib\idlelib, or similar,
          which you can drag out to a shortcut for one-click access if
          desired.

	On Windows 8, look for IDLE in your Start
          tiles, by a search for “idle,” by browsing your “All apps” Start
          screen display, or by using File Explorer to find the idle.py file mentioned earlier. You may
          want a shortcut here, as you have no Start button menu in desktop
          mode (at least today; see Appendix A for more
          pointers).

	On Mac OS X everything required for IDLE is present as standard components in
          your operating system. IDLE should be available to launch in
          Applications under the
          MacPython (or Python N.M) program folder. One note
          here: some OS X versions may require installing updated tkinter
          support due to subtle version dependencies I’ll spare readers from
          here; see python.org’s Download page for details.

	On Linux IDLE is also usually present as a standard component today. It might take
          the form of an idle executable
          or script in your path; type this in a shell to check. On some
          machines, it may require an install (see Appendix A for pointers), and on
          others you may need to launch IDLE’s top-level script from a command
          line or icon click: run the file idle.py located in the idlelib subdirectory of Python’s
          /usr/lib directory (run a
          find for the exact
          location).


Because IDLE is just a Python script on the module search path in
      the standard library, you can also generally run it on any platform and
      from any directory by typing the following in a system command shell
      window (e.g., in a Command Prompt on Windows), though you’ll have to see
      Appendix A for more on Python’s
      –m flag, and Part V for more on the “.” package syntax
      required here (blind trust will suffice at this point in the
      book):
c:\code> python -m idlelib.idle           # Run idle.py in a package on module path
For more on install issues and usage notes for Windows and other
      platforms, be sure to see both Appendix A as well as the notes for
      your platform in “Python Setup and Usage” in Python’s standard
      manuals.

IDLE Basic Usage
Let’s jump into an example. Figure 3-3 shows the scene
      after you start IDLE on Windows. The Python shell window that opens
      initially is the main window, which runs an interactive session (notice
      the >>> prompt). This works
      like all interactive sessions—code you type here is run immediately
      after you type it—and serves as a testing and experimenting tool.
Figure 3-3. The main Python shell window of the IDLE development GUI, shown
        here running on Windows. Use the File menu to begin (New Window) or
        change (Open...) a source file; use the text edit window’s Run menu to
        run the code in that window (Run Module).

IDLE uses familiar menus with keyboard shortcuts for most of its
      operations. To make a new script file under IDLE,
      use File→New Window: that is, in the main shell window, select the File
      pull-down menu, and pick New Window (New File as of 3.3.3 and 2.7.6) to
      open a new text edit window where you can type, save, and run your
      file’s code. Use File→Open... instead to open a new text edit window
      displaying an existing file’s code to edit and run.
Although it may not show up fully in this book’s graphics, IDLE
      uses syntax-directed colorization for the code
      typed in both the main window and all text edit windows—keywords are one
      color, literals are another, and so on. This helps give you a better
      picture of the components in your code (and can even help you spot
      mistakes—run-on strings are all one color, for example).
To run a file of code that you are editing in
      IDLE, use Run→Run Module in that file’s text edit window. That is,
      select the file’s text edit window, open that window’s
      Run pull-down menu, and choose the Run
      Module option listed there (or use the equivalent keyboard
      shortcut, given in the menu). Python will let you know that you need to
      save your file first if you’ve changed it since it was opened or last
      saved and forgot to save your changes—a common mistake when you’re
      knee-deep in coding.
When run this way, the output of your script and any error
      messages it may generate show up back in the main interactive window
      (the Python shell window). In Figure 3-3, for example, the
      three lines after the “RESTART” line near the middle of the window
      reflect an execution of our script1.py file opened in a separate edit
      window. The “RESTART” message tells us that the user-code process was
      restarted to run the edited script and serves to separate script output
      (it does not appear if IDLE is started without a user-code
      subprocess—more on this mode in a moment).

IDLE Usability Features
Like most GUIs, the best way to learn IDLE may be to test-drive it for
      yourself, but some key usage points seem to be less than obvious. For
      example, if you want to repeat prior commands in
      IDLE’s main interactive window, you can use the
      Alt-P key combination to scroll backward through
      the command history, and Alt-N to scroll forward
      (on some Macs, try Ctrl-P and Ctrl-N instead). Your prior commands will
      be recalled and displayed, and may be edited and rerun.
You can also recall commands by positioning the
      cursor on them and clicking and pressing Enter to
      insert their text at the input prompt, or using standard cut-and-paste
      operations, though these techniques tend to involve more steps (and can
      sometimes be triggered accidentally). Outside IDLE, you may be able to
      recall commands in an interactive session with the arrow keys on
      Windows.
Besides command history and syntax
      colorization, IDLE has additional usability
      features such as:
	Auto-indent and unindent for Python code
          in the editor (Backspace goes back one level)

	Word auto-completion while typing,
          invoked by a Tab press

	Balloon help pop ups for a function call
          when you type its opening “(”

	Pop-up selection lists of object
          attributes when you type a “.” after an object’s name and
          either pause or press Tab


Some of these may not work on every platform, and some can be
      configured or disabled if you find that their defaults get in the way of
      your personal coding style.

Advanced IDLE Tools
Besides the basic edit and run functions and the prior section’s
      usability tools, IDLE provides more advanced features, including a
      point-and-click program graphical debugger and an
      object browser. The IDLE debugger is enabled via the Debug menu and the object browser via
      the File menu. The browser allows you to both inspect classes and navigate through the module
      search path to files and objects in files; clicking on a file or object
      opens the corresponding source in a text edit window.
You initiate IDLE debugging by selecting the Debug→Debugger menu
      option in the main window and then starting your script by selecting the
      Run→Run Module option in the text edit window; once the debugger is
      enabled, you can set breakpoints in your code that stop its execution by
      right-clicking on lines in the text edit windows, show variable values,
      and so on. You can also watch program execution when debugging—the
      current line of code is noted as you step through your code.
For simpler debugging operations, you can also right-click with
      your mouse on the text of an error message to quickly jump to the line
      of code where the error occurred—a trick that makes it simple and fast
      to repair and run again. In addition, IDLE’s text editor offers a large
      collection of programmer-friendly tools, including advanced text and
      file search operations we won’t cover here. Because IDLE uses intuitive
      GUI interactions, you should experiment with the system live to get a
      feel for its other tools.

Usage Notes: IDLE
IDLE is free, easy to use, portable, and automatically available on most
      platforms. I generally recommend it to Python newcomers because it
      simplifies some startup details and does not assume prior experience
      with system command lines. However, it is somewhat limited compared to
      more advanced commercial IDEs, and may seem heavier than a command line
      to some. To help you avoid some common pitfalls, here is a list of
      issues that IDLE beginners should bear in mind:
	You must add “.py” explicitly when
          saving your files. I mentioned this when talking about
          files in general, but it’s a common IDLE stumbling block, especially
          for Windows users. IDLE does not automatically add a
          .py extension to filenames when
          files are saved. Be careful to type the .py extension yourself when saving a file
          for the first time. If you don’t, while you will be able to run your
          file from IDLE (and system command lines), you will not be able to
          import it either interactively or from other modules.

	Run scripts by selecting Run→Run
          Module in text edit windows, not by interactive imports and
          reloads. Earlier in this chapter, we saw that it’s
          possible to run a file by importing it interactively.
          However, this scheme can grow complex because it requires you to
          manually reload files after changes. By contrast, using the Run→Run
          Module menu option in IDLE always runs the most current version of
          your file, just like running it using a system shell command line.
          IDLE also prompts you to save your file first, if needed (another
          common mistake outside IDLE).

	You need to reload only modules being
          tested interactively. Like system shell command lines,
          IDLE’s Run→Run Module menu option always runs the current version
          of both the top-level file and any modules it imports.
          Because of this, Run→Run Module eliminates common confusions
          surrounding imports. You need to reload only modules that you are
          importing and testing interactively in IDLE. If you choose to use
          the import and reload technique instead of Run→Run Module, remember
          that you can use the Alt-P/Alt-N key combinations to recall prior
          commands.

	You can customize IDLE. To
          change the text fonts and colors in IDLE, select the Configure
          option in the Options menu of any IDLE window. You can also
          customize key combination actions, indentation settings,
          autocompletions, and more; see IDLE’s Help pull-down menu for more
          hints.

	There is currently no clear-screen
          option in IDLE. This seems to be a frequent request
          (perhaps because it’s an option available in similar IDEs), and it
          might be added eventually. Today, though, there is no way to clear
          the interactive window’s text. If you want the window’s text to go
          away, you can either press and hold the Enter key, or type a Python
          loop to print a series of blank lines (nobody really uses the latter
          technique, of course, but it sounds more high-tech than pressing the
          Enter key!).

	tkinter GUI and threaded programs may
          not work well with IDLE. Because IDLE is a Python/tkinter program, it can hang if you
          use it to run certain types of advanced Python/tkinter programs.
          This has become less of an issue in more recent versions of IDLE
          that run user code in one process and the IDLE GUI itself in
          another, but some programs (especially those that use
          multithreading) might still hang the GUI. Even just calling the
          tkinter quit
          function in your code, the normal way to exit a GUI program, may be
          enough to cause your program’s GUI to hang if run in IDLE (destroy may be better here only). Your
          code may not exhibit such problems, but as a rule of thumb, it’s
          always safe to use IDLE to edit GUI programs but launch them using
          other options, such as icon clicks or system command lines. When in
          doubt, if your code fails in IDLE, try it outside the GUI.

	If connection errors arise, try
          starting IDLE in single-process mode. This issue appears
          to have gone away in recent Pythons, but may still impact readers
          using older versions. Because IDLE requires communication between
          its separate user and GUI processes, it can sometimes have trouble
          starting up on certain platforms (notably, it fails to start
          occasionally on some Windows machines, due to firewall software that
          blocks connections). If you run into such connection errors, it’s
          always possible to start IDLE with a system command line that forces
          it to run in single-process mode without a user-code subprocess and
          therefore avoids communication issues: its -n command-line flag forces this mode. On
          Windows, for example, start a Command Prompt window and run the
          system command line idle.py
          -n from within the directory C:\Python33\Lib\idlelib (cd there first if needed). A python -m idlelib.idle –n command works
          from anywhere (see Appendix A
          for –m).

	Beware of some IDLE usability
          features. IDLE does much to make life easier for
          beginners, but some of its tricks won’t apply outside the IDLE GUI.
          For instance, IDLE runs your scripts in its own interactive
          namespace, so variables in your code show up automatically in the
          IDLE interactive session—you don’t always need to run import commands to access names at the top
          level of files you’ve already run. This can be handy, but it can
          also be confusing, because outside the IDLE environment names must
          always be imported from files explicitly to be used.
When you run a file of code, IDLE also automatically changes
          to that file’s directory and adds it to the
          module import search path—a handy feature that allows you to use
          files and import modules there without search path settings, but
          also something that won’t work the same when you run files outside
          IDLE. It’s OK to use such features, but don’t forget that they are
          IDLE behavior, not Python behavior.




Other IDEs
Because IDLE is free, portable, and a standard part of Python, it’s a nice first
    development tool to become familiar with if you want to use an IDE at all.
    Again, I recommend that you use IDLE for this book’s exercises if you’re
    just starting out, unless you are already familiar with and prefer a
    command-line-based development mode. There are, however, a handful of
    alternative IDEs for Python developers, some of which are substantially
    more powerful and robust than IDLE. Apart from IDLE, here are some of
    Python’s most commonly used IDEs:
	Eclipse and PyDev
	Eclipse is an advanced open source IDE GUI. Originally developed as
          a Java IDE, Eclipse also supports Python development when you
          install the PyDev (or a similar) plug-in. Eclipse is a popular and
          powerful option for Python development, and it goes well beyond
          IDLE’s feature set. It includes support for code completion, syntax
          highlighting, syntax analysis, refactoring, debugging, and more. Its
          downsides are that it is a large system to install and may require
          shareware extensions for some features (this may vary over time).
          Still, when you are ready to graduate from IDLE, the Eclipse/PyDev
          combination is worth your attention.

	Komodo
	A full-featured development environment GUI for Python (and other
          languages), Komodo includes standard syntax coloring, text editing,
          debugging, and other features. In addition, Komodo offers many
          advanced features that IDLE does not, including project files,
          source-control integration, and regular-expression debugging. At
          this writing, Komodo is not free, but see the Web for its current
          status—it is available at http://www.activestate.com from
          ActiveState, which also offers the ActivePython distribution package
          mentioned in Appendix A.

	NetBeans IDE for Python
	NetBeans is a powerful open source development environment GUI
          with support for many advanced features for Python developers: code
          completion, automatic indentation and code colorization, editor
          hints, code folding, refactoring, debugging, code coverage and
          testing, projects, and more. It may be used to develop both CPython
          and Jython code. Like Eclipse, NetBeans requires installation steps
          beyond those of the included IDLE GUI, but it is seen by many as
          more than worth the effort. Search the Web for the latest
          information and links.

	PythonWin
	PythonWin is a free Windows-only IDE for Python that ships as part of
          ActiveState’s ActivePython distribution (and may also be fetched
          separately from http://www.python.org resources). It is roughly like
          IDLE, with a handful of useful Windows-specific extensions added;
          for example, PythonWin has support for COM objects. Today, IDLE is
          probably more advanced than PythonWin (for instance, IDLE’s
          dual-process architecture often prevents it from hanging). However,
          PythonWin still offers tools for Windows developers that IDLE does
          not. See http://www.activestate.com for more
          information.

	Wing, Visual Studio, and others
	Other IDEs are popular among Python developers too, including the mostly commercial
          Wing IDE, Microsoft Visual
          Studio via a plug-in, and PyCharm,
          PyScripter, Pyshield, and
          Spyder—but I do not have space to do justice to
          them here, and more will undoubtedly appear over time. In fact,
          almost every programmer-friendly text editor
          has some sort of support for Python development these days, whether
          it be preinstalled or fetched separately. Emacs and Vim, for
          instance, have substantial Python support.
IDE choices are often subjective, so I encourage you to browse
          to find tools that fit your development style and goals. For more
          information, see the resources available at http://www.python.org or
          search the Web for “Python IDE” or similar. A search for “Python
          editors” today leads you to a wiki page that maintains information
          about dozens of IDE and text-editor options for Python programming.



Other Launch Options
At this point, we’ve seen how to run code typed interactively, and how to
    launch code saved in files in a variety of ways—system command lines, icon
    clicks, imports and execs, GUIs like IDLE, and more. That covers most of
    the techniques in common use, and enough to run the code you’ll see in
    this book. There are additional ways to run Python code, though, most of
    which have special or narrow roles. For completeness and reference, the
    next few sections take a quick look at some of these.
Embedding Calls
In some specialized domains, Python code may be run automatically by an enclosing
      system. In such cases, we say that the Python programs are
      embedded in (i.e., run by) another program. The
      Python code itself may be entered into a text file, stored in a
      database, fetched from an HTML page, parsed from an XML document, and so
      on. But from an operational perspective, another system—not you—may tell
      Python to run the code you’ve created.
Such an embedded execution mode is commonly used to support
      end-user customization—a game program, for instance, might allow for
      play modifications by running user-accessible embedded Python code at
      strategic points in time. Users can modify this type of system by
      providing or changing Python code. Because Python code is interpreted,
      there is no need to recompile the entire system to incorporate the
      change (see Chapter 2 for more on how
      Python code is run).
In this mode, the enclosing system that runs your code might be
      written in C, C++, or even Java when the Jython system is used. As an
      example, it’s possible to create and run strings of Python code from a C
      program by calling functions in the Python runtime API (a set of
      services exported by the libraries created when Python is compiled on
      your machine):
#include <Python.h>
...
Py_Initialize();                                     // This is C, not Python
PyRun_SimpleString("x = 'brave ' + 'sir robin'");    // But it runs Python code
In this C code snippet, a program coded in the C language embeds
      the Python interpreter by linking in its libraries, and passes it a
      Python assignment statement string to run. C programs may also gain
      access to Python modules and objects and process or execute them using
      other Python API tools.
This book isn’t about Python/C integration, but you should be
      aware that, depending on how your organization plans to use Python, you
      may or may not be the one who actually starts the Python programs you
      create. Regardless, you can usually still use the interactive and
      file-based launching techniques described here to test code in isolation
      from those enclosing systems that may eventually use it.6

Frozen Binary Executables
Frozen binary executables, described in Chapter 2, are packages that combine your
      program’s byte code and the Python interpreter into a single executable
      program. This approach enables Python programs to be launched in the
      same ways that you would launch any other executable program (icon
      clicks, command lines, etc.). While this option works well for delivery
      of products, it is not really intended for use during program
      development; you normally freeze just before shipping (after development
      is finished). See the prior chapter for more on this option.

Text Editor Launch Options
As mentioned previously, although they’re not full-blown IDE GUIs, most
      programmer-friendly text editors have support for editing, and possibly
      running, Python programs. Such support may be built in or fetchable on
      the Web. For instance, if you are familiar with the Emacs text editor,
      you can do all your Python editing and launching from inside that text
      editor. See the text editor resources page at http://www.python.org/editors for
      more details, or search the Web for the phrase “Python editors.”

Still Other Launch Options
Depending on your platform, there may be additional ways that you can
      start Python programs. For instance, on some Macintosh systems you may
      be able to drag Python program file icons onto the Python interpreter
      icon to make them execute, and on some Windows systems you can always
      start Python scripts with the Run... option in the Start menu.
      Additionally, the Python standard library has utilities that allow Python programs
      to be started by other Python programs in separate processes (e.g.,
      os.popen, os.system), and Python scripts might also be
      spawned in larger contexts like the Web (for instance, a web page might
      invoke a script on a server); however, these are beyond the scope of the
      present chapter.

Future Possibilities?
This chapter reflects current practice, but much of the material is
      both platform- and time-specific. Indeed, many of the execution and
      launch details presented arose during the shelf life of this book’s
      various editions. As with program execution options, it’s not impossible
      that new program launch options may arise over time.
New operating systems, and new versions of existing systems, may
      also provide execution techniques beyond those outlined here. In
      general, because Python keeps pace with such changes, you should be able
      to launch Python programs in whatever way makes sense for the machines
      you use, both now and in the future—be that by swiping on tablet PCs and
      smartphones, grabbing icons in a virtual reality, or shouting a script’s
      name over your coworkers’ conversations.
Implementation changes may also impact launch schemes somewhat
      (e.g., a full compiler could produce normal executables that are
      launched much like frozen binaries today). If I knew what the future
      truly held, though, I would probably be talking to a stockbroker instead
      of writing these words!


Which Option Should I Use?
With all these options, true beginners might naturally ask: which one is
    best for me? In general, you should give the IDLE interface a try if you
    are just getting started with Python. It provides a user-friendly GUI
    environment and hides some of the underlying configuration details. It
    also comes with a platform-neutral text editor for coding your scripts,
    and it’s a standard and free part of the Python system.
If, on the other hand, you are an experienced programmer, you might
    be more comfortable with simply the text editor of your choice in one
    window, and another window for launching the programs you edit via system
    command lines and icon clicks (in fact, this is how I develop Python
    programs, but I have a Unix-biased distant past). Because the choice of
    development environments is very subjective, I can’t offer much more in
    the way of universal guidelines. In general, whatever environment you like
    to use will be the best for you to use.
Debugging Python Code
Naturally, none of my readers or students ever have bugs in their
      code (insert smiley here), but for less fortunate
      friends of yours who may, here’s a quick review of the strategies
      commonly used by real-world Python programmers to debug code, for you to
      refer to as you start coding in earnest:
	Do nothing. By this, I
          don’t mean that Python programmers don’t debug their code—but when
          you make a mistake in a Python program, you get a very useful and
          readable error message (you’ll get to see some soon, if you haven’t
          already). If you already know Python, and especially for your own
          code, this is often enough—read the error message, and go fix the
          tagged line and file. For many, this is
          debugging in Python. It may not always be ideal for larger systems
          you didn’t write, though.

	Insert print statements. Probably the main way that Python programmers debug their code (and
          the way that I debug Python code) is to insert print statements and run again. Because
          Python runs immediately after changes, this is usually the quickest
          way to get more information than error messages provide. The
          print statements don’t have to be
          sophisticated—a simple “I am here” or display of variable values is
          usually enough to provide the context you need. Just remember to
          delete or comment out (i.e., add a # before) the debugging prints before you ship your code!

	Use IDE GUI debuggers. For
          larger systems you didn’t write, and for beginners who want to trace
          code in more detail, most Python development GUIs have some sort of
          point-and-click debugging support. IDLE has a debugger too, but it
          doesn’t appear to be used very often in practice—perhaps because it
          has no command line, or perhaps because adding print statements is usually quicker than
          setting up a GUI debugging session. To learn more, see IDLE’s Help,
          or simply try it on your own; its basic interface is described in
          the section “Advanced IDLE Tools”. Other IDEs, such
          as Eclipse, NetBeans, Komodo, and Wing IDE, offer advanced
          point-and-click debuggers as well; see their documentation if you
          use them.

	Use the pdb command-line
          debugger. For ultimate control, Python comes with a source code
          debugger named pdb, available as a module in
          Python’s standard library. In pdb, you type commands to step line by
          line, display variables, set and clear breakpoints, continue to a
          breakpoint or error, and so on. You can launch pdb interactively by
          importing it, or as a top-level script. Either way, because you can
          type commands to control the session, it provides a powerful
          debugging tool. pdb also includes a postmortem function (pdb.pm()) that you can run after an
          exception occurs, to get information from the time of the error. See
          the Python library manual and Chapter 36 for more details on pdb, and
          Appendix A for an example of
          running pdb as a script with Python’s –m command argument.

	Use Python’s –i command-line
          argument. Short of adding prints or running under pdb, you can still see
          what went wrong on errors. If you run your script from a command
          line and pass a -i argument
          between python and the name of
          your script (e.g., python –i
          m.py), Python will enter into its interactive
          interpreter mode (the >>> prompt) when your script
          exits, whether it ends successfully or runs into an error. At this
          point, you can print the final values of variables to get more
          details about what happened in your code because they are in the
          top-level namespace. You can also then import and run the pdb
          debugger for even more context; its postmortem mode will let you
          inspect the latest error if your script failed. Appendix A also shows -i in action.

	Other options. For more
          specific debugging requirements, you can find additional tools in
          the open source domain, including support for multithreaded
          programs, embedded code, and process attachment. The
          Winpdb system, for example, is a standalone debugger with advanced
          debugging support and cross-platform GUI and console
          interfaces.


These options will become more important as we start writing
      larger scripts. Probably the best news on the debugging front, though,
      is that errors are detected and reported in Python, rather than passing
      silently or crashing the system altogether. In fact, errors themselves
      are a well-defined mechanism known as exceptions,
      which you can catch and process (more on exceptions in Part VII). Making mistakes is never fun, of
      course, but take it from someone who recalls when debugging meant
      getting out a hex calculator and poring over piles of memory dump
      printouts: Python’s debugging support makes errors much less painful
      than they might otherwise be.


Chapter Summary
In this chapter, we’ve looked at common ways to launch Python
    programs: by running code typed interactively, and by running code stored
    in files with system command lines, file icon clicks, module imports,
    exec calls, and IDE GUIs such as IDLE.
    We’ve covered a lot of pragmatic startup territory here. This chapter’s
    goal was to equip you with enough information to enable you to start
    writing some code, which you’ll do in the next part of the book. There, we
    will start exploring the Python language itself, beginning with its core
    data types—the objects that are the subjects of your
    programs.
First, though, take the usual chapter quiz to exercise what you’ve
    learned here. Because this is the last chapter in this part of the book,
    it’s followed with a set of more complete exercises that test your mastery
    of this entire part’s topics. For help with the latter set of problems, or
    just for a refresher, be sure to turn to Appendix D after you’ve given the
    exercises a try.

Test Your Knowledge: Quiz
	How can you start an interactive interpreter session?

	Where do you type a system command line to launch a script
        file?

	Name four or more ways to run the code saved in a script
        file.

	Name two pitfalls related to clicking file icons on
        Windows.

	Why might you need to reload a module?

	How do you run a script from within IDLE?

	Name two pitfalls related to using IDLE.

	What is a namespace, and how does it relate to module
        files?



Test Your Knowledge: Answers
	You can start an interactive session on Windows 7 and earlier by
        clicking your Start button, picking the All Programs option, clicking
        the Python entry, and selecting the “Python (command line)” menu
        option. You can also achieve the same effect on Windows and other
        platforms by typing python as a
        system command line in your system’s console window (a Command Prompt
        window on Windows). Another alternative is to launch IDLE, as its main
        Python shell window is an interactive session. Depending on your
        platform and Python, if you have not set your system’s PATH variable to find Python, you may need
        to cd to where Python is installed,
        or type its full directory path instead of just python (e.g., C:\Python33\python on Windows, unless
        you’re using the 3.3 launcher).

	You type system command lines in whatever your platform provides
        as a system console: a Command Prompt window on Windows; an xterm or
        terminal window on Unix, Linux, and Mac OS X; and so on. You type this
        at the system’s prompt, not at the Python interactive interpreter’s
        “>>>” prompt—be careful not to confuse these prompts.

	Code in a script (really, module) file can be run with system
        command lines, file icon clicks, imports and reloads, the exec built-in function, and IDE GUI
        selections such as IDLE’s Run→Run Module menu option. On Unix, they
        can also be run as executables with the #! trick, and some platforms support more
        specialized launching techniques (e.g., drag and drop). In addition,
        some text editors have unique ways to run Python code, some Python
        programs are provided as standalone “frozen binary” executables, and
        some systems use Python code in embedded mode, where it is run
        automatically by an enclosing program written in a language like C,
        C++, or Java. The latter technique is usually done to provide a user
        customization layer.

	Scripts that print and then exit cause the output file to
        disappear immediately, before you can view the output (which is why
        the input trick comes in handy);
        error messages generated by your script also appear in an output
        window that closes before you can examine its contents (which is one
        reason that system command lines and IDEs such as IDLE are better for
        most development).

	Python imports (loads) a module only once per process, by
        default, so if you’ve changed its source code and want to run the new
        version without stopping and restarting Python, you’ll have to reload
        it. You must import a module at least once before you can reload it.
        Running files of code from a system shell command line, via an icon
        click, or via an IDE such as IDLE generally makes this a nonissue, as
        those launch schemes usually run the current version of the source
        code file each time.

	Within the text edit window of the file you wish to run, select
        the window’s Run→Run Module menu option. This runs the window’s source
        code as a top-level script file and displays its output back in the
        interactive Python shell window.

	IDLE can still be hung by some types of programs—especially GUI
        programs that perform multithreading (an advanced technique beyond
        this book’s scope). Also, IDLE has some usability features that can
        burn you once you leave the IDLE GUI: a script’s variables are
        automatically imported to the interactive scope in IDLE and working
        directories are changed when you run a file, for instance, but Python
        itself does not take such steps in general.

	A namespace is just a package of variables (i.e., names). It
        takes the form of an object with attributes in Python. Each module
        file is automatically a namespace—that is, a package of variables
        reflecting the assignments made at the top level of the file.
        Namespaces help avoid name collisions in Python programs: because each
        module file is a self-contained namespace, files must explicitly
        import other files in order to use their names.



Test Your Knowledge: Part I Exercises
It’s time to start doing a little coding on your own. This first exercise
    session is fairly simple, but it’s designed to make sure you’re ready to
    work along with the rest of the book, and a few of its questions hint at
    topics to come in later chapters. Be sure to check “Part I, Getting Started” in Appendix D for the answers; the
    exercises and their solutions sometimes contain supplemental information
    not discussed in the main text, so you should take a peek at the solutions
    even if you manage to answer all the questions on your own.
	Interaction. Using a system command line,
        IDLE, or any other method that works on your platform, start the
        Python interactive command line (>>> prompt), and type the
        expression "Hello World!"
        (including the quotes). The string should be echoed back to you. The
        purpose of this exercise is to get your environment configured to run
        Python. In some scenarios, you may need to first run a cd shell command, type the full path to the
        Python executable, or add its path to your PATH environment variable. If desired, you
        can set PATH in your .cshrc or .kshrc file to make Python permanently
        available on Unix systems; on Windows, the environment variable GUI is
        usually what you want for this. See Appendix A for help with environment
        variable settings.

	Programs. With the text editor of your
        choice, write a simple module file containing the single statement
        print('Hello module world!') and
        store it as module1.py. Now, run
        this file by using any launch option you like: running it in IDLE,
        clicking on its file icon, passing it to the Python interpreter on the
        system shell’s command line (e.g., python
        module1.py), built-in exec calls, imports and reloads, and so on.
        In fact, experiment by running your file with as many of the launch
        techniques discussed in this chapter as you can. Which technique seems
        easiest? (There is no right answer to this, of course.)

	Modules. Start the Python interactive
        command line (>>> prompt)
        and import the module you wrote in exercise 2. Try moving the file to
        a different directory and importing it again from its original
        directory (i.e., run Python in the original directory when you
        import). What happens? (Hint: is there still a module1.pyc byte code file in the original
        directory, or something similar in a __pycache__ subdirectory there?)

	Scripts. If your platform supports it, add
        the #! line to the top of your
        module1.py module file, give the
        file executable privileges, and run it directly as an executable. What
        does the first line need to contain? #! usually only has meaning on Unix, Linux,
        and Unix-like platforms such as Mac OS X; if you’re working on
        Windows, instead try running your file by listing just its name in a
        Command Prompt window without the word “python” before it (this works
        on recent versions of Windows), via the Start→Run... dialog box, or
        similar. If you are using Python 3.3 or the Windows launcher that
        installs with it, experiment with changing your script’s #! line to launch different Python versions
        you may have installed on your computer (or equivalently, work through
        the tutorial in Appendix B).

	Errors and debugging. Experiment with
        typing mathematical expressions and assignments at the Python
        interactive command line. Along the way, type the expressions
        2 ** 500 and 1 / 0, and reference an undefined variable
        name as we did early on in this chapter. What happens?
You may not know it yet, but when you make a mistake, you’re
        doing exception processing: a topic we’ll explore in depth in Part VII. As you’ll learn there, you are
        technically triggering what’s known as the default exception
        handler—logic that prints a standard error message. If you
        do not catch an error, the default handler does and prints the
        standard error message in response.
Exceptions are also bound up with the notion of
        debugging in Python. When you’re first starting
        out, Python’s default error messages on exceptions will probably
        provide as much error-handling support as you need—they give the cause
        of the error, as well as showing the lines in your code that were
        active when the error occurred. For more about debugging, see the
        sidebar “Debugging Python Code”.

	Breaks and cycles. At the Python command
        line, type:
L = [1, 2]              # Make a 2-item list
L.append(L)             # Append L as a single item to itself
L                       # Print L: a cyclic/circular object
What happens? In all recent versions of Python, you’ll see a
        strange output that we’ll describe in the solutions appendix, and
        which will make more sense when we study references in the next part
        of the book. If you’re using a Python version older than 1.5.1, a
        Ctrl-C key combination will probably help on most platforms. Why do
        you think your version of Python responds the way it does for this
        code?
Warning
If you do have a Python older than Release 1.5.1 (a hopefully
          rare scenario today!), make sure your machine can stop a program
          with a Ctrl-C key combination of some sort before running this test,
          or you may be waiting a long time. 


	Documentation. Spend at least 15 minutes
        browsing the Python library and language manuals before moving on to
        get a feel for the available tools in the standard library and the
        structure of the documentation set. It takes at least this long to
        become familiar with the locations of major topics in the manual set;
        once you’ve done this, it’s easy to find what you need. You can find
        this manual via the Python Start button entry on some Windows, in the
        Python Docs option on the Help pull-down menu in IDLE, or online at
        http://www.python.org/doc. I’ll also have a few more
        words to say about the manuals and other documentation sources
        available (including PyDoc and the help function) in Chapter 15. If you still have time, go
        explore the Python website, as well as its PyPI third-party extension
        repository. Especially check out the Python.org (http://www.python.org) documentation and search pages;
        they can be crucial resources.



1 As we discussed when exploring command lines, all recent
          Windows versions also let you type just the name of a .py file at the system command line—they
          use the Registry to determine that the file should be opened with
          Python (e.g., typing brian.py
          is equivalent to typing python
          brian.py). This command-line mode is similar in spirit
          to the Unix #!, though it is
          system-wide on Windows, not per-file. It also requires an explicit
          .py extension: filename
          associations won’t work without it. Some
          programs may actually interpret and use a first
          #! line on Windows much like on
          Unix (including Python 3.3’s Windows launcher), but the system shell
          on Windows itself simply ignores it.
2 Conversely, it is also possible to completely suppress the
          pop-up console window (a.k.a. Command Prompt) for clicked files on
          Windows when you don’t want to see printed
          text. Files whose names end in a .pyw extension will display only windows
          constructed by your script, not the default console window.
          .pyw files are simply .py source files that have this special
          operational behavior on Windows. They are mostly used for
          Python-coded user interfaces that build windows of their own, often
          in conjunction with various techniques for saving printed output and
          errors to files. As implied earlier, Python achieves this when it is
          installed by associating a special executable (pythonw.exe in 3.2 and earlier and
          pyw.exe as of 3.3) to open
          .pyw files when clicked.
3 Notice that import and
          from both list the name of the
          module file as simply myfile
          without its .py extension
          suffix. As you’ll learn in Part V,
          when Python looks for the actual file, it knows to include the
          suffix in its search procedure. Again, you must include the .py suffix in system shell command lines,
          but not in import
          statements.
4 If you’re too curious to wait, the short story is that Python
          searches for imported modules in every directory listed in sys.path—a Python list of directory name
          strings in the sys module, which
          is initialized from a PYTHONPATH
          environment variable, plus a set of standard directories. If you
          want to import from a directory other than the one you are working
          in, that directory must generally be listed in your PYTHONPATH setting. For more details, see
          Chapter 22 and Appendix A.
5 IDLE is officially a corruption of IDE, but it’s really named in
        honor of Monty Python member Eric Idle. See Chapter 1 if you’re not sure why.
6 See Programming
          Python (O’Reilly) for more details on embedding Python in
          C/C++. The embedding API can call Python functions directly, load
          modules, and more. Also, note that the Jython system allows Java
          programs to invoke Python code using a Java-based API (a Python
          interpreter class).








Part II. Types and Operations








Chapter 4. Introducing Python Object Types
This chapter begins our tour of the Python language. In an informal
  sense, in Python we do things with stuff.1 “Things” take the form of operations like addition and
  concatenation, and “stuff” refers to the objects on which we perform those
  operations. In this part of the book, our focus is on that
  stuff, and the things our programs
  can do with it.
Somewhat more formally, in Python, data takes the form of objects—either built-in objects
  that Python provides, or objects we create using Python classes or external
  language tools such as C extension libraries. Although we’ll firm up this
  definition later, objects are essentially just pieces of memory, with values
  and sets of associated operations. As we’ll see,
  everything is an object in a Python script. Even simple
  numbers qualify, with values (e.g., 99), and supported operations (addition,
  subtraction, and so on).
Because objects are also the most fundamental notion in Python
  programming, we’ll start this chapter with a survey of Python’s built-in
  object types. Later chapters provide a second pass that fills in details
  we’ll gloss over in this survey. Here, our goal is a brief tour to introduce
  the basics.
The Python Conceptual Hierarchy
Before we get to the code, let’s first establish a clear picture of how this chapter
    fits into the overall Python picture. From a more concrete perspective,
    Python programs can be decomposed into modules, statements, expressions,
    and objects, as follows:
	Programs are composed of modules.

	Modules contain statements.

	Statements contain expressions.

	Expressions create and process
        objects.


The discussion of modules in Chapter 3
    introduced the highest level of this hierarchy. This part’s chapters begin
    at the bottom—exploring both built-in objects and the expressions you can
    code to use them.
We’ll move on to study statements in the next part of the book,
    though we will find that they largely exist to manage the objects we’ll
    meet here. Moreover, by the time we reach classes in the OOP part of this
    book, we’ll discover that they allow us to define new object types of our
    own, by both using and emulating the object types we will explore here.
    Because of all this, built-in objects are a mandatory point
    of embarkation for all Python journeys.
Note
Traditional introductions to programming often stress its three
      pillars of sequence (“Do this, then that”),
      selection (“Do this if that is true”), and
      repetition (“Do this many times”). Python has tools
      in all three categories, along with some for
      definition—of functions and classes. These themes
      may help you organize your thinking early on, but they are a bit
      artificial and simplistic. Expressions such as comprehensions, for
      example, are both repetition and selection; some of these terms have
      other meanings in Python; and many later concepts won’t seem to fit this
      mold at all. In Python, the more strongly unifying principle is
      objects, and what we can do with them. To see why,
      read on.


Why Use Built-in Types?
If you’ve used lower-level languages such as C or C++, you
    know that much of your work centers on implementing
    objects—also known as data structures—to
    represent the components in your application’s domain. You need to lay out
    memory structures, manage memory allocation, implement search and access
    routines, and so on. These chores are about as tedious (and error-prone)
    as they sound, and they usually distract from your program’s real
    goals.
In typical Python programs, most of this grunt work goes away.
    Because Python provides powerful object types as an intrinsic part of the
    language, there’s usually no need to code object implementations before
    you start solving problems. In fact, unless you have a need for special
    processing that built-in types don’t provide, you’re almost always better
    off using a built-in object instead of implementing your own. Here are
    some reasons why:
	Built-in objects make programs easy to
        write. For simple tasks, built-in types are often all you
        need to represent the structure of problem domains. Because you get
        powerful tools such as collections (lists) and search tables
        (dictionaries) for free, you can use them immediately. You can get a
        lot of work done with Python’s built-in object types alone.

	Built-in objects are components of
        extensions. For more complex tasks, you may need to provide
        your own objects using Python classes or C language interfaces. But as
        you’ll see in later parts of this book, objects implemented manually
        are often built on top of built-in types such as lists and
        dictionaries. For instance, a stack data structure may be implemented
        as a class that manages or customizes a built-in list.

	Built-in objects are often more
        efficient than custom data structures. Python’s built-in types employ already optimized data structure
        algorithms that are implemented in C for speed. Although you can write
        similar object types on your own, you’ll usually be hard-pressed to
        get the level of performance built-in object types provide.

	Built-in objects are a standard part of
        the language. In some ways, Python borrows both from
        languages that rely on built-in tools (e.g., LISP) and languages that
        rely on the programmer to provide tool implementations or frameworks
        of their own (e.g., C++). Although you can implement unique object
        types in Python, you don’t need to do so just to get started.
        Moreover, because Python’s built-ins are standard, they’re always the
        same; proprietary frameworks, on the other hand, tend to differ from
        site to site.


In other words, not only do built-in object types make programming
    easier, but they’re also more powerful and efficient than most of what can
    be created from scratch. Regardless of whether you implement new object
    types, built-in objects form the core of every Python program.

Python’s Core Data Types
Table 4-1 previews Python’s
    built-in object types and some of the syntax used to code their
    literals—that is, the expressions that generate
    these objects.2 Some of these types will probably seem familiar if you’ve
    used other languages; for instance, numbers and strings represent numeric
    and textual values, respectively, and file objects provide an interface
    for processing real files stored on your computer.
To some readers, though, the object types in Table 4-1 may be more general and powerful
    than what you are accustomed to. For instance, you’ll find that lists and
    dictionaries alone are powerful data representation tools that obviate
    most of the work you do to support collections and searching in
    lower-level languages. In short, lists provide ordered collections of
    other objects, while dictionaries store objects by key; both lists and
    dictionaries may be nested, can grow and shrink on demand, and may contain objects of any
    type.
Table 4-1. Built-in objects preview	Object
            type	Example
            literals/creation
	Numbers
	1234, 3.1415, 3+4j, 0b111, Decimal(), Fraction()

	Strings
	'spam', "Bob's", b'a\x01c', u'sp\xc4m'

	Lists
	[1, [2, 'three'], 4.5], list(range(10))

	Dictionaries
	{'food': 'spam', 'taste': 'yum'},
            dict(hours=10)

	Tuples
	(1, 'spam', 4, 'U'), tuple('spam'), namedtuple

	Files
	open('eggs.txt'), open(r'C:\ham.bin', 'wb')

	Sets
	set('abc'), {'a', 'b', 'c'}

	Other core
            types
	Booleans, types, None

	Program unit types
	Functions, modules, classes
            (Part IV, Part V, Part VI)

	Implementation-related
            types
	Compiled code, stack
            tracebacks (Part IV, Part VII)


Also shown in Table 4-1,
    program units such as functions, modules, and classes—which we’ll meet in later
    parts of this book—are objects in Python too; they are created with
    statements and expressions such as def,
    class, import, and lambda and may be passed around scripts freely,
    stored within other objects, and so on. Python also provides a set of implementation-related types
    such as compiled code objects, which are generally of interest to tool
    builders more than application developers; we’ll explore these in later
    parts too, though in less depth due to their specialized roles.
Despite its title, Table 4-1 isn’t
    really complete, because everything we process in
    Python programs is a kind of object. For instance, when we perform text
    pattern matching in Python, we create pattern objects, and when we perform
    network scripting, we use socket objects. These other kinds of objects are
    generally created by importing and using functions in library modules—for
    example, in the re and
    socket modules for patterns and
    sockets—and have behavior all their own.
We usually call the other object types in Table 4-1 core data
    types, though, because they are effectively built into the Python
    language—that is, there is specific expression syntax for generating most
    of them. For instance, when you run the following code with characters
    surrounded by quotes:
>>> 'spam'
you are, technically speaking, running a literal expression that
    generates and returns a new string object. There is specific
    Python language syntax to make this object. Similarly, an expression
    wrapped in square brackets makes a list, one in curly braces makes
    a dictionary, and so on. Even though, as we’ll see, there are no type
    declarations in Python, the syntax of the expressions you run determines
    the types of objects you create and use. In fact, object-generation
    expressions like those in Table 4-1 are
    generally where types originate in the Python language.
Just as importantly, once you create an object, you bind its
    operation set for all time—you can perform only string operations on a
    string and list operations on a list. In formal terms, this means that
    Python is dynamically typed, a model that
    keeps track of types for you automatically instead of requiring
    declaration code, but it is also strongly typed, a constraint that
    means you can perform on an object only operations that are valid for its
    type.
We’ll study each of the object types in Table 4-1 in detail in upcoming chapters.
    Before digging into the details, though, let’s begin by taking a quick
    look at Python’s core objects in action. The rest of this chapter provides
    a preview of the operations we’ll explore in more depth in the chapters
    that follow. Don’t expect to find the full story here—the goal of this
    chapter is just to whet your appetite and introduce some key ideas. Still,
    the best way to get started is to get started, so let’s jump right into
    some real code.

Numbers
If you’ve done any programming or scripting in the past, some of the object
    types in Table 4-1 will probably seem
    familiar. Even if you haven’t, numbers are fairly straightforward.
    Python’s core objects set includes the usual suspects:
    integers that have no fractional part, floating-point
    numbers that do, and more exotic types—complex
    numbers with imaginary parts, decimals
    with fixed precision, rationals with
    numerator and denominator, and full-featured
    sets. Built-in numbers are enough to represent most numeric quantities—from
    your age to your bank balance—but more types are available as third-party
    add-ons.
Although it offers some fancier options, Python’s basic number types
    are, well, basic. Numbers in Python support the normal mathematical operations. For instance, the plus sign (+) performs
    addition, a star (*) is
    used for multiplication, and two stars (**) are used for exponentiation:
>>> 123 + 222                    # Integer addition
345
>>> 1.5 * 4                      # Floating-point multiplication
6.0
>>> 2 ** 100                     # 2 to the power 100, again
1267650600228229401496703205376
Notice the last result here: Python 3.X’s integer type automatically
    provides extra precision for large numbers like this when needed (in 2.X,
    a separate long integer type handles numbers too large for the normal
    integer type in similar ways). You can, for instance, compute 2 to the
    power 1,000,000 as an integer in Python, but you probably shouldn’t try to
    print the result—with more than 300,000 digits, you may be waiting
    awhile!
>>> len(str(2 ** 1000000))       # How many digits in a really BIG number?
301030
This nested-call form works from inside out—first converting the ** result’s number to a string of digits with
    the built-in str function,
    and then getting the length of the resulting string with len. The end result is the number of digits.
    str and len work on many object types; more on both as
    we move along.
On Pythons prior to 2.7 and 3.1, once you start experimenting with
    floating-point numbers, you’re likely to stumble
    across something that may look a bit odd at first glance:
>>> 3.1415 * 2                   # repr: as code (Pythons < 2.7 and 3.1)
6.2830000000000004
>>> print(3.1415 * 2)            # str: user-friendly
6.283
The first result isn’t a bug; it’s a display issue. It turns out
    that there are two ways to print every object in Python—with full
    precision (as in the first result shown here), and in a user-friendly form
    (as in the second). Formally, the first form is known as an object’s
    as-code repr, and the second is its
    user-friendly str. In older Pythons,
    the floating-point repr sometimes
    displays more precision than you might expect. The difference can also
    matter when we step up to using classes. For now, if something looks odd,
    try showing it with a print built-in
    function call statement.
Better yet, upgrade to Python 2.7 and the latest 3.X, where
    floating-point numbers display themselves more intelligently, usually with
    fewer extraneous digits—since this book is based on Pythons 2.7 and 3.3,
    this is the display form I’ll be showing throughout this book for
    floating-point numbers:
>>> 3.1415 * 2                   # repr: as code (Pythons >= 2.7 and 3.1)
6.283
Besides expressions, there are a handful of useful numeric modules
    that ship with Python—modules are just packages of additional tools that we import to use:
>>> import math
>>> math.pi
3.141592653589793
>>> math.sqrt(85)
9.219544457292887
The math module contains more advanced numeric tools as functions, while
    the random module
    performs random-number generation and random selections (here, from a
    Python list coded in square brackets—an ordered
    collection of other objects to be introduced later in this
    chapter):
>>> import random
>>> random.random()
0.7082048489415967
>>> random.choice([1, 2, 3, 4])
1
Python also includes more exotic numeric objects—such as complex,
    fixed-precision, and rational numbers, as well as sets and Booleans—and
    the third-party open source extension domain has even more (e.g., matrixes
    and vectors, and extended precision numbers). We’ll defer discussion of
    these types until later in this chapter and book.
So far, we’ve been using Python much like a simple calculator; to do
    better justice to its built-in types, let’s move on to explore strings.

Strings
Strings are used to record both textual information (your name, for
    instance) as well as arbitrary collections of bytes (such as an image
    file’s contents). They are our first example of what in Python we call
    a sequence—a positionally ordered
    collection of other objects. Sequences maintain a left-to-right order
    among the items they contain: their items are stored and fetched by their
    relative positions. Strictly speaking, strings are sequences of
    one-character strings; other, more general sequence types include
    lists and tuples, covered
    later.
Sequence Operations
As sequences, strings support operations that assume a positional
      ordering among items. For example, if we have a four-character string
      coded inside quotes (usually of the single variety), we can verify its
      length with the built-in len function
      and fetch its components with indexing expressions:
>>> S = 'Spam'           # Make a 4-character string, and assign it to a name
>>> len(S)               # Length
4
>>> S[0]                 # The first item in S, indexing by zero-based position
'S'
>>> S[1]                 # The second item from the left
'p'
In Python, indexes are coded as offsets from the front, and so
      start from 0: the first item is at index 0, the second is at index 1,
      and so on.
Notice how we assign the string to a variable named S here. We’ll go into detail on how this works
      later (especially in Chapter 6),
      but Python variables never need to be declared ahead of time. A variable
      is created when you assign it a value, may be assigned any type of object, and
      is replaced with its value when it shows up in an expression. It must
      also have been previously assigned by the time you use its value. For
      the purposes of this chapter, it’s enough to know that we need to assign
      an object to a variable in order to save it for later use.
In Python, we can also index backward, from the end—positive
      indexes count from the left, and negative indexes count back from the
      right:
>>> S[-1]                # The last item from the end in S
'm'
>>> S[-2]                # The second-to-last item from the end
'a'
Formally, a negative index is simply added to the string’s length,
      so the following two operations are equivalent (though the first is
      easier to code and less easy to get wrong):
>>> S[-1]                # The last item in S
'm'
>>> S[len(S)-1]          # Negative indexing, the hard way
'm'
Notice that we can use an arbitrary expression in the square
      brackets, not just a hardcoded number literal—anywhere that Python
      expects a value, we can use a literal, a variable, or any expression we
      wish. Python’s syntax is completely general this way.
In addition to simple positional indexing, sequences also support
      a more general form of indexing known as slicing, which is a
      way to extract an entire section (slice) in a single step. For
      example:
>>> S                     # A 4-character string
'Spam'
>>> S[1:3]                # Slice of S from offsets 1 through 2 (not 3)
'pa'
Probably the easiest way to think of slices is that they are a way
      to extract an entire column from a string in a
      single step. Their general form, X[I:J], means “give me everything in X from offset I up to but not including offset J.” The result is returned in a new object.
      The second of the preceding operations, for instance, gives us all the
      characters in string S from offsets 1
      through 2 (that is, 1 through 3 – 1) as a new string. The effect is to
      slice or “parse out” the two characters in the middle.
In a slice, the left bound defaults to zero, and the right bound
      defaults to the length of the sequence being sliced. This leads to some
      common usage variations:
>>> S[1:]                 # Everything past the first (1:len(S))
'pam'
>>> S                     # S itself hasn't changed
'Spam'
>>> S[0:3]                # Everything but the last
'Spa'
>>> S[:3]                 # Same as S[0:3]
'Spa'
>>> S[:-1]                # Everything but the last again, but simpler (0:-1)
'Spa'
>>> S[:]                  # All of S as a top-level copy (0:len(S))
'Spam'
Note in the second-to-last command how negative offsets can be
      used to give bounds for slices, too, and how the last operation
      effectively copies the entire string. As you’ll learn later, there is no
      reason to copy a string, but this form can be useful for sequences like
      lists.
Finally, as sequences, strings also support
      concatenation with the plus sign (joining two strings into a new string)
      and repetition (making a new string by repeating another):
>>> S
'Spam'
>>> S + 'xyz'             # Concatenation
'Spamxyz'
>>> S                     # S is unchanged
'Spam'
>>> S * 8                 # Repetition
'SpamSpamSpamSpamSpamSpamSpamSpam'
Notice that the plus sign (+)
      means different things for different objects: addition for numbers, and
      concatenation for strings. This is a general property of Python that
      we’ll call polymorphism later in the book—in sum, the meaning of an operation
      depends on the objects being operated on. As you’ll see when we study
      dynamic typing, this polymorphism property accounts for much of the
      conciseness and flexibility of Python code. Because types aren’t
      constrained, a Python-coded operation can normally work on many
      different types of objects automatically, as long as they support a
      compatible interface (like the +
      operation here). This turns out to be a huge idea in Python; you’ll
      learn more about it later on our tour.

Immutability
Also notice in the prior examples that we were not changing the original
      string with any of the operations we ran on it. Every string operation
      is defined to produce a new string as its result, because strings are
      immutable in Python—they cannot be changed in place
      after they are created. In other words, you can never overwrite the
      values of immutable objects. For example, you can’t change a string by
      assigning to one of its positions, but you can always build a new one
      and assign it to the same name. Because Python cleans up old objects as
      you go (as you’ll see later), this isn’t as inefficient as it may
      sound:
>>> S
'Spam'

>>> S[0] = 'z'             # Immutable objects cannot be changed
...error text omitted...
TypeError: 'str' object does not support item assignment

>>> S = 'z' + S[1:]        # But we can run expressions to make new objects
>>> S
'zpam'
Every object in Python is classified as either immutable
      (unchangeable) or not. In terms of the core types,
      numbers, strings, and
      tuples are immutable; lists,
      dictionaries, and sets are
      not—they can be changed in place freely, as can most new objects you’ll
      code with classes. This distinction turns out to be crucial in Python
      work, in ways that we can’t yet fully explore. Among other things,
      immutability can be used to guarantee that an object remains constant
      throughout your program; mutable objects’ values can be changed at any
      time and place (and whether you expect it or not).
Strictly speaking, you can change text-based data in
      place if you either expand it into a
      list of individual characters and join it back
      together with nothing between, or use the newer bytearray type
      available in Pythons 2.6, 3.0, and later:
>>> S = 'shrubbery'
>>> L = list(S)                                     # Expand to a list: [...]
>>> L
['s', 'h', 'r', 'u', 'b', 'b', 'e', 'r', 'y']
>>> L[1] = 'c'                                      # Change it in place
>>> ''.join(L)                                      # Join with empty delimiter
'scrubbery'

>>> B = bytearray(b'spam')                          # A bytes/list hybrid (ahead)
>>> B.extend(b'eggs')                               # 'b' needed in 3.X, not 2.X
>>> B                                               # B[i] = ord(x) works here too
bytearray(b'spameggs')
>>> B.decode()                                      # Translate to normal string
'spameggs'
The bytearray supports in-place
      changes for text, but only for text whose characters are all at most
      8-bits wide (e.g., ASCII). All other strings are still
      immutable—bytearray
      is a distinct hybrid of immutable bytes
      strings (whose b'...' syntax is
      required in 3.X and optional in 2.X) and mutable
      lists (coded and displayed in []), and we have to learn more about both
      these and Unicode text to fully grasp this code.

Type-Specific Methods
Every string operation we’ve studied so far is really a sequence operation—that
      is, these operations will work on other sequences in Python as well,
      including lists and tuples. In addition to generic sequence operations,
      though, strings also have operations all their own, available as
      methods—functions that are attached to and act upon
      a specific object, which are triggered with a call expression.
For example, the string find method is
      the basic substring search operation (it returns the offset of the
      passed-in substring, or −1 if it is
      not present), and the string replace
      method performs global searches and replacements; both act on the
      subject that they are attached to and called from:
>>> S = 'Spam'
>>> S.find('pa')                 # Find the offset of a substring in S
1
>>> S
'Spam'
>>> S.replace('pa', 'XYZ')       # Replace occurrences of a string in S with another
'SXYZm'
>>> S
'Spam'
Again, despite the names of these string methods, we are not
      changing the original strings here, but creating new strings as the
      results—because strings are immutable, this is the only way this can
      work. String methods are the first line of text-processing tools in
      Python. Other methods split a string into substrings on a delimiter
      (handy as a simple form of parsing), perform case conversions, test the
      content of the string (digits, letters, and so on), and strip whitespace
      characters off the ends of the string:
>>> line = 'aaa,bbb,ccccc,dd'
>>> line.split(',')              # Split on a delimiter into a list of substrings
['aaa', 'bbb', 'ccccc', 'dd']

>>> S = 'spam'
>>> S.upper()                    # Upper- and lowercase conversions
'SPAM'
>>> S.isalpha()                  # Content tests: isalpha, isdigit, etc.
True

>>> line = 'aaa,bbb,ccccc,dd\n'
>>> line.rstrip()                # Remove whitespace characters on the right side
'aaa,bbb,ccccc,dd'
>>> line.rstrip().split(',')     # Combine two operations
['aaa', 'bbb', 'ccccc', 'dd']
Notice the last command here—it strips before it splits because
      Python runs from left to right, making a temporary result along the way.
      Strings also support an advanced substitution operation known as formatting, available as
      both an expression (the original) and a string method call (new as of
      2.6 and 3.0); the second of these allows you to omit relative argument
      value numbers as of 2.7 and 3.1:
>>> '%s, eggs, and %s' % ('spam', 'SPAM!')          # Formatting expression (all)
'spam, eggs, and SPAM!'

>>> '{0}, eggs, and {1}'.format('spam', 'SPAM!')    # Formatting method (2.6+, 3.0+)
'spam, eggs, and SPAM!'

>>> '{}, eggs, and {}'.format('spam', 'SPAM!')      # Numbers optional (2.7+, 3.1+)
'spam, eggs, and SPAM!'
Formatting is rich with features, which we’ll postpone discussing
      until later in this book, and which tend to matter most when you must
      generate numeric reports:
>>> '{:,.2f}'.format(296999.2567)                   # Separators, decimal digits
'296,999.26'
>>> '%.2f | %+05d' % (3.14159, −42)                 # Digits, padding, signs
'3.14 | −0042'
One note here: although sequence operations are generic, methods
      are not—although some types share some method names, string method
      operations generally work only on strings, and nothing else. As a rule
      of thumb, Python’s toolset is layered: generic operations that span
      multiple types show up as built-in functions or expressions (e.g.,
      len(X), X[0]), but type-specific operations are
      method calls (e.g., aString.upper()). Finding the tools you need
      among all these categories will become more natural as you use Python
      more, but the next section gives a few tips you can use right
      now.

Getting Help
The methods introduced in the prior section are a representative,
      but small, sample of what is available for string objects. In general,
      this book is not exhaustive in its look at object methods. For more
      details, you can always call the built-in dir function.
      This function lists variables assigned in the caller’s scope when called
      with no argument; more usefully, it returns a list of all the attributes
      available for any object passed to it. Because methods are function
      attributes, they will show up in this list. Assuming S is still the string, here are its attributes
      on Python 3.3 (Python 2.X varies slightly):
>>> dir(S)
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__',
'__getnewargs__', '__gt__', '__hash__', '__init__', '__iter__', '__le__',
'__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count',
'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index',
'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower',
'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust',
'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex',
'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith',
'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']
You probably won’t care about the names with double
      underscores in this list until later in the book, when we
      study operator overloading in classes—they represent the implementation of the string
      object and are available to support customization. The __add__ method of strings, for example, is what really performs concatenation; Python maps the first of the following to
      the second internally, though you shouldn’t usually use the second form
      yourself (it’s less intuitive, and might even run slower):
>>> S + 'NI!'
'spamNI!'
>>> S.__add__('NI!')
'spamNI!'
In general, leading and trailing double underscores is the naming
      pattern Python uses for implementation details. The names without the
      underscores in this list are the callable methods on string
      objects.
The dir function simply gives
      the methods’ names. To ask what they do, you can pass them to the help
      function:
>>> help(S.replace)
Help on built-in function replace:

replace(...)
    S.replace(old, new[, count]) -> str

    Return a copy of S with all occurrences of substring
    old replaced by new.  If the optional argument count is
    given, only the first count occurrences are replaced.
help is one of a handful of
      interfaces to a system of code that ships with Python known as PyDoc—a tool for extracting
      documentation from objects. Later in the book, you’ll see that PyDoc can
      also render its reports in HTML format for display on a web
      browser.
You can also ask for help on an entire string
      (e.g., help(S)), but you may get more
      or less help than you want to see—information about every string method
      in older Pythons, and probably no help at all in newer versions because
      strings are treated specially. It’s generally better to ask about a
      specific method.
Both dir and help also accept as arguments either a real
      object (like our string S), or the name of a data
      type (like str, list, and dict). The latter form returns the same list
      for dir but shows full type details
      for help, and allows you to ask about
      a specific method via type name (e.g., help on str.replace).
For more details, you can also consult Python’s standard library
      reference manual or commercially published reference books, but dir and help are the first level of documentation in
      Python.

Other Ways to Code Strings
So far, we’ve looked at the string object’s sequence operations and
      type-specific methods. Python also provides a variety of ways for us to
      code strings, which we’ll explore in greater depth later. For instance,
      special characters can be represented as backslash escape sequences, which Python displays in \xNN hexadecimal escape notation, unless they represent printable
      characters:
>>> S = 'A\nB\tC'            # \n is end-of-line, \t is tab
>>> len(S)                   # Each stands for just one character
5

>>> ord('\n')                # \n is one character coded as decimal value 10
10

>>> S = 'A\0B\0C'            # \0, a binary zero byte, does not terminate string
>>> len(S)
5
>>> S                        # Non-printables are displayed as \xNN hex escapes
'A\x00B\x00C'
Python allows strings to be enclosed in single or
      double quote characters—they mean the same thing
      but allow the other type of quote to be embedded without an escape (most
      programmers prefer single quotes). It also allows multiline string
      literals enclosed in triple quotes (single or
      double)—when this form is used, all the lines are concatenated together,
      and end-of-line characters are added where line breaks appear. This is a
      minor syntactic convenience, but it’s useful for embedding things like
      multiline HTML, XML, or JSON code in a Python script, and stubbing out
      lines of code temporarily—just add three quotes above and below:
>>> msg = """
aaaaaaaaaaaaa
bbb'''bbbbbbbbbb""bbbbbbb'bbbb
cccccccccccccc
"""
>>> msg
'\naaaaaaaaaaaaa\nbbb\'\'\'bbbbbbbbbb""bbbbbbb\'bbbb\ncccccccccccccc\n'
Python also supports a raw string literal
      that turns off the backslash escape mechanism. Such literals start with
      the letter r and are useful for strings like
      directory paths on Windows (e.g., r'C:\text\new').

Unicode Strings
Python’s strings also come with full Unicode support
      required for processing text in internationalized character sets.
      Characters in the Japanese and Russian alphabets, for example, are
      outside the ASCII set. Such non-ASCII text can show up in web pages,
      emails, GUIs, JSON, XML, or elsewhere. When it does, handling it well
      requires Unicode support. Python has such support built in, but the form
      of its Unicode support varies per Python line, and is one of their most
      prominent differences.
In Python 3.X, the normal str string handles Unicode text (including
      ASCII, which is just a simple kind of Unicode); a distinct bytes string
      type represents raw byte values (including media and encoded text); and
      2.X Unicode literals are supported in 3.3 and later for 2.X
      compatibility (they are treated the same as normal 3.X str
      strings):
>>> 'sp\xc4m'                     # 3.X: normal str strings are Unicode text
'spÄm'
>>> b'a\x01c'                     # bytes strings are byte-based data
b'a\x01c'
>>> u'sp\u00c4m'                  # The 2.X Unicode literal works in 3.3+: just str
'spÄm'
In Python 2.X, the normal str string handles both 8-bit character
      strings (including ASCII text) and raw byte values; a distinct unicode string
      type represents Unicode text; and 3.X bytes literals are supported in
      2.6 and later for 3.X compatibility (they are treated the same as normal
      2.X str strings):
>>> print u'sp\xc4m'              # 2.X: Unicode strings are a distinct type
spÄm
>>> 'a\x01c'                      # Normal str strings contain byte-based text/data
'a\x01c'
>>> b'a\x01c'                     # The 3.X bytes literal works in 2.6+: just str
'a\x01c'
Formally, in both 2.X and 3.X, non-Unicode strings are sequences
      of 8-bit bytes that print with ASCII characters
      when possible, and Unicode strings are sequences of Unicode code points—identifying
      numbers for characters, which do not necessarily map to single bytes
      when encoded to files or stored in memory. In fact, the notion of bytes
      doesn’t apply to Unicode: some encodings include character code points
      too large for a byte, and even simple 7-bit ASCII text is not stored one
      byte per character under some encodings and memory storage
      schemes:
>>> 'spam'                        # Characters may be 1, 2, or 4 bytes in memory
'spam'
>>> 'spam'.encode('utf8')         # Encoded to 4 bytes in UTF-8 in files
b'spam'
>>> 'spam'.encode('utf16')        # But encoded to 10 bytes in UTF-16
b'\xff\xfes\x00p\x00a\x00m\x00'
Both 3.X and 2.X also support the bytearray string type we met earlier, which is essentially a bytes string (a str in 2.X) that supports most of the list
      object’s in-place mutable change operations.
Both 3.X and 2.X also support coding
      non-ASCII characters with \x hexadecimal and short \u and long \U Unicode escapes, as well as file-wide
      encodings declared in program source files. Here’s our non-ASCII
      character coded three ways in 3.X (add a leading “u” and say “print” to
      see the same in 2.X):
>>> 'sp\xc4\u00c4\U000000c4m'
'spÄÄÄm'
What these values mean and how they are used differs between
      text strings, which are the normal string in 3.X
      and Unicode in 2.X, and byte strings, which are
      bytes in 3.X and the normal string in 2.X. All these escapes can be used
      to embed actual Unicode code-point ordinal-value integers in text
      strings. By contrast, byte strings use only \x hexadecimal escapes to embed the encoded
      form of text, not its decoded code point values—encoded bytes are the
      same as code points, only for some encodings and characters:
>>> '\u00A3', '\u00A3'.encode('latin1'), b'\xA3'.decode('latin1')
('£', b'\xa3', '£')
As a notable difference, Python 2.X allows its normal and Unicode
      strings to be mixed in expressions as long as the normal string is all
      ASCII; in contrast, Python 3.X has a tighter model that
      never allows its normal and byte strings to mix
      without explicit conversion:
u'x' + b'y'            # Works in 2.X (where b is optional and ignored)
u'x' + 'y'             # Works in 2.X: u'xy'

u'x' + b'y'            # Fails in 3.3 (where u is optional and ignored)
u'x' + 'y'             # Works in 3.3: 'xy'

'x' + b'y'.decode()    # Works in 3.X if decode bytes to str: 'xy'
'x'.encode() + b'y'    # Works in 3.X if encode str to bytes: b'xy'
Apart from these string types, Unicode processing mostly reduces
      to transferring text data to and from files—text is
      encoded to bytes when stored in a file, and
      decoded into characters (a.k.a. code points) when
      read back into memory. Once it is loaded, we usually process text as
      strings in decoded form only.
Because of this model, though, files are also content-specific in
      3.X: text files implement named encodings and accept and return str strings, but binary
      files instead deal in bytes
      strings for raw binary data. In Python 2.X, normal files’ content is
      str bytes, and a special codecs module
      handles Unicode and represents content with the unicode type.
We’ll meet Unicode again in the files coverage later in this
      chapter, but save the rest of the Unicode story for later in this book.
      It crops up briefly in a Chapter 25
      example in conjunction with currency symbols, but for the most part is
      postponed until this book’s advanced topics part. Unicode is crucial in
      some domains, but many programmers can get by with just a passing
      acquaintance. If your data is all ASCII text, the string and file
      stories are largely the same in 2.X and 3.X. And if you’re new to
      programming, you can safely defer most Unicode details until you’ve
      mastered string basics.

Pattern Matching
One point worth noting before we move on is that none of the string
      object’s own methods support pattern-based text processing. Text pattern
      matching is an advanced tool outside this book’s scope, but readers with
      backgrounds in other scripting languages may be interested to know that
      to do pattern matching in Python, we import a module called re. This
      module has analogous calls for searching, splitting, and replacement,
      but because we can use patterns to specify substrings, we can be much
      more general:
>>> import re
>>> match = re.match('Hello[ \t]*(.*)world', 'Hello    Python world')
>>> match.group(1)
'Python '
This example searches for a substring that begins with the word
      “Hello,” followed by zero or more tabs or spaces, followed by arbitrary
      characters to be saved as a matched group, terminated by the word
      “world.” If such a substring is found, portions of the substring matched
      by parts of the pattern enclosed in parentheses are available as groups.
      The following pattern, for example, picks out three groups separated by
      slashes or colons, and is similar to splitting by an alternatives
      pattern:
>>> match = re.match('[/:](.*)[/:](.*)[/:](.*)', '/usr/home:lumberjack')
>>> match.groups()
('usr', 'home', 'lumberjack')

>>> re.split('[/:]', '/usr/home:lumberjack')
['', 'usr', 'home', 'lumberjack']
Pattern matching is an advanced text-processing tool by itself,
      but there is also support in Python for even more advanced text and
      language processing, including XML and HTML parsing and natural language
      analysis. We’ll see additional brief examples of patterns and XML
      parsing at the end of Chapter 37, but
      I’ve already said enough about strings for this tutorial, so let’s move
      on to the next type.


Lists
The Python list object is the most general sequence provided by the
    language. Lists are positionally ordered collections of arbitrarily typed
    objects, and they have no fixed size. They are also
    mutable—unlike strings, lists can be modified in place by assignment to
    offsets as well as a variety of list method calls. Accordingly, they
    provide a very flexible tool for representing arbitrary collections—lists
    of files in a folder, employees in a company, emails in your inbox, and so
    on.
Sequence Operations
Because they are sequences, lists support all the sequence operations
      we discussed for strings; the only difference is that the results are
      usually lists instead of strings. For instance, given a three-item
      list:
>>> L = [123, 'spam', 1.23]            # A list of three different-type objects
>>> len(L)                             # Number of items in the list
3
we can index, slice, and so on, just as for strings:
>>> L[0]                               # Indexing by position
123
>>> L[:-1]                             # Slicing a list returns a new list
[123, 'spam']

>>> L + [4, 5, 6]                      # Concat/repeat make new lists too
[123, 'spam', 1.23, 4, 5, 6]
>>> L * 2
[123, 'spam', 1.23, 123, 'spam', 1.23]

>>> L                                  # We're not changing the original list
[123, 'spam', 1.23]

Type-Specific Operations
Python’s lists may be reminiscent of arrays in other
      languages, but they tend to be more powerful. For one thing, they have
      no fixed type constraint—the list we just looked
      at, for example, contains three objects of completely different types
      (an integer, a string, and a floating-point number). Further, lists have
      no fixed size. That is, they can grow and shrink on
      demand, in response to list-specific operations:
>>> L.append('NI')                     # Growing: add object at end of list
>>> L
[123, 'spam', 1.23, 'NI']

>>> L.pop(2)                           # Shrinking: delete an item in the middle
1.23
>>> L                                  # "del L[2]" deletes from a list too
[123, 'spam', 'NI']
Here, the list append method
      expands the list’s size and inserts an item at the end; the pop method (or
      an equivalent del statement) then
      removes an item at a given offset, causing the list to shrink. Other
      list methods insert an item at an arbitrary position (insert), remove a given item by value
      (remove), add multiple items at the
      end (extend), and so on. Because
      lists are mutable, most list methods also change the list object in
      place, instead of creating a new one:
>>> M = ['bb', 'aa', 'cc']
>>> M.sort()
>>> M
['aa', 'bb', 'cc']
>>> M.reverse()
>>> M
['cc', 'bb', 'aa']
The list sort method here, for example, orders the list in ascending fashion by
      default, and reverse reverses it—in
      both cases, the methods modify the list directly.

Bounds Checking
Although lists have no fixed size, Python still doesn’t allow us to reference
      items that are not present. Indexing off the end of a list is always a
      mistake, but so is assigning off the end:
>>> L
[123, 'spam', 'NI']

>>> L[99]
...error text omitted...
IndexError: list index out of range

>>> L[99] = 1
...error text omitted...
IndexError: list assignment index out of range
This is intentional, as it’s usually an error to try to assign off
      the end of a list (and a particularly nasty one in the C language, which
      doesn’t do as much error checking as Python). Rather than silently
      growing the list in response, Python reports an error. To grow a list,
      we call list methods such as append
      instead.

Nesting
One nice feature of Python’s core data types is that they support arbitrary
      nesting—we can nest them in any combination, and as
      deeply as we like. For example, we can have a list that contains a
      dictionary, which contains another list, and so on. One immediate
      application of this feature is to represent matrixes, or
      “multidimensional arrays” in Python. A list with nested lists will do
      the job for basic applications (you’ll get “...” continuation-line
      prompts on lines 2 and 3 of the following in some interfaces, but not in
      IDLE):
>>> M = [[1, 2, 3],               # A 3 × 3 matrix, as nested lists
         [4, 5, 6],               # Code can span lines if bracketed
         [7, 8, 9]]
>>> M
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
Here, we’ve coded a list that contains three other lists. The
      effect is to represent a 3 × 3
      matrix of numbers. Such a structure can be accessed in a variety of
      ways:
>>> M[1]                          # Get row 2
[4, 5, 6]

>>> M[1][2]                       # Get row 2, then get item 3 within the row
6
The first operation here fetches the entire second row, and the
      second grabs the third item within that row (it runs left to right, like
      the earlier string strip and split). Stringing together index operations
      takes us deeper and deeper into our nested-object structure.3

Comprehensions
In addition to sequence operations and list methods, Python includes a more
      advanced operation known as a list comprehension
      expression, which turns out to be a powerful way to process
      structures like our matrix. Suppose, for instance, that we need to
      extract the second column of our sample matrix. It’s easy to grab rows
      by simple indexing because the matrix is stored by rows, but it’s almost
      as easy to get a column with a list comprehension:
>>> col2 = [row[1] for row in M]             # Collect the items in column 2
>>> col2
[2, 5, 8]

>>> M                                        # The matrix is unchanged
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
List comprehensions derive from set notation; they are a way to build a new list by
      running an expression on each item in a sequence, one at a time, from
      left to right. List comprehensions are coded in square brackets (to tip
      you off to the fact that they make a list) and are composed of an
      expression and a looping construct that share a variable name (row, here). The preceding list comprehension
      means basically what it says: “Give me row[1] for each row in matrix M, in a new list.” The result is a new list
      containing column 2 of the matrix.
List comprehensions can be more complex in practice:
>>> [row[1] + 1 for row in M]                 # Add 1 to each item in column 2
[3, 6, 9]

>>> [row[1] for row in M if row[1] % 2 == 0]  # Filter out odd items
[2, 8]
The first operation here, for instance, adds 1 to each item as it
      is collected, and the second uses an if clause to filter odd numbers out of the
      result using the % modulus expression
      (remainder of division). List comprehensions make new lists of results,
      but they can be used to iterate over any iterable
      object—a term we’ll flesh out later in this preview. Here, for instance,
      we use list comprehensions to step over a hardcoded list of coordinates
      and a string:
>>> diag = [M[i][i] for i in [0, 1, 2]]      # Collect a diagonal from matrix
>>> diag
[1, 5, 9]

>>> doubles = [c * 2 for c in 'spam']        # Repeat characters in a string
>>> doubles
['ss', 'pp', 'aa', 'mm']
These expressions can also be used to collect
      multiple values, as long as we wrap those values in a nested collection.
      The following illustrates using range—a built-in that generates successive integers, and requires a
      surrounding list to display all its
      values in 3.X only (2.X makes a physical list all at once):
>>> list(range(4))                           # 0..3 (list() required in 3.X)
[0, 1, 2, 3]
>>> list(range(−6, 7, 2))                    # −6 to +6 by 2 (need list() in 3.X)
[−6, −4, −2, 0, 2, 4, 6]

>>> [[x ** 2, x ** 3] for x in range(4)]     # Multiple values, "if" filters
[[0, 0], [1, 1], [4, 8], [9, 27]]
>>> [[x, x / 2, x * 2] for x in range(−6, 7, 2) if x > 0]
[[2, 1, 4], [4, 2, 8], [6, 3, 12]]
As you can probably tell, list comprehensions, and relatives like
      the map and filter built-in functions, are too involved to cover more formally in this
      preview chapter. The main point of this brief introduction is to
      illustrate that Python includes both simple and advanced tools in its
      arsenal. List comprehensions are an optional feature, but they tend to
      be very useful in practice and often provide a substantial processing
      speed advantage. They also work on any type that is a sequence in
      Python, as well as some types that are not. You’ll hear much more about
      them later in this book.
As a preview, though, you’ll find that in recent Pythons,
      comprehension syntax has been generalized for other roles: it’s not just
      for making lists today. For example, enclosing a comprehension in
      parentheses can also be used to create generators that produce
      results on demand. To illustrate, the sum built-in sums items in a sequence—in this example, summing all items in
      our matrix’s rows on request:
>>> G = (sum(row) for row in M)              # Create a generator of row sums
>>> next(G)                                  # iter(G) not required here
6
>>> next(G)                                  # Run the iteration protocol next()
15
>>> next(G)
24
The map built-in can do similar
      work, by generating the results of running items through a function, one
      at a time and on request. Like range,
      wrapping it in list forces it to
      return all its values in Python 3.X; this isn’t needed in 2.X where
      map makes a list of results all at
      once instead, and is not needed in other contexts that iterate
      automatically, unless multiple scans or list-like behavior is also
      required:
>>> list(map(sum, M))                        # Map sum over items in M
[6, 15, 24]
In Python 2.7 and 3.X, comprehension syntax can also be used to
      create sets and
      dictionaries:
>>> {sum(row) for row in M}                  # Create a set of row sums
{24, 6, 15}

>>> {i : sum(M[i]) for i in range(3)}        # Creates key/value table of row sums
{0: 6, 1: 15, 2: 24}
In fact, lists, sets, dictionaries, and generators can all be
      built with comprehensions in 3.X and 2.7:
>>> [ord(x) for x in 'spaam']                # List of character ordinals
[115, 112, 97, 97, 109]
>>> {ord(x) for x in 'spaam'}                # Sets remove duplicates
{112, 97, 115, 109}
>>> {x: ord(x) for x in 'spaam'}             # Dictionary keys are unique
{'p': 112, 'a': 97, 's': 115, 'm': 109}
>>> (ord(x) for x in 'spaam')                # Generator of values
<generator object <genexpr> at 0x000000000254DAB0>
To understand objects like generators, sets, and dictionaries,
      though, we must move ahead.


Dictionaries
Python dictionaries are something completely different (Monty Python reference intended)—they
    are not sequences at all, but are instead known as
    mappings. Mappings are also collections of other objects, but they
    store objects by key instead of by relative position.
    In fact, mappings don’t maintain any reliable left-to-right order; they
    simply map keys to associated values. Dictionaries, the only mapping type
    in Python’s core objects set, are also mutable: like lists, they may be
    changed in place and can grow and shrink on demand. Also like lists, they
    are a flexible tool for representing collections, but their more
    mnemonic keys are better suited when a collection’s
    items are named or labeled—fields of a database record, for
    example.
Mapping Operations
When written as literals, dictionaries are coded in curly braces and consist of a series of “key: value”
      pairs. Dictionaries are useful anytime we need to associate a set of
      values with keys—to describe the properties of something, for instance.
      As an example, consider the following three-item dictionary (with keys
      “food,” “quantity,” and “color,” perhaps the details of a hypothetical
      menu item?):
>>> D = {'food': 'Spam', 'quantity': 4, 'color': 'pink'}
We can index this dictionary by key to fetch and change the keys’ associated
      values. The dictionary index operation uses the same syntax as that used
      for sequences, but the item in the square brackets is a key, not a
      relative position:
>>> D['food']              # Fetch value of key 'food'
'Spam'

>>> D['quantity'] += 1     # Add 1 to 'quantity' value
>>> D
{'color': 'pink', 'food': 'Spam', 'quantity': 5}
Although the curly-braces literal form does see use, it is perhaps
      more common to see dictionaries built up in different ways (it’s rare to
      know all your program’s data before your program runs). The following
      code, for example, starts with an empty dictionary and fills it out one
      key at a time. Unlike out-of-bounds assignments in lists, which are
      forbidden, assignments to new dictionary keys create those keys:
>>> D = {}
>>> D['name'] = 'Bob'      # Create keys by assignment
>>> D['job']  = 'dev'
>>> D['age']  = 40

>>> D
{'age': 40, 'job': 'dev', 'name': 'Bob'}

>>> print(D['name'])
Bob
Here, we’re effectively using dictionary keys as field names in a
      record that describes someone. In other applications, dictionaries can
      also be used to replace searching operations—indexing a dictionary by
      key is often the fastest way to code a search in Python.
As we’ll learn later, we can also make dictionaries by passing to
      the dict type name either keyword arguments (a special
      name=value syntax in
      function calls), or the result of
      zipping together sequences of keys and values
      obtained at runtime (e.g., from files). Both the following make the same
      dictionary as the prior example and its equivalent {} literal form, though the first tends to
      make for less typing:
>>> bob1 = dict(name='Bob', job='dev', age=40)                      # Keywords
>>> bob1
{'age': 40, 'name': 'Bob', 'job': 'dev'}

>>> bob2 = dict(zip(['name', 'job', 'age'], ['Bob', 'dev', 40]))    # Zipping
>>> bob2
{'job': 'dev', 'name': 'Bob', 'age': 40}
Notice how the left-to-right order of dictionary keys is
      scrambled. Mappings are not positionally ordered,
      so unless you’re lucky, they’ll come back in a different order than you
      typed them. The exact order may vary per Python, but you shouldn’t
      depend on it, and shouldn’t expect yours to match that in this
      book.

Nesting Revisited
In the prior example, we used a dictionary to describe a hypothetical person,
      with three keys. Suppose, though, that the information is more complex.
      Perhaps we need to record a first name and a last name, along with
      multiple job titles. This leads to another application of Python’s
      object nesting in action. The following dictionary, coded all at once as
      a literal, captures more structured information:
>>> rec = {'name': {'first': 'Bob', 'last': 'Smith'},
           'jobs': ['dev', 'mgr'],
           'age':  40.5}
Here, we again have a three-key dictionary at the top (keys
      “name,” “jobs,” and “age”), but the values have become more complex: a
      nested dictionary for the name to support multiple parts, and a nested
      list for the jobs to support multiple roles and future expansion. We can
      access the components of this structure much as we did for our
      list-based matrix earlier, but this time most indexes are dictionary
      keys, not list offsets:
>>> rec['name']                         # 'name' is a nested dictionary
{'last': 'Smith', 'first': 'Bob'}

>>> rec['name']['last']                 # Index the nested dictionary
'Smith'

>>> rec['jobs']                         # 'jobs' is a nested list
['dev', 'mgr']
>>> rec['jobs'][-1]                     # Index the nested list
'mgr'

>>> rec['jobs'].append('janitor')       # Expand Bob's job description in place
>>> rec
{'age': 40.5, 'jobs': ['dev', 'mgr', 'janitor'], 'name': {'last': 'Smith',
'first': 'Bob'}}
Notice how the last operation here expands the nested jobs
      list—because the jobs list is a separate piece of memory from the
      dictionary that contains it, it can grow and shrink freely (object
      memory layout will be discussed further later in this book).
The real reason for showing you this example is to demonstrate the
      flexibility of Python’s core data types. As you can
      see, nesting allows us to build up complex information structures
      directly and easily. Building a similar structure in a low-level
      language like C would be tedious and require much more code: we would
      have to lay out and declare structures and arrays, fill out values, link
      everything together, and so on. In Python, this is all automatic—running
      the expression creates the entire nested object structure for us. In
      fact, this is one of the main benefits of scripting languages like
      Python.
Just as importantly, in a lower-level language we would have to be
      careful to clean up all of the object’s space when we no longer need it.
      In Python, when we lose the last reference to the object—by assigning
      its variable to something else, for example—all of the memory space
      occupied by that object’s structure is automatically cleaned up for
      us:
>>> rec = 0                             # Now the object's space is reclaimed
Technically speaking, Python has a feature known as garbage collection that
      cleans up unused memory as your program runs and frees you from having
      to manage such details in your code. In standard Python (a.k.a.
      CPython), the space is reclaimed immediately, as soon as the last
      reference to an object is removed. We’ll study how this works later in
      Chapter 6; for now, it’s enough to
      know that you can use objects freely, without worrying about creating
      their space or cleaning up as you go.
Also watch for a record structure similar to the one we just coded
      in Chapter 8, Chapter 9, and Chapter 27, where we’ll use it to compare and
      contrast lists, dictionaries, tuples, named tuples, and classes—an array
      of data structure options with tradeoffs we’ll cover in full later.4

Missing Keys: if Tests
As mappings, dictionaries support accessing items by key only, with the
      sorts of operations we’ve just seen. In addition, though, they also
      support type-specific operations with method calls
      that are useful in a variety of common use cases. For example, although
      we can assign to a new key to expand a dictionary, fetching a
      nonexistent key is still a mistake:
>>> D = {'a': 1, 'b': 2, 'c': 3}
>>> D
{'a': 1, 'c': 3, 'b': 2}

>>> D['e'] = 99                      # Assigning new keys grows dictionaries
>>> D
{'a': 1, 'c': 3, 'b': 2, 'e': 99}

>>> D['f']                           # Referencing a nonexistent key is an error
...error text omitted...
KeyError: 'f'
This is what we want—it’s usually a programming error to fetch
      something that isn’t really there. But in some generic programs, we
      can’t always know what keys will be present when we write our code. How
      do we handle such cases and avoid errors? One solution is to test ahead
      of time. The dictionary in membership
      expression allows us to query the existence of a key and
      branch on the result with a Python if
      statement. In the following, be sure to press Enter twice to run the
      if interactively after typing its
      code (as explained in Chapter 3, an empty
      line means “go” at the interactive prompt), and just as for the earlier
      multiline dictionaries and lists, the prompt changes to “...” on some
      interfaces for lines two and beyond:
>>> 'f' in D
False

>>> if not 'f' in D:                           # Python's sole selection statement
       print('missing')

missing
This book has more to say about the if statement in later chapters, but the form
      we’re using here is straightforward: it consists of the word if, followed by an expression that is
      interpreted as a true or false result, followed by a block of code to
      run if the test is true. In its full form, the if statement can also have an else clause for a default case, and one or
      more elif (“else if”)
      clauses for other tests. It’s the main selection
      statement tool in Python; along with both its ternary if/else
      expression cousin (which we’ll meet in a moment) and the if comprehension filter lookalike we saw
      earlier, it’s the way we code the logic of choices and decisions in our
      scripts.
If you’ve used some other programming languages in the past, you
      might be wondering how Python knows when the if statement ends. I’ll explain Python’s
      syntax rules in depth in later chapters, but in short, if you have more
      than one action to run in a statement block, you simply indent all their
      statements the same way—this both promotes readable code and reduces the
      number of characters you have to type:
>>> if not 'f' in D:
        print('missing')
        print('no, really...')                 # Statement blocks are indented

missing
no, really...
Besides the in test, there are
      a variety of ways to avoid accessing nonexistent keys in the
      dictionaries we create: the get
      method, a conditional index with a default; the Python 2.X has_key
      method, an in work-alike that is no
      longer available in 3.X; the try
      statement, a tool we’ll first meet in Chapter 10 that catches and recovers
      from exceptions altogether; and the if/else
      ternary (three-part) expression, which is essentially an if statement squeezed onto a single line. Here
      are a few examples:
>>> value = D.get('x', 0)                      # Index but with a default
>>> value
0
>>> value = D['x'] if 'x' in D else 0          # if/else expression form
>>> value
0
We’ll save the details on such alternatives until a later chapter.
      For now, let’s turn to another dictionary method’s role in a common
      use case.

Sorting Keys: for Loops
As mentioned earlier, because dictionaries are not sequences, they
      don’t maintain any dependable left-to-right order. If we make a
      dictionary and print it back, its keys may come back in a different
      order than that in which we typed them, and may vary per Python version
      and other variables:
>>> D = {'a': 1, 'b': 2, 'c': 3}
>>> D
{'a': 1, 'c': 3, 'b': 2}
What do we do, though, if we do need to impose an ordering on a
      dictionary’s items? One common solution is to grab a list of keys with
      the dictionary keys method,
      sort that with the list sort method, and then step through the result
      with a Python for loop (as for
      if, be sure to press the Enter key
      twice after coding the following for
      loop, and omit the outer parenthesis in the print in Python 2.X):
>>> Ks = list(D.keys())                # Unordered keys list
>>> Ks                                 # A list in 2.X, "view" in 3.X: use list()
['a', 'c', 'b']

>>> Ks.sort()                          # Sorted keys list
>>> Ks
['a', 'b', 'c']

>>> for key in Ks:                     # Iterate though sorted keys
        print(key, '=>', D[key])       # <== press Enter twice here (3.X print)

a => 1
b => 2
c => 3
This is a three-step process, although, as we’ll see in later
      chapters, in recent versions of Python it can be done in one step with
      the newer sorted built-in
      function. The sorted call returns the
      result and sorts a variety of object types, in this case sorting
      dictionary keys automatically:
>>> D
{'a': 1, 'c': 3, 'b': 2}

>>> for key in sorted(D):
        print(key, '=>', D[key])

a => 1
b => 2
c => 3
Besides showcasing dictionaries, this use case serves to introduce
      the Python for loop. The for loop is a simple and efficient way to step
      through all the items in a sequence and run a block of code for each
      item in turn. A user-defined loop variable (key, here) is used to reference the current
      item each time through. The net effect in our example is to print the
      unordered dictionary’s keys and values, in sorted-key order.
The for loop, and its more
      general colleague the while loop, are the
      main ways we code repetitive tasks as statements in
      our scripts. Really, though, the for
      loop, like its relative the list comprehension introduced earlier, is a
      sequence operation. It works on any object that is a sequence and, like
      the list comprehension, even on some things that are not. Here, for
      example, it is stepping across the characters in a string, printing the
      uppercase version of each as it goes:
>>> for c in 'spam':
        print(c.upper())

S
P
A
M
Python’s while loop is a more
      general sort of looping tool; it’s not limited to stepping across
      sequences, but generally requires more code to do so:
>>> x = 4
>>> while x > 0:
        print('spam!' * x)
        x -= 1

spam!spam!spam!spam!
spam!spam!spam!
spam!spam!
spam!
We’ll discuss looping statements, syntax, and tools in depth later
      in the book. First, though, I need to confess that this section has not
      been as forthcoming as it might have been. Really, the for loop, and all its cohorts that step
      through objects from left to right, are not just
      sequence operations, they are
      iterable operations—as the next section describes.

Iteration and Optimization
If the last section’s for loop
      looks like the list comprehension expression introduced
      earlier, it should: both are really general iteration tools. In fact,
      both will work on any iterable object that follows the iteration
      protocol—pervasive ideas in Python that underlie all its iteration
      tools.
In a nutshell, an object is iterable if it is
      either a physically stored sequence in memory, or an object that
      generates one item at a time in the context of an iteration operation—a
      sort of “virtual” sequence. More formally, both types of objects are
      considered iterable because they support the iteration
      protocol—they respond to the iter
      call with an object that advances in response to next calls
      and raises an exception when finished producing values.
The generator comprehension expression we saw earlier is such an object: its values
      aren’t stored in memory all at once, but are produced as requested,
      usually by iteration tools. Python file objects
      similarly iterate line by line when used by an iteration tool: file
      content isn’t in a list, it’s fetched on demand. Both are iterable
      objects in Python—a category that expands in 3.X to include core tools
      like range and map. By deferring results as needed, these
      tools can both save memory and minimize delays.
I’ll have more to say about the iteration protocol later in this
      book. For now, keep in mind that every Python tool that scans an object
      from left to right uses the iteration protocol. This is why the sorted call used in the prior section works on
      the dictionary directly—we don’t have to call the keys method to get a sequence because
      dictionaries are iterable objects, with a next that returns successive keys.
It may also help you to see that any list comprehension
      expression, such as this one, which computes the squares of a list of
      numbers:
>>> squares = [x ** 2 for x in [1, 2, 3, 4, 5]]
>>> squares
[1, 4, 9, 16, 25]
can always be coded as an equivalent for loop that builds the result list manually
      by appending as it goes:
>>> squares = []
>>> for x in [1, 2, 3, 4, 5]:          # This is what a list comprehension does
        squares.append(x ** 2)         # Both run the iteration protocol internally

>>> squares
[1, 4, 9, 16, 25]
Both tools leverage the iteration protocol internally and produce
      the same result. The list comprehension, though, and related functional
      programming tools like map and
      filter, will often run faster than a
      for loop today on some types of code
      (perhaps even twice as fast)—a property that could matter in your
      programs for large data sets. Having said that, though, I should point
      out that performance measures are tricky business in Python because it
      optimizes so much, and they may vary from release to release.
A major rule of thumb in Python is to code for simplicity and
      readability first and worry about performance later, after your program
      is working, and after you’ve proved that there is a genuine performance
      concern. More often than not, your code will be quick enough as it is.
      If you do need to tweak code for performance, though, Python includes
      tools to help you out, including the time and
      timeit modules for timing the speed
      of alternatives, and the profile module for
      isolating bottlenecks.
You’ll find more on these later in this book (see especially Chapter 21’s benchmarking case study) and
      in the Python manuals. For the sake of this preview, let’s move ahead to
      the next core data type.


Tuples
The tuple object (pronounced “toople” or “tuhple,” depending on
    whom you ask) is roughly like a list that cannot be changed—tuples
    are sequences, like lists, but they
    are immutable, like strings.
    Functionally, they’re used to represent fixed collections of items: the
    components of a specific calendar date, for instance. Syntactically, they
    are normally coded in parentheses instead of square brackets, and they
    support arbitrary types, arbitrary nesting, and the usual sequence
    operations:
>>> T = (1, 2, 3, 4)            # A 4-item tuple
>>> len(T)                      # Length
4

>> T + (5, 6)                   # Concatenation
(1, 2, 3, 4, 5, 6)

>>> T[0]                        # Indexing, slicing, and more
1
Tuples also have type-specific callable methods as of Python 2.6 and
    3.0, but not nearly as many as lists:
>>> T.index(4)                  # Tuple methods: 4 appears at offset 3
3
>>> T.count(4)                  # 4 appears once
1
The primary distinction for tuples is that they cannot be changed
    once created. That is, they are immutable sequences (one-item tuples like
    the one here require a trailing comma):
>>> T[0] = 2                    # Tuples are immutable
...error text omitted...
TypeError: 'tuple' object does not support item assignment

>>> T = (2,) + T[1:]            # Make a new tuple for a new value
>>> T
(2, 2, 3, 4)
Like lists and dictionaries, tuples support mixed types and nesting,
    but they don’t grow and shrink because they are immutable (the parentheses
    enclosing a tuple’s items can often be omitted, as done here; in contexts
    where commas don’t otherwise matter, the commas are what actually builds a
    tuple):
>>> T = 'spam', 3.0, [11, 22, 33]
>>> T[1]
3.0
>>> T[2][1]
22
>>> T.append(4)
AttributeError: 'tuple' object has no attribute 'append'
Why Tuples?
So, why have a type that is like a list, but supports fewer
      operations? Frankly, tuples are not generally used as often as lists in
      practice, but their immutability is the whole point. If you pass a
      collection of objects around your program as a list, it can be changed
      anywhere; if you use a tuple, it cannot. That is, tuples provide a sort
      of integrity constraint that is convenient in programs larger than those
      we’ll write here. We’ll talk more about tuples later in the book,
      including an extension that builds upon them called named tuples. For now, though,
      let’s jump ahead to our last major core type: the file.


Files
File objects are Python code’s main interface to external files on your
    computer. They can be used to read and write text memos, audio clips,
    Excel documents, saved email messages, and whatever else you happen to
    have stored on your machine. Files are a core type, but they’re something
    of an oddball—there is no specific literal syntax for creating them.
    Rather, to create a file object, you call the built-in open function,
    passing in an external filename and an optional processing mode as
    strings.
For example, to create a text output file, you would pass in its name and the 'w' processing mode
    string to write data:
>>> f = open('data.txt', 'w')      # Make a new file in output mode ('w' is write)
>>> f.write('Hello\n')             # Write strings of characters to it
6
>>> f.write('world\n')             # Return number of items written in Python 3.X
6
>>> f.close()                      # Close to flush output buffers to disk
This creates a file in the current directory and writes text to it
    (the filename can be a full directory path if you need to access a file
    elsewhere on your computer). To read back what you just wrote, reopen the
    file in 'r' processing mode,
    for reading text input—this is the default if you omit the mode in the
    call. Then read the file’s content into a string, and display it. A file’s
    contents are always a string in your script, regardless of the type of
    data the file contains:
>>> f = open('data.txt')           # 'r' (read) is the default processing mode
>>> text = f.read()                # Read entire file into a string
>>> text
'Hello\nworld\n'

>>> print(text)                    # print interprets control characters
Hello
world

>>> text.split()                   # File content is always a string
['Hello', 'world']
Other file object methods support additional features we don’t have
    time to cover here. For instance, file objects provide more ways of
    reading and writing (read accepts an
    optional maximum byte/character size, readline reads one line at a time, and so on),
    as well as other tools (seek moves to a
    new file position). As we’ll see later, though, the best way to read a
    file today is to not read it at all—files provide an
    iterator that automatically reads line by line in
    for loops and other contexts:
>>> for line in open('data.txt'): print(line)
We’ll meet the full set of file methods later in this book, but if
    you want a quick preview now, run a dir
    call on any open file and a help on any
    of the method names that come back:
>>> dir(f)
[ ...many names omitted...
'buffer', 'close', 'closed', 'detach', 'encoding', 'errors', 'fileno', 'flush',
'isatty', 'line_buffering', 'mode', 'name', 'newlines', 'read', 'readable',
'readline', 'readlines', 'seek', 'seekable', 'tell', 'truncate', 'writable',
'write', 'writelines']

>>>help(f.seek)
...try it and see...
Binary Bytes Files
The prior section’s examples illustrate file basics that suffice for many
      roles. Technically, though, they rely on either the platform’s Unicode
      encoding default in Python 3.X, or the 8-bit byte nature of files in
      Python 2.X. Text files always encode strings in 3.X, and blindly write
      string content in 2.X. This is irrelevant for the simple ASCII data used
      previously, which maps to and from file bytes unchanged. But for richer
      types of data, file interfaces can vary depending on both content and
      the Python line you use.
As hinted when we met strings earlier, Python 3.X draws a sharp
      distinction between text and binary data in files: text
      files represent content as normal str strings and perform Unicode encoding and decoding automatically when writing
      and reading data, while binary files represent
      content as a special bytes string and
      allow you to access file content unaltered. Python 2.X supports the same
      dichotomy, but doesn’t impose it as rigidly, and its tools
      differ.
For example, binary files are useful for
      processing media, accessing data created by C programs, and so on. To
      illustrate, Python’s struct module
      can both create and unpack packed binary data—raw
      bytes that record values that are not Python objects—to be written to a
      file in binary mode. We’ll study this technique in detail later in the
      book, but the concept is simple: the following creates a binary file in
      Python 3.X (binary files work the same in 2.X, but the “b” string
      literal prefix isn’t required and won’t be displayed):
>>> import struct
>>> packed = struct.pack('>i4sh', 7, b'spam', 8)     # Create packed binary data
>>> packed                                           # 10 bytes, not objects or text
b'\x00\x00\x00\x07spam\x00\x08'
>>>
>>> file = open('data.bin', 'wb')                    # Open binary output file
>>> file.write(packed)                               # Write packed binary data
10
>>> file.close()
Reading binary data back is essentially symmetric; not all
      programs need to tread so deeply into the low-level realm of bytes, but
      binary files make this easy in Python:
>>> data = open('data.bin', 'rb').read()              # Open/read binary data file
>>> data                                              # 10 bytes, unaltered
b'\x00\x00\x00\x07spam\x00\x08'
>>> data[4:8]                                         # Slice bytes in the middle
b'spam'
>>> list(data)                                        # A sequence of 8-bit bytes
[0, 0, 0, 7, 115, 112, 97, 109, 0, 8]
>>> struct.unpack('>i4sh', data)                      # Unpack into objects again
(7, b'spam', 8)

Unicode Text Files
Text files are used to process all sorts of text-based data, from memos to email
      content to JSON and XML documents. In today’s broader interconnected
      world, though, we can’t really talk about text without also asking “what
      kind?”—you must also know the text’s Unicode encoding type if either it
      differs from your platform’s default, or you can’t rely on that default
      for data portability reasons.
Luckily, this is easier than it may sound. To access files
      containing non-ASCII Unicode text of the sort
      introduced earlier in this chapter, we simply pass in an encoding name
      if the text in the file doesn’t match the default encoding for our
      platform. In this mode, Python text files automatically
      encode on writes and decode on
      reads per the encoding scheme name you provide. In Python
      3.X:
>>> S = 'sp\xc4m'                                          # Non-ASCII Unicode text
>>> S
'spÄm'
>>> S[2]                                                   # Sequence of characters
'Ä'

>>> file = open('unidata.txt', 'w', encoding='utf-8')      # Write/encode UTF-8 text
>>> file.write(S)                                          # 4 characters written
4
>>> file.close()

>>> text = open('unidata.txt', encoding='utf-8').read()    # Read/decode UTF-8 text
>>> text
'spÄm'
>>> len(text)                                              # 4 chars (code points)
4
This automatic encoding and decoding is what you normally want.
      Because files handle this on transfers, you may process text in memory
      as a simple string of characters without concern for its Unicode-encoded
      origins. If needed, though, you can also see what’s truly stored in your
      file by stepping into binary mode:
>>> raw = open('unidata.txt', 'rb').read()                 # Read raw encoded bytes
>>> raw
b'sp\xc3\x84m'
>>> len(raw)                                               # Really 5 bytes in UTF-8
5
You can also encode and decode manually if you get Unicode data
      from a source other than a file—parsed from an email message or fetched
      over a network connection, for example:
>>> text.encode('utf-8')                                   # Manual encode to bytes
b'sp\xc3\x84m'
>>> raw.decode('utf-8')                                    # Manual decode to str
'spÄm'
This is also useful to see how text files would automatically
      encode the same string differently under different encoding names, and
      provides a way to translate data to different encodings—it’s different
      bytes in files, but decodes to the same string in memory if you provide
      the proper encoding name:
>>> text.encode('latin-1')                                 # Bytes differ in others
b'sp\xc4m'
>>> text.encode('utf-16')
b'\xff\xfes\x00p\x00\xc4\x00m\x00'

>>> len(text.encode('latin-1')), len(text.encode('utf-16'))
(4, 10)

>>> b'\xff\xfes\x00p\x00\xc4\x00m\x00'.decode('utf-16')    # But same string decoded
'spÄm'
This all works more or less the same in Python
      2.X, but Unicode strings are coded and display with a leading
      “u,” byte strings don’t require or show a leading “b,” and Unicode text
      files must be opened with codecs.open,
      which accepts an encoding name just like 3.X’s open, and uses the special unicode string to represent content in memory.
      Binary file mode may seem optional in 2.X since normal files are just
      byte-based data, but it’s required to avoid changing line ends if
      present (more on this later in the book):
>>> import codecs
>>> codecs.open('unidata.txt', encoding='utf8').read()     # 2.X: read/decode text
u'sp\xc4m'
>>> open('unidata.txt', 'rb').read()                       # 2.X: read raw bytes
'sp\xc3\x84m'
>>> open('unidata.txt').read()                             # 2.X: raw/undecoded too
'sp\xc3\x84m'
Although you won’t generally need to care about this distinction
      if you deal only with ASCII text, Python’s strings and files are an
      asset if you deal with either binary data (which includes most types of
      media) or text in internationalized character sets (which includes most
      content on the Web and Internet at large today). Python also supports
      non-ASCII file names (not just content), but it’s
      largely automatic; tools such as walkers and listers offer more control
      when needed, though we’ll defer further details until Chapter 37.

Other File-Like Tools
The open function is the workhorse for most file processing you will do in
      Python. For more advanced tasks, though, Python comes with additional
      file-like tools: pipes, FIFOs, sockets, keyed-access files, persistent
      object shelves, descriptor-based files, relational and object-oriented
      database interfaces, and more. Descriptor files, for instance, support
      file locking and other low-level tools, and sockets provide an interface
      for networking and interprocess communication. We won’t cover many of
      these topics in this book, but you’ll find them useful once you start
      programming Python in earnest.


Other Core Types
Beyond the core types we’ve seen so far, there are others that may
    or may not qualify for membership in the category, depending on how
    broadly it is defined. Sets, for example,
    are a recent addition to the language that are neither mappings
    nor sequences; rather, they are unordered collections of unique and
    immutable objects. You create sets by calling the built-in set function or
    using new set literals and expressions in 3.X and 2.7, and they support
    the usual mathematical set operations (the choice of new {...} syntax for set literals makes sense, since
    sets are much like the keys of a valueless dictionary):
>>> X = set('spam')                 # Make a set out of a sequence in 2.X and 3.X
>>> Y = {'h', 'a', 'm'}             # Make a set with set literals in 3.X and 2.7

>>> X, Y                            # A tuple of two sets without parentheses
({'m', 'a', 'p', 's'}, {'m', 'a', 'h'})

>>> X & Y                           # Intersection
{'m', 'a'}
>>> X | Y                           # Union
{'m', 'h', 'a', 'p', 's'}
>>> X - Y                           # Difference
{'p', 's'}
>>> X > Y                           # Superset
False

>>> {n ** 2 for n in [1, 2, 3, 4]}  # Set comprehensions in 3.X and 2.7
{16, 1, 4, 9}
Even less mathematically inclined programmers often find sets useful
    for common tasks such as filtering out duplicates, isolating differences,
    and performing order-neutral equality tests without sorting—in lists,
    strings, and all other iterable objects:
>>> list(set([1, 2, 1, 3, 1]))      # Filtering out duplicates (possibly reordered)
[1, 2, 3]
>>> set('spam') - set('ham')        # Finding differences in collections
{'p', 's'}
>>> set('spam') == set('asmp')      # Order-neutral equality ('spam'=='asmp' False)
True
Sets also support in membership
    tests, though all other collection types in Python do too:
>>> 'p' in set('spam'), 'p' in 'spam', 'ham' in ['eggs', 'spam', 'ham']
(True, True, True)
In addition, Python recently grew a few new numeric types:
    decimal numbers, which are fixed-precision floating-point numbers, and
    fraction numbers, which are rational numbers with both a numerator and a denominator.
    Both can be used to work around the limitations and inherent inaccuracies
    of floating-point math:
>>> 1 / 3                           # Floating-point (add a .0 in Python 2.X)
0.3333333333333333
>>> (2/3) + (1/2)
1.1666666666666665

>>> import decimal                  # Decimals: fixed precision
>>> d = decimal.Decimal('3.141')
>>> d + 1
Decimal('4.141')

>>> decimal.getcontext().prec = 2
>>> decimal.Decimal('1.00') / decimal.Decimal('3.00')
Decimal('0.33')

>>> from fractions import Fraction  # Fractions: numerator+denominator
>>> f = Fraction(2, 3)
>>> f + 1
Fraction(5, 3)
>>> f + Fraction(1, 2)
Fraction(7, 6)
Python also comes with Booleans (with predefined True and False objects that are essentially just the
    integers 1 and 0 with custom display logic), and it has long supported a
    special placeholder object called None
    commonly used to initialize names and objects:
>>> 1 > 2, 1 < 2                    # Booleans
(False, True)
>>> bool('spam')                    # Object's Boolean value
True

>>> X = None                        # None placeholder
>>> print(X)
None
>>> L = [None] * 100                # Initialize a list of 100 Nones
>>> L
[None, None, None, None, None, None, None, None, None, None, None, None,
None, None, None, None, None, None, None, None, ...a list of 100 Nones...]
How to Break Your Code’s Flexibility
I’ll have more to say about all of Python’s object types later, but one merits special
      treatment here. The type object, returned by the
      type built-in function, is an object
      that gives the type of another object; its result differs slightly in
      3.X, because types have merged with classes completely (something we’ll
      explore in the context of “new-style” classes in Part VI). Assuming L is still the list of the prior
      section:
# In Python 2.X:
>>> type(L)                         # Types: type of L is list type object
<type 'list'>
>>> type(type(L))                   # Even types are objects
<type 'type'>

# In Python 3.X:
>>> type(L)                         # 3.X: types are classes, and vice versa
<class 'list'>
>>> type(type(L))                   # See Chapter 32 for more on class types
<class 'type'>
Besides allowing you to explore your objects interactively, the
      type object in its most practical
      application allows code to check the types of the objects it processes.
      In fact, there are at least three ways to do so in a Python
      script:
>>> if type(L) == type([]):         # Type testing, if you must...
        print('yes')

yes
>>> if type(L) == list:             # Using the type name
        print('yes')

yes
>>> if isinstance(L, list):         # Object-oriented tests
        print('yes')

yes
Now that I’ve shown you all these ways to do type testing,
      however, I am required by law to tell you that doing so is almost always
      the wrong thing to do in a Python program (and often a sign of an ex-C
      programmer first starting to use Python!). The reason why won’t become
      completely clear until later in the book, when we start writing larger
      code units such as functions, but it’s a (perhaps
      the) core Python concept. By checking for specific
      types in your code, you effectively break its flexibility—you limit it
      to working on just one type. Without such tests, your code may be able
      to work on a whole range of types.
This is related to the idea of polymorphism mentioned
      earlier, and it stems from Python’s lack of type declarations. As you’ll
      learn, in Python, we code to object interfaces
      (operations supported), not to types. That is, we care what an object
      does, not what it is. Not
      caring about specific types means that code is automatically applicable
      to many of them—any object with a compatible interface will work,
      regardless of its specific type. Although type checking is supported—and
      even required in some rare cases—you’ll see that it’s not usually the
      “Pythonic” way of thinking. In fact, you’ll find that polymorphism is
      probably the key idea behind using Python well.

User-Defined Classes
We’ll study object-oriented programming
      in Python—an optional but powerful feature of the language
      that cuts development time by supporting programming by customization—in
      depth later in this book. In abstract terms, though, classes define new
      types of objects that extend the core set, so they merit a passing
      glance here. Say, for example, that you wish to have a type of object
      that models employees. Although there is no such specific core type in
      Python, the following user-defined class might fit the bill:
>>> class Worker:
         def __init__(self, name, pay):          # Initialize when created
             self.name = name                    # self is the new object
             self.pay  = pay
         def lastName(self):
             return self.name.split()[-1]        # Split string on blanks
         def giveRaise(self, percent):
             self.pay *= (1.0 + percent)         # Update pay in place
This class defines a new kind of object that will have name and pay attributes (sometimes called state information), as well as
      two bits of behavior coded as functions (normally called
      methods). Calling the class like a function
      generates instances of our new type, and the class’s methods
      automatically receive the instance being processed by a given method
      call (in the self argument):
>>> bob = Worker('Bob Smith', 50000)             # Make two instances
>>> sue = Worker('Sue Jones', 60000)             # Each has name and pay attrs
>>> bob.lastName()                               # Call method: bob is self
'Smith'
>>> sue.lastName()                               # sue is the self subject
'Jones'
>>> sue.giveRaise(.10)                           # Updates sue's pay
>>> sue.pay
66000.0
The implied “self” object is why we call this an
      object-oriented model: there is always an implied
      subject in functions within a class. In a sense, though, the class-based
      type simply builds on and uses core types—a user-defined Worker object here, for example, is just a
      collection of a string and a number (name and pay, respectively), plus functions for
      processing those two built-in objects.
The larger story of classes is that their inheritance mechanism
      supports software hierarchies that lend themselves to customization by
      extension. We extend software by writing new
      classes, not by changing what already works. You should also know that
      classes are an optional feature of Python, and simpler built-in types
      such as lists and dictionaries are often better tools than user-coded
      classes. This is all well beyond the bounds of our introductory
      object-type tutorial, though, so consider this just a preview; for full
      disclosure on user-defined types coded with classes, you’ll have to read
      on. Because classes build upon other tools in Python, they are one of
      the major goals of this book’s journey.

And Everything Else
As mentioned earlier, everything you can process in a Python
      script is a type of object, so our object type tour is necessarily
      incomplete. However, even though everything in Python is an “object,”
      only those types of objects we’ve met so far are considered part of
      Python’s core type set. Other types in Python either are objects related
      to program execution (like functions, modules, classes, and compiled
      code), which we will study later, or are implemented by imported module
      functions, not language syntax. The latter of these also tend to have
      application-specific roles—text patterns, database interfaces, network
      connections, and so on.
Moreover, keep in mind that the objects we’ve met here are
      objects, but not necessarily object-oriented—a
      concept that usually requires inheritance and the Python class statement, which we’ll meet again later in this book. Still, Python’s
      core objects are the workhorses of almost every Python script you’re
      likely to meet, and they usually are the basis of larger noncore
      types.


Chapter Summary
And that’s a wrap for our initial data type tour. This chapter has
    offered a brief introduction to Python’s core object types and the sorts
    of operations we can apply to them. We’ve studied generic operations that
    work on many object types (sequence operations such as indexing and
    slicing, for example), as well as type-specific operations available as
    method calls (for instance, string splits and list appends). We’ve also
    defined some key terms, such as immutability, sequences, and
    polymorphism.
Along the way, we’ve seen that Python’s core object types are more
    flexible and powerful than what is available in lower-level languages such
    as C. For instance, Python’s lists and dictionaries obviate most of the
    work you do to support collections and searching in lower-level languages.
    Lists are ordered collections of other objects, and dictionaries are
    collections of other objects that are indexed by key instead of by
    position. Both dictionaries and lists may be nested, can grow and shrink
    on demand, and may contain objects of any type. Moreover, their space is
    automatically cleaned up as you go. We’ve also seen that strings and files
    work hand in hand to support a rich variety of binary and text
    data.
I’ve skipped most of the details here in order to provide a quick
    tour, so you shouldn’t expect all of this chapter to have made sense yet.
    In the next few chapters we’ll start to dig deeper, taking a second pass
    over Python’s core object types that will fill in details omitted here,
    and give you a deeper understanding. We’ll start off the next chapter with
    an in-depth look at Python numbers. First, though, here is another quiz to
    review.

Test Your Knowledge: Quiz
We’ll explore the concepts introduced in this chapter in more detail in
    upcoming chapters, so we’ll just cover the big ideas here:
	Name four of Python’s core data types.

	Why are they called “core” data types?

	What does “immutable” mean, and which three of Python’s core
        types are considered immutable?

	What does “sequence” mean, and which three types fall into that
        category?

	What does “mapping” mean, and which core type is a
        mapping?

	What is “polymorphism,” and why should you care?



Test Your Knowledge: Answers
	Numbers, strings, lists, dictionaries, tuples, files, and sets
        are generally considered to be the core object (data) types. Types,
        None, and Booleans are sometimes
        classified this way as well. There are multiple number types (integer,
        floating point, complex, fraction, and decimal) and multiple string
        types (simple strings and Unicode strings in Python 2.X, and text
        strings and byte strings in Python 3.X).

	They are known as “core” types because they are part of the
        Python language itself and are always available; to create other
        objects, you generally must call functions in imported modules. Most
        of the core types have specific syntax for generating the objects:
        'spam', for example, is an
        expression that makes a string and determines the set of operations
        that can be applied to it. Because of this, core types are hardwired
        into Python’s syntax. In contrast, you must call the built-in open function to create a file object (even
        though this is usually considered a core type too).

	An “immutable” object is an object that cannot be changed after
        it is created. Numbers, strings, and tuples in Python fall into this
        category. While you cannot change an immutable object in place, you
        can always make a new one by running an expression. Bytearrays in
        recent Pythons offer mutability for text, but they are not normal
        strings, and only apply directly to text if it’s a simple 8-bit kind
        (e.g., ASCII).

	A “sequence” is a positionally ordered collection of objects.
        Strings, lists, and tuples are all sequences in Python. They share
        common sequence operations, such as indexing, concatenation, and
        slicing, but also have type-specific method calls. A related term,
        “iterable,” means either a physical sequence, or a virtual one that
        produces its items on request.

	The term “mapping” denotes an object that maps keys to
        associated values. Python’s dictionary is the only mapping type in the
        core type set. Mappings do not maintain any left-to-right positional
        ordering; they support access to data stored by key, plus
        type-specific method calls.

	“Polymorphism” means that the meaning of an operation (like a
        +) depends on the objects being
        operated on. This turns out to be a key idea (perhaps
        the key idea) behind using Python well—not
        constraining code to specific types makes that code automatically
        applicable to many types.



1 Pardon my formality. I’m a computer scientist.
2 In this book, the term literal simply means
        an expression whose syntax generates an object—sometimes also called a
        constant. Note that the term “constant” does not
        imply objects or variables that can never be changed (i.e., this term
        is unrelated to C++’s const or
        Python’s “immutable”—a topic explored in the section “Immutability”).
3 This matrix structure works for small-scale tasks, but for
          more serious number crunching you will probably want to use one of
          the numeric extensions to Python, such as the open source
          NumPy and SciPy systems.
          Such tools can store and process large matrixes much more
          efficiently than our nested list structure. NumPy has been said to
          turn Python into the equivalent of a free and more powerful version
          of the Matlab system, and organizations such as NASA, Los Alamos,
          JPL, and many others use this tool for scientific and financial
          tasks. Search the Web for more details.
4 Two application notes here. First, as a preview, the rec record we just created really could be
          an actual database record, when we employ Python’s object
          persistence system—an easy way to store native Python
          objects in simple files or access-by-key databases, which translates
          objects to and from serial byte streams automatically. We won’t go
          into details here, but watch for coverage of Python’s pickle and shelve persistence modules in Chapter 9, Chapter 28, Chapter 31, and Chapter 37, where we’ll explore them in
          the context of files, an OOP use case, classes, and 3.X changes,
          respectively.

Second, if you are familiar with JSON
          (JavaScript Object Notation)—an emerging data-interchange format
          used for databases and network transfers—this example may also look
          curiously similar, though Python’s support for variables, arbitrary
          expressions, and changes can make its data structures more general.
          Python’s json library module
          supports creating and parsing JSON text, but the translation to
          Python objects is often trivial. Watch for a JSON example that uses
          this record in Chapter 9 when we study
          files. For a larger use case, see MongoDB,
          which stores data using a language-neutral binary-encoded
          serialization of JSON-like documents, and its
          PyMongo interface.








Chapter 5. Numeric Types
This chapter begins our in-depth tour of the Python language. In
  Python, data takes the form of objects—either built-in
  objects that Python provides, or objects we create using Python tools and
  other languages such as C. In fact, objects are the basis of every Python
  program you will ever write. Because they are the most fundamental notion in
  Python programming, objects are also our first focus in this book.
In the preceding chapter, we took a quick pass over Python’s core
  object types. Although essential terms were introduced in that chapter, we
  avoided covering too many specifics in the interest of space. Here, we’ll
  begin a more careful second look at data type concepts, to fill in details
  we glossed over earlier. Let’s get started by exploring our first data type
  category: Python’s numeric types and operations.
Numeric Type Basics
Most of Python’s number types are fairly typical and will probably seem familiar if
    you’ve used almost any other programming language in the past. They can be
    used to keep track of your bank balance, the distance to Mars, the number
    of visitors to your website, and just about any other numeric
    quantity.
In Python, numbers are not really a single object type, but a
    category of similar types. Python supports the usual numeric types
    (integers and floating points), as well as literals for creating numbers
    and expressions for processing them. In addition, Python provides more
    advanced numeric programming support and objects for more advanced work. A
    complete inventory of Python’s numeric toolbox includes:
	Integer and floating-point objects

	Complex number objects

	Decimal: fixed-precision objects

	Fraction: rational number objects

	Sets: collections with numeric operations

	Booleans: true and false

	Built-in functions and modules: round, math, random, etc.

	Expressions; unlimited integer precision; bitwise operations;
        hex, octal, and binary formats

	Third-party extensions: vectors, libraries, visualization,
        plotting, etc.


Because the types in this list’s first bullet item tend to see the
    most action in Python code, this chapter starts with basic numbers and
    fundamentals, then moves on to explore the other types on this list, which
    serve specialized roles. We’ll also study sets here,
    which have both numeric and collection qualities, but are generally
    considered more the former than the latter. Before we jump into code,
    though, the next few sections get us started with a brief overview of how
    we write and process numbers in our scripts.
Numeric Literals
Among its basic types, Python provides
      integers, which are positive and negative whole numbers, and
      floating-point numbers, which are numbers with a
      fractional part (sometimes called “floats” for verbal economy). Python
      also allows us to write integers using hexadecimal, octal, and binary
      literals; offers a complex number type; and allows integers to have
      unlimited precision—they can grow to have as many
      digits as your memory space allows. Table 5-1 shows what Python’s
      numeric types look like when written out in a program as literals or
      constructor function calls.
Table 5-1. Numeric literals and constructors	Literal	Interpretation
	1234, −24, 0, 99999999999999
	Integers (unlimited
              size)

	1.23, 1., 3.14e-10, 4E210, 4.0e+210
	Floating-point
              numbers

	0o177, 0x9ff, 0b101010
	Octal, hex, and binary
              literals in 3.X

	0177, 0o177, 0x9ff, 0b101010
	Octal, octal, hex, and
              binary literals in 2.X

	3+4j, 3.0+4.0j, 3J
	Complex number
              literals

	set('spam'), {1, 2, 3,
              4}
	Sets: 2.X and 3.X
              construction forms

	Decimal('1.0'), Fraction(1,
              3)
	Decimal and fraction
              extension types

	bool(X), True,
              False
	Boolean type and
              constants


In general, Python’s numeric type literals
      are straightforward to write, but a few coding concepts are worth
      highlighting here:
	Integer and floating-point literals
	Integers are written as strings of decimal digits. Floating-point
            numbers have a decimal point and/or an optional signed exponent
            introduced by an e or E and followed by an optional sign. If
            you write a number with a decimal point or exponent, Python makes
            it a floating-point object and uses floating-point (not integer)
            math when the object is used in an expression. Floating-point
            numbers are implemented as C “doubles” in standard CPython, and
            therefore get as much precision as the C compiler used to build
            the Python interpreter gives to doubles.

	Integers in Python 2.X: normal and long
	In Python 2.X there are two integer types, normal (often 32
            bits) and long (unlimited precision), and an integer may end in an
            l or L to force it to become a long integer.
            Because integers are automatically converted to long integers when
            their values overflow their allocated bits, you never need to type
            the letter L yourself—Python automatically
            converts up to long integer when extra precision is needed.

	Integers in Python 3.X: a single type
	In Python 3.X, the normal and long integer types have been
            merged—there is only integer, which automatically supports the
            unlimited precision of Python 2.X’s separate long integer type.
            Because of this, integers can no longer be coded with a trailing
            l or L, and integers never print with this
            character either. Apart from this, most programs are unaffected by
            this change, unless they do type testing that checks for 2.X long
            integers.

	Hexadecimal, octal, and binary literals
	Integers may be coded in decimal (base 10), hexadecimal (base
            16), octal (base 8), or binary (base 2), the last three of which
            are common in some programming domains. Hexadecimals start with a
            leading 0x or 0X, followed by a string of hexadecimal
            digits (0–9 and A–F).
            Hex digits may be coded in lower- or uppercase. Octal literals
            start with a leading 0o or
            0O (zero and lower- or
            uppercase letter o), followed by a string of
            digits (0–7). In 2.X, octal literals can also be
            coded with just a leading 0,
            but not in 3.X—this original octal form is too easily confused
            with decimal, and is replaced by the new 0o format, which can also be used in 2.X
            as of 2.6. Binary literals, new as of 2.6 and 3.0, begin with a
            leading 0b or 0B, followed by binary digits (0–1).
Note that all of these literals produce integer objects in
            program code; they are just alternative syntaxes for specifying
            values. The built-in calls hex(I), oct(I), and bin(I) convert an integer to its representation string in these
            three bases, and int(str,
            base) converts a runtime string to an
            integer per a given base.

	Complex numbers
	Python complex literals are written as
            realpart+imaginarypart,
            where the imaginarypart is terminated
            with a j or J. The
            realpart is technically optional, so
            the imaginarypart may appear on its
            own. Internally, complex numbers are implemented as pairs of
            floating-point numbers, but all numeric operations perform complex
            math when applied to complex numbers. Complex numbers may also be
            created with the complex(real,
            imag) built-in call.

	Coding other numeric types
	As we’ll see later in this chapter, there are additional
            numeric types at the end of Table 5-1 that serve more
            advanced or specialized roles. You create some of these by calling
            functions in imported modules (e.g., decimals and fractions), and
            others have literal syntax all their own (e.g., sets).



Built-in Numeric Tools
Besides the built-in number literals and construction calls shown in
      Table 5-1, Python provides a
      set of tools for processing number objects:
	Expression operators
	+, -, *,
            /, >>, **, &, etc.

	Built-in mathematical functions
	pow, abs, round, int, hex, bin, etc.

	Utility modules
	random, math, etc.


We’ll meet all of these as we go along.
Although numbers are primarily processed with expressions,
      built-ins, and modules, they also have a handful of type-specific methods today, which
      we’ll meet in this chapter as well. Floating-point numbers, for example, have an as_integer_ratio method that is useful for the
      fraction number type, and an is_integer method to test if the number is an integer. Integers have various
      attributes, including a new bit_length method introduced in Python 3.1
      that gives the number of bits necessary to represent the object’s value.
      Moreover, as part collection and part number, sets
      also support both methods and expressions.
Since expressions are the most essential tool for most number
      types, though, let’s turn to them next.

Python Expression Operators
Perhaps the most fundamental tool that processes numbers is the expression: a combination of
      numbers (or other objects) and operators that computes a value when
      executed by Python. In Python, you write expressions using the usual
      mathematical notation and operator symbols. For instance, to add two
      numbers X and Y you would say X +
      Y, which tells Python to apply the + operator to the values named by X and Y.
      The result of the expression is the sum of X and Y,
      another number object.
Table 5-2 lists
      all the operator expressions available in Python. Many are
      self-explanatory; for instance, the usual mathematical operators
      (+, −, *,
      /, and so on) are supported. A few
      will be familiar if you’ve used other languages in the past: % computes a division remainder, << performs a bitwise left-shift,
      & computes a bitwise AND result,
      and so on. Others are more Python-specific, and not all are numeric in
      nature: for example, the is operator
      tests object identity (i.e., address in memory, a strict
      form of equality), and lambda creates
      unnamed functions.
Table 5-2. Python expression operators and precedence	Operators	Description
	yield x
	Generator function send
              protocol

	lambda args: expression
	Anonymous function generation

	x if y else z
	Ternary selection (x is
              evaluated only if y is
              true)

	x or y
	Logical OR (y is
              evaluated only if x is
              false)

	x and y
	Logical AND (y is evaluated only if x is true)

	not x
	Logical
              negation

	x in y, x not in y

              x is y, x is not y
x < y, x <= y, x > y, x >= y
x == y, x != y
	Membership (iterables,
              sets)
Object identity tests
Magnitude
              comparison, set subset and superset
Value
              equality operators

	x | y
	Bitwise OR, set union

	x ^ y
	Bitwise XOR, set
              symmetric difference

	x & y
	Bitwise AND, set
              intersection

	x << y, x >> y
	Shift x left or right by y bits

	x + y
 x – y
	Addition,
              concatenation
 Subtraction, set
              difference

	x * y
 x % y
 x / y, x // y
	Multiplication, repetition
 Remainder, format

              Division: true and floor

	−x, +x
˜x
	Negation,
              identity
Bitwise NOT (inversion)

	x ** y
	Power
              (exponentiation)

	x[i]
x[i:j:k]
x(...)
x.attr
	Indexing (sequence,
              mapping, others)
Slicing
Call (function,
              method, class, other callable)
Attribute
              reference

	(...)
[...]
{...}
	Tuple, expression,
              generator expression
List, list
              comprehension
Dictionary, set, set and dictionary
              comprehensions


Since this book addresses both Python 2.X and 3.X, here are some
      notes about version differences and recent additions related to the
      operators in Table 5-2:
	In Python 2.X, value inequality can be written as either X != Y or X
          <> Y. In Python 3.X, the latter of these options is
          removed because it is redundant. In either version, best practice is
          to use X != Y for all value
          inequality tests.

	In Python 2.X, a backquotes expression `X` works the same as repr(X) and converts objects to display strings. Due to its
          obscurity, this expression is removed in Python 3.X; use the more
          readable str and
          repr built-in functions,
          described in “Numeric Display Formats.”

	The X // Y floor division
          expression always truncates fractional remainders in both Python 2.X
          and 3.X. The X / Y expression
          performs true division in 3.X (retaining remainders) and classic
          division in 2.X (truncating for integers). See “Division: Classic, Floor, and True”.

	The syntax [...] is used
          for both list literals and list comprehension expressions. The
          latter of these performs an implied loop and collects expression
          results in a new list. See Chapter 4, Chapter 14, and Chapter 20 for examples.

	The syntax (...) is used
          for tuples and expression grouping, as well as generator
          expressions—a form of list comprehension that produces results on
          demand, instead of building a result list. See Chapter 4 and Chapter 20 for examples. The
          parentheses may sometimes be omitted in all three contexts. When a
          tuple’s parentheses are omitted, the comma
          separating its items acts like a lowest-precedence operator if not
          otherwise significant.

	The syntax {...} is used
          for dictionary literals, and in Python 3.X and 2.7 for set literals
          and both dictionary and set comprehensions. See the set coverage in
          this chapter as well as Chapter 4, Chapter 8, Chapter 14, and Chapter 20 for examples.

	The yield and ternary
          if/else selection expressions are available
          in Python 2.5 and later. The former returns send(...) arguments in generators; the
          latter is shorthand for a multiline if statement. yield requires parentheses if not alone on
          the right side of an assignment statement.

	Comparison operators may be chained: X < Y < Z produces the same result
          as X < Y and Y < Z. See
          “Comparisons: Normal and Chained” for
          details.

	In recent Pythons, the slice expression X[I:J:K] is equivalent to indexing with a
          slice object: X[slice(I, J,
          K)].

	In Python 2.X, magnitude comparisons of mixed types are
          allowed, and convert numbers to a common type, and order other mixed
          types according to type names. In Python 3.X, nonnumeric mixed-type
          magnitude comparisons are not allowed and raise exceptions; this
          includes sorts by proxy.

	Magnitude comparisons for dictionaries are also no longer
          supported in Python 3.X (though equality tests are); comparing
          sorted(aDict.items()) is one
          possible replacement.


We’ll see most of the operators in Table 5-2 in action later;
      first, though, we need to take a quick look at the ways these operators
      may be combined in expressions.
Mixed operators follow operator precedence
As in most languages, in Python, you code more complex expressions by stringing
        together the operator expressions in Table 5-2. For instance,
        the sum of two multiplications might be written as a mix of variables
        and operators:
A * B + C * D
So, how does Python know which operation to perform first? The
        answer to this question lies in operator
        precedence. When you write an expression with more than one
        operator, Python groups its parts according to what are called precedence rules, and this
        grouping determines the order in which the expression’s parts are
        computed. Table 5-2
        is ordered by operator precedence:
	Operators lower in the table have higher precedence, and so
            bind more tightly in mixed expressions.

	Operators in the same row in Table 5-2 generally
            group from left to right when combined (except for exponentiation,
            which groups right to left, and comparisons, which chain left to
            right).


For example, if you write X + Y *
        Z, Python evaluates the multiplication first (Y * Z), then adds that result to X because * has higher precedence (is lower in the
        table) than +. Similarly, in this
        section’s original example, both multiplications (A * B and C *
        D) will happen before their results are added.

Parentheses group subexpressions
You can forget about precedence completely if you’re careful to group parts
        of expressions with parentheses. When you enclose subexpressions in
        parentheses, you override Python’s precedence rules; Python always
        evaluates expressions in parentheses first before using their results
        in the enclosing expressions.
For instance, instead of coding X + Y *
        Z, you could write one of the following to force Python to
        evaluate the expression in the desired order:
(X + Y) * Z
X + (Y * Z)
In the first case, + is
        applied to X and Y first, because this subexpression is
        wrapped in parentheses. In the second case, the * is performed first (just as if there were
        no parentheses at all). Generally speaking, adding parentheses in
        large expressions is a good idea—it not only forces the evaluation
        order you want, but also aids readability.

Mixed types are converted up
Besides mixing operators in expressions, you can also mix
        numeric types. For instance, you can add an integer to a
        floating-point number:
40 + 3.14
But this leads to another question: what type is the
        result—integer or floating point? The answer is simple, especially if
        you’ve used almost any other language before: in mixed-type numeric
        expressions, Python first converts operands up to
        the type of the most complicated operand, and then performs the math
        on same-type operands. This behavior is similar to type conversions in
        the C language.
Python ranks the complexity of numeric types like so: integers
        are simpler than floating-point numbers, which are simpler than
        complex numbers. So, when an integer is mixed with a floating point,
        as in the preceding example, the integer is converted up to a
        floating-point value first, and floating-point math yields the
        floating-point result:
>>> 40 + 3.14       # Integer to float, float math/result
43.14
Similarly, any mixed-type expression where one operand is a
        complex number results in the other operand being converted up to a
        complex number, and the expression yields a complex result. In Python
        2.X, normal integers are also converted to long integers whenever
        their values are too large to fit in a normal integer; in 3.X,
        integers subsume longs entirely.
You can force the issue by calling built-in functions to convert
        types manually:
>>> int(3.1415)     # Truncates float to integer
3
>>> float(3)        # Converts integer to float
3.0
However, you won’t usually need to do this: because Python
        automatically converts up to the more complex type within an
        expression, the results are normally what you want.
Also, keep in mind that all these mixed-type conversions apply
        only when mixing numeric types (e.g., an integer
        and a floating point) in an expression, including those using numeric
        and comparison operators. In general, Python does not convert across
        any other type boundaries automatically. Adding a string to an
        integer, for example, results in an error, unless you manually convert
        one or the other; watch for an example when we meet strings in Chapter 7.
Note
In Python 2.X, nonnumeric mixed types can be
          compared, but no conversions are
          performed—mixed types compare according to a rule that seems
          deterministic but not aesthetically pleasing: it compares the string
          names of the objects’ types. In 3.X, nonnumeric mixed-type magnitude
          comparisons are never allowed and raise exceptions. Note that this
          applies to comparison operators such as > only; other operators like + do not allow mixed nonnumeric types in
          either 3.X or 2.X.


Preview: Operator overloading and polymorphism
Although we’re focusing on built-in numbers right now, all Python
        operators may be overloaded (i.e., implemented) by Python classes and
        C extension types to work on objects you create. For instance, you’ll
        see later that objects coded with classes may be added or concatenated
        with x+y expressions, indexed with
        x[i] expressions, and so on.
Furthermore, Python itself automatically overloads some
        operators, such that they perform different actions depending on the
        type of built-in objects being processed. For example, the + operator performs addition when applied to
        numbers but performs concatenation when applied to sequence objects
        such as strings and lists. In fact, + can mean anything at all when applied to
        objects you define with classes.
As we saw in the prior chapter, this property is usually called
        polymorphism—a term indicating that the meaning
        of an operation depends on the type of the objects being operated on.
        We’ll revisit this concept when we explore functions in Chapter 16, because it becomes a much more obvious
        feature in that context.



Numbers in Action
On to the code! Probably the best way to understand numeric objects
    and expressions is to see them in action, so with those basics in hand
    let’s start up the interactive command line and try some simple but
    illustrative operations (be sure to see Chapter 3 for pointers if you need help starting
    an interactive session).
Variables and Basic Expressions
First of all, let’s exercise some basic math. In the following interaction, we first
      assign two variables (a and b) to
      integers so we can use them later in a larger expression. Variables are
      simply names—created by you or Python—that are used to keep track of
      information in your program. We’ll say more about this in the next
      chapter, but in Python:
	Variables are created when they are first assigned
          values.

	Variables are replaced with their values when used in
          expressions.

	Variables must be assigned before they can be used in
          expressions.

	Variables refer to objects and are never declared ahead of
          time.


In other words, these assignments cause the variables a and b to
      spring into existence automatically:
% python
>>> a = 3                  # Name created: not declared ahead of time
>>> b = 4
I’ve also used a comment here. Recall that in
      Python code, text after a # mark and
      continuing to the end of the line is considered to be a comment and is
      ignored by Python. Comments are a way to write human-readable
      documentation for your code, and an important part of programming. I’ve
      added them to most of this book’s examples to help explain the code. In
      the next part of the book, we’ll meet a related but more functional
      feature—documentation strings—that attaches the text of your comments to
      objects so it’s available after your code is loaded.
Because code you type interactively is temporary, though, you
      won’t normally write comments in this context. If you’re working along,
      this means you don’t need to type any of the comment text from the
      # through to the end of the line;
      it’s not a required part of the statements we’re running this
      way.
Now, let’s use our new integer objects in some expressions. At
      this point, the values of a and
      b are still 3 and 4,
      respectively. Variables like these are replaced with their values
      whenever they’re used inside an expression, and the expression results
      are echoed back immediately when we’re working interactively:
>>> a + 1, a − 1           # Addition (3 + 1), subtraction (3 − 1)
(4, 2)
>>> b * 3, b / 2           # Multiplication (4 * 3), division (4 / 2, 3.X result)
(12, 2.0)                  
>>> a % 2, b ** 2          # Modulus (remainder), power (4 ** 2)
(1, 16)
>>> 2 + 4.0, 2.0 ** b      # Mixed-type conversions
(6.0, 16.0)
Technically, the results being echoed back here are
      tuples of two values because the lines typed at the
      prompt contain two expressions separated by commas; that’s why the
      results are displayed in parentheses (more on tuples later). Note that
      the expressions work because the variables a and b
      within them have been assigned values. If you use a different variable
      that has not yet been assigned, Python reports an
      error rather than filling in some default value:
>>> c * 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'c' is not defined
You don’t need to predeclare variables in Python, but they must
      have been assigned at least once before you can use them. In practice,
      this means you have to initialize counters to zero before you can add to
      them, initialize lists to an empty list before you can append to them,
      and so on.
Here are two slightly larger expressions to illustrate operator
      grouping and more about conversions, and preview a difference in the
      division operator in Python 3.X and 2.X:
>>> b / 2 + a               # Same as ((4 / 2) + 3)   [use 2.0 in 2.X]
5.0
>>> b / (2.0 + a)           # Same as (4 / (2.0 + 3)) [use print before 2.7]
0.8
In the first expression, there are no parentheses, so Python
      automatically groups the components according to its precedence
      rules—because / is lower in Table 5-2 than +, it binds more tightly and so is evaluated
      first. The result is as if the expression had been organized with
      parentheses as shown in the comment to the right of the code.
Also, notice that all the numbers are
      integers in the first expression. Because of that,
      Python 2.X’s / performs integer
      division and addition and will give a result of 5, whereas Python 3.X’s / performs true division, which always retains
      fractional remainders and gives the result 5.0 shown. If you want 2.X’s integer division
      in 3.X, code this as b // 2 + a; if
      you want 3.X’s true division in 2.X, code this as b / 2.0 + a (more on division in a
      moment).
In the second expression, parentheses are added around the
      + part to force Python to evaluate it
      first (i.e., before the /). We also
      made one of the operands floating point by adding a decimal point:
      2.0. Because of the mixed types,
      Python converts the integer referenced by a to a floating-point value (3.0) before performing the +. If instead all the numbers in this
      expression were integers, integer division (4 /
      5) would yield the truncated integer 0 in Python 2.X but the floating point
      0.8 shown in Python 3.X. Again, stay
      tuned for formal division details.

Numeric Display Formats
If you’re using Python 2.6, Python 3.0, or earlier, the result of the last of the
      preceding examples may look a bit odd the first time you see it:
>>> b / (2.0 + a)           # Pythons <= 2.6: echoes give more (or fewer) digits
0.80000000000000004

>>> print(b / (2.0 + a))    # But print rounds off digits
0.8
We met this phenomenon briefly in the prior chapter, and it’s not
      present in Pythons 2.7, 3.1, and later. The full story behind this odd
      result has to do with the limitations of floating-point hardware and its
      inability to exactly represent some values in a limited number of bits.
      Because computer architecture is well beyond this book’s scope, though,
      we’ll finesse this by saying that your computer’s floating-point
      hardware is doing the best it can, and neither it nor Python is in error
      here.
In fact, this is really just a display
      issue—the interactive prompt’s automatic result echo shows more digits
      than the print statement
      here only because it uses a different algorithm. It’s the same number in
      memory. If you don’t want to see all the digits, use print; as this chapter’s sidebar “str and repr Display Formats” will explain, you’ll get a
      user-friendly display. As of 2.7 and 3.1, Python’s floating-point
      display logic tries to be more intelligent, usually showing fewer
      decimal digits, but occasionally more.
Note, however, that not all values have so many digits to
      display:
>>> 1 / 2.0
0.5
and that there are more ways to display the bits of a number
      inside your computer than using print
      and automatic echoes (the following are all run in Python 3.3, and may
      vary slightly in older versions):
>>> num = 1 / 3.0
>>> num                      # Auto-echoes
0.3333333333333333
>>> print(num)               # Print explicitly
0.3333333333333333

>>> '%e' % num               # String formatting expression
'3.333333e-01'
>>> '%4.2f' % num            # Alternative floating-point format
'0.33'
>>> '{0:4.2f}'.format(num)   # String formatting method: Python 2.6, 3.0, and later
'0.33'
The last three of these expressions employ string formatting, a tool that
      allows for format flexibility, which we will explore in the upcoming
      chapter on strings (Chapter 7). Its results
      are strings that are typically printed to displays or reports.
str and repr Display Formats
Technically, the difference between default interactive echoes and print corresponds to the difference between
        the built-in repr and str functions:
>>> repr('spam')           # Used by echoes: as-code form
"'spam'"
>>> str('spam')            # Used by print: user-friendly form
'spam'
Both of these convert arbitrary objects to their string
        representations: repr (and the
        default interactive echo) produces results that look as though they
        were code; str (and the print operation) converts to a typically
        more user-friendly format if available. Some objects have both—a
        str for general use, and a repr with extra details. This notion will
        resurface when we study both strings and operator overloading in
        classes, and you’ll find more on these built-ins in general later in
        the book.
Besides providing print strings for arbitrary objects, the
        str built-in is also the name of
        the string data type, and in 3.X may be called with an encoding name
        to decode a Unicode string from a byte string (e.g., str(b'xy', 'utf8')), and serves as an
        alternative to the bytes.decode
        method we met in Chapter 4.
        We’ll study the latter advanced role in Chapter 37 of this book.


Comparisons: Normal and Chained
So far, we’ve been dealing with standard numeric operations (addition and
      multiplication), but numbers, like all Python objects, can also be
      compared. Normal comparisons work for numbers exactly as you’d
      expect—they compare the relative magnitudes of their operands and return
      a Boolean result, which we would normally test and take action on in a
      larger statement and program:
>>> 1 < 2                  # Less than
True
>>> 2.0 >= 1               # Greater than or equal: mixed-type 1 converted to 1.0
True
>>> 2.0 == 2.0             # Equal value
True
>>> 2.0 != 2.0             # Not equal value
False
Notice again how mixed types are allowed in numeric expressions
      (only); in the second test here, Python compares values in terms of the
      more complex type, float.
Interestingly, Python also allows us to chain
      multiple comparisons together to perform range tests. Chained
      comparisons are a sort of shorthand for larger Boolean expressions. In
      short, Python lets us string together magnitude comparison tests to code
      chained comparisons such as range tests. The expression (A < B < C), for instance, tests whether
      B is between A and C; it
      is equivalent to the Boolean test (A < B and
      B < C) but is easier on the eyes (and the keyboard). For
      example, assume the following assignments:
>>> X = 2
>>> Y = 4
>>> Z = 6
The following two expressions have identical effects, but the
      first is shorter to type, and it may run slightly faster since Python
      needs to evaluate Y only once:
>>> X < Y < Z              # Chained comparisons: range tests
True
>>> X < Y and Y < Z
True
The same equivalence holds for false results, and arbitrary chain
      lengths are allowed:
>>> X < Y > Z
False
>>> X < Y and Y > Z
False

>>> 1 < 2 < 3.0 < 4
True
>>> 1 > 2 > 3.0 > 4
False
You can use other comparisons in chained tests, but the resulting
      expressions can become nonintuitive unless you evaluate them the way
      Python does. The following, for instance, is false just because 1 is not
      equal to 2:
>>> 1 == 2 < 3        # Same as: 1 == 2 and 2 < 3
False                 # Not same as: False < 3 (which means 0 < 3, which is true!)
Python does not compare the 1 ==
      2 expression’s False result
      to 3—this would technically mean the same as 0
      < 3, which would be True
      (as we’ll see later in this chapter, True and False are just customized 1 and 0).
One last note here before we move on: chaining aside, numeric
      comparisons are based on magnitudes, which are generally simple—though
      floating-point numbers may not always work as you’d
      expect, and may require conversions or other massaging to be compared
      meaningfully:
>>> 1.1 + 2.2 == 3.3             # Shouldn't this be True?...
False
>>> 1.1 + 2.2                    # Close to 3.3, but not exactly: limited precision
3.3000000000000003
>>> int(1.1 + 2.2) == int(3.3)   # OK if convert: see also round, floor, trunc ahead
True                             # Decimals and fractions (ahead) may help here too
This stems from the fact that floating-point numbers cannot
      represent some values exactly due to their limited number of bits—a
      fundamental issue in numeric programming not unique to Python, which
      we’ll learn more about later when we meet decimals
      and fractions, tools that can address such
      limitations. First, though, let’s continue our tour of Python’s core
      numeric operations, with a deeper look at division.

Division: Classic, Floor, and True
You’ve seen how division works in the previous sections, so you should
      know that it behaves slightly differently in Python 3.X and 2.X. In
      fact, there are actually three flavors of division, and two different
      division operators, one of which changes in 3.X. This story gets a bit
      detailed, but it’s another major change in 3.X and can break 2.X code,
      so let’s get the division operator facts straight:
	X / Y
	Classic and true
            division. In Python 2.X, this operator performs
            classic division, truncating results for
            integers, and keeping remainders (i.e., fractional parts) for
            floating-point numbers. In Python 3.X, it performs
            true division, always keeping remainders in
            floating-point results, regardless of types.

	X // Y
	Floor division. Added in Python 2.2 and available in both Python 2.X and 3.X,
            this operator always truncates fractional remainders down to their
            floor, regardless of types. Its result type depends on the types
            of its operands.


True division was added to address the fact that the results of
      the original classic division model are dependent on operand types, and
      so can be difficult to anticipate in a dynamically typed language like
      Python. Classic division was removed in 3.X because of this
      constraint—the / and // operators implement true and floor division
      in 3.X. Python 2.X defaults to classic and floor division, but you can
      enable true division as an option. In sum:
	In 3.X, the / now always performs
          true division, returning a float result that
          includes any remainder, regardless of operand types. The // performs floor
          division, which truncates the remainder and returns an integer for
          integer operands or a float if any operand is a float.

	In 2.X, the / does classic
          division, performing truncating integer division if both operands
          are integers and float division (keeping remainders) otherwise. The
          // does
          floor division and works as it does in 3.X,
          performing truncating division for integers and floor division for
          floats.


Here are the two operators at work in 3.X and 2.X—the first
      operation in each set is the crucial difference between the lines that
      may impact code:
C:\code> C:\Python33\python
>>>
>>> 10 / 4            # Differs in 3.X: keeps remainder
2.5
>>> 10 / 4.0          # Same in 3.X: keeps remainder
2.5
>>> 10 // 4           # Same in 3.X: truncates remainder
2
>>> 10 // 4.0         # Same in 3.X: truncates to floor
2.0

C:\code> C:\Python27\python
>>>
>>> 10 / 4            # This might break on porting to 3.X!
2
>>> 10 / 4.0
2.5
>>> 10 // 4           # Use this in 2.X if truncation needed
2
>>> 10 // 4.0
2.0
Notice that the data type of the result for // is still dependent on the operand types in
      3.X: if either is a float, the result is a float; otherwise, it is an
      integer. Although this may seem similar to the type-dependent behavior
      of / in 2.X that motivated its change
      in 3.X, the type of the return value is much less critical than
      differences in the return value itself.
Moreover, because // was
      provided in part as a compatibility tool for programs that rely on
      truncating integer division (and this is more common than you might
      expect), it must return integers for integers. Using // instead of / in 2.X when integer truncation is required
      helps make code 3.X-compatible.
Supporting either Python
Although / behavior differs
        in 2.X and 3.X, you can still support both versions in your code. If
        your programs depend on truncating integer division, use // in both 2.X and 3.X as just mentioned. If
        your programs require floating-point results with remainders for
        integers, use float to guarantee
        that one operand is a float around a / when run in 2.X:
X = Y // Z        # Always truncates, always an int result for ints in 2.X and 3.X

X = Y / float(Z)  # Guarantees float division with remainder in either 2.X or 3.X
Alternatively, you can enable 3.X / division in 2.X with a __future__
        import, rather than forcing it with float conversions:
C:\code> C:\Python27\python
>>> from __future__ import division         # Enable 3.X "/" behavior
>>> 10 / 4
2.5
>>> 10 // 4                                 # Integer // is the same in both
2
This special from statement
        applies to the rest of your session when typed interactively like
        this, and must appear as the first executable line when used in a
        script file (and alas, we can import from the future in Python, but
        not the past; insert something about talking to “the Doc” here...).

Floor versus truncation
One subtlety: the // operator
        is informally called truncating division, but
        it’s more accurate to refer to it as floor
        division—it truncates the result down to its floor, which means the
        closest whole number below the true result. The net effect is to round
        down, not strictly truncate, and this matters for negatives. You can
        see the difference for yourself with the Python math module
        (modules must be imported before you can use their contents; more on
        this later):
>>> import math
>>> math.floor(2.5)           # Closest number below value
2
>>> math.floor(-2.5)
-3
>>> math.trunc(2.5)           # Truncate fractional part (toward zero)
2
>>> math.trunc(-2.5)
-2
When running division operators, you only really truncate for
        positive results, since truncation is the same as floor; for
        negatives, it’s a floor result (really, they are both floor, but floor
        is the same as truncation for positives). Here’s the case for
        3.X:
C:\code> c:\python33\python
>>> 5 / 2, 5 / −2
(2.5, −2.5)

>>> 5 // 2, 5 // −2           # Truncates to floor: rounds to first lower integer
(2, −3)                       # 2.5 becomes 2, −2.5 becomes −3

>>> 5 / 2.0, 5 / −2.0
(2.5, −2.5)

>>> 5 // 2.0, 5 // −2.0       # Ditto for floats, though result is float too
(2.0, −3.0)
The 2.X case is similar, but / results differ again:
C:code> c:\python27\python
>>> 5 / 2, 5 / −2             # Differs in 3.X
(2, −3)

>>> 5 // 2, 5 // −2           # This and the rest are the same in 2.X and 3.X
(2, −3)

>>> 5 / 2.0, 5 / −2.0
(2.5, −2.5)

>>> 5 // 2.0, 5 // −2.0
(2.0, −3.0)
If you really want truncation toward zero regardless of sign,
        you can always run a float division result through math.trunc,
        regardless of Python version (also see the round built-in
        for related functionality, and the int built-in, which has the same effect here
        but requires no import):
C:\code> c:\python33\python
>>> import math
>>> 5 / −2                      # Keep remainder
−2.5
>>> 5 // −2                     # Floor below result
-3
>>> math.trunc(5 / −2)          # Truncate instead of floor (same as int())
−2

C:\code> c:\python27\python
>>> import math
>>> 5 / float(−2)               # Remainder in 2.X
−2.5
>>> 5 / −2, 5 // −2             # Floor in 2.X
(−3, −3)
>>> math.trunc(5 / float(−2))   # Truncate in 2.X
−2

Why does truncation matter?
As a wrap-up, if you are using 3.X, here is the short story on
        division operators for reference:
>>> (5 / 2), (5 / 2.0), (5 / −2.0), (5 / −2)        # 3.X true division
(2.5, 2.5, −2.5, −2.5)

>>> (5 // 2), (5 // 2.0), (5 // −2.0), (5 // −2)    # 3.X floor division
(2, 2.0, −3.0, −3)

>>> (9 / 3), (9.0 / 3), (9 // 3), (9 // 3.0)        # Both
(3.0, 3.0, 3, 3.0)
For 2.X readers, division works as follows (the three bold
        outputs of integer division differ from 3.X):
>>> (5 / 2), (5 / 2.0), (5 / −2.0), (5 / −2)        # 2.X classic division (differs)
(2, 2.5, −2.5, −3)

>>> (5 // 2), (5 // 2.0), (5 // −2.0), (5 // −2)    # 2.X floor division (same)
(2, 2.0, −3.0, −3)

>>> (9 / 3), (9.0 / 3), (9 // 3), (9 // 3.0)        # Both
(3, 3.0, 3, 3.0)
It’s possible that the nontruncating behavior of / in 3.X may break a significant number of
        2.X programs. Perhaps because of a C language legacy, many programmers
        rely on division truncation for integers and will have to learn to use
        // in such contexts instead. You
        should do so in all new 2.X and 3.X code you write today—in the former
        for 3.X compatibility, and in the latter because / does not truncate in 3.X. Watch for a
        simple prime number while loop
        example in Chapter 13, and a corresponding
        exercise at the end of Part IV
        that illustrates the sort of code that may be impacted by this
        / change. Also stay tuned for more
        on the special from command used in
        this section; it’s discussed further in Chapter 25.


Integer Precision
Division may differ slightly across Python releases, but it’s still
      fairly standard. Here’s something a bit more exotic. As mentioned
      earlier, Python 3.X integers support unlimited size:
>>> 999999999999999999999999999999 + 1         # 3.X
1000000000000000000000000000000
Python 2.X has a separate type for long integers, but it
      automatically converts any number too large to store in a normal integer
      to this type. Hence, you don’t need to code any special syntax to use
      longs, and the only way you can tell that you’re using 2.X longs is that
      they print with a trailing “L”:
>>> 999999999999999999999999999999 + 1         # 2.X
1000000000000000000000000000000L
Unlimited-precision integers are a convenient built-in tool. For
      instance, you can use them to count the U.S. national debt in pennies in
      Python directly (if you are so inclined, and have enough memory on your
      computer for this year’s budget). They are also why we were able to
      raise 2 to such large powers in the examples in Chapter 3. Here are the 3.X and 2.X
      cases:
>>> 2 ** 200
1606938044258990275541962092341162602522202993782792835301376

>>> 2 ** 200
1606938044258990275541962092341162602522202993782792835301376L
Because Python must do extra work to support their extended
      precision, integer math is usually substantially slower than normal when
      numbers grow large. However, if you need the precision, the fact that
      it’s built in for you to use will likely outweigh its performance
      penalty.

Complex Numbers
Although less commonly used than the types we’ve been exploring thus
      far, complex numbers are a distinct core object type in Python. They are
      typically used in engineering and science applications. If you know what
      they are, you know why they are useful; if not, consider this section
      optional reading.
Complex numbers are represented as two floating-point numbers—the
      real and imaginary parts—and you code them by adding a j or J
      suffix to the imaginary part. We can also write complex numbers with a
      nonzero real part by adding the two parts with a +. For example, the complex number with a real
      part of 2 and an imaginary part of
      −3 is written 2 + −3j. Here are some examples of complex
      math at work:
>>> 1j * 1J
(-1+0j)
>>> 2 + 1j * 3
(2+3j)
>>> (2 + 1j) * 3
(6+3j)
Complex numbers also allow us to extract their parts as
      attributes, support all the usual mathematical expressions, and may be
      processed with tools in the standard cmath module (the complex version of the
      standard math module). Because
      complex numbers are rare in most programming domains, though, we’ll skip
      the rest of this story here. Check Python’s language reference manual
      for additional details.

Hex, Octal, Binary: Literals and Conversions
Python integers can be coded in hexadecimal, octal, and binary notation,
      in addition to the normal base-10 decimal coding we’ve been using so
      far. The first three of these may at first seem foreign to 10-fingered
      beings, but some programmers find them convenient alternatives for
      specifying values, especially when their mapping to bytes and bits is
      important. The coding rules were introduced briefly at the start of this
      chapter; let’s look at some live examples here.
Keep in mind that these literals are simply an alternative syntax
      for specifying the value of an integer object. For example, the
      following literals coded in Python 3.X or 2.X produce normal integers
      with the specified values in all three bases. In memory, an integer’s
      value is the same, regardless of the base we use to specify it:
>>> 0o1, 0o20, 0o377           # Octal literals: base 8, digits 0-7 (3.X, 2.6+)
(1, 16, 255)
>>> 0x01, 0x10, 0xFF           # Hex literals: base 16, digits 0-9/A-F (3.X, 2.X)
(1, 16, 255)
>>> 0b1, 0b10000, 0b11111111   # Binary literals: base 2, digits 0-1 (3.X, 2.6+)
(1, 16, 255)
Here, the octal value 0o377,
      the hex value 0xFF, and the binary
      value 0b11111111 are all decimal
      255. The F digits in the hex value, for example, each
      mean 15 in decimal and a 4-bit
      1111 in binary, and reflect powers of
      16. Thus, the hex value 0xFF and
      others convert to decimal values as follows:
>>> 0xFF, (15 * (16 ** 1)) + (15 * (16 ** 0))     # How hex/binary map to decimal
(255, 255)
>>> 0x2F, (2  * (16 ** 1)) + (15 * (16 ** 0))
(47, 47)
>>> 0xF, 0b1111, (1*(2**3) + 1*(2**2) + 1*(2**1) + 1*(2**0))
(15, 15, 15)
Python prints integer values in decimal (base 10) by default but
      provides built-in functions that allow you to convert integers to other
      bases’ digit strings, in Python-literal form—useful when programs or
      users expect to see values in a given base:
>>> oct(64), hex(64), bin(64)               # Numbers=>digit strings
('0o100', '0x40', '0b1000000')
The oct function converts decimal to octal, hex to hexadecimal, and bin to binary. To go the other way, the
      built-in int function
      converts a string of digits to an integer, and an optional second
      argument lets you specify the numeric base—useful for numbers read from
      files as strings instead of coded in scripts:
>>> 64, 0o100, 0x40, 0b1000000              # Digits=>numbers in scripts and strings
(64, 64, 64, 64)

>>> int('64'), int('100', 8), int('40', 16), int('1000000', 2)
(64, 64, 64, 64)

>>> int('0x40', 16), int('0b1000000', 2)    # Literal forms supported too
(64, 64)
The eval function, which you’ll meet later in this book, treats strings as
      though they were Python code. Therefore, it has a similar effect, but
      usually runs more slowly—it actually compiles and
      runs the string as a piece of a program, and it assumes the string being
      run comes from a trusted source—a clever user might
      be able to submit a string that deletes files on your machine, so be
      careful with this call:
>>> eval('64'), eval('0o100'), eval('0x40'), eval('0b1000000')
(64, 64, 64, 64)
Finally, you can also convert integers to base-specific strings with string formatting method
      calls and expressions, which return just digits, not Python literal
      strings:
>>> '{0:o}, {1:x}, {2:b}'.format(64, 64, 64)     # Numbers=>digits, 2.6+
'100, 40, 1000000'

>>> '%o, %x, %x, %X' % (64, 64, 255, 255)        # Similar, in all Pythons
'100, 40, ff, FF'
String formatting is covered in more detail in Chapter 7.
Two notes before moving on. First, per the start of this chapter,
      Python 2.X users should remember that you can code octals with simply a
      leading zero, the original octal format in
      Python:
>>> 0o1, 0o20, 0o377     # New octal format in 2.6+ (same as 3.X)
(1, 16, 255)
>>> 01, 020, 0377        # Old octal literals in all 2.X (error in 3.X)
(1, 16, 255)
In 3.X, the syntax in the second of these examples generates an
      error. Even though it’s not an error in 2.X, be careful not to begin a
      string of digits with a leading zero unless you really mean to code an
      octal value. Python 2.X will treat it as base 8, which may not work as
      you’d expect—010 is always decimal 8
      in 2.X, not decimal 10 (despite what you may or may not think!). This,
      along with symmetry with the hex and binary forms, is why the octal
      format was changed in 3.X—you must use 0o010 in 3.X, and probably should in 2.6 and
      2.7 both for clarity and forward-compatibility with 3.X.
Secondly, note that these literals can produce
      arbitrarily long integers. The following, for
      instance, creates an integer with hex notation and then displays it
      first in decimal and then in octal and binary with converters (run in
      3.X here: in 2.X the decimal and octal displays have a trailing
      L to denote its separate long type, and octals
      display without the letter o):
>>> X = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF
>>> X
5192296858534827628530496329220095
>>> oct(X)
'0o17777777777777777777777777777777777777'
>>> bin(X)
'0b111111111111111111111111111111111111111111111111111111111 ...and so on... 11111'
Speaking of binary digits, the next section shows tools for
      processing individual bits.

Bitwise Operations
Besides the normal numeric operations (addition, subtraction, and so
      on), Python supports most of the numeric expressions available in the C
      language. This includes operators that treat integers as strings of
      binary bits, and can come in handy if your Python
      code must deal with things like network packets, serial ports, or packed
      binary data produced by a C program.
We can’t dwell on the fundamentals of Boolean math here—again,
      those who must use it probably already know how it works, and others can
      often postpone the topic altogether—but the basics are straightforward.
      For instance, here are some of Python’s bitwise expression operators at
      work performing bitwise shift and Boolean operations on integers:
>>> x = 1               # 1 decimal is 0001 in bits
>>> x << 2              # Shift left 2 bits: 0100
4
>>> x | 2               # Bitwise OR (either bit=1): 0011
3
>>> x & 1               # Bitwise AND (both bits=1): 0001
1
In the first expression, a binary 1 (in base 2, 0001) is shifted left two slots to create a
      binary 4 (0100). The last two operations perform a
      binary OR to combine bits (0001|0010
      = 0011) and a binary AND to select
      common bits (0001&0001 = 0001). Such bit-masking operations allow us to
      encode and extract multiple flags and other values within a single
      integer.
This is one area where the binary and hexadecimal number support
      in Python as of 3.0 and 2.6 become especially useful—they allow us to
      code and inspect numbers by bit-strings:
>>> X = 0b0001          # Binary literals
>>> X << 2              # Shift left
4
>>> bin(X << 2)         # Binary digits string
'0b100'

>>> bin(X | 0b010)      # Bitwise OR: either
'0b11'
>>> bin(X & 0b1)        # Bitwise AND: both
'0b1'
This is also true for values that begin life as hex literals, or
      undergo base conversions:
>>> X = 0xFF            # Hex literals
>>> bin(X)
'0b11111111'
>>> X ^ 0b10101010      # Bitwise XOR: either but not both
85
>>> bin(X ^ 0b10101010)
'0b1010101'

>>> int('01010101', 2)  # Digits=>number: string to int per base
85
>>> hex(85)             # Number=>digits: Hex digit string
'0x55'
Also in this department, Python 3.1 and 2.7 introduced a new
      integer bit_length
      method, which allows you to query the number of bits required to
      represent a number’s value in binary. You can often achieve the same
      effect by subtracting 2 from the length of the bin string using the len built-in function we met in Chapter 4 (to account for the leading
      “0b”), though it may be less efficient:
>>> X = 99
>>> bin(X), X.bit_length(), len(bin(X)) - 2
('0b1100011', 7, 7)
>>> bin(256), (256).bit_length(), len(bin(256)) - 2
('0b100000000', 9, 9)
We won’t go into much more detail on such “bit twiddling” here.
      It’s supported if you need it, but bitwise operations are often not as
      important in a high-level language such as Python as they are in a
      low-level language such as C. As a rule of thumb, if you find yourself
      wanting to flip bits in Python, you should think about which language
      you’re really coding. As we’ll see in upcoming chapters, Python’s lists,
      dictionaries, and the like provide richer—and usually better—ways to
      encode information than bit strings, especially when your data’s
      audience includes readers of the human variety.

Other Built-in Numeric Tools
In addition to its core object types, Python also provides both built-in
      functions and standard library
      modules for numeric processing. The pow and abs built-in functions, for instance, compute
      powers and absolute values, respectively. Here are some examples of
      the built-in math module
      (which contains most of the tools in the C language’s math library) and
      a few built-in functions at work in 3.3; as described earlier, some
      floating-point displays may show more or fewer digits in Pythons before
      2.7 and 3.1:
>>> import math
>>> math.pi, math.e                               # Common constants
(3.141592653589793, 2.718281828459045)

>>> math.sin(2 * math.pi / 180)                   # Sine, tangent, cosine
0.03489949670250097

>>> math.sqrt(144), math.sqrt(2)                  # Square root
(12.0, 1.4142135623730951)

>>> pow(2, 4), 2 ** 4, 2.0 ** 4.0                 # Exponentiation (power)
(16, 16, 16.0)

>>> abs(-42.0), sum((1, 2, 3, 4))                 # Absolute value, summation
(42.0, 10)

>>> min(3, 1, 2, 4), max(3, 1, 2, 4)              # Minimum, maximum
(1, 4)
The sum function shown here works on a sequence of numbers, and min and max
      accept either a sequence or individual arguments. There are a variety of
      ways to drop the decimal digits of floating-point numbers. We met
      truncation and floor earlier; we can also round, both numerically and
      for display purposes:
>>> math.floor(2.567), math.floor(-2.567)         # Floor (next-lower integer)
(2, −3)

>>> math.trunc(2.567), math.trunc(−2.567)         # Truncate (drop decimal digits)
(2, −2)

>>> int(2.567), int(−2.567)                       # Truncate (integer conversion)
(2, −2)

>>> round(2.567), round(2.467), round(2.567, 2)   # Round (Python 3.X version)
(3, 2, 2.57)

>>> '%.1f' % 2.567, '{0:.2f}'.format(2.567)       # Round for display (Chapter 7)
('2.6', '2.57')
As we saw earlier, the last of these produces strings that we
      would usually print and supports a variety of formatting options. As
      also described earlier, the second-to-last test here will also output
      (3, 2, 2.57) prior to 2.7 and 3.1 if
      we wrap it in a print call to request
      a more user-friendly display. String formatting is still subtly
      different, though, even in 3.X; round
      rounds and drops decimal digits but still produces a number in memory, whereas string formatting produces a
      string, not a number:
>>> (1 / 3.0), round(1 / 3.0, 2), ('%.2f' % (1 / 3.0))
(0.3333333333333333, 0.33, '0.33')
Interestingly, there are three ways to compute square roots in Python: using
      a module function, an expression, or a built-in function (if you’re
      interested in performance, we will revisit these in an exercise and its
      solution at the end of Part IV, to
      see which runs quicker):
>>> import math
>>> math.sqrt(144)              # Module
12.0
>>> 144 ** .5                   # Expression
12.0
>>> pow(144, .5)                # Built-in
12.0

>>> math.sqrt(1234567890)       # Larger numbers
35136.41828644462
>>> 1234567890 ** .5
35136.41828644462
>>> pow(1234567890, .5)
35136.41828644462
Notice that standard library modules such as math must be imported, but built-in functions
      such as abs and round are always available without imports. In
      other words, modules are external components, but built-in functions
      live in an implied namespace that Python automatically searches to find
      names used in your program. This namespace simply corresponds to the
      standard library module called builtins in
      Python 3.X (and __builtin__ in 2.X).
      There is much more about name resolution in the function and module
      parts of this book; for now, when you hear “module,” think
      “import.”
The standard library random
      module must be imported as well. This module provides an array of
      tools, for tasks such as picking a random floating-point number between
      0 and 1, and selecting a random integer between two numbers:
>>> import random
>>> random.random()
0.5566014960423105
>>> random.random()              # Random floats, integers, choices, shuffles
0.051308506597373515

>>> random.randint(1, 10)
5
>>> random.randint(1, 10)
9
This module can also choose an item at random
      from a sequence, and shuffle a list of items
      randomly:
>>> random.choice(['Life of Brian', 'Holy Grail', 'Meaning of Life'])
'Holy Grail'
>>> random.choice(['Life of Brian', 'Holy Grail', 'Meaning of Life'])
'Life of Brian'

>>> suits = ['hearts', 'clubs', 'diamonds', 'spades']
>>> random.shuffle(suits)
>>> suits
['spades', 'hearts', 'diamonds', 'clubs']
>>> random.shuffle(suits)
>>> suits
['clubs', 'diamonds', 'hearts', 'spades']
Though we’d need additional code to make this more tangible here,
      the random module can be useful for
      shuffling cards in games, picking images at random in a slideshow GUI,
      performing statistical simulations, and much more. We’ll deploy it again
      later in this book (e.g., in Chapter 20’s permutations case study),
      but for more details, see Python’s library manual.


Other Numeric Types
So far in this chapter, we’ve been using Python’s core numeric
    types—integer, floating point, and complex. These will suffice for most of
    the number crunching that most programmers will ever need to do. Python
    comes with a handful of more exotic numeric types, though, that merit a
    brief look here.
Decimal Type
Python 2.4 introduced a new core numeric type: the decimal object, formally known as
      Decimal. Syntactically, you create
      decimals by calling a function within an imported module, rather than
      running a literal expression. Functionally, decimals are like
      floating-point numbers, but they have a fixed number of decimal points.
      Hence, decimals are fixed-precision floating-point
      values.
For example, with decimals, we can have a floating-point value
      that always retains just two decimal digits. Furthermore, we can specify
      how to round or truncate the extra decimal digits beyond the object’s
      cutoff. Although it generally incurs a performance penalty compared to
      the normal floating-point type, the decimal type is well suited to
      representing fixed-precision quantities like sums of money and can help
      you achieve better numeric accuracy.
Decimal basics
The last point merits elaboration. As previewed briefly when we
        explored comparisons, floating-point math is less than exact because
        of the limited space used to store values. For example, the following
        should yield zero, but it does not. The result is close to zero, but
        there are not enough bits to be precise here:
>>> 0.1 + 0.1 + 0.1 - 0.3                         # Python 3.3
5.551115123125783e-17
Printing the result to produce the user-friendly display format
        doesn’t completely help either, because the hardware related to
        floating-point math is inherently limited in terms of accuracy (a.k.a.
        precision). The following in 3.3 gives the same
        result as the previous output:
>>> print(0.1 + 0.1 + 0.1 - 0.3)                  # Earlier Pythons (3.3. differs) 
5.55111512313e-17
However, with decimals, the result can be dead-on:
>>> from decimal import Decimal
>>> Decimal('0.1') + Decimal('0.1') + Decimal('0.1') - Decimal('0.3')
Decimal('0.0')
As shown here, we can make decimal objects by calling the
        Decimal constructor function in the
        decimal module and passing in strings that have the desired number of
        decimal digits for the resulting object (using the str function to convert floating-point
        values to strings if needed). When decimals of different precision are
        mixed in expressions, Python converts up to the largest number of
        decimal digits automatically:
>>> Decimal('0.1') + Decimal('0.10') + Decimal('0.10') - Decimal('0.30')
Decimal('0.00')
In Pythons 2.7, 3.1, and later, it’s also possible to create a
        decimal object from a floating-point object, with a call of the form
        decimal.Decimal.from_float(1.25),
        and recent Pythons allow floating-point numbers to be used
        directly. The conversion is exact but can sometimes yield a large
        default number of digits, unless they are fixed per the next
        section:
>>> Decimal(0.1) + Decimal(0.1) + Decimal(0.1) - Decimal(0.3)
Decimal('2.775557561565156540423631668E-17')
In Python 3.3 and later, the decimal module was also optimized
        to improve its performance radically: the reported speedup for the new
        version is 10X to 100X, depending on the type of program benchmarked.

Setting decimal precision globally
Other tools in the decimal
        module can be used to set the precision of all decimal numbers,
        arrange error handling, and more. For instance, a context object in
        this module allows for specifying precision (number of decimal digits)
        and rounding modes (down, ceiling, etc.). The precision is applied
        globally for all decimals created in the calling thread:
>>> import decimal
>>> decimal.Decimal(1) / decimal.Decimal(7)                     # Default: 28 digits
Decimal('0.1428571428571428571428571429')

>>> decimal.getcontext().prec = 4                               # Fixed precision
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal('0.1429')

>>> Decimal(0.1) + Decimal(0.1) + Decimal(0.1) - Decimal(0.3)   # Closer to 0
Decimal('1.110E-17')
Technically, significance is determined by digits input, and
        precision is applied on math operations. Although more subtle than we
        can explore in this brief overview, this property can make
        decimals useful as the basis for some monetary applications, and
        may sometimes serve as an alternative to manual rounding and string
        formatting:
>>> 1999 + 1.33      # This has more digits in memory than displayed in 3.3
2000.33
>>>
>>> decimal.getcontext().prec = 2
>>> pay = decimal.Decimal(str(1999 + 1.33))
>>> pay
Decimal('2000.33')

Decimal context manager
In Python 2.6 and 3.0 and later, it’s also possible to reset precision temporarily by using
        the with context manager statement.
        The precision is reset to its original value on
        statement exit; in a new Python 3.3 session (per Chapter 3 the “...” here is Python’s
        interactive prompt for continuation lines in some interfaces and
        requires manual indentation; IDLE omits this prompt and indents for
        you):
C:\code> C:\Python33\python
>>> import decimal
>>> decimal.Decimal('1.00') / decimal.Decimal('3.00')
Decimal('0.3333333333333333333333333333')
>>>
>>> with decimal.localcontext() as ctx:
...     ctx.prec = 2
...     decimal.Decimal('1.00') / decimal.Decimal('3.00')
...
Decimal('0.33')
>>>
>>> decimal.Decimal('1.00') / decimal.Decimal('3.00')
Decimal('0.3333333333333333333333333333')
Though useful, this statement requires much more background
        knowledge than you’ve obtained at this point; watch for coverage of
        the with statement in Chapter 34.
Because use of the decimal type is still relatively rare in
        practice, I’ll defer to Python’s standard library manuals and
        interactive help for more details. And because decimals address some
        of the same floating-point accuracy issues as the fraction type, let’s
        move on to the next section to see how the two compare.


Fraction Type
Python 2.6 and 3.0 debuted a new numeric type, Fraction, which implements a
      rational number object. It essentially keeps both a
      numerator and a denominator explicitly, so as to avoid some of the
      inaccuracies and limitations of floating-point math. Like decimals,
      fractions do not map as closely to computer hardware as floating-point
      numbers. This means their performance may not be as good, but it also
      allows them to provide extra utility in a standard tool where required
      or useful.
Fraction basics
Fraction is a functional
        cousin to the Decimal
        fixed-precision type described in the prior section, as both can be
        used to address the floating-point type’s numerical
        inaccuracies. It’s also used in similar ways—like Decimal, Fraction resides in a module; import its
        constructor and pass in a numerator and a denominator to make one
        (among other schemes). The following interaction shows how:
>>> from fractions import Fraction
>>> x = Fraction(1, 3)                    # Numerator, denominator
>>> y = Fraction(4, 6)                    # Simplified to 2, 3 by gcd

>>> x
Fraction(1, 3)
>>> y
Fraction(2, 3)
>>> print(y)
2/3
Once created, Fractions can
        be used in mathematical expressions as usual:
>>> x + y
Fraction(1, 1)
>>> x − y                           # Results are exact: numerator, denominator
Fraction(−1, 3)
>>> x * y
Fraction(2, 9)
Fraction objects can also be
        created from floating-point number strings, much like decimals:
>>> Fraction('.25')
Fraction(1, 4)
>>> Fraction('1.25')
Fraction(5, 4)
>>>
>>> Fraction('.25') + Fraction('1.25')
Fraction(3, 2)

Numeric accuracy in fractions and decimals
Notice that this is different from floating-point-type math, which is constrained by the
        underlying limitations of floating-point hardware. To compare, here
        are the same operations run with floating-point objects, and notes on
        their limited accuracy—they may display fewer digits in recent Pythons
        than they used to, but they still aren’t exact values in
        memory:
>>> a = 1 / 3.0                     # Only as accurate as floating-point hardware
>>> b = 4 / 6.0                     # Can lose precision over many calculations
>>> a
0.3333333333333333
>>> b
0.6666666666666666

>>> a + b
1.0
>>> a - b
-0.3333333333333333
>>> a * b
0.2222222222222222
This floating-point limitation is especially apparent for values
        that cannot be represented accurately given their limited number of
        bits in memory. Both Fraction and
        Decimal provide ways to get exact
        results, albeit at the cost of some speed and code verbosity. For
        instance, in the following example (repeated from the prior section),
        floating-point numbers do not accurately give the zero answer
        expected, but both of the other types do:
>>> 0.1 + 0.1 + 0.1 - 0.3           # This should be zero (close, but not exact)
5.551115123125783e-17

>>> from fractions import Fraction
>>> Fraction(1, 10) + Fraction(1, 10) + Fraction(1, 10) - Fraction(3, 10)
Fraction(0, 1)

>>> from decimal import Decimal
>>> Decimal('0.1') + Decimal('0.1') + Decimal('0.1') - Decimal('0.3')
Decimal('0.0')
Moreover, fractions and decimals both allow more intuitive and
        accurate results than floating points sometimes can, in different
        ways—by using rational representation and by limiting
        precision:
>>> 1 / 3                           # Use a ".0" in Python 2.X for true "/"
0.3333333333333333

>>> Fraction(1, 3)                  # Numeric accuracy, two ways
Fraction(1, 3)

>>> import decimal
>>> decimal.getcontext().prec = 2
>>> Decimal(1) / Decimal(3)
Decimal('0.33')
In fact, fractions both retain accuracy and automatically
        simplify results. Continuing the preceding interaction:
>>> (1 / 3) + (6 / 12)              # Use a ".0" in Python 2.X for true "/"
0.8333333333333333

>>> Fraction(6, 12)                 # Automatically simplified
Fraction(1, 2)

>>> Fraction(1, 3) + Fraction(6, 12)
Fraction(5, 6)

>>> decimal.Decimal(str(1/3)) + decimal.Decimal(str(6/12))
Decimal('0.83')

>>> 1000.0 / 1234567890
8.100000073710001e-07
>>> Fraction(1000, 1234567890)      # Substantially simpler!
Fraction(100, 123456789)

Fraction conversions and mixed types
To support fraction conversions, floating-point objects now have a method
        that yields their numerator and denominator ratio, fractions have a from_float method, and float accepts a Fraction as an argument. Trace through the
        following interaction to see how this pans out (the * in the second test is special syntax that
        expands a tuple into individual arguments; more on this when we study
        function argument passing in Chapter 18):
>>> (2.5).as_integer_ratio()               # float object method
(5, 2)

>>> f = 2.5
>>> z = Fraction(*f.as_integer_ratio())    # Convert float -> fraction: two args
>>> z                                      # Same as Fraction(5, 2)
Fraction(5, 2)

>>> x                                      # x from prior interaction
Fraction(1, 3)
>>> x + z
Fraction(17, 6)                            # 5/2 + 1/3 = 15/6 + 2/6

>>> float(x)                               # Convert fraction -> float
0.3333333333333333
>>> float(z)
2.5
>>> float(x + z)
2.8333333333333335
>>> 17 / 6
2.8333333333333335

>>> Fraction.from_float(1.75)              # Convert float -> fraction: other way
Fraction(7, 4)
>>> Fraction(*(1.75).as_integer_ratio())
Fraction(7, 4)
Finally, some type mixing is allowed in expressions, though
        Fraction must sometimes be manually
        propagated to retain accuracy. Study the following interaction to see
        how this works:
>>> x
Fraction(1, 3)
>>> x + 2                                  # Fraction + int -> Fraction
Fraction(7, 3)
>>> x + 2.0                                # Fraction + float -> float
2.3333333333333335
>>> x + (1./3)                             # Fraction + float -> float
0.6666666666666666
>>> x + (4./3)
1.6666666666666665
>>> x + Fraction(4, 3)                     # Fraction + Fraction -> Fraction
Fraction(5, 3)
Caveat: although you can convert from floating point to
        fraction, in some cases there is an unavoidable precision loss when
        you do so, because the number is inaccurate in its original
        floating-point form. When needed, you can simplify such results by
        limiting the maximum denominator value:
>>> 4.0 / 3
1.3333333333333333
>>> (4.0 / 3).as_integer_ratio()                # Precision loss from float
(6004799503160661, 4503599627370496)

>>> x
Fraction(1, 3)
>>> a = x + Fraction(*(4.0 / 3).as_integer_ratio())
>>> a
Fraction(22517998136852479, 13510798882111488)

>>> 22517998136852479 / 13510798882111488.      # 5 / 3 (or close to it!)
1.6666666666666667

>>> a.limit_denominator(10)                     # Simplify to closest fraction
Fraction(5, 3)
For more details on the Fraction type, experiment further on your
        own and consult the Python 2.6, 2.7, and 3.X library manuals and other
        documentation.


Sets
Besides decimals, Python 2.4 also introduced a new collection type, the
      set—an unordered collection of unique and immutable
      objects that supports operations corresponding to mathematical set
      theory. By definition, an item appears only once in a set, no matter how
      many times it is added. Accordingly, sets have a variety of
      applications, especially in numeric and database-focused work.
Because sets are collections of other objects, they share some
      behavior with objects such as lists and dictionaries that are outside
      the scope of this chapter. For example, sets are iterable, can grow and
      shrink on demand, and may contain a variety of object types. As we’ll
      see, a set acts much like the keys of a valueless dictionary, but it
      supports extra operations.
However, because sets are unordered and do not map keys to values,
      they are neither sequence nor mapping types; they are a type category
      unto themselves. Moreover, because sets are fundamentally mathematical
      in nature (and for many readers, may seem more academic and be used much
      less often than more pervasive objects like dictionaries), we’ll explore
      the basic utility of Python’s set objects here.
Set basics in Python 2.6 and earlier
There are a few ways to make sets today, depending on which Python
        you use. Since this book covers all, let’s begin with the case for 2.6
        and earlier, which also is available (and sometimes still required) in
        later Pythons; we’ll refine this for 2.7 and 3.X extensions in a
        moment. To make a set object, pass in a sequence or other iterable
        object to the built-in set
        function:
>>> x = set('abcde')
>>> y = set('bdxyz')
You get back a set object, which contains all the items in the
        object passed in (notice that sets do not have a positional ordering,
        and so are not sequences—their order is arbitrary and may vary per
        Python release):
>>> x
set(['a', 'c', 'b', 'e', 'd'])                    # Pythons <= 2.6 display format
Sets made this way support the common mathematical set
        operations with expression operators. Note
        that we can’t perform the following operations on plain sequences like
        strings, lists, and tuples—we must create sets from them by passing
        them to set in order to apply these
        tools:
>>> x − y                                         # Difference
set(['a', 'c', 'e'])

>>> x | y                                         # Union
set(['a', 'c', 'b', 'e', 'd', 'y', 'x', 'z'])

>>> x & y                                         # Intersection
set(['b', 'd'])

>>> x ^ y                                         # Symmetric difference (XOR)
set(['a', 'c', 'e', 'y', 'x', 'z'])

>>> x > y, x < y                                  # Superset, subset
(False, False)
The notable exception to this rule is the in set membership test—this expression is
        also defined to work on all other collection types, where it also
        performs membership (or a search, if you prefer to think in procedural
        terms). Hence, we do not need to convert things like strings and lists
        to sets to run this test:
>>> 'e' in x                                      # Membership (sets)
True

>>> 'e' in 'Camelot', 22 in [11, 22, 33]          # But works on other types too
(True, True)
In addition to expressions, the set object provides
        methods that correspond to these operations and
        more, and that support set changes—the set add method inserts one item, update is an in-place union, and remove deletes an item by value (run a
        dir call on any set instance or the
        set type name to see all the
        available methods). Assuming x and
        y are still as they were in the
        prior interaction:
>>> z = x.intersection(y)                         # Same as x & y
>>> z
set(['b', 'd'])
>>> z.add('SPAM')                                 # Insert one item
>>> z
set(['b', 'd', 'SPAM'])
>>> z.update(set(['X', 'Y']))                     # Merge: in-place union
>>> z
set(['Y', 'X', 'b', 'd', 'SPAM'])
>>> z.remove('b')                                 # Delete one item
>>> z
set(['Y', 'X', 'd', 'SPAM'])
As iterable containers, sets can also be
        used in operations such as len,
        for loops, and list comprehensions.
        Because they are unordered, though, they don’t support sequence
        operations like indexing and slicing:
>>> for item in set('abc'): print(item * 3)

aaa
ccc
bbb
Finally, although the set expressions shown earlier generally
        require two sets, their method-based counterparts can often work with
        any iterable type as well:
>>> S = set([1, 2, 3])

>>> S | set([3, 4])          # Expressions require both to be sets
set([1, 2, 3, 4])
>>> S | [3, 4]
TypeError: unsupported operand type(s) for |: 'set' and 'list'

>>> S.union([3, 4])          # But their methods allow any iterable
set([1, 2, 3, 4])
>>> S.intersection((1, 3, 5))
set([1, 3])
>>> S.issubset(range(-5, 5))
True
For more details on set operations, see Python’s library
        reference manual or a reference book. Although set operations can be
        coded manually in Python with other types, like lists and dictionaries
        (and often were in the past), Python’s built-in sets use efficient
        algorithms and implementation techniques to provide quick and standard
        operation.

Set literals in Python 3.X and 2.7
If you think sets are “cool,” they eventually became noticeably
        cooler, with new syntax for set literals and
        comprehensions initially added in the Python 3.X
        line only, but back-ported to Python 2.7 by popular demand. In these
        Pythons we can still use the set
        built-in to make set objects, but also a new set literal form, using
        the curly braces formerly reserved for dictionaries. In 3.X and 2.7,
        the following are equivalent:
set([1, 2, 3, 4])                # Built-in call (all)
{1, 2, 3, 4}                     # Newer set literals (2.7, 3.X)
This syntax makes sense, given that sets are essentially like
        valueless dictionaries—because a set’s items are
        unordered, unique, and immutable, the items behave much like a
        dictionary’s keys. This operational similarity is even more striking
        given that dictionary key lists in 3.X are view
        objects, which support set-like behavior such as intersections and
        unions (see Chapter 8 for more on
        dictionary view objects).
Regardless of how a set is made, 3.X displays it using the new
        literal format. Python 2.7 accepts the new
        literal syntax, but still displays sets using the
        2.6 display form of the prior section. In all Pythons, the set built-in is still required to create
        empty sets and to build sets from existing iterable objects (short of
        using set comprehensions, discussed later in this chapter), but the
        new literal is convenient for initializing sets of known
        structure.
Here’s what sets look like in 3.X; it’s the same in 2.7, except
        that set results display with 2.X’s set([...]) notation, and item order may vary
        per version (which by definition is irrelevant in sets anyhow):
C:\code> c:\python33\python
>>> set([1, 2, 3, 4])            # Built-in: same as in 2.6
{1, 2, 3, 4}
>>> set('spam')                  # Add all items in an iterable
{'s', 'a', 'p', 'm'}

>>> {1, 2, 3, 4}                 # Set literals: new in 3.X (and 2.7)
{1, 2, 3, 4}
>>> S = {'s', 'p', 'a', 'm'}
>>> S
{'s', 'a', 'p', 'm'}

>>> S.add('alot')                # Methods work as before
>>> S
{'s', 'a', 'p', 'alot', 'm'}
All the set processing operations discussed in the prior section
        work the same in 3.X, but the result sets print differently:
>>> S1 = {1, 2, 3, 4}
>>> S1 & {1, 3}                  # Intersection
{1, 3}
>>> {1, 5, 3, 6} | S1            # Union
{1, 2, 3, 4, 5, 6}
>>> S1 - {1, 3, 4}               # Difference
{2}
>>> S1 > {1, 3}                  # Superset
True
Note that {} is still a
        dictionary in all Pythons. Empty sets must be
        created with the set built-in, and
        print the same way:
>>> S1 - {1, 2, 3, 4}            # Empty sets print differently
set()
>>> type({})                     # Because {} is an empty dictionary
<class 'dict'>

>>> S = set()                    # Initialize an empty set
>>> S.add(1.23)
>>> S
{1.23}
As in Python 2.6 and earlier, sets created with 3.X/2.7 literals
        support the same methods, some of which allow general iterable
        operands that expressions do not:
>>> {1, 2, 3} | {3, 4}
{1, 2, 3, 4}
>>> {1, 2, 3} | [3, 4]
TypeError: unsupported operand type(s) for |: 'set' and 'list'

>>> {1, 2, 3}.union([3, 4])
{1, 2, 3, 4}
>>> {1, 2, 3}.union({3, 4})
{1, 2, 3, 4}
>>> {1, 2, 3}.union(set([3, 4]))
{1, 2, 3, 4}

>>> {1, 2, 3}.intersection((1, 3, 5))
{1, 3}
>>> {1, 2, 3}.issubset(range(-5, 5))
True

Immutable constraints and frozen sets
Sets are powerful and flexible objects, but they do have one constraint in both 3.X and 2.X that
        you should keep in mind—largely because of their implementation, sets
        can only contain immutable (a.k.a. “hashable”)
        object types. Hence, lists and dictionaries cannot be embedded in
        sets, but tuples can if you need to store compound values. Tuples
        compare by their full values when used in set operations:
>>> S
{1.23}
>>> S.add([1, 2, 3])                   # Only immutable objects work in a set
TypeError: unhashable type: 'list'
>>> S.add({'a':1})
TypeError: unhashable type: 'dict'
>>> S.add((1, 2, 3))
>>> S                                  # No list or dict, but tuple OK
{1.23, (1, 2, 3)}

>>> S | {(4, 5, 6), (1, 2, 3)}         # Union: same as S.union(...)
{1.23, (4, 5, 6), (1, 2, 3)}
>>> (1, 2, 3) in S                     # Membership: by complete values
True
>>> (1, 4, 3) in S
False
Tuples in a set, for instance, might be used to represent dates,
        records, IP addresses, and so on (more on tuples later in this part of
        the book). Sets may also contain modules, type objects, and more. Sets
        themselves are mutable too, and so cannot be nested in other sets
        directly; if you need to store a set inside another set, the frozenset
        built-in call works just like set
        but creates an immutable set that cannot change and thus can be
        embedded in other sets.

Set comprehensions in Python 3.X and 2.7
In addition to literals, Python 3.X grew a set comprehension construct that was
        back-ported for use to Python 2.7 too. Like the 3.X set literal, 2.7
        accepts its syntax, but displays its results in 2.X set notation. The
        set comprehension expression is similar in form to the list
        comprehension we previewed in Chapter 4, but is coded in curly
        braces instead of square brackets and run to make a set instead of a
        list. Set comprehensions run a loop and collect the result of an
        expression on each iteration; a loop variable gives access to the
        current iteration value for use in the collection expression. The
        result is a new set you create by running the code, with all the
        normal set behavior. Here is a set comprehension in 3.3 (again, result
        display and order differs in 2.7):
>>> {x ** 2 for x in [1, 2, 3, 4]}         # 3.X/2.7 set comprehension
{16, 1, 4, 9}
In this expression, the loop is coded on the right, and the
        collection expression is coded on the left (x
        ** 2). As for list comprehensions, we get back pretty much
        what this expression says: “Give me a new set containing X squared,
        for every X in a list.” Comprehensions can also iterate across other
        kinds of objects, such as strings (the first of the following examples
        illustrates the comprehension-based way to make a set from an existing
        iterable):
>>> {x for x in 'spam'}                    # Same as: set('spam')
{'m', 's', 'p', 'a'}

>>> {c * 4 for c in 'spam'}                # Set of collected expression results
{'pppp', 'aaaa', 'ssss', 'mmmm'}
>>> {c * 4 for c in 'spamham'}
{'pppp', 'aaaa', 'hhhh', 'ssss', 'mmmm'}

>>> S = {c * 4 for c in 'spam'}
>>> S | {'mmmm', 'xxxx'}
{'pppp', 'xxxx', 'mmmm', 'aaaa', 'ssss'}
>>> S & {'mmmm', 'xxxx'}
{'mmmm'}
Because the rest of the comprehensions story relies upon
        underlying concepts we’re not yet prepared to address, we’ll postpone
        further details until later in this book. In Chapter 8, we’ll meet a first cousin in 3.X
        and 2.7, the dictionary comprehension, and I’ll have much more to say
        about all comprehensions—list, set, dictionary, and generator—later
        on, especially in Chapter 14 and
        Chapter 20. As we’ll learn
        there, all comprehensions support additional syntax not shown here,
        including nested loops and if
        tests, which can be challenging to understand until you’ve had a
        chance to study larger statements.

Why sets?
Set operations have a variety of common uses, some more practical than
        mathematical. For example, because items are stored only once in a
        set, sets can be used to filter duplicates out of
        other collections, though items may be reordered in the process
        because sets are unordered in general. Simply convert the collection
        to a set, and then convert it back again (sets work in the list call here because they are
        iterable, another technical artifact that we’ll
        unearth later):
>>> L = [1, 2, 1, 3, 2, 4, 5]
>>> set(L)
{1, 2, 3, 4, 5}
>>> L = list(set(L))                                  # Remove duplicates
>>> L
[1, 2, 3, 4, 5]

>>> list(set(['yy', 'cc', 'aa', 'xx', 'dd', 'aa']))   # But order may change
['cc', 'xx', 'yy', 'dd', 'aa']
Sets can be used to isolate differences in
        lists, strings, and other iterable objects too—simply convert to sets
        and take the difference—though again the unordered nature of sets
        means that the results may not match that of the originals. The last
        two of the following compare attribute lists of string object types in
        3.X (results vary in 2.7):
>>> set([1, 3, 5, 7]) - set([1, 2, 4, 5, 6])          # Find list differences
{3, 7}
>>> set('abcdefg') - set('abdghij')                   # Find string differences
{'c', 'e', 'f'}
>>> set('spam') - set(['h', 'a', 'm'])                # Find differences, mixed
{'p', 's'}

>>> set(dir(bytes)) - set(dir(bytearray))             # In bytes but not bytearray
{'__getnewargs__'}
>>> set(dir(bytearray)) - set(dir(bytes))
{'append', 'copy', '__alloc__', '__imul__', 'remove', 'pop', 'insert', ...more...]
You can also use sets to perform order-neutral
        equality tests by converting to a set before the test,
        because order doesn’t matter in a set. More formally, two sets are
        equal if and only if every element of each set is
        contained in the other—that is, each is a subset of the other,
        regardless of order. For instance, you might use this to compare the
        outputs of programs that should work the same but may generate results
        in different order. Sorting before testing has the same effect for
        equality, but sets don’t rely on an expensive sort, and sorts order
        their results to support additional magnitude tests that sets do not
        (greater, less, and so on):
>>> L1, L2 = [1, 3, 5, 2, 4], [2, 5, 3, 4, 1]
>>> L1 == L2                                          # Order matters in sequences
False
>>> set(L1) == set(L2)                                # Order-neutral equality
True
>>> sorted(L1) == sorted(L2)                          # Similar but results ordered
True
>>> 'spam' == 'asmp', set('spam') == set('asmp'), sorted('spam') == sorted('asmp')
(False, True, True)
Sets can also be used to keep track of where you’ve already been
        when traversing a graph or other cyclic
        structure. For example, the transitive module reloader and inheritance
        tree lister examples we’ll study in Chapter 25 and Chapter 31, respectively, must keep track of
        items visited to avoid loops, as Chapter 19 discusses in the abstract. Using
        a list in this context is inefficient because searches require linear
        scans. Although recording states visited as keys in a dictionary is
        efficient, sets offer an alternative that’s essentially equivalent
        (and may be more or less intuitive, depending on whom you ask).
Finally, sets are also convenient when you’re dealing with large
        data sets (database query results, for example)—the intersection of
        two sets contains objects common to both categories, and the union
        contains all items in either set. To illustrate, here’s a somewhat
        more realistic example of set operations at work, applied to lists of
        people in a hypothetical company, using 3.X/2.7 set literals and 3.X
        result displays (use set in 2.6 and
        earlier):
>>> engineers = {'bob', 'sue', 'ann', 'vic'}
>>> managers  = {'tom', 'sue'}

>>> 'bob' in engineers                   # Is bob an engineer?
True

>>> engineers & managers                 # Who is both engineer and manager?
{'sue'}

>>> engineers | managers                 # All people in either category
{'bob', 'tom', 'sue', 'vic', 'ann'}

>>> engineers - managers                 # Engineers who are not managers
{'vic', 'ann', 'bob'}

>>> managers - engineers                 # Managers who are not engineers
{'tom'}

>>> engineers > managers                 # Are all managers engineers? (superset)
False

>>> {'bob', 'sue'} < engineers           # Are both engineers? (subset)
True

>>> (managers | engineers) > managers    # All people is a superset of managers
True

>>> managers ^ engineers                 # Who is in one but not both?
{'tom', 'vic', 'ann', 'bob'}

>>> (managers | engineers) - (managers ^ engineers)     # Intersection!
{'sue'}
You can find more details on set operations in the Python
        library manual and some mathematical and relational database theory
        texts. Also stay tuned for Chapter 8’s
        revival of some of the set operations we’ve seen here, in the context
        of dictionary view objects in Python 3.X.


Booleans
Some may argue that the Python Boolean type, bool, is numeric in nature because its two
      values, True and False, are just customized versions of the integers 1 and 0 that print
      themselves differently. Although that’s all most programmers need to
      know, let’s explore this type in a bit more detail.
More formally, Python today has an explicit Boolean data type
      called bool, with the values True and False available as preassigned built-in names.
      Internally, the names True and
      False are instances of bool, which is in turn just a subclass (in the
      object-oriented sense) of the built-in integer type int. True
      and False behave exactly like the
      integers 1 and 0, except that they have customized printing logic—they
      print themselves as the words True
      and False, instead of the digits
      1 and 0. bool
      accomplishes this by redefining str
      and repr string formats for its two
      objects.
Because of this customization, the output of Boolean expressions
      typed at the interactive prompt prints as the words True and False instead of the older and less obvious
      1 and 0. In addition, Booleans make truth values
      more explicit in your code. For instance, an infinite loop can now be
      coded as while True: instead of the
      less intuitive while 1:. Similarly,
      flags can be initialized more clearly with flag
      = False. We’ll discuss these statements further in Part III.
Again, though, for most practical purposes, you can treat True and False as though they are predefined variables
      set to integers 1 and 0. Most programmers had been preassigning
      True and False to 1
      and 0 anyway; the bool type simply makes this standard. Its
      implementation can lead to curious results, though. Because True is just the integer 1 with a custom display format, True + 4 yields integer 5 in Python!
>>> type(True)
<class 'bool'>
>>> isinstance(True, int)
True
>>> True == 1                # Same value
True
>>> True is 1                # But a different object: see the next chapter
False
>>> True or False            # Same as: 1 or 0
True
>>> True + 4                 # (Hmmm)
5
Since you probably won’t come across an expression like the last
      of these in real Python code, you can safely ignore any of its deeper
      metaphysical implications.
We’ll revisit Booleans in Chapter 9 to define Python’s
      notion of truth, and again in Chapter 12 to see how Boolean operators like
      and and or work.


Numeric Extensions
Finally, although Python core numeric types offer plenty of power for most
    applications, there is a large library of third-party open source
    extensions available to address more focused needs. Because numeric
    programming is a popular domain for Python, you’ll find a wealth of
    advanced tools.
For example, if you need to do serious number crunching, an optional
    extension for Python called NumPy (Numeric Python) provides
    advanced numeric programming tools, such as a matrix data type, vector
    processing, and sophisticated computation libraries. Hardcore scientific
    programming groups at places like Los Alamos and NASA use Python with
    NumPy to implement the sorts of tasks they previously coded in C++, FORTRAN, or Matlab. The combination of
    Python and NumPy is often compared to a free, more flexible version of
    Matlab—you get NumPy’s performance, plus the Python language and its
    libraries.
Because it’s so advanced, we won’t talk further about NumPy in this
    book. You can find additional support for advanced numeric programming in
    Python, including graphics and plotting tools, extended precision floats,
    statistics libraries, and the popular SciPy package
    by searching the Web. Also note that NumPy is currently an optional
    extension; it doesn’t come with Python and must be installed separately,
    though you’ll probably want to do so if you care enough about this domain
    to look it up on the Web.

Chapter Summary
This chapter has taken a tour of Python’s numeric object types and
    the operations we can apply to them. Along the way, we met the standard
    integer and floating-point types, as well as some more exotic and less
    commonly used types such as complex numbers, decimals, fractions, and
    sets. We also explored Python’s expression syntax, type conversions,
    bitwise operations, and various literal forms for coding numbers in
    scripts.
Later in this part of the book, we’ll continue our in-depth type
    tour by filling in some details about the next object type—the string. In
    the next chapter, however, we’ll take some time to explore the mechanics
    of variable assignment in more detail than we have here. This turns out to
    be perhaps the most fundamental idea in Python, so make sure you check out
    the next chapter before moving on. First, though, it’s time to take the
    usual chapter quiz.

Test Your Knowledge: Quiz
	What is the value of the expression 2 * (3
        + 4) in Python?

	What is the value of the expression 2 *
        3 + 4 in Python?

	What is the value of the expression 2 +
        3 * 4 in Python?

	What tools can you use to find a number’s square root, as well
        as its square?

	What is the type of the result of the expression 1 + 2.0 + 3?

	How can you truncate and round a floating-point number?

	How can you convert an integer to a floating-point
        number?

	How would you display an integer in octal, hexadecimal, or
        binary notation?

	How might you convert an octal, hexadecimal, or binary string to
        a plain integer?



Test Your Knowledge: Answers
	The value will be 14, the
        result of 2 * 7, because the parentheses force the addition to happen
        before the multiplication.

	The value will be 10, the
        result of 6 + 4. Python’s operator precedence rules are applied in the
        absence of parentheses, and multiplication has higher precedence than
        (i.e., happens before) addition, per Table 5-2.

	This expression yields 14,
        the result of 2 + 12, for the same precedence reasons as in the prior
        question.

	Functions for obtaining the square root, as well as
        pi, tangents, and more, are available in the
        imported math module. To find a
        number’s square root, import math
        and call math.sqrt(N). To get a
        number’s square, use either the exponent expression X ** 2 or the built-in function pow(X, 2). Either of these last two can also
        compute the square root when given a power of 0.5 (e.g., X **
        .5).

	The result will be a floating-point number: the integers are
        converted up to floating point, the most complex type in the
        expression, and floating-point math is used to evaluate it.

	The int(N) and math.trunc(N) functions truncate, and the round(N, digits) function rounds. We can also compute the
        floor with math.floor(N) and round for display with string
        formatting operations.

	The float(I) function converts an integer to a floating
        point; mixing an integer with a floating point within an expression
        will result in a conversion as well. In some sense, Python 3.X
        / division converts too—it always
        returns a floating-point result that includes the remainder, even if
        both operands are integers.

	The oct(I) and hex(I) built-in functions return the octal and
        hexadecimal string forms for an integer. The bin(I) call also returns a number’s binary digits
        string in Pythons 2.6, 3.0, and later. The % string formatting expression and format string method also provide targets
        for some such conversions.

	The int(S, base) function can be used to convert from octal
        and hexadecimal strings to normal integers (pass in 8, 16, or
        2 for the base). The eval(S) function can be used for this purpose too,
        but it’s more expensive to run and can have security issues. Note that
        integers are always stored in binary form in computer memory; these
        are just display string format conversions.










Chapter 6. The Dynamic Typing Interlude
In the prior chapter, we began exploring Python’s core object types in
  depth by studying Python numeric types and operations. We’ll resume our
  object type tour in the next chapter, but before we move on, it’s important
  that you get a handle on what may be the most fundamental idea in Python
  programming and is certainly the basis of much of both the conciseness and
  flexibility of the Python language—dynamic typing, and the polymorphism it
  implies.
As you’ll see here and throughout this book, in Python, we do not
  declare the specific types of the objects our scripts use. In fact, most
  programs should not even care about specific types; in
  exchange, they are naturally applicable in more contexts than we can
  sometimes even plan ahead for. Because dynamic typing is the root of this
  flexibility, and is also a potential stumbling block for newcomers, let’s
  take a brief side trip to explore the model here.
The Case of the Missing Declaration Statements
If you have a background in compiled or statically typed languages
    like C, C++, or Java, you might find yourself a bit perplexed at this
    point in the book. So far, we’ve been using variables without declaring
    their existence or their types, and it somehow works. When we type
    a = 3 in an interactive session or
    program file, for instance, how does Python know that a should stand for an integer? For that matter,
    how does Python know what a is at
    all?
Once you start asking such questions, you’ve crossed over into the
    domain of Python’s dynamic typing model. In
    Python, types are determined automatically at runtime, not in response to
    declarations in your code. This means that you never declare variables
    ahead of time (a concept that is perhaps simpler to grasp if you keep in
    mind that it all boils down to variables, objects, and the links between
    them).
Variables, Objects, and References
As you’ve seen in many of the examples used so far in this book, when you
      run an assignment statement such as a =
      3 in Python, it works even if you’ve never told Python to use
      the name a as a variable, or that
      a should stand for an integer-type
      object. In the Python language, this all pans out in a very natural way,
      as follows:
	Variable creation
	A variable (also known in Python as a name), like a, is created when your code first assigns it a value.
            Future assignments change the value of the already created name.
            Technically, Python detects some names before your code runs, but
            you can think of it as though initial assignments make
            variables.

	Variable types
	A variable never has any type information or constraints
            associated with it. The notion of type lives with objects, not
            names. Variables are generic in nature; they always simply refer
            to a particular object at a particular point in time.

	Variable use
	When a variable appears in an expression, it is immediately replaced
            with the object that it currently refers to, whatever that may be.
            Further, all variables must be explicitly assigned before they can
            be used; referencing unassigned variables results in
            errors.


In sum, variables are created when assigned, can reference any
      type of object, and must be assigned before they are referenced. This
      means that you never need to declare names used by your script, but you
      must initialize names before you can update them; counters, for example,
      must be initialized to zero before you can add to them.
This dynamic typing model is strikingly different from the typing
      model of traditional languages. When you are first starting out, the
      model is usually easier to understand if you keep clear the distinction
      between names and objects. For example, when we say this to assign a
      variable a value:
>>> a = 3                # Assign a name to an object
at least conceptually, Python will perform three distinct steps to
      carry out the request. These steps reflect the operation of all
      assignments in the Python language:
	Create an object to represent the value 3.

	Create the variable a, if
          it does not yet exist.

	Link the variable a to the
          new object 3.


The net result will be a structure inside Python that resembles
      Figure 6-1. As
      sketched, variables and objects are stored in different parts of
      memory and are associated by links (the link is shown as a pointer in
      the figure). Variables always link to objects and never to other
      variables, but larger objects may link to other objects (for instance, a
      list object has links to the objects it contains).
Figure 6-1. Names (a.k.a. variables) and objects after running the
        assignment a = 3. Variable a becomes a reference to the object 3.
        Internally, the variable is really a pointer to the object’s memory
        space created by running the literal expression 3.

These links from variables to objects are called references in
      Python—that is, a reference is a kind of association, implemented as a
      pointer in memory.1 Whenever the variables are later used (i.e., referenced),
      Python automatically follows the variable-to-object links. This is all
      simpler than the terminology may imply. In concrete terms:
	Variables are entries in a system table, with spaces for links to
          objects.

	Objects are pieces of allocated memory, with enough space to represent the
          values for which they stand.

	References are automatically followed pointers from variables to
          objects.


At least conceptually, each time you generate a new value in your
      script by running an expression, Python creates a new
      object (i.e., a chunk of memory) to represent that
      value. As an optimization, Python internally caches and reuses certain
      kinds of unchangeable objects, such as small integers and strings (each
      0 is not really a new piece of
      memory—more on this caching behavior later). But from a logical
      perspective, it works as though each expression’s result value is a
      distinct object and each object is a distinct piece of memory.
Technically speaking, objects have more structure than just enough
      space to represent their values. Each object also has two standard
      header fields: a type designator used to mark the type of the object, and a reference
      counter used to determine when it’s OK to reclaim the object.
      To understand how these two header fields factor into the model, we need
      to move on.

Types Live with Objects, Not Variables
To see how object types come into play, watch what happens if we
      assign a variable multiple times:
>>> a = 3             # It's an integer
>>> a = 'spam'        # Now it's a string
>>> a = 1.23          # Now it's a floating point
This isn’t typical Python code, but it does work—a starts out as an integer, then becomes a
      string, and finally becomes a floating-point number. This example tends
      to look especially odd to ex-C programmers, as it appears as though the
      type of a
      changes from integer to string when we say a =
      'spam'.
However, that’s not really what’s happening. In Python, things
      work more simply. Names have no types; as stated
      earlier, types live with objects, not names. In the preceding listing,
      we’ve simply changed a to reference
      different objects. Because variables have no type, we haven’t actually
      changed the type of the variable a;
      we’ve simply made the variable reference a different type of object. In
      fact, again, all we can ever say about a variable in Python is that it
      references a particular object at a particular point in time.
Objects, on the other hand, know what type
      they are—each object contains a header field that tags the object with
      its type. The integer object 3, for
      example, will contain the value 3,
      plus a designator that tells Python that the object is an integer
      (strictly speaking, a pointer to an object called int, the name of the integer type). The type
      designator of the 'spam' string
      object points to the string type (called str) instead. Because objects know their
      types, variables don’t have to.
To recap, types are associated with objects in Python, not with
      variables. In typical code, a given variable usually will reference just
      one kind of object. Because this isn’t a requirement, though, you’ll
      find that Python code tends to be much more flexible than you may be
      accustomed to—if you use Python well, your code might work on many types
      automatically.
I mentioned that objects have two header fields, a type designator
      and a reference counter. To understand the latter of these, we need to
      move on and take a brief look at what happens at the end of an object’s life.

Objects Are Garbage-Collected
In the prior section’s listings, we assigned the variable a
      to different types of objects in each assignment. But when we reassign a
      variable, what happens to the value it was previously referencing? For
      example, after the following statements, what happens to the object
      3?
>>> a = 3
>>> a = 'spam'
The answer is that in Python, whenever a name is assigned to a new
      object, the space held by the prior object is reclaimed if it is not
      referenced by any other name or object. This automatic reclamation of
      objects’ space is known as garbage collection, and
      makes life much simpler for programmers of languages like Python that
      support it.
To illustrate, consider the following example, which sets the name
      x to a different object on each
      assignment:
>>> x = 42
>>> x = 'shrubbery'          # Reclaim 42 now (unless referenced elsewhere)
>>> x = 3.1415               # Reclaim 'shrubbery' now
>>> x = [1, 2, 3]            # Reclaim 3.1415 now
First, notice that x is set to
      a different type of object each time. Again, though this is not really
      the case, the effect is as though the type of x is changing over time. Remember, in Python
      types live with objects, not names. Because names are just generic
      references to objects, this sort of code works naturally.
Second, notice that references to objects are discarded along the
      way. Each time x is assigned to a new
      object, Python reclaims the prior object’s space. For instance, when it
      is assigned the string 'shrubbery',
      the object 42 is immediately
      reclaimed (assuming it is not referenced anywhere else)—that is, the
      object’s space is automatically thrown back into the free space pool, to
      be reused for a future object.
Internally, Python accomplishes this feat by keeping a counter in
      every object that keeps track of the number of references currently
      pointing to that object. As soon as (and exactly when) this counter
      drops to zero, the object’s memory space is automatically reclaimed. In
      the preceding listing, we’re assuming that each time x is assigned to a new object, the prior
      object’s reference counter drops to zero, causing it to be
      reclaimed.
The most immediately tangible benefit of garbage collection is
      that it means you can use objects liberally without ever needing to
      allocate or free up space in your script. Python will clean up unused
      space for you as your program runs. In practice, this eliminates a
      substantial amount of bookkeeping code required in lower-level languages
      such as C and C++.
More on Python Garbage Collection
Technically speaking, Python’s garbage collection is based
        mainly upon reference counters, as
        described here; however, it also has a component that detects and
        reclaims objects with cyclic references in time.
        This component can be disabled if you’re sure that your code doesn’t
        create cycles, but it is enabled by default.
Circular references are a classic issue in reference count garbage
        collectors. Because references are implemented as pointers, it’s
        possible for an object to reference itself, or reference another
        object that does. For example, exercise 6 at the end of Part I and its
        solution in Appendix D show
        how to create a cycle easily by embedding a reference to a list within
        itself (e.g., L.append(L)). The
        same phenomenon can occur for assignments to attributes of objects
        created from user-defined classes. Though relatively rare, because the
        reference counts for such objects never drop to zero, they must be
        treated specially.
For more details on Python’s cycle detector, see the
        documentation for the gc module in
        Python’s library manual. The best news here is that
        garbage-collection-based memory management is implemented for you in
        Python, by people highly skilled at the task.
Also note that this chapter’s description of Python’s garbage
        collector applies to the standard Python (a.k.a.
        CPython) only; Chapter 2’s alternative implementations
        such as Jython, IronPython, and PyPy may use different schemes, though
        the net effect in all is similar—unused space is reclaimed for you
        automatically, if not always as immediately.



Shared References
So far, we’ve seen what happens as a single variable is assigned references to
    objects. Now let’s introduce another variable into our interaction and
    watch what happens to its names and objects:
>>> a = 3
>>> b = a
Typing these two statements generates the scene captured in Figure 6-2. The second command
    causes Python to create the variable b;
    the variable a is being used and not
    assigned here, so it is replaced with the object it references (3), and b is
    made to reference that object. The net effect is that the variables
    a and b wind up referencing the
    same object (that is, pointing to the same chunk of
    memory).
Figure 6-2. Names and objects after next running the assignment b = a.
      Variable b becomes a reference to the object 3. Internally, the variable
      is really a pointer to the object’s memory space created by running the
      literal expression 3.

This scenario in Python—with multiple names referencing the same
    object—is usually called a shared reference (and
    sometimes just a shared object). Note that the names
    a and b are not linked to each other directly when
    this happens; in fact, there is no way to ever link a variable to another
    variable in Python. Rather, both variables point to the same object via
    their references.
Next, suppose we extend the session with one more statement:
>>> a = 3
>>> b = a
>>> a = 'spam'
As with all Python assignments, this statement simply makes a new
    object to represent the string value 'spam' and sets a to reference this new object. It does not,
    however, change the value of b;
    b still references the original object,
    the integer 3. The resulting reference
    structure is shown in Figure 6-3.
Figure 6-3. Names and objects after finally running the assignment a =
      ‘spam’. Variable a references the new object (i.e., piece of memory)
      created by running the literal expression ‘spam’, but variable b still
      refers to the original object 3. Because this assignment is not an
      in-place change to the object 3, it changes only variable a, not
      b.

The same sort of thing would happen if we changed b to 'spam'
    instead—the assignment would change only b, not a.
    This behavior also occurs if there are no type differences at all. For
    example, consider these three statements:
>>> a = 3
>>> b = a
>>> a = a + 2
In this sequence, the same events transpire. Python makes the
    variable a reference the object
    3 and makes b reference the same object as a, as in Figure 6-2; as before, the last
    assignment then sets a to a completely
    different object (in this case, the integer 5, which is the result of the + expression). It does not change b as a side effect. In fact, there is no way to
    ever overwrite the value of the object 3—as introduced in Chapter 4, integers are immutable and
    thus can never be changed in place.
One way to think of this is that, unlike in some languages, in
    Python variables are always pointers to objects, not labels of changeable
    memory areas: setting a variable to a new value does not alter the
    original object, but rather causes the variable to reference an entirely
    different object. The net effect is that assignment to a variable itself
    can impact only the single variable being assigned. When mutable objects
    and in-place changes enter the equation, though, the picture changes
    somewhat; to see how, let’s move on.
Shared References and In-Place Changes
As you’ll see later in this part’s chapters, there are objects and operations
      that perform in-place object changes—Python’s
      mutable types, including lists, dictionaries, and
      sets. For instance, an assignment to an offset in a list actually
      changes the list object itself in place, rather than generating a
      brand-new list object.
Though you must take it somewhat on faith at this point in the
      book, this distinction can matter much in your programs. For objects
      that support such in-place changes, you need to be more aware of shared
      references, since a change from one name may impact others. Otherwise,
      your objects may seem to change for no apparent reason. Given that all
      assignments are based on references (including function argument
      passing), it’s a pervasive potential.
To illustrate, let’s take another look at the list objects
      introduced in Chapter 4. Recall
      that lists, which do support in-place assignments to positions, are
      simply collections of other objects, coded in square brackets:
>>> L1 = [2, 3, 4]
>>> L2 = L1
L1 here is a list containing
      the objects 2, 3, and 4.
      Items inside a list are accessed by their positions, so L1[0] refers to object 2, the first item in the list L1. Of course, lists are also objects in their
      own right, just like integers and strings. After running the two prior
      assignments, L1 and L2 reference the same shared object, just like
      a and b in the prior example (see Figure 6-2). Now say that, as
      before, we extend this interaction to say the following:
>>> L1 = 24
This assignment simply sets L1
      to a different object; L2 still
      references the original list. If we change this statement’s syntax
      slightly, however, it has a radically different effect:
>>> L1 = [2, 3, 4]        # A mutable object
>>> L2 = L1               # Make a reference to the same object
>>> L1[0] = 24            # An in-place change

>>> L1                    # L1 is different
[24, 3, 4]
>>> L2                    # But so is L2!
[24, 3, 4]
Really, we haven’t changed L1
      itself here; we’ve changed a component of the
      object that L1
      references. This sort of change overwrites part of the list object’s
      value in place. Because the list object is shared by (referenced from)
      other variables, though, an in-place change like this doesn’t affect
      only L1—that is, you must be aware
      that when you make such changes, they can impact other parts of your
      program. In this example, the effect shows up in L2 as well because it references the same
      object as L1. Again, we haven’t
      actually changed L2, either, but its
      value will appear different because it refers to an object that has been
      overwritten in place.
This behavior only occurs for mutable objects that support
      in-place changes, and is usually what you want, but you should be aware
      of how it works, so that it’s expected. It’s also just the default: if
      you don’t want such behavior, you can request that Python
      copy objects instead of making references. There
      are a variety of ways to copy a list, including using the built-in
      list function and the standard
      library copy module. Perhaps the most
      common way is to slice from start to finish (see Chapter 4 and Chapter 7 for more on slicing):
>>> L1 = [2, 3, 4]
>>> L2 = L1[:]            # Make a copy of L1 (or list(L1), copy.copy(L1), etc.)
>>> L1[0] = 24

>>> L1
[24, 3, 4]
>>> L2                    # L2 is not changed
[2, 3, 4]
Here, the change made through L1 is not reflected in L2 because L2 references a copy of the object L1 references, not the original; that is, the
      two variables point to different pieces of memory.
Note that this slicing technique won’t work on the other major
      mutable core types, dictionaries and sets, because they are not
      sequences—to copy a dictionary or set, instead use their X.copy() method call (lists have one as of
      Python 3.3 as well), or pass the original object to their type names,
      dict and set. Also, note that the standard library
      copy module has a call for copying
      any object type generically, as well as a call for copying nested object
      structures—a dictionary with nested lists, for example:
import copy
X = copy.copy(Y)          # Make top-level "shallow" copy of any object Y
X = copy.deepcopy(Y)      # Make deep copy of any object Y: copy all nested parts
We’ll explore lists and dictionaries in more depth, and revisit
      the concept of shared references and copies, in Chapter 8 and Chapter 9. For now, keep in
      mind that objects that can be changed in place (that is, mutable
      objects) are always open to these kinds of effects in any code they pass
      through. In Python, this includes lists, dictionaries, sets, and some
      objects defined with class
      statements. If this is not the desired behavior, you can simply copy
      your objects as needed.

Shared References and Equality
In the interest of full disclosure, I should point out that the
      garbage-collection behavior described earlier in this chapter may be
      more conceptual than literal for certain types. Consider these
      statements:
>>> x = 42
>>> x = 'shrubbery'       # Reclaim 42 now?
Because Python caches and reuses small integers and small strings,
      as mentioned earlier, the object 42
      here is probably not literally reclaimed; instead, it will likely remain
      in a system table to be reused the next time you generate a 42 in your code. Most kinds of objects,
      though, are reclaimed immediately when they are no longer referenced;
      for those that are not, the caching mechanism is irrelevant to your
      code.
For instance, because of Python’s reference model, there are two
      different ways to check for equality in a Python program. Let’s create a
      shared reference to demonstrate:
>>> L = [1, 2, 3]
>>> M = L                 # M and L reference the same object
>>> L == M                # Same values
True
>>> L is M                # Same objects
True
The first technique here, the == operator, tests whether the two referenced
      objects have the same values; this is the method
      almost always used for equality checks in Python. The second method, the
      is operator, instead tests for object
      identity—it returns True only if both names point to the exact
      same object, so it is a much stronger form of equality testing and is
      rarely applied in most programs.
Really, is simply compares the
      pointers that implement references, and it serves as a way to detect
      shared references in your code if needed. It returns False if the names point to equivalent but
      different objects, as is the case when we run two different literal
      expressions:
>>> L = [1, 2, 3]
>>> M = [1, 2, 3]         # M and L reference different objects
>>> L == M                # Same values
True
>>> L is M                # Different objects
False
Now, watch what happens when we perform the same operations on
      small numbers:
>>> X = 42
>>> Y = 42                # Should be two different objects
>>> X == Y
True
>>> X is Y                # Same object anyhow: caching at work!
True
In this interaction, X and
      Y should be == (same value), but not is (same object) because we ran two different
      literal expressions (42). Because
      small integers and strings are cached and reused, though, is tells us they reference the same single
      object.
In fact, if you really want to look under the hood, you can always
      ask Python how many references there are to an object: the getrefcount function in the standard sys module returns the object’s reference
      count. When I ask about the integer object 1 in the IDLE GUI, for instance, it reports
      647 reuses of this same object (most of which are in IDLE’s system code,
      not mine, though this returns 173 outside IDLE so Python must be
      hoarding 1s as well):
>>> import sys
>>> sys.getrefcount(1)    # 647 pointers to this shared piece of memory
647
This object caching and reuse is irrelevant to your code (unless
      you run the is check!). Because you
      cannot change immutable numbers or strings in place, it doesn’t matter
      how many references there are to the same object—every reference will
      always see the same, unchanging value. Still, this behavior reflects one
      of the many ways Python optimizes its model for execution speed.


Dynamic Typing Is Everywhere
Of course, you don’t really need to draw name/object diagrams with circles and
    arrows to use Python. When you’re starting out, though, it sometimes helps
    you understand unusual cases if you can trace their reference structures
    as we’ve done here. If a mutable object changes out from under you when
    passed around your program, for example, chances are you are witnessing
    some of this chapter’s subject matter firsthand.
Moreover, even if dynamic typing seems a little abstract at this
    point, you probably will care about it eventually. Because
    everything seems to work by assignment and references
    in Python, a basic understanding of this model is useful in many different
    contexts. As you’ll see, it works the same in assignment statements,
    function arguments, for loop variables,
    module imports, class attributes, and more. The good news is that there is
    just one assignment model in Python; once you get a
    handle on dynamic typing, you’ll find that it works the same everywhere in
    the language.
At the most practical level, dynamic typing means there is less code
    for you to write. Just as importantly, though, dynamic typing is also the
    root of Python’s polymorphism, a concept we
    introduced in Chapter 4 and will
    revisit again later in this book. Because we do not constrain types in
    Python code, it is both concise and highly flexible. As you’ll see, when
    used well, dynamic typing—and the polymorphism it implies—produces code
    that automatically adapts to new requirements as your systems
    evolve.
“Weak” References
You may occasionally see the term “weak reference” in the Python world. This is
      a somewhat advanced tool, but is related to the reference model we’ve
      explored here, and like the is
      operator, can’t really be understood without it.
In short, a weak reference, implemented by the weakref standard
      library module, is a reference to an object that does not by itself
      prevent the referenced object from being garbage-collected. If the last
      remaining references to an object are weak references, the object is
      reclaimed and the weak references to it are automatically deleted (or
      otherwise notified).
This can be useful in dictionary-based caches of large objects,
      for example; otherwise, the cache’s reference alone would keep the
      object in memory indefinitely. Still, this is really just a special-case
      extension to the reference model. For more details, see Python’s library
      manual.


Chapter Summary
This chapter took a deeper look at Python’s dynamic typing
    model—that is, the way that Python keeps track of object types for us
    automatically, rather than requiring us to code declaration statements in
    our scripts. Along the way, we learned how variables and objects are
    associated by references in Python; we also explored the idea of garbage
    collection, learned how shared references to objects can affect multiple
    variables, and saw how references impact the notion of equality in
    Python.
Because there is just one assignment model in Python, and because
    assignment pops up everywhere in the language, it’s important that you
    have a handle on the model before moving on. The following quiz should
    help you review some of this chapter’s ideas. After that, we’ll resume our
    core object tour in the next chapter, with strings.

Test Your Knowledge: Quiz
	Consider the following three statements. Do they change the value
        printed for A?
A = "spam"
B = A
B = "shrubbery"

	Consider these three statements. Do they change the printed
        value of A?
A = ["spam"]
B = A
B[0] = "shrubbery"

	How about these—is A changed
        now?
A = ["spam"]
B = A[:]
B[0] = "shrubbery"



Test Your Knowledge: Answers
	No: A still prints as
        "spam". When B is assigned to the string "shrubbery", all that happens is that the
        variable B is reset to point to the
        new string object. A and B initially share (i.e., reference/point to)
        the same single string object "spam", but two names are never linked
        together in Python. Thus, setting B
        to a different object has no effect on A. The same would be true if the last
        statement here were B = B +
        'shrubbery', by the way—the concatenation would make a new
        object for its result, which would then be assigned to B only. We can never overwrite a string (or
        number, or tuple) in place, because strings are immutable.

	Yes: A now prints as ["shrubbery"]. Technically, we haven’t
        really changed either A or B; instead, we’ve changed part of the object
        they both reference (point to) by overwriting that object in place
        through the variable B. Because
        A references the same object as
        B, the update is reflected in
        A as well.

	No: A still prints as
        ["spam"]. The in-place assignment
        through B has no effect this time
        because the slice expression made a copy of the list object before it
        was assigned to B. After the second
        assignment statement, there are two different list objects that have
        the same value (in Python, we say they are ==, but not is). The third statement changes the value
        of the list object pointed to by B,
        but not that pointed to by A.



1 Readers with a background in C may find Python references
          similar to C pointers (memory addresses). In fact, references are
          implemented as pointers, and they often serve the same roles,
          especially with objects that can be changed in place (more on this
          later). However, because references are always automatically
          dereferenced when used, you can never actually do anything useful
          with a reference itself; this is a feature that eliminates a vast
          category of C bugs. But you can think of Python references as C
          “void*” pointers, which are automatically followed whenever
          used.








Chapter 7. String Fundamentals
So far, we’ve studied numbers and explored Python’s dynamic typing
  model. The next major type on our in-depth core object tour is the Python
  string—an ordered collection of characters used to store and represent text- and
  bytes-based information. We looked briefly at strings in Chapter 4. Here, we will revisit them in
  more depth, filling in some of the details we skipped earlier.
This Chapter’s Scope
Before we get started, I also want to clarify what we
    won’t be covering here. Chapter 4 briefly previewed
    Unicode strings and files—tools for dealing with
    non-ASCII text. Unicode is a key tool for some programmers, especially
    those who work in the Internet domain. It can pop up, for example, in web
    pages, email content and headers, FTP transfers, GUI APIs, directory
    tools, and HTML, XML and JSON text.
At the same time, Unicode can be a heavy topic for programmers just
    starting out, and many (or most) of the Python programmers I meet today
    still do their jobs in blissful ignorance of the entire topic. In light of
    that, this book relegates most of the Unicode story to Chapter 37 of its Advanced Topics part as
    optional reading, and focuses on string basics here.
That is, this chapter tells only part of the string story in
    Python—the part that most scripts use and most programmers need to know.
    It explores the fundamental str string
    type, which handles ASCII text, and works the same regardless of which
    version of Python you use. Despite this intentionally limited scope,
    because str also handles Unicode in
    Python 3.X, and the separate unicode
    type works almost identically to str in
    2.X, everything we learn here will apply directly to Unicode processing
    too.
Unicode: The Short Story
For readers who do care about Unicode, I’d like to also provide a quick summary of
      its impacts and pointers for further study. From a formal perspective,
      ASCII is a simple form of Unicode text, but just one of many possible
      encodings and alphabets. Text from non-English-speaking sources may use
      very different letters, and may be encoded very differently when stored
      in files.
As we saw in Chapter 4,
      Python addresses this by distinguishing between text and binary data,
      with distinct string object types and file interfaces for each. This
      support varies per Python line:
	In Python 3.X there are three string types: str is used for Unicode text (including
          ASCII), bytes is used for binary
          data (including encoded text), and bytearray is a mutable variant of bytes. Files
          work in two modes: text, which represents content as str and
          implements Unicode encodings, and binary, which
          deals in raw bytes and does no
          data translation.

	In Python 2.X, unicode strings represent Unicode text, str strings handle both 8-bit text and
          binary data, and bytearray is
          available in 2.6 and later as a back-port from 3.X. Normal files’
          content is simply bytes represented as str, but a codecs module opens Unicode text files,
          handles encodings, and represents content as unicode objects.


Despite such version differences, if and when you do need to care
      about Unicode you’ll find that it is a relatively minor extension—once
      text is in memory, it’s a Python string of characters that supports all
      the basics we’ll study in this chapter. In fact, the primary distinction
      of Unicode often lies in the translation (a.k.a.
      encoding) step required to move it to and from files. Beyond that, it’s
      largely just string processing.
Again, though, because most programmers don’t need to come to
      grips with Unicode details up front, I’ve moved most of the details to Chapter 37. When you’re ready to learn about
      these more advanced string concepts, I encourage you to see both their
      preview in Chapter 4 and the
      full Unicode and bytes disclosure in Chapter 37 after reading the string
      fundamentals material here.
For this chapter, we’ll focus on the basic string type and its
      operations. As you’ll find, the techniques we’ll study here also apply
      directly to the more advanced string types in Python’s toolset.


String Basics
From a functional perspective, strings can be used to represent just about
    anything that can be encoded as text or bytes. In the text department,
    this includes symbols and words (e.g., your name), contents of text files
    loaded into memory, Internet addresses, Python source code, and so on.
    Strings can also be used to hold the raw bytes used for media files and
    network transfers, and both the encoded and decoded forms of non-ASCII
    Unicode text used in internationalized programs.
You may have used strings in other languages, too. Python’s strings
    serve the same role as character arrays in languages such as C, but they
    are a somewhat higher-level tool than arrays. Unlike in C, in Python,
    strings come with a powerful set of processing tools. Also unlike
    languages such as C, Python has no distinct type for individual
    characters; instead, you just use one-character strings.
Strictly speaking, Python strings are categorized as immutable sequences,
    meaning that the characters they contain have a left-to-right positional
    order and that they cannot be changed in place. In fact, strings are the
    first representative of the larger class of objects called
    sequences that we will study here. Pay special
    attention to the sequence operations introduced in this chapter, because
    they will work the same on other sequence types we’ll explore later, such
    as lists and tuples.
Table 7-1 previews
    common string literals and operations we will discuss in this chapter.
    Empty strings are written as a pair of quotation marks (single or double)
    with nothing in between, and there are a variety of ways to code strings.
    For processing, strings support expression operations
    such as concatenation (combining strings), slicing (extracting sections),
    indexing (fetching by offset), and so on. Besides expressions, Python also
    provides a set of string methods that implement
    common string-specific tasks, as well as modules for
    more advanced text-processing tasks such as pattern matching. We’ll
    explore all of these later in the chapter.
Table 7-1. Common string literals and operations	Operation	Interpretation
	S = ''
	Empty string

	S = "spam's"
	Double quotes, same as
            single

	S = 's\np\ta\x00m'
	Escape sequences

	S = """...multiline..."""
	Triple-quoted block strings

	S = r'\temp\spam'
	Raw strings (no
            escapes)

	B = b'sp\xc4m'
	Byte strings in 2.6, 2.7,
            and 3.X (Chapter 4, Chapter 37)

	U = u'sp\u00c4m'
	Unicode strings in 2.X and
            3.3+ (Chapter 4, Chapter 37)

	S1 + S2
 S * 3
	Concatenate,
            repeat

	S[i]
 S[i:j]
 len(S)
	Index, slice,
            length

	"a %s parrot" % kind
	String formatting expression

	"a {0} parrot".format(kind)
	String formatting method in
            2.6, 2.7, and 3.X

	S.find('pa')
 S.rstrip()
 S.replace('pa', 'xx')

            S.split(',')

            S.isdigit()

            S.lower()

            S.endswith('spam')

            'spam'.join(strlist)

            S.encode('latin-1')

            B.decode('utf8')
	String methods (see ahead for all 43): search,

            remove whitespace,
 replacement,
 split on delimiter,
 content test,
 case conversion,
 end test,
 delimiter join,
 Unicode encoding,
 Unicode decoding, etc. (see Table 7-3)

	for x in S: print(x)

            'spam' in S

            [c * 2 for c in S]

            map(ord, S)
	Iteration,
            membership

	re.match('sp(.*)am', line)
	Pattern matching:
            library module


Beyond the core set of string tools in Table 7-1, Python also supports
    more advanced pattern-based string processing with the standard library’s
    re (for “regular expression”) module,
    introduced in Chapter 4 and Chapter 37, and even higher-level text
    processing tools such as XML parsers (discussed briefly in Chapter 37). This book’s scope, though, is
    focused on the fundamentals represented by Table 7-1.
To cover the basics, this chapter begins with an overview of string
    literal forms and string expressions, then moves on to look at more
    advanced tools such as string methods and formatting. Python comes with
    many string tools, and we won’t look at them all here; the complete story
    is chronicled in the Python library manual and reference books. Our goal
    here is to explore enough commonly used tools to give you a representative
    sample; methods we won’t see in action here, for example, are largely
    analogous to those we will.

String Literals
By and large, strings are fairly easy to use in Python. Perhaps the
    most complicated thing about them is that there are so many ways to write
    them in your code:
	Single quotes: 'spa"m'

	Double quotes: "spa'm"

	Triple quotes: '''... spam
        ...''', """... spam
        ..."""

	Escape sequences: "s\tp\na\0m"

	Raw strings: r"C:\new\test.spm"

	Bytes literals in 3.X and 2.6+ (see Chapter 4, Chapter 37): b'sp\x01am'

	Unicode literals in 2.X and 3.3+ (see Chapter 4, Chapter 37): u'eggs\u0020spam'


The single- and double-quoted forms are by far the most common; the
    others serve specialized roles, and we’re postponing further discussion of
    the last two advanced forms until Chapter 37. Let’s take a quick look at all the
    other options in turn.
Single- and Double-Quoted Strings Are the Same
Around Python strings, single- and double-quote characters are interchangeable.
      That is, string literals can be written enclosed in either two single or
      two double quotes—the two forms work the same and return the same type
      of object. For example, the following two strings are identical, once
      coded:
>>> 'shrubbery', "shrubbery"
('shrubbery', 'shrubbery')
The reason for supporting both is that it allows you to embed a
      quote character of the other variety inside a string without escaping it
      with a backslash. You may embed a single-quote character in a string
      enclosed in double-quote characters, and vice versa:
>>> 'knight"s', "knight's"
('knight"s', "knight's")
This book generally prefers to use single
      quotes around strings just because they are marginally easier to read,
      except in cases where a single quote is embedded in the string. This is
      a purely subjective style choice, but Python displays strings this way
      too and most Python programmers do the same today, so you probably
      should too.
Note that the comma is important here. Without it, Python
      automatically concatenates adjacent string literals
      in any expression, although it is almost as simple to add a + operator between them to invoke
      concatenation explicitly (as we’ll see in Chapter 12, wrapping this form in
      parentheses also allows it to span multiple lines):
>>> title = "Meaning " 'of' " Life"        # Implicit concatenation
>>> title
'Meaning of Life'
Adding commas between these strings would result in a tuple, not a
      string. Also notice in all of these outputs that Python prints strings
      in single quotes unless they embed one. If needed, you can also embed
      quote characters by escaping them with backslashes:
>>> 'knight\'s', "knight\"s"
("knight's", 'knight"s')
To understand why, you need to know how escapes work in
      general.

Escape Sequences Represent Special Characters
The last example embedded a quote inside a string by preceding it with a
      backslash. This is representative of a general pattern in strings:
      backslashes are used to introduce special character codings known as
      escape sequences.
Escape sequences let us embed characters in strings that cannot
      easily be typed on a keyboard. The character \, and one or more characters following it in
      the string literal, are replaced with a single
      character in the resulting string object, which has the binary value
      specified by the escape sequence. For example, here is a five-character
      string that embeds a newline and a tab:
>>> s = 'a\nb\tc'
The two characters \n stand for
      a single character—the binary value of the newline character in your
      character set (in ASCII, character code 10). Similarly, the sequence
      \t is replaced with the tab
      character. The way this string looks when printed depends on how you
      print it. The interactive echo shows the special characters as escapes,
      but print interprets them
      instead:
>>> s
'a\nb\tc'
>>> print(s)
a
b       c
To be completely sure how many actual characters are in this
      string, use the built-in len
      function—it returns the actual number of characters in a string,
      regardless of how it is coded or displayed:
>>> len(s)
5
This string is five characters long: it contains an ASCII
      a, a newline character, an ASCII b, and so
      on.
Note
If you’re accustomed to all-ASCII text, it’s tempting to think
        of this result as meaning 5 bytes too, but you
        probably shouldn’t. Really, “bytes” has no meaning in the Unicode
        world. For one thing, the string object is probably larger in memory
        in Python.
More critically, string content and length both reflect
        code points (identifying numbers) in
        Unicode-speak, where a single character does not necessarily map
        directly to a single byte, either when encoded in files or when stored
        in memory. This mapping might hold true for simple 7-bit ASCII text,
        but even this depends on both the external encoding type and the
        internal storage scheme used. Under UTF-16, for example, ASCII
        characters are multiple bytes in files, and they may be 1, 2, or 4
        bytes in memory depending on how Python allocates their space. For
        other, non-ASCII text, whose characters’ values might be too large to
        fit in an 8-bit byte, the character-to-byte mapping doesn’t apply at
        all.
In fact, 3.X defines str
        strings formally as sequences of Unicode code
        points, not bytes, to make this clear. There’s more on how
        strings are stored internally in Chapter 37 if you care to know. For now, to
        be safest, think characters instead of
        bytes in strings. Trust me on this; as an ex-C
        programmer, I had to break the habit too!

Note that the original backslash characters in the preceding
      result are not really stored with the string in memory; they are used
      only to describe special character values to be stored in the string.
      For coding such special characters, Python recognizes a full set of
      escape code sequences, listed in Table 7-2.
Table 7-2. String backslash characters	Escape	Meaning
	\newline
	Ignored (continuation
              line)

	\\
	Backslash (stores one
              \)

	\'
	Single quote (stores
              ')

	\"
	Double quote (stores
              ")

	\a
	Bell

	\b
	Backspace

	\f
	Formfeed

	\n
	Newline
              (linefeed)

	\r
	Carriage
              return

	\t
	Horizontal
              tab

	\v
	Vertical
              tab

	\xhh
	Character with hex value
              hh (exactly 2 digits)

	\ooo
	Character with octal
              value ooo (up to 3
              digits)

	\0
	Null: binary 0 character
              (doesn’t end string)

	\N{ id }
	Unicode database
              ID

	\uhhhh
	Unicode character with
              16-bit hex value

	\Uhhhhhhh
	Unicode character with
              32-bit hex valuea

	\other
	Not an escape (keeps both
              \ and
              other)

	a The \Uhhhh... escape sequence takes exactly
                  eight hexadecimal digits (h);
                  both \u and \U are recognized only in Unicode
                  string literals in 2.X, but can be used in normal strings
                  (which are Unicode) in 3.X. In a 3.X
                  bytes literal, hexadecimal and octal
                  escapes denote the byte with the given value; in a
                  string literal, these escapes denote a
                  Unicode character with the given code-point value. There is
                  more on Unicode escapes in Chapter 37.


Some escape sequences allow you to embed absolute binary values
      into the characters of a string. For instance, here’s a five-character
      string that embeds two characters with binary zero values (coded as
      octal escapes of one digit):
>>> s = 'a\0b\0c'
>>> s
'a\x00b\x00c'
>>> len(s)
5
In Python, a zero (null) character like this does not terminate a
      string the way a “null byte” typically does in C. Instead, Python keeps
      both the string’s length and text in memory. In fact,
      no character terminates a string in Python. Here’s
      a string that is all absolute binary escape codes—a binary 1 and 2
      (coded in octal), followed by a binary 3 (coded in hexadecimal):
>>> s = '\001\002\x03'
>>> s
'\x01\x02\x03'
>>> len(s)
3
Notice that Python displays nonprintable characters in hex,
      regardless of how they were specified. You can freely combine absolute
      value escapes and the more symbolic escape types in Table 7-2. The following string contains
      the characters “spam”, a tab and newline, and an absolute zero value
      character coded in hex:
>>> S = "s\tp\na\x00m"
>>> S
's\tp\na\x00m'
>>> len(S)
7
>>> print(S)
s       p
a m
This becomes more important to know when you process binary data files in Python. Because their contents are
      represented as strings in your scripts, it’s OK to process binary files
      that contain any sorts of binary byte values—when opened in binary
      modes, files return strings of raw bytes from the external file (there’s
      much more on files in Chapter 4, Chapter 9, and Chapter 37).
Finally, as the last entry in Table 7-2 implies, if Python does not
      recognize the character after a \ as
      being a valid escape code, it simply keeps the backslash in the
      resulting string:
>>> x = "C:\py\code"           # Keeps \ literally (and displays it as \\)
>>> x
'C:\\py\\code'
>>> len(x)
10
However, unless you’re able to commit all of Table 7-2 to memory (and there are
      arguably better uses for your neurons!), you probably shouldn’t rely on
      this behavior. To code literal backslashes explicitly such that they are
      retained in your strings, double them up (\\ is an escape for one \) or use raw strings; the next section shows
      how.

Raw Strings Suppress Escapes
As we’ve seen, escape sequences are handy for embedding special
      character codes within strings. Sometimes, though, the special treatment
      of backslashes for introducing escapes can lead to trouble. It’s
      surprisingly common, for instance, to see Python newcomers in classes
      trying to open a file with a filename argument that looks something like
      this:
myfile = open('C:\new\text.dat', 'w')
thinking that they will open a file called text.dat in the directory C:\new. The problem here is that \n is taken to stand for a newline character,
      and \t is replaced with a tab. In
      effect, the call tries to open a file named C:(newline)ew(tab)ext.dat, with usually
      less-than-stellar results.
This is just the sort of thing that raw strings are useful for. If
      the letter r (uppercase or lowercase) appears just
      before the opening quote of a string, it turns off the escape mechanism.
      The result is that Python retains your backslashes literally, exactly as
      you type them. Therefore, to fix the filename problem, just remember to
      add the letter r on Windows:
myfile = open(r'C:\new\text.dat', 'w')
Alternatively, because two backslashes are really an escape
      sequence for one backslash, you can keep your backslashes by simply
      doubling them up:
myfile = open('C:\\new\\text.dat', 'w')
In fact, Python itself sometimes uses this doubling scheme when it
      prints strings with embedded backslashes:
>>> path = r'C:\new\text.dat'
>>> path                          # Show as Python code
'C:\\new\\text.dat'
>>> print(path)                   # User-friendly format
C:\new\text.dat
>>> len(path)                     # String length
15
As with numeric representation, the default format at the
      interactive prompt prints results as if they were code, and therefore
      escapes backslashes in the output. The print statement provides a more user-friendly
      format that shows that there is actually only one backslash in each
      spot. To verify this is the case, you can check the result of the
      built-in len function, which returns the number of characters in the string,
      independent of display formats. If you count the characters in the
      print(path) output, you’ll see that
      there really is just 1 character per backslash, for a total of
      15.
Besides directory paths on Windows, raw strings are also commonly
      used for regular expressions (text pattern matching, supported with the
      re module introduced in Chapter 4 and Chapter 37). Also note that Python scripts
      can usually use forward slashes in directory paths
      on Windows and Unix because Python tries to interpret paths portably
      (i.e., 'C:/new/text.dat' works when
      opening files, too). Raw strings are useful if you code paths using
      native Windows backslashes, though.
Note
Despite its role, even a raw string cannot
        end in a single backslash, because the backslash
        escapes the following quote character—you still must escape the
        surrounding quote character to embed it in the string. That is,
        r"...\" is not a valid string
        literal—a raw string cannot end in an odd number of backslashes. If
        you need to end a raw string with a single backslash, you can use two
        and slice off the second (r'1\nb\tc\\'[:-1]), tack one on manually
        (r'1\nb\tc' + '\\'), or skip the
        raw string syntax and just double up the backslashes in a normal
        string ('1\\nb\\tc\\'). All three
        of these forms create the same eight-character string containing three
        backslashes.


Triple Quotes Code Multiline Block Strings
So far, you’ve seen single quotes, double quotes, escapes, and raw strings in
      action. Python also has a triple-quoted string literal format, sometimes
      called a block string, that is a syntactic
      convenience for coding multiline text data. This form begins with three
      quotes (of either the single or double variety), is followed by any
      number of lines of text, and is closed with the same triple-quote
      sequence that opened it. Single and double quotes embedded in the
      string’s text may be, but do not have to be, escaped—the string does not
      end until Python sees three unescaped quotes of the same kind used to
      start the literal. For example (the “...” here is Python’s prompt for
      continuation lines outside IDLE: don’t type it yourself):
>>> mantra = """Always look
...   on the bright
... side of life."""
>>>
>>> mantra
'Always look\n  on the bright\nside of life.'
This string spans three lines. As we learned in Chapter 3, in some interfaces, the interactive
      prompt changes to ... on continuation
      lines like this, but IDLE simply drops down one line; this book shows listings
      in both forms, so extrapolate as needed. Either way, Python collects all
      the triple-quoted text into a single multiline string, with embedded
      newline characters (\n) at the places
      where your code has line breaks. Notice that, as in the literal, the
      second line in the result has leading spaces, but the third does
      not—what you type is truly what you get. To see the string with the
      newlines interpreted, print it instead of echoing:
>>> print(mantra)
Always look
  on the bright
side of life.
In fact, triple-quoted strings will retain all the enclosed text,
      including any to the right of your code that you might intend as
      comments. So don’t do this—put your comments above
      or below the quoted text, or use the automatic concatenation of adjacent
      strings mentioned earlier, with explicit newlines if desired, and
      surrounding parentheses to allow line spans (again, more on this latter
      form when we study syntax rules in Chapter 10 and Chapter 12):
>>> menu = """spam     # comments here added to string!
... eggs               # ditto
... """
>>> menu
'spam     # comments here added to string!\neggs               # ditto\n'

>>> menu = (
... "spam\n"           # comments here ignored
... "eggs\n"           # but newlines not automatic
... )
>>> menu
'spam\neggs\n'
Triple-quoted strings are useful anytime you need
      multiline text in your program; for example, to
      embed multiline error messages or HTML, XML, or JSON code in your Python
      source code files. You can embed such blocks directly in your scripts by
      triple-quoting without resorting to external text files or explicit
      concatenation and newline characters.
Triple-quoted strings are also commonly used for
      documentation strings, which are string literals that are taken as comments when
      they appear at specific points in your file (more on these later in the
      book). These don’t have to be triple-quoted blocks, but they usually are
      to allow for multiline comments.
Finally, triple-quoted strings are also sometimes used as a
      “horribly hackish” way to temporarily disable lines
      of code during development (OK, it’s not really too horrible, and it’s
      actually a fairly common practice today, but it wasn’t the intent). If
      you wish to turn off a few lines of code and run your script again,
      simply put three quotes above and below them, like this:
X = 1
"""
import os                            # Disable this code temporarily
print(os.getcwd())
"""
Y = 2
I said this was hackish because Python really might make a string
      out of the lines of code disabled this way, but this is probably not
      significant in terms of performance. For large sections of code, it’s
      also easier than manually adding hash marks before each line and later
      removing them. This is especially true if you are using a text editor
      that does not have support for editing Python code specifically. In
      Python, practicality often beats aesthetics.


Strings in Action
Once you’ve created a string with the literal expressions we just
    met, you will almost certainly want to do things with it. This section and
    the next two demonstrate string expressions, methods, and formatting—the
    first line of text-processing tools in the Python language.
Basic Operations
Let’s begin by interacting with the Python interpreter to
      illustrate the basic string operations listed earlier in Table 7-1. You can concatenate
      strings using the + operator
      and repeat them using the *
      operator:
% python
>>> len('abc')            # Length: number of items
3
>>> 'abc' + 'def'         # Concatenation: a new string
'abcdef'
>>> 'Ni!' * 4             # Repetition: like "Ni!" + "Ni!" + ...
'Ni!Ni!Ni!Ni!'
The len built-in function
      here returns the length of a string (or any other object
      with a length). Formally, adding two string objects with + creates a new string object, with the
      contents of its operands joined, and repetition with * is like adding a string to itself a number
      of times. In both cases, Python lets you create arbitrarily sized
      strings; there’s no need to predeclare anything in Python, including the
      sizes of data structures—you simply create string objects as needed and
      let Python manage the underlying memory space automatically (see Chapter 6 for more on Python’s memory
      management “garbage collector”).
Repetition may seem a bit obscure at first, but it comes in handy
      in a surprising number of contexts. For example, to print a line of 80
      dashes, you can count up to 80, or let Python count for you:
>>> print('------- ...more... ---')      # 80 dashes, the hard way
>>> print('-' * 80)                      # 80 dashes, the easy way
Notice that operator overloading is at work here already: we’re
      using the same + and * operators that perform addition and
      multiplication when using numbers. Python does the correct operation
      because it knows the types of the objects being added and multiplied.
      But be careful: the rules aren’t quite as liberal as you might expect.
      For instance, Python doesn’t allow you to mix numbers and strings in
      + expressions: 'abc'+9 raises an error instead of
      automatically converting 9 to a
      string.
As shown near the end of Table 7-1, you can also iterate
      over strings in loops using for
      statements, which repeat actions, and test membership for both
      characters and substrings with the in
      expression operator, which is essentially a search. For substrings,
      in is much like the str.find() method covered later in this chapter, but it returns a Boolean
      result instead of the substring’s position (the following uses a 3.X
      print call and may leave your cursor
      a bit indented; in 2.X say print c,
      instead):
>>> myjob = "hacker"
>>> for c in myjob: print(c, end=' ')   # Step through items, print each (3.X form)
...
h a c k e r
>>> "k" in myjob                        # Found
True
>>> "z" in myjob                        # Not found
False
>>> 'spam' in 'abcspamdef'              # Substring search, no position returned
True
The for loop assigns a variable
      to successive items in a sequence (here, a string) and executes one or
      more statements for each item. In effect, the variable c becomes a cursor stepping across the
      string’s characters here. We will discuss iteration tools like these and
      others listed in Table 7-1 in more detail later
      in this book (especially in Chapter 14 and Chapter 20).

Indexing and Slicing
Because strings are defined as ordered collections of characters, we can
      access their components by position. In Python, characters in a string
      are fetched by indexing—providing the numeric
      offset of the desired component in square brackets after the string. You
      get back the one-character string at the specified position.
As in the C language, Python offsets start at 0 and end at one
      less than the length of the string. Unlike C, however, Python also lets
      you fetch items from sequences such as strings using
      negative offsets. Technically, a negative offset is
      added to the length of a string to derive a positive offset. You can
      also think of negative offsets as counting backward from the end. The
      following interaction demonstrates:
>>> S = 'spam'
>>> S[0], S[−2]                         # Indexing from front or end
('s', 'a')
>>> S[1:3], S[1:], S[:−1]               # Slicing: extract a section
('pa', 'pam', 'spa')
The first line defines a four-character string and assigns it the
      name S. The next line indexes it in
      two ways: S[0] fetches the item at
      offset 0 from the left—the one-character string 's'; S[−2]
      gets the item at offset 2 back from the end—or equivalently, at offset
      (4 + (−2)) from the front. In more graphic terms, offsets and slices map
      to cells as shown in Figure 7-1.1
Figure 7-1. Offsets and slices: positive offsets start from the left end
        (offset 0 is the first item), and negatives count back from the right
        end (offset −1 is the last item). Either kind of offset can be used to
        give positions in indexing and slicing operations.

The last line in the preceding example demonstrates
      slicing, a generalized form of indexing that
      returns an entire section, not a single item.
      Probably the best way to think of slicing is that it is a type of
      parsing (analyzing structure), especially when
      applied to strings—it allows us to extract an entire
      section (substring) in a single step. Slices can be
      used to extract columns of data, chop off leading and trailing text, and
      more. In fact, we’ll explore slicing in the context of text parsing
      later in this chapter.
The basics of slicing are straightforward. When you index a
      sequence object such as a string on a pair of offsets separated by a
      colon, Python returns a new object containing the contiguous section
      identified by the offset pair. The left offset is taken to be the lower
      bound (inclusive), and the right is the upper bound
      (noninclusive). That is, Python fetches all items
      from the lower bound up to but not including the upper bound, and
      returns a new object containing the fetched items. If omitted, the left
      and right bounds default to 0 and the length of the object you are
      slicing, respectively.
For instance, in the example we just saw, S[1:3] extracts the items at offsets 1 and 2:
      it grabs the second and third items, and stops before the fourth item at
      offset 3. Next, S[1:] gets
      all items beyond the first—the upper bound, which
      is not specified, defaults to the length of the string. Finally,
      S[:−1] fetches all but the
      last item—the lower bound defaults to 0, and −1 refers to the
      last item, noninclusive.
This may seem confusing at first glance, but indexing and slicing
      are simple and powerful tools to use, once you get the knack. Remember,
      if you’re unsure about the effects of a slice, try it out interactively.
      In the next chapter, you’ll see that it’s even possible to change an
      entire section of another object in one step by assigning to a slice
      (though not for immutables like strings). Here’s a summary of the
      details for reference:
	Indexing (S[i]) fetches components at offsets:
		The first item is at offset 0.

	Negative indexes mean to count backward from the end or
                right.

	S[0] fetches the
                first item.

	S[−2] fetches the
                second item from the end (like S[len(S)−2]).



	Slicing (S[i:j]) extracts contiguous sections of
          sequences:
		The upper bound is noninclusive.

	Slice boundaries default to 0 and the sequence length,
                if omitted.

	S[1:3] fetches items
                at offsets 1 up to but not including 3.

	S[1:] fetches items
                at offset 1 through the end (the sequence length).

	S[:3] fetches items
                at offset 0 up to but not including 3.

	S[:−1] fetches items
                at offset 0 up to but not including the last item.

	S[:] fetches items at
                offsets 0 through the end—making a top-level copy of S.



	Extended slicing (S[i:j:k]) accepts a step (or stride) k, which defaults to +1:
		Allows for skipping items and reversing order—see the
                next section.




The second-to-last bullet item listed here turns out to be a very
      common technique: it makes a full top-level copy of
      a sequence object—an object with the same value, but a distinct piece of
      memory (you’ll find more on copies in Chapter 9). This isn’t very
      useful for immutable objects like strings, but it comes in handy for
      objects that may be changed in place, such as lists.
In the next chapter, you’ll see that the syntax used to index by
      offset (square brackets) is used to index dictionaries by key as well;
      the operations look the same but have different interpretations.
Extended slicing: The third limit and slice objects
In Python 2.3 and later, slice expressions have support for an
        optional third index, used as a step (sometimes called a
        stride). The step is added to the index of each
        item extracted. The full-blown form of a slice is now X[I:J:K], which means “extract all the items in
        X, from offset
        I through J−1,
        by K.” The third limit,
        K, defaults to +1, which is why normally all
        items in a slice are extracted from left to right. If you specify an
        explicit value, however, you can use the third limit to skip items or
        to reverse their order.
For instance, X[1:10:2] will
        fetch every other item in X from offsets 1–9; that is, it will collect
        the items at offsets 1, 3, 5, 7, and 9. As usual, the first and second
        limits default to 0 and the length of the sequence, respectively, so
        X[::2] gets every other item from
        the beginning to the end of the sequence:
>>> S = 'abcdefghijklmnop'
>>> S[1:10:2]                          # Skipping items
'bdfhj'
>>> S[::2]
'acegikmo'
You can also use a negative stride to collect items in the
        opposite order. For example, the slicing expression "hello"[::−1] returns the new string
        "olleh"—the first two bounds effectively default to sequence length–1 and –1 (they really default to None and None, but that’s unimportant here), and a stride
        of −1 indicates that the slice should go from right to left instead of
        the usual left to right. The effect, therefore, is to
        reverse the sequence:
>>> S = 'hello'
>>> S[::−1]                            # Reversing items
'olleh'
With a negative stride, the meanings of the first two bounds are
        essentially reversed. That is, the slice S[5:1:−1] fetches the items from 2 to 5, in
        reverse order (the result contains items from offsets 5, 4, 3, and
        2):
>>> S = 'abcedfg'
>>> S[5:1:−1]                          # Bounds roles differ
'fdec'
Skipping and reversing like this are the most common use cases
        for three-limit slices, but see Python’s standard library manual for
        more details (or run a few experiments interactively). We’ll revisit
        three-limit slices again later in this book, in conjunction with the
        for loop statement.
Later in the book, we’ll also learn that slicing is equivalent
        to indexing with a slice object, a finding of
        importance to class writers seeking to support both operations:
>>> 'spam'[1:3]                        # Slicing syntax
'pa'
>>> 'spam'[slice(1, 3)]                # Slice objects with index syntax + object
'pa'
>>> 'spam'[::-1]
'maps'
>>> 'spam'[slice(None, None, −1)]
'maps'
Why You Will Care: Slices
Throughout this book, I will include common use-case sidebars
          (such as this one) to give you a peek at how some of the language
          features being introduced are typically used in real programs.
          Because you won’t be able to make much sense of realistic use cases
          until you’ve seen more of the Python picture, these sidebars
          necessarily contain many references to topics not introduced yet; at
          most, you should consider them previews of ways that you may find
          these abstract language concepts useful for common programming
          tasks.
For instance, you’ll see later that the argument words listed
          on a system command line used to launch a Python program are made
          available in the argv attribute
          of the built-in sys
          module:
# File echo.py
import sys
print(sys.argv)

% python echo.py −a −b −c
['echo.py', '−a', '−b', '−c']
Usually, you’re only interested in inspecting the arguments
          that follow the program name. This leads to a typical application of
          slices: a single slice expression can be used to return all but the
          first item of a list. Here, sys.argv[1:] returns the desired list,
          ['−a', '−b', '−c']. You can then
          process this list without having to accommodate the program name at
          the front.
Slices are also often used to clean up lines read from input
          files. If you know that a line will have an end-of-line character at
          the end (a \n newline marker),
          you can get rid of it with a single expression such as line[:−1], which extracts all but the last
          character in the line (the lower limit defaults to 0). In both
          cases, slices do the job of logic that must be explicit in a
          lower-level language.
Having said that, calling the line.rstrip
          method is often preferred for stripping newline characters because
          this call leaves the line intact if it has no newline character at
          the end—a common case for files created with some text-editing
          tools. Slicing works if you’re sure the line is properly
          terminated.



String Conversion Tools
One of Python’s design mottos is that it refuses the temptation to guess.
      As a prime example, you cannot add a number and a string together in
      Python, even if the string looks like a number (i.e., is all
      digits):
# Python 3.X
>>> "42" + 1
TypeError: Can't convert 'int' object to str implicitly

# Python 2.X
>>> "42" + 1
TypeError: cannot concatenate 'str' and 'int' objects
This is by design: because +
      can mean both addition and concatenation, the choice of conversion would
      be ambiguous. Instead, Python treats this as an error. In Python, magic
      is generally omitted if it will make your life more complex.
What to do, then, if your script obtains a number as a text string
      from a file or user interface? The trick is that you need to employ
      conversion tools before you can treat a string like a number, or vice
      versa. For instance:
>>> int("42"), str(42)          # Convert from/to string
(42, '42')
>>> repr(42)                    # Convert to as-code string
'42'
The int function converts a string to a number, and the str function
      converts a number to its string representation (essentially, what it
      looks like when printed). The repr
      function (and the older backquotes expression, removed in Python
      3.X) also converts an object to its string representation, but returns
      the object as a string of code that can be rerun to recreate the object.
      For strings, the result has quotes around it if displayed with a
      print statement, which differs in
      form between Python lines:
>>> print(str('spam'), repr('spam'))       # 2.X: print str('spam'), repr('spam')
spam 'spam'
>>> str('spam'), repr('spam')              # Raw interactive echo displays
('spam', "'spam'")
See the sidebar in Chapter 5’s “str and repr Display Formats” for more on these topics. Of
      these, int and str are the generally prescribed to-number and
      to-string conversion techniques.
Now, although you can’t mix strings and number types around
      operators such as +, you can manually
      convert operands before that operation if needed:
>>> S = "42"
>>> I = 1
>>> S + I
TypeError: Can't convert 'int' object to str implicitly

>>> int(S) + I            # Force addition
43

>>> S + str(I)            # Force concatenation
'421'
Similar built-in functions handle floating-point-number
      conversions to and from strings:
>>> str(3.1415), float("1.5")
('3.1415', 1.5)

>>> text = "1.234E-10"
>>> float(text)           # Shows more digits before 2.7 and 3.1
1.234e-10
Later, we’ll further study the built-in eval function; it runs a string containing Python expression code and so can
      convert a string to any kind of object. The functions int and float convert only to numbers, but this restriction means they are
      usually faster (and more secure, because they do not accept arbitrary
      expression code). As we saw briefly in Chapter 5,
      the string formatting expression also provides a way to convert numbers
      to strings. We’ll discuss formatting further later in this
      chapter.
Character code conversions
On the subject of conversions, it is also possible to convert a single character to its
        underlying integer code (e.g., its ASCII byte value) by passing it to
        the built-in ord
        function—this returns the actual numeric value used to represent the
        corresponding character in memory. The chr function performs the inverse operation, taking an integer code
        and converting it to the corresponding character:
>>> ord('s')
115
>>> chr(115)
's'
Technically, both of these convert characters to and from their Unicode ordinals or
        “code points,” which are just their identifying number in the
        underlying character set. For ASCII text, this is the familiar 7-bit integer that fits
        in a single byte in memory, but the range of code points for other
        kinds of Unicode text may be wider (more on character sets and Unicode
        in Chapter 37). You can use a loop to
        apply these functions to all characters in a string if required. These
        tools can also be used to perform a sort of string-based math. To
        advance to the next character, for example, convert and do the math in
        integer:
>>> S = '5'
>>> S = chr(ord(S) + 1)
>>> S
'6'
>>> S = chr(ord(S) + 1)
>>> S
'7'
At least for single-character strings, this provides an
        alternative to using the built-in int function to convert from string to integer (though this only
        makes sense in character sets that order items as your code
        expects!):
>>> int('5')
5
>>> ord('5') - ord('0')
5
Such conversions can be used in conjunction with looping
        statements, introduced in Chapter 4 and covered in depth in
        the next part of this book, to convert a string of binary digits to
        their corresponding integer values. Each time through the loop,
        multiply the current value by 2 and add the next digit’s integer
        value:
>>> B = '1101'                 # Convert binary digits to integer with ord
>>> I = 0
>>> while B != '':
...     I = I * 2 + (ord(B[0]) - ord('0'))
...     B = B[1:]
...
>>> I
13
A left-shift operation (I <<
        1) would have the same effect as multiplying by 2 here. We’ll leave
        this change as a suggested exercise, though, both because we haven’t
        studied loops in detail yet and because the int and bin built-ins we met in Chapter 5 handle binary
        conversion tasks for us as of Python 2.6 and 3.0:
>>> int('1101', 2)             # Convert binary to integer: built-in
13
>>> bin(13)                    # Convert integer to binary: built-in
'0b1101'
Given enough time, Python tends to automate most common
        tasks!


Changing Strings I
Remember the term “immutable sequence”? As we’ve seen, the immutable part means that you
      cannot change a string in place—for instance, by assigning to an
      index:
>>> S = 'spam'
>>> S[0] = 'x'                 # Raises an error!
TypeError: 'str' object does not support item assignment
How to modify text information in Python, then? To change a
      string, you generally need to build and assign a new string using tools
      such as concatenation and slicing, and then, if desired, assign the
      result back to the string’s original name:
>>> S = S + 'SPAM!'            # To change a string, make a new one
>>> S
'spamSPAM!'
>>> S = S[:4] + 'Burger' + S[−1]
>>> S
'spamBurger!'
The first example adds a substring at the end of S, by concatenation. Really, it makes a new
      string and assigns it back to S, but
      you can think of this as “changing” the original string. The second
      example replaces four characters with six by slicing, indexing, and
      concatenating. As you’ll see in the next section, you can achieve
      similar effects with string method calls like replace:
>>> S = 'splot'
>>> S = S.replace('pl', 'pamal')
>>> S
'spamalot'
Like every operation that yields a new string value, string
      methods generate new string objects. If you want to retain those
      objects, you can assign them to variable names. Generating a new string
      object for each string change is not as inefficient as it may
      sound—remember, as discussed in the preceding chapter, Python
      automatically garbage-collects (reclaims the space of) old unused string
      objects as you go, so newer objects reuse the space held by prior
      values. Python is usually more efficient than you might expect.
Finally, it’s also possible to build up new text values with
      string formatting expressions. Both of the following substitute objects
      into a string, in a sense converting the objects to strings and changing
      the original string according to a format specification:
>>> 'That is %d %s bird!' % (1, 'dead')           # Format expression: all Pythons
That is 1 dead bird!
>>> 'That is {0} {1} bird!'.format(1, 'dead')     # Format method in 2.6, 2.7, 3.X
'That is 1 dead bird!'
Despite the substitution metaphor, though, the result of
      formatting is a new string object, not a modified one. We’ll study
      formatting later in this chapter; as we’ll find, formatting turns out to
      be more general and useful than this example implies. Because the second
      of the preceding calls is provided as a method, though, let’s get a
      handle on string method calls before we explore formatting further.
Note
As previewed in Chapter 4 and to be covered in
        Chapter 37, Python 3.0 and 2.6
        introduced a new string type known as bytearray, which is
        mutable and so may be changed in place. bytearray objects aren’t really text
        strings; they’re sequences of small, 8-bit integers. However, they
        support most of the same operations as normal strings and print as
        ASCII characters when displayed. Accordingly, they provide another
        option for large amounts of simple 8-bit text that must be changed
        frequently (richer types of Unicode text imply different techniques).
        In Chapter 37 we’ll also see that
        ord and chr handle Unicode characters, too, which
        might not be stored in single bytes.



String Methods
In addition to expression operators, strings provide a set of
    methods that implement more sophisticated
    text-processing tasks. In Python, expressions and built-in functions may
    work across a range of types, but methods are generally specific
    to object types—string methods, for example, work only on
    string objects. The method sets of some types intersect in Python 3.X
    (e.g., many types have count and
    copy methods), but they are still more
    type-specific than other tools.
Method Call Syntax
As introduced in Chapter 4, methods are simply
      functions that are associated with and act upon particular objects.
      Technically, they are attributes attached to objects that happen to
      reference callable functions which always have an implied subject. In
      finer-grained detail, functions are packages of code, and method calls
      combine two operations at once—an attribute fetch and a call:
	Attribute fetches
	An expression of the form object.attribute
            means “fetch the value of attribute in
            object.”

	Call expressions
	An expression of the form function(arguments) means “invoke the code of
            function, passing zero or more
            comma-separated argument
            objects to it, and return function’s
            result value.”


Putting these two together allows us to call a method of an
      object. The method call expression:
object.method(arguments)
is evaluated from left to right—Python will first fetch the
      method of the
      object and then call it, passing in both
      object and the
      arguments. Or, in plain words, the method
      call expression means this:
Call method to process object with arguments.
If the method computes a result, it will also come back as the
      result of the entire method-call expression. As a more tangible
      example:
>>> S = 'spam'
>>> result = S.find('pa')     # Call the find method to look for 'pa' in string S
This mapping holds true for methods of both built-in types, as
      well as user-defined classes we’ll study later. As you’ll see throughout
      this part of the book, most objects have callable methods, and all are
      accessed using this same method-call syntax. To call an object method,
      as you’ll see in the following sections, you have to go through an
      existing object; methods cannot be run (and make little sense) without a
      subject.

Methods of Strings
Table 7-3 summarizes
      the methods and call patterns for built-in string objects in Python 3.3;
      these change frequently, so be sure to check Python’s standard library
      manual for the most up-to-date list, or run a dir or help
      call on any string (or the str type
      name) interactively. Python 2.X’s string methods vary slightly; it
      includes a decode, for example,
      because of its different handling of Unicode data (something we’ll
      discuss in Chapter 37). In this table,
      S is a string object, and optional
      arguments are enclosed in square brackets. String methods in this table
      implement higher-level operations such as splitting and joining, case
      conversions, content tests, and substring searches and
      replacements.
Table 7-3. String method calls in Python 3.3	S.capitalize()
	S.ljust(width [, fill])

	S.casefold()
	S.lower()

	S.center(width [, fill])
	S.lstrip([chars])

	S.count(sub [, start [, end]])
	S.maketrans(x[, y[, z]])

	S.encode([encoding [,errors]])
	S.partition(sep)

	S.endswith(suffix [, start [, end]])
	S.replace(old, new [, count])

	S.expandtabs([tabsize])
	S.rfind(sub [,start [,end]])

	S.find(sub [, start [, end]])
	S.rindex(sub [, start [, end]])

	S.format(fmtstr, *args, **kwargs)
	S.rjust(width [, fill])

	S.index(sub [, start [, end]])
	S.rpartition(sep)

	S.isalnum()
	S.rsplit([sep[, maxsplit]])

	S.isalpha()
	S.rstrip([chars])

	S.isdecimal()
	S.split([sep [,maxsplit]])

	S.isdigit()
	S.splitlines([keepends])

	S.isidentifier()
	S.startswith(prefix [, start [, end]])

	S.islower()
	S.strip([chars])

	S.isnumeric()
	S.swapcase()

	S.isprintable()
	S.title()

	S.isspace()
	S.translate(map)

	S.istitle()
	S.upper()

	S.isupper()
	S.zfill(width)

	S.join(iterable)
	

As you can see, there are quite a few string methods, and we don’t
      have space to cover them all; see Python’s library manual or reference
      texts for all the fine points. To help you get started, though, let’s
      work through some code that demonstrates some of the most commonly used
      methods in action, and illustrates Python text-processing basics along
      the way.

String Method Examples: Changing Strings II
As we’ve seen, because strings are immutable, they cannot be changed in place
      directly. The bytearray supports
      in-place text changes in 2.6, 3.0, and later, but only for simple 8-bit
      types. We explored changes to text strings earlier, but let’s take a
      quick second look here in the context of string methods.
In general, to make a new text value from an existing string, you
      construct a new string with operations such as slicing and
      concatenation. For example, to replace two characters in the middle of a
      string, you can use code like this:
>>> S = 'spammy'
>>> S = S[:3] + 'xx' + S[5:]          # Slice sections from S
>>> S
'spaxxy'
But, if you’re really just out to replace a substring, you can use
      the string replace method
      instead:
>>> S = 'spammy'
>>> S = S.replace('mm', 'xx')         # Replace all mm with xx in S
>>> S
'spaxxy'
The replace method is more
      general than this code implies. It takes as arguments the original
      substring (of any length) and the string (of any length) to replace it
      with, and performs a global search and replace:
>>> 'aa$bb$cc$dd'.replace('$', 'SPAM')
'aaSPAMbbSPAMccSPAMdd'
In such a role, replace can be
      used as a tool to implement template replacements (e.g., in form
      letters). Notice that this time we simply printed the result, instead of
      assigning it to a name—you need to assign results to names only if you
      want to retain them for later use.
If you need to replace one fixed-size string that can occur at any
      offset, you can do a replacement again, or search for the substring with
      the string find method and then slice:
>>> S = 'xxxxSPAMxxxxSPAMxxxx'
>>> where = S.find('SPAM')            # Search for position
>>> where                             # Occurs at offset 4
4
>>> S = S[:where] + 'EGGS' + S[(where+4):]
>>> S
'xxxxEGGSxxxxSPAMxxxx'
The find method returns the
      offset where the substring appears (by default, searching from the
      front), or −1 if it is not found. As
      we saw earlier, it’s a substring search operation just like the in expression, but find returns the position of a located
      substring.
Another option is to use replace with a third argument to limit it to a
      single substitution:
>>> S = 'xxxxSPAMxxxxSPAMxxxx'
>>> S.replace('SPAM', 'EGGS')         # Replace all
'xxxxEGGSxxxxEGGSxxxx'

>>> S.replace('SPAM', 'EGGS', 1)      # Replace one
'xxxxEGGSxxxxSPAMxxxx'
Notice that replace returns a
      new string object each time. Because strings are immutable, methods
      never really change the subject strings in place, even if they are
      called “replace”!
The fact that concatenation operations and the replace method generate new string objects
      each time they are run is actually a potential downside of using them to
      change strings. If you have to apply many changes to a very large
      string, you might be able to improve your script’s performance by
      converting the string to an object that does support in-place
      changes:
>>> S = 'spammy'
>>> L = list(S)
>>> L
['s', 'p', 'a', 'm', 'm', 'y']
The built-in list function
      (an object construction call) builds a new list out of the
      items in any sequence—in this case, “exploding” the characters of a
      string into a list. Once the string is in this form, you can make
      multiple changes to it without generating a new copy for each
      change:
>>> L[3] = 'x'                        # Works for lists, not strings
>>> L[4] = 'x'
>>> L
['s', 'p', 'a', 'x', 'x', 'y']
If, after your changes, you need to convert back to a string
      (e.g., to write to a file), use the string join method to
      “implode” the list back into a string:
>>> S = ''.join(L)
>>> S
'spaxxy'
The join method may look a bit
      backward at first sight. Because it is a method of strings (not of
      lists), it is called through the desired delimiter. join puts the strings in a list (or other
      iterable) together, with the delimiter between list items; in this case,
      it uses an empty string delimiter to convert from a list back to a
      string. More generally, any string delimiter and iterable of strings
      will do:
>>> 'SPAM'.join(['eggs', 'sausage', 'ham', 'toast'])
'eggsSPAMsausageSPAMhamSPAMtoast'
In fact, joining substrings all at once might often run faster
      than concatenating them individually. Be sure to also see the earlier
      note about the mutable bytearray
      string available as of Python 3.0 and 2.6, described fully in Chapter 37; because it may be changed in
      place, it offers an alternative to this list/join
      combination for some kinds of 8-bit text that must be changed often.

String Method Examples: Parsing Text
Another common role for string methods is as a simple form of text
      parsing—that is, analyzing structure and extracting
      substrings. To extract substrings at fixed offsets, we can employ
      slicing techniques:
>>> line = 'aaa bbb ccc'
>>> col1 = line[0:3]
>>> col3 = line[8:]
>>> col1
'aaa'
>>> col3
'ccc'
Here, the columns of data appear at fixed offsets and so may be
      sliced out of the original string. This technique passes for parsing, as
      long as the components of your data have fixed positions. If instead
      some sort of delimiter separates the data, you can pull out its
      components by splitting. This will work even if the data may show up at
      arbitrary positions within the string:
>>> line = 'aaa bbb  ccc'
>>> cols = line.split()
>>> cols
['aaa', 'bbb', 'ccc']
The string split method
      chops up a string into a list of substrings, around a
      delimiter string. We didn’t pass a delimiter in the prior example, so it
      defaults to whitespace—the string is split at groups of one or more
      spaces, tabs, and newlines, and we get back a list of the resulting
      substrings. In other applications, more tangible delimiters may separate
      the data. This example splits (and hence parses) the string at commas, a
      separator common in data returned by some database tools:
>>> line = 'bob,hacker,40'
>>> line.split(',')
['bob', 'hacker', '40']
Delimiters can be longer than a single character, too:
>>> line = "i'mSPAMaSPAMlumberjack"
>>> line.split("SPAM")
["i'm", 'a', 'lumberjack']
Although there are limits to the parsing potential of slicing and
      splitting, both run very fast and can handle basic text-extraction
      chores. Comma-separated text data is part of the CSV file format; for more advanced tools on this front,
      see also the csv module in
      Python’s standard library.

Other Common String Methods in Action
Other string methods have more focused roles—for example, to strip
      off whitespace at the end of a line of text, perform case conversions,
      test content, and test for a substring at the end or front:
>>> line = "The knights who say Ni!\n"
>>> line.rstrip()
'The knights who say Ni!'
>>> line.upper()
'THE KNIGHTS WHO SAY NI!\n'
>>> line.isalpha()
False
>>> line.endswith('Ni!\n')
True
>>> line.startswith('The')
True
Alternative techniques can also sometimes be used to achieve the same results as
      string methods—the in membership
      operator can be used to test for the presence of a substring, for
      instance, and length and slicing operations can be used to mimic
      endswith:
>>> line
'The knights who say Ni!\n'

>>> line.find('Ni') != −1       # Search via method call or expression
True
>>> 'Ni' in line
True

>>> sub = 'Ni!\n'
>>> line.endswith(sub)          # End test via method call or slice
True
>>> line[-len(sub):] == sub
True
See also the format string
      formatting method described later in this chapter; it provides more
      advanced substitution tools that combine many operations in a single
      step.
Again, because there are so many methods available for strings, we
      won’t look at every one here. You’ll see some additional string examples
      later in this book, but for more details you can also turn to the Python
      library manual and other documentation sources, or simply experiment
      interactively on your own. You can also check the help(S.method) results for a
      method of any string object S for more hints; as we saw in Chapter 4, running help on str.method likely
      gives the same details.
Note that none of the string methods accepts
      patterns—for pattern-based text processing, you
      must use the Python re standard
      library module, an advanced tool that was introduced in
      Chapter 4 but is mostly outside
      the scope of this text (one further brief example appears at the end of
      Chapter 37). Because of this
      limitation, though, string methods may sometimes run more quickly than
      the re module’s tools.

The Original string Module’s Functions (Gone in 3.X)
The history of Python’s string methods is somewhat convoluted. For roughly the first decade of
      its existence, Python provided a standard library module called string that contained functions that largely
      mirrored the current set of string object methods. By popular demand, in
      Python 2.0 these functions were made available as methods of string
      objects. Because so many people had written so much code that relied on
      the original string module, however,
      it was retained for backward compatibility.
Today, you should use only string methods,
      not the original string module. In
      fact, the original module call forms of today’s string methods have been
      removed completely from Python 3.X, and you should not use them in new
      code in either 2.X or 3.X. However, because you may still see the module
      in use in older Python 2.X code, and this text covers both Pythons 2.X
      and 3.X, a brief look is in order here.
The upshot of this legacy is that in Python 2.X, there technically
      are still two ways to invoke advanced string operations: by calling
      object methods, or by calling string
      module functions and passing in the objects as arguments. For instance,
      given a variable X assigned to a
      string object, calling an object method:
X.method(arguments)
is usually equivalent to calling the same operation through the
      string module (provided that you have
      already imported the module):
string.method(X, arguments)
Here’s an example of the method scheme in action:
>>> S = 'a+b+c+'
>>> x = S.replace('+', 'spam')
>>> x
'aspambspamcspam'
To access the same operation through the string module in Python 2.X, you need to
      import the module (at least once in your process) and pass in the
      object:
>>> import string
>>> y = string.replace(S, '+', 'spam')
>>> y
'aspambspamcspam'
Because the module approach was the standard for so long, and
      because strings are such a central component of most programs, you might
      see both call patterns in Python 2.X code you come across.
Again, though, today you should always use method calls instead of
      the older module calls. There are good reasons for this, besides the
      fact that the module calls have gone away in 3.X. For one thing, the
      module call scheme requires you to import the string module (methods do not require
      imports). For another, the module makes calls a few characters longer to
      type (when you load the module with import, that is, not using from). And, finally, the module runs more
      slowly than methods (the module maps most calls back to the methods and
      so incurs an extra call along the way).
The original string module
      itself, without its string method equivalents, is retained in Python 3.X
      because it contains additional tools, including predefined string
      constants (e.g., string.digits) and a
      Template object system—a relatively
      obscure formatting tool that predates the string format method and is largely omitted here (for
      details, see the brief note comparing it to other formatting tools
      ahead, as well as Python’s library manual). Unless you really want to
      have to change your 2.X code to use 3.X, though, you should consider any
      basic string operation calls in it to be just ghosts of Python
      past.


String Formatting Expressions
Although you can get a lot done with the string methods and sequence
    operations we’ve already met, Python also provides a more advanced way to
    combine string processing tasks—string formatting
    allows us to perform multiple type-specific substitutions on a string in a
    single step. It’s never strictly required, but it can be convenient,
    especially when formatting text to be displayed to a program’s users. Due
    to the wealth of new ideas in the Python world, string formatting is
    available in two flavors in Python today (not counting the less-used
    string module Template system mentioned in the prior
    section):
	String formatting expressions: '...%s...' % (values)
	The original technique available since Python’s inception,
          this form is based upon the C language’s “printf” model, and sees
          widespread use in much existing code.

	String formatting method calls: '...{}...'.format(values)
	A newer technique added in Python 2.6 and 3.0, this form is
          derived in part from a same-named tool in C#/.NET, and overlaps with
          string formatting expression functionality.


Since the method call flavor is newer, there is some chance that one
    or the other of these may become deprecated and removed over time. When
    3.0 was released in 2008, the expression seemed more likely to be
    deprecated in later Python releases. Indeed, 3.0’s documentation
    threatened deprecation in 3.1 and removal thereafter. This hasn’t happened
    as of 2013 and 3.3, and now looks unlikely given the expression’s wide
    use—in fact, it still appears even in Python’s own standard library
    thousands of times today!
Naturally, this story’s development depends on the future practice
    of Python’s users. On the other hand, because both the expression and
    method are valid to use today and either may appear in code you’ll come
    across, this book covers both techniques in full here. As you’ll see, the
    two are largely variations on a theme, though the
    method has some extra features (such as thousands separators), and the
    expression is often more concise and seems second nature to most Python
    programmers.
This book itself uses both techniques in later examples for
    illustrative purposes. If its author has a preference, he will keep it
    largely classified, except to quote from Python’s import this motto:
There should be one—and preferably only one—obvious way to do
      it.

Unless the newer string formatting method is compellingly better
    than the original and widely used expression, its
    doubling of Python programmers’ knowledge base
    requirements in this domain seems unwarranted—and even un-Pythonic, per
    the original and longstanding meaning of that term. Programmers should not
    have to learn two complicated tools if those tools largely overlap. You’ll
    have to judge for yourself whether formatting merits the added language
    heft, of course, so let’s give both a fair hearing.
Formatting Expression Basics
Since string formatting expressions are the
      original in this department, we’ll start with them. Python defines the
      % binary operator to work on strings (you may recall that this is also the
      remainder of division, or modulus, operator for numbers). When applied to strings,
      the % operator provides a simple way
      to format values as strings according to a format definition. In short,
      the % operator provides a compact way
      to code multiple string substitutions all at once, instead of building
      and concatenating parts individually.
To format strings:
	On the left of the % operator, provide a format string
          containing one or more embedded conversion targets, each of which
          starts with a % (e.g., %d).

	On the right of the % operator, provide the object (or
          objects, embedded in a tuple) that you want Python to insert into
          the format string on the left in place of the conversion target (or
          targets).


For instance, in the formatting example we saw earlier in this
      chapter, the integer 1 replaces the
      %d in the format string on the left,
      and the string 'dead' replaces the
      %s. The result is a new string that
      reflects these two substitutions, which may be printed or saved for use
      in other roles:
>>> 'That is %d %s bird!' % (1, 'dead')             # Format expression
That is 1 dead bird!
Technically speaking, string formatting expressions are usually
      optional—you can generally do similar work with multiple concatenations
      and conversions. However, formatting allows us to combine many steps
      into a single operation. It’s powerful enough to warrant a few more
      examples:
>>> exclamation = 'Ni'
>>> 'The knights who say %s!' % exclamation         # String substitution
'The knights who say Ni!'

>>> '%d %s %g you' % (1, 'spam', 4.0)               # Type-specific substitutions
'1 spam 4 you'

>>> '%s -- %s -- %s' % (42, 3.14159, [1, 2, 3])     # All types match a %s target
'42 -- 3.14159 -- [1, 2, 3]'
The first example here plugs the string 'Ni' into the target on the left, replacing
      the %s marker. In the second example,
      three values are inserted into the target string. Note that when you’re
      inserting more than one value, you need to group the values on the right
      in parentheses (i.e., put them in a tuple). The
      % formatting expression operator
      expects either a single item or a tuple of one or more items on its
      right side.
The third example again inserts three values—an integer, a
      floating-point object, and a list object—but notice that all of the
      targets on the left are %s, which
      stands for conversion to string. As every type of object can be
      converted to a string (the one used when printing), every object type
      works with the %s conversion code.
      Because of this, unless you will be doing some special formatting,
      %s is often the only code you need to
      remember for the formatting expression.
Again, keep in mind that formatting always makes a new string,
      rather than changing the string on the left; because strings are
      immutable, it must work this way. As before, assign the result to a
      variable name if you need to retain it.

Advanced Formatting Expression Syntax
For more advanced type-specific formatting, you can use any of the conversion type codes listed in Table 7-4 in formatting expressions;
      they appear after the % character in
      substitution targets. C programmers will recognize most of these because
      Python string formatting supports all the usual C printf format codes (but returns the result,
      instead of displaying it, like printf). Some of the format codes in the table
      provide alternative ways to format the same type; for instance, %e, %f, and
      %g provide alternative ways to format
      floating-point numbers.
Table 7-4. String formatting type codes	Code	Meaning
	s
	String (or any object’s
              str(X) string)

	r
	Same as s, but uses repr, not str

	c
	Character (int or
              str)

	d
	Decimal (base-10
              integer)

	i
	Integer

	u
	Same as d (obsolete: no longer
              unsigned)

	o
	Octal integer (base
              8)

	x
	Hex integer (base
              16)

	X
	Same as x, but with uppercase
              letters

	e
	Floating point with
              exponent, lowercase

	E
	Same as e, but uses uppercase
              letters

	f
	Floating-point
              decimal

	F
	Same as f, but uses uppercase
              letters

	g
	Floating-point e or f

	G
	Floating-point E or F

	%
	Literal % (coded as %%)


In fact, conversion targets in the format string on the
      expression’s left side support a variety of conversion operations with a
      fairly sophisticated syntax all their own. The general structure of
      conversion targets looks like this:
%[(keyname)][flags][width][.precision]typecode
The type code characters in the first column of Table 7-4 show up at the end of this
      target string’s format. Between the %
      and the type code character, you can do any of the following:
	Provide a key name for indexing the
          dictionary used on the right side of the expression

	List flags that specify things like left
          justification (−), numeric sign
          (+), a blank before positive
          numbers and a – for negatives (a
          space), and zero fills (0)

	Give a total minimum field width for the
          substituted text

	Set the number of digits (precision) to
          display after a decimal point for floating-point numbers


Both the width and
      precision parts can also be coded as a
      * to specify that they should take
      their values from the next item in the input values on the expression’s
      right side (useful when this isn’t known until runtime). And if you
      don’t need any of these extra tools, a simple %s in the format string will be replaced by
      the corresponding value’s default print string, regardless of its
      type.

Advanced Formatting Expression Examples
Formatting target syntax is documented in full in the Python
      standard manuals and reference texts, but to demonstrate common usage,
      let’s look at a few examples. This one formats integers by default, and
      then in a six-character field with left justification and zero
      padding:
>>> x = 1234
>>> res = 'integers: ...%d...%−6d...%06d' % (x, x, x)
>>> res
'integers: ...1234...1234  ...001234'
The %e, %f, and %g
      formats display floating-point numbers in different ways, as the
      following interaction demonstrates—%E
      is the same as %e but the exponent is
      uppercase, and g chooses formats by
      number content (it’s formally defined to use exponential format e if the exponent is less than −4 or not less
      than precision, and decimal format f
      otherwise, with a default total digits precision of 6):
>>> x = 1.23456789
>>> x                                     # Shows more digits before 2.7 and 3.1
1.23456789

>>> '%e | %f | %g' % (x, x, x)
'1.234568e+00 | 1.234568 | 1.23457'

>>> '%E' % x
'1.234568E+00'
For floating-point numbers, you can achieve a variety of
      additional formatting effects by specifying left justification, zero
      padding, numeric signs, total field width, and digits after the decimal
      point. For simpler tasks, you might get by with simply converting to
      strings with a %s format expression
      or the str built-in function shown
      earlier:
>>> '%−6.2f | %05.2f | %+06.1f' % (x, x, x)
'1.23   | 01.23 | +001.2'

>>> '%s' % x, str(x)
('1.23456789', '1.23456789')
When sizes are not known until runtime, you can use a computed
      width and precision by specifying them with a * in the format string to force their values
      to be taken from the next item in the inputs to the right of the
      % operator—the 4 in the tuple here
      gives precision:
>>> '%f, %.2f, %.*f' % (1/3.0, 1/3.0, 4, 1/3.0)
'0.333333, 0.33, 0.3333'
If you’re interested in this feature, experiment with some of
      these examples and operations on your own for more insight.

Dictionary-Based Formatting Expressions
As a more advanced extension, string formatting also allows conversion targets on the
      left to refer to the keys in a dictionary coded on
      the right and fetch the corresponding values. This opens the door to
      using formatting as a sort of template tool. We’ve only met dictionaries
      briefly thus far in Chapter 4,
      but here’s an example that demonstrates the basics:
>>> '%(qty)d more %(food)s' % {'qty': 1, 'food': 'spam'}
'1 more spam'
Here, the (qty) and (food) in the format string on the left refer
      to keys in the dictionary literal on the right and fetch their
      associated values. Programs that generate text such as HTML or XML often
      use this technique—you can build up a dictionary of values and
      substitute them all at once with a single formatting expression that
      uses key-based references (notice the first comment is above the triple
      quote so it’s not added to the string, and I’m typing this in IDLE
      without a “...” prompt for continuation lines):
>>>                                           # Template with substitution targets
>>> reply = """
Greetings...
Hello %(name)s!
Your age is %(age)s
"""
>>> values = {'name': 'Bob', 'age': 40}       # Build up values to substitute
>>> print(reply % values)                     # Perform substitutions

Greetings...
Hello Bob!
Your age is 40
This trick is also used in conjunction with the vars built-in function, which returns a
      dictionary containing all the variables that exist in the place it is
      called:
>>> food = 'spam'
>>> qty = 10
>>> vars()
{'food': 'spam', 'qty': 10, ...plus built-in names set by Python... }
When used on the right side of a format operation, this allows the
      format string to refer to variables by name—as dictionary keys:
>>> '%(qty)d more %(food)s' % vars()          # Variables are keys in vars()
'10 more spam'
We’ll study dictionaries in more depth in Chapter 8. See also Chapter 5 for examples that convert to hexadecimal and
      octal number strings with the %x and
      %o formatting expression target
      codes, which we won’t repeat here. Additional formatting expression
      examples also appear ahead as comparisons to the formatting method—this
      chapter’s next and final string topic.


String Formatting Method Calls
As mentioned earlier, Python 2.6 and 3.0 introduced a new way to format strings
    that is seen by some as a bit more Python-specific. Unlike formatting
    expressions, formatting method calls are not closely based upon the C
    language’s “printf” model, and are sometimes more explicit in intent. On
    the other hand, the new technique still relies on core “printf” concepts,
    such as type codes and formatting specifications. Moreover, it largely
    overlaps with—and sometimes requires a bit more code than—formatting
    expressions, and in practice can be just as complex in many roles. Because
    of this, there is no best-use recommendation between expressions and
    method calls today, and most programmers would be well served by a cursory
    understanding of both schemes. Luckily, the two are similar enough that
    many core concepts overlap.
Formatting Method Basics
The string object’s format
      method, available in Python 2.6, 2.7, and 3.X, is based on normal
      function call syntax, instead of an expression. Specifically, it uses
      the subject string as a template, and takes any number of arguments that
      represent values to be substituted according to the template.
Its use requires knowledge of functions and calls, but is mostly
      straightforward. Within the subject string, curly braces designate
      substitution targets and arguments to be inserted either by position
      (e.g., {1}), or keyword (e.g.,
      {food}), or relative position in 2.7,
      3.1, and later ({}). As we’ll learn
      when we study argument passing in depth in Chapter 18,
      arguments to functions and methods may be passed by position or keyword
      name, and Python’s ability to collect arbitrarily many positional and
      keyword arguments allows for such general method call patterns. For
      example:
>>> template = '{0}, {1} and {2}'                             # By position
>>> template.format('spam', 'ham', 'eggs')
'spam, ham and eggs'

>>> template = '{motto}, {pork} and {food}'                   # By keyword
>>> template.format(motto='spam', pork='ham', food='eggs')
'spam, ham and eggs'

>>> template = '{motto}, {0} and {food}'                      # By both
>>> template.format('ham', motto='spam', food='eggs')
'spam, ham and eggs'

>>> template = '{}, {} and {}'                                # By relative position
>>> template.format('spam', 'ham', 'eggs')                    # New in 3.1 and 2.7
'spam, ham and eggs'
By comparison, the last section’s formatting
      expression can be a bit more concise, but uses
      dictionaries instead of keyword arguments, and doesn’t allow quite as
      much flexibility for value sources (which may be an asset or liability,
      depending on your perspective); more on how the two techniques compare
      ahead:
>>> template = '%s, %s and %s'                                # Same via expression
>>> template % ('spam', 'ham', 'eggs')
'spam, ham and eggs'

>>> template = '%(motto)s, %(pork)s and %(food)s'
>>> template % dict(motto='spam', pork='ham', food='eggs')
'spam, ham and eggs'
Note the use of dict() to make
      a dictionary from keyword arguments here, introduced in Chapter 4 and covered in full in
      Chapter 8; it’s an often less-cluttered
      alternative to the {...} literal.
      Naturally, the subject string in the format method call can also be a
      literal that creates a temporary string, and arbitrary object types can
      be substituted at targets much like the expression’s %s code:
>>> '{motto}, {0} and {food}'.format(42, motto=3.14, food=[1, 2])
'3.14, 42 and [1, 2]'
Just as with the % expression
      and other string methods, format
      creates and returns a new string object, which can be printed
      immediately or saved for further work (recall that strings are
      immutable, so format really
      must make a new object). String formatting is not
      just for display:
>>> X = '{motto}, {0} and {food}'.format(42, motto=3.14, food=[1, 2])
>>> X
'3.14, 42 and [1, 2]'

>>> X.split(' and ')
['3.14, 42', '[1, 2]']

>>> Y = X.replace('and', 'but under no circumstances')
>>> Y
'3.14, 42 but under no circumstances [1, 2]'

Adding Keys, Attributes, and Offsets
Like % formatting expressions,
      format calls can become more complex to support more advanced usage. For
      instance, format strings can name object attributes and dictionary keys—as in normal Python syntax, square
      brackets name dictionary keys and dots denote object attributes of an
      item referenced by position or keyword. The first of the following
      examples indexes a dictionary on the key “kind” and then fetches the
      attribute “platform” from the already imported sys module
      object. The second does the same, but names the objects by keyword
      instead of position:
>>> import sys

>>> 'My {1[kind]} runs {0.platform}'.format(sys, {'kind': 'laptop'})
'My laptop runs win32'

>>> 'My {map[kind]} runs {sys.platform}'.format(sys=sys, map={'kind': 'laptop'})
'My laptop runs win32'
Square brackets in format strings can name list (and other sequence) offsets
      to perform indexing, too, but only single positive offsets work
      syntactically within format strings, so this feature is not as general
      as you might think. As with %
      expressions, to name negative offsets or slices, or to use arbitrary
      expression results in general, you must run expressions outside the
      format string itself (note the use of *parts here to unpack a tuple’s items into
      individual function arguments, as we did in Chapter 5 when studying fractions; more on this form in
      Chapter 18):
>>> somelist = list('SPAM')
>>> somelist
['S', 'P', 'A', 'M']

>>> 'first={0[0]}, third={0[2]}'.format(somelist)
'first=S, third=A'

>>> 'first={0}, last={1}'.format(somelist[0], somelist[-1])   # [-1] fails in fmt
'first=S, last=M'

>>> parts = somelist[0], somelist[-1], somelist[1:3]          # [1:3] fails in fmt
>>> 'first={0}, last={1}, middle={2}'.format(*parts)          # Or '{}' in 2.7/3.1+
"first=S, last=M, middle=['P', 'A']"

Advanced Formatting Method Syntax
Another similarity with %
      expressions is that you can achieve more specific layouts by adding
      extra syntax in the format string. For the formatting method, we use a
      colon after the possibly empty substitution target’s identification,
      followed by a format specifier that can name the field size,
      justification, and a specific type code. Here’s the formal structure of
      what can appear as a substitution target in a format string—its four
      parts are all optional, and must appear without intervening
      spaces:
{fieldname component !conversionflag :formatspec}
In this substitution target syntax:
	fieldname is an optional number or
          keyword identifying an argument, which may be omitted to use
          relative argument numbering in 2.7, 3.1, and later.

	component is a string of zero or
          more “.name” or
          “[index]” references used to fetch
          attributes and indexed values of the argument, which may be omitted
          to use the whole argument value.

	conversionflag starts with a
          ! if present, which is followed
          by r, s, or a
          to call repr, str, or ascii built-in functions on the value, respectively.

	formatspec starts with a : if present, which is followed by text
          that specifies how the value should be presented, including details
          such as field width, alignment, padding, decimal precision, and so
          on, and ends with an optional data type code.


The formatspec component after the
      colon character has a rich format all its own, and is formally described
      as follows (brackets denote optional components and are not coded
      literally):
[[fill]align][sign][#][0][width][,][.precision][typecode]
In this, fill can be any fill character
      other than { or }; align may be
      <, >, =, or
      ^, for left alignment, right
      alignment, padding after a sign character, or centered alignment,
      respectively; sign may be +, −, or
      space; and the , (comma) option
      requests a comma for a thousands separator as of Python 2.7 and 3.1.
      width and
      precision are much as in the % expression, and the
      formatspec may also contain nested {} format
      strings with field names only, to take values from the arguments list
      dynamically (much like the * in
      formatting expressions).
The method’s typecode options almost
      completely overlap with those used in % expressions and listed previously in Table 7-4, but the format method also
      allows a b type code used to display
      integers in binary format (it’s equivalent to using the bin built-in call), allows a % type code to display percentages, and uses
      only d for base-10 integers (i or u are
      not used here). Note that unlike the expression’s %s, the s
      type code here requires a string object argument; omit the type code to
      accept any type generically.
See Python’s library manual for more on substitution syntax that
      we’ll omit here. In addition to the string’s format method,
      a single object may also be formatted with the format(object,
      formatspec) built-in function (which the method uses
      internally), and may be customized in user-defined classes with
      the __format__
      operator-overloading method (see Part VI).

Advanced Formatting Method Examples
As you can tell, the syntax can be complex in formatting methods.
      Because your best ally in such cases is often the interactive prompt
      here, let’s turn to some examples. In the following, {0:10} means the first positional argument in
      a field 10 characters wide, {1:<10} means the second positional
      argument left-justified in a 10-character-wide field, and {0.platform:>10} means the platform attribute of the first argument
      right-justified in a 10-character-wide field (note again the use of
      dict() to make a dictionary from
      keyword arguments, covered in Chapter 4 and Chapter 8):
>>> '{0:10} = {1:10}'.format('spam', 123.4567)         # In Python 3.3
'spam       =   123.4567'

>>> '{0:>10} = {1:<10}'.format('spam', 123.4567)
'      spam = 123.4567  '

>>> '{0.platform:>10} = {1[kind]:<10}'.format(sys, dict(kind='laptop'))
'     win32 = laptop    '
In all cases, you can omit the argument number as of Python 2.7
      and 3.1 if you’re selecting them from left to right with relative
      autonumbering—though this makes your code less explicit, thereby
      negating one of the reported advantages of the formatting method over
      the formatting expression (see the related note ahead):
>>> '{:10} = {:10}'.format('spam', 123.4567)
'spam       =   123.4567'

>>> '{:>10} = {:<10}'.format('spam', 123.4567)
'      spam = 123.4567  '

>>> '{.platform:>10} = {[kind]:<10}'.format(sys, dict(kind='laptop'))
'     win32 = laptop    '
Floating-point numbers support the same type codes and formatting
      specificity in formatting method calls as in % expressions. For instance, in the following
      {2:g} means the third argument
      formatted by default according to the “g” floating-point representation,
      {1:.2f} designates the “f”
      floating-point format with just two decimal digits, and {2:06.2f} adds a field with a width of six
      characters and zero padding on the left:
>>> '{0:e}, {1:.3e}, {2:g}'.format(3.14159, 3.14159, 3.14159)
'3.141590e+00, 3.142e+00, 3.14159'

>>> '{0:f}, {1:.2f}, {2:06.2f}'.format(3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 003.14'
Hex, octal, and binary formats are supported by the format method as well. In fact, string
      formatting is an alternative to some of the built-in functions that
      format integers to a given base:
>>> '{0:X}, {1:o}, {2:b}'.format(255, 255, 255)      # Hex, octal, binary
'FF, 377, 11111111'

>>> bin(255), int('11111111', 2), 0b11111111         # Other to/from binary
('0b11111111', 255, 255)

>>> hex(255), int('FF', 16), 0xFF                    # Other to/from hex
('0xff', 255, 255)

>>> oct(255), int('377', 8), 0o377                   # Other to/from octal, in 3.X
('0o377', 255, 255)                                  # 2.X prints and accepts 0377
Formatting parameters can either be hardcoded in format strings or
      taken from the arguments list dynamically by nested format syntax, much
      like the * syntax in formatting
      expressions’ width and precision:
>>> '{0:.2f}'.format(1 / 3.0)                        # Parameters hardcoded
'0.33'
>>> '%.2f' % (1 / 3.0)                               # Ditto for expression
'0.33'

>>> '{0:.{1}f}'.format(1 / 3.0, 4)                   # Take value from arguments
'0.3333'
>>> '%.*f' % (4, 1 / 3.0)                            # Ditto for expression
'0.3333'
Finally, Python 2.6 and 3.0 also introduced a new built-in format
      function, which can be used to format a single item. It’s a more concise
      alternative to the string format
      method, and is roughly similar to formatting a single item with the
      % formatting expression:
>>> '{0:.2f}'.format(1.2345)                         # String method
'1.23'
>>> format(1.2345, '.2f')                            # Built-in function
'1.23'
>>> '%.2f' % 1.2345                                  # Expression
'1.23'
Technically, the format
      built-in runs the subject object’s __format__ method, which the str.format method
      does internally for each formatted item. It’s still more verbose than
      the original % expression’s
      equivalent here, though—which leads us to the next section.

Comparison to the % Formatting Expression
If you study the prior sections closely, you’ll probably notice that at least for
      positional references and dictionary keys, the string format method looks very much like the
      % formatting expression, especially
      in advanced use with type codes and extra formatting syntax. In fact, in
      common use cases formatting expressions may be
      easier to code than formatting method calls,
      especially when you’re using the generic %s print-string substitution target, and even
      with autonumbering of fields added in 2.7 and 3.1:
print('%s=%s' % ('spam', 42))            # Format expression: in all 2.X/3.X

print('{0}={1}'.format('spam', 42))      # Format method: in 3.0+ and 2.6+

print('{}={}'.format('spam', 42))        # With autonumbering: in 3.1+ and 2.7
As we’ll see in a moment, more complex formatting tends to be a
      draw in terms of complexity (difficult tasks are generally difficult,
      regardless of approach), and some see the formatting method as redundant
      given the pervasiveness of the expression.
On the other hand, the formatting method also offers a few
      potential advantages. For example, the original % expression can’t handle keywords, attribute
      references, and binary type codes, although dictionary key references in
      % format strings can often achieve
      similar goals. To see how the two techniques overlap, compare the
      following % expressions to the
      equivalent format method calls shown
      earlier:
>>> '%s, %s and %s' % (3.14, 42, [1, 2])                      # Arbitrary types
'3.14, 42 and [1, 2]'

>>> 'My %(kind)s runs %(platform)s' % {'kind': 'laptop', 'platform': sys.platform}
'My laptop runs win32'

>>> 'My %(kind)s runs %(platform)s' % dict(kind='laptop', platform=sys.platform)
'My laptop runs win32'

>>> somelist = list('SPAM')
>>> parts = somelist[0], somelist[-1], somelist[1:3]
>>> 'first=%s, last=%s, middle=%s' % parts
"first=S, last=M, middle=['P', 'A']"
When more complex formatting is applied the two techniques
      approach parity in terms of complexity, although if you compare the
      following with the format method call
      equivalents listed earlier you’ll again find that the % expressions tend to be a bit simpler and
      more concise; in Python 3.3:
# Adding specific formatting

>>> '%-10s = %10s' % ('spam', 123.4567)
'spam       =   123.4567'

>>> '%10s = %-10s' % ('spam', 123.4567)
'      spam = 123.4567  '

>>> '%(plat)10s = %(kind)-10s' % dict(plat=sys.platform, kind='laptop')
'     win32 = laptop    '

# Floating-point numbers

>>> '%e, %.3e, %g' % (3.14159, 3.14159, 3.14159)
'3.141590e+00, 3.142e+00, 3.14159'

>>> '%f, %.2f, %06.2f' % (3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 003.14'

# Hex and octal, but not binary (see ahead)

>>> '%x, %o' % (255, 255)
'ff, 377'
The format method has a handful
      of advanced features that the %
      expression does not, but even more involved formatting still seems to be
      essentially a draw in terms of complexity. For instance, the following
      shows the same result generated with both techniques, with field sizes
      and justifications and various argument reference methods:
# Hardcoded references in both
>>> import sys

>>> 'My {1[kind]:<8} runs {0.platform:>8}'.format(sys, {'kind': 'laptop'})
'My laptop   runs    win32'

>>> 'My %(kind)-8s runs %(plat)8s' % dict(kind='laptop', plat=sys.platform)
'My laptop   runs    win32'
In practice, programs are less likely to hardcode references like
      this than to execute code that builds up a set of substitution data
      ahead of time (for instance, to collect input form or database data to
      substitute into an HTML template all at once). When we account for
      common practice in examples like this, the comparison between the
      format method and the % expression is even more direct:
# Building data ahead of time in both
>>> data = dict(platform=sys.platform, kind='laptop')

>>> 'My {kind:<8} runs {platform:>8}'.format(**data)
'My laptop   runs    win32'

>>> 'My %(kind)-8s runs %(platform)8s' % data
'My laptop   runs    win32'
As we’ll see in Chapter 18, the **data in the method call here is special
      syntax that unpacks a dictionary of keys and values into individual
      “name=value” keyword arguments so they can be referenced by name in the
      format string—another unavoidable far conceptual forward
      reference to function call tools, which may be another
      downside of the format method in
      general, especially for newcomers.
As usual, though, the Python community will have to decide whether
      % expressions, format method calls, or a toolset with both
      techniques proves better over time. Experiment with these techniques on
      your own to get a feel for what they offer, and be sure to see the
      library reference manuals for Python 2.6, 3.0, and later for more
      details.
Note
String format method enhancements in Python 3.1 and
        2.7: Python 3.1 and 2.7 added a thousand-separator syntax
        for numbers, which inserts commas between three-digit groups. To make
        this work, add a comma before the type code, and between the width and
        precision if present, as follows:
>>> '{0:d}'.format(999999999999)
'999999999999'
>>> '{0:,d}'.format(999999999999)
'999,999,999,999'
These Pythons also assign relative numbers to substitution
        targets automatically if they are not included explicitly, though
        using this extension doesn’t apply in all use cases, and may negate
        one of the main benefits of the formatting method—its more explicit
        code:
>>> '{:,d}'.format(999999999999)
'999,999,999,999'
>>> '{:,d} {:,d}'.format(9999999, 8888888)
'9,999,999 8,888,888'
>>> '{:,.2f}'.format(296999.2567)
'296,999.26'
See the 3.1 release notes for more details. See also the
        formats.py comma-insertion and
        money-formatting function examples in Chapter 25 for a simple manual solution that
        can be imported and used prior to Python 3.1 and 2.7. As typical in
        programming, it’s straightforward to implement new functionality in a
        callable, reusable, and customizable function of your own, rather than
        relying on a fixed set of built-in tools:
>>> from formats import commas, money
>>> '%s' % commas(999999999999)
'999,999,999,999'
>>> '%s %s' % (commas(9999999), commas(8888888))
'9,999,999 8,888,888'
>>> '%s' % money(296999.2567)
'$296,999.26'
And as usual, a simple function like this can be applied in more
        advanced contexts too, such as the iteration tools we met in Chapter 4 and will study fully in
        later chapters:
>>> [commas(x) for x in (9999999, 8888888)]
['9,999,999', '8,888,888']
>>> '%s %s' % tuple(commas(x) for x in (9999999, 8888888))
'9,999,999 8,888,888'
>>> ''.join(commas(x) for x in (9999999, 8888888))
'9,999,9998,888,888'
For better or worse, Python developers often seem to prefer
        adding special-case built-in tools over general development
        techniques—a tradeoff explored in the next section.


Why the Format Method?
Now that I’ve gone to such lengths to compare and contrast the two
      formatting techniques, I wish to also explain why you still might want
      to consider using the format method
      variant at times. In short, although the formatting method can sometimes
      require more code, it also:
	Has a handful of extra features not found in the % expression itself (though % can use alternatives)

	Has more flexible value reference syntax (though it may be
          overkill, and % often has
          equivalents)

	Can make substitution value references more explicit (though
          this is now optional)

	Trades an operator for a more mnemonic method name (though
          this is also more verbose)

	Does not allow different syntax for single and multiple values
          (though practice suggests this is trivial)

	As a function can be used in places an expression cannot
          (though a one-line function renders this moot)


Although both techniques are available today and the formatting
      expression is still widely used, the format method might eventually grow in
      popularity and may receive more attention from Python developers in the
      future. Further, with both the expression and method in the language,
      either may appear in code you will encounter so it
      behooves you to understand both. But because the
      choice is currently still yours to make in new code, let’s briefly
      expand on the tradeoffs before closing the book on this topic.
Extra features: Special-case “batteries” versus general
        techniques
The method call supports a few extras that the expression does
        not, such as binary type codes and (as of Python 2.7 and 3.1)
        thousands groupings. As we’ve seen, though, the formatting expression
        can usually achieve the same effects in other ways. Here’s the
        case for binary formatting:
>>> '{0:b}'.format((2 ** 16) − 1)        # Expression (only) binary format code
'1111111111111111'
>>> '%b' % ((2 ** 16) − 1)
ValueError: unsupported format character 'b'...

>>> bin((2 ** 16) − 1)                   # But other more general options work too
'0b1111111111111111'
>>> '%s' % bin((2 ** 16) - 1)            # Usable with both method and % expression
'0b1111111111111111'
>>> '{}'.format(bin((2 ** 16) - 1))      # With 2.7/3.1+ relative numbering
'0b1111111111111111'

>>> '%s' % bin((2 ** 16) - 1)[2:]        # Slice off 0b to get exact equivalent
'1111111111111111'
The preceding note showed that general functions could similarly
        stand in for the format method’s thousands
        groupings option, and more fully support customization. In
        this case, a simple 8-line reusable function buys
        us the same utility without extra special-case syntax:
>>> '{:,d}'.format(999999999999)         # New str.format method feature in 3.1/2.7
'999,999,999,999'

>>> '%s' % commas(999999999999)          # But % is same with simple 8-line function
'999,999,999,999'
See the prior note for more comma comparisons. This is
        essentially the same as the preceding bin case for binary formatting, but the
        commas function here is
        user-defined, not built in. As such, this technique is far more
        general purpose than precoded tools or special
        syntax added for a single purpose.
This case also seems indicative, perhaps, of a trend in Python
        (and scripting language in general) toward relying more on
        special-case “batteries included” tools than on general development
        techniques—a mindset that makes code dependent on those batteries, and
        seems difficult to justify unless one views software development as an
        end-user enterprise. To some, programmers might be better served
        learning how to code an algorithm to insert commas than be provided a
        tool that does.
We’ll leave that philosophical debate aside here, but in
        practical terms the net effect of the trend in this case is extra
        syntax for you to have to both learn and remember. Given their
        alternatives, it’s not clear that these extra features of the methods
        by themselves are compelling enough to be decisive.

Flexible reference syntax: Extra complexity and functional
        overlap
The method call also supports key and
        attribute references directly, which some may see
        as more flexible. But as we saw in earlier examples comparing
        dictionary-based formatting in the % expression to key and attribute references
        in the format method, the two are
        usually too similar to warrant a preference on these grounds. For
        instance, both can reference the same value multiple times:
>>> '{name} {job} {name}'.format(name='Bob', job='dev')
'Bob dev Bob'
>>> '%(name)s %(job)s %(name)s' % dict(name='Bob', job='dev')
'Bob dev Bob'
Especially in common practice, though, the expression seems just
        as simple, or simpler:
>>> D = dict(name='Bob', job='dev')
>>> '{0[name]} {0[job]} {0[name]}'.format(D)      # Method, key references
'Bob dev Bob'
>>> '{name} {job} {name}'.format(**D)             # Method, dict-to-args
'Bob dev Bob'
>>> '%(name)s %(job)s %(name)s' % D               # Expression, key references
'Bob dev Bob'
To be fair, the method has even more specialized substitution
        syntax, and other comparisons might favor either scheme in small ways.
        But given the overlap and extra complexity, one could argue that the
        format method’s utility seems either a wash, or features in search of
        use cases. At the least, the added conceptual burden on Python
        programmers who may now need to know both tools
        doesn’t seem clearly justified.

Explicit value references: Now optional and unlikely to be
        used
One use case where the format
        method is at least debatably clearer is when there are many values to
        be substituted into the format string. The lister.py classes example we’ll meet in
        Chapter 31, for example, substitutes
        six items into a single string, and in this case the method’s {i} position labels seem marginally easier
        to read than the expression’s %s:
'\n%s<Class %s, address %s:\n%s%s%s>\n' % (...)               # Expression

'\n{0}<Class {1}, address {2}:\n{3}{4}{5}>\n'.format(...)     # Method
On the other hand, using dictionary keys in
        % expressions can mitigate much of
        this difference. This is also something of a worst-case scenario for
        formatting complexity, and not very common in practice; more typical
        use cases seem more of a tossup. Further, as of Python 3.1 and 2.7,
        numbering substitution targets becomes optional when relative to
        position, potentially subverting this purported benefit
        altogether:
>>> 'The {0} side {1} {2}'.format('bright', 'of', 'life')     # Python 3.X, 2.6+
'The bright side of life'

>>> 'The {} side {} {}'.format('bright', 'of', 'life')        # Python 3.1+, 2.7+
'The bright side of life'

>>> 'The %s side %s %s' % ('bright', 'of', 'life')            # All Pythons
'The bright side of life'
Given its conciseness, the second of these is likely to be
        preferred to the first, but seems to negate part of the method’s
        advantage. Compare the effect on floating-point formatting, for
        example—the formatting expression is still more concise, and still
        seems less cluttered:
>>> '{0:f}, {1:.2f}, {2:05.2f}'.format(3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 03.14'

>>> '{:f}, {:.2f}, {:06.2f}'.format(3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 003.14'

>>> '%f, %.2f, %06.2f' % (3.14159, 3.14159, 3.14159)
'3.141590, 3.14, 003.14'

Named method and context-neutral arguments: Aesthetics versus
        practice
The formatting method also claims an advantage in replacing the
        % operator with a more mnemonic
        format method name, and not
        distinguishing between single and multiple substitution values. The
        former may make the method appear simpler to beginners at first glance
        (“format” may be easier to parse than multiple “%” characters), though
        this probably varies per reader and seems minor.
Some may see the latter difference as more significant—with the
        format expression, a single value can be given by
        itself, but multiple values must be enclosed in a
        tuple:
>>> '%.2f' % 1.2345                       # Single value
'1.23'
>>> '%.2f %s' % (1.2345, 99)              # Multiple values tuple
'1.23 99'
Technically, the formatting expression accepts
        either a single substitution value, or a tuple of
        one or more items. As a consequence, because a single item can be
        given either by itself or within a tuple, a tuple to be formatted must
        be provided as a nested tuple—a perhaps rare but plausible
        case:
>>> '%s' % 1.23                           # Single value, by itself
'1.23'
>>> '%s' % (1.23,)                        # Single value, in a tuple
'1.23'
>>> '%s' % ((1.23,),)                     # Single value that is a tuple
'(1.23,)'
The formatting method, on the other hand, tightens this up by
        accepting only general function arguments in both cases, instead of
        requiring a tuple both for multiple values or a single value that is a
        tuple:
>>> '{0:.2f}'.format(1.2345)              # Single value
'1.23'
>>> '{0:.2f} {1}'.format(1.2345, 99)      # Multiple values
'1.23 99'

>>> '{0}'.format(1.23)                    # Single value, by itself
'1.23'
>>> '{0}'.format((1.23,))                 # Single value that is a tuple
'(1.23,)'
Consequently, the method might be less confusing to beginners
        and cause fewer programming mistakes. This seems a fairly minor issue,
        though—if you always enclose values in a tuple
        and ignore the nontupled option, the expression is essentially the
        same as the method call here. Moreover, the method incurs a price in
        inflated code size to achieve its constrained usage mode. Given the
        expression’s wide use over Python’s history, this issue may be more
        theoretical than practical, and may not justify porting existing code
        to a new tool that is so similar to that it seeks to subsume.

Functions versus expressions: A minor convenience
The final rationale for the format method—it’s a function
        that can appear where an expression cannot—requires more information
        about functions than we yet have at this point in the book, so we
        won’t dwell on it here. Suffice it to say that both the str.format method and the format built-in function can be passed to
        other functions, stored in other objects, and so on. An expression
        like % cannot directly, but this
        may be narrow-sighted—it’s trivial to wrap any expression in a
        one-line def or partial-line
        lambda once to turn it into a
        function with the same properties (though finding a reason to do so
        may be more challenging):
def myformat(fmt, args): return fmt % args       # See Part IV

myformat('%s %s', (88, 99))                      # Call your function object
str.format('{} {}', 88, 99)                      # Versus calling the built-in

otherfunction(myformat)                          # Your function is an object too
In the end, this may not be an either/or choice. While the
        expression still seems more pervasive in Python code, both formatting
        expressions and methods are available for use in Python today, and
        most programmers will benefit from being familiar with both techniques
        for years to come. That may double the work of newcomers to the
        language in this department, but in this bazaar of ideas we call the
        open source software world, there always seems to be room for
        more.2
Note
Plus one more: Technically speaking,
          there are 3 (not 2) formatting tools built into
          Python, if we include the obscure string module’s Template tool mentioned earlier. Now that
          we’ve seen the other two, I can show you how it compares. The
          expression and method can be used as templating tools too, referring
          to substitution values by name via dictionary keys or keyword
          arguments:
>>> '%(num)i = %(title)s' % dict(num=7, title='Strings')
'7 = Strings'
>>> '{num:d} = {title:s}'.format(num=7, title='Strings')
'7 = Strings'
>>> '{num} = {title}'.format(**dict(num=7, title='Strings'))
'7 = Strings'
The module’s templating system allows values to be referenced
          by name too, prefixed by a $, as
          either dictionary keys or keywords, but does not support all the
          utilities of the other two methods—a limitation that yields
          simplicity, the prime motivation for this tool:
>>> import string
>>> t = string.Template('$num = $title')
>>> t.substitute({'num': 7, 'title': 'Strings'})
'7 = Strings'
>>> t.substitute(num=7, title='Strings')
'7 = Strings'
>>> t.substitute(dict(num=7, title='Strings'))
'7 = Strings'
See Python’s manuals for more details. It’s possible that you
          may see this alternative (as well as additional tools in the
          third-party domain) in Python code too; thankfully this technique is
          simple, and is used rarely enough to warrant its limited coverage
          here. The best bet for most newcomers today is to learn and use
          %, str.format, or both.




General Type Categories
Now that we’ve explored the first of Python’s collection objects,
    the string, let’s close this chapter by defining a few general type
    concepts that will apply to most of the types we look at from here on.
    With regard to built-in types, it turns out that operations work the same
    for all the types in the same category, so we’ll only need to define most
    of these ideas once. We’ve only examined numbers and strings so far, but
    because they are representative of two of the three major type categories
    in Python, you already know more about several other types than you might
    think.
Types Share Operation Sets by Categories
As you’ve learned, strings are immutable sequences: they cannot be
      changed in place (the immutable part), and they are
      positionally ordered collections that are accessed by offset (the
      sequence part). It so happens that all the
      sequences we’ll study in this part of the book respond to the same
      sequence operations shown in this chapter at work on
      strings—concatenation, indexing, iteration, and so on. More formally,
      there are three major type (and operation) categories in Python that
      have this generic nature:
	Numbers (integer, floating-point, decimal, fraction,
          others)
	Support addition, multiplication, etc.

	Sequences (strings, lists, tuples)
	Support indexing, slicing, concatenation, etc.

	Mappings (dictionaries)
	Support indexing by key, etc.


I’m including the Python 3.X byte strings and 2.X Unicode strings
      I mentioned at the start of this chapter under the general “strings”
      label here (see Chapter 37). Sets are
      something of a category unto themselves (they don’t map keys to values
      and are not positionally ordered sequences), and we haven’t yet explored
      mappings on our in-depth tour (we will in the next chapter). However,
      many of the other types we will encounter will be similar to numbers and
      strings. For example, for any sequence objects X and Y:
	X + Y makes a new sequence
          object with the contents of both operands.

	X * N makes a new sequence
          object with N copies of the
          sequence operand X.


In other words, these operations work the same way on any kind of
      sequence, including strings, lists, tuples, and some user-defined object
      types. The only difference is that the new result object you get back is
      of the same type as the operands X
      and Y—if you concatenate lists, you
      get back a new list, not a string. Indexing, slicing, and other sequence
      operations work the same on all sequences, too; the type of the objects
      being processed tells Python which flavor of the task to perform.

Mutable Types Can Be Changed in Place
The immutable classification is an important constraint to be
      aware of, yet it tends to trip up new users. If an object type is
      immutable, you cannot change its value in place; Python raises an error
      if you try. Instead, you must run code to make a new object containing
      the new value. The major core types in Python break down as
      follows:
	Immutables (numbers, strings, tuples, frozensets)
	None of the object types in the immutable category support
            in-place changes, though we can always run expressions to make new
            objects and assign their results to variables as needed.

	Mutables (lists, dictionaries, sets, bytearray)
	Conversely, the mutable types can always be changed in place
            with operations that do not create new objects. Although such
            objects can be copied, in-place changes support direct
            modification.


Generally, immutable types give some degree of integrity by
      guaranteeing that an object won’t be changed by another part of a
      program. For a refresher on why this matters, see the discussion of
      shared object references in Chapter 6. To see how lists,
      dictionaries, and tuples participate in type categories, we need to move
      ahead to the next chapter.


Chapter Summary
In this chapter, we took an in-depth tour of the string object type.
    We learned about coding string literals, and we explored string
    operations, including sequence expressions, string method calls, and
    string formatting with both expressions and method calls. Along the way,
    we studied a variety of concepts in depth, such as slicing, method call
    syntax, and triple-quoted block strings. We also defined some core ideas
    common to a variety of types: sequences, for example, share an entire set
    of operations.
In the next chapter, we’ll continue our types tour with a look at
    the most general object collections in Python—lists and dictionaries. As
    you’ll find, much of what you’ve learned here will apply to those types as
    well. And as mentioned earlier, in the final part of this book we’ll
    return to Python’s string model to flesh out the details of Unicode text
    and binary data, which are of interest to some, but not all, Python
    programmers. Before moving on, though, here’s another chapter quiz to
    review the material covered here.

Test Your Knowledge: Quiz
	Can the string find method be
        used to search a list?

	Can a string slice expression be used on a list?

	How would you convert a character to its ASCII integer code? How
        would you convert the other way, from an integer to a
        character?

	How might you go about changing a string in Python?

	Given a string S with the
        value "s,pa,m", name two ways to
        extract the two characters in the middle.

	How many characters are there in the string "a\nb\x1f\000d"?

	Why might you use the string
        module instead of string method calls?



Test Your Knowledge: Answers
	No, because methods are always type-specific; that is, they only
        work on a single data type. Expressions like X+Y and built-in functions like len(X) are generic, though, and may work on
        a variety of types. In this case, for instance, the in membership expression has a similar
        effect as the string find, but it
        can be used to search both strings and lists. In Python 3.X, there is
        some attempt to group methods by categories (for example, the mutable
        sequence types list and bytearray have similar method sets), but
        methods are still more type-specific than other operation sets.

	Yes. Unlike methods, expressions are generic and apply to many
        types. In this case, the slice expression is really a sequence
        operation—it works on any type of sequence object, including strings,
        lists, and tuples. The only difference is that when you slice a list,
        you get back a new list.

	The built-in ord(S) function converts from a one-character
        string to an integer character code; chr(I) converts from the integer code back to a
        string. Keep in mind, though, that these integers are only ASCII codes
        for text whose characters are drawn only from ASCII character set. In
        the Unicode model, text strings are really sequences of Unicode code
        point identifying integers, which may fall outside the 7-bit range of
        numbers reserved by ASCII (more on Unicode in Chapter 4 and Chapter 37).

	Strings cannot be changed; they are immutable. However, you can
        achieve a similar effect by creating a new string—by concatenating,
        slicing, running formatting expressions, or using a method call like
        replace—and then assigning the
        result back to the original variable name.

	You can slice the string using S[2:4], or split on the comma and index the
        string using S.split(',')[1]. Try
        these interactively to see for yourself.

	Six. The string "a\nb\x1f\000d" contains the characters
        a, newline (\n), b, literal value 31 (a hex escape \x1f), literal value 0 (an octal escape \000), and d. Pass the string to the built-in len function to verify this, and print each
        of its character’s ord results to
        see the actual code point (identifying number) values. See Table 7-2 for more details on
        escapes.

	You should never use the string module instead of string object
        method calls today—it’s deprecated, and its calls are removed
        completely in Python 3.X. The only valid reason for using the string module at all today is for its other
        tools, such as predefined constants. You might also see it appear in
        what is now very old and dusty Python code (and books of the misty
        past—like the 1990s).



1 More mathematically minded readers (and students in my
          classes) sometimes detect a small asymmetry here: the leftmost item
          is at offset 0, but the rightmost is at offset −1. Alas, there is no
          such thing as a distinct −0 value in Python.
2 See also the Chapter 31 note
            about a str.format bug (or
            regression) in Pythons 3.2 and 3.3 concerning generic empty
            substitution targets for object attributes that define no __format__ handler. This impacted a
            working example from this book’s prior edition. While it may be a
            temporary regression, it does at the least underscore that this
            method is still a bit of a moving target—yet another reason to
            question the feature redundancy it implies.








Chapter 8. Lists and Dictionaries
Now that we’ve learned about numbers and strings, this chapter moves
  on to give the full story on Python’s list and
  dictionary object types—collections of other objects,
  and the main workhorses in almost all Python scripts. As you’ll see, both
  types are remarkably flexible: they can be changed in place, can grow and
  shrink on demand, and may contain and be nested in any other kind of object.
  By leveraging these types, you can build up and process arbitrarily rich
  information structures in your scripts.
Lists
The next stop on our built-in object tour is the Python
    list. Lists are Python’s most flexible ordered
    collection object type. Unlike strings, lists can contain any sort of
    object: numbers, strings, and even other lists. Also, unlike strings,
    lists may be changed in place by assignment to offsets and slices, list
    method calls, deletion statements, and more—they are mutable objects.
Python lists do the work of many of the collection data structures you
    might have to implement manually in lower-level languages such as C. Here
    is a quick look at their main properties. Python lists are:
	Ordered collections of arbitrary objects
	From a functional view, lists are just places to collect other
          objects so you can treat them as groups. Lists also maintain a
          left-to-right positional ordering among the items they contain
          (i.e., they are sequences).

	Accessed by offset
	Just as with strings, you can fetch a component object out of
          a list by indexing the list on the object’s offset. Because items in
          lists are ordered by their positions, you can also do tasks such as
          slicing and concatenation.

	Variable-length, heterogeneous, and arbitrarily nestable
	Unlike strings, lists can grow and shrink in place (their
          lengths can vary), and they can contain any sort of object, not just
          one-character strings (they’re heterogeneous). Because lists can
          contain other complex objects, they also support arbitrary nesting;
          you can create lists of lists of lists, and so on.

	Of the category “mutable sequence”
	In terms of our type category qualifiers, lists are mutable
          (i.e., can be changed in place) and can respond to all the sequence
          operations used with strings, such as indexing, slicing, and
          concatenation. In fact, sequence operations work the same on lists
          as they do on strings; the only difference is that sequence
          operations such as concatenation and slicing return new lists
          instead of new strings when applied to lists. Because lists are
          mutable, however, they also support other operations that strings
          don’t, such as deletion and index assignment operations, which
          change the lists in place.

	Arrays of object references
	Technically, Python lists contain zero or more references to
          other objects. Lists might remind you of arrays of pointers
          (addresses) if you have a background in some other languages.
          Fetching an item from a Python list is about as fast as indexing a C
          array; in fact, lists really are arrays inside the standard Python
          interpreter, not linked structures. As we learned in Chapter 6, though, Python always
          follows a reference to an object whenever the reference is used, so
          your program deals only with objects. Whenever you assign an object
          to a data structure component or variable name, Python always stores
          a reference to that same object, not a copy of it (unless you
          request a copy explicitly).


As a preview and reference, Table 8-1 summarizes common and
    representative list object operations. It is fairly complete for Python
    3.3, but for the full story, consult the Python standard library manual,
    or run a help(list) or dir(list) call interactively for a complete list
    of list methods—you can pass in a real list, or the word list, which is the name of the list data type.
    The set of methods here is especially prone to change—in fact, two are new
    as of Python 3.3.
Table 8-1. Common list literals and operations	Operation	Interpretation
	L = []
	An empty list

	L = [123, 'abc', 1.23, {}]
	Four items: indexes
            0..3

	L = ['Bob', 40.0, ['dev', 'mgr']]
	Nested
            sublists

	L = list('spam')
 L = list(range(-4, 4))
	List of an iterable’s
            items, list of successive integers

	L[i]
 L[i][j]
 L[i:j]
 len(L)
	Index, index of index,
            slice, length

	L1 + L2
 L * 3
	Concatenate,
            repeat

	for x in L: print(x)

            3 in L
	Iteration,
            membership

	L.append(4)
 L.extend([5,6,7])
 L.insert(i, X)
	Methods:
            growing

	L.index(X)
 L.count(X)
	Methods:
            searching

	L.sort()
 L.reverse()
 L.copy()
 L.clear()
	Methods: sorting, reversing,
 copying (3.3+), clearing (3.3+)

	L.pop(i)
 L.remove(X)
 del L[i]
 del L[i:j]
 L[i:j] = []
	Methods, statements:
            shrinking

	L[i] = 3
 L[i:j] = [4,5,6]
	Index assignment, slice
            assignment

	L = [x**2 for x in range(5)]
 list(map(ord, 'spam'))
	List comprehensions and
            maps (Chapter 4, Chapter 14, Chapter 20)


When written down as a literal expression, a list is coded as a
    series of objects (really, expressions that return objects) in square
    brackets, separated by commas. For instance, the second row in Table 8-1 assigns the variable
    L to a four-item list. A nested list is
    coded as a nested square-bracketed series (row 3), and the empty list is
    just a square-bracket pair with nothing inside (row 1).1
Many of the operations in Table 8-1 should look familiar, as
    they are the same sequence operations we put to work on strings
    earlier—indexing, concatenation, iteration, and so on. Lists also respond
    to list-specific method calls (which provide utilities such as sorting,
    reversing, adding items to the end, etc.), as well as in-place change
    operations (deleting items, assignment to indexes and slices, and so
    forth). Lists have these tools for change operations because they are a
    mutable object type.

Lists in Action
Perhaps the best way to understand lists is to see them at work.
    Let’s once again turn to some simple interpreter interactions to
    illustrate the operations in Table 8-1.
Basic List Operations
Because they are sequences, lists support many of the same operations as
      strings. For example, lists respond to the + and *
      operators much like strings—they mean concatenation and repetition here too, except that the
      result is a new list, not a string:
% python
>>> len([1, 2, 3])                           # Length
3
>>> [1, 2, 3] + [4, 5, 6]                    # Concatenation
[1, 2, 3, 4, 5, 6]
>>> ['Ni!'] * 4                              # Repetition
['Ni!', 'Ni!', 'Ni!', 'Ni!']
Although the + operator works
      the same for lists and strings, it’s important to know that it expects
      the same sort of sequence on both sides—otherwise,
      you get a type error when the code runs. For instance, you cannot
      concatenate a list and a string unless you first convert the list to a
      string (using tools such as str or
      % formatting) or convert the string
      to a list (the list built-in function
      does the trick):
>>> str([1, 2]) + "34"                       # Same as "[1, 2]" + "34"
'[1, 2]34'
>>> [1, 2] + list("34")                      # Same as [1, 2] + ["3", "4"]
[1, 2, '3', '4']

List Iteration and Comprehensions
More generally, lists respond to all the sequence operations we used on strings
      in the prior chapter, including iteration tools:
>>> 3 in [1, 2, 3]                           # Membership
True
>>> for x in [1, 2, 3]:
...     print(x, end=' ')                    # Iteration (2.X uses: print x,)
...
1 2 3
We will talk more formally about for iteration and the range built-ins of Table 8-1
      in Chapter 13, because they are related to
      statement syntax. In short, for loops
      step through items in any sequence from left to right, executing one or
      more statements for each item; range
      produces successive integers.
The last items in Table 8-1, list comprehensions
      and map calls, are covered in more
      detail in Chapter 14 and expanded
      on in Chapter 20. Their basic
      operation is straightforward, though—as introduced in Chapter 4, list comprehensions are a
      way to build a new list by applying an expression to each item in a
      sequence (really, in any iterable), and are close relatives to for loops:
>>> res = [c * 4 for c in 'SPAM']            # List comprehensions
>>> res
['SSSS', 'PPPP', 'AAAA', 'MMMM']
This expression is functionally equivalent to a for loop that builds up a list of results
      manually, but as we’ll learn in later chapters, list comprehensions are
      simpler to code and likely faster to run today:
>>> res = []
>>> for c in 'SPAM':                         # List comprehension equivalent
...     res.append(c * 4)
...
>>> res
['SSSS', 'PPPP', 'AAAA', 'MMMM']
As also introduced briefly in Chapter 4, the map built-in function does similar work, but applies a function to items in a
      sequence and collects all the results in a new list:
>>> list(map(abs, [−1, −2, 0, 1, 2]))        # Map a function across a sequence
[1, 2, 0, 1, 2]
Because we’re not quite ready for the full iteration story, we’ll
      postpone further details for now, but watch for a similar comprehension
      expression for dictionaries later in this chapter.

Indexing, Slicing, and Matrixes
Because lists are sequences, indexing and slicing work the same way for
      lists as they do for strings. However, the result of indexing a list is
      whatever type of object lives at the offset you specify, while slicing a
      list always returns a new list:
>>> L = ['spam', 'Spam', 'SPAM!']
>>> L[2]                              # Offsets start at zero
'SPAM!'
>>> L[−2]                             # Negative: count from the right
'Spam'
>>> L[1:]                             # Slicing fetches sections
['Spam', 'SPAM!']
One note here: because you can nest lists and other object types
      within lists, you will sometimes need to string together index
      operations to go deeper into a data structure. For example, one of the
      simplest ways to represent matrixes (multidimensional arrays) in Python
      is as lists with nested sublists. Here’s a basic 3 × 3 two-dimensional
      list-based array:
>>> matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
With one index, you get an entire row (really, a nested sublist),
      and with two, you get an item within the row:
>>> matrix[1]
[4, 5, 6]
>>> matrix[1][1]
5
>>> matrix[2][0]
7
>>> matrix = [[1, 2, 3],
...           [4, 5, 6],
...           [7, 8, 9]]
>>> matrix[1][1]
5
Notice in the preceding interaction that lists can naturally span
      multiple lines if you want them to because they are contained by a pair
      of brackets; the “...”s here are Python’s continuation line prompt (see
      Chapter 4 for comparable code
      without the “...”s, and watch for more on syntax in the next part of the
      book).
For more on matrixes, watch later in this chapter for a
      dictionary-based matrix representation, which can be more efficient when
      matrixes are largely empty. We’ll also continue this thread in Chapter 20 where we’ll write additional
      matrix code, especially with list comprehensions. For high-powered
      numeric work, the NumPy extension mentioned in Chapter 4 and Chapter 5 provides other ways to handle
      matrixes.

Changing Lists in Place
Because lists are mutable, they support operations that change a list
      object in place. That is, the operations in this
      section all modify the list object directly—overwriting its former
      value—without requiring that you make a new copy, as you had to for
      strings. Because Python deals only in object references, this
      distinction between changing an object in place and creating a new
      object matters; as discussed in Chapter 6, if you change an object in
      place, you might impact more than one reference to it at the same
      time.
Index and slice assignments
When using a list, you can change its contents by assigning to either a particular
        item (offset) or an entire section (slice):
>>> L = ['spam', 'Spam', 'SPAM!']
>>> L[1] = 'eggs'                     # Index assignment
>>> L
['spam', 'eggs', 'SPAM!']

>>> L[0:2] = ['eat', 'more']          # Slice assignment: delete+insert
>>> L                                 # Replaces items 0,1
['eat', 'more', 'SPAM!']
Both index and slice assignments are in-place changes—they
        modify the subject list directly, rather than generating a new list
        object for the result. Index assignment in Python
        works much as it does in C and most other languages: Python replaces
        the single object reference at the designated offset with a new
        one.
Slice assignment, the last operation in the
        preceding example, replaces an entire section of a list in a single
        step. Because it can be a bit complex, it is perhaps best thought of
        as a combination of two steps:
	Deletion. The slice you specify to the
            left of the = is
            deleted.

	Insertion. The new items contained in
            the iterable object to the right of the = are inserted into the list on the
            left, at the place where the old slice was deleted.2


This isn’t what really happens, but it can help clarify why the
        number of items inserted doesn’t have to match the number of items
        deleted. For instance, given a list L of two or more items, an assignment
        L[1:2]=[4,5] replaces one item with
        two—Python first deletes the one-item slice at [1:2] (from offset 1, up to but not
        including offset 2), then inserts both 4 and 5
        where the deleted slice used to be.
This also explains why the second slice assignment in the
        following is really an insert—Python replaces an empty slice at
        [1:1] with two items; and why the
        third is really a deletion—Python deletes the slice (the item at
        offset 1), and then inserts nothing:
>>> L = [1, 2, 3]
>>> L[1:2] = [4, 5]                   # Replacement/insertion
>>> L
[1, 4, 5, 3]
>>> L[1:1] = [6, 7]                   # Insertion (replace nothing)
>>> L
[1, 6, 7, 4, 5, 3]
>>> L[1:2] = []                       # Deletion (insert nothing)
>>> L
[1, 7, 4, 5, 3]
In effect, slice assignment replaces an entire section, or
        “column,” all at once—even if the column or its replacement is empty.
        Because the length of the sequence being assigned does not have to
        match the length of the slice being assigned to, slice assignment can
        be used to replace (by overwriting), expand (by inserting), or shrink
        (by deleting) the subject list. It’s a powerful operation, but
        frankly, one that you may not see very often in practice. There are
        often more straightforward and mnemonic ways to replace, insert, and
        delete (concatenation, and the insert, pop, and remove list methods, for example), which
        Python programmers tend to prefer in practice.
On the other hand, this operation can be used as a sort of
        in-place concatenation at the front of the list—per the next section’s
        method coverage, something the list’s extend does more mnemonically at list end:
>>> L = [1]
>>> L[:0] = [2, 3, 4]        # Insert all at :0, an empty slice at front
>>> L
[2, 3, 4, 1]
>>> L[len(L):] = [5, 6, 7]   # Insert all at len(L):, an empty slice at end
>>> L
[2, 3, 4, 1, 5, 6, 7]
>>> L.extend([8, 9, 10])     # Insert all at end, named method
>>> L
[2, 3, 4, 1, 5, 6, 7, 8, 9, 10]

List method calls
Like strings, Python list objects also support type-specific
        method calls, many of which change the subject list in
        place:
>>> L = ['eat', 'more', 'SPAM!']
>>> L.append('please')                # Append method call: add item at end
>>> L
['eat', 'more', 'SPAM!', 'please']
>>> L.sort()                          # Sort list items ('S' < 'e')
>>> L
['SPAM!', 'eat', 'more', 'please']
Methods were introduced in Chapter 7. In brief, they are functions
        (really, object attributes that reference functions) that are
        associated with and act upon particular objects. Methods provide
        type-specific tools; the list methods presented here, for instance,
        are generally available only for lists.
Perhaps the most commonly used list method is append,
        which simply tacks a single item (object reference) onto the end of
        the list. Unlike concatenation, append expects you to pass in a single
        object, not a list. The effect of L.append(X) is similar to L+[X], but while the former changes L in place, the latter makes a new
        list.3 The sort method
        orders the list’s items here, but merits a section of its own.

More on sorting lists
Another commonly seen method, sort,
        orders a list in place; it uses Python standard comparison tests
        (here, string comparisons, but applicable to every object type), and
        by default sorts in ascending order. You can modify sort behavior by
        passing in keyword arguments—a special
        “name=value” syntax in function calls that specifies passing by name
        and is often used for giving configuration options.
In sorts, the reverse
        argument allows sorts to be made in descending instead of
        ascending order, and the key
        argument gives a one-argument function that returns the value to be
        used in sorting—the string object’s standard lower case converter in the following (though its newer casefold may
        handle some types of Unicode text better):
>>> L = ['abc', 'ABD', 'aBe']
>>> L.sort()                                # Sort with mixed case
>>> L
['ABD', 'aBe', 'abc']
>>> L = ['abc', 'ABD', 'aBe']
>>> L.sort(key=str.lower)                   # Normalize to lowercase
>>> L
['abc', 'ABD', 'aBe']
>>>
>>> L = ['abc', 'ABD', 'aBe']
>>> L.sort(key=str.lower, reverse=True)     # Change sort order
>>> L
['aBe', 'ABD', 'abc']
The sort key argument might
        also be useful when sorting lists of dictionaries, to pick out a sort
        key by indexing each dictionary. We’ll study dictionaries later in
        this chapter, and you’ll learn more about keyword function arguments in Part IV.
Note
Comparison and sorts in 3.X: In Python
          2.X, relative magnitude comparisons of differently typed objects
          (e.g., a string and a list) work as first noted in Chapter 5—the language defines a fixed ordering
          among different types, which is deterministic, if not aesthetically
          pleasing. That is, the ordering is based on the names of the types
          involved: all integers are less than all strings, for example,
          because "int" is less than
          "str". Comparisons never
          automatically convert types, except when comparing numeric type
          objects.
In Python 3.X, this has changed: magnitude comparison of mixed
          types raises an exception instead of falling back on the fixed
          cross-type ordering. Because sorting uses comparisons internally,
          this means that [1, 2,
          'spam'].sort() succeeds in Python 2.X but will raise an
          exception in Python 3.X. Sorting mixed-types fails by proxy.
Python 3.X also no longer supports passing in an arbitrary
          comparison function to sorts, to implement
          different orderings. The suggested workaround is to use the key=func
          keyword argument to code value transformations during the sort, and
          use the reverse=True keyword
          argument to change the sort order to descending. These were the
          typical uses of comparison functions in the past.

One warning here: beware that append and
        sort change the associated list
        object in place, but don’t return the list as a result (technically,
        they both return a value called None). If you say something like L=L.append(X), you won’t get the modified
        value of L (in fact, you’ll lose
        the reference to the list altogether!). When you use attributes such
        as append and sort, objects are changed as a side effect,
        so there’s no reason to reassign.
Partly because of such constraints, sorting is also available in
        recent Pythons as a built-in function, which sorts any collection (not
        just lists) and returns a new list for the result (instead of in-place
        changes):
>>> L = ['abc', 'ABD', 'aBe']
>>> sorted(L, key=str.lower, reverse=True)          # Sorting built-in
['aBe', 'ABD', 'abc']

>>> L = ['abc', 'ABD', 'aBe']
>>> sorted([x.lower() for x in L], reverse=True)    # Pretransform items: differs!
['abe', 'abd', 'abc']
Notice the last example here—we can convert to lowercase prior
        to the sort with a list comprehension, but the result does not contain
        the original list’s values as it does with the key argument. The latter is applied
        temporarily during the sort, instead of changing the values to be
        sorted altogether. As we move along, we’ll see contexts in which
        the sorted built-in
        can sometimes be more useful than the sort
        method.

Other common list methods
Like strings, lists have other methods that perform other
        specialized operations. For instance, reverse
        reverses the list in-place, and the extend and pop methods insert multiple items at and
        delete an item from the end of the list, respectively. There is
        also a reversed
        built-in function that works much like sorted and returns a new result object, but
        it must be wrapped in a list call
        in both 2.X and 3.X here because its result is an iterator that
        produces results on demand (more on iterators later):
>>> L = [1, 2]
>>> L.extend([3, 4, 5])              # Add many items at end (like in-place +)
>>> L
[1, 2, 3, 4, 5]
>>> L.pop()                          # Delete and return last item (by default: −1)
5
>>> L
[1, 2, 3, 4]
>>> L.reverse()                      # In-place reversal method
>>> L
[4, 3, 2, 1]
>>> list(reversed(L))                # Reversal built-in with a result (iterator)
[1, 2, 3, 4]
Technically, the extend
        method always iterates through and adds each item in an
        iterable object, whereas append simply adds a single item as is
        without iterating through it—a distinction that will be more
        meaningful by Chapter 14. For
        now, it’s enough to know that extend adds many items, and append adds one. In some types of programs, the list pop method is
        often used in conjunction with append to implement a quick last-in-first-out (LIFO)
        stack structure. The end of the list serves as
        the top of the stack:
>>> L = []
>>> L.append(1)                      # Push onto stack
>>> L.append(2)
>>> L
[1, 2]
>>> L.pop()                          # Pop off stack
2
>>> L
[1]
The pop method also accepts
        an optional offset of the item to be deleted and returned (the default
        is the last item at offset −1). Other list methods remove an item by
        value (remove),
        insert an item at an offset (insert),
        count the number of occurrences (count), and search for an item’s offset (index—a
        search for the index of an item, not to be
        confused with indexing!):
>>> L = ['spam', 'eggs', 'ham']
>>> L.index('eggs')                  # Index of an object (search/find)
1
>>> L.insert(1, 'toast')             # Insert at position
>>> L
['spam', 'toast', 'eggs', 'ham']
>>> L.remove('eggs')                 # Delete by value
>>> L
['spam', 'toast', 'ham']
>>> L.pop(1)                         # Delete by position
'toast'
>>> L
['spam', 'ham']
>>> L.count('spam')                  # Number of occurrences
1
Note that unlike other list methods, count and index do not change the list itself, but
        return information about its content. See other documentation sources
        or experiment with these calls interactively on your own to learn more
        about list methods.

Other common list operations
Because lists are mutable, you can use the del statement
        to delete an item or section in place:
>>> L = ['spam', 'eggs', 'ham', 'toast']
>>> del L[0]                         # Delete one item
>>> L
['eggs', 'ham', 'toast']
>>> del L[1:]                        # Delete an entire section
>>> L                                # Same as L[1:] = []
['eggs']
As we saw earlier, because slice assignment is a deletion plus an
        insertion, you can also delete a section of a list by assigning an
        empty list to a slice (L[i:j]=[]);
        Python deletes the slice named on the left, and then inserts nothing.
        Assigning an empty list to an index, on the other hand, just stores a
        reference to the empty list object in the specified slot, rather than
        deleting an item:
>>> L = ['Already', 'got', 'one']
>>> L[1:] = []
>>> L
['Already']
>>> L[0] = []
>>> L
[[]]
Although all the operations just discussed are typical, there
        may be additional list methods and operations not illustrated here.
        The method set, for example, may change over time, and in fact has in
        Python 3.3—its new L.copy() method
        makes a top-level copy of the list, much like L[:] and list(L), but is symmetric with copy in sets and dictionaries. For a
        comprehensive and up-to-date list of type tools, you should always
        consult Python’s manuals, Python’s dir and help functions (which we first met in Chapter 4), or one of the reference
        texts mentioned in the preface.
And because it’s such a common hurdle, I’d also like to remind
        you again that all the in-place change operations discussed here work
        only for mutable objects: they won’t work on strings (or tuples,
        discussed in Chapter 9), no matter how
        hard you try. Mutability is an inherent property of each object
        type.



Dictionaries
Along with lists, dictionaries are one
    of the most flexible built-in data types in Python. If you
    think of lists as ordered collections of objects, you can think of
    dictionaries as unordered collections; the chief distinction is that in
    dictionaries, items are stored and fetched by key,
    instead of by positional offset. While lists can serve roles similar to
    arrays in other languages, dictionaries take the place of records, search
    tables, and any other sort of aggregation where item names are more
    meaningful than item positions.
For example, dictionaries can replace many of the searching
    algorithms and data structures you might have to implement manually in
    lower-level languages—as a highly optimized built-in type, indexing a
    dictionary is a very fast search operation. Dictionaries also sometimes do
    the work of records, structs, and symbol tables used in other languages;
    can be used to represent sparse (mostly empty) data structures; and much
    more. Here’s a rundown of their main properties. Python dictionaries
    are:
	Accessed by key, not offset position
	Dictionaries are sometimes called associative
          arrays or hashes (especially by
          users of other scripting languages). They associate a set of values
          with keys, so you can fetch an item out of a dictionary using the
          key under which you originally stored it. You use the same indexing
          operation to get components in a dictionary as you do in a list, but
          the index takes the form of a key, not a relative offset.

	Unordered collections of arbitrary objects
	Unlike in a list, items stored in a dictionary aren’t kept in
          any particular order; in fact, Python pseudo-randomizes their
          left-to-right order to provide quick lookup. Keys provide the
          symbolic (not physical) locations of items in a dictionary.

	Variable-length, heterogeneous, and arbitrarily nestable
	Like lists, dictionaries can grow and shrink in place (without
          new copies being made), they can contain objects of any type, and
          they support nesting to any depth (they can contain lists, other
          dictionaries, and so on). Each key can have
          just one associated value, but that value can
          be a collection of multiple objects if needed,
          and a given value can be stored under any number of keys.

	Of the category “mutable mapping”
	You can change dictionaries in place by assigning to indexes
          (they are mutable), but they don’t support the sequence operations
          that work on strings and lists. Because dictionaries are unordered
          collections, operations that depend on a fixed positional order
          (e.g., concatenation, slicing) don’t make sense. Instead,
          dictionaries are the only built-in, core type representatives of the
          mapping category—objects that map keys to
          values. Other mappings in Python are created by imported
          modules.

	Tables of object references (hash tables)
	If lists are arrays of object references that support access
          by position, dictionaries are unordered tables of object references
          that support access by key. Internally, dictionaries are implemented
          as hash tables (data structures that support very fast retrieval),
          which start small and grow on demand. Moreover, Python employs
          optimized hashing algorithms to find keys, so retrieval is quick.
          Like lists, dictionaries store object references (not copies, unless
          you ask for them explicitly).


For reference and preview again, Table 8-2 summarizes some of
    the most common and representative dictionary operations, and is
    relatively complete as of Python 3.3. As usual, though, see the library
    manual or run a dir(dict) or help(dict) call for a complete list—dict is the name of the type. When coded as a
    literal expression, a dictionary is written as a series of
    key:value pairs,
    separated by commas, enclosed in curly braces.4 An empty dictionary is an empty set of braces, and you can
    nest dictionaries by simply coding one as a value inside another
    dictionary, or within a list or tuple.
Table 8-2. Common dictionary literals and operations	Operation	Interpretation
	D = {}
	Empty dictionary

	D = {'name': 'Bob', 'age': 40}
	Two-item
            dictionary

	E = {'cto': {'name': 'Bob', 'age': 40}}
	Nesting

	D = dict(name='Bob', age=40)
 D = dict([('name', 'Bob'), ('age', 40)])
 D = dict(zip(keyslist, valueslist))
 D = dict.fromkeys(['name', 'age'])
	Alternative construction
            techniques:
 keywords, key/value pairs, zipped
            key/value pairs, key lists

	D['name']
 E['cto']['age']
	Indexing by key

	'age' in D
	Membership: key present
            test

	D.keys()
 D.values()
 D.items()
 D.copy()
 D.clear()
 D.update(D2)
 D.get(key, default?)

            D.pop(key, default?)
 D.setdefault(key, default?)

            D.popitem()
	Methods: all keys,
 all values,
 all key+value tuples,
 copy (top-level),
 clear (remove all items),
 merge by keys,
 fetch by key, if absent default (or None),

            remove by key, if absent default (or error)

            fetch by key, if absent set default (or None),

            remove/return any (key, value) pair; etc.

	len(D)
	Length: number of stored
            entries

	D[key] = 42
	Adding keys, changing key
            values

	del D[key]
	Deleting entries by key

	list(D.keys())
 D1.keys() & D2.keys()
	Dictionary views (Python
            3.X)

	D.viewkeys(), D.viewvalues()
	Dictionary views (Python 2.7)

	D = {x: x*2 for x in range(10)}
	Dictionary comprehensions
            (Python 3.X, 2.7)



Dictionaries in Action
As Table 8-2
    suggests, dictionaries are indexed by key, and nested dictionary entries
    are referenced by a series of indexes (keys in square brackets). When
    Python creates a dictionary, it stores its items in any left-to-right
    order it chooses; to fetch a value back, you supply the key with which it
    is associated, not its relative position. Let’s go back to the interpreter
    to get a feel for some of the dictionary operations in Table 8-2.
Basic Dictionary Operations
In normal operation, you create dictionaries with literals and store and access
      items by key with indexing:
% python
>>> D = {'spam': 2, 'ham': 1, 'eggs': 3}      # Make a dictionary
>>> D['spam']                                 # Fetch a value by key
2
>>> D                                         # Order is "scrambled"
{'eggs': 3, 'spam': 2, 'ham': 1}
Here, the dictionary is assigned to the variable D; the value of the key 'spam' is the integer 2, and so on. We use the same square bracket
      syntax to index dictionaries by key as we did to index lists by offset,
      but here it means access by key, not by position.
Notice the end of this example—much like sets, the left-to-right
      order of keys in a dictionary will almost always be different
      from what you originally typed. This is on purpose: to implement fast
      key lookup (a.k.a. hashing), keys need to be reordered in memory. That’s
      why operations that assume a fixed left-to-right order (e.g., slicing,
      concatenation) do not apply to dictionaries; you can fetch values only
      by key, not by position. Technically, the ordering is
      pseudo-random—it’s not truly random (you might be
      able to decipher it given Python’s source code and a lot of time to
      kill), but it’s arbitrary, and might vary per release and platform, and
      even per interactive session in Python 3.3.
The built-in len function
      works on dictionaries, too; it returns the number of items
      stored in the dictionary or, equivalently, the length of its keys list.
      The dictionary in membership operator
      allows you to test for key existence, and the keys method returns
      all the keys in the dictionary. The latter of these can be useful for
      processing dictionaries sequentially, but you shouldn’t depend on the
      order of the keys list. Because the keys result can be used as a normal list,
      however, it can always be sorted if order matters (more on sorting and
      dictionaries later):
>>> len(D)                                    # Number of entries in dictionary
3
>>> 'ham' in D                                # Key membership test alternative
True
>>> list(D.keys())                            # Create a new list of D's keys
['eggs', 'spam', 'ham']
Observe the second expression in this listing. As mentioned
      earlier, the in membership test used
      for strings and lists also works on dictionaries—it checks whether a key
      is stored in the dictionary. Technically, this works because
      dictionaries define keys iterators, and use fast
      direct lookups whenever possible. Other types provide iterators that
      reflect their common uses; files, for example, have iterators that read
      line by line. We’ll discuss iterators more formally in Chapter 14 and Chapter 20.
Also note the syntax of the last example in this listing. We have
      to enclose it in a list call in
      Python 3.X for similar reasons—keys
      in 3.X returns an iterable object, instead of a
      physical list. The list call forces
      it to produce all its values at once so we can print them interactively,
      though this call isn’t required in some other contexts. In 2.X, keys builds and returns an actual list, so the
      list call isn’t even needed to
      display a result; more on this later in this chapter.

Changing Dictionaries in Place
Let’s continue with our interactive session. Dictionaries, like lists, are
      mutable, so you can change, expand, and shrink them in place without
      making new dictionaries: simply assign a value to a key to change or
      create an entry. The del statement
      works here, too; it deletes the entry associated with the key specified
      as an index. Notice also the nesting of a list inside a dictionary in
      this example (the value of the key 'ham'). All collection data types in Python
      can nest inside each other arbitrarily:
>>> D
{'eggs': 3, 'spam': 2, 'ham': 1}

>>> D['ham'] = ['grill', 'bake', 'fry']           # Change entry (value=list)
>>> D
{'eggs': 3, 'spam': 2, 'ham': ['grill', 'bake', 'fry']}

>>> del D['eggs']                                 # Delete entry
>>> D
{'spam': 2, 'ham': ['grill', 'bake', 'fry']}

>>> D['brunch'] = 'Bacon'                         # Add new entry
>>> D
{'brunch': 'Bacon', 'spam': 2, 'ham': ['grill', 'bake', 'fry']}
Like lists, assigning to an existing index in a dictionary changes
      its associated value. Unlike lists, however, whenever you assign a
      new dictionary key (one that hasn’t been assigned
      before) you create a new entry in the dictionary, as was done in the
      previous example for the key 'brunch'. This doesn’t work for lists because
      you can only assign to existing list offsets—Python considers an offset
      beyond the end of a list out of bounds and raises an error. To expand a
      list, you need to use tools such as the append method or slice assignment
      instead.

More Dictionary Methods
Dictionary methods provide a variety of type-specific tools. For instance,
      the dictionary values and
      items methods return all of the
      dictionary’s values and (key,value) pair tuples, respectively; along with keys, these are
      useful in loops that need to step through dictionary entries one by one
      (we’ll start coding examples of such loops in the next section). As with
      keys, these two methods also return
      iterable objects in 3.X, so wrap them in a list call there to collect their values all at
      once for display:
>>> D = {'spam': 2, 'ham': 1, 'eggs': 3}
>>> list(D.values())
[3, 2, 1]
>>> list(D.items())
 [('eggs', 3), ('spam', 2), ('ham', 1)]
In realistic programs that gather data as they run, you often
      won’t be able to predict what will be in a dictionary before the program
      is launched, much less when it’s coded. Fetching a nonexistent key is
      normally an error, but the get method returns
      a default value—None, or a passed-in
      default—if the key doesn’t exist. It’s an easy way to fill in a default
      for a key that isn’t present, and avoid a missing-key error when your
      program can’t anticipate contents ahead of time:
>>> D.get('spam')                          # A key that is there
2
>>> print(D.get('toast'))                  # A key that is missing
None
>>> D.get('toast', 88)
88
The update method provides
      something similar to concatenation for dictionaries,
      though it has nothing to do with left-to-right ordering (again, there is
      no such thing in dictionaries). It merges the keys
      and values of one dictionary into another, blindly overwriting values of
      the same key if there’s a clash:
>>> D
{'eggs': 3, 'spam': 2, 'ham': 1}
>>> D2 = {'toast':4, 'muffin':5}           # Lots of delicious scrambled order here
>>> D.update(D2)
>>> D
{'eggs': 3, 'muffin': 5, 'toast': 4, 'spam': 2, 'ham': 1}
Notice how mixed up the key order is in the last result; again,
      that’s just how dictionaries work. Finally, the dictionary pop method
      deletes a key from a dictionary and returns the value it had. It’s
      similar to the list pop method, but
      it takes a key instead of an optional position:
# pop a dictionary by key
>>> D
{'eggs': 3, 'muffin': 5, 'toast': 4, 'spam': 2, 'ham': 1}
>>> D.pop('muffin')
5
>>> D.pop('toast')                         # Delete and return from a key
4
>>> D
{'eggs': 3, 'spam': 2, 'ham': 1}

# pop a list by position
>>> L = ['aa', 'bb', 'cc', 'dd']
>>> L.pop()                                # Delete and return from the end
'dd'
>>> L
['aa', 'bb', 'cc']
>>> L.pop(1)                               # Delete from a specific position
'bb'
>>> L
['aa', 'cc']
Dictionaries also provide a copy method; we’ll revisit this in Chapter 9, as it’s a way to
      avoid the potential side effects of shared references to the same
      dictionary. In fact, dictionaries come with more methods than those
      listed in Table 8-2;
      see the Python library manual, dir
      and help, or other reference sources
      for a comprehensive list.
Note
Your dictionary ordering may vary: Don’t be
        alarmed if your dictionaries print in a different order than shown
        here. As mentioned, key order is arbitrary, and might vary per
        release, platform, and interactive session in 3.3 (and quite possibly
        per day of the week, and phase of the moon!).
Most of the dictionary examples in this book reflect Python
        3.3’s key ordering, but it has changed both since and prior to 3.0.
        Your Python’s key order may vary, but you’re not supposed to care
        anyhow: dictionaries are processed by key, not position. Programs
        shouldn’t rely on the arbitrary order of keys in dictionaries, even if
        shown in books.
There are extension types in Python’s standard library that
        maintain insertion order among their keys—see OrderedDict in the collections module—but they are hybrids that
        incur extra space and speed overheads to achieve their extra utility,
        and are not true dictionaries. In short, keys are kept redundantly in
        a linked list to support sequence operations.
As we’ll see in Chapter 9, this module also
        implements a namedtuple that allows
        tuple items to be accessed by both attribute name and sequence
        position—a sort of tuple/class/dictionary hybrid that adds processing
        steps and is not a core object type in any event. Python’s library
        manual has the full story on these and other extension types.


Example: Movie Database
Let’s look at a more realistic dictionary example. In honor of Python’s
      namesake, the following example creates a simple in-memory Monty Python
      movie database, as a table that maps movie release date
      years (the keys) to movie
      titles (the values). As coded, you fetch movie
      names by indexing on release year strings:
>>> table = {'1975': 'Holy Grail',              # Key: Value
...          '1979': 'Life of Brian',
...          '1983': 'The Meaning of Life'}
>>>
>>> year  = '1983'
>>> movie = table[year]                         # dictionary[Key] => Value
>>> movie
'The Meaning of Life'

>>> for year in table:                          # Same as: for year in table.keys()
...     print(year + '\t' + table[year])
...
1979    Life of Brian
1975    Holy Grail
1983    The Meaning of Life
The last command uses a for
      loop, which we previewed in Chapter 4 but haven’t covered in
      detail yet. If you aren’t familiar with for loops, this command simply iterates
      through each key in the table and prints a tab-separated list of keys
      and their values. We’ll learn more about for loops in Chapter 13.
Dictionaries aren’t sequences like lists and strings, but if you
      need to step through the items in a dictionary, it’s easy—calling the
      dictionary keys method returns all
      stored keys, which you can iterate through with a
      for. If needed, you can index from
      key to value inside the for loop as you go, as was done in this
      code.
In fact, Python also lets you step through a dictionary’s keys
      list without actually calling the keys method in most for loops. For any dictionary D, saying for key in
      D works the same as saying the complete for key in D.keys(). This is really just
      another instance of the iterators mentioned
      earlier, which allow the in
      membership operator to work on dictionaries as well; more on iterators
      later in this book.
Preview: Mapping values to keys
Notice how the prior table maps year to titles, but not vice versa. If
        you want to map the other way—titles to years—you can either code the
        dictionary differently, or use methods like items that give searchable sequences, though
        using them to best effect requires more background information than we
        yet have:
>>> table = {'Holy Grail':          '1975',        # Key=>Value (title=>year)
...          'Life of Brian':       '1979',
...          'The Meaning of Life': '1983'}
>>>
>>> table['Holy Grail']
'1975'

>>> list(table.items())                            # Value=>Key (year=>title)
[('The Meaning of Life', '1983'), ('Holy Grail', '1975'), ('Life of Brian', '1979')]
>>> [title for (title, year) in table.items() if year == '1975']
['Holy Grail']
The last command here is in part a preview for the
        comprehension syntax introduced in Chapter 4 and covered in full in
        Chapter 14. In short, it scans
        the dictionary’s (key, value) tuple pairs returned by the items method, selecting keys having a
        specified value. The net effect is to index
        backward—from value to key, instead of key to
        value—useful if you want to store data just once and map backward only
        rarely (searching through sequences like this is generally much slower
        than a direct key index).
In fact, although dictionaries by nature map keys to values
        unidirectionally, there are multiple ways to map values back to keys
        with a bit of extra generalizable code:
>>> K = 'Holy Grail'
>>> table[K]              # Key=>Value (normal usage)
'1975'

>>> V = '1975'
>>> [key for (key, value) in table.items() if value == V]         # Value=>Key
['Holy Grail']
>>> [key for key in table.keys() if table[key] == V]              # Ditto
['Holy Grail']
Note that both of the last two commands return a
        list of titles: in dictionaries, there’s just
        one value per key, but there may be
        many keys per value. A given value may be stored
        under multiple keys (yielding multiple keys per value), and a value
        might be a collection itself (supporting multiple values per key). For
        more on this front, also watch for a dictionary inversion function in
        Chapter 32’s mapattrs.py example—code that would surely
        stretch this preview past its breaking point if included here. For
        this chapter’s purposes, let’s explore more dictionary basics.


Dictionary Usage Notes
Dictionaries are fairly straightforward tools once you get the hang of
      them, but here are a few additional pointers and reminders you should be
      aware of when using them:
	Sequence operations don’t
          work. Dictionaries are mappings, not sequences; because there’s no notion
          of ordering among their items, things like concatenation (an ordered
          joining) and slicing (extracting a contiguous section) simply don’t
          apply. In fact, Python raises an error when your code runs if you
          try to do such things.

	Assigning to new indexes adds
          entries. Keys can be created when you write a dictionary literal
          (embedded in the code of the literal itself), or when you assign
          values to new keys of an existing dictionary object individually.
          The end result is the same.

	Keys need not always be
          strings. Our examples so far have used strings as keys,
          but any other immutable objects work just as
          well. For instance, you can use integers as keys, which makes the
          dictionary look much like a list (when indexing, at least). Tuples
          may be used as dictionary keys too, allowing compound key
          values—such as dates and IP addresses—to have associated values.
          User-defined class instance objects (discussed in Part VI) can also be used as keys, as long as
          they have the proper protocol methods; roughly, they need to tell
          Python that their values are “hashable” and thus won’t change, as
          otherwise they would be useless as fixed keys. Mutable objects such
          as lists, sets, and other dictionaries don’t work as keys, but are
          allowed as values.


Using dictionaries to simulate flexible lists: Integer
        keys
The last point in the prior list is important enough to demonstrate with a
        few examples. When you use lists, it is illegal to assign to an offset
        that is off the end of the list:
>>> L = []
>>> L[99] = 'spam'
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
IndexError: list assignment index out of range
Although you can use repetition to preallocate as big a list as
        you’ll need (e.g., [0]*100), you
        can also do something that looks similar with dictionaries that does
        not require such space allocations. By using integer keys,
        dictionaries can emulate lists that seem to grow on offset
        assignment:
>>> D = {}
>>> D[99] = 'spam'
>>> D[99]
'spam'
>>> D
{99: 'spam'}
Here, it looks as if D is a
        100-item list, but it’s really a dictionary with a single entry; the
        value of the key 99 is the string
        'spam'. You can access this
        structure with offsets much like a list, catching nonexistent keys
        with get or in tests if required, but you don’t have to
        allocate space for all the positions you might ever need to assign
        values to in the future. When used like this, dictionaries are like
        more flexible equivalents of lists.
As another example, we might also employ integer keys in our
        first movie database’s code earlier to avoid
        quoting the year, albeit at the expense of some expressiveness (keys
        cannot contain nondigit characters):
>>> table = {1975: 'Holy Grail',
...          1979: 'Life of Brian',              # Keys are integers, not strings
...          1983: 'The Meaning of Life'}
>>> table[1975]
'Holy Grail'
>>> list(table.items())
[(1979, 'Life of Brian'), (1983, 'The Meaning of Life'), (1975, 'Holy Grail')]

Using dictionaries for sparse data structures: Tuple
        keys
In a similar way, dictionary keys are also commonly leveraged to implement sparse data
        structures—for example, multidimensional arrays where only a few
        positions have values stored in them:
>>> Matrix = {}
>>> Matrix[(2, 3, 4)] = 88
>>> Matrix[(7, 8, 9)] = 99
>>>
>>> X = 2; Y = 3; Z = 4           # ; separates statements: see Chapter 10
>>> Matrix[(X, Y, Z)]
88
>>> Matrix
{(2, 3, 4): 88, (7, 8, 9): 99}
Here, we’ve used a dictionary to represent a three-dimensional
        array that is empty except for the two positions (2,3,4) and (7,8,9). The keys are
        tuples that record the coordinates of nonempty
        slots. Rather than allocating a large and mostly empty
        three-dimensional matrix to hold these values, we can use a simple
        two-item dictionary. In this scheme, accessing an empty slot triggers
        a nonexistent key exception, as these slots are not physically
        stored:
>>> Matrix[(2,3,6)]
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
KeyError: (2, 3, 6)

Avoiding missing-key errors
Errors for nonexistent key fetches are common in sparse matrixes,
        but you probably won’t want them to shut down your program. There are
        at least three ways to fill in a default value instead of getting such
        an error message—you can test for keys ahead of time in if statements, use a try statement to catch and recover from the
        exception explicitly, or simply use the dictionary get method
        shown earlier to provide a default for keys that do not exist.
        Consider the first two of these previews for statement syntax we’ll
        begin studying in Chapter 10:
>>> if (2, 3, 6) in Matrix:            # Check for key before fetch
...     print(Matrix[(2, 3, 6)])       # See Chapters 10 and 12 for if/else
... else:
...     print(0)
...
0
>>> try:
...     print(Matrix[(2, 3, 6)])       # Try to index
... except KeyError:                   # Catch and recover
...     print(0)                       # See Chapters 10 and 34 for try/except
...
0
>>> Matrix.get((2, 3, 4), 0)           # Exists: fetch and return
88
>>> Matrix.get((2, 3, 6), 0)           # Doesn't exist: use default arg
0
Of these, the get method is
        the most concise in terms of coding requirements, but the if and try statements are much more general in
        scope; again, more on these starting in Chapter 10.

Nesting in dictionaries
As you can see, dictionaries can play many roles in Python. In general,
        they can replace search data structures (because indexing by key is a
        search operation) and can represent many types of structured
        information. For example, dictionaries are one of many ways to
        describe the properties of an item in your program’s domain; that is,
        they can serve the same role as “records” or “structs” in other
        languages.
The following, for example, fills out a dictionary describing a
        hypothetical person, by assigning to new keys over time (if you are a
        Bob, my apologies for picking on your name in this book—it’s easy to
        type!):
>>> rec = {}
>>> rec['name'] = 'Bob'
>>> rec['age']  = 40.5
>>> rec['job']  = 'developer/manager'
>>>
>>> print(rec['name'])
Bob
Especially when nested, Python’s built-in data types allow us to
        easily represent structured information. The
        following again uses a dictionary to capture object properties, but it
        codes it all at once (rather than assigning to each key separately)
        and nests a list and a dictionary to represent structured property
        values:
>>> rec = {'name': 'Bob',
...        'jobs': ['developer', 'manager'],
...        'web':  'www.bobs.org/˜Bob',
...        'home': {'state': 'Overworked', 'zip': 12345}}
To fetch components of nested objects, simply string together
        indexing operations:
>>> rec['name']
'Bob'
>>> rec['jobs']
['developer', 'manager']
>>> rec['jobs'][1]
'manager'
>>> rec['home']['zip']
12345
Although we’ll learn in Part VI that
        classes (which group both data and logic) can be
        better in this record role, dictionaries are an easy-to-use tool for
        simpler requirements. For more on record representation choices, see
        also the upcoming sidebar “Why You Will Care: Dictionaries Versus Lists”, as well as its
        extension to tuples in Chapter 9 and classes in
        Chapter 27.
Also notice that while we’ve focused on a single “record” with
        nested data here, there’s no reason we couldn’t nest the record itself
        in a larger, enclosing database collection coded
        as a list or dictionary, though an external file or formal database
        interface often plays the role of top-level container in realistic
        programs (the following snippets both print Bob’s 2-item job list if
        run live and provided with another record structure):
db = []
db.append(rec)             # A list "database"
db.append(other)
db[0]['jobs']

db = {}
db['bob'] = rec            # A dictionary "database"
db['sue'] = other
db['bob']['jobs']
Later in the book we’ll meet tools such as Python’s shelve, which works much the same way, but
        automatically maps objects to and from files to make them permanent
        (watch for more in this chapter’s sidebar “Why You Will Care: Dictionary Interfaces”).


Other Ways to Make Dictionaries
Finally, note that because dictionaries are so useful, more ways to build
      them have emerged over time. In Python 2.3 and later, for example, the
      last two calls to the dict
      constructor (really, type name) shown here have the same effect as the
      literal and key-assignment forms above them:
{'name': 'Bob', 'age': 40}             # Traditional literal expression

D = {}                                 # Assign by keys dynamically
D['name'] = 'Bob'
D['age']  = 40

dict(name='Bob', age=40)               # dict keyword argument form

dict([('name', 'Bob'), ('age', 40)])   # dict key/value tuples form
All four of these forms create the same two-key dictionary, but
      they are useful in differing circumstances:
	The first is handy if you can spell out the entire dictionary
          ahead of time.

	The second is of use if you need to create the dictionary one
          field at a time on the fly.

	The third involves less typing than the first, but it requires
          all keys to be strings.

	The last is useful if you need to build up keys and values as
          sequences at runtime.


We met keyword arguments earlier when sorting; the third form
      illustrated in this code listing has become especially popular in Python
      code today, since it has less syntax (and hence there is less
      opportunity for mistakes). As suggested previously in Table 8-2, the last form in
      the listing is also commonly used in conjunction with the zip function, to
      combine separate lists of keys and values obtained dynamically at
      runtime (parsed out of a data file’s columns, for instance):
dict(zip(keyslist, valueslist))        # Zipped key/value tuples form (ahead)
More on zipping dictionary keys in the next section. Provided all
      the key’s values are the same initially, you can also create a
      dictionary with this special form—simply pass in a list of keys and an
      initial value for all of the values (the default is None):
>>> dict.fromkeys(['a', 'b'], 0)
{'a': 0, 'b': 0}
Although you could get by with just literals and key assignments
      at this point in your Python career, you’ll probably find uses for all
      of these dictionary-creation forms as you start applying them in
      realistic, flexible, and dynamic Python programs.
The listings in this section document the various ways to create
      dictionaries in both Python 2.X and 3.X. However, there is yet another
      way to create dictionaries, available only in Python 3.X and 2.7:
      the dictionary comprehension
      expression. To see how this last form looks, we need to move on to the
      next and final section of this chapter.
Why You Will Care: Dictionaries Versus Lists
With all the objects in Python’s core types arsenal, some readers may
        be puzzled over the choice between lists and dictionaries. In short,
        although both are flexible collections of other objects, lists assign
        items to positions, and dictionaries assign them
        to more mnemonic keys. Because of this,
        dictionary data often carries more meaning to human readers. For
        example, the nested list structure in row 3 of Table 8-1 could be used to
        represent a record too:
>>> L = ['Bob', 40.5, ['dev', 'mgr']]  # List-based "record"
>>> L[0]
'Bob'
>>> L[1]                               # Positions/numbers for fields
40.5
>>> L[2][1]
'mgr'
For some types of data, the list’s access-by-position makes
        sense—a list of employees in a company, the files in a directory, or
        numeric matrixes, for example. But a more symbolic record like this
        may be more meaningfully coded as a dictionary along the lines of row
        2 in Table 8-2, with
        labeled fields replacing field positions (this is similar to a record
        we coded in Chapter 4):
>>> D = {'name': 'Bob', 'age': 40.5, 'jobs': ['dev', 'mgr']}
>>> D['name']
'Bob'
>>> D['age']                           # Dictionary-based "record"
40.5
>>> D['jobs'][1]                       # Names mean more than numbers
'mgr'
For variety, here is the same record recoded with keywords,
        which may seem even more readable to some human readers:
>>> D = dict(name='Bob', age=40.5, jobs=['dev', 'mgr'])
>>> D['name']
'Bob'
>>> D['jobs'].remove('mgr')
>>> D
{'jobs': ['dev'], 'age': 40.5, 'name': 'Bob'}
In practice, dictionaries tend to be best for data with labeled
        components, as well as structures that can benefit from quick, direct
        lookups by name, instead of slower linear searches. As we’ve seen,
        they also may be better for sparse collections and collections that
        grow at arbitrary positions.
Python programmers also have access to the
        sets we studied in Chapter 5, which are much like the keys of a
        valueless dictionary; they don’t map keys to values, but can often be
        used like dictionaries for fast lookups when there is no associated
        value, especially in search routines:
>>> D = {}
>>> D['state1'] = True                 # A visited-state dictionary
>>> 'state1' in D
True
>>> S = set()
>>> S.add('state1')                    # Same, but with sets
>>> 'state1' in S
True
Watch for a rehash of this record representation thread in the
        next chapter, where we’ll see how tuples and
        named tuples compare to dictionaries in this
        role, as well as in Chapter 27, where
        we’ll learn how user-defined classes factor into
        this picture, combining both data and logic to process it.


Dictionary Changes in Python 3.X and 2.7
This chapter has so far focused on dictionary basics that span releases, but
      the dictionary’s functionality has mutated in Python 3.X. If you are
      using Python 2.X code, you may come across some dictionary tools that
      either behave differently or are missing altogether in 3.X. Moreover,
      3.X coders have access to additional dictionary tools not available in
      2.X, apart from two back-ports to 2.7.
Specifically, dictionaries in Python
      3.X:
	Support a new dictionary comprehension
          expression, a close cousin to list and set comprehensions

	Return set-like iterable views instead of
          lists for the methods D.keys,
          D.values, and D.items

	Require new coding styles for scanning by sorted keys, because
          of the prior point

	No longer support relative magnitude comparisons
          directly—compare manually instead

	No longer have the D.has_key
          method—the in membership test is
          used instead


As later back-ports from 3.X, dictionaries in Python
      2.7 (but not earlier in 2.X):
	Support item 1 in the prior list—dictionary
          comprehensions—as a direct back-port from
          3.X

	Support item 2 in the prior list—set-like iterable
          views—but do so with special method names D.viewkeys,
          D.viewvalues, and D.viewitems; their nonview methods return
          lists as before


Because of this overlap, some of the material in this section
      pertains both to 3.X and 2.7, but is presented here in the context of
      3.X extensions because of its origin. With that in mind, let’s take a
      look at what’s new in dictionaries in 3.X and 2.7.
Dictionary comprehensions in 3.X and 2.7
As mentioned at the end of the prior section, dictionaries in 3.X and 2.7
        can also be created with dictionary comprehensions. Like the set
        comprehensions we met in Chapter 5, dictionary
        comprehensions are available only in 3.X and 2.7 (not in 2.6 and
        earlier). Like the longstanding list comprehensions we met briefly in
        Chapter 4 and earlier in this
        chapter, they run an implied loop, collecting the key/value results of
        expressions on each iteration and using them to fill out a new
        dictionary. A loop variable allows the comprehension to use loop
        iteration values along the way.
To illustrate, a standard way to initialize a dictionary
        dynamically in both 2.X and 3.X is to combine its keys and values
        with zip, and pass
        the result to the dict call. The
        zip built-in function is the hook
        that allows us to construct a dictionary from key and value lists this
        way—if you cannot predict the set of keys and values in your code, you
        can always build them up as lists and zip them together. We’ll study
        zip in detail in Chapter 13 and Chapter 14 after exploring statements;
        it’s an iterable in 3.X, so we must wrap it in a list call to show its results there, but its
        basic usage is otherwise straightforward:
>>> list(zip(['a', 'b', 'c'], [1, 2, 3]))        # Zip together keys and values
[('a', 1), ('b', 2), ('c', 3)]

>>> D = dict(zip(['a', 'b', 'c'], [1, 2, 3]))    # Make a dict from zip result
>>> D
{'b': 2, 'c': 3, 'a': 1}
In Python 3.X and 2.7, though, you can achieve the same effect
        with a dictionary comprehension expression. The following builds a new
        dictionary with a key/value pair for every such pair in the zip result (the Python code reads almost the same as its natural-language description, but with a bit more formality):
>>> D = {k: v for (k, v) in zip(['a', 'b', 'c'], [1, 2, 3])}
>>> D
{'b': 2, 'c': 3, 'a': 1}
Comprehensions actually require more code in this case, but they
        are also more general than this example implies—we can use them to map
        a single stream of values to dictionaries as well, and keys can be
        computed with expressions just like values:
>>> D = {x: x ** 2 for x in [1, 2, 3, 4]}        # Or: range(1, 5)
>>> D
{1: 1, 2: 4, 3: 9, 4: 16}

>>> D = {c: c * 4 for c in 'SPAM'}               # Loop over any iterable
>>> D
{'S': 'SSSS', 'P': 'PPPP', 'A': 'AAAA', 'M': 'MMMM'}

>>> D = {c.lower(): c + '!' for c in ['SPAM', 'EGGS', 'HAM']}
>>> D
{'eggs': 'EGGS!', 'spam': 'SPAM!', 'ham': 'HAM!'}
Dictionary comprehensions are also useful for initializing
        dictionaries from keys lists, in much the same way as the fromkeys
        method we met at the end of the preceding section:
>>> D = dict.fromkeys(['a', 'b', 'c'], 0)        # Initialize dict from keys
>>> D
{'b': 0, 'c': 0, 'a': 0}

>>> D = {k:0 for k in ['a', 'b', 'c']}           # Same, but with a comprehension
>>> D
{'b': 0, 'c': 0, 'a': 0}

>>> D = dict.fromkeys('spam')                    # Other iterables, default value
>>> D
{'s': None, 'p': None, 'a': None, 'm': None}

>>> D = {k: None for k in 'spam'}
>>> D
{'s': None, 'p': None, 'a': None, 'm': None}
Like related tools, dictionary comprehensions support additional
        syntax not shown here, including nested loops and if clauses. Unfortunately, to truly
        understand dictionary comprehensions, we need to also know more about
        iteration statements and concepts in Python, and we don’t yet have
        enough information to address that story well. We’ll learn much more
        about all flavors of comprehensions (list, set, dictionary, and
        generator) in Chapter 14 and
        Chapter 20, so we’ll defer
        further details until later. We’ll also revisit the zip built-in we used in this section in more
        detail in Chapter 13, when we explore for
        loops.

Dictionary views in 3.X (and 2.7 via new methods)
In 3.X the dictionary keys,
        values, and items methods all return view
        objects, whereas in 2.X they return actual result lists.
        This functionality is also available in Python 2.7, but in the guise
        of the special, distinct method names listed at the start of this
        section (2.7’s normal methods still return simple lists, so as to
        avoid breaking existing 2.X code); because of this, I’ll refer to this
        as a 3.X feature in this section.
View objects are iterables, which simply
        means objects that generate result items one at a time, instead of
        producing the result list all at once in memory. Besides being
        iterable, dictionary views also retain the original order of
        dictionary components, reflect future changes to the dictionary, and
        may support set operations. On the other hand, because they are not
        lists, they do not directly support operations like indexing or the
        list sort method, and do not
        display their items as a normal list when printed (they do show their
        components as of Python 3.1 but not as a list, and are still a
        divergence from 2.X).
We’ll discuss the notion of iterables more formally in Chapter 14, but for our purposes here
        it’s enough to know that we have to run the results of these three
        methods through the list built-in if
        we want to apply list operations or display their values. For example,
        in Python 3.3 (other version’s outputs may differ slightly):
>>> D = dict(a=1, b=2, c=3)
>>> D
{'b': 2, 'c': 3, 'a': 1}

>>> K = D.keys()                   # Makes a view object in 3.X, not a list
>>> K
dict_keys(['b', 'c', 'a'])
>>> list(K)                        # Force a real list in 3.X if needed
['b', 'c', 'a']

>>> V = D.values()                 # Ditto for values and items views
>>> V
dict_values([2, 3, 1])
>>> list(V)
[2, 3, 1]

>>> D.items()
dict_items([('b', 2), ('c', 3), ('a', 1)])
>>> list(D.items())
[('b', 2), ('c', 3), ('a', 1)]

>>> K[0]                           # List operations fail unless converted
TypeError: 'dict_keys' object does not support indexing
>>> list(K)[0]
'b'
Apart from result displays at the interactive prompt, you will
        probably rarely even notice this change, because looping constructs in
        Python automatically force iterable objects to produce one result on
        each iteration:
>>> for k in D.keys(): print(k)    # Iterators used automatically in loops
...
b
c
a
In addition, 3.X dictionaries still have iterators themselves,
        which return successive keys—as in 2.X, it’s still often not necessary
        to call keys directly:
>>> for key in D: print(key)       # Still no need to call keys() to iterate
...
b
c
a
Unlike 2.X’s list results, though, dictionary views in 3.X are
        not carved in stone when created—they dynamically reflect
        future changes made to the dictionary after the view object
        has been created:
>>> D = {'a': 1, 'b': 2, 'c': 3}
>>> D
{'b': 2, 'c': 3, 'a': 1}

>>> K = D.keys()
>>> V = D.values()
>>> list(K)                        # Views maintain same order as dictionary
['b', 'c', 'a']
>>> list(V)
[2, 3, 1]

>>> del D['b']                     # Change the dictionary in place
>>> D
{'c': 3, 'a': 1}

>>> list(K)                        # Reflected in any current view objects
['c', 'a']
>>> list(V)                        # Not true in 2.X! - lists detached from dict
[3, 1]

Dictionary views and sets
Also unlike 2.X’s list results, 3.X’s view objects returned by the keys method are
        set-like and support common set operations such
        as intersection and union; values
        views are not set-like, but items
        results are if their (key, value) pairs are unique and hashable (immutable).
        Given that sets behave much like valueless dictionaries (and may even
        be coded in curly braces like dictionaries in 3.X and 2.7), this is a
        logical symmetry. Per Chapter 5, set items are
        unordered, unique, and immutable, just like dictionary keys.
Here is what keys views look
        like when used in set operations (continuing the prior section’s
        session); dictionary value views are never set-like, since their items
        are not necessarily unique or immutable:
>>> K, V
(dict_keys(['c', 'a']), dict_values([3, 1]))

>>> K | {'x': 4}                   # Keys (and some items) views are set-like
{'c', 'x', 'a'}

>>> V & {'x': 4}
TypeError: unsupported operand type(s) for &: 'dict_values' and 'dict'
>>> V & {'x': 4}.values()
TypeError: unsupported operand type(s) for &: 'dict_values' and 'dict_values'
In set operations, views may be mixed with other views, sets,
        and dictionaries; dictionaries are treated the same as their keys views in this context:
>>> D = {'a': 1, 'b': 2, 'c': 3}
>>> D.keys() & D.keys()            # Intersect keys views
{'b', 'c', 'a'}
>>> D.keys() & {'b'}               # Intersect keys and set
{'b'}
>>> D.keys() & {'b': 1}            # Intersect keys and dict
{'b'}
>>> D.keys() | {'b', 'c', 'd'}     # Union keys and set
{'b', 'c', 'a', 'd'}
Items views are set-like too if they are hashable—that is, if
        they contain only immutable objects:
>>> D = {'a': 1}
>>> list(D.items())                # Items set-like if hashable
[('a', 1)]
>>> D.items() | D.keys()           # Union view and view
{('a', 1), 'a'}
>>> D.items() | D                  # dict treated same as its keys
{('a', 1), 'a'}

>>> D.items() | {('c', 3), ('d', 4)}           # Set of key/value pairs
{('d', 4), ('a', 1), ('c', 3)}

>>> dict(D.items() | {('c', 3), ('d', 4)})     # dict accepts iterable sets too
{'c': 3, 'a': 1, 'd': 4}
See Chapter 5’s coverage of sets if you
        need a refresher on these operations. Here, let’s wrap up with three
        other quick coding notes for 3.X dictionaries.

Sorting dictionary keys in 3.X
First of all, because keys does not
        return a list in 3.X, the traditional coding pattern for scanning a
        dictionary by sorted keys in 2.X won’t work in 3.X:
>>> D = {'a': 1, 'b': 2, 'c': 3}
>>> D
{'b': 2, 'c': 3, 'a': 1}

>>> Ks = D.keys()                            # Sorting a view object doesn't work!
>>> Ks.sort()
AttributeError: 'dict_keys' object has no attribute 'sort'
To work around this, in 3.X you must either convert to a list
        manually or use the sorted call
        (introduced in Chapter 4 and
        covered in this chapter) on either a keys view or the dictionary itself:
>>> Ks = list(Ks)                            # Force it to be a list and then sort
>>> Ks.sort()
>>> for k in Ks: print(k, D[k])              # 2.X: omit outer parens in prints
...
a 1
b 2
c 3

>>> D
{'b': 2, 'c': 3, 'a': 1}
>>> Ks = D.keys()                            # Or you can use sorted() on the keys
>>> for k in sorted(Ks): print(k, D[k])      # sorted() accepts any iterable
...                                          # sorted() returns its result
a 1
b 2
c 3
Of these, using the dictionary’s keys iterator is probably
        preferable in 3.X, and works in 2.X as well:
>>> D
{'b': 2, 'c': 3, 'a': 1}                     # Better yet, sort the dict directly
>>> for k in sorted(D): print(k, D[k])       # dict iterators return keys
...
a 1
b 2
c 3

Dictionary magnitude comparisons no longer work in 3.X
Secondly, while in Python 2.X dictionaries may be compared for relative
        magnitude directly with <,
        >, and so on, in Python 3.X this
        no longer works. However, you can simulate it by comparing sorted key/value pairs manually:
sorted(D1.items()) < sorted(D2.items())      # Like 2.X D1 < D2
Dictionary equality tests (e.g., D1 ==
        D2) still work in 3.X, though. Since we’ll revisit this near
        the end of the next chapter in the context of comparisons at large,
        we’ll postpone further details here.

The has_key method is dead in 3.X: Long live in!
Finally, the widely used dictionary has_key
        key presence test method is gone in 3.X. Instead, use the in membership expression, or a get with a default test (of these, in is generally preferred):
>>> D
{'b': 2, 'c': 3, 'a': 1}

>>> D.has_key('c')                                        # 2.X only: True/False
AttributeError: 'dict' object has no attribute 'has_key'

>>> 'c' in D                                              # Required in 3.X
True
>>> 'x' in D                                              # Preferred in 2.X today
False
>>> if 'c' in D: print('present', D['c'])                 # Branch on result
...
present 3

>>> print(D.get('c'))                                     # Fetch with default
3
>>> print(D.get('x'))
None
>>> if D.get('c') != None: print('present', D['c'])       # Another option
...
present 3
To summarize, the dictionary story changes substantially in 3.X.
        If you work in 2.X and care about 3.X
        compatibility (or suspect that you might someday), here are
        some pointers. Of the 3.X changes we’ve met in this section:
	The first (dictionary comprehensions) can be coded only in
            3.X and 2.7.

	The second (dictionary views) can be coded only in 3.X, and
            with special method names in 2.7.


However, the last three techniques—sorted, manual comparisons, and in—can be coded in 2.X today to ease 3.X
        migration in the future.
Why You Will Care: Dictionary Interfaces
Dictionaries aren’t just a convenient way to store information by key in your
          programs—some Python extensions also present interfaces that look
          like and work the same as dictionaries. For instance, Python’s
          interface to DBM access-by-key files looks much like a dictionary
          that must be opened. You store and fetch strings using key
          indexes:
import dbm                     # Named anydbm in Python 2.X
file = dbm.open("filename")    # Link to file
file['key'] = 'data'           # Store data by key
data = file['key']             # Fetch data by key
In Chapter 28, you’ll see
          that you can store entire Python objects this way, too, if you
          replace dbm in the preceding code
          with shelve (shelves are access-by-key databases that store persistent Python
          objects, not just strings). For Internet work, Python’s CGI script
          support also presents a dictionary-like interface. A call to cgi.FieldStorage yields a dictionary-like
          object with one entry per input field on the client’s web
          page:
import cgi
form = cgi.FieldStorage()      # Parse form data
if 'name' in form:
    showReply('Hello, ' + form['name'].value)
Though dictionaries are the only core mapping type, all of
          these others are instances of mappings, and support most of the same
          operations. Once you learn dictionary interfaces, you’ll find that
          they apply to a variety of built-in tools in Python.
For another dictionary use case, see also Chapter 9’s upcoming
          overview of JSON—a language-neutral data format
          used for databases and data transfer. Python dictionaries, lists,
          and nested combinations of them can almost pass for records in this
          format as is, and may be easily translated to and from formal JSON
          text strings with Python’s json standard library module.




Chapter Summary
In this chapter, we explored the list and dictionary types—probably
    the two most common, flexible, and powerful collection types you will see
    and use in Python code. We learned that the list type supports
    positionally ordered collections of arbitrary objects, and that it may be
    freely nested and grown and shrunk on demand. The dictionary type is
    similar, but it stores items by key instead of by position and does not
    maintain any reliable left-to-right order among its items. Both lists and
    dictionaries are mutable, and so support a variety of in-place change
    operations not available for strings: for example, lists can be grown by
    append calls, and dictionaries by
    assignment to new keys.
In the next chapter, we will wrap up our in-depth core object type
    tour by looking at tuples and files. After that, we’ll move on to
    statements that code the logic that processes our objects, taking us
    another step toward writing complete programs. Before we tackle those
    topics, though, here are some chapter quiz questions to review.

Test Your Knowledge: Quiz
	Name two ways to build a list containing five integer
        zeros.

	Name two ways to build a dictionary with two keys, 'a' and 'b', each having an associated value of
        0.

	Name four operations that change a list object in place.

	Name four operations that change a dictionary object in
        place.

	Why might you use a dictionary instead of a list?



Test Your Knowledge: Answers
	A literal expression like [0, 0, 0, 0,
        0] and a repetition expression like [0] * 5 will each create a list of five
        zeros. In practice, you might also build one up with a loop that
        starts with an empty list and appends 0 to it in each iteration, with L.append(0). A list comprehension ([0 for i in range(5)]) could work here, too,
        but this is more work than you need to do for this answer.

	A literal expression such as {'a': 0,
        'b': 0} or a series of assignments like D = {}, D['a'] =
        0, and D['b'] = 0 would
        create the desired dictionary. You can also use the newer and
        simpler-to-code dict(a=0, b=0)
        keyword form, or the more flexible dict([('a', 0), ('b', 0)]) key/value
        sequences form. Or, because all the values are the same, you can use
        the special form dict.fromkeys('ab',
        0). In 3.X and 2.7, you can also use a dictionary
        comprehension: {k:0 for k in 'ab'},
        though again, this may be overkill here.

	The append and extend methods grow a list in place, the
        sort and reverse methods order and reverse lists, the
        insert method inserts an item at an
        offset, the remove and pop methods delete from a list by value and
        by position, the del statement
        deletes an item or slice, and index and slice assignment statements
        replace an item or entire section. Pick any four of these for the
        quiz.

	Dictionaries are primarily changed by assignment to a new or
        existing key, which creates or changes the key’s entry in the table.
        Also, the del statement deletes a
        key’s entry, the dictionary update
        method merges one dictionary into another in place, and D.pop(key) removes a key and returns the
        value it had. Dictionaries also have other, more exotic in-place
        change methods not presented in this chapter, such as setdefault; see reference sources for more
        details.

	Dictionaries are generally better when the data is labeled (a
        record with field names, for example); lists are best suited to
        collections of unlabeled items (such as all the files in a directory).
        Dictionary lookup is also usually quicker than searching a list,
        though this might vary per program.



1 In practice, you won’t see many lists written out like this in
        list-processing programs. It’s more common to see code that processes
        lists constructed dynamically (at runtime), from user inputs, file
        contents, and so on. In fact, although it’s important to master
        literal syntax, many data structures in Python are built by running
        program code at runtime.
2 This description requires elaboration when the value and
                the slice being assigned overlap: L[2:5]=L[3:6], for instance, works
                fine because the value to be inserted is fetched before the
                deletion happens on the left.
3 Unlike + concatenation,
            append doesn’t have to generate
            new objects, so it’s usually faster than + too. You can also mimic append with the clever slice assignments
            of the prior section: L[len(L):]=[X] is like L.append(X), and L[:0]=[X] is like appending at the front
            of a list. Both delete an empty slice and insert X, changing L in place quickly, like append. Both are arguably more complex
            than list methods, though. For instance, L.insert(0, X) can also append an item
            to the front of a list, and seems noticeably more mnemonic;
            L.insert(len(L), X) inserts one
            object at the end too, but unless you like typing, you might as
            well use L.append(X)!
4 As for lists, you might not see dictionaries coded in full using
        literals very often—programs rarely know all their data before they
        are run, and more typically extract it dynamically from users, files,
        and so on. Lists and dictionaries are grown in different ways, though.
        In the next section you’ll see that you often build up dictionaries by
        assigning to new keys at runtime; this approach fails for lists, which
        are commonly grown with append or
        extend instead.








Chapter 9. Tuples, Files, and Everything Else
This chapter rounds out our in-depth tour of the core object types in
  Python by exploring the tuple, a collection of other
  objects that cannot be changed, and the file, an
  interface to external files on your computer. As you’ll see, the tuple is a
  relatively simple object that largely performs operations you’ve already
  learned about for strings and lists. The file object is a commonly used and
  full-featured tool for processing files on your computer. Because files are
  so pervasive in programming, the basic overview of files here is
  supplemented by larger examples in later chapters.
This chapter also concludes this part of the book by looking at
  properties common to all the core object types we’ve met—the notions of
  equality, comparisons, object copies, and so on. We’ll also briefly explore
  other object types in Python’s toolbox, including the None placeholder and the namedtuple hybrid; as you’ll see, although we’ve
  covered all the primary built-in types, the object story in Python is
  broader than I’ve implied thus far. Finally, we’ll close this part of the
  book by taking a look at a set of common object type pitfalls and exploring
  some exercises that will allow you to experiment with the ideas you’ve
  learned.
Note
This chapter’s
    scope—files: As in Chapter 7 on strings, our look at files here will
    be limited in scope to file fundamentals that most Python
    programmers—including newcomers to programming—need to know. In
    particular, Unicode text files were previewed in
    Chapter 4, but we’re going to
    postpone full coverage of them until Chapter 37, as optional or deferred reading in
    the Advanced Topics part of this book.
For this chapter’s purpose, we’ll assume any text files used will be
    encoded and decoded per your platform’s default, which may be UTF-8 on
    Windows, and ASCII or other elsewhere (and if you don’t know why this
    matters, you probably don’t need to up front). We’ll also assume that
    filenames encode properly on the underlying platform, though we’ll stick
    with ASCII names for portability here.
If Unicode text and files is a critical subject for you, I suggest
    reading the Chapter 4 preview for
    a quick first look, and continuing on to Chapter 37 after you master the file basics
    covered here. For all others, the file coverage here will apply both to
    typical text and binary files of the sort we’ll meet here, as well as to
    more advanced file-processing modes you may choose to explore
    later.

Tuples
The last collection type in our survey is the Python tuple. Tuples construct
    simple groups of objects. They work exactly like lists, except that tuples
    can’t be changed in place (they’re immutable) and are usually written as a
    series of items in parentheses, not square brackets. Although they don’t
    support as many methods, tuples share most of their properties with lists.
    Here’s a quick look at the basics. Tuples are:
	Ordered collections of arbitrary objects
	Like strings and lists, tuples are positionally ordered
          collections of objects (i.e., they maintain a left-to-right order
          among their contents); like lists, they can embed any kind of
          object.

	Accessed by offset
	Like strings and lists, items in a tuple are accessed by
          offset (not by key); they support all the offset-based access
          operations, such as indexing and slicing.

	Of the category “immutable sequence”
	Like strings and lists, tuples are sequences; they support
          many of the same operations. However, like strings, tuples are
          immutable; they don’t support any of the in-place change operations
          applied to lists.

	Fixed-length, heterogeneous, and arbitrarily nestable
	Because tuples are immutable, you cannot change the size of a
          tuple without making a copy. On the other hand, tuples can hold any
          type of object, including other compound objects (e.g., lists,
          dictionaries, other tuples), and so support arbitrary
          nesting.

	Arrays of object references
	Like lists, tuples are best thought of as object reference
          arrays; tuples store access points to other objects (references),
          and indexing a tuple is relatively quick.


Table 9-1 highlights
    common tuple operations. A tuple is written as a series of objects
    (technically, expressions that generate objects), separated by commas and
    normally enclosed in parentheses. An empty tuple is just a
    parentheses pair with nothing inside.
Table 9-1. Common tuple literals and operations	Operation	Interpretation
	()
	An empty tuple

	T = (0,)
	A one-item tuple (not an
            expression)

	T = (0, 'Ni', 1.2, 3)
	A four-item
            tuple

	T = 0, 'Ni', 1.2, 3
	Another four-item tuple
            (same as prior line)

	T = ('Bob', ('dev', 'mgr'))
	Nested tuples

	T = tuple('spam')
	Tuple of items in an
            iterable

	T[i]
 T[i][j]
 T[i:j]
 len(T)
	Index, index of index, slice, length

	T1 + T2
 T * 3
	Concatenate, repeat

	for x in T: print(x)

            'spam' in T

            [x ** 2 for x in T]
	Iteration, membership

	T.index('Ni')
 T.count('Ni')
	Methods in 2.6, 2.7, and 3.X: search, count

	namedtuple('Emp', ['name', 'jobs'])
	Named tuple extension type


Tuples in Action
As usual, let’s start an interactive session to explore tuples at work.
      Notice in Table 9-1 that
      tuples do not have all the methods that lists have (e.g., an append call won’t work here). They do,
      however, support the usual sequence operations that we saw for both
      strings and lists:
>>> (1, 2) + (3, 4)            # Concatenation
(1, 2, 3, 4)

>>> (1, 2) * 4                 # Repetition
(1, 2, 1, 2, 1, 2, 1, 2)

>>> T = (1, 2, 3, 4)           # Indexing, slicing
>>> T[0], T[1:3]
(1, (2, 3))
Tuple syntax peculiarities: Commas and parentheses
The second and fourth entries in Table 9-1 merit a bit more
        explanation. Because parentheses can also enclose expressions (see
        Chapter 5), you need to do something special to
        tell Python when a single object in parentheses is a tuple object and
        not a simple expression. If you really want a single-item tuple,
        simply add a trailing comma after the single item, before the closing
        parenthesis:
>>> x = (40)                   # An integer!
>>> x
40
>>> y = (40,)                  # A tuple containing an integer
>>> y
(40,)
As a special case, Python also allows you to omit the opening
        and closing parentheses for a tuple in contexts where it isn’t
        syntactically ambiguous to do so. For instance, the fourth line of
        Table 9-1 simply lists
        four items separated by commas. In the context of an assignment
        statement, Python recognizes this as a tuple, even though it doesn’t
        have parentheses.
Now, some people will tell you to always use parentheses in your
        tuples, and some will tell you to never use parentheses in tuples (and
        still others have lives, and won’t tell you what to do with your
        tuples!). The most common places where the parentheses are
        required for tuple literals are those
        where:
	Parentheses matter—within a function
            call, or nested in a larger expression.

	Commas matter—embedded in the literal
            of a larger data structure like a list or dictionary, or listed in
            a Python 2.X print
            statement.


In most other contexts, the enclosing parentheses are optional.
        For beginners, the best advice is that it’s probably easier to use the
        parentheses than it is to remember when they are optional or required.
        Many programmers also find that parentheses tend to aid script
        readability by making the tuples more explicit and obvious.1

Conversions, methods, and immutability
Apart from literal syntax differences, tuple operations (the middle rows in
        Table 9-1) are identical
        to string and list operations. The only differences worth noting are
        that the +, *, and slicing operations return new
        tuples when applied to tuples, and that tuples
        don’t provide the same methods you saw for strings, lists, and
        dictionaries. If you want to sort a tuple, for example, you’ll usually
        have to either first convert it to a list to gain access to a sorting
        method call and make it a mutable object, or use the newer sorted built-in
        that accepts any sequence object (and other
        iterables—a term introduced in Chapter 4 that we’ll be more formal
        about in the next part of this book):
>>> T = ('cc', 'aa', 'dd', 'bb')
>>> tmp = list(T)                  # Make a list from a tuple's items
>>> tmp.sort()                     # Sort the list
>>> tmp
['aa', 'bb', 'cc', 'dd']
>>> T = tuple(tmp)                 # Make a tuple from the list's items
>>> T
('aa', 'bb', 'cc', 'dd')

>>> sorted(T)                      # Or use the sorted built-in, and save two steps
['aa', 'bb', 'cc', 'dd']
Here, the list and tuple built-in functions are used to convert the object to a list and
        then back to a tuple; really, both calls make new objects, but the net
        effect is like a conversion.
List comprehensions can also be used to convert tuples. The
        following, for example, makes a list from a tuple, adding 20 to each
        item along the way:
>>> T = (1, 2, 3, 4, 5)
>>> L = [x + 20 for x in T]
>>> L
[21, 22, 23, 24, 25]
List comprehensions are really sequence
        operations—they always build new lists, but they may be used to
        iterate over any sequence objects, including tuples, strings, and
        other lists. As we’ll see later in the book, they even work on some
        things that are not physically stored sequences—any
        iterable objects will do, including files, which
        are automatically read line by line. Given this, they may be better
        called iteration tools.
Although tuples don’t have the same methods as lists and
        strings, they do have two of their own as of Python 2.6 and 3.0—index and
        count work as they do for lists,
        but they are defined for tuple objects:
>>> T = (1, 2, 3, 2, 4, 2)         # Tuple methods in 2.6, 3.0, and later
>>> T.index(2)                     # Offset of first appearance of 2
1
>>> T.index(2, 2)                  # Offset of appearance after offset 2
3
>>> T.count(2)                     # How many 2s are there?
3
Prior to 2.6 and 3.0, tuples have no methods at all—this was an
        old Python convention for immutable types, which was violated years
        ago on grounds of practicality with strings, and more recently with
        both numbers and tuples.
Also, note that the rule about tuple
        immutability applies only to the top level of the
        tuple itself, not to its contents. A list inside a tuple, for
        instance, can be changed as usual:
>>> T = (1, [2, 3], 4)
>>> T[1] = 'spam'                  # This fails: can't change tuple itself
TypeError: object doesn't support item assignment

>>> T[1][0] = 'spam'               # This works: can change mutables inside
>>> T
(1, ['spam', 3], 4)
For most programs, this one-level-deep immutability is
        sufficient for common tuple roles. Which, coincidentally, brings us to
        the next section.


Why Lists and Tuples?
This seems to be the first question that always comes up when teaching
      beginners about tuples: why do we need tuples if we have lists? Some of
      the reasoning may be historic; Python’s creator is a mathematician by
      training, and he has been quoted as seeing a tuple as a simple
      association of objects and a list as a data structure that changes over
      time. In fact, this use of the word “tuple” derives from mathematics, as
      does its frequent use for a row in a relational database table.
The best answer, however, seems to be that the immutability of
      tuples provides some integrity—you can be sure a
      tuple won’t be changed through another reference elsewhere in a program,
      but there’s no such guarantee for lists. Tuples and other immutables,
      therefore, serve a similar role to “constant” declarations in other
      languages, though the notion of constantness is associated with objects
      in Python, not variables.
Tuples can also be used in places that lists cannot—for example,
      as dictionary keys (see the sparse matrix example in Chapter 8). Some built-in operations may also
      require or imply tuples instead of lists (e.g., the substitution values
      in a string format expression), though such operations have often been
      generalized in recent years to be more flexible. As a rule of thumb,
      lists are the tool of choice for ordered collections that might need to
      change; tuples can handle the other cases of fixed associations.

Records Revisited: Named Tuples
In fact, the choice of data types is even richer than the prior section may have
      implied—today’s Python programmers can choose from an assortment of both
      built-in core types, and extension types built on top of them. For
      example, in the prior chapter’s sidebar “Why You Will Care: Dictionaries Versus Lists”, we saw how to
      represent record-like information with both a list and a dictionary, and
      noted that dictionaries offer the advantage of more mnemonic keys that
      label data. As long as we don’t require mutability,
      tuples can serve similar roles, with positions for
      record fields like lists:
>>> bob = ('Bob', 40.5, ['dev', 'mgr'])                    # Tuple record
>>> bob
('Bob', 40.5, ['dev', 'mgr'])

>>> bob[0], bob[2]                                         # Access by position
('Bob', ['dev', 'mgr'])
As for lists, though, field numbers in tuples generally carry less
      information than the names of keys in a dictionary.
      Here’s the same record recoded as a dictionary with named fields:
>>> bob = dict(name='Bob', age=40.5, jobs=['dev', 'mgr'])  # Dictionary record
>>> bob
{'jobs': ['dev', 'mgr'], 'name': 'Bob', 'age': 40.5}

>>> bob['name'], bob['jobs']                               # Access by key
('Bob', ['dev', 'mgr'])
In fact, we can convert parts of the dictionary to a tuple if
      needed:
>>> tuple(bob.values())                                    # Values to tuple
(['dev', 'mgr'], 'Bob', 40.5)
>>> list(bob.items())                                      # Items to tuple list
[('jobs', ['dev', 'mgr']), ('name', 'Bob'), ('age', 40.5)]
But with a bit of extra work, we can implement objects that offer
      both positional and named access to record fields.
      For example, the namedtuple utility,
      available in the standard library’s collections module mentioned in Chapter 8,
      implements an extension type that adds logic to tuples that allows
      components to be accessed by both position and
      attribute name, and can be converted to
      dictionary-like form for access by key if desired.
      Attribute names come from classes and are not exactly dictionary keys,
      but they are similarly mnemonic:
>>> from collections import namedtuple                     # Import extension type
>>> Rec = namedtuple('Rec', ['name', 'age', 'jobs'])       # Make a generated class
>>> bob = Rec('Bob', age=40.5, jobs=['dev', 'mgr'])        # A named-tuple record
>>> bob
Rec(name='Bob', age=40.5, jobs=['dev', 'mgr'])

>>> bob[0], bob[2]                                         # Access by position
('Bob', ['dev', 'mgr'])
>>> bob.name, bob.jobs                                     # Access by attribute
('Bob', ['dev', 'mgr'])
Converting to a dictionary supports key-based behavior when
      needed:
>>> O = bob._asdict()                                      # Dictionary-like form
>>> O['name'], O['jobs']                                   # Access by key too
('Bob', ['dev', 'mgr'])
>>> O
OrderedDict([('name', 'Bob'), ('age', 40.5), ('jobs', ['dev', 'mgr'])])
As you can see, named tuples are a tuple/class/dictionary
      hybrid. They also represent a classic
      tradeoff. In exchange for their extra utility, they
      require extra code (the two startup lines in the preceding examples that
      import the type and make the class), and incur some performance costs to
      work this magic. (In short, named tuples build new classes that extend
      the tuple type, inserting a property
      accessor method for each named field that maps the name to its
      position—a technique that relies on advanced topics we’ll explore in
      Part VIII, and uses formatted code strings
      instead of class annotation tools like decorators and metaclasses.)
      Still, they are a good example of the kind of custom data types that we
      can build on top of built-in types like tuples when extra utility is
      desired.
Named tuples are available in Python 3.X, 2.7, 2.6 (where _asdict returns a true dictionary), and
      perhaps earlier, though they rely on features relatively modern by
      Python standards. They are also extensions, not
      core types—they live in the standard library and fall into the same
      category as Chapter 5’s Fraction and Decimal—so we’ll delegate to the Python
      library manual for more details.
As a quick preview, though, both tuples and named tuples support
      unpacking tuple assignment, which we’ll study
      formally in Chapter 13, as well as the
      iteration contexts we’ll explore in Chapter 14 and Chapter 20 (notice the positional
      initial values here: named tuples accept these by name, position, or
      both):
>>> bob = Rec('Bob', 40.5, ['dev', 'mgr'])    # For both tuples and named tuples
>>> name, age, jobs = bob                     # Tuple assignment (Chapter 11)
>>> name, jobs
('Bob', ['dev', 'mgr'])

>>> for x in bob: print(x)                    # Iteration context (Chapters 14, 20)
...prints Bob, 40.5, ['dev', 'mgr']...
Tuple-unpacking assignment doesn’t quite apply to dictionaries,
      short of fetching and converting keys and values and assuming or
      imposing an positional ordering on them (dictionaries are not
      sequences), and iteration steps through keys, not values (notice the
      dictionary literal form here: an alternative to dict):
>>> bob = {'name': 'Bob', 'age': 40.5, 'jobs': ['dev', 'mgr']}
>>> job, name, age = bob.values()
>>> name, job                                 # Dict equivalent (but order may vary)
('Bob', ['dev', 'mgr'])

>>> for x in bob: print(bob[x])               # Step though keys, index values
...prints values...
>>> for x in bob.values(): print(x)           # Step through values view
...prints values...
Watch for a final rehash of this record representation thread when
      we see how user-defined classes compare in Chapter 27; as we’ll find, classes label fields
      with names too, but can also provide program logic
      to process the record’s data in the same package.


Files
You may already be familiar with the notion of files, which are named storage
    compartments on your computer that are managed by your operating system.
    The last major built-in object type that we’ll examine on our object types
    tour provides a way to access those files inside Python programs.
In short, the built-in open
    function creates a Python file object, which serves as a link to a file
    residing on your machine. After calling open, you can transfer strings of data to and
    from the associated external file by calling the returned file object’s
    methods.
Compared to the types you’ve seen so far, file objects are somewhat
    unusual. They are considered a core type because they are created by a
    built-in function, but they’re not numbers, sequences, or mappings, and
    they don’t respond to expression operators; they export only methods for
    common file-processing tasks. Most file methods are concerned with
    performing input from and output to the external file associated with a
    file object, but other file methods allow us to seek to a new position in
    the file, flush output buffers, and so on. Table 9-2 summarizes common file
    operations.
Table 9-2. Common file operations	Operation	Interpretation
	output = open(r'C:\spam', 'w')
	Create output file ('w' means
            write)

	input = open('data', 'r')
	Create input file ('r' means
            read)

	input = open('data')
	Same as prior line
            ('r' is the
            default)

	aString = input.read()
	Read entire file into a
            single string

	aString = input.read(N)
	Read up to next N characters
            (or bytes) into a string

	aString = input.readline()
	Read next line (including \n newline) into a string

	aList = input.readlines()
	Read entire file into list of line strings (with \n)

	output.write(aString)
	Write a string of characters (or bytes) into file

	output.writelines(aList)
	Write all line strings in a list into file

	output.close()
	Manual close (done for you when file is collected)

	output.flush()
	Flush output buffer to disk without closing

	anyFile.seek(N)
	Change file position to offset N for next operation

	for line in open('data'):
            use line
	File iterators read line by
            line

	open('f.txt', encoding='latin-1')
	Python 3.X Unicode text
            files (str
            strings)

	open('f.bin', 'rb')
	Python 3.X bytes files
            (bytes strings)

	codecs.open('f.txt', encoding='utf8')
	Python 2.X Unicode text files (unicode strings)

	open('f.bin', 'rb')
	Python 2.X bytes files
            (str strings)


Opening Files
To open a file, a program calls the built-in open function, with the external filename
      first, followed by a processing mode. The call returns a file object,
      which in turn has methods for data transfer:
afile = open(filename, mode)
afile.method()
The first argument to open, the
      external filename, may include a platform-specific
      and absolute or relative directory path prefix. Without a directory
      path, the file is assumed to exist in the current working directory
      (i.e., where the script runs). As we’ll see in Chapter 37’s expanded file coverage, the
      filename may also contain non-ASCII Unicode
      characters that Python automatically translates to and from the
      underlying platform’s encoding, or be provided as a pre-encoded byte
      string.
The second argument to open,
      processing mode, is typically the string 'r' to open for text input (the default),
      'w' to create and open for text
      output, or 'a' to open for appending
      text to the end (e.g., for adding to logfiles). The processing mode
      argument can specify additional options:
	Adding a b to the mode
          string allows for binary data (end-of-line
          translations and 3.X Unicode encodings are turned off).

	Adding a + opens the file
          for both input and output (i.e., you can both
          read and write to the same file object, often in conjunction with
          seek operations to reposition in the file).


Both of the first two arguments to open must be Python strings. An optional third
      argument can be used to control output
      buffering—passing a zero means that output is
      unbuffered (it is transferred to the external file immediately on a
      write method call), and additional arguments may be provided for special
      types of files (e.g., an encoding for Unicode text
      files in Python 3.X).
We’ll cover file fundamentals and explore some basic examples
      here, but we won’t go into all file-processing mode options; as usual,
      consult the Python library manual for additional details.

Using Files
Once you make a file object with open,
      you can call its methods to read from or write to the associated
      external file. In all cases, file text takes the form of strings in
      Python programs; reading a file returns its content in strings, and
      content is passed to the write methods as strings. Reading and writing
      methods come in multiple flavors; Table 9-2 lists the most common. Here are a
      few fundamental usage notes:
	File iterators are best for reading lines
	Though the reading and writing methods in the table are
            common, keep in mind that probably the best way to read lines from
            a text file today is to not read the file at all—as we’ll see in
            Chapter 14, files also have
            an iterator that automatically reads one line
            at a time in a for loop, list
            comprehension, or other iteration context.

	Content is strings, not objects
	Notice in Table 9-2 that
            data read from a file always comes back to
            your script as a string, so you’ll have to convert it to a
            different type of Python object if a string is not what you need.
            Similarly, unlike with the print operation, Python does not add any
            formatting and does not convert objects to strings automatically
            when you write data to a file—you must send
            an already formatted string. Because of this, the tools we have
            already met to convert objects to and from strings (e.g., int, float, str, and the string formatting
            expression and method) come in handy when dealing with
            files.
Python also includes advanced standard library tools for
            handling generic object storage (the pickle module), for dealing with packed
            binary data in files (the struct module), and for processing
            special types of content such as JSON, XML, and CSV text. We’ll
            see these at work later in this chapter and book, but Python’s
            manuals document them in full.

	Files are buffered and seekable
	By default, output files are always
            buffered, which means that text you write may
            not be transferred from memory to disk immediately—closing a file,
            or running its flush method,
            forces the buffered data to disk. You can avoid buffering with
            extra open arguments, but it
            may impede performance. Python files are also
            random-access on a byte offset basis—their
            seek method allows your scripts
            to jump around to read and write at specific locations.

	close is often optional:
          auto-close on collection
	Calling the file close
            method terminates your connection to the external file, releases its
            system resources, and flushes its buffered output to disk if any
            is still in memory. As discussed in Chapter 6, in Python an object’s
            memory space is automatically reclaimed as soon as the object is
            no longer referenced anywhere in the program. When
            file objects are reclaimed, Python also
            automatically closes the files if they are
            still open (this also happens when a program shuts down). This
            means you don’t always need to manually close your files in
            standard Python, especially those in simple scripts with short
            runtimes, and temporary files used by a single line or
            expression.
On the other hand, including manual close calls doesn’t hurt, and may be a
            good habit to form, especially in long-running systems. Strictly
            speaking, this auto-close-on-collection feature of files is not
            part of the language definition—it may change over time, may not
            happen when you expect it to in interactive shells, and may not
            work the same in other Python implementations whose garbage
            collectors may not reclaim and close files at the same points as
            standard CPython. In fact, when many files are opened within
            loops, Pythons other than CPython may require close calls to free
            up system resources immediately, before garbage collection can get
            around to freeing objects. Moreover, close calls may sometimes be
            required to flush buffered output of file objects not yet
            reclaimed. For an alternative way to guarantee automatic file
            closes, also see this section’s later discussion of the file
            object’s context manager, used
            with the with/as statement in Python 2.6, 2.7,
            and 3.X.



Files in Action
Let’s work through a simple example that demonstrates file-processing
      basics. The following code begins by opening a new text file for output,
      writing two lines (strings terminated with a newline marker, \n), and closing the file. Later, the example
      opens the same file again in input mode and reads the lines back one at
      a time with readline. Notice
      that the third readline call returns
      an empty string; this is how Python file methods tell you that you’ve
      reached the end of the file (empty lines in the file come back as
      strings containing just a newline character, not as empty strings).
      Here’s the complete interaction:
>>> myfile = open('myfile.txt', 'w')        # Open for text output: create/empty
>>> myfile.write('hello text file\n')       # Write a line of text: string
16
>>> myfile.write('goodbye text file\n')
18
>>> myfile.close()                          # Flush output buffers to disk

>>> myfile = open('myfile.txt')             # Open for text input: 'r' is default
>>> myfile.readline()                       # Read the lines back
'hello text file\n'
>>> myfile.readline()
'goodbye text file\n'
>>> myfile.readline()                       # Empty string: end-of-file
''
Notice that file write calls
      return the number of characters written in Python 3.X; in 2.X they
      don’t, so you won’t see these numbers echoed interactively. This example
      writes each line of text, including its end-of-line terminator, \n, as a string; write methods don’t add the
      end-of-line character for us, so we must include it to properly
      terminate our lines (otherwise the next write will simply extend the
      current line in the file).
If you want to display the file’s content with end-of-line
      characters interpreted, read the entire file into a string all
      at once with the file object’s read
      method and print it:
>>> open('myfile.txt').read()               # Read all at once into string
'hello text file\ngoodbye text file\n'

>>> print(open('myfile.txt').read())        # User-friendly display
hello text file
goodbye text file
And if you want to scan a text file line by line, file iterators are often your
      best option:
>>> for line in open('myfile.txt'):         # Use file iterators, not reads
...     print(line, end='')
...
hello text file
goodbye text file
When coded this way, the temporary file object created by open will automatically read and return one
      line on each loop iteration. This form is usually easiest to code, good
      on memory use, and may be faster than some other options (depending on
      many variables, of course). Since we haven’t reached statements or
      iterators yet, though, you’ll have to wait until Chapter 14 for a more complete
      explanation of this code.
Note
Windows users: As mentioned in Chapter 7, open accepts Unix-style forward slashes in
        place of backward slashes on Windows, so any of the following forms
        work for directory paths—raw strings, forward slashes, or doubled-up
        backslashes:
>>> open(r'C:\Python33\Lib\pdb.py').readline()
'#! /usr/bin/env python3\n'
>>> open('C:/Python33/Lib/pdb.py').readline()
'#! /usr/bin/env python3\n'
>>> open('C:\\Python33\\Lib\\pdb.py').readline()
'#! /usr/bin/env python3\n'
The raw string form in the first command is still useful to turn
        off accidental escapes when you can’t control string content, and in
        other contexts.


Text and Binary Files: The Short Story
Strictly speaking, the example in the prior section uses text
      files. In both Python 3.X and 2.X, file type is determined by the second
      argument to open, the mode string—an included “b” means binary. Python has
      always supported both text and binary files, but in Python 3.X there is
      a sharper distinction between the two:
	Text files represent content as
          normal str strings,
          perform Unicode encoding and decoding automatically, and perform
          end-of-line translation by default.

	Binary files represent content as a
          special bytes
          string type and allow programs to access file content
          unaltered.


In contrast, Python 2.X text files handle both 8-bit text and
      binary data, and a special string type and file interface (unicode
      strings and codecs.open) handles
      Unicode text. The differences in Python 3.X stem from the
      fact that simple and Unicode text have been merged in the normal string
      type—which makes sense, given that all text is Unicode, including ASCII
      and other 8-bit encodings.
Because most programmers deal only with ASCII text, they can get
      by with the basic text file interface used in the prior example, and
      normal strings. All strings are technically Unicode in 3.X, but ASCII
      users will not generally notice. In fact, text files and strings work
      the same in 3.X and 2.X if your script’s scope is limited to such simple
      forms of text.
If you need to handle internationalized applications or
      byte-oriented data, though, the distinction in 3.X impacts your code
      (usually for the better). In general, you must use bytes strings for binary files, and normal
      str strings for text files. Moreover,
      because text files implement Unicode encodings, you should not open a
      binary data file in text mode—decoding its content to Unicode text will
      likely fail.
Let’s look at an example. When you read a
      binary data file you get back a bytes object—a sequence of small integers that
      represent absolute byte values (which may or may not correspond to
      characters), which looks and feels almost exactly like a normal string.
      In Python 3.X, and assuming an existing binary file:
>>> data = open('data.bin', 'rb').read()    # Open binary file: rb=read binary
>>> data                                    # bytes string holds binary data
b'\x00\x00\x00\x07spam\x00\x08'
>>> data[4:8]                               # Act like strings
b'spam'
>>> data[4:8][0]                            # But really are small 8-bit integers
115
>>> bin(data[4:8][0])                       # Python 3.X/2.6+ bin() function
'0b1110011'
In addition, binary files do not perform any end-of-line
      translation on data; text files by
      default map all forms to and from \n
      when written and read and implement Unicode encodings on transfers in
      3.X. Binary files like this one work the same in Python 2.X, but byte
      strings are simply normal strings and have no leading
      b when displayed, and text files must use the
      codecs module to add Unicode
      processing.
Per the note at the start of this chapter, though, that’s as much
      as we’re going to say about Unicode text and binary data files here, and
      just enough to understand upcoming examples in this chapter. Since the
      distinction is of marginal interest to many Python programmers, we’ll
      defer to the files preview in Chapter 4 for a quick tour and
      postpone the full story until Chapter 37. For now, let’s move on to some
      more substantial file examples to demonstrate a few common use
      cases.

Storing Python Objects in Files: Conversions
Our next example writes a variety of Python objects into a text file on
      multiple lines. Notice that it must convert objects to strings using
      conversion tools. Again, file data is always
      strings in our scripts, and write methods do not do
      any automatic to-string formatting for us (for space, I’m omitting
      byte-count return values from write
      methods from here on):
>>> X, Y, Z = 43, 44, 45                       # Native Python objects
>>> S = 'Spam'                                 # Must be strings to store in file
>>> D = {'a': 1, 'b': 2}
>>> L = [1, 2, 3]
>>>
>>> F = open('datafile.txt', 'w')              # Create output text file
>>> F.write(S + '\n')                          # Terminate lines with \n
>>> F.write('%s,%s,%s\n' % (X, Y, Z))          # Convert numbers to strings
>>> F.write(str(L) + '$' + str(D) + '\n')      # Convert and separate with $
>>> F.close()
Once we have created our file, we can inspect its contents by
      opening it and reading it into a string (strung together as a single
      operation here). Notice that the interactive echo gives the exact byte
      contents, while the print operation
      interprets embedded end-of-line characters to render a more
      user-friendly display:
>>> chars = open('datafile.txt').read()        # Raw string display
>>> chars
"Spam\n43,44,45\n[1, 2, 3]${'a': 1, 'b': 2}\n"
>>> print(chars)                               # User-friendly display
Spam
43,44,45
[1, 2, 3]${'a': 1, 'b': 2}
We now have to use other conversion tools to translate from the
      strings in the text file to real Python objects. As Python never
      converts strings to numbers (or other types of objects) automatically,
      this is required if we need to gain access to normal object tools like
      indexing, addition, and so on:
>>> F = open('datafile.txt')                   # Open again
>>> line = F.readline()                        # Read one line
>>> line
'Spam\n'
>>> line.rstrip()                              # Remove end-of-line
'Spam'
For this first line, we used the string rstrip method to
      get rid of the trailing end-of-line character; a line[:−1] slice would work, too, but only if
      we can be sure all lines end in the \n character (the last line in a file
      sometimes does not).
So far, we’ve read the line containing the string. Now let’s grab
      the next line, which contains numbers, and parse out (that is, extract)
      the objects on that line:
>>> line = F.readline()                       # Next line from file
>>> line                                      # It's a string here
'43,44,45\n'
>>> parts = line.split(',')                   # Split (parse) on commas
>>> parts
['43', '44', '45\n']
We used the string split method
      here to chop up the line on its comma delimiters; the result is a list
      of substrings containing the individual numbers. We still must convert
      from strings to integers, though, if we wish to perform math on
      these:
>>> int(parts[1])                              # Convert from string to int
44
>>> numbers = [int(P) for P in parts]          # Convert all in list at once
>>> numbers
[43, 44, 45]
As we have learned, int
      translates a string of digits into an integer object, and the list
      comprehension expression introduced in Chapter 4 can apply the call to each
      item in our list all at once (you’ll find more on list comprehensions
      later in this book). Notice that we didn’t have to run rstrip to delete the \n at the end of the last part; int and some other converters quietly ignore
      whitespace around digits.
Finally, to convert the stored list and dictionary in the third
      line of the file, we can run them through eval, a
      built-in function that treats a string as a piece of executable program
      code (technically, a string containing a Python expression):
>>> line = F.readline()
>>> line
"[1, 2, 3]${'a': 1, 'b': 2}\n"
>>> parts = line.split('$')                    # Split (parse) on $
>>> parts
['[1, 2, 3]', "{'a': 1, 'b': 2}\n"]
>>> eval(parts[0])                             # Convert to any object type
[1, 2, 3]
>>> objects = [eval(P) for P in parts]         # Do same for all in list
>>> objects
[[1, 2, 3], {'a': 1, 'b': 2}]
Because the end result of all this parsing and converting is a
      list of normal Python objects instead of strings, we can now apply list
      and dictionary operations to them in our script.

Storing Native Python Objects: pickle
Using eval to convert
      from strings to objects, as demonstrated in the preceding
      code, is a powerful tool. In fact, sometimes it’s
      too powerful. eval will happily run any Python
      expression—even one that might delete all the files on your computer,
      given the necessary permissions! If you really want to store native
      Python objects, but you can’t trust the source of the data in the file,
      Python’s standard library pickle
      module is ideal.
The pickle module is a more
      advanced tool that allows us to store almost any Python object in a file
      directly, with no to- or from-string conversion requirement on our part.
      It’s like a super-general data formatting and parsing utility. To store
      a dictionary in a file, for instance, we pickle it directly:
>>> D = {'a': 1, 'b': 2}
>>> F = open('datafile.pkl', 'wb')
>>> import pickle
>>> pickle.dump(D, F)                          # Pickle any object to file
>>> F.close()
Then, to get the dictionary back later, we simply use pickle again to re-create it:
>>> F = open('datafile.pkl', 'rb')
>>> E = pickle.load(F)                         # Load any object from file
>>> E
{'a': 1, 'b': 2}
We get back an equivalent dictionary object, with no manual
      splitting or converting required. The pickle module performs what is known as
      object serialization—converting objects to and from
      strings of bytes—but requires very little work on our part. In fact,
      pickle internally translates our
      dictionary to a string form, though it’s not much to look at (and may
      vary if we pickle in other data protocol modes):
>>> open('datafile.pkl', 'rb').read()          # Format is prone to change!
b'\x80\x03}q\x00(X\x01\x00\x00\x00bq\x01K\x02X\x01\x00\x00\x00aq\x02K\x01u.'
Because pickle can reconstruct
      the object from this format, we don’t have to deal with it ourselves.
      For more on the pickle module, see
      the Python standard library manual, or import pickle and pass it to help interactively. While you’re exploring,
      also take a look at the shelve
      module. shelve is a tool that uses
      pickle to store Python objects in an
      access-by-key filesystem, which is beyond our scope here (though you will get to see
      an example of shelve in action in
      Chapter 28, and other pickle examples
      in Chapter 31 and Chapter 37).
Note
Notice that I opened the file used to store the pickled object
        in binary mode; binary mode is always required in
        Python 3.X, because the pickler creates and uses a bytes string object, and these objects imply
        binary-mode files (text-mode files imply str strings in 3.X). In earlier Pythons it’s
        OK to use text-mode files for protocol 0 (the default, which creates
        ASCII text), as long as text mode is used consistently; higher
        protocols require binary-mode files. Python 3.X’s default protocol is
        3 (binary), but it creates bytes
        even for protocol 0. See Chapter 28,
        Chapter 31, and Chapter 37; Python’s library manual; or
        reference books for more details on and examples of pickled
        data.
Python 2.X also has a cPickle
        module, which is an optimized version of pickle that can be imported directly for
        speed. Python 3.X renames this module _pickle and uses it automatically in
        pickle—scripts simply import
        pickle and let Python optimize
        itself.


Storing Python Objects in JSON Format
The prior section’s pickle module
      translates nearly arbitrary Python objects to a proprietary format
      developed specifically for Python, and honed for performance over many
      years. JSON is a newer and emerging data interchange format, which is
      both programming-language-neutral and supported by a variety of systems.
      MongoDB, for instance, stores data in a JSON
      document database (using a binary JSON format).
JSON does not support as broad a range of Python object types as
      pickle, but its portability is an
      advantage in some contexts, and it represents another way to serialize a
      specific category of Python objects for storage and transmission.
      Moreover, because JSON is so close to Python dictionaries and lists in
      syntax, the translation to and from Python objects is trivial, and is
      automated by the json standard
      library module.
For example, a Python dictionary with nested structures is very
      similar to JSON data, though Python’s variables and expressions support
      richer structuring options (any part of the following can be an
      arbitrary expression in Python code):
>>> name = dict(first='Bob', last='Smith')
>>> rec  = dict(name=name, job=['dev', 'mgr'], age=40.5)
>>> rec
{'job': ['dev', 'mgr'], 'name': {'last': 'Smith', 'first': 'Bob'}, 'age': 40.5}
The final dictionary format displayed here is a valid literal in
      Python code, and almost passes for JSON when printed as is, but the
      json module makes the translation
      official—here translating Python objects to and from a JSON serialized
      string representation in memory:
>>> import json
>>> json.dumps(rec)
'{"job": ["dev", "mgr"], "name": {"last": "Smith", "first": "Bob"}, "age": 40.5}'

>>> S = json.dumps(rec)
>>> S
'{"job": ["dev", "mgr"], "name": {"last": "Smith", "first": "Bob"}, "age": 40.5}'

>>> O = json.loads(S)
>>> O
{'job': ['dev', 'mgr'], 'name': {'last': 'Smith', 'first': 'Bob'}, 'age': 40.5}
>>> O == rec
True
It’s similarly straightforward to translate Python objects to and
      from JSON data strings in files. Prior to being stored in a file, your
      data is simply Python objects; the JSON module recreates them from the
      JSON textual representation when it loads it from the file:
>>> json.dump(rec, fp=open('testjson.txt', 'w'), indent=4)
>>> print(open('testjson.txt').read())
{
    "job": [
        "dev",
        "mgr"
    ],
    "name": {
        "last": "Smith",
        "first": "Bob"
    },
    "age": 40.5
}
>>> P = json.load(open('testjson.txt'))
>>> P
{'job': ['dev', 'mgr'], 'name': {'last': 'Smith', 'first': 'Bob'}, 'age': 40.5}
Once you’ve translated from JSON text, you process the data using
      normal Python object operations in your script. For more details on
      JSON-related topics, see Python’s library manuals and search the
      Web.
Note that strings are all Unicode in JSON to support text
      drawn from international character sets, so you’ll see a leading
      u on strings after translating from JSON data in
      Python 2.X (but not in 3.X); this is just the syntax of Unicode objects
      in 2.X, as introduced Chapter 4
      and Chapter 7, and covered in full in Chapter 37. Because Unicode text strings
      support all the usual string operations, the difference is negligible to
      your code while text resides in memory; the distinction matters most
      when transferring text to and from files, and then usually only for non-ASCII types of text where encodings
      come into play.
Note
There is also support in the Python world for translating
        objects to and from XML, a text format used in Chapter 37; see the web for details.For
        another semirelated tool that deals with formatted data files, see the
        standard library’s csv module. It
        parses and creates CSV (comma-separated value) data in files and
        strings. This doesn’t map as directly to Python objects, but is
        another common data exchange format:
>>> import csv
>>> rdr = csv.reader(open('csvdata.txt'))
>>> for row in rdr: print(row)
...
['a', 'bbb', 'cc', 'dddd']
['11', '22', '33', '44']


Storing Packed Binary Data: struct
One other file-related note before we move on: some advanced applications also
      need to deal with packed binary data, created perhaps by a C language
      program or a network connection. Python’s standard library includes a
      tool to help in this domain—the struct module knows how to both compose and
      parse packed binary data. In a sense, this is another data-conversion
      tool that interprets strings in files as binary data.
We saw an overview of this tool in Chapter 4, but let’s take another
      quick look here for more perspective. To create a packed binary data
      file, open it in 'wb' (write binary)
      mode, and pass struct a format string
      and some Python objects. The format string used here means pack as a
      4-byte integer, a 4-character string (which must be a bytes string as of Python 3.2), and a 2-byte
      integer, all in big-endian form (other format codes handle padding
      bytes, floating-point numbers, and more):
>>> F = open('data.bin', 'wb')                     # Open binary output file
>>> import struct
>>> data = struct.pack('>i4sh', 7, b'spam', 8)     # Make packed binary data
>>> data
b'\x00\x00\x00\x07spam\x00\x08'
>>> F.write(data)                                  # Write byte string
>>> F.close()
Python creates a binary bytes
      data string, which we write out to the file normally—this one consists
      mostly of nonprintable characters printed in hexadecimal escapes, and is
      the same binary file we met earlier. To parse the values out to normal
      Python objects, we simply read the string back and unpack it using the
      same format string. Python extracts the values into normal Python
      objects—integers and a string:
>>> F = open('data.bin', 'rb')
>>> data = F.read()                                # Get packed binary data
>>> data
b'\x00\x00\x00\x07spam\x00\x08'
>>> values = struct.unpack('>i4sh', data)          # Convert to Python objects
>>> values
(7, b'spam', 8)
Binary data files are advanced and somewhat low-level tools that
      we won’t cover in more detail here; for more help, see the struct coverage in Chapter 37, consult the Python library
      manual, or import struct and pass it
      to the help function interactively.
      Also note that you can use the binary file-processing modes 'wb' and 'rb' to process a simpler binary file, such as
      an image or audio file, as a whole without having to unpack its
      contents; in such cases your code might pass it unparsed to other files
      or tools.

File Context Managers
You’ll also want to watch for Chapter 34’s
      discussion of the file’s context manager support,
      new as of Python 3.0 and 2.6. Though more a feature of exception
      processing than files themselves, it allows us to wrap file-processing
      code in a logic layer that ensures that the file will be closed (and if
      needed, have its output flushed to disk) automatically on exit, instead
      of relying on the auto-close during garbage collection:
with open(r'C:\code\data.txt') as myfile:     # See Chapter 34 for details
    for line in myfile:
        ...use line here...
The try/finally statement
      that we’ll also study in Chapter 34 can provide similar functionality,
      but at some cost in extra code—three extra lines, to be precise (though
      we can often avoid both options and let Python close files for us
      automatically):
myfile = open(r'C:\code\data.txt')
try:
    for line in myfile:
        ...use line here...
finally:
    myfile.close()
The with context manager scheme
      ensures release of system resources in all Pythons, and may be more
      useful for output files to guarantee buffer flushes; unlike the more
      general try, though, it is also
      limited to objects that support its protocol. Since both these options
      require more information than we have yet obtained, however, we’ll
      postpone details until later in this book.

Other File Tools
There are additional, more specialized file methods shown in Table 9-2, and even more that are not in the
      table. For instance, as mentioned earlier, seek resets your current position in a file
      (the next read or write happens at that position), flush forces buffered output to be written out to disk without closing the
      connection (by default, files are always buffered), and so on.
The Python standard library manual and the reference books
      described in the preface provide complete lists of file methods; for a
      quick look, run a dir or help call interactively, passing in an open
      file object (in Python 2.X but not 3.X, you can pass in the name
      file instead). For more
      file-processing examples, watch for the sidebar “Why You Will Care: File Scanners” in Chapter 13. It sketches common file-scanning loop
      code patterns with statements we have not covered enough yet to use
      here.
Also, note that although the open function and the file objects it returns
      are your main interface to external files in a Python script, there are
      additional file-like tools in the Python toolset. Among these:
	Standard streams
	Preopened file objects in the sys module,
            such as sys.stdout (see “Print Operations” in Chapter 11 for
            details)

	Descriptor files in the os
          module
	Integer file handles that support lower-level tools such as file
            locking (see also the “x” mode in Python 3.3’s open for exclusive creation)

	Sockets, pipes, and FIFOs
	File-like objects used to synchronize processes or
            communicate over networks

	Access-by-key files known as “shelves”
	Used to store unaltered and pickled Python objects directly, by key (used in
            Chapter 28)

	Shell command streams
	Tools such as os.popen and
            subprocess.Popen that
            support spawning shell commands and reading and
            writing to their standard streams (see Chapter 13 and Chapter 21 for examples)


The third-party open source domain offers even more file-like
      tools, including support for communicating with serial ports in
      the PySerial extension and
      interactive programs in the pexpect system. See
      applications-focused Python texts and the Web at large for additional
      information on file-like tools.
Note
Version skew note: In Python 2.X, the
        built-in name open is essentially a
        synonym for the name file, and you
        may technically open files by calling either open or file (though open is generally preferred for opening). In
        Python 3.X, the name file is no
        longer available, because of its redundancy with open.
Python 2.X users may also use the name file as the file object type, in order to
        customize files with object-oriented programming (described later in
        this book). In Python 3.X, files have changed radically. The classes
        used to implement file objects live in the standard library module
        io. See this module’s documentation
        or code for the classes it makes available for customization, and run
        a type(F) call on an open file
        F for hints.



Core Types Review and Summary
Now that we’ve seen all of Python’s core built-in types in action, let’s wrap up our
    object types tour by reviewing some of the properties they share. Table 9-3 classifies all the major types we’ve
    seen so far according to the type categories introduced earlier. Here are
    some points to remember:
	Objects share operations according to their category; for
        instance, sequence objects—strings, lists, and tuples—all share
        sequence operations such as concatenation, length, and
        indexing.

	Only mutable objects—lists, dictionaries, and sets—may be
        changed in place; you cannot change numbers, strings, or tuples in
        place.

	Files export only methods, so mutability doesn’t really apply to
        them—their state may be changed when they are processed, but this
        isn’t quite the same as Python core type mutability
        constraints.

	“Numbers” in Table 9-3 includes
        all number types: integer (and the distinct long integer in 2.X),
        floating point, complex, decimal, and fraction.

	“Strings” in Table 9-3 includes
        str, as well as bytes in 3.X and unicode in 2.X; the bytearray string type in 3.X, 2.6, and 2.7
        is mutable.

	Sets are something like the keys of a valueless dictionary, but
        they don’t map to values and are not ordered, so sets are neither a
        mapping nor a sequence type; frozenset is an immutable variant of set.

	In addition to type category operations, as of Python 2.6 and
        3.0 all the types in Table 9-3 have
        callable methods, which are generally specific to their type.


Table 9-3. Object classifications	Object
            type	Category	Mutable?
	Numbers
            (all)
	Numeric
	No

	Strings
            (all)
	Sequence
	No

	Lists
	Sequence
	Yes

	Dictionaries
	Mapping
	Yes

	Tuples
	Sequence
	No

	Files
	Extension
	N/A

	Sets
	Set
	Yes

	Frozenset
	Set
	No

	bytearray
	Sequence
	Yes


Why You Will Care: Operator Overloading
In Part VI of this book, we’ll see that
      objects we implement with classes can pick and choose from these categories
      arbitrarily. For instance, if we want to provide a new kind of
      specialized sequence object that is consistent with built-in sequences,
      we can code a class that overloads things like indexing and
      concatenation:
class MySequence:
    def __getitem__(self, index):
        # Called on self[index], others
    def __add__(self, other):
        # Called on self + other
    def __iter__(self):
        # Preferred in iterations
and so on. We can also make the new object mutable or not by
      selectively implementing methods called for in-place change operations (e.g., __setitem__ is called on self[index]=value assignments). Although it’s
      beyond this book’s scope, it’s also possible to implement new objects in
      an external language like C as C extension types. For these, we fill in
      C function pointer slots to choose between number, sequence, and mapping
      operation sets.

Object Flexibility
This part of the book introduced a number of compound object
      types—collections with components. In general:
	Lists, dictionaries, and tuples can hold any kind of
          object.

	Sets can contain any type of immutable object.

	Lists, dictionaries, and tuples can be arbitrarily
          nested.

	Lists, dictionaries, and sets can dynamically grow and
          shrink.


Because they support arbitrary structures, Python’s compound
      object types are good at representing complex information in programs.
      For example, values in dictionaries may be lists, which may contain
      tuples, which may contain dictionaries, and so on. The nesting can be as
      deep as needed to model the data to be processed.
Let’s look at an example of nesting. The following interaction
      defines a tree of nested compound sequence objects, shown in Figure 9-1. To access its
      components, you may include as many index operations as required. Python
      evaluates the indexes from left to right, and fetches a reference to a
      more deeply nested object at each step. Figure 9-1 may be a
      pathologically complicated data structure, but it illustrates the syntax
      used to access nested objects in general:
>>> L = ['abc', [(1, 2), ([3], 4)], 5]
>>> L[1]
[(1, 2), ([3], 4)]
>>> L[1][1]
([3], 4)
>>> L[1][1][0]
[3]
>>> L[1][1][0][0]
3
Figure 9-1. A nested object tree with the offsets of its components,
        created by running the literal expression [‘abc’, [(1, 2), ([3], 4)],
        5]. Syntactically nested objects are internally represented as
        references (i.e., pointers) to separate pieces of memory.


References Versus Copies
Chapter 6 mentioned that
      assignments always store references to objects, not copies
      of those objects. In practice, this is usually what you want. Because
      assignments can generate multiple references to the same object, though,
      it’s important to be aware that changing a mutable object in place may
      affect other references to the same object elsewhere in your program. If
      you don’t want such behavior, you’ll need to tell Python to copy the
      object explicitly.
We studied this phenomenon in Chapter 6, but it can become more subtle
      when larger objects of the sort we’ve explored since then come into
      play. For instance, the following example creates a list assigned to
      X, and another list assigned to
      L that embeds a reference back to
      list X. It also creates a dictionary
      D that contains another reference
      back to list X:
>>> X = [1, 2, 3]
>>> L = ['a', X, 'b']            # Embed references to X's object
>>> D = {'x':X, 'y':2}
At this point, there are three references to the first list
      created: from the name X, from inside
      the list assigned to L, and from
      inside the dictionary assigned to D.
      The situation is illustrated in Figure 9-2.
Figure 9-2. Shared object references: because the list referenced by
        variable X is also referenced from within the objects referenced by L
        and D, changing the shared list from X makes it look different from L
        and D, too.

Because lists are mutable, changing the shared list object from
      any of the three references also changes what the other two
      reference:
>>> X[1] = 'surprise'             # Changes all three references!
>>> L
['a', [1, 'surprise', 3], 'b']
>>> D
{'x': [1, 'surprise', 3], 'y': 2}
References are a higher-level analog of pointers in other
      languages that are always followed when used. Although you can’t grab
      hold of the reference itself, it’s possible to store the same reference
      in more than one place (variables, lists, and so on). This is a
      feature—you can pass a large object around a program without generating
      expensive copies of it along the way. If you really do want copies,
      however, you can request them:
	Slice expressions with empty limits (L[:]) copy sequences.

	The dictionary, set, and list copy
          method (X.copy()) copies a
          dictionary, set, or list (the list’s copy is new as of 3.3).

	Some built-in functions, such as list and dict make copies (list(L), dict(D), set(S)).

	The copy standard library
          module makes full copies when needed.


For example, say you have a list and a dictionary, and you don’t
      want their values to be changed through other variables:
>>> L = [1,2,3]
>>> D = {'a':1, 'b':2}
To prevent this, simply assign copies to the other variables, not
      references to the same objects:
>>> A = L[:]                      # Instead of A = L (or list(L))
>>> B = D.copy()                  # Instead of B = D (ditto for sets)
This way, changes made from the other variables will change the
      copies, not the originals:
>>> A[1] = 'Ni'
>>> B['c'] = 'spam'
>>>
>>> L, D
([1, 2, 3], {'a': 1, 'b': 2})
>>> A, B
([1, 'Ni', 3], {'a': 1, 'c': 'spam', 'b': 2})
In terms of our original example, you can avoid the reference side
      effects by slicing the original list instead of simply naming it:
>>> X = [1, 2, 3]
>>> L = ['a', X[:], 'b']           # Embed copies of X's object
>>> D = {'x':X[:], 'y':2}
This changes the picture in Figure 9-2—L and D
      will now point to different lists than X. The net effect is that changes made through
      X will impact only X, not L
      and D; similarly, changes to L or D will
      not impact X.
One final note on copies: empty-limit slices and the dictionary
      copy method only make
      top-level copies; that is, they do not copy nested
      data structures, if any are present. If you need a complete, fully
      independent copy of a deeply nested data structure (like the various
      record structures we’ve coded in recent chapters), use the standard
      copy module, introduced in Chapter 6:
import copy
X = copy.deepcopy(Y)               # Fully copy an arbitrarily nested object Y
This call recursively traverses objects to copy all their parts.
      This is a much more rare case, though, which is why you have to say more
      to use this scheme. References are usually what you will want; when they
      are not, slices and copy methods are usually as much copying as you’ll
      need to do.

Comparisons, Equality, and Truth
All Python objects also respond to comparisons: tests for equality, relative
      magnitude, and so on. Python comparisons always inspect all parts of
      compound objects until a result can be determined. In fact, when nested
      objects are present, Python automatically traverses data structures to
      apply comparisons from left to right, and as deeply as needed. The first
      difference found along the way determines the comparison result.
This is sometimes called a recursive comparison—the same
      comparison requested on the top-level objects is applied to each of the
      nested objects, and to each of their nested
      objects, and so on, until a result is found. Later in this book—in Chapter 19—we’ll see how to write recursive
      functions of our own that work similarly on nested structures. For now,
      think about comparing all the linked pages at two websites if you want a
      metaphor for such structures, and a reason for writing recursive
      functions to process them.
In terms of core types, the recursion is automatic. For instance,
      a comparison of list objects compares all their components automatically
      until a mismatch is found or the end is reached:
>>> L1 = [1, ('a', 3)]           # Same value, unique objects
>>> L2 = [1, ('a', 3)]
>>> L1 == L2, L1 is L2           # Equivalent? Same object?
(True, False)
Here, L1 and L2 are assigned lists that are equivalent but
      distinct objects. As a review of what we saw in Chapter 6, because of the nature of
      Python references, there are two ways to test for equality:
	The == operator
          tests value equivalence. Python performs an equivalence test, comparing all nested objects
          recursively.

	The is operator
          tests object identity. Python tests whether the two are really the same object (i.e., live at the
          same address in memory).


In the preceding example, L1
      and L2 pass the == test (they have equivalent values because
      all their components are equivalent) but fail the is check (they reference two different
      objects, and hence two different pieces of memory). Notice what happens
      for short strings, though:
>>> S1 = 'spam'
>>> S2 = 'spam'
>>> S1 == S2, S1 is S2
(True, True)
Here, we should again have two distinct objects that happen to
      have the same value: == should be
      true, and is should be false. But
      because Python internally caches and reuses some strings as an
      optimization, there really is just a single string 'spam' in memory, shared by S1 and S2;
      hence, the is identity test reports a
      true result. To trigger the normal behavior, we need to use longer
      strings:
>>> S1 = 'a longer string'
>>> S2 = 'a longer string'
>>> S1 == S2, S1 is S2
(True, False)
Of course, because strings are immutable, the
      object caching mechanism is irrelevant to your code—strings can’t be
      changed in place, regardless of how many variables refer to them. If
      identity tests seem confusing, see Chapter 6 for a refresher on object
      reference concepts.
As a rule of thumb, the ==
      operator is what you will want to use for almost all equality checks;
      is is reserved for highly specialized
      roles. We’ll see cases later in the book where both operators are put to
      use.
Relative magnitude comparisons are also applied recursively to
      nested data structures:
>>> L1 = [1, ('a', 3)]
>>> L2 = [1, ('a', 2)]
>>> L1 < L2, L1 == L2, L1 > L2        # Less, equal, greater: tuple of results
(False, False, True)
Here, L1 is greater than
      L2 because the nested 3 is greater than 2. By now you should know that the result of
      the last line is really a tuple of three objects—the results of the
      three expressions typed (an example of a tuple without its enclosing
      parentheses).
More specifically, Python compares types as follows:
	Numbers are compared by relative magnitude, after conversion to the common
          highest type if needed.

	Strings are compared lexicographically (by the character set code point
          values returned by ord), and
          character by character until the end or first mismatch ("abc" < "ac").

	Lists and tuples are
          compared by comparing each component from left to right, and recursively for
          nested structures, until the end or first mismatch ([2] > [1, 2]).

	Sets are equal if both contain the same items (formally, if each is a
          subset of the other), and set relative magnitude comparisons apply
          subset and superset tests.

	Dictionaries compare as equal if their
          sorted (key, value) lists are equal. Relative magnitude
          comparisons are not supported for dictionaries in Python 3.X, but
          they work in 2.X as though comparing sorted (key, value) lists.

	Nonnumeric mixed-type magnitude comparisons (e.g., 1 < 'spam') are errors in Python 3.X.
          They are allowed in Python 2.X, but use a fixed but arbitrary
          ordering rule based on type name string. By proxy, this also applies
          to sorts, which use comparisons internally: nonnumeric mixed-type
          collections cannot be sorted in 3.X.


In general, comparisons of structured objects proceed as though
      you had written the objects as literals and compared all their parts one
      at a time from left to right. In later chapters, we’ll see other object
      types that can change the way they get compared.
Python 2.X and 3.X mixed-type comparisons and sorts
Per the last point in the preceding section’s list, the change in Python 3.X for
        nonnumeric mixed-type comparisons applies to
        magnitude tests, not equality, but it also
        applies by proxy to sorting, which does magnitude
        testing internally. In Python 2.X these all work,
        though mixed types compare by an arbitrary ordering:
c:\code> c:\python27\python
>>> 11 == '11'                          # Equality does not convert non-numbers
False
>>> 11 >= '11'                          # 2.X compares by type name string: int, str
False
>>> ['11', '22'].sort()                 # Ditto for sorts
>>> [11, '11'].sort()
But Python 3.X disallows mixed-type
        magnitude testing, except numeric types and manually converted
        types:
c:\code> c:\python33\python
>>> 11 == '11'                          # 3.X: equality works but magnitude does not
False
>>> 11 >= '11'
TypeError: unorderable types: int() > str()

>>> ['11', '22'].sort()                 # Ditto for sorts
>>> [11, '11'].sort()
TypeError: unorderable types: str() < int()

>>> 11 > 9.123                          # Mixed numbers convert to highest type
True
>>> str(11) >= '11', 11 >= int('11')    # Manual conversions force the issue
(True, True)

Python 2.X and 3.X dictionary comparisons
The second-to-last point in the preceding section also merits illustration. In
        Python 2.X, dictionaries support magnitude
        comparisons, as though you were comparing sorted key/value
        lists:
C:\code> c:\python27\python
>>> D1 = {'a':1, 'b':2}
>>> D2 = {'a':1, 'b':3}
>>> D1 == D2                            # Dictionary equality: 2.X + 3.X
False
>>> D1 < D2                             # Dictionary magnitude: 2.X only
True
As noted briefly in Chapter 8,
        though, magnitude comparisons for dictionaries are removed in Python
        3.X because they incur too much overhead when
        equality is desired (equality uses an optimized scheme in 3.X that
        doesn’t literally compare sorted key/value lists):
C:\code> c:\python33\python
>>> D1 = {'a':1, 'b':2}
>>> D2 = {'a':1, 'b':3}
>>> D1 == D2
False
>>> D1 < D2
TypeError: unorderable types: dict() < dict()
The alternative in 3.X is to either write loops to compare
        values by key, or compare the sorted key/value lists manually—the items
        dictionary method and sorted
        built-in suffice:
>>> list(D1.items())
[('b', 2), ('a', 1)]
>>> sorted(D1.items())
[('a', 1), ('b', 2)]
>>>
>>> sorted(D1.items()) < sorted(D2.items())          # Magnitude test in 3.X
True
>>> sorted(D1.items()) > sorted(D2.items())
False
This takes more code, but in practice, most programs requiring
        this behavior will develop more efficient ways to compare data in
        dictionaries than either this workaround or the original behavior in
        Python 2.X.


The Meaning of True and False in Python
Notice that the test results returned in the last two examples
      represent true and false values. They print as the words True and False, but now that we’re using logical tests
      like these in earnest, I should be a bit more formal about what these
      names really mean.
In Python, as in most programming languages, an integer 0 represents false, and an integer 1 represents true. In addition, though, Python
      recognizes any empty data structure as false and any nonempty data
      structure as true. More generally, the notions of true and false are
      intrinsic properties of every object in Python—each
      object is either true or false, as follows:
	Numbers are false if zero, and true otherwise.

	Other objects are false if empty, and true otherwise.


Table 9-4 gives examples of
      true and false values of objects in Python.
Table 9-4. Example object truth values	Object	Value
	"spam"
	True

	""
	False

	[1, 2]
	True

	[]
	False

	{'a': 1}
	True

	{}
	False

	1
	True

	0.0
	False

	None
	False


As one application, because objects are true or false themselves,
      it’s common to see Python programmers code tests like if X:, which, assuming X is a string, is the same as if X != '':. In other words, you can test the
      object itself to see if it contains anything, instead of comparing it to
      an empty, and therefore false, object of the same type (more on if statements in the next chapter).
The None object
As shown in the last row in Table 9-4, Python also provides a
        special object called None, which
        is always considered to be false. None was introduced briefly in Chapter 4; it is the only value of
        a special data type in Python and typically serves as an empty
        placeholder (much like a NULL
        pointer in C).
For example, recall that for lists you cannot assign to an
        offset unless that offset already exists—the list does not magically
        grow if you attempt an out-of-bounds assignment. To preallocate a
        100-item list such that you can add to any of the 100 offsets, you can
        fill it with None objects:
>>> L = [None] * 100
>>>
>>> L
[None, None, None, None, None, None, None, ... ]
This doesn’t limit the size of the list (it can still grow and
        shrink later), but simply presets an initial size to allow for future
        index assignments. You could initialize a list with zeros the same
        way, of course, but best practice dictates using None if the type of the list’s contents is
        variable or not yet known.
Keep in mind that None does
        not mean “undefined.” That is, None
        is something, not nothing (despite its name!)—it is a real object and
        a real piece of memory that is created and given a built-in name by
        Python itself. Watch for other uses of this special object later in
        the book; as we’ll learn in Part IV, it is also the default return
        value of functions that don’t exit by running into a return statement with a result value.

The bool type
While we’re on the topic of truth, also keep in mind that the Python
        Boolean type bool, introduced in
        Chapter 5, simply augments the notions of true
        and false in Python. As we learned in Chapter 5, the built-in words True and False are just customized versions of the
        integers 1 and 0—it’s as if these two words have been
        preassigned to 1 and 0 everywhere in Python. Because of the way
        this new type is implemented, this is really just a minor extension to
        the notions of true and false already described, designed to make
        truth values more explicit:
	When used explicitly in truth test code, the words True and False are equivalent to 1 and 0, but they make the programmer’s intent
            clearer.

	Results of Boolean tests run interactively print as the
            words True and False, instead of as 1 and 0, to make the type of result
            clearer.


You are not required to use only Boolean types in logical
        statements such as if; all objects
        are still inherently true or false, and all the Boolean concepts
        mentioned in this chapter still work as described if you use other
        types. Python also provides a bool
        built-in function that can be used to test the Boolean value of an
        object if you want to make this explicit (i.e., whether it is
        true—that is, nonzero or nonempty):
>>> bool(1)
True
>>> bool('spam')
True
>>> bool({})
False
In practice, though, you’ll rarely notice the Boolean type
        produced by logic tests, because Boolean results are used
        automatically by if statements and
        other selection tools. We’ll explore Booleans further when we study
        logical statements in Chapter 12.


Python’s Type Hierarchies
As a summary and reference, Figure 9-3 sketches all the
      built-in object types available in Python and their relationships. We’ve
      looked at the most prominent of these; most of the other kinds of
      objects in Figure 9-3
      correspond to program units (e.g., functions and modules) or exposed
      interpreter internals (e.g., stack frames and compiled code).
The largest point to notice here is that
      everything in a Python system is an object type and
      may be processed by your Python programs. For instance, you can pass a
      class to a function, assign it to a variable, stuff it in a list or
      dictionary, and so on.

Type Objects
In fact, even types themselves are an object type in Python: the
      type of an object is an object of type type (say that three times fast!). Seriously,
      a call to the built-in function type(X)
      returns the type object of object X.
      The practical application of this is that type objects can be used for
      manual type comparisons in Python if
      statements. However, for reasons introduced in Chapter 4, manual type testing is
      usually not the right thing to do in Python, since it limits your code’s
      flexibility.
One note on type names: as of Python 2.2, each core type has a new
      built-in name added to support type customization through
      object-oriented subclassing: dict,
      list, str, tuple,
      int, float, complex, bytes, type, set,
      and more. In Python 3.X these names reference classes, and in
      Python 2.X but not 3.X, file is also
      a type name and a synonym for open.
      Calls to these names are really object constructor calls, not simply
      conversion functions, though you can treat them as simple functions for
      basic usage.
In addition, the types standard
      library module in Python 3.X provides additional type names for types
      that are not available as built-ins (e.g., the type of a function; in
      Python 2.X but not 3.X, this module also includes synonyms for built-in
      type names), and it is possible to do type tests with the isinstance
      function. For example, all of the following type tests are true:
type([1]) == type([])               # Compare to type of another list
type([1]) == list                   # Compare to list type name
isinstance([1], list)               # Test if list or customization thereof

import types                        # types has names for other types
def f(): pass
type(f) == types.FunctionType
Figure 9-3. Python’s major built-in object types, organized by categories.
        Everything is a type of object in Python, even the type of an object!
        Some extension types, such as named tuples, might belong in this
        figure too, but the criteria for inclusion in the core types set are
        not formal.

Because types can be subclassed in Python today, the isinstance technique is generally recommended.
      See Chapter 32 for more on subclassing
      built-in types in Python 2.2 and later.
Note
Also in Chapter 32, we will
        explore how type(X) and type
        testing in general apply to instances of user-defined
        classes. In short, in Python 3.X and for
        new-style classes in Python 2.X, the type of a class instance is the
        class from which the instance was made. For classic classes in Python
        2.X, all class instances are instead of the type “instance,” and we
        must compare instance __class__
        attributes to compare their types meaningfully. Since we’re not yet
        equipped to tackle the subject of classes, we’ll postpone the rest of
        this story until Chapter 32.


Other Types in Python
Besides the core objects studied in this part of the book, and the
      program-unit objects such as functions, modules, and classes that we’ll
      meet later, a typical Python installation has dozens of additional
      object types available as linked-in C extensions or Python
      classes—regular expression objects, DBM files, GUI widgets, network
      sockets, and so on. Depending on whom you ask, the named
      tuple we met earlier in this chapter may fall in this
      category too (Decimal and Fraction of Chapter 5
      tend to be more ambiguous).
The main difference between these extra tools and the built-in
      types we’ve seen so far is that the built-ins provide special language
      creation syntax for their objects (e.g., 4 for an integer, [1,2] for a list, the open function for files, and def and lambda for functions). Other tools are
      generally made available in standard library modules that you must first
      import to use, and aren’t usually considered core types. For instance,
      to make a regular expression object, you import re and call re.compile(). See Python’s library reference
      for a comprehensive guide to all the tools available to Python
      programs.


Built-in Type Gotchas
That’s the end of our look at core data types. We’ll wrap up this part of the book
    with a discussion of common problems that seem to trap new users (and the
    occasional expert), along with their solutions. Some of this is a review
    of ideas we’ve already covered, but these issues are important enough to
    warn about again here.
Assignment Creates References, Not Copies
Because this is such a central concept, I’ll mention it again: shared
      references to mutable objects in your program can matter. For instance,
      in the following example, the list object assigned to the name L is referenced both from L and from inside the list assigned to the
      name M. Changing L in place changes what M references, too:
>>> L = [1, 2, 3]
>>> M = ['X', L, 'Y']           # Embed a reference to L
>>> M
['X', [1, 2, 3], 'Y']

>>> L[1] = 0                    # Changes M too
>>> M
['X', [1, 0, 3], 'Y']
This effect usually becomes important only in larger programs, and
      shared references are often exactly what you want. If objects change out
      from under you in unwanted ways, you can avoid sharing objects by
      copying them explicitly. For lists, you can always make a top-level copy
      by using an empty-limits slice, among other techniques described
      earlier:
>>> L = [1, 2, 3]
>>> M = ['X', L[:], 'Y']        # Embed a copy of L (or list(L), or L.copy())
>>> L[1] = 0                    # Changes only L, not M
>>> L
[1, 0, 3]
>>> M
['X', [1, 2, 3], 'Y']
Remember, slice limits default to 0 and the length of the sequence
      being sliced; if both are omitted, the slice extracts every item in the
      sequence and so makes a top-level copy (a new, unshared object).

Repetition Adds One Level Deep
Repeating a sequence is like adding it to itself a number of times.
      However, when mutable sequences are nested, the effect might not always
      be what you expect. For instance, in the following example X is assigned to L repeated four times, whereas Y is assigned to a list
      containing L
      repeated four times:
>>> L = [4, 5, 6]
>>> X = L * 4                   # Like [4, 5, 6] + [4, 5, 6] + ...
>>> Y = [L] * 4                 # [L] + [L] + ... = [L, L,...]

>>> X
[4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6]
>>> Y
[[4, 5, 6], [4, 5, 6], [4, 5, 6], [4, 5, 6]]
Because L was nested in the
      second repetition, Y winds up
      embedding references back to the original list assigned to L, and so is open to the same sorts of side
      effects noted in the preceding section:
>>> L[1] = 0                    # Impacts Y but not X
>>> X
[4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6]
>>> Y
[[4, 0, 6], [4, 0, 6], [4, 0, 6], [4, 0, 6]]
This may seem artificial and academic—until it happens
      unexpectedly in your code! The same solutions to this problem apply here
      as in the previous section, as this is really just another way to create
      the shared mutable object reference case—make copies when you don’t want
      shared references:
>>> L = [4, 5, 6]
>>> Y = [list(L)] * 4           # Embed a (shared) copy of L
>>> L[1] = 0
>>> Y
[[4, 5, 6], [4, 5, 6], [4, 5, 6], [4, 5, 6]]
Even more subtly, although Y
      doesn’t share an object with L
      anymore, it still embeds four references to the same copy of it. If you
      must avoid that sharing too, you’ll want to make sure each embedded copy
      is unique:
>>> Y[0][1] = 99                # All four copies are still the same
>>> Y
[[4, 99, 6], [4, 99, 6], [4, 99, 6], [4, 99, 6]]

>>> L = [4, 5, 6]
>>> Y = [list(L) for i in range(4)]
>>> Y
[[4, 5, 6], [4, 5, 6], [4, 5, 6], [4, 5, 6]]
>>> Y[0][1] = 99
>>> Y
[[4, 99, 6], [4, 5, 6], [4, 5, 6], [4, 5, 6]]
If you remember that repetition, concatenation, and slicing copy
      only the top level of their operand objects, these sorts of cases make
      much more sense.

Beware of Cyclic Data Structures
We actually encountered this concept in a prior exercise: if a
      collection object contains a reference to itself, it’s called a
      cyclic object. Python prints a [...] whenever it detects a cycle in the
      object, rather than getting stuck in an infinite loop (as it once did
      long ago):
>>> L = ['grail']                # Append reference to same object
>>> L.append(L)                  # Generates cycle in object: [...]
>>> L
['grail', [...]]
Besides understanding that the three dots in square brackets
      represent a cycle in the object, this case is worth knowing about
      because it can lead to gotchas—cyclic structures may cause code of your
      own to fall into unexpected loops if you don’t anticipate them.
For instance, some programs that walk through structured data must
      keep a list, dictionary, or set of already visited
      items, and check it when they’re about to step into a cycle that could
      cause an unwanted loop. See the Part I exercise solutions in “Part I, Getting Started” in Appendix D for more on this
      problem. Also watch for general discussion of recursion in Chapter 19, as well as the reloadall.py program in Chapter 25 and the ListTree class in Chapter 31, for concrete examples of programs
      where cycle detection can matter.
The solution is knowledge: don’t use cyclic references unless you
      really need to, and make sure you anticipate them in programs that must
      care. There are good reasons to create cycles, but unless you have code
      that knows how to handle them, objects that reference themselves may be
      more surprise than asset.

Immutable Types Can’t Be Changed in Place
And once more for completeness: you can’t change an immutable object in
      place. Instead, you construct a new object with slicing, concatenation,
      and so on, and assign it back to the original reference, if
      needed:
T = (1, 2, 3)

T[2] = 4              # Error!

T = T[:2] + (4,)      # OK: (1, 2, 4)
That might seem like extra coding work, but the upside is that the
      previous gotchas in this section can’t happen when you’re using
      immutable objects such as tuples and strings; because they can’t be
      changed in place, they are not open to the sorts of side effects that
      lists are.


Chapter Summary
This chapter explored the last two major core object types—the tuple
    and the file. We learned that tuples support all the usual sequence
    operations, have just a few methods, do not allow any in-place changes
    because they are immutable, and are extended by the named tuple type. We
    also learned that files are returned by the built-in open function and provide methods for reading
    and writing data.
Along the way we explored how to translate Python objects to and
    from strings for storing in files, and we looked at the pickle, json,
    and struct modules for advanced roles
    (object serialization and binary data). Finally, we wrapped up by
    reviewing some properties common to all object types (e.g., shared
    references) and went through a list of common mistakes (“gotchas”) in the
    object type domain.
In the next part of this book, we’ll shift gears, turning to the
    topic of statement syntax—the way you code processing
    logic in your scripts. Along the way, this next part explores all of
    Python’s basic procedural statements. The next chapter kicks off this
    topic with an introduction to Python’s general syntax model, which is
    applicable to all statement types. Before moving on, though, take the
    chapter quiz, and then work through the end-of-part lab exercises to
    review type concepts. Statements largely just create and process objects,
    so make sure you’ve mastered this domain by working through all the
    exercises before reading on.

Test Your Knowledge: Quiz
	How can you determine how large a tuple is? Why is this tool
        located where it is?

	Write an expression that changes the first item in a tuple.
        (4, 5, 6) should become (1, 5, 6) in the process.

	What is the default for the processing mode argument in a file
        open call?

	What module might you use to store Python objects in a file
        without converting them to strings yourself?

	How might you go about copying all parts of a nested structure
        at once?

	When does Python consider an object true?

	What is your quest?



Test Your Knowledge: Answers
	The built-in len function
        returns the length (number of contained items) for any container
        object in Python, including tuples. It is a built-in function instead
        of a type method because it applies to many different types of
        objects. In general, built-in functions and expressions may span many
        object types; methods are specific to a single object type, though
        some may be available on more than one type (index, for example, works on lists and
        tuples).

	Because they are immutable, you can’t really change tuples in
        place, but you can generate a new tuple with the desired value. Given
        T = (4, 5, 6), you can change the
        first item by making a new tuple from its parts by slicing and
        concatenating: T = (1,) + T[1:].
        (Recall that single-item tuples require a trailing comma.) You could
        also convert the tuple to a list, change it in place, and convert it
        back to a tuple, but this is more expensive and is rarely required in
        practice—simply use a list if you know that the object will require
        in-place changes.

	The default for the processing mode argument in a file open call is 'r', for reading text input. For input text
        files, simply pass in the external file’s name.

	The pickle module can be used
        to store Python objects in a file without explicitly converting them
        to strings. The struct module is
        related, but it assumes the data is to be in packed binary format in
        the file; json similarly converts a
        limited set of Python objects to and from strings per the JSON
        format.

	Import the copy module, and
        call copy.deepcopy(X) if you need
        to copy all parts of a nested structure X. This is also rarely seen in practice;
        references are usually the desired behavior, and shallow copies (e.g.,
        aList[:], aDict.copy(), set(aSet)) usually suffice for most
        copies.

	An object is considered true if it is either a nonzero number or
        a nonempty collection object. The built-in words True and False are essentially predefined to have the
        same meanings as integer 1 and
        0, respectively.

	Acceptable answers include “To learn Python,” “To move on to the
        next part of the book,” or “To seek the Holy Grail.”



Test Your Knowledge: Part II Exercises
This session asks you to get your feet wet with built-in object fundamentals. As
    before, a few new ideas may pop up along the way, so be sure to flip to
    the answers in “Part II, Types and Operations” in
    Appendix D when you’re done (or
    even when you’re not). If you have limited time, I suggest starting with
    exercises 10 and 11 (the most practical of the bunch), and then working
    from first to last as time allows. This is all fundamental material, so
    try to do as many of these as you can; programming is a hands-on activity,
    and there is no substitute for practicing what you’ve read to make ideas
    gel.
	The basics. Experiment interactively with
        the common type operations found in the various operation tables in
        this part of the book. To get started, bring up the Python interactive
        interpreter, type each of the following expressions, and try to
        explain what’s happening in each case. Note that the semicolon in some
        of these is being used as a statement separator, to squeeze multiple
        statements onto a single line: for example, X=1;X assigns and then prints a variable
        (more on statement syntax in the next part of the book). Also remember
        that a comma between expressions usually builds a tuple, even if there
        are no enclosing parentheses: X,Y,Z
        is a three-item tuple, which Python prints back to you in
        parentheses.
2 ** 16
2 / 5, 2 / 5.0

"spam" + "eggs"
S = "ham"
"eggs " + S
S * 5
S[:0]
"green %s and %s" % ("eggs", S)
'green {0} and {1}'.format('eggs', S)

('x',)[0]
('x', 'y')[1]

L = [1,2,3] + [4,5,6]
L, L[:], L[:0], L[−2], L[−2:]
([1,2,3] + [4,5,6])[2:4]
[L[2], L[3]]
L.reverse(); L
L.sort(); L
L.index(4)

{'a':1, 'b':2}['b']
D = {'x':1, 'y':2, 'z':3}
D['w'] = 0
D['x'] + D['w']
D[(1,2,3)] = 4
list(D.keys()), list(D.values()), (1,2,3) in D

[[]], ["",[],(),{},None]

	Indexing and slicing. At the interactive
        prompt, define a list named L that
        contains four strings or numbers (e.g., L=[0,1,2,3]). Then, experiment with the
        following boundary cases. You may never see these cases in real
        programs (especially not in the bizarre ways they appear here!), but
        they are intended to make you think about the underlying model, and
        some may be useful in less artificial forms—slicing out of bounds can
        help, for example, if a sequence is not as long as you expect:
	What happens when you try to index out of bounds (e.g.,
            L[4])?

	What about slicing out of bounds (e.g., L[−1000:100])?

	Finally, how does Python handle it if you try to extract a
            sequence in reverse, with the lower bound greater than the higher
            bound (e.g., L[3:1])? Hint: try
            assigning to this slice (L[3:1]=['?']), and see where the value
            is put. Do you think this may be the same phenomenon you saw when
            slicing out of bounds?



	Indexing, slicing, and
        del. Define another list L with four items, and assign an empty list
        to one of its offsets (e.g., L[2]=[]). What happens? Then, assign an
        empty list to a slice (L[2:3]=[]).
        What happens now? Recall that slice assignment deletes the slice and
        inserts the new value where it used to be.
The del statement deletes
        offsets, keys, attributes, and names. Use it on your list to delete an
        item (e.g., del L[0]). What happens
        if you delete an entire slice (del
        L[1:])? What happens when you assign a nonsequence to a
        slice (L[1:2]=1)?

	Tuple assignment. Type the following
        lines:
>>> X = 'spam'
>>> Y = 'eggs'
>>> X, Y = Y, X
What do you think is happening to X and Y
        when you type this sequence?

	Dictionary keys. Consider the following
        code fragments:
>>> D = {}
>>> D[1] = 'a'
>>> D[2] = 'b'
You’ve learned that dictionaries aren’t accessed by offsets, so
        what’s going on here? Does the following shed any light on the
        subject? (Hint: strings, integers, and tuples share which type
        category?)
>>> D[(1, 2, 3)] = 'c'
>>> D
{1: 'a', 2: 'b', (1, 2, 3): 'c'}

	Dictionary indexing. Create a dictionary
        named D with three entries, for
        keys 'a', 'b', and 'c'. What happens if you try to index a
        nonexistent key (D['d'])? What does
        Python do if you try to assign to a nonexistent key 'd' (e.g., D['d']='spam')? How does this compare to
        out-of-bounds assignments and references for lists? Does this sound
        like the rule for variable names?

	Generic operations. Run interactive tests
        to answer the following questions:
	What happens when you try to use the + operator on different/mixed types
            (e.g., string + list, list
            + tuple)?

	Does + work when one of
            the operands is a dictionary?

	Does the append method
            work for both lists and strings? How about using the keys method on lists? (Hint: what does
            append assume about its subject
            object?)

	Finally, what type of object do you get back when you slice
            or concatenate two lists or two strings?



	String indexing. Define a string S of four characters: S = "spam". Then type the following
        expression: S[0][0][0][0][0]. Any
        clue as to what’s happening this time? (Hint: recall that a string is
        a collection of characters, but Python characters are one-character
        strings.) Does this indexing expression still work if you apply it to
        a list such as ['s', 'p', 'a',
        'm']? Why?

	Immutable types. Define a string S of four characters again: S = "spam". Write an assignment that changes
        the string to "slam", using only
        slicing and concatenation. Could you perform the same operation using
        just indexing and concatenation? How about index assignment?

	Nesting. Write a data structure that
        represents your personal information: name (first, middle, last), age,
        job, address, email address, and phone number. You may build the data
        structure with any combination of built-in object types you like
        (lists, tuples, dictionaries, strings, numbers). Then, access the
        individual components of your data structures by indexing. Do some
        structures make more sense than others for this object?

	Files. Write a script that creates a new
        output file called myfile.txt and
        writes the string "Hello file
        world!" into it. Then write another script that opens
        myfile.txt and reads and prints
        its contents. Run your two scripts from the system command line. Does
        the new file show up in the directory where you ran your scripts? What
        if you add a different directory path to the filename passed to
        open? Note: file write methods do not add newline characters
        to your strings; add an explicit \n
        at the end of the string if you want to fully terminate the line in
        the file.



1 A subtler factor: the comma is a sort of lowest precedence
            operator, but only in contexts where it’s not otherwise
            significant. In such contexts, it’s the comma that builds tuples,
            not the parenthesis; this makes the latter optional, but can also
            lead to odd, unexpected syntax errors if parentheses are
            omitted.








Part III. Statements and Syntax








Chapter 10. Introducing Python Statements
Now that you’re familiar with Python’s core built-in object types,
  this chapter begins our exploration of its fundamental statement forms. As
  in the previous part, we’ll begin here with a general introduction to
  statement syntax, and we’ll follow up with more details about specific
  statements in the next few chapters.
In simple terms, statements are the things you write to tell Python what your programs should do.
  If, as suggested in Chapter 4,
  programs “do things with stuff,” then statements are the way you specify
  what sort of things a program does. Less informally,
  Python is a procedural, statement-based language; by combining statements,
  you specify a procedure that Python performs to satisfy
  a program’s goals.
The Python Conceptual Hierarchy Revisited
Another way to understand the role of statements is to revisit the
    concept hierarchy introduced in Chapter 4, which talked about built-in
    objects and the expressions used to manipulate them. This chapter climbs
    the hierarchy to the next level of Python program structure:
	Programs are composed of modules.

	Modules contain statements.

	Statements contain expressions.

	Expressions create and process objects.


At their base, programs written in the Python language are composed
    of statements and expressions. Expressions process objects and are
    embedded in statements. Statements code the larger
    logic of a program’s operation—they use and direct
    expressions to process the objects we studied in the preceding chapters.
    Moreover, statements are where objects spring into existence (e.g., in
    expressions within assignment statements), and some statements create
    entirely new kinds of objects (functions, classes, and so on). At the top,
    statements always exist in modules, which themselves are managed with
    statements.

Python’s Statements
Table 10-1 summarizes Python’s statement set. Each statement in Python
    has its own specific purpose and its own specific
    syntax—the rules that define its structure—though, as
    we’ll see, many share common syntax patterns, and some statements’ roles
    overlap. Table 10-1 also gives examples of each
    statement, when coded according to its syntax rules. In your programs,
    these units of code can perform actions, repeat tasks, make choices, build
    larger program structures, and so on.
This part of the book deals with entries in the table from the top
    through break and continue. You’ve informally been introduced to a
    few of the statements in Table 10-1 already;
    this part of the book will fill in details that were skipped earlier,
    introduce the rest of Python’s procedural statement set, and cover the
    overall syntax model. Statements lower in Table 10-1 that have to do with larger program
    units—functions, classes, modules, and exceptions—lead to larger
    programming ideas, so they will each have a section of their own. More
    focused statements (like del, which
    deletes various components) are covered elsewhere in the book, or in
    Python’s standard manuals.
Table 10-1. Python statements	Statement	Role	Example
	Assignment
	Creating references
	a, b = 'good', 'bad'

	Calls and other
            expressions
	Running
            functions
	log.write("spam, ham")

	print calls
	Printing
            objects
	print('The Killer', joke)

	if/elif/else
	Selecting actions
	if "python" in text:
    print(text)

	for/else
	Iteration
	for x in mylist:
    print(x)

	while/else
	General loops
	while X > Y:
    print('hello')

	pass
	Empty placeholder
	while True:
    pass

	break
	Loop exit
	while True:
    if exittest(): break

	continue
	Loop continue
	while True:
    if skiptest(): continue

	def
	Functions and methods
	def f(a, b, c=1, *d):
    print(a+b+c+d[0])

	return
	Functions results
	def f(a, b, c=1, *d):
    return a+b+c+d[0]

	yield
	Generator functions
	def gen(n):
    for i in n: yield i*2

	global
	Namespaces
	x = 'old'
def function():
    global x, y; x = 'new'

	nonlocal
	Namespaces (3.X)
	def outer():
    x = 'old'
    def function():
        nonlocal x; x = 'new'

	import
	Module access
	import sys

	from
	Attribute access
	from sys import stdin

	class
	Building objects
	class Subclass(Superclass):
    staticData = []
    def method(self): pass

	try/except/ finally
	Catching exceptions
	try:
    action()
except:
    print('action error')

	raise
	Triggering exceptions
	raise EndSearch(location)

	assert
	Debugging checks
	assert X > Y, 'X too small'

	with/as
	Context managers (3.X, 2.6+)
	with open('data') as myfile:
    process(myfile)

	del
	Deleting references
	del data[k]
del data[i:j]
del obj.attr
del variable


Technically, Table 10-1 reflects
    Python 3.X’s statements. Though sufficient as a quick
    preview and reference, it’s not quite complete as is. Here are a few fine
    points about its content:
	Assignment statements come in a variety of syntax flavors,
        described in Chapter 11: basic, sequence,
        augmented, and more.

	print is technically neither
        a reserved word nor a statement in 3.X, but a built-in function call;
        because it will nearly always be run as an expression statement,
        though (and often on a line by itself), it’s generally thought of as a
        statement type. We’ll study print operations in Chapter 11.

	yield is also an expression
        instead of a statement as of 2.5; like print, it’s typically used as an expression
        statement and so is included in this table, but scripts occasionally
        assign or otherwise use its result, as we’ll see in Chapter 20. As an expression,
        yield is also a reserved word,
        unlike print.


Most of this table applies to Python 2.X, too, except where it
    doesn’t—if you are using Python 2.X, here are a few notes for your Python,
    too:
	In 2.X, nonlocal is not
        available; as we’ll see in Chapter 17, there are
        alternative ways to achieve this statement’s writeable state-retention
        effect.

	In 2.X, print is a statement
        instead of a built-in function call, with specific syntax covered in
        Chapter 11.

	In 2.X, the 3.X exec code
        execution built-in function is a statement, with specific syntax;
        since it supports enclosing parentheses, though, you can generally use
        its 3.X call form in 2.X code.

	In 2.5, the try/except and try/finally statements were merged: the two were
        formerly separate statements, but we can now say both except and finally in the same try statement.

	In 2.5, with/as is an optional extension, and it is not
        available unless you explicitly turn it on by running the statement from __future__
        import with_statement (see Chapter 34).



A Tale of Two ifs
Before we delve into the details of any of the concrete statements in Table 10-1, I want to begin our look at Python
    statement syntax by showing you what you are not
    going to type in Python code so you can compare and contrast it with other
    syntax models you might have seen in the past.
Consider the following if
    statement, coded in a C-like language:
if (x > y) {
    x = 1;
    y = 2;
}
This might be a statement in C, C++, Java, JavaScript, or similar.
    Now, look at the equivalent statement in the Python language:
if x > y:
    x = 1
    y = 2
The first thing that may pop out at you is that the equivalent
    Python statement is less, well, cluttered—that is, there are fewer
    syntactic components. This is by design; as a scripting language, one of
    Python’s goals is to make programmers’ lives easier by requiring less
    typing.
More specifically, when you compare the two syntax models, you’ll
    notice that Python adds one new thing to the mix, and that three items
    that are present in the C-like language are not present in Python
    code.
What Python Adds
The one new syntax component in Python is the colon character
      (:). All
      Python compound statements—statements that
      have other statements nested inside them—follow the same general pattern
      of a header line terminated in a colon, followed by a nested block of
      code usually indented underneath the header line, like this:
Header line:
    Nested statement block
The colon is required, and omitting it is probably the most common
      coding mistake among new Python programmers—it’s certainly one I’ve
      witnessed thousands of times in Python training classes I’ve taught. In
      fact, if you are new to Python, you’ll almost certainly forget the colon
      character very soon. You’ll get an error message if you do, and most
      Python-friendly editors make this mistake easy to spot. Including it
      eventually becomes an unconscious habit (so much so that you may start
      typing colons in your C-like language code, too, generating many
      entertaining error messages from that language’s compiler!).

What Python Removes
Although Python requires the extra colon character, there are
      three things programmers in C-like languages must include that you don’t
      generally have to in Python.
Parentheses are optional
The first of these is the set of parentheses around the tests at the top of the
        statement:
if (x < y)
The parentheses here are required by the syntax of many C-like
        languages. In Python, though, they are not—we simply omit the
        parentheses, and the statement works the same way:
if x < y
Technically speaking, because every expression can be enclosed
        in parentheses, including them will not hurt in this Python code, and
        they are not treated as an error if present.
But don’t do that: you’ll be wearing out
        your keyboard needlessly, and broadcasting to the world that you’re a
        programmer of a C-like language still learning Python (I know, because
        I was once, too). The “Python way” is to simply omit the parentheses
        in these kinds of statements altogether.

End-of-line is end of statement
The second and more significant syntax component you won’t find in Python
        code is the semicolon. You don’t need to terminate statements with
        semicolons in Python the way you do in C-like languages:
x = 1;
In Python, the general rule is that the end of a line
        automatically terminates the statement that appears on that line. In
        other words, you can leave off the semicolons, and it works the same
        way:
x = 1
There are some ways to work around this rule, as you’ll see in a
        moment (for instance, wrapping code in a bracketed structure allows it
        to span lines). But, in general, you write one statement per line for
        the vast majority of Python code, and no semicolon is required.
Here, too, if you are pining for your C programming days (if
        such a state is possible) you can continue to use semicolons at the
        end of each statement—the language lets you get away with them if they
        are present, because the semicolon is also a separator when statements
        are combined.
But don’t do that either (really!). Again,
        doing so tells the world that you’re a programmer of a C-like language
        who still hasn’t quite made the switch to Python coding. The Pythonic
        style is to leave off the semicolons altogether. Judging from students
        in classes, this seems a tough habit for some veteran programmers to
        break. But you’ll get there; semicolons are useless noise in this role
        in Python.

End of indentation is end of block
The third and final syntax component that Python removes, and the one
        that may seem the most unusual to soon-to-be-ex-programmers of C-like
        languages (until they’ve used it for 10 minutes and realize it’s
        actually a feature), is that you do not type anything explicit in your
        code to syntactically mark the beginning and end of a nested block of
        code. You don’t need to include begin/end, then/endif, or braces around the nested block, as
        you do in C-like languages:
if (x > y) {
    x = 1;
    y = 2;
}
Instead, in Python, we consistently indent all the statements in
        a given single nested block the same distance to the right, and Python
        uses the statements’ physical indentation to determine where the block
        starts and stops:
if x > y:
    x = 1
    y = 2
By indentation, I mean the blank whitespace
        all the way to the left of the two nested statements here. Python
        doesn’t care how you indent (you may use either
        spaces or tabs), or how much you indent (you may
        use any number of spaces or tabs). In fact, the indentation of one
        nested block can be totally different from that of another. The syntax
        rule is only that for a given single nested block, all of its
        statements must be indented the same distance to the right. If this is
        not the case, you will get a syntax error, and your code will not run
        until you repair its indentation to be consistent.


Why Indentation Syntax?
The indentation rule may seem unusual at first glance to
      programmers accustomed to C-like languages, but it is a deliberate
      feature of Python, and it’s one of the main ways that Python almost
      forces programmers to produce uniform, regular, and readable code. It
      essentially means that you must line up your code vertically, in
      columns, according to its logical structure. The net effect is to make
      your code more consistent and readable (unlike much of the code written
      in C-like languages).
To put that more strongly, aligning your code according to its
      logical structure is a major part of making it readable, and thus
      reusable and maintainable, by yourself and others. In fact, even if you
      never use Python after reading this book, you should get into the habit
      of aligning your code for readability in any block-structured language.
      Python underscores the issue by making this a part of its syntax, but
      it’s an important thing to do in any programming language, and it has a
      huge impact on the usefulness of your code.
Your experience may vary, but when I was still doing development
      on a full-time basis, I was mostly paid to work on large old C++
      programs that had been worked on by many programmers over the years.
      Almost invariably, each programmer had his or her own style for
      indenting code. For example, I’d often be asked to change a while loop coded in the C++ language that
      began like this:
while (x > 0) {
Before we even get into indentation, there are three or four ways
      that programmers can arrange these braces in a C-like language, and
      organizations often endure political battles and standards manuals to
      address the options (which seems more than a little off-topic for the
      problem to be solved by programming). Be that as it may, here’s the
      scenario I often encountered in C++ code. The first person who worked on
      the code indented the loop four spaces:
while (x > 0) {
    --------;
    --------;
That person eventually moved on to management, only to be replaced
      by someone who liked to indent further to the right:
while (x > 0) {
    --------;
    --------;
           --------;
           --------;
That person later moved on to other opportunities (ending that
      individual’s reign of coding terror...), and someone else picked up the
      code who liked to indent less:
while (x > 0) {
    --------;
    --------;
           --------;
           --------;
--------;
--------;
}
And so on. Eventually, the block is terminated by a closing brace
      (}), which of course makes this
      “block-structured code” (he says, sarcastically). No: in any
      block-structured language, Python or otherwise, if nested blocks are not
      indented consistently, they become very difficult for the reader to
      interpret, change, or reuse, because the code no longer visually
      reflects its logical meaning. Readability matters,
      and indentation is a major component of readability.
Here is another example that may have burned you in the past if
      you’ve done much programming in a C-like language. Consider the
      following statement in C:
if (x)
     if (y)
          statement1;
else
     statement2;
Which if does the else here go with? Surprisingly, the else is paired with the nested if statement (if
      (y)) in C, even though it looks visually as though it is
      associated with the outer if (x).
      This is a classic pitfall in the C language, and it can lead to the
      reader completely misinterpreting the code and changing it incorrectly
      in ways that might not be uncovered until the Mars rover crashes into a
      giant rock!
This cannot happen in Python—because indentation is significant,
      the way the code looks is the way it will work. Consider an equivalent
      Python statement:
if x:
     if y:
          statement1
else:
     statement2
In this example, the if that
      the else lines up with vertically is
      the one it is associated with logically (the outer if x). In a sense, Python is a WYSIWYG
      language—what you see is what you get—because the way code looks is the
      way it runs, regardless of who coded it.
If this still isn’t enough to underscore the benefits of Python’s
      syntax, here’s another anecdote. Early in my career, I worked at a
      successful company that developed systems software in the C language,
      where consistent indentation is not required. Even so, when we checked
      our code into source control at the end of the day, this company ran an
      automated script that analyzed the indentation used in the code. If the
      script noticed that we’d indented our code inconsistently, we received
      an automated email about it the next morning—and so did our
      managers!
The point is that even when a language doesn’t require it, good
      programmers know that consistent use of indentation has a huge impact on
      code readability and quality. The fact that Python promotes this to the
      level of syntax is seen by most as a feature of the language.
Also keep in mind that nearly every programmer-friendly text
      editor has built-in support for Python’s syntax model. In the IDLE
      Python GUI, for example, lines of code are automatically indented when
      you are typing a nested block; pressing the Backspace key backs up one
      level of indentation, and you can customize how far to the right IDLE
      indents statements in a nested block. There is no universal standard on
      this: four spaces or one tab per level is common, but it’s generally up
      to you to decide how and how much you wish to indent (unless you work at
      a company that’s endured politics and manuals to standardize this too).
      Indent further to the right for further nested blocks, and less to close
      the prior block.
As a rule of thumb, you probably shouldn’t mix tabs and spaces in
      the same block in Python, unless you do so consistently; use tabs or
      spaces in a given block, but not both (in fact, Python 3.X now issues an
      error for inconsistent use of tabs and spaces, as we’ll see in Chapter 12). Then again, you probably
      shouldn’t mix tabs or spaces in indentation in any
      structured language—such code can cause major readability issues if the
      next programmer has his or her editor set to display tabs differently
      than yours. C-like languages might let coders get away with this, but
      they shouldn’t: the result can be a mangled mess.
Regardless of which language you code in, you should be indenting
      consistently for readability. In fact, if you weren’t taught to do this
      earlier in your career, your teachers did you a disservice. Most
      programmers—especially those who must read others’ code—consider it a
      major asset that Python elevates this to the level of syntax. Moreover,
      generating tabs instead of braces is no more difficult in practice for
      tools that must output Python code. In general, if you do what you
      should be doing in a C-like language anyhow, but get rid of the braces,
      your code will satisfy Python’s syntax rules.

A Few Special Cases
As mentioned previously, in Python’s syntax model:
	The end of a line terminates the statement on that line
          (without semicolons).

	Nested statements are blocked and associated by their physical
          indentation (without braces).


Those rules cover almost all Python code you’ll write or see in
      practice. However, Python also provides some special-purpose rules that
      allow customization of both statements and nested statement blocks.
      They’re not required and should be used sparingly, but programmers have
      found them useful in practice.
Statement rule special cases
Although statements normally appear one per line, it is possible to squeeze
        more than one statement onto a single line in Python by separating
        them with semicolons:
a = 1; b = 2; print(a + b)               # Three statements on one line
This is the only place in Python where semicolons are required:
        as statement separators. This only
        works, though, if the statements thus combined are not themselves
        compound statements. In other words, you can chain together only
        simple statements, like assignments, prints, and function calls. Compound
        statements like if tests and
        while loops must still appear on
        lines of their own (otherwise, you could squeeze an entire program
        onto one line, which probably would not make you very popular among
        your coworkers!).
The other special rule for statements is essentially the
        inverse: you can make a single statement span across
        multiple lines. To make this work, you simply
        have to enclose part of your statement in a bracketed pair—parentheses (()),
        square brackets ([]),
        or curly braces ({}).
        Any code enclosed in these constructs can cross multiple lines: your
        statement doesn’t end until Python reaches the line containing the
        closing part of the pair. For instance, to continue a list
        literal:
mylist = [1111,
          2222,
          3333]
Because the code is enclosed in a square brackets pair, Python
        simply drops down to the next line until it encounters the closing
        bracket. The curly braces surrounding dictionaries (as well as set
        literals and dictionary and set comprehensions in 3.X and 2.7) allow
        them to span lines this way too, and parentheses handle tuples,
        function calls, and expressions. The indentation of the continuation
        lines does not matter, though common sense dictates that the lines
        should be aligned somehow for readability.
Parentheses are the catchall device—because any expression can
        be wrapped in them, simply inserting a left parenthesis allows you to
        drop down to the next line and continue your statement:
X = (A + B +
     C + D)
This technique works with compound statements, too, by the way.
        Anywhere you need to code a large expression, simply wrap it in
        parentheses to continue it on the next line:
if (A == 1 and
    B == 2 and
    C == 3):
        print('spam' * 3)
An older rule also allows for continuation lines when the prior line ends in a backslash:
X = A + B + \
      C + D                  # An error-prone older alternative
This alternative technique is dated, though, and is frowned on
        today because it’s difficult to notice and maintain the backslashes.
        It’s also fairly brittle and error-prone—there can be no spaces after
        the backslash, and accidentally omitting it can have unexpected
        effects if the next line is mistaken to be a new statement (in this
        example, “C + D” is a valid statement by itself if it’s not indented).
        This rule is also another throwback to the C language, where it is
        commonly used in “#define” macros; again, when in Pythonland, do as
        Pythonistas do, not as C programmers do.

Block rule special case
As mentioned previously, statements in a nested block of code are
        normally associated by being indented the same amount to the right. As
        one special case here, the body of a compound statement can instead
        appear on the same line as the header in Python, after the
        colon:
if x > y: print(x)
This allows us to code single-line if statements, single-line while and for loops, and so on. Here again, though,
        this will work only if the body of the compound statement itself does
        not contain any compound statements. That is, only simple
        statements—assignments, prints,
        function calls, and the like—are allowed after the colon. Larger
        statements must still appear on lines by themselves. Extra parts of
        compound statements (such as the else part of an if, which we’ll meet in the next section)
        must also be on separate lines of their own. Compound statement bodies
        can also consist of multiple simple statements separated by
        semicolons, but this tends to be frowned upon.
In general, even though it’s not always required, if you keep
        all your statements on individual lines and always indent your nested
        blocks, your code will be easier to read and change in the future.
        Moreover, some code profiling and coverage tools may not be able to
        distinguish between multiple statements squeezed onto a single line or
        the header and body of a one-line compound statement. It is almost
        always to your advantage to keep things simple in Python. You can use
        the special-case exceptions to write Python code that’s hard to read,
        but it takes a lot of work, and there are probably better ways to
        spend your time.
To see a prime and common exception to one of these rules in
        action, however (the use of a single-line if statement to break out of a loop), and to introduce more
        of Python’s syntax, let’s move on to the next section and write some
        real code.



A Quick Example: Interactive Loops
We’ll see all these syntax rules in action when we tour Python’s specific compound
    statements in the next few chapters, but they work the same everywhere in
    the Python language. To get started, let’s work through a brief, realistic
    example that demonstrates the way that statement syntax and statement
    nesting come together in practice, and introduces a few statements along
    the way.
A Simple Interactive Loop
Suppose you’re asked to write a Python program that interacts with
      a user in a console window. Maybe you’re accepting inputs to send to a
      database, or reading numbers to be used in a calculation. Regardless of
      the purpose, you need to code a loop that reads one or more inputs from
      a user typing on a keyboard, and prints back a result for each. In other
      words, you need to write a classic read/evaluate/print loop
      program.
In Python, typical boilerplate code for such an interactive loop
      might look like this:
while True:
    reply = input('Enter text:')
    if reply == 'stop': break
    print(reply.upper())
This code makes use of a few new ideas and some we’ve already
      seen:
	The code leverages the Python while loop,
          Python’s most general looping statement. We’ll study the while statement in more detail later, but
          in short, it consists of the word while, followed by an expression that is
          interpreted as a true or false result, followed by a nested block of
          code that is repeated while the test at the top is true (the word
          True here is considered always
          true).

	The input built-in function
          we met earlier in the book is used here for general
          console input—it prints its optional argument string as a prompt and
          returns the user’s typed reply as a string. Use raw_input in 2.X instead, per the upcoming
          note.

	A single-line if statement
          that makes use of the special rule for nested blocks also
          appears here: the body of the if
          appears on the header line after the colon instead of being indented
          on a new line underneath it. This would work either way, but as it’s
          coded, we’ve saved an extra line.

	Finally, the Python break
          statement is used to exit the loop immediately—it simply jumps out
          of the loop statement altogether, and the program continues after
          the loop. Without this exit statement, the while would loop forever, as its test is
          always true.


In effect, this combination of statements essentially means “read
      a line from the user and print it in uppercase until the user enters the
      word ‘stop.’” There are other ways to code such a loop, but the form
      used here is very common in Python code.
Notice that all three lines nested under the while header line are indented the same
      amount—because they line up vertically in a column this way, they are
      the block of code that is associated with the while test and repeated. Either the end of the
      source file or a lesser-indented statement will suffice to terminate the
      loop body block.
When this code is run, either interactively or as a script file,
      here is the sort of interaction we get—all of the code for this example
      is in interact.py in the book’s
      examples package:
Enter text:spam
SPAM
Enter text:42
42
Enter text:stop
Note
Version skew note: This example is coded
        for Python 3.X. If you are working in Python 2.X, the code works the
        same, but you must use raw_input
        instead of input in all of this
        chapter’s examples, and you can omit the outer parentheses in print statements (though they don’t hurt).
        In fact, if you study the interact.py file in the examples package,
        you’ll see that it does this automatically—to support 2.X
        compatibility, it resets input if
        the running Python’s major version is 2 (“input” winds up running
        raw_input):
import sys
if sys.version[0] == '2': input = raw_input   # 2.X compatible
In 3.X, raw_input was renamed
        input, and print is a built-in function instead of a
        statement (more on prints in the
        next chapter). Python 2.X has an input too, but it tries to evaluate the
        input string as though it were Python code, which probably won’t work
        in this context; eval(input()) can
        yield the same effect 3.X.


Doing Math on User Inputs
Our script works, but now suppose that instead of converting a
      text string to uppercase, we want to do some math with numeric
      input—squaring it, for example, perhaps in some misguided effort of an
      age-input program to tease its users. We might try statements like these
      to achieve the desired effect:
>>> reply = '20'
>>> reply ** 2
...error text omitted...
TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'
This won’t quite work in our script, though, because (as discussed
      in the prior part of the book) Python won’t convert object types in
      expressions unless they are all numeric, and input from a user is always
      returned to our script as a string. We cannot raise
      a string of digits to a power unless we convert it manually to an
      integer:
>>> int(reply) ** 2
400
Armed with this information, we can now recode our loop to perform
      the necessary math. Type the following in a file to test it:
while True:
    reply = input('Enter text:')
    if reply == 'stop': break
    print(int(reply) ** 2)
print('Bye')
This script uses a single-line if statement to exit on “stop” as before, but
      it also converts inputs to perform the required math. This version also
      adds an exit message at the bottom. Because the print statement in the last line is not
      indented as much as the nested block of code, it is not considered part
      of the loop body and will run only once, after the loop is
      exited:
Enter text:2
4
Enter text:40
1600
Enter text:stop
Bye
Note
Usage note: From this point on I’ll assume
        that this code is stored in and run from a script file, via command
        line, IDLE menu option, or any of the other file launching techniques
        we met in Chapter 3. Again, it’s named
        interact.py in the book’s
        examples. If you are entering this code interactively, though, be sure
        to include a blank line (i.e., press Enter twice) before the final
        print statement, to terminate the
        loop. This implies that you also can’t cut and paste the code in its
        entirety into an interactive prompt: an extra blank line is required
        interactively, but not in script files. The final print doesn’t quite make sense in
        interactive mode, though—you’ll have to code it after interacting with
        the loop!


Handling Errors by Testing Inputs
So far so good, but notice what happens when the input is invalid:
Enter text:xxx
...error text omitted...
ValueError: invalid literal for int() with base 10: 'xxx'
The built-in int function
      raises an exception here in the face of a mistake. If we
      want our script to be robust, we can check the string’s content ahead of
      time with the string object’s isdigit
      method:
>>> S = '123'
>>> T = 'xxx'
>>> S.isdigit(), T.isdigit()
(True, False)
This also gives us an excuse to further nest the statements in our
      example. The following new version of our interactive script uses a
      full-blown if statement to work
      around the exception on errors:
while True:
    reply = input('Enter text:')
    if reply == 'stop':
        break
    elif not reply.isdigit():
        print('Bad!' * 8)
    else:
        print(int(reply) ** 2)
print('Bye')
We’ll study the if statement in
      more detail in Chapter 12, but it’s a fairly lightweight
      tool for coding logic in scripts. In its full form, it consists of the
      word if followed by a test and an
      associated block of code, one or more optional elif (“else if”) tests and code blocks, and an
      optional else part, with an
      associated block of code at the bottom to serve as a default. Python
      runs the block of code associated with the first test that is true,
      working from top to bottom, or the else part if all tests are false.
The if, elif, and else parts in the preceding example are
      associated as part of the same statement because they all line up
      vertically (i.e., share the same level of indentation). The if statement spans from the word if to the start of the print statement on the last line of the
      script. In turn, the entire if block
      is part of the while loop because all
      of it is indented under the loop’s header line. Statement nesting like
      this is natural once you get the hang of it.
When we run our new script, its code catches errors before they
      occur and prints an error message before continuing (which you’ll
      probably want to improve in a later release), but “stop” still gets us
      out, and valid numbers are still squared:
Enter text:5
25
Enter text:xyz
Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!
Enter text:10
100
Enter text:stop
Bye

Handling Errors with try Statements
The preceding solution works, but as you’ll see later in the book, the most
      general way to handle errors in Python is to catch and recover from them
      completely using the Python try
      statement. We’ll explore this statement in depth in Part VII of this book, but as a preview, using
      a try here can lead to code that some
      would see as simpler than the prior version:
while True:
    reply = input('Enter text:')
    if reply == 'stop': break
    try:
        num = int(reply)
    except:
        print('Bad!' * 8)
    else:
        print(num ** 2)
print('Bye')
This version works exactly like the previous one, but we’ve
      replaced the explicit error check with code that assumes the conversion
      will work and wraps it in an exception handler for cases when it
      doesn’t. In other words, rather than detecting an error, we simply
      respond if one occurs.
This try statement is another
      compound statement, and follows the same pattern as if and while. It’s composed of the word try, followed by the main block of code (the
      action we are trying to run), followed by an except part that gives the exception handler
      code and an else part to be run if no
      exception is raised in the try part.
      Python first runs the try part, then
      runs either the except part (if an
      exception occurs) or the else part
      (if no exception occurs).
In terms of statement nesting, because the words try, except, and else are all indented to the same level, they
      are all considered part of the same single try statement. Notice that the else part is associated with the try here, not the if. As we’ve seen, else can appear in if statements in Python, but it can also
      appear in try statements and
      loops—its indentation tells you what statement it is a part of. In this
      case, the try statement spans from
      the word try through the code
      indented under the word else, because
      the else is indented the same as
      try. The if statement in this code is a one-liner and
      ends after the break.
Supporting floating-point numbers
Again, we’ll come back to the try
        statement later in this book. For now, be aware that because try can be used to intercept any error, it
        reduces the amount of error-checking code you have to write, and it’s
        a very general approach to dealing with unusual cases. If we’re sure
        that print won’t fail, for instance, this example could be even more
        concise:
while True:
    reply = input('Enter text:')
    if reply == 'stop': break
    try:
        print(int(reply) ** 2)
    except:
        print('Bad!' * 8)
print('Bye')
And if we wanted to support input of floating-point numbers
        instead of just integers, for example, using try would be much easier than manual error
        testing—we could simply run a float
        call and catch its exceptions:
while True:
    reply = input('Enter text:')
    if reply == 'stop': break
    try:
        print(float(reply) ** 2)
    except:
        print('Bad!' * 8)
print('Bye')
There is no isfloat for
        strings today, so this exception-based approach spares us from having
        to analyze all possible floating-point syntax in an explicit error
        check. When coding this way, we can enter a wider variety of numbers,
        but errors and exits still work as before:
Enter text:50
2500.0
Enter text:40.5
1640.25
Enter text:1.23E-100
1.5129e-200
Enter text:spam
Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!
Enter text:stop
Bye
Note
Python’s eval call, which
          we used in Chapter 5 and Chapter 9 to convert data
          in strings and files, would work in place of float here too, and would allow input of
          arbitrary expressions (“2 ** 100” would be a legal, if curious,
          input, especially if we’re assuming the program is processing
          ages!). This is a powerful concept that is open to the same security
          issues mentioned in the prior chapters. If you can’t trust the
          source of a code string, use more restrictive conversion tools like
          int and float.
Python’s exec, used in
          Chapter 3 to run code read from a
          file, is similar to eval (but
          assumes the string is a statement instead of an expression and has
          no result), and its compile call
          precompiles frequently used code strings to bytecode objects for
          speed. Run a help on any of these
          for more details; as mentioned, exec is a statement in 2.X but a function
          in 3.X, so see its manual entry in 2.X instead. We’ll also use
          exec to import modules by name
          string in Chapter 25—an example of
          its more dynamic roles.



Nesting Code Three Levels Deep
Let’s look at one last mutation of our code. Nesting can take us even
      further if we need it to—we could, for example, extend our prior
      integer-only script to branch to one of a set of alternatives based on
      the relative magnitude of a valid input:
while True:
    reply = input('Enter text:')
    if reply == 'stop':
        break
    elif not reply.isdigit():
        print('Bad!' * 8)
    else:
        num = int(reply)
        if num < 20:
            print('low')
        else:
            print(num ** 2)
print('Bye')
This version adds an if
      statement nested in the else clause
      of another if statement, which is in
      turn nested in the while loop. When
      code is conditional or repeated like this, we simply indent it further
      to the right. The net effect is like that of prior versions, but we’ll
      now print “low” for numbers less than 20:
Enter text:19
low
Enter text:20
400
Enter text:spam
Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!
Enter text:stop
Bye


Chapter Summary
That concludes our quick look at Python statement syntax. This
    chapter introduced the general rules for coding statements and blocks of
    code. As you’ve learned, in Python we normally code one statement per line
    and indent all the statements in a nested block the same amount
    (indentation is part of Python’s syntax). However, we also looked at a few
    exceptions to these rules, including continuation lines and single-line
    tests and loops. Finally, we put these ideas to work in an interactive
    script that demonstrated a handful of statements and showed statement
    syntax in action.
In the next chapter, we’ll start to dig deeper by going over each of
    Python’s basic procedural statements in depth. As you’ll see, though, all
    statements follow the same general rules introduced here.

Test Your Knowledge: Quiz
	What three things are required in a C-like language but omitted in
        Python?

	How is a statement normally terminated in Python?

	How are the statements in a nested block of code normally
        associated in Python?

	How can you make a single statement span multiple lines?

	How can you code a compound statement on a single line?

	Is there any valid reason to type a semicolon at the end of a
        statement in Python?

	What is a try statement
        for?

	What is the most common coding mistake among Python
        beginners?



Test Your Knowledge: Answers
	C-like languages require parentheses around the tests in some
        statements, semicolons at the end of each statement, and braces around
        a nested block of code.

	The end of a line terminates the statement that appears on that
        line. Alternatively, if more than one statement appears on the same
        line, they can be terminated with semicolons; similarly, if a
        statement spans many lines, you must terminate it by closing a
        bracketed syntactic pair.

	The statements in a nested block are all indented the same
        number of tabs or spaces.

	You can make a statement span many lines by enclosing part of it
        in parentheses, square brackets, or curly braces; the statement ends
        when Python sees a line that contains the closing part of the
        pair.

	The body of a compound statement can be moved to the header line
        after the colon, but only if the body consists of only noncompound
        statements.

	Only when you need to squeeze more than one statement onto a
        single line of code. Even then, this only works if all the statements
        are noncompound, and it’s discouraged because it can lead to code that
        is difficult to read.

	The try statement is used to
        catch and recover from exceptions (errors) in a Python script. It’s
        usually an alternative to manually checking for errors in code.

	Forgetting to type the colon character at the end of the header
        line in a compound statement is the most common beginner’s mistake. If
        you’re new to Python and haven’t made it yet, you probably will
        soon!










Chapter 11. Assignments, Expressions, and Prints
Now that we’ve had a quick introduction to Python statement syntax,
  this chapter begins our in-depth tour of specific Python statements. We’ll
  begin with the basics: assignment statements, expression statements, and
  print operations. We’ve already seen all of these in action, but here we’ll
  fill in important details we’ve skipped so far. Although they’re relatively
  simple, as you’ll see, there are optional variations for each of these
  statement types that will come in handy once you begin writing realistic
  Python programs.
Assignment Statements
We’ve been using the Python assignment statement for a while to assign
    objects to names. In its basic form, you write the
    target of an assignment on the left of an equals
    sign, and the object to be assigned on the right. The
    target on the left may be a name or object component, and the object on
    the right can be an arbitrary expression that computes an object. For the
    most part, assignments are straightforward, but here are a few properties
    to keep in mind:
	Assignments create object
        references. As discussed in Chapter 6, Python assignments store
        references to objects in names or data structure components. They always create references to objects
        instead of copying the objects. Because of that, Python variables are
        more like pointers than data storage areas.

	Names are created when first
        assigned. Python creates a variable name the first time you
        assign it a value (i.e., an object reference), so there’s no need to
        predeclare names ahead of time. Some (but not all) data structure
        slots are created when assigned, too (e.g., dictionary entries, some
        object attributes). Once assigned, a name is replaced with the value
        it references whenever it appears in an expression.

	Names must be assigned before being
        referenced. It’s an error to use a name to which you
        haven’t yet assigned a value. Python raises an exception if you try,
        rather than returning some sort of ambiguous default value. This turns
        out to be crucial in Python because names are not predeclared—if
        Python provided default values for unassigned names used in your
        program instead of treating them as errors, it would be much more
        difficult for you to spot name typos in your code.

	Some operations perform assignments
        implicitly. In this section we’re concerned with the
        = statement, but assignment occurs
        in many contexts in Python. For instance, we’ll see later that module
        imports, function and class definitions, for loop variables, and function arguments
        are all implicit assignments. Because assignment works the same
        everywhere it pops up, all these contexts simply
        bind (i.e., assign) names to object references at
        runtime.


Assignment Statement Forms
Although assignment is a general and pervasive concept in
      Python, we are primarily interested in assignment
      statements in this chapter. Table 11-1 illustrates the different
      assignment statement forms in Python, and their syntax patterns.
Table 11-1. Assignment statement forms	Operation	Interpretation
	spam = 'Spam'
	Basic form

	spam, ham = 'yum', 'YUM'
	Tuple assignment
              (positional)

	[spam, ham] = ['yum', 'YUM']
	List assignment
              (positional)

	a, b, c, d = 'spam'
	Sequence assignment,
              generalized

	a, *b = 'spam'
	Extended sequence
              unpacking (Python 3.X)

	spam = ham = 'lunch'
	Multiple-target
              assignment

	spams += 42
	Augmented assignment (equivalent to spams = spams + 42)


The first form in Table 11-1 is by far the most common:
      binding a name (or data structure component) to a single object. In
      fact, you could get all your work done with this basic form alone. The
      other table entries represent special forms that are all optional, but
      that programmers often find convenient in practice:
	Tuple- and list-unpacking assignments
	The second and third forms in the table are related. When you code a tuple or list on
            the left side of the =, Python
            pairs objects on the right side with targets on the left by
            position and assigns them from left to right. For example, in the
            second line of Table 11-1,
            the name spam is assigned the
            string 'yum', and the name
            ham is bound to the string
            'YUM'. In this case Python
            internally may make a tuple of the items on the right, which is
            why this is called tuple-unpacking assignment.

	Sequence assignments
	In later versions of Python, tuple and list assignments were generalized into
            instances of what we now call sequence
            assignment—any sequence of names can be assigned to any
            sequence of values, and Python assigns the items one at a time by
            position. We can even mix and match the types of the sequences
            involved. The fourth line in Table 11-1, for example, pairs a
            tuple of names with a string of characters: a is assigned 's', b is assigned 'p', and so on.

	Extended sequence unpacking
	In Python 3.X (only), a new form of sequence assignment allows us to be more flexible in how we
            select portions of a sequence to assign. The fifth line in Table 11-1, for example, matches
            a with the first character in
            the string on the right and b
            with the rest: a is assigned
            's', and b is assigned ['p', 'a', 'm']. This provides a simpler
            alternative to assigning the results of manual slicing
            operations.

	Multiple-target assignments
	The sixth line in Table 11-1 shows the multiple-target form of assignment. In this form,
            Python assigns a reference to the same object (the object farthest
            to the right) to all the targets on the left. In the table, the
            names spam and ham are both assigned references to the
            same string object, 'lunch'.
            The effect is the same as if we had coded ham = 'lunch' followed by spam = ham, as ham evaluates to the original string
            object (i.e., not a separate copy of that object).

	Augmented assignments
	The last line in Table 11-1 is an example of augmented
            assignment—a shorthand that combines an expression and
            an assignment in a concise way. Saying spam += 42, for example, has the same
            effect as spam = spam + 42, but
            the augmented form requires less typing and is generally quicker
            to run. In addition, if the subject is mutable and supports the
            operation, an augmented assignment may run even quicker by
            choosing an in-place update operation instead of an object copy.
            As we’ll see, there is one augmented assignment statement for most binary expression operators in Python.



Sequence Assignments
We’ve already used and explored basic assignments in this book, so
      we’ll take them as a given. Here are a few simple examples of
      sequence-unpacking assignments in action:
% python
>>> nudge = 1                      # Basic assignment
>>> wink  = 2
>>> A, B = nudge, wink             # Tuple assignment
>>> A, B                           # Like A = nudge; B = wink
(1, 2)
>>> [C, D] = [nudge, wink]         # List assignment
>>> C, D
(1, 2)
Notice that we really are coding two tuples in the third line in
      this interaction—we’ve just omitted their enclosing parentheses. Python
      pairs the values in the tuple on the right side of the assignment
      operator with the variables in the tuple on the left side and assigns
      the values one at a time.
Tuple assignment leads to a common coding trick in Python that was
      introduced in a solution to the exercises at the end of Part II. Because Python creates a temporary
      tuple that saves the original values of the variables on the right while
      the statement runs, unpacking assignments are also a way to
      swap two variables’ values without creating a
      temporary variable of your own—the tuple on the right remembers the
      prior values of the variables automatically:
>>> nudge = 1
>>> wink  = 2
>>> nudge, wink = wink, nudge      # Tuples: swaps values
>>> nudge, wink                    # Like T = nudge; nudge = wink; wink = T
(2, 1)
In fact, the original tuple and list assignment forms in Python
      have been generalized to accept any type of
      sequence (really, iterable) on the right as long as it is of the same
      length as the sequence on the left. You can assign a tuple of values to
      a list of variables, a string of characters to a tuple of variables, and
      so on. In all cases, Python assigns items in the sequence on the right
      to variables in the sequence on the left by position, from left to
      right:
>>> [a, b, c] = (1, 2, 3)          # Assign tuple of values to list of names
>>> a, c
(1, 3)
>>> (a, b, c) = "ABC"              # Assign string of characters to tuple
>>> a, c
('A', 'C')
Technically speaking, sequence assignment actually supports any
      iterable object on the right, not just any
      sequence. This is a more general category that includes collections both
      physical (e.g., lists) and virtual (e.g., a file’s lines), which was
      defined briefly in Chapter 4
      and has popped up in passing ever since. We’ll firm up this term when we
      explore iterables in Chapter 14 and Chapter 20.
Advanced sequence assignment patterns
Although we can mix and match sequence types around the = symbol, we must generally have the
        same number of items on the right as we have
        variables on the left, or we’ll get an error. Python 3.X allows us to
        be more general with extended unpacking * syntax, described in the next section. But
        normally in 3.X—and always in 2.X—the number of items in the
        assignment target and subject must match:
>>> string = 'SPAM'
>>> a, b, c, d = string                            # Same number on both sides
>>> a, d
('S', 'M')

>>> a, b, c = string                               # Error if not
...error text omitted...
ValueError: too many values to unpack (expected 3)
To be more flexible, we can slice in both 2.X and 3.X. There are
        a variety of ways to employ slicing to make this last case
        work:
>>> a, b, c = string[0], string[1], string[2:]     # Index and slice
>>> a, b, c
('S', 'P', 'AM')

>>> a, b, c = list(string[:2]) + [string[2:]]      # Slice and concatenate
>>> a, b, c
('S', 'P', 'AM')

>>> a, b = string[:2]                              # Same, but simpler
>>> c = string[2:]
>>> a, b, c
('S', 'P', 'AM')

>>> (a, b), c = string[:2], string[2:]             # Nested sequences
>>> a, b, c
('S', 'P', 'AM')
As the last example in this interaction demonstrates, we can
        even assign nested sequences, and Python unpacks
        their parts according to their shape, as expected. In this case, we
        are assigning a tuple of two items, where the first item is a nested
        sequence (a string), exactly as though we had coded it this
        way:
>>> ((a, b), c) = ('SP', 'AM')                     # Paired by shape and position
>>> a, b, c
('S', 'P', 'AM')
Python pairs the first string on the right ('SP') with the first tuple on the left
        ((a, b)) and assigns one character
        at a time, before assigning the entire second string ('AM') to the variable c all at once. In this event, the
        sequence-nesting shape of the object on the left must match that of
        the object on the right. Nested sequence assignment like this is
        somewhat rare to see, but it can be convenient for picking out the
        parts of data structures with known shapes.
For example, we’ll see in Chapter 13
        that this technique also works in for loops, because loop items are assigned
        to the target given in the loop header:
for (a, b, c) in [(1, 2, 3), (4, 5, 6)]: ...          # Simple tuple assignment

for ((a, b), c) in [((1, 2), 3), ((4, 5), 6)]: ...    # Nested tuple assignment
In a note in Chapter 18, we’ll also see that
        this nested tuple (really, sequence) unpacking assignment form works
        for function argument lists in Python 2.X (though not in 3.X), because
        function arguments are passed by assignment as well:
def f(((a, b), c)): ...          # For arguments too in Python 2.X, but not 3.X
f(((1, 2), 3))
Sequence-unpacking assignments also give rise to another common
        coding idiom in Python—assigning an integer series to a set of
        variables:
>>> red, green, blue = range(3)
>>> red, blue
(0, 2)
This initializes the three names to the integer codes 0, 1, and
        2, respectively (it’s Python’s
        equivalent of the enumerated data types you may
        have seen in other languages). To make sense of this, you need to know
        that the range built-in
        function generates a list of successive integers (in 3.X only, it
        requires a list around it if you
        wish to display its values all at once like this):
>>> list(range(3))                       # list() required in Python 3.X only
[0, 1, 2]
This call was previewed briefly in Chapter 4; because range is commonly used in for loops, we’ll
        say more about it in Chapter 13.
Another place you may see a tuple assignment at work is for
        splitting a sequence into its front and the rest in loops like
        this:
>>> L = [1, 2, 3, 4]
>>> while L:
...     front, L = L[0], L[1:]           # See next section for 3.X * alternative
...     print(front, L)
...
1 [2, 3, 4]
2 [3, 4]
3 [4]
4 []
The tuple assignment in the loop here could be coded as the
        following two lines instead, but it’s often more convenient to string
        them together:
...     front = L[0]
...     L = L[1:]
Notice that this code is using the list as a sort of stack data
        structure, which can often also be achieved with the append and pop methods of list objects; here, front = L.pop(0) would have much the same
        effect as the tuple assignment statement, but it would be an in-place
        change. We’ll learn more about while loops, and other (often better) ways
        to step through a sequence with for loops, in
        Chapter 13.


Extended Sequence Unpacking in Python 3.X
The prior section demonstrated how to use manual slicing to make
      sequence assignments more general. In Python 3.X (but not 2.X), sequence
      assignment has been generalized to make this easier. In short, a single
      starred name, *X, can be used in the assignment target in
      order to specify a more general matching against the sequence—the
      starred name is assigned a list, which collects all items in the
      sequence not assigned to other names. This is especially handy for
      common coding patterns such as splitting a sequence into its “front” and
      “rest,” as in the preceding section’s last example.
Extended unpacking in action
Let’s look at an example. As we’ve seen, sequence assignments
        normally require exactly as many names in the target on the left as
        there are items in the subject on the right. We get an error if the
        lengths disagree in both 2.X and 3.X (unless we manually sliced on the
        right, as shown in the prior section):
C:\code> c:\python33\python
>>> seq = [1, 2, 3, 4]

>>> a, b, c, d = seq
>>> print(a, b, c, d)
1 2 3 4

>>> a, b = seq
ValueError: too many values to unpack (expected 2)
In Python 3.X, though, we can use a single starred name in the
        target to match more generally. In the following continuation of our
        interactive session, a matches the
        first item in the sequence, and b
        matches the rest:
>>> a, *b = seq
>>> a
1
>>> b
[2, 3, 4]
When a starred name is used, the number of items in the target
        on the left need not match the length of the subject sequence. In
        fact, the starred name can appear anywhere in the target. For
        instance, in the next interaction b
        matches the last item in the sequence, and a matches everything before the last:
>>> *a, b = seq
>>> a
[1, 2, 3]
>>> b
4
When the starred name appears in the middle, it collects
        everything between the other names listed. Thus, in the following
        interaction a and c are assigned the first and last items, and
        b gets everything in between
        them:
>>> a, *b, c = seq
>>> a
1
>>> b
[2, 3]
>>> c
4
More generally, wherever the starred name shows up, it will be
        assigned a list that collects every unassigned name at that
        position:
>>> a, b, *c = seq
>>> a
1
>>> b
2
>>> c
[3, 4]
Naturally, like normal sequence assignment, extended sequence
        unpacking syntax works for any sequence types (really, again, any
        iterable), not just lists. Here it is unpacking
        characters in a string and a range
        (an iterable in 3.X):
>>> a, *b = 'spam'
>>> a, b
('s', ['p', 'a', 'm'])

>>> a, *b, c = 'spam'
>>> a, b, c
('s', ['p', 'a'], 'm')

>>> a, *b, c = range(4)
>>> a, b, c
(0, [1, 2], 3)
This is similar in spirit to slicing, but not exactly the same—a
        sequence unpacking assignment always returns a
        list for matched items, whereas slicing
        returns a sequence of the same type as the object sliced:
>>> S = 'spam'

>>> S[0], S[1:]    # Slices are type-specific, * assignment always returns a list
('s', 'pam')

>>> S[0], S[1:3], S[3]
('s', 'pa', 'm')
Given this extension in 3.X, as long as we’re processing a list
        the last example of the prior section becomes even simpler, since we
        don’t have to manually slice to get the first and rest of the
        items:
>>> L = [1, 2, 3, 4]
>>> while L:
...     front, *L = L                    # Get first, rest without slicing
...     print(front, L)
...
1 [2, 3, 4]
2 [3, 4]
3 [4]
4 []

Boundary cases
Although extended sequence unpacking is flexible, some boundary
        cases are worth noting. First, the starred name may match just a
        single item, but is always assigned a list:
>>> seq = [1, 2, 3, 4]

>>> a, b, c, *d = seq
>>> print(a, b, c, d)
1 2 3 [4]
Second, if there is nothing left to match the starred name, it
        is assigned an empty list, regardless of where it appears. In the
        following, a, b, c, and
        d have matched every item in the
        sequence, but Python assigns e an
        empty list instead of treating this as an error case:
>>> a, b, c, d, *e = seq
>>> print(a, b, c, d, e)
1 2 3 4 []

>>> a, b, *e, c, d = seq
>>> print(a, b, c, d, e)
1 2 3 4 []
Finally, errors can still be triggered if there is more than one
        starred name, if there are too few values and no star (as before), and
        if the starred name is not itself coded inside a sequence:
>>> a, *b, c, *d = seq
SyntaxError: two starred expressions in assignment

>>> a, b = seq
ValueError: too many values to unpack (expected 2)

>>> *a = seq
SyntaxError: starred assignment target must be in a list or tuple

>>> *a, = seq
>>> a
[1, 2, 3, 4]

A useful convenience
Keep in mind that extended sequence unpacking assignment is just
        a convenience. We can usually achieve the same effects with explicit
        indexing and slicing (and in fact must in Python 2.X), but extended
        unpacking is simpler to code. The common “first, rest” splitting
        coding pattern, for example, can be coded either way, but slicing
        involves extra work:
>>> seq
[1, 2, 3, 4]

>>> a, *b = seq                        # First, rest
>>> a, b
(1, [2, 3, 4])

>>> a, b = seq[0], seq[1:]             # First, rest: traditional
>>> a, b
(1, [2, 3, 4])
The also-common “rest, last” splitting pattern can similarly be
        coded either way, but the new extended unpacking syntax requires
        noticeably fewer keystrokes:
>>> *a, b = seq                        # Rest, last
>>> a, b
([1, 2, 3], 4)

>>> a, b = seq[:-1], seq[-1]           # Rest, last: traditional
>>> a, b
([1, 2, 3], 4)
Because it is not only simpler but, arguably, more natural,
        extended sequence unpacking syntax will likely become widespread in
        Python code over time.

Application to for loops
Because the loop variable in the for loop statement can be any assignment target, extended sequence
        assignment works here too. We met the for loop iteration tool briefly in Chapter 4 and will study it
        formally in Chapter 13. In Python 3.X,
        extended assignments may show up after the word for, where a simple variable name is more
        commonly used:
for (a, *b, c) in [(1, 2, 3, 4), (5, 6, 7, 8)]:
    ...
When used in this context, on each iteration Python simply
        assigns the next tuple of values to the tuple of names. On the first
        loop, for example, it’s as if we’d run the following assignment
        statement:
a, *b, c = (1, 2, 3, 4)                            # b gets [2, 3]
The names a, b, and c
        can be used within the loop’s code to reference the extracted
        components. In fact, this is really not a special case at all, but
        just an instance of general assignment at work. As we saw earlier in
        this chapter, we can do the same thing with simple tuple assignment in
        both Python 2.X and 3.X:
for (a, b, c) in [(1, 2, 3), (4, 5, 6)]:           # a, b, c = (1, 2, 3), ...
And we can always emulate 3.X’s extended assignment behavior in
        2.X by manually slicing:
for all in [(1, 2, 3, 4), (5, 6, 7, 8)]:
    a, b, c = all[0], all[1:3], all[3]
Since we haven’t learned enough to get more detailed about the
        syntax of for loops, we’ll return
        to this topic in Chapter 13.


Multiple-Target Assignments
A multiple-target assignment simply assigns all the given names to the
      object all the way to the right. The following, for example, assigns the
      three variables a, b, and c to
      the string 'spam':
>>> a = b = c = 'spam'
>>> a, b, c
('spam', 'spam', 'spam')
This form is equivalent to (but easier to code than) these three
      assignments:
>>> c = 'spam'
>>> b = c
>>> a = b
Multiple-target assignment and shared references
Keep in mind that there is just one object here, shared by all three variables
        (they all wind up pointing to the same object in memory). This
        behavior is fine for immutable types—for example, when initializing a
        set of counters to zero (recall that variables must be assigned before
        they can be used in Python, so you must initialize counters to zero
        before you can start adding to them):
>>> a = b = 0
>>> b = b + 1
>>> a, b
(0, 1)
Here, changing b only changes
        b because numbers do not support
        in-place changes. As long as the object assigned is immutable, it’s
        irrelevant if more than one name references it.
As usual, though, we have to be more cautious when initializing
        variables to an empty mutable object such as a list or
        dictionary:
>>> a = b = []
>>> b.append(42)
>>> a, b
([42], [42])
This time, because a and
        b reference the same object,
        appending to it in place through b
        will impact what we see through a
        as well. This is really just another example of the shared reference
        phenomenon we first met in Chapter 6. To avoid the issue,
        initialize mutable objects in separate statements instead, so that
        each creates a distinct empty object by running a distinct literal
        expression:
>>> a = []
>>> b = []                 # a and b do not share the same object
>>> b.append(42)
>>> a, b
([], [42])
A tuple assignment like the following has the same effect—by
        running two list expressions, it creates two distinct objects:
>>> a, b = [], []          # a and b do not share the same object


Augmented Assignments
Beginning with Python 2.0, the set of additional assignment statement formats listed in
      Table 11-2 became available.
      Known as augmented assignments, and borrowed from
      the C language, these formats are mostly just shorthand. They imply the
      combination of a binary expression and an assignment. For instance, the
      following two formats are roughly equivalent:
X = X + Y                       # Traditional form
X += Y                          # Newer augmented form
Table 11-2. Augmented assignment statements	X += Y
	X &= Y
	X −= Y
	X |= Y

	X *= Y
	X ^= Y
	X /= Y
	X >>= Y

	X %= Y
	X <<= Y
	X **= Y
	X //= Y


Augmented assignment works on any type that supports the implied
      binary expression. For example, here are two ways to add 1 to a
      name:
>>> x = 1
>>> x = x + 1                   # Traditional
>>> x
2
>>> x += 1                      # Augmented
>>> x
3
When applied to a sequence such as a string, the augmented form
      performs concatenation instead. Thus, the second line here is equivalent
      to typing the longer S = S +
      "SPAM":
>>> S = "spam"
>>> S += "SPAM"                 # Implied concatenation
>>> S
'spamSPAM'
As shown in Table 11-2,
      there are analogous augmented assignment forms for most Python binary
      expression operators (i.e., operators with values on the left and
      right side). For instance, X *= Y
      multiplies and assigns, X >>= Y
      shifts right and assigns, and so on. X //=
      Y (for floor division) was added in version 2.2.
Augmented assignments have three advantages:1
	There’s less for you to type. Need I say more?

	The left side has to be evaluated only once. In X += Y, X may be a complicated object expression.
          In the augmented form, its code must be run only once. However, in
          the long form, X = X + Y,
          X appears twice and must be run
          twice. Because of this, augmented assignments usually run
          faster.

	The optimal technique is automatically chosen. That is, for
          objects that support in-place changes, the augmented forms
          automatically perform in-place change operations instead of slower
          copies.


The last point here requires a bit more explanation. For augmented
      assignments, in-place operations may be applied for mutable objects as
      an optimization. Recall that lists can be extended in a variety of ways.
      To add a single item to the end of a list, we can concatenate or call
      append:
>>> L = [1, 2]
>>> L = L + [3]                 # Concatenate: slower
>>> L
[1, 2, 3]
>>> L.append(4)                 # Faster, but in place
>>> L
[1, 2, 3, 4]
And to add a set of items to the end, we can either concatenate
      again or call the list extend
      method:2
>>> L = L + [5, 6]              # Concatenate: slower
>>> L
[1, 2, 3, 4, 5, 6]
>>> L.extend([7, 8])            # Faster, but in place
>>> L
[1, 2, 3, 4, 5, 6, 7, 8]
In both cases, concatenation is less prone to the side effects of
      shared object references but will generally run slower than the in-place
      equivalent. Concatenation operations must create a new object, copy in
      the list on the left, and then copy in the list on the right. By
      contrast, in-place method calls simply add items at the end of a memory
      block (it can be a bit more complicated than that internally, but this
      description suffices).
When we use augmented assignment to extend a list, we can largely
      forget these details—Python automatically calls the quicker extend method instead of using the slower
      concatenation operation implied by +:
>>> L += [9, 10]                # Mapped to L.extend([9, 10])
>>> L
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Note however, that because of this equivalence += for a list is not exactly the same as a
      + and = in all cases—for lists += allows arbitrary sequences (just like
      extend), but concatenation normally
      does not:
>>> L = []
>>> L += 'spam'                 # += and extend allow any sequence, but + does not!
>>> L
['s', 'p', 'a', 'm']
>>> L = L + 'spam'
TypeError: can only concatenate list (not "str") to list
Augmented assignment and shared references
This behavior is usually what we want, but notice that it implies that the += is an in-place
        change for lists; thus, it is not exactly like + concatenation, which always makes a
        new object. As for all shared reference cases,
        this difference might matter if other names reference the object being
        changed:
>>> L = [1, 2]
>>> M = L                       # L and M reference the same object
>>> L = L + [3, 4]              # Concatenation makes a new object
>>> L, M                        # Changes L but not M
([1, 2, 3, 4], [1, 2])

>>> L = [1, 2]
>>> M = L
>>> L += [3, 4]                 # But += really means extend
>>> L, M                        # M sees the in-place change too!
([1, 2, 3, 4], [1, 2, 3, 4])
This only matters for mutables like lists and dictionaries, and
        it is a fairly obscure case (at least, until it impacts your code!).
        As always, make copies of your mutable objects if you need to break
        the shared reference structure.


Variable Name Rules
Now that we’ve explored assignment statements, it’s time to get more
      formal about the use of variable names. In Python, names come into
      existence when you assign values to them, but there are a few rules to
      follow when choosing names for the subjects of your programs:
	Syntax: (underscore or letter) + (any number of letters,
          digits, or underscores)
	Variable names must start with an underscore or letter,
            which can be followed by any number of letters, digits, or
            underscores. _spam, spam, and Spam_1 are legal names, but 1_Spam, spam$, and @#! are not.

	Case matters: SPAM is not
          the same as spam
	Python always pays attention to case in programs, both in
            names you create and in reserved words. For instance, the names
            X and x refer to two different variables. For
            portability, case also matters in the names of imported module
            files, even on platforms where the filesystems are
            case-insensitive. That way, your imports still work after programs
            are copied to differing platforms.

	Reserved words are off-limits
	Names you define cannot be the same as words that mean special things in the
            Python language. For instance, if you try to use a variable name
            like class, Python will raise a
            syntax error, but klass and
            Class work fine. Table 11-3 lists the words that are
            currently reserved (and hence off-limits for names of your own) in
            Python.


Table 11-3. Python 3.X reserved words	False
	class
	finally
	is
	return

	None
	continue
	for
	lambda
	try

	True
	def
	from
	nonlocal
	while

	and
	del
	global
	not
	with

	as
	elif
	if
	or
	yield

	assert
	else
	import
	pass
	
	break
	except
	in
	raise
	

Table 11-3 is specific to Python
      3.X. In Python 2.X, the set of reserved words differs slightly:
	print is a reserved word,
          because printing is a statement, not a built-in function (more on
          this later in this chapter).

	exec is a reserved word,
          because it is a statement, not a built-in function.

	nonlocal is not a reserved
          word because this statement is not available.


In older Pythons the story is also more or less the same, with a
      few variations:
	with and as were not reserved until 2.6, when
          context managers were officially enabled.

	yield was not reserved
          until Python 2.3, when generator functions came online.

	yield morphed from
          statement to expression in 2.5, but it’s still a reserved word, not
          a built-in function.


As you can see, most of Python’s reserved words are all lowercase.
      They are also all truly reserved—unlike names in the built-in scope that
      you will meet in the next part of this book, you cannot redefine
      reserved words by assignment (e.g., and =
      1 results in a syntax error).3
Besides being of mixed case, the first three entries in Table 11-3, True, False, and None, are somewhat unusual in meaning—they
      also appear in the built-in scope of Python described in Chapter 17, and they are technically names assigned to objects.
      In 3.X they are truly reserved in all other senses, though, and cannot
      be used for any other purpose in your script other than that of the
      objects they represent. All the other reserved words are hardwired into
      Python’s syntax and can appear only in the specific contexts for which
      they are intended.
Furthermore, because module names in import statements become variables in your
      scripts, variable name constraints extend to your module
      filenames too. For instance, you can code files called
      and.py and my-code.py and run them as top-level scripts,
      but you cannot import them: their names without the “.py” extension
      become variables in your code and so must follow
      all the variable rules just outlined. Reserved words are off-limits, and
      dashes won’t work, though underscores will. We’ll revisit this module
      idea in Part V of this book.
Python’s Deprecation Protocol
It is interesting to note how reserved word changes are gradually phased
        into the language. When a new feature might break existing code,
        Python normally makes it an option and begins issuing “deprecation”
        warnings one or more releases before the feature is officially
        enabled. The idea is that you should have ample time to notice the
        warnings and update your code before migrating to the new release.
        This is not true for major new releases like 3.0 (which breaks
        existing code freely), but it is generally true in other cases.
For example, yield was an
        optional extension in Python 2.2, but is a standard keyword as of 2.3.
        It is used in conjunction with generator functions. This was one of a
        small handful of instances where Python broke with backward
        compatibility. Still, yield was
        phased in over time: it began generating deprecation warnings in 2.2
        and was not enabled until 2.3.
Similarly, in Python 2.6, the words with and as become new reserved words for use in
        context managers (a newer form of exception handling). These two words
        are not reserved in 2.5, unless the context manager feature is turned
        on manually with a from__future__import (discussed later in
        this book). When used in 2.5, with
        and as generate warnings about the
        upcoming change—except in the version of IDLE in Python 2.5, which
        appears to have enabled this feature for you (that is, using these
        words as variable names does generate errors in 2.5, but only in its
        version of the IDLE GUI).

Naming conventions
Besides these rules, there is also a set of naming
        conventions—rules that are not required but are
        followed in normal practice. For instance, because names with two
        leading and trailing underscores (e.g., __name__) generally have special meaning to
        the Python interpreter, you should avoid this pattern for your own
        names. Here is a list of the conventions Python follows:
	Names that begin with a single underscore (_X) are not imported by a from module import * statement
            (described in Chapter 23).

	Names that have two leading and trailing underscores
            (__X__) are system-defined
            names that have special meaning to the interpreter.

	Names that begin with two underscores and do not end with
            two more (__X) are localized
            (“mangled”) to enclosing classes (see the discussion of
            pseudoprivate attributes in Chapter 31).

	The name that is just a single underscore (_) retains the result of the last
            expression when you are working interactively.


In addition to these Python interpreter conventions, there are
        various other conventions that Python programmers usually follow. For
        instance, later in the book we’ll see that class names commonly start
        with an uppercase letter and module names with a lowercase letter, and
        that the name self, though not
        reserved, usually has a special role in classes. In Chapter 17 we’ll also study another, larger category of names
        known as the built-ins, which are predefined but
        not reserved (and so can be reassigned: open
        = 42 works, though sometimes you might wish it
        didn’t!).

Names have no type, but objects do
This is mostly review, but remember that it’s crucial to keep
        Python’s distinction between names and objects clear. As described in
        Chapter 6, objects have a type
        (e.g., integer, list) and may be mutable or not. Names (a.k.a.
        variables), on the other hand, are always just references to objects;
        they have no notion of mutability and have no associated type
        information, apart from the type of the object they happen to
        reference at a given point in time.
Thus, it’s OK to assign the same name to different kinds of
        objects at different times:
>>> x = 0               # x bound to an integer object
>>> x = "Hello"         # Now it's a string
>>> x = [1, 2, 3]       # And now it's a list
In later examples, you’ll see that this generic nature of names
        can be a decided advantage in Python programming. In Chapter 17, you’ll also learn that names also live in
        something called a scope, which defines where
        they can be used; the place where you assign a name determines where
        it is visible.4
Note
For additional naming suggestions, see the discussion of
          naming conventions in Python’s semi-official style guide, known as
          PEP 8. This guide is available at http://www.python.org/dev/peps/pep-0008, or via a web
          search for “Python PEP 8.” Technically, this document formalizes
          coding standards for Python library code.
Though useful, the usual caveats about coding standards apply
          here. For one thing, PEP 8 comes with more detail than you are
          probably ready for at this point in the book. And frankly, it has
          become more complex, rigid, and subjective than it may need to
          be—some of its suggestions are not at all universally accepted or
          followed by Python programmers doing real work. Moreover, some of
          the most prominent companies using Python today have adopted coding
          standards of their own that differ.
PEP 8 does codify useful rule-of-thumb Python knowledge,
          though, and it’s a great read for Python beginners, as long as you
          take its recommendations as guidelines, not gospel.




Expression Statements
In Python, you can use an expression as a statement, too—that is, on a line by itself.
    But because the result of the expression won’t be saved, it usually makes
    sense to do so only if the expression does something useful as a side
    effect. Expressions are commonly used as statements in two
    situations:
	For calls to functions and methods
	Some functions and methods do their work without returning a value. Such
          functions are sometimes called procedures in other
          languages. Because they don’t return values that you might be
          interested in retaining, you can call these functions with
          expression statements.

	For printing values at the interactive prompt
	Python echoes back the results of expressions typed at the interactive
          command line. Technically, these are expression statements, too;
          they serve as a shorthand for typing print statements.


Table 11-4 lists some
    common expression statement forms in Python. Calls to functions and
    methods are coded with zero or more argument objects (really, expressions
    that evaluate to objects) in parentheses, after the function/method
    name.
Table 11-4. Common Python expression statements	Operation	Interpretation
	spam(eggs, ham)
	Function
            calls

	spam.ham(eggs)
	Method calls

	spam
	Printing variables in the
            interactive interpreter

	print(a, b, c, sep='')
	Printing operations in
            Python 3.X

	yield x ** 2
	Yielding expression
            statements


The last two entries in Table 11-4 are somewhat special cases—as we’ll see later in this chapter, printing
    in Python 3.X is a function call usually coded on a line by itself, and
    the yield operation in generator
    functions (discussed in Chapter 20)
    is often coded as a statement as well. Both are really just instances of
    expression statements.
For instance, though you normally run a 3.X print call on a line by itself as an expression
    statement, it returns a value like any other function call (its return
    value is None, the default return value
    for functions that don’t return anything meaningful):
>>> x = print('spam')         # print is a function call expression in 3.X
spam
>>> print(x)                  # But it is coded as an expression statement
None
Also keep in mind that although expressions can appear as statements
    in Python, statements cannot be used as expressions. A statement that is
    not an expression must generally appear on a line all by itself, not
    nested in a larger syntactic structure. For example, Python doesn’t allow
    you to embed assignment statements (=)
    in other expressions. The rationale for this is that it avoids common
    coding mistakes; you can’t accidentally change a variable by typing
    = when you really mean to use the
    == equality test. You’ll see how to
    code around this restriction when you meet the Python while loop in Chapter 13.
Expression Statements and In-Place Changes
This brings up another mistake that is common in Python work. Expression statements are often
      used to run list methods that change a list in place:
>>> L = [1, 2]
>>> L.append(3)               # Append is an in-place change
>>> L
[1, 2, 3]
However, it’s not unusual for Python newcomers to code such an
      operation as an assignment statement instead, intending to assign
      L to the larger list:
>>> L = L.append(4)           # But append returns None, not L
>>> print(L)                  # So we lose our list!
None
This doesn’t quite work, though. Calling an in-place change operation such as
      append, sort, or reverse on a list always changes the list in
      place, but these methods do not return the list they have changed;
      instead, they return the None object.
      Thus, if you assign such an operation’s result back to the variable
      name, you effectively lose the list (and it is probably
      garbage-collected in the process!).
The moral of the story is, don’t do this—call in-place change
      operations without assigning their results. We’ll revisit this
      phenomenon in the section “Common Coding Gotchas”
      because it can also appear in the context of some looping statements
      we’ll meet in later chapters.


Print Operations
In Python, print prints
    things—it’s simply a programmer-friendly interface to the standard output
    stream.
Technically, printing converts one or more objects to their textual
    representations, adds some minor formatting, and sends the resulting text
    to either standard output or another file-like stream. In a bit more
    detail, print is strongly bound up with
    the notions of files and streams in Python:
	File object methods
	In Chapter 9,
          we learned about file object methods that write text (e.g.,
          file.write(str)). Printing
          operations are similar, but more focused—whereas file write methods
          write strings to arbitrary files, print writes objects to the stdout stream by default, with some
          automatic formatting added. Unlike with file methods, there is no
          need to convert objects to strings when using print
          operations.

	Standard output stream
	The standard output stream (often known as stdout) is simply a default place to send
          a program’s text output. Along with the standard input and error
          streams, it’s one of three data connections created when your script
          starts. The standard output stream is usually mapped to the window
          where you started your Python program, unless it’s been redirected
          to a file or pipe in your operating system’s shell.
Because the standard output stream is available in Python as
          the stdout file object in
          the built-in sys
          module (i.e., sys.stdout), it’s
          possible to emulate print with
          file write method calls. However, print is noticeably easier to use and
          makes it easy to print text to other files and streams.


Printing is also one of the most visible places where Python 3.X and
    2.X have diverged. In fact, this divergence is usually the first reason
    that most 2.X code won’t run unchanged under 3.X. Specifically, the way
    you code print operations depends on which version of Python you
    use:
	In Python 3.X, printing is a built-in
        function, with keyword arguments for special modes.

	In Python 2.X, printing is a statement with
        specific syntax all its own.


Because this book covers both 3.X and 2.X, we will look at each form
    in turn here. If you are fortunate enough to be able to work with code
    written for just one version of Python, feel free to pick the section that
    is relevant to you. Because your needs may change, however, it probably
    won’t hurt to be familiar with both cases. Moreover, users of recent
    Python 2.X releases can also import and use 3.X’s flavor of printing in
    their Pythons if desired—both for its extra functionality and to ease
    future migration to 3.X.
The Python 3.X print Function
Strictly speaking, printing is not a separate statement form in 3.X. Instead, it is
      simply an instance of the expression statement we
      studied in the preceding section.
The print built-in function is
      normally called on a line of its own, because it doesn’t return any
      value we care about (technically, it returns None, as we saw in the preceding section).
      Because it is a normal function, though, printing in 3.X uses
      standard function-call syntax, rather than a
      special statement form. And because it provides special operation modes
      with keyword arguments, this form is both more general and supports
      future enhancements better.
By comparison, Python 2.X print
      statements have somewhat ad hoc syntax to support extensions such as
      end-of-line suppression and target files. Further, the 2.X statement
      does not support separator specification at all; in 2.X, you wind up
      building strings ahead of time more often than you do in 3.X. Rather
      than adding yet more ad hoc syntax, Python 3.X’s print takes a single,
      general approach that covers them all.
Call format
Syntactically, calls to the 3.X print function have the following form (the
        flush argument is new as of Python
        3.3):
print([object, ...][, sep=' '][, end='\n'][, file=sys.stdout][, flush=False])
In this formal notation, items in square brackets are optional
        and may be omitted in a given call, and values after = give argument defaults. In English, this
        built-in function prints the textual representation of one or more
        objects separated by the string
        sep and followed by the string
        end to the stream file, flushing buffered output or not per
        flush.
The sep, end, file, and (in 3.3 and later) flush parts, if present, must be given as
        keyword arguments—that is, you must use a special
        “name=value” syntax to pass the arguments by name instead of position.
        Keyword arguments are covered in depth in Chapter 18, but they’re straightforward to use. The
        keyword arguments sent to this call may appear in any left-to-right
        order following the objects to be printed, and they control the
        print operation:
	sep is a string inserted
            between each object’s text, which defaults to a single space if
            not passed; passing an empty string suppresses separators
            altogether.

	end is a string added at
            the end of the printed text, which defaults to a \n newline character if not passed.
            Passing an empty string avoids dropping down to the next output
            line at the end of the printed text—the next print will keep adding to the end of the
            current output line.

	file specifies the file,
            standard stream, or other file-like object to which the text will
            be sent; it defaults to the sys.stdout standard output stream if not
            passed. Any object with a file-like write(string) method may be passed, but real files
            should be already opened for output.

	flush, added in 3.3,
            defaults to False. It allows
            prints to mandate that their text be flushed through the output
            stream immediately to any waiting recipients. Normally, whether
            printed output is buffered in memory or not is determined by
            file; passing a true value to
            flush forcibly flushes the
            stream.


The textual representation of each object to be printed is obtained by passing
        the object to the str built-in call
        (or its equivalent inside Python); as we’ve seen, this built-in
        returns a “user friendly” display string for any object.5 With no arguments at all, the print function simply prints a newline
        character to the standard output stream, which usually displays a
        blank line.

The 3.X print function in action
Printing in 3.X is probably simpler than some of its details may
        imply. To illustrate, let’s run some quick examples. The following
        prints a variety of object types to the default standard output
        stream, with the default separator and end-of-line formatting added
        (these are the defaults because they are the most common use
        case):
C:\code> c:\python33\python
>>> print()                                      # Display a blank line

>>> x = 'spam'
>>> y = 99
>>> z = ['eggs']
>>>
>>> print(x, y, z)                               # Print three objects per defaults
spam 99 ['eggs']
There’s no need to convert objects to strings here, as would be
        required for file write methods. By default, print calls add a space between the objects
        printed. To suppress this, send an empty string to the sep keyword argument, or send an alternative
        separator of your choosing:
>>> print(x, y, z, sep='')                       # Suppress separator
spam99['eggs']
>>>
>>> print(x, y, z, sep=', ')                     # Custom separator
spam, 99, ['eggs']
Also by default, print adds
        an end-of-line character to terminate the output line. You can
        suppress this and avoid the line break altogether by passing an empty
        string to the end keyword argument,
        or you can pass a different terminator of your own including a
        \n character to break the line
        manually if desired (the second of the following is two statements on
        one line, separated by a semicolon):
>>> print(x, y, z, end='')                        # Suppress line break
spam 99 ['eggs']>>>
>>>
>>> print(x, y, z, end=''); print(x, y, z)        # Two prints, same output line
spam 99 ['eggs']spam 99 ['eggs']
>>> print(x, y, z, end='...\n')                   # Custom line end
spam 99 ['eggs']...
>>>
You can also combine keyword arguments to specify both
        separators and end-of-line strings—they may appear in any order but
        must appear after all the objects being printed:
>>> print(x, y, z, sep='...', end='!\n')          # Multiple keywords
spam...99...['eggs']!
>>> print(x, y, z, end='!\n', sep='...')          # Order doesn't matter
spam...99...['eggs']!
Here is how the file keyword
        argument is used—it directs the printed text to an open output file or
        other compatible object for the duration of the single print (this is really a form of stream
        redirection, a topic we will revisit later in this section):
>>> print(x, y, z, sep='...', file=open('data.txt', 'w'))      # Print to a file
>>> print(x, y, z)                                             # Back to stdout
spam 99 ['eggs']
>>> print(open('data.txt').read())                             # Display file text
spam...99...['eggs']
Finally, keep in mind that the separator and end-of-line options
        provided by print operations are just conveniences. If you need to
        display more specific formatting, don’t print this way. Instead, build
        up a more complex string ahead of time or within the print itself using the string tools we met
        in Chapter 7, and print the string all at
        once:
>>> text = '%s: %-.4f, %05d' % ('Result', 3.14159, 42)
>>> print(text)
Result: 3.1416, 00042
>>> print('%s: %-.4f, %05d' % ('Result', 3.14159, 42))
Result: 3.1416, 00042
As we’ll see in the next section, almost everything we’ve just
        seen about the 3.X print function
        also applies directly to 2.X print
        statements—which makes sense, given that the function was intended to
        both emulate and improve upon 2.X printing support.


The Python 2.X print Statement
As mentioned earlier, printing in Python 2.X uses a statement with unique and
      specific syntax, rather than a built-in function. In practice, though,
      2.X printing is mostly a variation on a theme; with the exception of
      separator strings (which are supported in 3.X but not 2.X) and flushes
      on prints (available as of 3.3 only), everything we can do with the 3.X
      print function has a direct
      translation to the 2.X print
      statement.
Statement forms
Table 11-5 lists the
        print statement’s forms in Python
        2.X and gives their Python 3.X print function equivalents for reference.
        Notice that the comma is significant in print statements—it separates objects to be
        printed, and a trailing comma suppresses the end-of-line character
        normally added at the end of the printed text (not to be confused with
        tuple syntax!). The >>
        syntax, normally used as a bitwise right-shift operation, is used here
        as well, to specify a target output stream other than the sys.stdout default.
Table 11-5. Python 2.X print statement forms	Python 2.X
                statement	Python 3.X
                equivalent	Interpretation
	print x, y
	print(x, y)
	Print objects’ textual
                forms to sys.stdout; add a
                space between the items and an end-of-line at the
                end

	print x, y,
	print(x, y, end='')
	Same, but don’t add
                end-of-line at end of text

	print >> afile, x, y
	print(x, y, file=afile)
	Send text to afile.write, not to sys.stdout.write



The 2.X print statement in action
Although the 2.X print
        statement has more unique syntax than the 3.X function, it’s similarly
        easy to use. Let’s turn to some basic examples again. The 2.X print statement adds a space between the
        items separated by commas and by default adds a line break at the end
        of the current output line:
C:\code> c:\python27\python
>>> x = 'a'
>>> y = 'b'
>>> print x, y
a b
This formatting is just a default; you can choose to use it or
        not. To suppress the line break so you can add more text to the
        current line later, end your print
        statement with a comma, as shown in the second line of Table 11-5 (the following uses a
        semicolon to separate two statements on one line again):
>>> print x, y,; print x, y
a b a b
To suppress the space between items, again, don’t print this
        way. Instead, build up an output string using the string concatenation
        and formatting tools covered in Chapter 7, and print the string all at
        once:
>>> print x + y
ab
>>> print '%s...%s' % (x, y)
a...b
As you can see, apart from their special syntax for usage modes,
        2.X print statements are roughly as
        simple to use as 3.X’s function. The next section uncovers the way
        that files are specified in 2.X prints.


Print Stream Redirection
In both Python 3.X and 2.X, printing sends text to the standard output stream by default.
      However, it’s often useful to send it elsewhere—to a text file, for
      example, to save results for later use or testing purposes. Although
      such redirection can be accomplished in system shells outside Python
      itself, it turns out to be just as easy to redirect a script’s streams
      from within the script.
The Python “hello world” program
Let’s start off with the usual (and largely pointless) language
        benchmark—the “hello world” program. To print a “hello world” message
        in Python, simply print the string per your version’s print
        operation:
>>> print('hello world')               # Print a string object in 3.X
hello world

>>> print 'hello world'                # Print a string object in 2.X
hello world
Because expression results are echoed on the interactive command
        line, you often don’t even need to use a print statement there—simply type the
        expressions you’d like to have printed, and their results are echoed
        back:
>>> 'hello world'                      # Interactive echoes
'hello world'
This code isn’t exactly an earth-shattering piece of software
        mastery, but it serves to illustrate printing behavior. Really, the
        print operation is just an
        ergonomic feature of Python—it provides a simple interface to the sys.stdout object, with a bit of default
        formatting. In fact, if you enjoy working harder than you must, you
        can also code print operations this way (per Chapters 4 and 9, a 3.X-only return value is omitted
        here):
>>> import sys                         # Printing the hard way
>>> sys.stdout.write('hello world\n')
hello world
This code explicitly calls the write method of sys.stdout—an attribute preset when Python
        starts up to an open file object connected to the output stream. The
        print operation hides most of those
        details, providing a simple tool for simple printing tasks.

Manual stream redirection
So, why did I just show you the hard way to print? The sys.stdout print equivalent turns out to be
        the basis of a common technique in Python. In general, print and sys.stdout are directly related as follows.
        This statement:
print(X, Y)                            # Or, in 2.X: print X, Y
is equivalent to the longer:
import sys
sys.stdout.write(str(X) + ' ' + str(Y) + '\n')
which manually performs a string conversion with str, adds a separator and newline with
        +, and calls the output stream’s
        write method. Which would you
        rather code? (He says, hoping to underscore the programmer-friendly
        nature of prints...)
Obviously, the long form isn’t all that useful for printing by
        itself. However, it is useful to know that this is exactly what
        print operations do because it is
        possible to reassign sys.stdout to something different from the
        standard output stream. In other words, this equivalence provides a
        way of making your print operations
        send their text to other places. For example:
import sys
sys.stdout = open('log.txt', 'a')       # Redirects prints to a file
...
print(x, y, x)                          # Shows up in log.txt
Here, we reset sys.stdout to
        a manually opened file named log.txt, located in the script’s working
        directory and opened in append mode (so we add to its current
        content). After the reset, every print operation anywhere in the program will
        write its text to the end of the file log.txt instead of to the original output
        stream. The print operations are
        happy to keep calling sys.stdout’s
        write method, no matter what
        sys.stdout happens to refer to.
        Because there is just one sys
        module in your process, assigning sys.stdout this way will redirect every
        print anywhere in your
        program.
In fact, as the sidebar “Why You Will Care: print and stdout” will explain,
        you can even reset sys.stdout to an
        object that isn’t a file at all, as long as it has the expected
        interface: a method named write to
        receive the printed text string argument. When that object is a
        class, printed text can be routed and processed
        arbitrarily per a write method you
        code yourself.
This trick of resetting the output stream might be more useful
        for programs originally coded with print statements. If you know that output
        should go to a file to begin with, you can always call file write
        methods instead. To redirect the output of a print-based program, though, resetting
        sys.stdout provides a convenient
        alternative to changing every print
        statement or using system shell-based redirection syntax.
In other roles, streams may be reset to objects that display
        them in pop-up windows in GUIs, colorize them in IDEs like IDLE, and
        so on. It’s a general technique.

Automatic stream redirection
Although redirecting printed text by assigning sys.stdout is a useful tool, a potential
        problem with the last section’s code is that there is no direct way to
        restore the original output stream should you need to switch back
        after printing to a file. Because sys.stdout is just a normal file object,
        though, you can always save it and restore it if needed:6
C:\code> c:\python33\python
>>> import sys
>>> temp = sys.stdout                   # Save for restoring later
>>> sys.stdout = open('log.txt', 'a')   # Redirect prints to a file
>>> print('spam')                       # Prints go to file, not here
>>> print(1, 2, 3)
>>> sys.stdout.close()                  # Flush output to disk
>>> sys.stdout = temp                   # Restore original stream

>>> print('back here')                  # Prints show up here again
back here
>>> print(open('log.txt').read())       # Result of earlier prints
spam
1 2 3
As you can see, though, manual saving and restoring of the
        original output stream like this involves quite a bit of extra work.
        Because this crops up fairly often, a print extension is available to make it
        unnecessary.
In 3.X, the file keyword
        allows a single print call to send
        its text to the write method of a
        file (or file-like object), without actually resetting sys.stdout. Because the redirection is
        temporary, normal print calls keep
        printing to the original output stream. In 2.X, a print statement that begins with a >> followed by an output file object
        (or other compatible object) has the same effect. For example, the
        following again sends printed text to a file named log.txt:
log =  open('log.txt', 'a')             # 3.X
print(x, y, z, file=log)                # Print to a file-like object
print(a, b, c)                          # Print to original stdout

log =  open('log.txt', 'a')             # 2.X
print >> log, x, y, z                   # Print to a file-like object
print a, b, c                           # Print to original stdout
These redirected forms of print are handy if you need to print to
        both files and the standard output stream in the
        same program. If you use these forms, however, be sure to give them a
        file object (or an object that has the same write method as a file object), not a file’s
        name string. Here is the technique in action:
C:\code> c:\python33\python
>>> log = open('log.txt', 'w')
>>> print(1, 2, 3, file=log)            # For 2.X: print >> log, 1, 2, 3
>>> print(4, 5, 6, file=log)
>>> log.close()
>>> print(7, 8, 9)                      # For 2.X: print 7, 8, 9
7 8 9
>>> print(open('log.txt').read())
1 2 3
4 5 6
These extended forms of print
        are also commonly used to print error messages to the standard error
        stream, available to your script as the preopened file object sys.stderr.
        You can either use its file write
        methods and format the output manually, or print with redirection
        syntax:
>>> import sys
>>> sys.stderr.write(('Bad!' * 8) + '\n')
Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!

>>> print('Bad!' * 8, file=sys.stderr)     # In 2.X: print >> sys.stderr, 'Bad!' * 8
Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!
Now that you know all about print redirections, the equivalence
        between printing and file write
        methods should be fairly obvious. The following interaction prints
        both ways in 3.X, then redirects the output to an external file to
        verify that the same text is printed:
>>> X = 1; Y = 2
>>> print(X, Y)                                            # Print: the easy way
1 2
>>> import sys                                             # Print: the hard way
>>> sys.stdout.write(str(X) + ' ' + str(Y) + '\n')
1 2
4
>>> print(X, Y, file=open('temp1', 'w'))                   # Redirect text to file

>>> open('temp2', 'w').write(str(X) + ' ' + str(Y) + '\n') # Send to file manually
4
>>> print(open('temp1', 'rb').read())                      # Binary mode for bytes
b'1 2\r\n'
>>> print(open('temp2', 'rb').read())
b'1 2\r\n'
As you can see, unless you happen to enjoy typing, print
        operations are usually the best option for displaying text. For
        another example of the equivalence between prints and file writes,
        watch for a 3.X print function
        emulation example in Chapter 18; it uses this code
        pattern to provide a general 3.X print function equivalent for use in
        Python 2.X.


Version-Neutral Printing
Finally, if you need your prints to work on both
      Python lines, you have some options. This is true whether you’re writing
      2.X code that strives for 3.X compatibility, or 3.X code that aims to
      support 2.X too.
2to3 converter
For one, you can code 2.X print statements and let 3.X’s 2to3 conversion script translate them to 3.X
        function calls automatically. See the Python 3.X manuals for more
        details about this script; it attempts to translate 2.X code to run
        under 3.X—a useful tool, but perhaps more than you want to make just
        your print operations version-neutral. A related tool named 3to2 attempts
        to do the inverse: convert 3.X code to run on 2.X; see Appendix C for more information.

Importing from __future__
Alternatively, you can code 3.X print function calls in code to be run by 2.X, by enabling the function
        call variant with a statement like the following coded at the top of a
        script, or anywhere in an interactive session:
from __future__ import print_function
This statement changes 2.X to support 3.X’s print functions exactly. This way, you can
        use 3.X print features and won’t have to change your prints if you
        later migrate to 3.X. Two usage notes here:
	This statement is simply ignored if it
            appears in code run by 3.X—it doesn’t hurt if included in 3.X code
            for 2.X compatibility.

	This statement must appear at the top of each
            file that prints in 2.X—because it modifies that parser
            for a single file only, it’s not enough to import another file
            that includes this statement.



Neutralizing display differences with code
Also keep in mind that simple prints, like those in the first row of Table 11-5, work in
        either version of Python—because any expression
        may be enclosed in parentheses, we can always pretend to be calling a
        3.X print function in 2.X by adding
        outer parentheses. The main downside to this is that it makes a
        tuple out of your printed objects if there are
        more than one, or none—they will print with extra enclosing
        parentheses. In 3.X, for example, any number of objects may be listed
        in the call’s parentheses:
C:\code> c:\python33\python
>>> print('spam')                       # 3.X print function call syntax
spam
>>> print('spam', 'ham', 'eggs')        # These are multiple arguments
spam ham eggs
The first of these works the same in 2.X, but the second
        generates a tuple in the output:
C:\code> c:\python27\python
>>> print('spam')                       # 2.X print statement, enclosing parens
spam
>>> print('spam', 'ham', 'eggs')        # This is really a tuple object!
('spam', 'ham', 'eggs')
The same applies when there are no objects
        printed to force a line-feed: 2.X shows a tuple, unless you print an
        empty string:
c:\code> py −2
>> print()                              # This is just a line-feed on 3.X
()
>>> print('')                           # This is a line-feed in both 2.X and 3.X
Strictly speaking, outputs may in some cases differ in more than
        just extra enclosing parentheses in 2.X. If you look closely at the
        preceding results, you’ll notice that the strings also print with
        enclosing quotes in 2.X only. This is because
        objects may print differently when nested in
        another object than they do as top-level items. Technically, nested
        appearances display with repr and
        top-level objects with str—the two
        alternative display formats we noted in Chapter 5.
Here this just means extra quotes around strings nested in the
        tuple that is created for printing multiple parenthesized items in
        2.X. Displays of nested objects can differ much more for other object
        types, though, and especially for class objects that define
        alternative displays with operator
        overloading—a topic we’ll cover in Part VI in general and Chapter 30 in particular.
To be truly portable without enabling 3.X prints everywhere, and
        to sidestep display difference for nested appearances, you can always
        format the print string as a single object to unify displays across
        versions, using the string formatting expression or method call, or
        other string tools that we studied in Chapter 7:
>>> print('%s %s %s' % ('spam', 'ham', 'eggs'))
spam ham eggs
>>> print('{0} {1} {2}'.format('spam', 'ham', 'eggs'))
spam ham eggs
>>> print('answer: ' + str(42))
answer: 42
Of course, if you can use 3.X exclusively you can forget such
        mappings entirely, but many Python programmers will at least
        encounter, if not write, 2.X code and systems for some time to come.
        We’ll use both __future__ and
        version-neutral code to achieve 2.X/3.X portability in many examples
        in this book.
Note
I use Python 3.X print
          function calls throughout this book. I’ll often make prints
          version-neutral, and will usually warn you when the results may
          differ in 2.X, but I sometimes don’t, so please consider this note a
          blanket warning. If you see extra parentheses in your printed text
          in 2.X, either drop the parentheses in your print statements, import 3.X prints from
          the __future__, recode your
          prints using the version-neutral scheme outlined here, or learn to
          love superfluous text.

Why You Will Care: print and stdout
The equivalence between the print
          operation and writing to sys.stdout is important. It makes it
          possible to reassign sys.stdout
          to any user-defined object that provides the same write method as files. Because the
          print statement just sends text
          to the sys.stdout.write method,
          you can capture printed text in your programs by assigning sys.stdout to an object whose write method processes the text in
          arbitrary ways.
For instance, you can send printed text to a GUI window, or
          tee it off to multiple destinations, by defining an object with a
          write method that does the
          required routing. You’ll see an example of this trick when we study
          classes in Part VI of this book, but
          abstractly, it looks like this:
class FileFaker:
    def write(self, string):
        # Do something with printed text in string

import sys
sys.stdout = FileFaker()
print(someObjects)              # Sends to class write method
This works because print is
          what we will call in the next part of this book a
          polymorphic operation—it doesn’t care what
          sys.stdout is, only that it has a
          method (i.e., interface) called write. This redirection to objects is made
          even simpler with the file
          keyword argument in 3.X and the >> extended form of print in 2.X, because we don’t need to
          reset sys.stdout
          explicitly—normal prints will still be routed to the stdout stream:
myobj = FileFaker()             # 3.X: Redirect to object for one print
print(someObjects, file=myobj)  # Does not reset sys.stdout

myobj = FileFaker()             # 2.X: same effect
print >> myobj, someObjects     # Does not reset sys.stdout
Python’s 3.X’s built-in input function (named raw_input in 2.X) reads from the sys.stdin file,
          so you can intercept read requests in a similar way, using classes
          that implement file-like read
          methods instead. See the input
          and while loop example in Chapter 10 for more background on
          this function.
Notice that because printed text goes to the stdout stream, it’s also the way to print
          HTML reply pages in CGI scripts used on the Web, and enables you to
          redirect Python script input and output at the operating system’s
          shell command line as usual:
python script.py < inputfile > outputfile
python script.py | filterProgram
Python’s print operation redirection tools are essentially
          pure-Python alternatives to these shell syntax forms. See other
          resources for more on CGI scripts and shell syntax.




Chapter Summary
In this chapter, we began our in-depth look at Python statements by
    exploring assignments, expressions, and print operations. Although these
    are generally simple to use, they have some alternative forms that, while
    optional, are often convenient in practice—augmented assignment statements
    and the redirection form of print
    operations, for example, allow us to avoid some manual coding work. Along
    the way, we also studied the syntax of variable names, stream redirection
    techniques, and a variety of common mistakes to avoid, such as assigning
    the result of an append method call
    back to a variable.
In the next chapter, we’ll continue our statement tour by filling in
    details about the if statement,
    Python’s main selection tool; there, we’ll also revisit Python’s syntax
    model in more depth and look at the behavior of Boolean expressions.
    Before we move on, though, the end-of-chapter quiz will test your
    knowledge of what you’ve learned here.

Test Your Knowledge: Quiz
	Name three ways that you can assign three variables to the same
        value.

	Why might you need to care when assigning three variables to a
        mutable object?

	What’s wrong with saying L =
        L.sort()?

	How might you use the print
        operation to send text to an external file?



Test Your Knowledge: Answers
	You can use multiple-target assignments (A = B = C = 0), sequence assignment
        (A, B, C = 0, 0, 0), or multiple
        assignment statements on three separate lines (A = 0, B =
        0, and C = 0). With the
        latter technique, as introduced in Chapter 10, you can also string the
        three separate statements together on the same line by separating them
        with semicolons (A = 0; B = 0; C =
        0).

	If you assign them this way:
A = B = C = []
all three names reference the same object, so changing it in
        place from one (e.g., A.append(99))
        will affect the others. This is true only for in-place changes to
        mutable objects like lists and dictionaries; for immutable objects
        such as numbers and strings, this issue is irrelevant.

	The list sort method is like
        append in that it makes an in-place
        change to the subject list—it returns None, not the list it changes. The
        assignment back to L sets L to None, not to the sorted list. As discussed
        both earlier and later in this book (e.g., Chapter 8), a newer built-in function,
        sorted, sorts any sequence and
        returns a new list with the sorting result; because this is not an
        in-place change, its result can be meaningfully assigned to a
        name.

	To print to a file for a single print operation, you can use 3.X’s print(X, file=F) call form, use 2.X’s
        extended print >> file, X
        statement form, or assign sys.stdout to a manually opened file before
        the print and restore the original
        after. You can also redirect all of a program’s printed text to a file
        with special syntax in the system shell, but this is outside Python’s
        scope.



1 C/C++ programmers take note: although Python now supports
          statements like X += Y, it still
          does not have C’s auto-increment/decrement operators (e.g., X++, −−X). These don’t quite map to the Python
          object model because Python has no notion of
          in-place changes to immutable objects like
          numbers.
2 As suggested in Chapter 6, we can also use slice
          assignment (e.g., L[len(L):] =
          [11,12,13]), but this works roughly the same as the
          simpler and more mnemonic list extend method.
3 In standard CPython, at least. Alternative implementations of
          Python might allow user-defined variable names to be the same as
          Python reserved words. See Chapter 2 for an overview of alternative
          implementations, such as Jython.
4 If you’ve used a more restrictive language like C++, you may
            be interested to know that there is no notion of C++’s const declaration in Python; certain
            objects may be immutable, but names can
            always be assigned. Python also has ways to hide names in classes
            and modules, but they’re not the same as C++’s declarations (if
            hiding attributes matters to you, see the coverage of _X module names in Chapter 25, __X class names in Chapter 31, and the Private and Public
            class decorators example in Chapter 39).
5 Technically, printing uses the equivalent of str in the internal implementation of
            Python, but the effect is the same. Besides this to-string
            conversion role, str is also
            the name of the string data type and can be used to decode Unicode
            strings from raw bytes with an extra encoding argument, as we’ll
            learn in Chapter 37; this latter
            role is an advanced usage that we can safely ignore here.
6 In both 2.X and 3.X you may also be able to use the __stdout__ attribute in the sys module, which refers to the original
            value sys.stdout had at program
            startup time. You still need to restore sys.stdout to sys.__stdout__ to go back to this
            original stream value, though. See the sys module documentation for more
            details.








Chapter 12. if Tests and Syntax Rules
This chapter presents the Python if
  statement, which is the main statement used for selecting from alternative
  actions based on test results. Because this is our first in-depth look
  at compound statements—statements that
  embed other statements—we will also explore the general concepts behind the
  Python statement syntax model here in more detail than we did in the
  introduction in Chapter 10. Because
  the if statement introduces the notion of
  tests, this chapter will also deal with Boolean expressions, cover the
  “ternary” if expression, and fill in some
  details on truth tests in general.
if Statements
In simple terms, the Python if statement
    selects actions to perform. Along with its expression counterpart, it’s
    the primary selection tool in Python and represents much of the
    logic a Python program possesses. It’s also our first
    compound statement. Like all compound Python statements, the if statement may contain other statements,
    including other ifs. In fact, Python
    lets you combine statements in a program sequentially (so that they
    execute one after another), and in an arbitrarily nested fashion (so that
    they execute only under certain conditions such as selections and
    loops).
General Format
The Python if statement is
      typical of if
      statements in most procedural languages. It takes the form of an
      if test, followed by one or more
      optional elif (“else if”) tests and a
      final optional else block. The tests
      and the else part each have an
      associated block of nested statements, indented under a header line.
      When the if statement runs, Python
      executes the block of code associated with the first test that evaluates
      to true, or the else block if all
      tests prove false. The general form of an if statement looks like this:
if test1:                 # if test
    statements1           # Associated block
elif test2:               # Optional elifs
    statements2
else:                     # Optional else
    statements3

Basic Examples
To demonstrate, let’s look at a few simple examples of the if statement at work. All parts are optional,
      except the initial if test and its
      associated statements. Thus, in the simplest case, the other parts are
      omitted:
>>> if 1:
...     print('true')
...
true
Notice how the prompt changes to ... for continuation lines when you’re typing
      interactively in the basic interface used here; in IDLE, you’ll simply
      drop down to an indented line instead (hit Backspace to back up). A
      blank line (which you can get by pressing Enter twice) terminates and
      runs the entire statement. Remember that 1 is Boolean true (as we’ll see later, the
      word True is its equivalent), so this
      statement’s test always succeeds. To handle a false result, code the
      else:
>>> if not 1:
...     print('true')
... else:
...     print('false')
...
false

Multiway Branching
Now here’s an example of a more complex if
      statement, with all its optional parts present:
>>> x = 'killer rabbit'
>>> if x == 'roger':
...     print("shave and a haircut")
... elif x == 'bugs':
...     print("what's up doc?")
... else:
...     print('Run away! Run away!')
...
Run away! Run away!
This multiline statement extends from the if line through the block nested under the
      else. When it’s run, Python executes
      the statements nested under the first test that is true, or the else part if all tests are false (in this
      example, they are). In practice, both the elif and else parts may be omitted, and there may be
      more than one statement nested in each section. Note that the words
      if, elif, and else are associated by the fact that they line
      up vertically, with the same indentation.
If you’ve used languages like C or Pascal, you might be interested
      to know that there is no switch or
      case statement in Python that selects
      an action based on a variable’s value. Instead, you usually code
      multiway branching as a series of if/elif
      tests, as in the prior example, and occasionally by indexing
      dictionaries or searching lists. Because dictionaries and lists can be
      built at runtime dynamically, they are sometimes more flexible than
      hardcoded if logic in your
      script:
>>> choice = 'ham'
>>> print({'spam':  1.25,         # A dictionary-based 'switch'
...        'ham':   1.99,         # Use has_key or get for default
...        'eggs':  0.99,
...        'bacon': 1.10}[choice])
1.99
Although it may take a few moments for this to sink in the first
      time you see it, this dictionary is a multiway branch—indexing on the
      key choice branches to one of a set
      of values, much like a switch in C.
      An almost equivalent but more verbose Python if statement might look like the
      following:
>>> if choice == 'spam':          # The equivalent if statement
...     print(1.25)
... elif choice == 'ham':
...     print(1.99)
... elif choice == 'eggs':
...     print(0.99)
... elif choice == 'bacon':
...     print(1.10)
... else:
...     print('Bad choice')
...
1.99
Though it’s perhaps more readable, the potential downside of an
      if like this is that, short of
      constructing it as a string and running it with tools like the prior
      chapter’s eval or exec, you cannot construct it at runtime as
      easily as a dictionary. In more dynamic programs, data structures offer
      added flexibility.
Handling switch defaults
Notice the else clause on the
        if here to handle the default case
        when no key matches. As we saw in Chapter 8, dictionary defaults can be coded
        with in expressions, get method calls, or exception catching with
        the try statement introduced in the
        preceding chapter. All of the same techniques can be used here to code
        a default action in a dictionary-based multiway branch. As a review in
        the context of this use case, here’s the get scheme at work with defaults:
>>> branch = {'spam': 1.25,
...           'ham':  1.99,
...           'eggs': 0.99}

>>> print(branch.get('spam', 'Bad choice'))
1.25
>>> print(branch.get('bacon', 'Bad choice'))
Bad choice
An in membership test in an
        if statement can have the same
        default effect:
>>> choice = 'bacon'
>>> if choice in branch:
...     print(branch[choice])
... else:
...     print('Bad choice')
...
Bad choice
And the try statement is a
        general way to handle defaults by catching and handling the exceptions
        they’d otherwise trigger (for more on exceptions, see Chapter 11’s overview and
        Part VII’s full treatment):
>>> try:
...     print(branch[choice])
... except KeyError:
...     print('Bad choice')
...
Bad choice

Handling larger actions
Dictionaries are good for associating values with keys, but what
        about the more complicated actions you can code in the statement
        blocks associated with if
        statements? In Part IV, you’ll
        learn that dictionaries can also contain
        functions to represent more complex branch
        actions and implement general jump tables. Such functions appear as
        dictionary values, they may be coded as function names or inline
        lambdas, and they are called by adding parentheses to trigger their
        actions. Here’s an abstract sampler, but stay tuned for a rehash of
        this topic in Chapter 19 after we’ve
        learned more about function definition:
def function(): ...
def default(): ...

branch = {'spam': lambda: ...,             # A table of callable function objects
          'ham':  function,
          'eggs': lambda: ...}

branch.get(choice, default)()
Although dictionary-based multiway branching is useful in
        programs that deal with more dynamic data, most programmers will
        probably find that coding an if
        statement is the most straightforward way to perform multiway
        branching. As a rule of thumb in coding, when in doubt, err on the
        side of simplicity and readability; it’s the “Pythonic” way.



Python Syntax Revisited
I introduced Python’s syntax model in Chapter 10. Now that we’re stepping up to
    larger statements like if, this section
    reviews and expands on the syntax ideas introduced earlier. In general,
    Python has a simple, statement-based syntax. However, there are a few
    properties you need to know about:
	Statements execute one after another,
        until you say otherwise. Python normally runs statements in
        a file or nested block in order from first to last as a sequence, but statements like if
        (as well as loops and exceptions) cause the interpreter to jump around
        in your code. Because Python’s path through a program is called the
        control flow, statements such as if that affect it are often called
        control-flow statements.

	Block and statement boundaries are
        detected automatically. As we’ve seen, there are no braces
        or “begin/end” delimiters around blocks of code in Python; instead,
        Python uses the indentation of statements under a header to group the
        statements in a nested block. Similarly, Python statements are not
        normally terminated with semicolons; rather, the end of a line usually
        marks the end of the statement coded on that line. As a special case,
        statements can span lines and be combined on a line with special
        syntax.

	Compound statements = header + “:” +
        indented statements. All Python compound
        statements—those with nested statements—follow the same
        pattern: a header line terminated with a colon, followed by one or
        more nested statements, usually indented under the header. The
        indented statements are called a block (or
        sometimes, a suite). In the if
        statement, the elif and else clauses are part of the if, but they are also header lines with
        nested blocks of their own. As a special case, blocks can show up on
        the same line as the header if they are simple noncompound
        code.

	Blank lines, spaces, and comments are
        usually ignored. Blank lines are both optional and ignored
        in files (but not at the interactive prompt, when they terminate
        compound statements). Spaces inside statements and
        expressions are almost always ignored (except in string literals, and
        when used for indentation). Comments are always ignored: they start
        with a # character (not inside a
        string literal) and extend to the end of the current line.

	Docstrings are ignored but are saved and
        displayed by tools. Python supports an additional comment
        form called documentation strings (docstrings for
        short), which, unlike #
        comments, are retained at runtime for inspection. Docstrings are
        simply strings that show up at the top of program files and some
        statements. Python ignores their contents, but they are automatically
        attached to objects at runtime and may be displayed with documentation
        tools like PyDoc. Docstrings are part of Python’s larger documentation
        strategy and are covered in the last chapter in this part of the
        book.


As you’ve seen, there are no variable type declarations in Python;
    this fact alone makes for a much simpler language syntax than what you may
    be used to. However, for most new users the lack of the braces and
    semicolons used to mark blocks and statements in many other languages
    seems to be the most novel syntactic feature of Python, so let’s explore
    what this means in more detail.
Block Delimiters: Indentation Rules
As introduced in Chapter 10, Python detects block
      boundaries automatically, by line indentation—that
      is, the empty space to the left of your code. All statements indented
      the same distance to the right belong to the same block of code. In
      other words, the statements within a block line up vertically, as in a
      column. The block ends when the end of the file or a lesser-indented
      line is encountered, and more deeply nested blocks are simply indented
      further to the right than the statements in the enclosing block.
      Compound statement bodies can appear on the header’s line in some cases
      we’ll explore later, but most are indented under it.
For instance, Figure 12-1 demonstrates the
      block structure of the following code:
x = 1
if x:
    y = 2
    if y:
        print('block2')
    print('block1')
print('block0')
This code contains three blocks: the first (the top-level code of
      the file) is not indented at all, the second (within the outer if statement) is indented four spaces, and the
      third (the print statement under the
      nested if) is indented eight
      spaces.
In general, top-level (unnested) code must start in column 1.
      Nested blocks can start in any column; indentation may consist of any
      number of spaces and tabs, as long as it’s the same for all the
      statements in a given single block. That is, Python doesn’t care
      how you indent your code; it only cares that it’s
      done consistently. Four spaces or one tab per indentation level are
      common conventions, but there is no absolute standard in the Python
      world.
Figure 12-1. Nested blocks of code: a nested block starts with a statement
        indented further to the right and ends with either a statement that is
        indented less, or the end of the file.

Indenting code is quite natural in practice. For example, the
      following (arguably silly) code snippet demonstrates common indentation
      errors in Python code:
  x = 'SPAM'                        # Error: first line indented
if 'rubbery' in 'shrubbery':
    print(x * 8)
        x += 'NI'                   # Error: unexpected indentation
        if x.endswith('NI'):
                x *= 2
            print(x)                # Error: inconsistent indentation
The properly indented version of this code looks like the
      following—even for an artificial example like this, proper indentation
      makes the code’s intent much more apparent:
x = 'SPAM'
if 'rubbery' in 'shrubbery':
    print(x * 8)                    # Prints 8 "SPAM"
    x += 'NI'
    if x.endswith('NI'):
        x *= 2
        print(x)                    # Prints "SPAMNISPAMNI"
It’s important to know that the only major place in Python where
      whitespace matters is where it’s used to the left of your code, for
      indentation; in most other contexts, space can be coded or not. However,
      indentation is really part of Python syntax, not just a stylistic
      suggestion: all the statements within any given single block must be
      indented to the same level, or Python reports a syntax error. This is
      intentional—because you don’t need to explicitly mark the start and end
      of a nested block of code, some of the syntactic clutter found in other
      languages is unnecessary in Python.
As described in Chapter 10,
      making indentation part of the syntax model also enforces consistency, a
      crucial component of readability in structured programming languages
      like Python. Python’s syntax is sometimes described as “what you see is
      what you get”—the indentation of each line of code unambiguously tells
      readers what it is associated with. This uniform and consistent
      appearance makes Python code easier to maintain and reuse.
Indentation is simpler in practice than its details might
      initially imply, and it makes your code reflect its logical structure.
      Consistently indented code always satisfies Python’s rules. Moreover,
      most text editors (including IDLE) make it easy to follow Python’s
      indentation model by automatically indenting code as you type it.
Avoid mixing tabs and spaces: New error checking in 3.X
One rule of thumb: although you can use spaces or tabs to indent, it’s
        usually not a good idea to mix the two within a
        block—use one or the other. Technically, tabs count for enough spaces
        to move the current column number up to a multiple of 8, and your code
        will work if you mix tabs and spaces consistently. However, such code
        can be difficult to change. Worse, mixing tabs and spaces makes your
        code difficult to read completely apart from Python’s syntax
        rules—tabs may look very different in the next programmer’s editor
        than they do in yours.
In fact, Python 3.X issues an error, for these very reasons,
        when a script mixes tabs and spaces for indentation inconsistently
        within a block (that is, in a way that makes it dependent on a tab’s
        equivalent in spaces). Python 2.X allows such scripts to run, but it
        has a -t command-line flag that
        will warn you about inconsistent tab usage and a -tt flag that will issue errors for
        such code (you can use these switches in a command line like python –t main.py in a system shell window).
        Python 3.X’s error case is equivalent to 2.X’s -tt
        switch.


Statement Delimiters: Lines and Continuations
A statement in Python normally ends at the end of the line on which it
      appears. When a statement is too long to fit on a single line, though, a
      few special rules may be used to make it span multiple lines:
	Statements may span multiple lines if
          you’re continuing an open syntactic pair. Python lets you
          continue typing a statement on the next line if you’re coding
          something enclosed in a (),
          {}, or [] pair. For instance, expressions in
          parentheses and dictionary and list literals can span any number of
          lines; your statement doesn’t end until the Python interpreter
          reaches the line on which you type the closing part of the pair (a
          ), }, or ]). Continuation
          lines—lines 2 and beyond of the statement—can start at any
          indentation level you like, but you should try to make them align
          vertically for readability if possible. This open pairs rule also
          covers set and dictionary comprehensions in Python 3.X and
          2.7.

	Statements may span multiple lines if
          they end in a backslash. This is a somewhat outdated
          feature that’s not generally recommended, but if a statement needs
          to span multiple lines, you can also add a backslash (a \ not
          embedded in a string literal or comment) at the end of the prior
          line to indicate you’re continuing on the next line. Because you can
          also continue by adding parentheses around most constructs,
          backslashes are rarely used today. This approach is also
          error-prone: accidentally forgetting a \ usually generates a syntax error and
          might even cause the next line to be silently mistaken (i.e.,
          without warning) for a new statement, with unexpected
          results.

	Special rules for string
          literals. As we learned in Chapter 7, triple-quoted string blocks are
          designed to span multiple lines normally. We also learned in Chapter 7 that
          adjacent string literals are implicitly concatenated; when it’s used
          in conjunction with the open pairs rule mentioned earlier, wrapping
          this construct in parentheses allows it to span multiple
          lines.

	Other rules. There are a
          few other points to mention with regard to statement delimiters.
          Although it is uncommon, you can terminate a statement with a
          semicolon—this convention is sometimes used to squeeze more than one
          simple (noncompound) statement onto a single line. Also, comments
          and blank lines can appear anywhere in a file; comments (which begin
          with a # character) terminate at
          the end of the line on which they appear.



A Few Special Cases
Here’s what a continuation line looks like using the open syntactic
      pairs rule just described. Delimited constructs, such as lists in square
      brackets, can span across any number of lines:
L = ["Good",
     "Bad",
     "Ugly"]                     # Open pairs may span lines
This also works for anything in parentheses (expressions, function
      arguments, function headers, tuples, and generator expressions), as well
      as anything in curly braces (dictionaries and, in 3.X and 2.7, set
      literals and set and dictionary comprehensions). Some of these are tools
      we’ll study in later chapters, but this rule naturally covers most
      constructs that span lines in practice.
If you like using backslashes to continue lines, you can, but it’s
      not common practice in Python:
if a == b and c == d and   \
   d == e and f == g:
   print('olde')                 # Backslashes allow continuations...
Because any expression can be enclosed in parentheses, you can
      usually use the open pairs technique instead if you need your code to
      span multiple lines—simply wrap a part of your statement in
      parentheses:
if (a == b and c == d and
    d == e and e == f):
    print('new')                 # But parentheses usually do too, and are obvious
In fact, backslashes are generally frowned on by most Python
      developers, because they’re too easy to not notice and too easy to omit
      altogether. In the following, x is
      assigned 10 with the backslash, as
      intended; if the backslash is accidentally omitted, though, x is assigned 6 instead, and no error is
      reported (the +4 is a
      valid expression statement by itself).
In a real program with a more complex assignment, this could be
      the source of a very nasty bug:1
x = 1 + 2 + 3 \                  # Omitting the \ makes this very different!
+4
As another special case, Python allows you to write more than one
      noncompound statement (i.e., statements without nested statements) on
      the same line, separated by semicolons. Some coders use this form to
      save program file real estate, but it usually makes for more readable
      code if you stick to one statement per line for most of your
      work:
x = 1; y = 2; print(x)           # More than one simple statement
As we learned in Chapter 7,
      triple-quoted string literals span lines too. In addition, if two string
      literals appear next to each other, they are concatenated as if a
      + had been added between them—when
      used in conjunction with the open pairs rule, wrapping in parentheses
      allows this form to span multiple lines. For example, the first of the
      following inserts newline characters at line breaks and assigns S to '\naaaa\nbbbb\ncccc', and the second
      implicitly concatenates and assigns S
      to 'aaaabbbbcccc'; as we also saw in
      Chapter 7, # comments are ignored in the second form, but
      included in the string in the first:
S = """
aaaa
bbbb
cccc"""

S = ('aaaa'
     'bbbb'                      # Comments here are ignored
     'cccc')
Finally, Python lets you move a compound statement’s body up to
      the header line, provided the body contains just simple (noncompound)
      statements. You’ll most often see this used for simple if statements with a single test and action,
      as in the interactive loops we coded in Chapter 10:
if 1: print('hello')             # Simple statement on header line
You can combine some of these special cases to write code that is
      difficult to read, but I don’t recommend it; as a rule of thumb, try to
      keep each statement on a line of its own, and indent all but the
      simplest of blocks. Six months down the road, you’ll be happy you
      did.


Truth Values and Boolean Tests
The notions of comparison, equality, and truth values were introduced in Chapter 9. Because the if statement is the first statement we’ve looked
    at that actually uses test results, we’ll expand on some of these ideas
    here. In particular, Python’s Boolean operators are a bit different from
    their counterparts in languages like C. In Python:
	All objects have an inherent Boolean true or false value.

	Any nonzero number or nonempty object is true.

	Zero numbers, empty objects, and the special object None are considered false.

	Comparisons and equality tests are applied recursively to data
        structures.

	Comparisons and equality tests return True or False (custom versions of 1 and 0).

	Boolean and and or operators return a true or false operand
        object.

	Boolean operators stop evaluating (“short circuit”) as soon as a
        result is known.


The if statement takes action on
    truth values, but Boolean operators are used to combine the results of
    other tests in richer ways to produce new truth values. More formally,
    there are three Boolean expression operators in Python:
	X and Y
	Is true if both X and
          Y are true

	X or Y
	Is true if either X or
          Y is true

	not X
	Is true if X is false (the
          expression returns True or
          False)


Here, X and Y may be any truth value, or any expression that
    returns a truth value (e.g., an equality test, range comparison, and so
    on). Boolean operators are typed out as words in Python (instead of C’s
    &&, ||, and !).
    Also, Boolean and and or operators return a true or false
    object in Python, not the values True or False. Let’s look at a few examples to see how
    this works:
>>> 2 < 3, 3 < 2        # Less than: return True or False (1 or 0)
(True, False)
Magnitude comparisons such as these return True or False
    as their truth results, which, as we learned in Chapter 5 and Chapter 9, are really just
    custom versions of the integers 1 and
    0 (they print themselves differently
    but are otherwise the same).
On the other hand, the and and
    or operators always return an
    object—either the object on the left side of the
    operator or the object on the right. If we test their
    results in if or other statements, they
    will be as expected (remember, every object is inherently true or false),
    but we won’t get back a simple True or
    False.
For or tests, Python evaluates
    the operand objects from left to right and returns the first one that is
    true. Moreover, Python stops at the first true operand it finds. This is
    usually called short-circuit evaluation, as
    determining a result short-circuits (terminates) the rest of the
    expression as soon as the result is known:
>>> 2 or 3, 3 or 2      # Return left operand if true
(2, 3)                  # Else, return right operand (true or false)
>>> [] or 3
3
>>> [] or {}
{}
In the first line of the preceding example, both operands (2 and 3) are
    true (i.e., are nonzero), so Python always stops and returns the one on
    the left—it determines the result because true or anything is always true. In the other two
    tests, the left operand is false (an empty object), so Python simply
    evaluates and returns the object on the right—which may happen to have
    either a true or a false value when tested.
Python and operations also stop
    as soon as the result is known; however, in this case Python evaluates the
    operands from left to right and stops if the left operand is a
    false object because it determines the result—false
    and anything is always false:
>>> 2 and 3, 3 and 2    # Return left operand if false
(3, 2)                  # Else, return right operand (true or false)
>>> [] and {}
[]
>>> 3 and []
[]
Here, both operands are true in the first line, so Python evaluates
    both sides and returns the object on the right. In the second test, the
    left operand is false ([]), so Python
    stops and returns it as the test result. In the last test, the left side
    is true (3), so Python evaluates and
    returns the object on the right—which happens to be a false [].
The end result of all this is the same as in C and most other
    languages—you get a value that is logically true or false if tested in an
    if or while according to the normal definitions of
    or and and. However, in Python Booleans return either
    the left or the right object, not a simple integer
    flag.
This behavior of and and or may seem esoteric at first glance, but see
    this chapter’s sidebar “Why You Will Care: Booleans”
    for examples of how it is sometimes used to advantage in coding by Python
    programmers. The next section also shows a common way to leverage this
    behavior, and its more mnemonic replacement in recent versions of
    Python.

The if/else Ternary Expression
One common role for the prior section’s Boolean operators is to code an
    expression that runs the same as an if
    statement. Consider the following statement, which sets A to either Y
    or Z, based on the truth value of
    X:
if X:
    A = Y
else:
    A = Z
Sometimes, though, the items involved in such a statement are so
    simple that it seems like overkill to spread them across four lines. At
    other times, we may want to nest such a construct in a larger statement
    instead of assigning its result to a variable. For these reasons (and,
    frankly, because the C language has a similar tool), Python 2.5 introduced
    a new expression format that allows us to say the same thing in one
    expression:
A = Y if X else Z
This expression has the exact same effect as the preceding four-line
    if statement, but it’s simpler to code.
    As in the statement equivalent, Python runs expression Y only if X
    turns out to be true, and runs expression Z only if X
    turns out to be false. That is, it short-circuits,
    just like the Boolean operators described in the prior section, running
    just Y or Z but not both. Here are some examples of it in
    action:
>>> A = 't' if 'spam' else 'f'      # For strings, nonempty means true
>>> A
't'
>>> A = 't' if '' else 'f'
>>> A
'f'
Prior to Python 2.5 (and after 2.5, if you insist), the same effect
    can often be achieved by a careful combination of the and and or
    operators, because they return either the object on the left side or the
    object on the right as the preceding section described:
A = ((X and Y) or Z)
This works, but there is a catch—you have to be able to assume that
    Y will be Boolean true. If that is the
    case, the effect is the same: the and
    runs first and returns Y if X is true; if X is false the and skips Y,
    and the or simply returns Z. In other words, we get “if X then Y else
    Z.” This is equivalent to the ternary
    form:
A = Y if X else Z
The and/or combination form also seems to require a
    “moment of great clarity” to understand the first time you see it, and
    it’s no longer required as of 2.5—use the equivalent and more robust and
    mnemonic if/else expression when you need this structure, or
    use a full if statement if the parts
    are nontrivial.
As a side note, using the following expression in Python is similar
    because the bool function will
    translate X into the equivalent of
    integer 1 or 0, which can then be used as offsets to pick
    true and false values from a list:
A = [Z, Y][bool(X)]
For example:
>>> ['f', 't'][bool('')]
'f'
>>> ['f', 't'][bool('spam')]
't'
However, this isn’t exactly the same, because Python will not
    short-circuit—it will always run both Z and Y,
    regardless of the value of X. Because
    of such complexities, you’re better off using the simpler and more easily
    understood if/else expression as of Python 2.5 and later.
    Again, though, you should use even that sparingly, and only if its parts
    are all fairly simple; otherwise, you’re better off coding the full
    if statement form to make changes
    easier in the future. Your coworkers will be happy you did.
Still, you may see the and/or
    version in code written prior to 2.5 (and in Python code written by ex–C
    programmers who haven’t quite let go of their dark coding pasts).2
Why You Will Care: Booleans
One common way to use the somewhat unusual behavior of Python Boolean operators is
      to select from a set of objects with an or. A statement such as this:
X = A or B or C or None
assigns X to the first nonempty
      (that is, true) object among A,
      B, and C, or to None if all of them are empty. This works
      because the or operator returns one
      of its two objects, and it turns out to be a fairly common coding
      paradigm in Python: to select a nonempty object from among a fixed-size
      set, simply string them together in an or expression. In simpler form, this is also
      commonly used to designate a default—the following sets X to A if
      A is true (or nonempty), and to
      default otherwise:
X = A or default
It’s also important to understand the short-circuit evaluation of
      Boolean operators and the if/else, because it may prevent actions from
      running. Expressions on the right of a Boolean operator, for example,
      might call functions that perform substantial or important work, or have
      side effects that won’t happen if the short-circuit rule takes
      effect:
if f1() or f2(): ...
Here, if f1 returns a true (or
      nonempty) value, Python will never run f2. To guarantee that both functions will be
      run, call them before the or:
tmp1, tmp2 = f1(), f2()
if tmp1 or tmp2: ...
You’ve already seen another application of this behavior in this
      chapter: because of the way Booleans work, the expression ((A and B) or C) can be used to emulate an
      if statement—almost (see this
      chapter’s discussion of this form for details).
We met additional Boolean use cases in prior chapters. As we saw
      in Chapter 9, because
      all objects are inherently true or false, it’s common and easier in
      Python to test an object directly (if
      X:) than to compare it to an empty value (if X != '':). For a string, the two tests are
      equivalent. As we also saw in Chapter 5, the
      preset Boolean values True and
      False are the same as the integers
      1 and 0 and are useful for initializing variables
      (X = False), for loop tests (while True:), and for displaying results at
      the interactive prompt.
Also watch for related discussion in operator overloading in Part VI: when we define new object types with
      classes, we can specify their Boolean nature with either the __bool__ or __len__ methods (__bool__ is named __nonzero__ in 2.7). The latter of these is
      tried if the former is absent and designates false by returning a length
      of zero—an empty object is considered false.
Finally, and as a preview, other tools in Python have roles
      similar to the or chains at the start
      of this sidebar: the filter call and
      list comprehensions we’ll meet later can be used to select true values
      when the set of candidates isn’t known until runtime (though they
      evaluate all values and return all that are true), and the any and all
      built-ins can be used to test if any or all items in a collection are
      true (though they don’t select an item):
>>> L = [1, 0, 2, 0, 'spam', '', 'ham', []]
>>> list(filter(bool, L))                    # Get true values
[1, 2, 'spam', 'ham']
>>> [x for x in L if x]                      # Comprehensions
[1, 2, 'spam', 'ham']
>>> any(L), all(L)                           # Aggregate truth
(True, False)
As seen in Chapter 9, the bool function here simply returns its
      argument’s true or false value, as though it were tested in an if. Watch for more on these related tools in
      Chapter 14, Chapter 19, and Chapter 20.


Chapter Summary
In this chapter, we studied the Python if statement. Additionally, because this was our
    first compound and logical statement, we reviewed Python’s general syntax
    rules and explored the operation of truth values and tests in more depth
    than we were able to previously. Along the way, we also looked at how to
    code multiway branching in Python, learned about the if/else
    expression introduced in Python 2.5, and explored some common ways that
    Boolean values crop up in code.
The next chapter continues our look at procedural statements by
    expanding on the while and for loops. There, we’ll learn about alternative
    ways to code loops in Python, some of which may be better than others.
    Before that, though, here is the usual chapter quiz.

Test Your Knowledge: Quiz
	How might you code a multiway branch in Python?

	How can you code an if/else
        statement as an expression in Python?

	How can you make a single statement span many lines?

	What do the words True and
        False mean?



Test Your Knowledge: Answers
	An if statement with multiple
        elif clauses is often the most
        straightforward way to code a multiway branch, though not necessarily
        the most concise or flexible. Dictionary indexing can often achieve
        the same result, especially if the dictionary contains callable
        functions coded with def statements
        or lambda expressions.

	In Python 2.5 and later, the expression form Y if X else Z returns Y if X is
        true, or Z otherwise; it’s the same
        as a four-line if statement. The
        and/or combination (((X
        and Y) or Z)) can work the same way, but it’s more obscure
        and requires that the Y part be
        true.

	Wrap up the statement in an open syntactic pair ((), [],
        or {}), and it can span as many
        lines as you like; the statement ends when Python sees the closing
        (right) half of the pair, and lines 2 and beyond of the statement can
        begin at any indentation level. Backslash continuations work too, but
        are broadly discouraged in the Python world.

	True and False are just custom versions of the
        integers 1 and 0, respectively: they always stand for
        Boolean true and false values in Python. They’re available for use in
        truth tests and variable initialization, and are printed for
        expression results at the interactive prompt. In all these roles, they
        serve as a more mnemonic and hence readable alternative to 1 and 0.



1 Candidly, it was a bit surprising that backslash continuations
          were not removed in Python 3.0, given the broad scope of its other
          changes! See the 3.0 changes tables in Appendix C for a list of 3.0
          removals; some seem fairly innocuous in comparison with the dangers
          inherent in backslash continuations. Then again, this book’s goal is
          Python instruction, not populist outrage, so the best advice I can
          give is simply: don’t do this. You should generally avoid backslash
          continuations in new Python code, even if you developed the habit in
          your C programming days.
2 In fact, Python’s Y if X else
        Z has a slightly different order than C’s X ? Y : Z, and uses more readable words. Its
        differing order was reportedly chosen in response to analysis of
        common usage patterns in Python code. According to the Python
        folklore, this order was also chosen in part to discourage ex–C
        programmers from overusing it! Remember, simple is better than
        complex, in Python and elsewhere. If you have to work at packing logic
        into expressions like this, statements are probably your better
        bet.








Chapter 13. while and for Loops
This chapter concludes our tour of Python procedural statements by
  presenting the language’s two main looping
  constructs—statements that repeat an action over and over. The first of
  these, the while statement, provides a
  way to code general loops. The second, the for statement, is designed for stepping through
  the items in a sequence or other iterable object and running a block of code
  for each.
We’ve seen both of these informally already, but we’ll fill in
  additional usage details here. While we’re at it, we’ll also study a few
  less prominent statements used within loops, such as break and continue, and cover some built-ins commonly used
  with loops, such as range, zip, and map.
Although the while and for statements covered here are the primary syntax
  provided for coding repeated actions, there are additional looping
  operations and concepts in Python. Because of that, the iteration story is
  continued in the next chapter, where we’ll explore the related ideas of
  Python’s iteration protocol (used by the for loop) and list
  comprehensions (a close cousin to the for loop). Later chapters explore even more exotic
  iteration tools such as generators, filter, and reduce. For now, though, let’s keep things
  simple.
while Loops
Python’s while statement
    is the most general iteration construct in the language. In
    simple terms, it repeatedly executes a block of (normally indented)
    statements as long as a test at the top keeps evaluating to a true value.
    It is called a “loop” because control keeps looping back to the start of
    the statement until the test becomes false. When the test becomes false,
    control passes to the statement that follows the while block. The net effect is that the loop’s
    body is executed repeatedly while the test at the top is true. If the test
    is false to begin with, the body never runs and the while statement is skipped.
General Format
In its most complex form, the while
      statement consists of a header line with a test expression, a body of
      one or more normally indented statements, and an optional else part that is executed if control exits
      the loop without a break statement
      being encountered. Python keeps evaluating the test at the top and
      executing the statements nested in the loop body until the test returns
      a false value:
while test:                     # Loop test
    statements                  # Loop body
else:                           # Optional else
    statements                  # Run if didn't exit loop with break

Examples
To illustrate, let’s look at a few simple while
      loops in action. The first, which consists of a print statement nested in a while loop, just prints a message forever.
      Recall that True is just a custom
      version of the integer 1 and always
      stands for a Boolean true value; because the test is always true, Python
      keeps executing the body forever, or until you stop its execution. This
      sort of behavior is usually called an infinite
      loop—it’s not really immortal, but you may need a Ctrl-C key
      combination to forcibly terminate one:
>>> while True:
...    print('Type Ctrl-C to stop me!')
The next example keeps slicing off the first character of a string
      until the string is empty and hence false. It’s typical to test an
      object directly like this instead of using the more verbose equivalent
      (while x != '':). Later in this
      chapter, we’ll see other ways to step through the items in a string more
      easily with a for loop.
>>> x = 'spam'
>>> while x:                  # While x is not empty
...     print(x, end=' ')     # In 2.X use print x,
...     x = x[1:]             # Strip first character off x
...
spam pam am m
Note the end=' ' keyword
      argument used here to place all outputs on the same line separated by a
      space; see Chapter 11 if
      you’ve forgotten why this works as it does. This may leave your input
      prompt in an odd state at the end of your output; type Enter to reset.
      Python 2.X readers: also remember to use a trailing comma instead of
      end in the prints like this.
The following code counts from the value of a up to, but not including, b. We’ll also see an easier way to do this
      with a Python for loop and the
      built-in range function later:
>>> a=0; b=10
>>> while a < b:              # One way to code counter loops
...     print(a, end=' ')
...     a += 1                # Or, a = a + 1
...
0 1 2 3 4 5 6 7 8 9
Finally, notice that Python doesn’t have what some languages call
      a “do until” loop statement. However, we can simulate one with a test
      and break at the bottom of the loop
      body, so that the loop’s body is always run at least once:
while True:
    ...loop body...
    if exitTest(): break
To fully understand how this structure works, we need to move on
      to the next section and learn more about the break statement.


break, continue, pass, and the Loop else
Now that we’ve seen a few Python loops in action, it’s time to take
    a look at two simple statements that have a purpose only when nested
    inside loops—the break and continue statements. While
    we’re looking at oddballs, we will also study the loop else clause here because it is intertwined with
    break, and Python’s empty placeholder
    statement, pass (which is not tied to
    loops per se, but falls into the general category of simple one-word
    statements). In Python:
	break
	Jumps out of the closest enclosing loop (past the entire loop
          statement)

	continue
	Jumps to the top of the closest enclosing loop (to the loop’s
          header line)

	pass
	Does nothing at all: it’s an empty statement
          placeholder

	Loop else block
	Runs if and only if the loop is exited normally (i.e., without hitting a break)


General Loop Format
Factoring in break and continue statements, the general format of the
      while loop looks like this:
while test:
    statements
    if test: break                 # Exit loop now, skip else if present
    if test: continue              # Go to test at top of loop now
else:
    statements                     # Run if we didn't hit a 'break'
break and continue statements can appear anywhere inside
      the while (or for) loop’s body, but they are usually coded
      further nested in an if test to take
      action in response to some condition.
Let’s turn to a few simple examples to see how these statements
      come together in practice.

pass
Simple things first: the pass
      statement is a no-operation placeholder that is used when the syntax
      requires a statement, but you have nothing useful to say. It is often
      used to code an empty body for a compound statement. For instance, if
      you want to code an infinite loop that does nothing each time through,
      do it with a pass:
while True: pass                   # Type Ctrl-C to stop me!
Because the body is just an empty statement, Python gets stuck in
      this loop. pass is roughly to
      statements as None is to objects—an
      explicit nothing. Notice that here the while loop’s body is on the same line as the
      header, after the colon; as with if
      statements, this only works if the body isn’t a compound
      statement.
This example does nothing forever. It probably isn’t the most
      useful Python program ever written (unless you want to warm up your
      laptop computer on a cold winter’s day!); frankly, though, I couldn’t
      think of a better pass example at
      this point in the book.
We’ll see other places where pass makes more sense later—for instance, to
      ignore exceptions caught by try
      statements, and to define empty class
      objects with attributes that behave like “structs” and “records” in
      other languages. A pass is also
      sometime coded to mean “to be filled in later,” to stub out the bodies
      of functions temporarily:
def func1():
    pass                           # Add real code here later

def func2():
    pass
We can’t leave the body empty without getting a syntax error,
      so we say pass
      instead.
Note
Version skew note: Python 3.X (but not 2.X)
        allows ellipses coded as ... (literally, three consecutive dots) to
        appear any place an expression can. Because ellipses do nothing by
        themselves, this can serve as an alternative to the pass statement, especially for code to be
        filled in later—a sort of Python “TBD”:
def func1():
    ...                   # Alternative to pass

def func2():
    ...

func1()                   # Does nothing if called
Ellipses can also appear on the same line as a statement header
        and may be used to initialize variable names if no specific type is
        required:
def func1(): ...          # Works on same line too
def func2(): ...

>>> X = ...               # Alternative to None
>>> X
Ellipsis
This notation is new in Python 3.X—and goes well beyond the
        original intent of ... in slicing
        extensions—so time will tell if it becomes widespread enough to
        challenge pass and None in these roles.


continue
The continue statement
      causes an immediate jump to the top of a loop. It also
      sometimes lets you avoid statement nesting. The next example uses
      continue to skip odd numbers. This
      code prints all even numbers less than 10 and greater than or equal to
      0. Remember, 0 means false and % is
      the remainder of division (modulus) operator, so this loop counts down
      to 0, skipping numbers that aren’t multiples of 2—it prints 8 6 4 2 0:
x = 10
while x:
    x = x−1                        # Or, x -= 1
    if x % 2 != 0: continue        # Odd? -- skip print
    print(x, end=' ')
Because continue jumps to the
      top of the loop, you don’t need to nest the print statement here inside an if test; the print is only reached if the continue is not run. If this sounds similar to
      a “go to” in other languages, it should. Python has no “go to”
      statement, but because continue lets
      you jump about in a program, many of the warnings about readability and
      maintainability you may have heard about “go to” apply. continue should probably
      be used sparingly, especially when you’re first getting started with
      Python. For instance, the last example might be clearer if the print were nested under the if:
x = 10
while x:
    x = x−1
    if x % 2 == 0:                 # Even? -- print
        print(x, end=' ')
Later in this book, we’ll also learn that raised and caught
      exceptions can also emulate “go to” statements in limited and structured
      ways; stay tuned for more on this technique in Chapter 36 where we will learn how to use it
      to break out of multiple nested loops, a feat not possible with the next
      section’s topic alone.

break
The break statement causes an immediate exit from a loop. Because the code
      that follows it in the loop is not executed if the break is reached, you can also sometimes avoid
      nesting by including a break. For
      example, here is a simple interactive loop (a variant of a larger
      example we studied in Chapter 10)
      that inputs data with input (known as
      raw_input in Python 2.X) and exits
      when the user enters “stop” for the name request:
>>> while True:
...     name = input('Enter name:')           # Use raw_input() in 2.X
...     if name == 'stop': break
...     age  = input('Enter age: ')
...     print('Hello', name, '=>', int(age) ** 2)
...
Enter name:bob
Enter age: 40
Hello bob => 1600
Enter name:sue
Enter age: 30
Hello sue => 900
Enter name:stop
Notice how this code converts the age input to an integer with int before raising it to the second power; as
      you’ll recall, this is necessary because input returns user input as a string. In Chapter 36, you’ll see that input also raises an exception at end-of-file
      (e.g., if the user types Ctrl-Z on Windows or Ctrl-D on Unix); if this
      matters, wrap input in try statements.

Loop else
When combined with the loop else
      clause, the break statement can often
      eliminate the need for the search status flags used in other languages.
      For instance, the following piece of code determines whether a positive
      integer y is prime by searching for
      factors greater than 1:
x = y // 2                                # For some y > 1
while x > 1:
    if y % x == 0:                        # Remainder
        print(y, 'has factor', x)
        break                             # Skip else
    x -= 1
else:                                     # Normal exit
    print(y, 'is prime')
Rather than setting a flag to be tested when the loop is exited,
      it inserts a break where a factor is
      found. This way, the loop else clause
      can assume that it will be executed only if no factor is found; if you
      don’t hit the break, the number is
      prime. Trace through this code to see how this works.
The loop else clause is also
      run if the body of the loop is never executed, as you don’t run a
      break in that event either; in a
      while loop, this happens if the test
      in the header is false to begin with. Thus, in the preceding example you
      still get the “is prime” message if x
      is initially less than or equal to 1 (for instance, if y is 2).
Note
This example determines primes, but only informally so. Numbers
        less than 2 are not considered prime by the strict mathematical
        definition. To be really picky, this code also fails for negative
        numbers and succeeds for floating-point numbers with no decimal
        digits. Also note that its code must use // instead of / in Python 3.X because of the migration of
        / to “true division,” as described
        in Chapter 5 (we need the initial division to
        truncate remainders, not retain them!). If you want to experiment with
        this code, be sure to see the exercise at the end of Part IV, which wraps it in a function
        for reuse.

More on the loop else
Because the loop else clause
        is unique to Python, it tends to perplex some newcomers (and go unused
        by some veterans; I’ve met some who didn’t even know there
        was an else on
        loops!). In general terms, the loop else simply provides explicit syntax for a
        common coding scenario—it is a coding structure that lets us catch the
        “other” way out of a loop, without setting and checking flags or
        conditions.
Suppose, for instance, that we are writing a loop to search a
        list for a value, and we need to know whether the value was found
        after we exit the loop. We might code such a task this way (this code
        is intentionally abstract and incomplete; x is a sequence and match is a tester function to be
        defined):
found = False
while x and not found:
    if match(x[0]):                  # Value at front?
        print('Ni')
        found = True
    else:
        x = x[1:]                    # Slice off front and repeat
if not found:
    print('not found')
Here, we initialize, set, and later test a flag to determine
        whether the search succeeded or not. This is valid Python code, and it
        does work; however, this is exactly the sort of structure that the
        loop else clause is there to
        handle. Here’s an else
        equivalent:
while x:                             # Exit when x empty
    if match(x[0]):
        print('Ni')
        break                        # Exit, go around else
    x = x[1:]
else:
    print('Not found')               # Only here if exhausted x
This version is more concise. The flag is gone, and we’ve
        replaced the if test at the loop
        end with an else (lined up
        vertically with the word while).
        Because the break inside the main
        part of the while exits the loop
        and goes around the else, this
        serves as a more structured way to catch the search-failure
        case.
Some readers might have noticed that the prior example’s
        else clause could be replaced with
        a test for an empty x after the
        loop (e.g., if not x:). Although
        that’s true in this example, the else provides explicit syntax for this
        coding pattern (it’s more obviously a search-failure clause here), and
        such an explicit empty test may not apply in some cases. The loop
        else becomes even more useful when
        used in conjunction with the for
        loop—the topic of the next section—because sequence iteration is not
        under your control.
Why You Will Care: Emulating C while Loops
The section on expression statements in Chapter 11 stated that
          Python doesn’t allow statements such as assignments to appear in
          places where it expects an expression. That is, each statement must
          generally appear on a line by itself, not nested in a larger
          construct. That means this common C language coding pattern won’t
          work in Python:
while ((x = next(obj)) != NULL) {...process x...}
C assignments return the value assigned, but Python
          assignments are just statements, not expressions. This eliminates a
          notorious class of C errors: you can’t accidentally type = in Python when you mean ==. If you need similar behavior, though,
          there are at least three ways to get the same effect in Python
          while loops without embedding
          assignments in loop tests. You can move the assignment into the loop
          body with a break:
while True:
    x = next(obj)
    if not x: break
    ...process x...
or move the assignment into the loop with tests:
x = True
while x:
    x = next(obj)
    if x:
        ...process x...
or move the first assignment outside the loop:
x = next(obj)
while x:
    ...process x...
    x = next(obj)
Of these three coding patterns, the first may be considered by
          some to be the least structured, but it also seems to be the
          simplest and is the most commonly used. A simple Python for loop may replace such C loops as well
          and be more Pythonic, but C doesn’t have a directly analogous
          tool:
for x in obj: ...process x...




for Loops
The for loop is a generic iterator in Python: it can step through the items
    in any ordered sequence or other iterable object. The for statement works on strings, lists, tuples,
    and other built-in iterables, as well as new user-defined objects that
    we’ll learn how to create later with classes. We met for briefly in Chapter 4 and in conjunction with
    sequence object types; let’s expand on its usage more formally
    here.
General Format
The Python for loop begins with a header line that specifies an assignment
      target (or targets), along with the object you want to step through. The
      header is followed by a block of (normally indented) statements that you
      want to repeat:
for target in object:                 # Assign object items to target
    statements                        # Repeated loop body: use target
else:                                 # Optional else part
    statements                        # If we didn't hit a 'break'
When Python runs a for loop, it
      assigns the items in the iterable object to the target one by one and executes the loop body
      for each. The loop body typically uses the assignment target to refer to
      the current item in the sequence as though it were a cursor stepping
      through the sequence.
The name used as the assignment target in a for header line is usually a (possibly new)
      variable in the scope where the for
      statement is coded. There’s not much unique about this name; it can even
      be changed inside the loop’s body, but it will automatically be set to
      the next item in the sequence when control returns to the top of the
      loop again. After the loop this variable normally still refers to the
      last item visited, which is the last item in the sequence unless the
      loop exits with a break
      statement.
The for statement also supports
      an optional else block, which works
      exactly as it does in a while
      loop—it’s executed if the loop exits without running into a break statement (i.e., if all items in the
      sequence have been visited). The break and continue statements introduced earlier also
      work the same in a for loop as they
      do in a while. The for loop’s complete format can be described
      this way:
for target in object:                 # Assign object items to target
    statements
    if test: break                    # Exit loop now, skip else
    if test: continue                 # Go to top of loop now
else:
    statements                        # If we didn't hit a 'break'

Examples
Let’s type a few for loops
      interactively now, so you can see how they are used in
      practice.
Basic usage
As mentioned earlier, a for
        loop can step across any kind of sequence object. In our first
        example, for instance, we’ll assign the name x to each of the three items in a list in
        turn, from left to right, and the print statement will be executed for each.
        Inside the print statement (the
        loop body), the name x refers to
        the current item in the list:
>>> for x in ["spam", "eggs", "ham"]:
...     print(x, end=' ')
...
spam eggs ham
The next two examples compute the sum and product of all the
        items in a list. Later in this chapter and later in the book we’ll
        meet tools that apply operations such as + and *
        to items in a list automatically, but it’s often just as easy to use a
        for:
>>> sum = 0
>>> for x in [1, 2, 3, 4]:
...     sum = sum + x
...
>>> sum
10
>>> prod = 1
>>> for item in [1, 2, 3, 4]: prod *= item
...
>>> prod
24

Other data types
Any sequence works in a for,
        as it’s a generic tool. For example, for loops work on strings and tuples:
>>> S = "lumberjack"
>>> T = ("and", "I'm", "okay")

>>> for x in S: print(x, end=' ')     # Iterate over a string
...
l u m b e r j a c k

>>> for x in T: print(x, end=' ')     # Iterate over a tuple
...
and I'm okay
In fact, as we’ll learn in the next chapter when we explore the
        notion of “iterables,” for loops
        can even work on some objects that are not sequences—files and
        dictionaries work, too.

Tuple assignment in for loops
If you’re iterating through a sequence of tuples, the loop
        target itself can actually be a tuple of targets.
        This is just another case of the tuple-unpacking assignment we studied in Chapter 11 at work.
        Remember, the for loop assigns
        items in the sequence object to the target, and assignment works the
        same everywhere:
>>> T = [(1, 2), (3, 4), (5, 6)]
>>> for (a, b) in T:                   # Tuple assignment at work
...     print(a, b)
...
1 2
3 4
5 6
Here, the first time through the loop is like writing (a,b) = (1,2), the second time is like
        writing (a,b) = (3,4), and so on.
        The net effect is to automatically unpack the current tuple on each
        iteration.
This form is commonly used in conjunction with the zip call we’ll meet later in this chapter to
        implement parallel traversals. It also makes regular appearances in
        conjunction with SQL databases in Python, where query result tables
        are returned as sequences of sequences like the list used here—the
        outer list is the database table, the nested tuples are the rows
        within the table, and tuple assignment extracts columns.
Tuples in for loops also come
        in handy to iterate through both keys and values
        in dictionaries using the items
        method, rather than looping through the keys and indexing to fetch the
        values manually:
>>> D = {'a': 1, 'b': 2, 'c': 3}
>>> for key in D:
...    print(key, '=>', D[key])             # Use dict keys iterator and index
...
a => 1
c => 3
b => 2

>>> list(D.items())
[('a', 1), ('c', 3), ('b', 2)]

>>> for (key, value) in D.items():
...    print(key, '=>', value)              # Iterate over both keys and values
...
a => 1
c => 3
b => 2
It’s important to note that tuple assignment in for loops isn’t a special case; any
        assignment target works syntactically after the word for. We can always assign manually within
        the loop to unpack:
>>> T
[(1, 2), (3, 4), (5, 6)]

>>> for both in T:
...     a, b = both                         # Manual assignment equivalent
...     print(a, b)                         # 2.X: prints with enclosing tuple "()"
...
1 2
3 4
5 6
But tuples in the loop header save us an extra step when
        iterating through sequences of sequences. As suggested in Chapter 11, even
        nested structures may be automatically unpacked
        this way in a for:
>>> ((a, b), c) = ((1, 2), 3)               # Nested sequences work too
>>> a, b, c
(1, 2, 3)

>>> for ((a, b), c) in [((1, 2), 3), ((4, 5), 6)]: print(a, b, c)
...
1 2 3
4 5 6
Even this is not a special case, though—the for loop simply runs the sort of assignment
        we ran just before it, on each iteration. Any nested sequence
        structure may be unpacked this way, simply because sequence
        assignment is so generic:
>>> for ((a, b), c) in [([1, 2], 3), ['XY', 6]]: print(a, b, c)
...
1 2 3
X Y 6

Python 3.X extended sequence assignment in for loops
In fact, because the loop variable in a for loop can be any assignment target, we
        can also use Python 3.X’s extended sequence-unpacking assignment
        syntax here to extract items and sections of sequences within
        sequences. Really, this isn’t a special case either, but simply a new
        assignment form in 3.X, as discussed in Chapter 11; because it works
        in assignment statements, it automatically works in for loops.
Consider the tuple assignment form introduced in the prior
        section. A tuple of values is assigned to a tuple of names on each
        iteration, exactly like a simple assignment statement:
>>> a, b, c = (1, 2, 3)                               # Tuple assignment
>>> a, b, c
(1, 2, 3)

>>> for (a, b, c) in [(1, 2, 3), (4, 5, 6)]:          # Used in for loop
...     print(a, b, c)
...
1 2 3
4 5 6
In Python 3.X, because a sequence can be assigned to a more
        general set of names with a starred name to collect multiple items, we
        can use the same syntax to extract parts of nested sequences in the
        for loop:
>>> a, *b, c = (1, 2, 3, 4)                           # Extended seq assignment
>>> a, b, c
(1, [2, 3], 4)

>>> for (a, *b, c) in [(1, 2, 3, 4), (5, 6, 7, 8)]:
...     print(a, b, c)
...
1 [2, 3] 4
5 [6, 7] 8
In practice, this approach might be used to pick out multiple
        columns from rows of data represented as nested sequences. In Python
        2.X starred names aren’t allowed, but you can achieve similar effects
        by slicing. The only difference is that slicing returns a
        type-specific result, whereas starred names always are assigned
        lists:
>>> for all in [(1, 2, 3, 4), (5, 6, 7, 8)]:          # Manual slicing in 2.X
...     a, b, c = all[0], all[1:3], all[3]
...     print(a, b, c)
...
1 (2, 3) 4
5 (6, 7) 8
See Chapter 11
        for more on this assignment form.

Nested for loops
Now let’s look at a for loop
        that’s a bit more sophisticated than those we’ve seen so far.
        The next example illustrates statement nesting and the loop else clause in a for. Given a list of objects (items) and a list of keys (tests), this code searches for each key in
        the objects list and reports on the search’s outcome:
>>> items = ["aaa", 111, (4, 5), 2.01]      # A set of objects
>>> tests = [(4, 5), 3.14]                  # Keys to search for
>>>
>>> for key in tests:                       # For all keys
...     for item in items:                  # For all items
...         if item == key:                 # Check for match
...             print(key, "was found")
...             break
...     else:
...         print(key, "not found!")
...
(4, 5) was found
3.14 not found!
Because the nested if runs a
        break when a match is found, the
        loop else clause can assume that if
        it is reached, the search has failed. Notice the nesting here. When
        this code runs, there are two loops going at the same time: the outer
        loop scans the keys list, and the inner loop scans the items list for
        each key. The nesting of the loop else clause is critical; it’s indented to
        the same level as the header line of the inner for loop, so it’s associated with the inner
        loop, not the if or the outer
        for.
This example is illustrative, but it may be easier to code if we
        employ the in operator to test
        membership. Because in implicitly
        scans an object looking for a match (at least logically), it replaces
        the inner loop:
>>> for key in tests:                       # For all keys
...     if key in items:                    # Let Python check for a match
...         print(key, "was found")
...     else:
...         print(key, "not found!")
...
(4, 5) was found
3.14 not found!
In general, it’s a good idea to let Python do as much of the
        work as possible (as in this solution) for the sake of brevity and
        performance.
The next example is similar, but builds a list as it goes for
        later use instead of printing. It performs a typical data-structure
        task with a for—collecting common
        items in two sequences (strings)—and serves as a rough set
        intersection routine. After the loop runs, res refers to a list that contains all the
        items found in seq1 and seq2:
>>> seq1 = "spam"
>>> seq2 = "scam"
>>>
>>> res = []                                # Start empty
>>> for x in seq1:                          # Scan first sequence
...     if x in seq2:                       # Common item?
...         res.append(x)                   # Add to result end
...
>>> res
['s', 'a', 'm']
Unfortunately, this code is equipped to work only on two
        specific variables: seq1 and
        seq2. It would be nice if this loop
        could somehow be generalized into a tool you could use more than once.
        As you’ll see, that simple idea leads us to
        functions, the topic of the next part of the
        book.
This code also exhibits the classic list comprehension
        pattern—collecting a results list with an iteration and optional
        filter test—and could be coded more concisely too:
>>> [x for x in seq1 if x in seq2]          # Let Python collect results
['s', 'a', 'm']
But you’ll have to read on to the next chapter for the rest of
        this story.
Why You Will Care: File Scanners
In general, loops come in handy anywhere you need to repeat an
          operation or process something more than once. Because
          files contain multiple characters and lines,
          they are one of the more typical use cases for loops.
          To load a file’s contents into a string all at once, you simply call
          the file object’s read
          method:
file = open('test.txt', 'r')    # Read contents into a string
print(file.read())
But to load a file in smaller pieces, it’s common to code
          either a while loop with breaks
          on end-of-file, or a for loop. To
          read by characters, either of the following
          codings will suffice:
file = open('test.txt')
while True:
    char = file.read(1)         # Read by character
    if not char: break          # Empty string means end-of-file
    print(char)

for char in open('test.txt').read():
    print(char)
The for loop here also
          processes each character, but it loads the file into memory all at
          once (and assumes it fits!). To read by lines
          or blocks instead, you can use while loop code like this:
file = open('test.txt')
while True:
    line = file.readline()      # Read line by line
    if not line: break
    print(line.rstrip())        # Line already has a \n

file = open('test.txt', 'rb')
while True:
    chunk = file.read(10)       # Read byte chunks: up to 10 bytes
    if not chunk: break
    print(chunk)
You typically read binary data in blocks. To read text files
          line by line, though, the for loop tends to be easiest to code and
          the quickest to run:
for line in open('test.txt').readlines():
    print(line.rstrip())

for line in open('test.txt'):   # Use iterators: best for text input
    print(line.rstrip())
Both of these versions work in both Python 2.X and 3.X. The
          first uses the file readlines
          method to load a file all at once into a line-string list, and the
          last example here relies on file iterators to
          automatically read one line on each loop iteration.
The last example is also generally the
          best option for text files—besides its
          simplicity, it works for arbitrarily large files because it doesn’t
          load the entire file into memory all at once. The iterator version
          may also be the quickest, though I/O performance may vary per Python
          line and release.
File readlines calls can
          still be useful, though—to reverse a file’s
          lines, for example, assuming its content can fit in memory.
          The reversed
          built-in accepts a sequence, but not an arbitrary iterable that
          generates values; in other words, a list works, but a file object
          doesn’t:
for line in reversed(open('test.txt').readlines()): ...
In some 2.X Python code, you may also see the name open replaced with file and the file object’s older xreadlines method used to achieve the same
          effect as the file’s automatic line iterator (it’s like readlines but doesn’t load the file into
          memory all at once). Both file
          and xreadlines are removed in
          Python 3.X, because they are redundant. You should generally avoid
          them in new 2.X code too—use file iterators and open call in recent 2.X releases—but they
          may pop up in older code and resources.
See the library manual for more on the calls used here, and
          Chapter 14 for more on file
          line iterators. Also watch for the sidebar “Why You Will Care: Shell Commands and More” in this chapter;
          it applies these same file tools to the os.popen
          command-line launcher to read program output. There’s more on
          reading files in Chapter 37 too; as
          we’ll see there, text and binary files have slightly different
          semantics in 3.X.




Loop Coding Techniques
The for loop we just studied subsumes most counter-style loops. It’s
    generally simpler to code and often quicker to run than a while, so it’s the first tool you should reach
    for whenever you need to step through a sequence or other iterable. In
    fact, as a general rule, you should resist the temptation to
    count things in Python—its iteration tools automate much of the
    work you do to loop over collections in lower-level languages like
    C.
Still, there are situations where you will need to iterate in more
    specialized ways. For example, what if you need to visit every second or
    third item in a list, or change the list along the way? How about
    traversing more than one sequence in parallel, in the same for loop? What if you need indexes too?
You can always code such unique iterations with a while loop and manual indexing, but Python
    provides a set of built-ins that allow you to specialize the iteration in
    a for:
	The built-in range function
        (available since Python 0.X) produces a series of
        successively higher integers, which can be used as indexes in a
        for.

	The built-in zip function
        (available since Python 2.0) returns a series of
        parallel-item tuples, which can be used to traverse multiple sequences
        in a for.

	The built-in enumerate
        function (available since Python 2.3) generates both the values
        and indexes of items in an iterable, so we don’t need to count
        manually.

	The built-in map function
        (available since Python 1.0) can have a similar effect to
        zip in Python 2.X, though this role
        is removed in 3.X.


Because for loops may run quicker
    than while-based counter loops, though,
    it’s to your advantage to use tools like these that allow you to use
    for whenever possible. Let’s look at
    each of these built-ins in turn, in the context of common use cases. As
    we’ll see, their usage may differ slightly between 2.X and 3.X, and some
    of their applications are more valid than others.
Counter Loops: range
Our first loop-related function, range, is  really a general tool that can be used in a variety of
      contexts. We met it briefly in Chapter 4. Although it’s used most
      often to generate indexes in a for,
      you can use it anywhere you need a series of integers. In Python 2.X
      range creates a physical list;
      in 3.X, range is an
      iterable that generates items on demand, so we need
      to wrap it in a list call to display
      its results all at once in 3.X only:
>>> list(range(5)), list(range(2, 5)), list(range(0, 10, 2))
([0, 1, 2, 3, 4], [2, 3, 4], [0, 2, 4, 6, 8])
With one argument, range
      generates a list of integers from zero up to but not including the
      argument’s value. If you pass in two arguments, the first is taken as
      the lower bound. An optional third argument can give a
      step; if it is used, Python adds the step to each
      successive integer in the result (the step defaults to +1). Ranges can
      also be nonpositive and nonascending, if you want them to be:
>>> list(range(−5, 5))
[−5, −4, −3, −2, −1, 0, 1, 2, 3, 4]

>>> list(range(5, −5, −1))
[5, 4, 3, 2, 1, 0, −1, −2, −3, −4]
We’ll get more formal about iterables like this one in Chapter 14. There, we’ll also see that
      Python 2.X has a cousin named xrange,
      which is like its range but
      doesn’t build the result list in memory all at once. This is a space
      optimization, which is subsumed in 3.X by the generator behavior of its
      range.
Although such range results may
      be useful all by themselves, they tend to come in most handy within
      for loops. For one thing, they
      provide a simple way to repeat an action a specific number of times. To
      print three lines, for example, use a range to generate the appropriate number of
      integers:
>>> for i in range(3):
...     print(i, 'Pythons')
...
0 Pythons
1 Pythons
2 Pythons
Note that for loops force
      results from range automatically in
      3.X, so we don’t need to use a list
      wrapper here in 3.X (in 2.X we get a temporary list unless we call
      xrange instead).

Sequence Scans: while and range Versus for
The range call is also
      sometimes used to iterate over a sequence indirectly,
      though it’s often not the best approach in this role. The easiest and
      generally fastest way to step through a sequence exhaustively is always
      with a simple for, as Python handles
      most of the details for you:
>>> X = 'spam'
>>> for item in X: print(item, end=' ')           # Simple iteration
...
s p a m
Internally, the for loop
      handles the details of the iteration automatically when used this way.
      If you really need to take over the indexing logic explicitly, you can
      do it with a while loop:
>>> i = 0
>>> while i < len(X):                             # while loop iteration
...     print(X[i], end=' ')
...     i += 1
...
s p a m
You can also do manual indexing with a for, though, if you use range to generate a list of indexes to iterate
      through. It’s a multistep process, but it’s sufficient to generate
      offsets, rather than the items at those offsets:
>>> X
'spam'
>>> len(X)                                        # Length of string
4
>>> list(range(len(X)))                           # All legal offsets into X
[0, 1, 2, 3]
>>>
>>> for i in range(len(X)): print(X[i], end=' ')  # Manual range/len iteration
...
s p a m
Note that because this example is stepping over a list of
      offsets into X,
      not the actual items of X, we need to index back into X within the loop to fetch each item. If this
      seems like overkill, though, it’s because it is: there’s really no
      reason to work this hard in this example.
Although the range/len combination suffices in this role, it’s
      probably not the best option. It may run slower, and it’s also more work
      than we need to do. Unless you have a special indexing requirement,
      you’re better off using the simple for loop form in Python:
>>> for item in X: print(item, end=' ')           # Use simple iteration if you can
As a general rule, use for
      instead of while whenever possible,
      and don’t use range calls in for loops except as a last resort. This
      simpler solution is almost always better. Like every good rule, though,
      there are plenty of exceptions—as the next section demonstrates.

Sequence Shufflers: range and len
Though not ideal for simple sequence scans, the coding pattern used in the
      prior example does allow us to do more specialized sorts of traversals
      when required. For example, some algorithms can make use of sequence
      reordering—to generate alternatives in searches, to test the effect of
      different value orderings, and so on. Such cases may require offsets in
      order to pull sequences apart and put them back together, as in the
      following; the range’s integers provide a repeat count in the first, and
      a position for slicing in the second:
>>> S = 'spam'
>>> for i in range(len(S)):       # For repeat counts 0..3
...     S = S[1:] + S[:1]         # Move front item to end
...     print(S, end=' ')
...
pams amsp mspa spam

>>> S
'spam'
>>> for i in range(len(S)):       # For positions 0..3
...     X = S[i:] + S[:i]         # Rear part + front part
...     print(X, end=' ')
...
spam pams amsp mspa
Trace through these one iteration at a time if they seem
      confusing. The second creates the same results as the first, though in a
      different order, and doesn’t change the original variable as it goes.
      Because both slice to obtain parts to concatenate, they also work on any
      type of sequence, and return sequences of the same type as that being
      shuffled—if you shuffle a list, you create reordered lists:
>>> L = [1, 2, 3]
>>> for i in range(len(L)):
...     X = L[i:] + L[:i]         # Works on any sequence type
...     print(X, end=' ')
...
[1, 2, 3] [2, 3, 1] [3, 1, 2]
We’ll make use of code like this to test functions with different
      argument orderings in Chapter 18, and will extend it
      to functions, generators, and more complete permutations in Chapter 20—it’s a widely useful tool.

Nonexhaustive Traversals: range Versus Slices
Cases like that of the prior section are valid applications for the range/len
      combination. We might also use this technique to skip items as we
      go:
>>> S = 'abcdefghijk'
>>> list(range(0, len(S), 2))
[0, 2, 4, 6, 8, 10]

>>> for i in range(0, len(S), 2): print(S[i], end=' ')
...
a c e g i k
Here, we visit every second item in the
      string S by stepping over the
      generated range list. To visit every
      third item, change the third range
      argument to be 3, and so on. In
      effect, using range this way lets you
      skip items in loops while still retaining the simplicity of the for loop construct.
In most cases, though, this is also probably not the “best
      practice” technique in Python today. If you really mean to skip items in
      a sequence, the extended three-limit form of the slice
      expression, presented in Chapter 7, provides a simpler route to the same
      goal. To visit every second character in S, for example, slice with a stride of
      2:
>>> S = 'abcdefghijk'
>>> for c in S[::2]: print(c, end=' ')
...
a c e g i k
The result is the same, but substantially easier for you to write
      and for others to read. The potential advantage to using range here instead is space: slicing makes a
      copy of the string in both 2.X and 3.X, while range in 3.X and xrange in 2.X do not create a list; for very
      large strings, they may save memory.

Changing Lists: range Versus Comprehensions
Another common place where you may use the range/len
      combination with for is in loops that
      change a list as it is being traversed. Suppose, for example, that you
      need to add 1 to every item in a list (maybe you’re giving everyone a
      raise in an employee database list). You can try this with a simple
      for loop, but the result probably
      won’t be exactly what you want:
>>> L = [1, 2, 3, 4, 5]

>>> for x in L:
...     x += 1                       # Changes x, not L
...
>>> L
[1, 2, 3, 4, 5]
>>> x
6
This doesn’t quite work—it changes the loop variable x, not the list L. The reason is somewhat subtle. Each time
      through the loop, x refers to the
      next integer already pulled out of the list. In the first iteration, for
      example, x is integer 1. In the next iteration, the loop body sets
      x to a different object, integer
      2, but it does not update the list
      where 1 originally came from; it’s a
      piece of memory separate from the list.
To really change the list as we march across it, we need to use
      indexes so we can assign an updated value to each position as we go. The
      range/len combination can produce the required
      indexes for us:
>>> L = [1, 2, 3, 4, 5]

>>> for i in range(len(L)):          # Add one to each item in L
...     L[i] += 1                    # Or L[i] = L[i] + 1
...
>>> L
[2, 3, 4, 5, 6]
When coded this way, the list is changed as we proceed through the
      loop. There is no way to do the same with a simple for x in L:–style loop, because such a loop
      iterates through actual items, not list positions. But what about the
      equivalent while loop? Such a loop
      requires a bit more work on our part, and might run more slowly
      depending on your Python (it does on 2.7 and 3.3, though less so on
      3.3—we’ll see how to verify this in Chapter 21):
>>> i = 0
>>> while i < len(L):
...     L[i] += 1
...     i += 1
...
>>> L
[3, 4, 5, 6, 7]
Here again, though, the range
      solution may not be ideal either. A list comprehension expression of the
      form:
[x + 1 for x in L]
likely runs faster today and would do similar work, albeit without
      changing the original list in place (we could assign the expression’s
      new list object result back to L, but
      this would not update any other references to the original list).
      Because this is such a central looping concept, we’ll save a complete
      exploration of list comprehensions for the next chapter, and continue
      this story there.

Parallel Traversals: zip and map
Our next loop coding technique extends a loop’s scope. As we’ve seen, the
      range built-in allows us to traverse
      sequences with for in a
      nonexhaustive fashion. In the same spirit, the built-in zip function allows us to use for loops to visit multiple sequences
      in parallel—not overlapping in time, but during the
      same loop. In basic operation, zip
      takes one or more sequences as arguments and returns a series of tuples
      that pair up parallel items taken from those sequences. For example,
      suppose we’re working with two lists (a list of names and addresses
      paired by position, perhaps):
>>> L1 = [1,2,3,4]
>>> L2 = [5,6,7,8]
To combine the items in these lists, we can use zip to create a list of tuple pairs. Like
      range, zip is a list in Python 2.X, but an iterable
      object in 3.X where we must wrap it in a list call to display all its results at once
      (again, there’s more on iterables coming up in the next chapter):
>>> zip(L1, L2)
<zip object at 0x026523C8>
>>> list(zip(L1, L2))                       # list() required in 3.X, not 2.X
[(1, 5), (2, 6), (3, 7), (4, 8)]
Such a result may be useful in other contexts as well, but when
      wedded with the for loop, it supports
      parallel iterations:
>>> for (x, y) in zip(L1, L2):
...     print(x, y, '--', x+y)
...
1 5 -- 6
2 6 -- 8
3 7 -- 10
4 8 -- 12
Here, we step over the result of the zip call—that is, the pairs of items pulled
      from the two lists. Notice that this for loop again uses the tuple assignment form
      we met earlier to unpack each tuple in the zip result. The first time through, it’s as
      though we ran the assignment statement (x, y) =
      (1, 5).
The net effect is that we scan both L1 and L2 in our loop. We could achieve a similar
      effect with a while loop that handles
      indexing manually, but it would require more typing and would likely run
      more slowly than the for/zip approach.
Strictly speaking, the zip
      function is more general than this example suggests. For instance, it
      accepts any type of sequence (really, any iterable object, including
      files), and it accepts more than two arguments. With three arguments, as
      in the following example, it builds a list of three-item tuples with
      items from each sequence, essentially projecting by columns
      (technically, we get an N-ary tuple for N arguments):
>>> T1, T2, T3 = (1,2,3), (4,5,6), (7,8,9)
>>> T3
(7, 8, 9)
>>> list(zip(T1, T2, T3))                   # Three tuples for three arguments
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]
Moreover, zip truncates result
      tuples at the length of the shortest sequence when the argument lengths
      differ. In the following, we zip together two strings to pick out
      characters in parallel, but the result has only as many tuples as the
      length of the shortest sequence:
>>> S1 = 'abc'
>>> S2 = 'xyz123'
>>>
>>> list(zip(S1, S2))                       # Truncates at len(shortest)
[('a', 'x'), ('b', 'y'), ('c', 'z')]
map equivalence in Python 2.X
In Python 2.X only, the related built-in map
        function pairs items from sequences in a similar fashion when passed
        None for its function argument, but
        it pads shorter sequences with None
        if the argument lengths differ instead of truncating to the shortest
        length:
>>> S1 = 'abc'
>>> S2 = 'xyz123'

>>> map(None, S1, S2)                        # 2.X only: pads to len(longest)
[('a', 'x'), ('b', 'y'), ('c', 'z'), (None, '1'), (None, '2'), (None,'3')]
This example is using a degenerate form of the map built-in, which is no longer supported
        in 3.X. Normally, map takes a
        function and one or more sequence arguments and collects the results
        of calling the function with parallel items taken from the
        sequence(s).
We’ll study map in detail in
        Chapter 19 and Chapter 20, but as a brief example,
        the following maps the built-in ord
        function across each item in a string and collects the results (like
        zip, map is a value generator in 3.X and so must
        be passed to list to collect all
        its results at once in 3.X only):
>>> list(map(ord, 'spam'))
[115, 112, 97, 109]
This works the same as the following loop statement, but
        map is often quicker, as Chapter 21 will show:
>>> res = []
>>> for c in 'spam': res.append(ord(c))
>>> res
[115, 112, 97, 109]
Note
Version skew note: The degenerate form of
          map using a function argument of
          None is no longer supported in
          Python 3.X, because it largely overlaps with zip (and was, frankly, a bit at odds with
          map’s function-application
          purpose). In 3.X, either use zip
          or write loop code to pad results yourself. In fact, we’ll see how
          to write such loop code in Chapter 20, after we’ve had a
          chance to study some additional iteration concepts.


Dictionary construction with zip
Let’s look at another zip use case.
        Chapter 8 suggested that the zip call used here can also be handy for
        generating dictionaries when the sets of keys and values must be
        computed at runtime. Now that we’re becoming proficient with zip, let’s explore more fully how it relates
        to dictionary construction. As you’ve learned, you can always create a
        dictionary by coding a dictionary literal, or by assigning to keys
        over time:
>>> D1 = {'spam':1, 'eggs':3, 'toast':5}
>>> D1
{'eggs': 3, 'toast': 5, 'spam': 1}

>>> D1 = {}
>>> D1['spam']  = 1
>>> D1['eggs']  = 3
>>> D1['toast'] = 5
What to do, though, if your program obtains dictionary keys and
        values in lists at runtime, after you’ve coded
        your script? For example, say you had the following keys and values
        lists, collected from a user, parsed from a file, or obtained from
        another dynamic source:
>>> keys = ['spam', 'eggs', 'toast']
>>> vals = [1, 3, 5]
One solution for turning those lists into a dictionary would be
        to zip the lists and step through
        them in parallel with a for
        loop:
>>> list(zip(keys, vals))
[('spam', 1), ('eggs', 3), ('toast', 5)]

>>> D2 = {}
>>> for (k, v) in zip(keys, vals): D2[k] = v
...
>>> D2
{'eggs': 3, 'toast': 5, 'spam': 1}
It turns out, though, that in Python 2.2 and later you can skip
        the for loop altogether and simply
        pass the zipped keys/values lists to the built-in dict constructor call:
>>> keys = ['spam', 'eggs', 'toast']
>>> vals = [1, 3, 5]

>>> D3 = dict(zip(keys, vals))
>>> D3
{'eggs': 3, 'toast': 5, 'spam': 1}
The built-in name dict is
        really a type name in Python (you’ll learn more about type names, and
        subclassing them, in Chapter 32).
        Calling it achieves something like a list-to-dictionary conversion,
        but it’s really an object construction request.
In the next chapter we’ll explore the related but richer
        concept, the list comprehension, which builds lists in a single
        expression; we’ll also revisit Python 3.X and 2.7 dictionary
        comprehensions, an alternative to the dict call for zipped key/value pairs:
>>> {k: v for (k, v) in zip(keys, vals)}
{'eggs': 3, 'toast': 5, 'spam': 1}


Generating Both Offsets and Items: enumerate
Our final loop helper function is designed to support dual usage modes.
      Earlier, we discussed using range to
      generate the offsets of items in a string, rather than the items at
      those offsets. In some programs, though, we need both: the item to use,
      plus an offset as we go. Traditionally, this was coded with a simple
      for loop that also kept a counter of
      the current offset:
>>> S = 'spam'
>>> offset = 0
>>> for item in S:
...     print(item, 'appears at offset', offset)
...     offset += 1
...
s appears at offset 0
p appears at offset 1
a appears at offset 2
m appears at offset 3
This works, but in all recent Python 2.X and 3.X releases (since
      2.3) a new built-in named enumerate
      does the job for us—its net effect is to give loops a counter “for
      free,” without sacrificing the simplicity of automatic iteration:
>>> S = 'spam'
>>> for (offset, item) in enumerate(S):
...     print(item, 'appears at offset', offset)
...
s appears at offset 0
p appears at offset 1
a appears at offset 2
m appears at offset 3
The enumerate function returns
      a generator object—a kind of object that supports
      the iteration protocol that we will study in the next chapter and will
      discuss in more detail in the next part of the book. In short, it has a
      method called by the next built-in
      function, which returns an (index, value) tuple each time through the loop. The
      for steps through these tuples
      automatically, which allows us to unpack their values with tuple
      assignment, much as we did for zip:
>>> E = enumerate(S)
>>> E
<enumerate object at 0x0000000002A8B900>
>>> next(E)
(0, 's')
>>> next(E)
(1, 'p')
>>> next(E)
(2, 'a')
We don’t normally see this machinery because all iteration
      contexts—including list comprehensions, the subject of Chapter 14—run the iteration protocol
      automatically:
>>> [c * i for (i, c) in enumerate(S)]
['', 'p', 'aa', 'mmm']

>>> for (i, l) in enumerate(open('test.txt')):
...     print('%s) %s' % (i, l.rstrip()))
...
0) aaaaaa
1) bbbbbb
2) cccccc
To fully understand iteration concepts like enumerate, zip, and list comprehensions, though, we need
      to move on to the next chapter for a more formal dissection.
Why You Will Care: Shell Commands and More
An earlier sidebar showed loops applied to files. As briefly noted in Chapter 9, Python’s related
        os.popen call also gives a file-like interface, for reading the
        outputs of spawned shell commands. Now that we’ve
        studied looping statements in full, here’s an example of this tool in
        action—to run a shell command and read its standard output text, pass
        the command as a string to os.popen, and read text from the file-like object it returns
        (if this triggers a Unicode encoding issue on your computer, Chapter 25’s discussion of currency symbols
        may apply):
>>> import os
>>> F = os.popen('dir')               # Read line by line
>>> F.readline()
' Volume in drive C has no label.\n'
>>> F = os.popen('dir')               # Read by sized blocks
>>> F.read(50)
' Volume in drive C has no label.\n Volume Serial Nu'

>>> os.popen('dir').readlines()[0]    # Read all lines: index
' Volume in drive C has no label.\n'
>>> os.popen('dir').read()[:50]       # Read all at once: slice
' Volume in drive C has no label.\n Volume Serial Nu'

>>> for line in os.popen('dir'):      # File line iterator loop
...     print(line.rstrip())
...
 Volume in drive C has no label.
 Volume Serial Number is D093-D1F7
...and so on...
This runs a dir directory
        listing on Windows, but any program that can be started with a command
        line can be launched this way. We might use this scheme, for example,
        to display the output of the windows systeminfo
        command—os.system simply runs a shell command, but os.popen also connects to its streams; both
        of the following show the shell command’s output in a simple console
        window, but the first might not in a GUI interface such as
        IDLE:
>>> os.system('systeminfo')
...output in console, popup in IDLE...
0
>>> for line in os.popen('systeminfo'): print(line.rstrip())

Host Name:                 MARK-VAIO
OS Name:                   Microsoft Windows 7 Professional
OS Version:                6.1.7601 Service Pack 1 Build 7601
...lots of system information text...
And once we have a command’s output in text form, any string
        processing tool or technique applies—including display formatting and
        content parsing:
# Formatted, limited display
>>> for (i, line) in enumerate(os.popen('systeminfo')):
...     if i == 4: break
...     print('%05d) %s' % (i, line.rstrip()))
...
00000)
00001) Host Name:                 MARK-VAIO
00002) OS Name:                   Microsoft Windows 7 Professional
00003) OS Version:                6.1.7601 Service Pack 1 Build 7601

# Parse for specific lines, case neutral
>>> for line in os.popen('systeminfo'):
...    parts = line.split(':')
...    if parts and parts[0].lower() == 'system type':
...        print(parts[1].strip())
...
x64-based PC
We’ll see os.popen in action
        again in Chapter 21, where we’ll
        deploy it to read the results of a constructed command line that times
        code alternatives, and in Chapter 25,
        where it will be used to compare outputs of scripts being
        tested.
Tools like os.popen and
        os.system (and the subprocess module not shown here) allow you to leverage every command-line
        program on your computer, but you can also write emulators with
        in-process code. For example, simulating the Unix awk utility’s
        ability to strip columns out of text files is almost trivial in
        Python, and can become a reusable function in the process:
# awk emulation: extract column 7 from whitespace-delimited file
for val in [line.split()[6] for line in open('input.txt')]:
    print(val)

# Same, but more explicit code that retains result
col7 = []
for line in open('input.txt'):
    cols = line.split()
    col7.append(cols[6])
for item in col7:  print(item)

# Same, but a reusable function (see next part of book)
def awker(file, col):
    return [line.rstrip().split()[col-1] for line in open(file)]

print(awker('input.txt', 7))             # List of strings
print(','.join(awker('input.txt', 7)))   # Put commas between
By itself, though, Python provides file-like access to a wide
        variety of data—including the text returned by
        websites and their pages identified by URL,
        though we’ll have to defer to Part V
        for more on the package import used here, and other resources for more
        on such tools in general (e.g., this works in 2.X, but uses urllib instead of  urllib.request, and returns text
        strings):
>>> from urllib.request import urlopen
>>> for line in urlopen('http://learning-python.com/books'):
...     print(line)
...
b'<HTML>\n'
b'\n'
b'<HEAD>\n'
b"<TITLE>Mark Lutz's Book Support Site</TITLE>\n"
...etc...



Chapter Summary
In this chapter, we explored Python’s looping statements as well as
    some concepts related to looping in Python. We looked at the while and for
    loop statements in depth, and we learned about their associated else clauses. We also studied the break and continue statements, which have meaning only
    inside loops, and met several built-in tools commonly used in for loops, including range, zip,
    map, and enumerate, although some of the details
    regarding their roles as iterables in Python 3.X were intentionally cut
    short.
In the next chapter, we continue the iteration story by discussing
    list comprehensions and the iteration protocol in Python—concepts strongly
    related to for loops. There, we’ll also
    give the rest of the picture behind the iterable tools we met here, such
    as range and zip, and study some of the subtleties of their
    operation. As always, though, before moving on let’s exercise what you’ve
    picked up here with a quiz.

Test Your Knowledge: Quiz
	What are the main functional differences between a while and a for?

	What’s the difference between break and continue?

	When is a loop’s else clause
        executed?

	How can you code a counter-based loop in Python?

	What can a range be used for
        in a for loop?



Test Your Knowledge: Answers
	The while loop is a general
        looping statement, but the for is
        designed to iterate across items in a sequence or other iterable.
        Although the while can imitate the
        for with counter loops, it takes
        more code and might run slower.

	The break statement exits a
        loop immediately (you wind up below the entire while or for loop statement), and continue jumps back to the top of the loop
        (you wind up positioned just before the test in while or the next item fetch in for).

	The else clause in a while or for loop will be run once as the loop is
        exiting, if the loop exits normally (without running into a break statement). A break exits the loop immediately, skipping
        the else part on the way out (if
        there is one).

	Counter loops can be coded with a while statement that keeps track of the
        index manually, or with a for loop
        that uses the range built-in
        function to generate successive integer offsets. Neither is the
        preferred way to work in Python, if you need to simply step across all
        the items in a sequence. Instead, use a simple for loop without range or counters, whenever possible; it
        will be easier to code and usually quicker to run.

	The range built-in can be
        used in a for to implement a fixed
        number of repetitions, to scan by offsets instead of items at offsets,
        to skip successive items as you go, and to change a list while
        stepping across it. None of these roles requires range, and most have alternatives—scanning
        actual items, three-limit slices, and list comprehensions are often
        better solutions today (despite the natural inclinations of ex–C
        programmers to want to count things!).










Chapter 14. Iterations and Comprehensions
In the prior chapter we met Python’s two looping statements, while and for.
  Although they can handle most repetitive tasks programs need to perform, the
  need to iterate over sequences is so common and pervasive that Python
  provides additional tools to make it simpler and more efficient. This
  chapter begins our exploration of these tools. Specifically, it presents the
  related concepts of Python’s iteration protocol, a
  method-call model used by the for loop,
  and fills in some details on list comprehensions, which
  are a close cousin to the for
  loop that applies an expression to items in an iterable.
Because these tools are related to both the for loop and functions, we’ll take a two-pass
  approach to covering them in this book, along with a postscript:
	This chapter introduces their basics in the context of looping
      tools, serving as something of a continuation of the prior
      chapter.

	Chapter 20 revisits them in
      the context of function-based tools, and extends the topic to include
      built-in and user-defined generators.

	Chapter 30 also provides a
      shorter final installment in this story, where we’ll learn about
      user-defined iterable objects coded with
      classes.


In this chapter, we’ll also sample additional iteration tools in
  Python, and touch on the new iterables available in Python 3.X—where the
  notion of iterables grows even more pervasive.
One note up front: some of the concepts presented in these chapters
  may seem advanced at first glance. With practice, though, you’ll find that
  these tools are useful and powerful. Although never strictly required,
  because they’ve become commonplace in Python code, a basic understanding can
  also help if you must read programs written by others.
Iterations: A First Look
In the preceding chapter, I mentioned that the for
    loop can work on any sequence type in Python, including lists, tuples, and
    strings, like this:
>>> for x in [1, 2, 3, 4]: print(x ** 2, end=' ')            # In 2.X: print x ** 2,
...
1 4 9 16

>>> for x in (1, 2, 3, 4): print(x ** 3, end=' ')
...
1 8 27 64

>>> for x in 'spam': print(x * 2, end=' ')
...
ss pp aa mm
Actually, the for loop turns out
    to be even more generic than this—it works on any iterable object. In fact, this
    is true of all iteration tools that scan objects from left to right in
    Python, including for loops, the list
    comprehensions we’ll study in this chapter, in membership tests, the map built-in function, and more.
The concept of “iterable objects” is relatively recent in Python,
    but it has come to permeate the language’s design. It’s essentially a
    generalization of the notion of sequences—an object is considered
    iterable if it is either a physically stored
    sequence, or an object that produces one result at a time in the context
    of an iteration tool like a for loop.
    In a sense, iterable objects include both physical sequences and
    virtual sequences computed on demand.
Note
Terminology in this topic tends to be a bit
      loose. The terms “iterable” and “iterator” are sometimes used
      interchangeably to refer to an object that supports iteration in
      general. For clarity, this book has a very strong preference for using
      the term iterable to refer to an object that
      supports the iter call, and
      iterator to refer to an object returned by an
      iterable on iter that supports the
      next(I) call. Both these calls are defined
      ahead.
That convention is not universal in either the Python world or
      this book, though; “iterator” is also sometimes used for tools that
      iterate. Chapter 20 extends this
      category with the term “generator”—which refers to objects that
      automatically support the iteration protocol, and hence are
      iterable—even though all iterables generate results!

The Iteration Protocol: File Iterators
One of the easiest ways to understand the iteration protocol is to see how it
      works with a built-in type such as the file. In this chapter, we’ll be
      using the following input file to demonstrate:
>>> print(open('script2.py').read())
import sys
print(sys.path)
x = 2
print(x ** 32)

>>> open('script2.py').read()
'import sys\nprint(sys.path)\nx = 2\nprint(x ** 32)\n'
Recall from Chapter 9 that open file
      objects have a method called readline, which reads one line of text from a
      file at a time—each time we call the readline method, we
      advance to the next line. At the end of the file, an empty string is
      returned, which we can detect to break out of the loop:
>>> f = open('script2.py')     # Read a four-line script file in this directory
>>> f.readline()               # readline loads one line on each call
'import sys\n'
>>> f.readline()
'print(sys.path)\n'
>>> f.readline()
'x = 2\n'
>>> f.readline()               # Last lines may have a \n or not
'print(x ** 32)\n'
>>> f.readline()               # Returns empty string at end-of-file
''
However, files also have a method named __next__ in 3.X
      (and next in 2.X) that has a nearly
      identical effect—it returns the next line from a file each time it is
      called. The only noticeable difference is that __next__ raises a built-in StopIteration
      exception at end-of-file instead of returning an empty string:
>>> f = open('script2.py')     # __next__ loads one line on each call too
>>> f.__next__()               # But raises an exception at end-of-file
'import sys\n'
>>> f.__next__()               # Use f.next() in 2.X, or next(f) in 2.X or 3.X
'print(sys.path)\n'
>>> f.__next__()
'x = 2\n'
>>> f.__next__()
'print(x ** 32)\n'
>>> f.__next__()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
This interface is most of what we call the iteration
      protocol in Python. Any object with a __next__ method to advance to a next result,
      which raises StopIteration at the end
      of the series of results, is considered an iterator in Python. Any such
      object may also be stepped through with a for loop or other iteration tool, because all
      iteration tools normally work internally by calling __next__ on each iteration and catching the
      StopIteration exception to determine
      when to exit. As we’ll see in a moment, for some objects the full
      protocol includes an additional first step to call iter, but this isn’t required for
      files.
The net effect of this magic is that, as mentioned in Chapter 9 and Chapter 13, the best way to read a text file line
      by line today is to not read it at all—instead,
      allow the for loop to
      automatically call __next__ to
      advance to the next line on each iteration. The file object’s iterator
      will do the work of automatically loading lines as you go. The
      following, for example, reads a file line by line, printing the
      uppercase version of each line along the way, without ever explicitly
      reading from the file at all:
>>> for line in open('script2.py'):       # Use file iterators to read by lines
...     print(line.upper(), end='')       # Calls __next__, catches StopIteration
...
IMPORT SYS
PRINT(SYS.PATH)
X = 2
PRINT(X ** 32)
Notice that the print uses
      end='' here to suppress adding a
      \n, because line strings already have
      one (without this, our output would be double-spaced; in 2.X, a trailing
      comma works the same as the end).
      This is considered the best way to read text files
      line by line today, for three reasons: it’s the simplest to code, might
      be the quickest to run, and is the best in terms of memory usage. The
      older, original way to achieve the same effect with a for loop is to call the file readlines method
      to load the file’s content into memory as a list of line strings:
>>> for line in open('script2.py').readlines():
...     print(line.upper(), end='')
...
IMPORT SYS
PRINT(SYS.PATH)
X = 2
PRINT(X ** 32)
This readlines technique still
      works but is not considered the best practice today and performs poorly
      in terms of memory usage. In fact, because this version really does load
      the entire file into memory all at once, it will not even work for files
      too big to fit into the memory space available on your computer. By
      contrast, because it reads one line at a time, the iterator-based
      version is immune to such memory-explosion issues. The iterator version
      might run quicker too, though this can vary per release
As mentioned in the prior chapter’s sidebar, “Why You Will Care: File Scanners”, it’s also possible
      to read a file line by line with a while
      loop:
>>> f = open('script2.py')
>>> while True:
...     line = f.readline()
...     if not line: break
...     print(line.upper(), end='')
...
...same output...
However, this may run slower than the iterator-based for loop version, because iterators run at C
      language speed inside Python, whereas the while loop version runs Python byte code
      through the Python virtual machine. Anytime we trade Python code for C
      code, speed tends to increase. This is not an absolute truth, though,
      especially in Python 3.X; we’ll see timing techniques later in Chapter 21 for measuring the relative speed
      of alternatives like these.1
Note
Version skew note: In Python 2.X, the
        iteration method is named X.next()
        instead of X.__next__(). For
        portability, a next(X) built-in
        function is also available in both Python 3.X and 2.X (2.6 and later),
        and calls X.__next__() in 3.X and
        X.next() in 2.X. Apart from method
        names, iteration works the same in 2.X and 3.X in all other ways. In
        2.6 and 2.7, simply use X.next() or
        next(X) for manual iterations
        instead of 3.X’s X.__next__();
        prior to 2.6, use X.next() calls
        instead of next(X).


Manual Iteration: iter and next
To simplify manual iteration code, Python 3.X also provides a built-in
      function, next, that automatically
      calls an object’s __next__ method.
      Per the preceding note, this call also is supported on
      Python 2.X for portability. Given an iterator object X, the call next(X) is the
      same as X.__next__() on 3.X (and
      X.next() on 2.X), but is noticeably
      simpler and more version-neutral. With files, for instance, either form
      may be used:
>>> f = open('script2.py')
>>> f.__next__()                   # Call iteration method directly
'import sys\n'
>>> f.__next__()
'print(sys.path)\n'

>>> f = open('script2.py')
>>> next(f)                        # The next(f) built-in calls f.__next__() in 3.X
'import sys\n'
>>> next(f)                        # next(f) => [3.X: f.__next__()], [2.X: f.next()]
'print(sys.path)\n'
Technically, there is one more piece to the iteration protocol
      alluded to earlier. When the for loop
      begins, it first obtains an iterator from the iterable object by passing
      it to the iter built-in function; the
      object returned by iter in turn has
      the required next method. The
      iter function internally runs the
      __iter__ method, much like next and __next__.
The full iteration protocol
As a more formal definition, Figure 14-1 sketches this
        full iteration protocol, used by every iteration tool in Python, and
        supported by a wide variety of object types. It’s really based on
        two objects, used in two distinct steps by
        iteration tools:
	The iterable object you request
            iteration for, whose __iter__
            is run by iter

	The iterator object returned by the
            iterable that actually produces values during the iteration, whose
            __next__ is run by next and raises StopIteration when finished producing results


Figure 14-1. The Python iteration protocol, used by for loops,
          comprehensions, maps, and more, and supported by files, lists,
          dictionaries, Chapter 20’s
          generators, and more. Some objects are both iteration context and
          iterable object, such as generator expressions and 3.X’s flavors of
          some tools (such as map and zip). Some objects are both iterable and
          iterator, returning themselves for the iter() call, which is then a
          no-op.

These steps are orchestrated automatically by iteration tools in
        most cases, but it helps to understand these two objects’ roles. For
        example, in some cases these two objects are the
        same when only a single scan is supported (e.g.,
        files), and the iterator object is often
        temporary, used internally by the iteration tool.
Moreover, some objects are both an iteration
        context tool (they iterate) and an iterable object (their results are
        iterable)—including Chapter 20’s generator expressions,
        and map and zip in Python 3.X. As we’ll see ahead, more
        tools become iterables in 3.X—including map, zip,
        range, and some dictionary
        methods—to avoid constructing result lists in memory all at
        once.
In actual code, the protocol’s first step becomes obvious if we
        look at how for loops
        internally process built-in sequence types such as lists:
>>> L = [1, 2, 3]
>>> I = iter(L)                    # Obtain an iterator object from an iterable
>>> I.__next__()                   # Call iterator's next to advance to next item
1
>>> I.__next__()                   # Or use I.next() in 2.X, next(I) in either line
2
>>> I.__next__()
3
>>> I.__next__()
...error text omitted...
StopIteration
This initial step is not required for files, because a file
        object is its own iterator. Because they support just one iteration
        (they can’t seek backward to support multiple active scans), files
        have their own __next__ method and
        do not need to return a different object that does:
>>> f = open('script2.py')
>>> iter(f) is f
True
>>> iter(f) is f.__iter__()
True
>>> f.__next__()
'import sys\n'
Lists and many other built-in objects, though, are not their own
        iterators because they do support multiple open iterations—for
        example, there may be multiple iterations in nested loops all at
        different positions. For such objects, we must call iter to start iterating:
>>> L = [1, 2, 3]
>>> iter(L) is L
False
>>> L.__next__()
AttributeError: 'list' object has no attribute '__next__'

>>> I = iter(L)
>>> I.__next__()
1
>>> next(I)                     # Same as I.__next__()
2

Manual iteration
Although Python iteration tools call these functions
        automatically, we can use them to apply the iteration protocol
        manually, too. The following interaction
        demonstrates the equivalence between automatic and manual
        iteration:2
>>> L = [1, 2, 3]
>>>
>>> for X in L:                 # Automatic iteration
...     print(X ** 2, end=' ')  # Obtains iter, calls __next__, catches exceptions
...
1 4 9

>>> I = iter(L)                 # Manual iteration: what for loops usually do
>>> while True:
...     try:                    # try statement catches exceptions
...         X = next(I)         # Or call I.__next__ in 3.X
...     except StopIteration:
...         break
...     print(X ** 2, end=' ')
...
1 4 9
To understand this code, you need to know that try statements run an action and catch
        exceptions that occur while the action runs (we met exceptions briefly
        in Chapter 11 but will
        explore them in depth in Part VII). I
        should also note that for loops and
        other iteration contexts can sometimes work differently for
        user-defined classes, repeatedly indexing an object instead of running
        the iteration protocol, but prefer the iteration protocol if it’s
        used. We’ll defer that story until we study class operator overloading in Chapter 30.


Other Built-in Type Iterables
Besides files and physical sequences like lists, other types have useful
      iterators as well. The classic way to step through the keys of a
      dictionary, for example, is to request its keys
      list explicitly:
>>> D = {'a':1, 'b':2, 'c':3}
>>> for key in D.keys():
...     print(key, D[key])
...
a 1
b 2
c 3
In recent versions of Python, though, dictionaries are iterables with an iterator that
      automatically returns one key at a time in an iteration context:
>>> I = iter(D)
>>> next(I)
'a'
>>> next(I)
'b'
>>> next(I)
'c'
>>> next(I)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
The net effect is that we no longer need to call the keys
      method to step through dictionary keys—the for loop will use the iteration protocol to grab one key each time
      through:
>>> for key in D:
...     print(key, D[key])
...
a 1
b 2
c 3
We can’t delve into their details here, but other Python object
      types also support the iteration protocol and thus may be used in
      for loops too. For instance,
      shelves (an access-by-key filesystem for Python objects) and the results from os.popen (a tool
      for reading the output of shell commands, which we met in the preceding
      chapter) are iterable as well:
>>> import os
>>> P = os.popen('dir')
>>> P.__next__()
' Volume in drive C has no label.\n'
>>> P.__next__()
' Volume Serial Number is D093-D1F7\n'
>>> next(P)
TypeError: _wrap_close object is not an iterator
Notice that popen objects
      themselves support a P.next() method
      in Python 2.X. In 3.X, they support the P.__next__() method, but not the next(P) built-in. Since the latter is defined
      to call the former, this may seem unusual, though both calls work
      correctly if we use the full iteration protocol employed automatically
      by for loops and other iteration
      contexts, with its top-level iter
      call (this performs internal steps required to also support next calls for this object):
>>> P = os.popen('dir')
>>> I = iter(P)
>>> next(I)
' Volume in drive C has no label.\n'
>>> I.__next__()
' Volume Serial Number is D093-D1F7\n'
Also in the systems domain, the standard directory walker in
      Python, os.walk, is
      similarly iterable, but we’ll save an example until Chapter 20’s coverage of this tool’s
      basis—generators and yield.
The iteration protocol also is the reason that we’ve had to wrap
      some results in a list call
      to see their values all at once. Objects that are iterable return results one at a time, not in a
      physical list:
>>> R = range(5)
>>> R                            # Ranges are iterables in 3.X
range(0, 5)
>>> I = iter(R)                  # Use iteration protocol to produce results
>>> next(I)
0
>>> next(I)
1
>>> list(range(5))               # Or use list to collect all results at once
[0, 1, 2, 3, 4]
Note that the list call here is
      not required in 2.X (where range
      builds a real list), and is not needed in 3.X for contexts where
      iteration happens automatically (such as within for loops). It is needed for displaying values
      here in 3.X, though, and may also be required when list-like behavior or
      multiple scans are required for objects that produce results on demand
      in 2.X or 3.X (more on this ahead).
Now that you have a better understanding of this protocol, you
      should be able to see how it explains why the enumerate tool
      introduced in the prior chapter works the way it does:
>>> E = enumerate('spam')        # enumerate is an iterable too
>>> E
<enumerate object at 0x00000000029B7678>
>>> I = iter(E)
>>> next(I)                      # Generate results with iteration protocol
(0, 's')
>>> next(I)                      # Or use list to force generation to run
(1, 'p')
>>> list(enumerate('spam'))
[(0, 's'), (1, 'p'), (2, 'a'), (3, 'm')]
We don’t normally see this machinery because for loops run it for us automatically to step
      through results. In fact, everything that scans left to right in Python
      employs the iteration protocol in the same way—including the topic of
      the next section.


List Comprehensions: A First Detailed Look
Now that we’ve seen how the iteration protocol works, let’s turn to one of
    its most common use cases. Together with for loops, list comprehensions are one of the
    most prominent contexts in which the iteration protocol is applied.
In the previous chapter, we learned how to use range to change a list as we step across
    it:
>>> L = [1, 2, 3, 4, 5]

>>> for i in range(len(L)):
...     L[i] += 10
...
>>> L
[11, 12, 13, 14, 15]
This works, but as I mentioned there, it may not be the optimal
    “best practice” approach in Python. Today, the list comprehension
    expression makes many such prior coding patterns obsolete. Here, for
    example, we can replace the loop with a single expression that produces
    the desired result list:
>>> L = [x + 10 for x in L]
>>> L
[21, 22, 23, 24, 25]
The net result is similar, but it requires less coding on our part
    and is likely to run substantially faster. The list comprehension isn’t
    exactly the same as the for loop
    statement version because it makes a
    new list object (which might matter if there are
    multiple references to the original list), but it’s close enough for most
    applications and is a common and convenient enough approach to merit a
    closer look here.
List Comprehension Basics
We met the list comprehension briefly in Chapter 4. Syntactically, its syntax
      is derived from a construct in set theory notation that applies an
      operation to each item in a set, but you don’t have to know set theory
      to use this tool. In Python, most people find that a list comprehension
      simply looks like a backward for
      loop.
To get a handle on the syntax, let’s dissect the prior section’s
      example in more detail:
L = [x + 10 for x in L]
List comprehensions are written in square brackets because they
      are ultimately a way to construct a new list. They begin with an
      arbitrary expression that we make up, which uses a loop variable that we
      make up (x + 10). That is followed by
      what you should now recognize as the header of a for loop, which names the loop variable, and
      an iterable object (for x in
      L).
To run the expression, Python executes an iteration across
      L inside the interpreter, assigning
      x to each item in turn, and collects
      the results of running the items through the expression on the left
      side. The result list we get back is exactly what the list comprehension
      says—a new list containing x + 10,
      for every x in L.
Technically speaking, list comprehensions are never really
      required because we can always build up a list of expression results
      manually with for loops that append
      results as we go:
>>> res = []
>>> for x in L:
...     res.append(x + 10)
...
>>> res
[31, 32, 33, 34, 35]
In fact, this is exactly what the list comprehension does
      internally.
However, list comprehensions are more concise to write, and
      because this code pattern of building up result lists is so common in
      Python work, they turn out to be very useful in many contexts. Moreover,
      depending on your Python and code, list comprehensions might run much
      faster than manual for loop
      statements (often roughly twice as fast) because their iterations are
      performed at C language speed inside the interpreter, rather than with
      manual Python code. Especially for larger data sets, there is often a
      major performance advantage to using this expression.

Using List Comprehensions on Files
Let’s work through another common application of list comprehensions to
      explore them in more detail. Recall that the file object has a readlines
      method that loads the file into a list of line strings all at
      once:
>>> f = open('script2.py')
>>> lines = f.readlines()
>>> lines
['import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n']
This works, but the lines in the result all include the newline
      character (\n) at the end. For many
      programs, the newline character gets in the way—we have to be careful to
      avoid double-spacing when printing, and so on. It would be nice if we
      could get rid of these newlines all at once, wouldn’t it?
Anytime we start thinking about performing an operation on each
      item in a sequence, we’re in the realm of list comprehensions. For
      example, assuming the variable lines
      is as it was in the prior interaction, the following code does the job
      by running each line in the list through the string rstrip method to remove whitespace on the right side (a line[:−1] slice would work, too, but only if
      we can be sure all lines are properly \n terminated, and this may not always be the
      case for the last line in a file):
>>> lines = [line.rstrip() for line in lines]
>>> lines
['import sys', 'print(sys.path)', 'x = 2', 'print(x ** 32)']
This works as planned. Because list comprehensions are an
      iteration context just like for loop
      statements, though, we don’t even have to open the file ahead of time.
      If we open it inside the expression, the list comprehension will
      automatically use the iteration protocol we met earlier in this chapter.
      That is, it will read one line from the file at a time by calling the
      file’s next handler
      method, run the line through the rstrip expression, and add it to the result
      list. Again, we get what we ask for—the rstrip result of a line, for every line in the
      file:
>>> lines = [line.rstrip() for line in open('script2.py')]
>>> lines
['import sys', 'print(sys.path)', 'x = 2', 'print(x ** 32)']
This expression does a lot implicitly, but we’re getting a lot of
      work for free here—Python scans the file by lines and builds a list of
      operation results automatically. It’s also an efficient way to code this
      operation: because most of this work is done inside the Python
      interpreter, it may be faster than an equivalent for statement, and won’t load a file into
      memory all at once like some other techniques. Again, especially for
      large files, the advantages of list comprehensions can be
      significant.
Besides their efficiency, list comprehensions are also remarkably
      expressive. In our example, we can run any string operation on a file’s
      lines as we iterate. To illustrate, here’s the list comprehension
      equivalent to the file iterator uppercase example we met earlier, along
      with a few other representative operations:
>>> [line.upper() for line in open('script2.py')]
['IMPORT SYS\n', 'PRINT(SYS.PATH)\n', 'X = 2\n', 'PRINT(X ** 32)\n']

>>> [line.rstrip().upper() for line in open('script2.py')]
['IMPORT SYS', 'PRINT(SYS.PATH)', 'X = 2', 'PRINT(X ** 32)']

>>> [line.split() for line in open('script2.py')]
[['import', 'sys'], ['print(sys.path)'], ['x', '=', '2'], ['print(x', '**', '32)']]

>>> [line.replace(' ', '!') for line in open('script2.py')]
['import!sys\n', 'print(sys.path)\n', 'x!=!2\n', 'print(x!**!32)\n']

>>> [('sys' in line, line[:5]) for line in open('script2.py')]
[(True, 'impor'), (True, 'print'), (False, 'x = 2'), (False, 'print')]
Recall that the method chaining in the
      second of these examples works because string methods
      return a new string, to which we can apply another string method. The
      last of these shows how we can also collect
      multiple results, as long as they’re wrapped in a
      collection like a tuple or list.
Note
One fine point here: recall from Chapter 9 that file objects
        close themselves automatically when
        garbage-collected if still open. Hence, these list comprehensions will
        also automatically close the file when their temporary file object is
        garbage-collected after the expression runs. Outside CPython, though,
        you may want to code these to close manually if this is run in a loop,
        to ensure that file resources are freed immediately. See Chapter 9 for more on file
        close calls if you need a refresher on this.


Extended List Comprehension Syntax
In fact, list comprehensions can be even richer in practice, and even
      constitute a sort of iteration mini-language in
      their fullest forms. Let’s take a quick look at their syntax tools
      here.
Filter clauses: if
As one particularly useful extension, the for loop nested in a comprehension
        expression can have an associated if clause
        to filter out of the result items for which the
        test is not true.
For example, suppose we want to repeat the prior section’s
        file-scanning example, but we need to collect only lines that begin
        with the letter p (perhaps the first character on
        each line is an action code of some sort). Adding an if filter clause to our expression does the
        trick:
>>> lines = [line.rstrip() for line in open('script2.py') if line[0] == 'p']
>>> lines
['print(sys.path)', 'print(x ** 32)']
Here, the if clause checks
        each line read from the file to see whether its first character is
        p; if not, the line is omitted from the result
        list. This is a fairly big expression, but it’s easy to understand if
        we translate it to its simple for
        loop statement equivalent. In general, we can always translate a list
        comprehension to a for statement by
        appending as we go and further indenting each successive part:
>>> res = []
>>> for line in open('script2.py'):
...     if line[0] == 'p':
...         res.append(line.rstrip())
...
>>> res
['print(sys.path)', 'print(x ** 32)']
This for statement equivalent
        works, but it takes up four lines instead of one and may run slower.
        In fact, you can squeeze a substantial amount of logic into a list
        comprehension when you need to—the following works like the prior but
        selects only lines that end in a digit (before
        the newline at the end), by filtering with a more sophisticated
        expression on the right side (replace [-1] with
        [-1:] for files with blank lines):
>>> [line.rstrip() for line in open('script2.py') if line.rstrip()[-1].isdigit()]
['x = 2']
As another if filter example,
        the first result in the following gives the total lines in a text
        file, and the second strips whitespace on both ends to omit
        blank lines in the tally in just one line of code (this
        file, not included, contains lines describing typos found in the first
        draft of this book by my proofreader):
>>> fname = r'd:\books\5e\lp5e\draft1typos.txt'
>>> len(open(fname).readlines())                                  # All lines
263
>>> len([line for line in open(fname) if line.strip() != ''])     # Nonblank lines
185

Nested loops: for
List comprehensions can become even more complex if we need them to—for
        instance, they may contain nested loops, coded as
        a series of for clauses. In fact,
        their full syntax allows for any number of for clauses, each of which can have an
        optional associated if
        clause.
For example, the following builds a list of the concatenation of
        x + y for every x in one string and every y in another. It effectively collects all
        the ordered combinations of the characters in two
        strings:
>>> [x + y for x in 'abc' for y in 'lmn']
['al', 'am', 'an', 'bl', 'bm', 'bn', 'cl', 'cm', 'cn']
Again, one way to understand this expression is to convert it to
        statement form by indenting its parts. The following is an equivalent,
        but likely slower, alternative way to achieve the same effect:
>>> res = []
>>> for x in 'abc':
...     for y in 'lmn':
...         res.append(x + y)
...
>>> res
['al', 'am', 'an', 'bl', 'bm', 'bn', 'cl', 'cm', 'cn']
Beyond this complexity level, though, list comprehension
        expressions can often become too compact for their own good. In
        general, they are intended for simple types of iterations; for more
        involved work, a simpler for
        statement structure will probably be easier to understand and modify
        in the future. As usual in programming, if something is difficult for
        you to understand, it’s probably not a good idea.
Because comprehensions are generally best taken in multiple
        doses, we’ll cut this story short here for now. We’ll revisit list
        comprehensions in Chapter 20 in
        the context of functional programming tools, and will define their
        syntax more formally and explore additional examples there. As we’ll
        find, comprehensions turn out to be just as related to
        functions as they are to looping statements.
Note
A blanket qualification for all performance
          claims in this book, list comprehension or other: the
          relative speed of code depends much on the exact code tested and
          Python used, and is prone to change from release to release.
For example, in CPython 2.7 and 3.3 today, list comprehensions
          can still be twice as fast as corresponding for loops on some tests, but just
          marginally quicker on others, and perhaps even slightly slower on
          some when if filter clauses are
          used.
We’ll see how to time code in Chapter 21, and will learn how to
          interpret the file listcomp-speed.txt in the book examples
          package, which times this chapter’s code. For now, keep in mind that
          absolutes in performance benchmarks are as elusive as consensus in
          open source projects!




Other Iteration Contexts
Later in the book, we’ll see that user-defined classes can implement the
    iteration protocol too. Because of this, it’s sometimes important to know
    which built-in tools make use of it—any tool that employs the iteration
    protocol will automatically work on any built-in type or user-defined
    class that provides it.
So far, I’ve been demonstrating iterators in the context of the
    for loop statement, because this part
    of the book is focused on statements. Keep in mind, though, that
    every built-in tool that scans from left to right
    across objects uses the iteration protocol. This includes the for loops we’ve seen:
>>> for line in open('script2.py'):         # Use file iterators
...     print(line.upper(), end='')
...
IMPORT SYS
PRINT(SYS.PATH)
X = 2
PRINT(X ** 32)
But also much more. For instance, list comprehensions and the
    map built-in function use the same
    protocol as their for loop cousin. When
    applied to a file, they both leverage the file object’s iterator
    automatically to scan line by line, fetching an iterator with __iter__ and calling __next__ each time through:
>>> uppers = [line.upper() for line in open('script2.py')]
>>> uppers
['IMPORT SYS\n', 'PRINT(SYS.PATH)\n', 'X = 2\n', 'PRINT(X ** 32)\n']

>>> map(str.upper, open('script2.py'))      # map is itself an iterable in 3.X
<map object at 0x00000000029476D8>
>>> list(map(str.upper, open('script2.py')))
['IMPORT SYS\n', 'PRINT(SYS.PATH)\n', 'X = 2\n', 'PRINT(X ** 32)\n']
We introduced the map call used
    here briefly in the preceding chapter (and in passing in
    Chapter 4); it’s a built-in that
    applies a function call to each item in the passed-in iterable object.
    map is similar to a list comprehension
    but is more limited because it requires a function instead of an arbitrary
    expression. It also returns an iterable object itself
    in Python 3.X, so we must wrap it in a list call to force it to give us all its values at once; more on this
    change later in this chapter. Because map, like the list comprehension, is related to
    both for loops and functions, we’ll
    also explore both again in Chapter 19 and
    Chapter 20.
Many of Python’s other built-ins process iterables, too. For
    example, sorted sorts items in an iterable; zip
    combines items from iterables; enumerate pairs items in an iterable with relative positions; filter selects items for which a function is true; and reduce runs pairs of items in an iterable through a function. All of
    these accept iterables, and zip, enumerate, and filter also return an
    iterable in Python 3.X, like map. Here
    they are in action running the file’s iterator automatically to read line
    by line:
>>> sorted(open('script2.py'))
['import sys\n', 'print(sys.path)\n', 'print(x ** 32)\n', 'x = 2\n']

>>> list(zip(open('script2.py'), open('script2.py')))
[('import sys\n', 'import sys\n'), ('print(sys.path)\n', 'print(sys.path)\n'),
('x = 2\n', 'x = 2\n'), ('print(x ** 32)\n', 'print(x ** 32)\n')]

>>> list(enumerate(open('script2.py')))
[(0, 'import sys\n'), (1, 'print(sys.path)\n'), (2, 'x = 2\n'),
(3, 'print(x ** 32)\n')]

>>> list(filter(bool, open('script2.py')))   # nonempty=True
['import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n']

>>> import functools, operator
>>> functools.reduce(operator.add, open('script2.py'))
'import sys\nprint(sys.path)\nx = 2\nprint(x ** 32)\n'
All of these are iteration tools, but they have unique roles. We met
    zip and enumerate in the prior chapter; filter and reduce are in Chapter 19’s functional programming domain, so
    we’ll defer their details for now; the point to notice here is their use
    of the iteration protocol for files and other iterables.
We first saw the sorted function
    used here at work in Chapter 4,
    and we used it for dictionaries in Chapter 8. sorted is a built-in that employs the iteration
    protocol—it’s like the original list sort method, but it returns the new sorted list
    as a result and runs on any iterable object. Notice that, unlike map and others, sorted returns an actual
    list in Python 3.X instead of an iterable.
Interestingly, the iteration protocol is even more pervasive in
    Python today than the examples so far have demonstrated—essentially
    everything in Python’s built-in toolset that scans an
    object from left to right is defined to use the iteration protocol on the
    subject object. This even includes tools such as the list and tuple built-in functions (which build new objects from iterables), and the string join method (which
    makes a new string by putting a substring between strings contained in an
    iterable). Consequently, these will also work on an open file and
    automatically read one line at a time:
>>> list(open('script2.py'))
['import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n']

>>> tuple(open('script2.py'))
('import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n')

>>> '&&'.join(open('script2.py'))
'import sys\n&&print(sys.path)\n&&x = 2\n&&print(x ** 32)\n'
Even some tools you might not expect fall into this category. For
    example, sequence assignment, the in
    membership test, slice assignment, and the list’s extend method also leverage the iteration protocol to scan, and thus read
    a file by lines automatically:
>>> a, b, c, d = open('script2.py')         # Sequence assignment
>>> a, d
('import sys\n', 'print(x ** 32)\n')

>>> a, *b = open('script2.py')              # 3.X extended form
>>> a, b
('import sys\n', ['print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n'])

>>> 'y = 2\n' in open('script2.py')         # Membership test
False
>>> 'x = 2\n' in open('script2.py')
True

>>> L = [11, 22, 33, 44]                    # Slice assignment
>>> L[1:3] = open('script2.py')
>>> L
[11, 'import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n', 44]

>>> L = [11]
>>> L.extend(open('script2.py'))            # list.extend method
>>> L
[11, 'import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n']
Per Chapter 8 extend iterates automatically, but append does not—use
    the latter (or similar) to add an iterable to a list without iterating,
    with the potential to be iterated across later:
>>> L = [11]
>>> L.append(open('script2.py'))            # list.append does not iterate
>>> L
[11, <_io.TextIOWrapper name='script2.py' mode='r' encoding='cp1252'>]
>>> list(L[1])
['import sys\n', 'print(sys.path)\n', 'x = 2\n', 'print(x ** 32)\n']
Iteration is a broadly supported and powerful model. Earlier, we saw
    that the built-in dict call
    accepts an iterable zip result, too
    (see Chapter 8 and Chapter 13). For that matter, so does the set call, as well as the newer set and
    dictionary comprehension expressions in Python 3.X and 2.7, which we met
    in Chapter 4, Chapter 5, and Chapter 8:
>>> set(open('script2.py'))
{'print(x ** 32)\n', 'import sys\n', 'print(sys.path)\n', 'x = 2\n'}

>>> {line for line in open('script2.py')}
{'print(x ** 32)\n', 'import sys\n', 'print(sys.path)\n', 'x = 2\n'}

>>> {ix: line for ix, line in enumerate(open('script2.py'))}
{0: 'import sys\n', 1: 'print(sys.path)\n', 2: 'x = 2\n', 3: 'print(x ** 32)\n'}
In fact, both set and dictionary comprehensions support the extended syntax of list comprehensions we met
    earlier in this chapter, including if
    tests:
>>> {line for line in open('script2.py') if line[0] == 'p'}
{'print(x ** 32)\n', 'print(sys.path)\n'}
>>> {ix: line for (ix, line) in enumerate(open('script2.py')) if line[0] == 'p'}
{1: 'print(sys.path)\n', 3: 'print(x ** 32)\n'}
Like the list comprehension, both of these scan the file line by
    line and pick out lines that begin with the letter p.
    They also happen to build sets and dictionaries in the end, but we get a
    lot of work “for free” by combining file iteration and comprehension
    syntax. Later in the book we’ll meet a relative of
    comprehensions—generator expressions—that deploys the same syntax and
    works on iterables too, but is also iterable itself:
>>> list(line.upper() for line in open('script2.py'))          # See Chapter 20
['IMPORT SYS\n', 'PRINT(SYS.PATH)\n', 'X = 2\n', 'PRINT(X ** 32)\n']
Other built-in functions support the iteration protocol as well, but
    frankly, some are harder to cast in interesting examples related to files!
    For example, the sum call computes the
    sum of all the numbers in any iterable; the any and all
    built-ins return True if any or all
    items in an iterable are True,
    respectively; and max and min return the largest and smallest item in an
    iterable, respectively. Like reduce,
    all of the tools in the following examples accept any iterable as an
    argument and use the iteration protocol to scan it, but return a single
    result:
>>> sum([3, 2, 4, 1, 5, 0])                  # sum expects numbers only
15
>>> any(['spam', '', 'ni'])
True
>>> all(['spam', '', 'ni'])
False
>>> max([3, 2, 5, 1, 4])
5
>>> min([3, 2, 5, 1, 4])
1
Strictly speaking, the max and
    min functions can be applied to files as well—they automatically use the
    iteration protocol to scan the file and pick out the lines with the
    highest and lowest string values, respectively (though I’ll leave valid
    use cases to your imagination):
>>> max(open('script2.py'))                  # Line with max/min string value
'x = 2\n'
>>> min(open('script2.py'))
'import sys\n'
There’s one last iteration context that’s worth mentioning, although
    it’s mostly a preview: in Chapter 18, we’ll learn that
    a special *arg form can be
    used in function calls to unpack a collection of values into individual
    arguments. As you can probably predict by now, this accepts any iterable,
    too, including files (see Chapter 18 for more details on
    this call syntax; Chapter 20 for a
    section that extends this idea to generator expressions; and Chapter 11 for tips on using the
    following’s 3.X print in 2.X as
    usual):
>>> def f(a, b, c, d): print(a, b, c, d, sep='&')
...
>>> f(1, 2, 3, 4)
1&2&3&4
>>> f(*[1, 2, 3, 4])                   # Unpacks into arguments
1&2&3&4
>>>
>>> f(*open('script2.py'))             # Iterates by lines too!
import sys
&print(sys.path)
&x = 2
&print(x ** 32)
In fact, because this argument-unpacking syntax in calls accepts
    iterables, it’s also possible to use the zip built-in to
    unzip zipped tuples, by making prior or nested
    zip results arguments for another
    zip call (warning: you probably
    shouldn’t read the following example if you plan to operate heavy
    machinery anytime soon!):
>>> X = (1, 2)
>>> Y = (3, 4)
>>>
>>> list(zip(X, Y))                    # Zip tuples: returns an iterable
[(1, 3), (2, 4)]
>>>
>>> A, B = zip(*zip(X, Y))             # Unzip a zip!
>>> A
(1, 2)
>>> B
(3, 4)
Still other tools in Python, such as the range built-in and
    dictionary view objects, return iterables instead of
    processing them. To see how these have been absorbed into the iteration
    protocol in Python 3.X as well, we need to move on to the next section.

New Iterables in Python 3.X
One of the fundamental distinctions of Python 3.X is its stronger
    emphasis on iterators than 2.X. This, along with its Unicode model and
    mandated new-style classes, is one of 3.X’s most sweeping changes.
Specifically, in addition to the iterators associated with built-in
    types such as files and dictionaries, the dictionary methods keys, values, and items return iterable objects in Python 3.X, as
    do the built-in functions range,
    map, zip, and filter. As shown in the prior section, the last
    three of these functions both return iterables and process them. All of
    these tools produce results on demand in Python 3.X, instead of
    constructing result lists as they do in 2.X.
Impacts on 2.X Code: Pros and Cons
Although this saves memory space, it can impact your coding styles
      in some contexts. In various places in this book so far, for example,
      we’ve had to wrap up some function and method call results in a list(...) call in
      order to force them to produce all their results at once for
      display:
>>> zip('abc', 'xyz')                  # An iterable in Python 3.X (a list in 2.X)
<zip object at 0x000000000294C308>

>>> list(zip('abc', 'xyz'))            # Force list of results in 3.X to display
[('a', 'x'), ('b', 'y'), ('c', 'z')]
A similar conversion is required if we wish to apply list
      or sequence operations to most
      iterables that generate items on demand—to index, slice, or concatenate
      the iterable itself, for example. The list results for these tools in
      2.X support such operations directly:
>>> Z = zip((1, 2), (3, 4))            # Unlike 2.X lists, cannot index, etc.
>>> Z[0]
TypeError: 'zip' object is not subscriptable
As we’ll see in more detail in Chapter 20, conversion to lists may
      also be more subtly required to support multiple
      iterations for newly iterable tools that support just one
      scan such as map and zip—unlike their 2.X list forms, their values
      in 3.X are exhausted after a single pass:
>>> M = map(lambda x: 2 ** x, range(3))
>>> for i in M: print(i)
...
1
2
4
>>> for i in M: print(i)               # Unlike 2.X lists, one pass only (zip too)
...
>>>
Such conversion isn’t required in 2.X, because functions like
      zip return lists of results. In 3.X,
      though, they return iterable objects, producing results on demand. This
      may break 2.X code, and means extra typing is required to display the
      results at the interactive prompt (and possibly in some other contexts),
      but it’s an asset in larger programs—delayed evaluation like this
      conserves memory and avoids pauses while large result lists are
      computed. Let’s take a quick look at some of the new 3.X iterables in
      action.

The range Iterable
We studied the range built-in’s
      basic behavior in the preceding chapter. In 3.X, it returns an
      iterable that generates numbers in the range on demand, instead of
      building the result list in memory. This subsumes the older 2.X xrange (see the upcoming version skew note),
      and you must use list(range(...)) to
      force an actual range list if one is needed (e.g., to display
      results):
C:\code> c:\python33\python
>>> R = range(10)                # range returns an iterable, not a list
>>> R
range(0, 10)

>>> I = iter(R)                  # Make an iterator from the range iterable
>>> next(I)                      # Advance to next result
0                                # What happens in for loops, comprehensions, etc.
>>> next(I)
1
>>> next(I)
2

>>> list(range(10))              # To force a list if required
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Unlike the list returned by this call in 2.X, range objects in 3.X support only iteration,
      indexing, and the len function. They
      do not support any other sequence operations (use list(...) if you require more list tools):
>>> len(R)                       # range also does len and indexing, but no others
10
>>> R[0]
0
>>> R[-1]
9

>>> next(I)                      # Continue taking from iterator, where left off
3
>>> I.__next__()                 # .next() becomes .__next__(), but use new next()
4
Note
Version skew note: As first mentioned in
        the preceding chapter, Python 2.X also has a built-in called xrange, which is like range but produces items on demand instead
        of building a list of results in memory all at once. Since this is
        exactly what the new iterator-based range does in Python 3.X, xrange is no longer available in 3.X—it has
        been subsumed. You may still both see and use it in 2.X code, though,
        especially since range builds
        result lists there and so is not as efficient in its memory
        usage.
As noted in the prior chapter, the file.xreadlines() method used to minimize
        memory use in 2.X has been dropped in Python 3.X for similar reasons,
        in favor of file iterators.


The map, zip, and filter Iterables
Like range, the map, zip,
      and filter built-ins also become iterables in 3.X to conserve space, rather
      than producing a result list all at once in memory. All three not only
      process iterables, as in 2.X, but also return iterable results in 3.X.
      Unlike range, though, they are their
      own iterators—after you step through their results once, they are
      exhausted. In other words, you can’t have multiple iterators on their
      results that maintain different positions in those results.
Here is the case for the map
      built-in we met in the prior chapter. As with other iterables, you can
      force a list with list(...) if you
      really need one, but the default behavior can save substantial space in
      memory for large result sets:
>>> M = map(abs, (-1, 0, 1))            # map returns an iterable, not a list
>>> M
<map object at 0x00000000029B75C0>
>>> next(M)                             # Use iterator manually: exhausts results
1                                       # These do not support len() or indexing
>>> next(M)
0
>>> next(M)
1
>>> next(M)
StopIteration

>>> for x in M: print(x)                # map iterator is now empty: one pass only
...

>>> M = map(abs, (-1, 0, 1))            # Make a new iterable/iterator to scan again
>>> for x in M: print(x)                # Iteration contexts auto call next()
...
1
0
1
>>> list(map(abs, (-1, 0, 1)))          # Can force a real list if needed
[1, 0, 1]
The zip built-in, introduced in the prior chapter, is an iteration context
      itself, but also returns an iterable with an iterator that works the
      same way:
>>> Z = zip((1, 2, 3), (10, 20, 30))    # zip is the same: a one-pass iterator
>>> Z
<zip object at 0x0000000002951108>

>>> list(Z)
[(1, 10), (2, 20), (3, 30)]

>>> for pair in Z: print(pair)          # Exhausted after one pass
...

>>> Z = zip((1, 2, 3), (10, 20, 30))
>>> for pair in Z: print(pair)          # Iterator used automatically or manually
...
(1, 10)
(2, 20)
(3, 30)

>>> Z = zip((1, 2, 3), (10, 20, 30))    # Manual iteration (iter() not needed)
>>> next(Z)
(1, 10)
>>> next(Z)
(2, 20)
The filter built-in, which we met briefly in Chapter 12 and will study in the next part
      of this book, is also analogous. It returns items in an iterable for
      which a passed-in function returns True (as we’ve learned, in Python True includes nonempty objects, and bool returns an object’s truth value):
>>> filter(bool, ['spam', '', 'ni'])
<filter object at 0x00000000029B7B70>
>>> list(filter(bool, ['spam', '', 'ni']))
['spam', 'ni']
Like most of the tools discussed in this section, filter both accepts an
      iterable to process and returns an iterable to
      generate results in 3.X. It can also generally be emulated by extended
      list comprehension syntax that automatically tests truth values:
>>> [x for x in ['spam', '', 'ni'] if bool(x)]
['spam', 'ni']
>>> [x for x in ['spam', '', 'ni'] if x]
['spam', 'ni']

Multiple Versus Single Pass Iterators
It’s important to see how the range object
      differs from the built-ins described in this section—it supports
      len and indexing, it is not its own
      iterator (you make one with iter when
      iterating manually), and it supports multiple iterators
      over its result that remember their positions independently:
>>> R = range(3)                           # range allows multiple iterators
>>> next(R)
TypeError: range object is not an iterator

>>> I1 = iter(R)
>>> next(I1)
0
>>> next(I1)
1
>>> I2 = iter(R)                           # Two iterators on one range
>>> next(I2)
0
>>> next(I1)                               # I1 is at a different spot than I2
2
By contrast, in 3.X zip,
      map, and filter do not support multiple active
      iterators on the same result; because of this the iter call is optional for stepping through
      such objects’ results—their iter is
      themselves (in 2.X these built-ins return multiple-scan lists so the
      following does not apply):
>>> Z = zip((1, 2, 3), (10, 11, 12))
>>> I1 = iter(Z)
>>> I2 = iter(Z)                           # Two iterators on one zip
>>> next(I1)
(1, 10)
>>> next(I1)
(2, 11)
>>> next(I2)                               # (3.X) I2 is at same spot as I1!
(3, 12)

>>> M = map(abs, (-1, 0, 1))               # Ditto for map (and filter)
>>> I1 = iter(M); I2 = iter(M)
>>> print(next(I1), next(I1), next(I1))
1 0 1
>>> next(I2)                               # (3.X) Single scan is exhausted!
StopIteration

>>> R = range(3)                           # But range allows many iterators
>>> I1, I2 = iter(R), iter(R)
>>> [next(I1), next(I1), next(I1)]
[0 1 2]
>>> next(I2)                               # Multiple active scans, like 2.X lists
0
When we code our own iterable objects with classes later in the
      book (Chapter 30), we’ll see that
      multiple iterators are usually supported by returning new objects for
      the iter call; a single iterator
      generally means an object returns itself. In Chapter 20, we’ll also find that generator functions and
      expressions behave like map and zip
      instead of range in this regard,
      supporting just a single active iteration scan. In that chapter, we’ll
      see some subtle implications of one-shot iterators in loops that attempt
      to scan multiple times—code that formerly treated these as lists may
      fail without manual list conversions.

Dictionary View Iterables
Finally, as we saw briefly in Chapter 8,
      in Python 3.X the dictionary keys,
      values, and items methods return iterable
      view objects that generate result items one at a
      time, instead of producing result lists all at once in memory. Views are
      also available in 2.7 as an option, but under special method names to
      avoid impacting existing code. View items maintain the same physical
      ordering as that of the dictionary and reflect changes made to the
      underlying dictionary. Now that we know more about iterables here’s the
      rest of this story—in Python 3.3 (your key order may vary):
>>> D = dict(a=1, b=2, c=3)
>>> D
{'a': 1, 'b': 2, 'c': 3}

>>> K = D.keys()                              # A view object in 3.X, not a list
>>> K
dict_keys(['a', 'b', 'c'])

>>> next(K)                                   # Views are not iterators themselves
TypeError: dict_keys object is not an iterator

>>> I = iter(K)                               # View iterables have an iterator,
>>> next(I)                                   # which can be used manually,
'a'                                           # but does not support len(), index
>>> next(I)
'b'

>>> for k in D.keys(): print(k, end=' ')      # All iteration contexts use auto
...
a b c
As for all iterables that produce values on request, you can
      always force a 3.X dictionary view to build a real list by passing it to
      the list built-in.
      However, this usually isn’t required except to display results
      interactively or to apply list operations like indexing:
>>> K = D.keys()
>>> list(K)                              # Can still force a real list if needed
['a', 'b', 'c']

>>> V = D.values()                       # Ditto for values() and items() views
>>> V
dict_values([1, 2, 3])
>>> list(V)                              # Need list() to display or index as list
[1, 2, 3]

>>> V[0]
TypeError: 'dict_values' object does not support indexing
>>> list(V)[0]
1

>>> list(D.items())
[('a', 1), ('b', 2), ('c', 3)]

>>> for (k, v) in D.items(): print(k, v, end=' ')
...
a 1 b 2 c 3
In addition, 3.X dictionaries still are iterables themselves, with
      an iterator that returns successive keys. Thus, it’s not often necessary
      to call keys directly in this
      context:
>>> D                                    # Dictionaries still produce an iterator
{'a': 1, 'b': 2, 'c': 3}                 # Returns next key on each iteration
>>> I = iter(D)
>>> next(I)
'a'
>>> next(I)
'b'

>>> for key in D: print(key, end=' ')    # Still no need to call keys() to iterate
...                                      # But keys is an iterable in 3.X too!
a b c
Finally, remember again that because keys no longer returns a list, the traditional
      coding pattern for scanning a dictionary by sorted keys won’t work in
      3.X. Instead, convert keys views first with a list call, or use the sorted call on either a keys view or the
      dictionary itself, as follows. We saw this in Chapter 8, but it’s important enough to 2.X
      programmers making the switch to demonstrate again:
>>> D
{'a': 1, 'b': 2, 'c': 3}
>>> for k in sorted(D.keys()): print(k, D[k], end=' ')
...
a 1 b 2 c 3
>>> for k in sorted(D): print(k, D[k], end=' ')    # "Best practice" key sorting
...
a 1 b 2 c 3


Other Iteration Topics
As mentioned in this chapter’s introduction, there is more coverage of both list
    comprehensions and iterables in Chapter 20, in conjunction with
    functions, and again in Chapter 30 when
    we study classes. As you’ll see later:
	User-defined functions can be turned into iterable generator functions,
        with yield
        statements.

	List comprehensions morph into iterable generator
        expressions when coded in parentheses.

	User-defined classes are made iterable with __iter__ or
        __getitem__ operator
        overloading.


In particular, user-defined iterables defined with classes allow
    arbitrary objects and operations to be used in any of the iteration
    contexts we’ve met in this chapter. By supporting just a single
    operation—iteration—objects may be used in a wide
    variety of contexts and tools.

Chapter Summary
In this chapter, we explored concepts related to looping in Python.
    We took our first substantial look at the iteration
    protocol in Python—a way for nonsequence objects to take part
    in iteration loops—and at list comprehensions. As we
    saw, a list comprehension is an expression similar to a for loop that applies another expression to all
    the items in any iterable object. Along the way, we also saw other
    built-in iteration tools at work and studied recent iteration additions in
    Python 3.X.
This wraps up our tour of specific procedural statements and related
    tools. The next chapter closes out this part of the book by discussing
    documentation options for Python code. Though a bit of a diversion from
    the more detailed aspects of coding, documentation is also part of the
    general syntax model, and it’s an important component of well-written
    programs. In the next chapter, we’ll also dig into a set of exercises for
    this part of the book before we turn our attention to larger structures
    such as functions. As usual, though, let’s first exercise what we’ve
    learned here with a quiz.

Test Your Knowledge: Quiz
	How are for loops
        and iterable objects related?

	How are for loops and list
        comprehensions related?

	Name four iteration contexts in the Python language.

	What is the best way to read line by line from a text file
        today?

	What sort of weapons would you expect to see employed by the
        Spanish Inquisition?



Test Your Knowledge: Answers
	The for loop uses the
        iteration protocol to step through items in the
        iterable object across which it is iterating. It first fetches an
        iterator from the iterable by passing the object to iter, and then calls this iterator object’s
        __next__ method in 3.X on each
        iteration and catches the StopIteration exception to determine when to
        stop looping. The method is named next in 2.X, and is run by the next built-in function in both 3.x and 2.X.
        Any object that supports this model works in a for loop and in all other iteration
        contexts. For some objects that are their own iterator, the initial
        iter call is extraneous but
        harmless.

	Both are iteration tools and contexts. List comprehensions are a
        concise and often efficient way to perform a common for loop task: collecting the results of
        applying an expression to all items in an iterable object. It’s always
        possible to translate a list comprehension to a for loop, and part of the list comprehension
        expression looks like the header of a for loop syntactically.

	Iteration contexts in Python include the for loop; list comprehensions; the map built-in function; the in membership test expression; and the
        built-in functions sorted, sum, any,
        and all. This category also
        includes the list and tuple built-ins, string join methods, and sequence assignments, all
        of which use the iteration protocol (see answer #1) to step across
        iterable objects one item at a time.

	The best way to read lines from a text file today is to not read
        it explicitly at all: instead, open the file within an iteration
        context tool such as a for loop or
        list comprehension, and let the iteration tool automatically scan one
        line at a time by running the file’s next handler method on each iteration. This
        approach is generally best in terms of coding simplicity, memory
        space, and possibly execution speed requirements.

	I’ll accept any of the following as correct answers: fear,
        intimidation, nice red uniforms, a comfy chair, and soft
        pillows.



1 Spoiler alert: the file iterator still appears to be slightly
          faster than readlines and at
          least 30% faster than the while
          loop in both 2.7 and 3.3 on tests I’ve run with this chapter’s code
          on a 1,000-line file (while is
          twice as slow on 2.7). The usual benchmarking caveats apply—this is
          true only for my Pythons, my computer, and my test file, and Python
          3.X complicates such analyses by rewriting I/O libraries to support
          Unicode text and be less system-dependent. Chapter 21 covers tools and techniques
          you can use to time these loop statements on your own.
2 Technically speaking, the for loop calls the internal equivalent
            of I.__next__, instead of the
            next(I) used here, though there
            is rarely any difference between the two. Your manual iterations
            can generally use either call scheme.








Chapter 15. The Documentation Interlude
This part of the book concludes with a look at techniques and tools
  used for documenting Python code. Although Python code is designed to be
  readable, a few well-placed human-accessible comments can do much to help
  others understand the workings of your programs. As we’ll see, Python
  includes both syntax and tools to make documentation easier. In particular,
  the PyDoc system covered here can render a module’s
  internal documentation as either plain text in a shell, or HTML in a web
  browser.
Although this is something of a tools-related concept, this topic is
  presented here partly because it involves Python’s syntax model, and partly
  as a resource for readers struggling to understand Python’s toolset. For the
  latter purpose, I’ll also expand here on documentation pointers first given
  in Chapter 4. As usual, because
  this chapter closes out its part, it also ends with some warnings about
  common pitfalls and a set of exercises for this part of the text, in
  addition to its chapter quiz.
Python Documentation Sources
By this point in the book, you’re probably starting to realize that Python comes
    with an amazing amount of prebuilt functionality—built-in functions and
    exceptions, predefined object attributes and methods, standard library
    modules, and more. And we’ve really only scratched the surface of each of
    these categories.
One of the first questions that bewildered beginners often ask is:
    how do I find information on all the built-in tools? This section provides
    hints on the various documentation sources available in Python. It also
    presents documentation strings (docstrings) and the
    PyDoc system that makes use of them. These topics are
    somewhat peripheral to the core language itself, but they become essential
    knowledge as soon as your code reaches the level of the examples and
    exercises in this part of the book.
As summarized in Table 15-1, there are a variety of
    places to look for information on Python, with generally increasing
    verbosity. Because documentation is such a crucial tool in practical
    programming, we’ll explore each of these categories in the sections that
    follow.
Table 15-1. Python documentation sources	Form	Role
	# comments
	In-file documentation

	The dir function
	Lists of attributes available in objects

	Docstrings: __doc__
	In-file documentation attached to objects

	PyDoc: the help function
	Interactive help for objects

	PyDoc: HTML
            reports
	Module documentation in a browser

	Sphinx third-party
            tool
	Richer documentation for larger projects

	The standard manual
            set
	Official language and library descriptions

	Web
            resources
	Online tutorials, examples,
            and so on

	Published
            books
	Commercially polished
            reference texts


# Comments
As we’ve learned, hash-mark comments are the most basic way to document your
      code. Python simply ignores all the text following a # (as long as it’s not inside a string
      literal), so you can follow this character with any words and
      descriptions meaningful to programmers. Such comments are accessible
      only in your source files, though; to code comments that are more widely
      available, you’ll need to use docstrings.
In fact, current best practice generally dictates that docstrings
      are best for larger functional documentation (e.g., “my file does
      this”), and # comments are best
      limited to smaller code documentation (e.g., “this strange expression
      does that”) and are best limited in scope to a statement or small group
      of statements within a script or function. More on docstrings in a
      moment; first, let’s see how to explore objects.

The dir Function
As we’ve also seen, the built-in dir function is an easy way to grab a list of
      all the attributes available inside an object (i.e., its methods and
      simpler data items). It can be called with no arguments to list
      variables in the caller’s scope. More usefully, it can also be called on
      any object that has attributes, including imported modules and built-in
      types, as well as the name of a data type. For example, to find out
      what’s available in a module such as the standard
      library’s sys, import it and pass it
      to dir:
>>> import sys
>>> dir(sys)
['__displayhook__', ...more names omitted..., 'winver']
These results are from Python 3.3, and I’m omitting most returned
      names because they vary slightly elsewhere; run this on your own for a
      better look. In fact, there are currently 78 attributes in sys, though we generally care only about the
      69 that do not have leading double underscores (two usually means
      interpreter-related) or the 62 that have no leading underscore at all
      (one underscore usually means informal implementation private)—a prime
      example of the preceding chapter’s list comprehension at work:
>>> len(dir(sys))                                             # Number names in sys
78
>>> len([x for x in dir(sys) if not x.startswith('__')])      # Non __X names only
69
>>> len([x for x in dir(sys) if not x[0] == '_'])             # Non underscore names
62
To find out what attributes are provided in objects of
      built-in types, run dir on a literal or an existing instance of
      the desired type. For example, to see list and string attributes, you
      can pass empty objects:
>>> dir([])
['__add__', '__class__', '__contains__', ...more..., 'append', 'clear', 'copy',
'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

>>> dir('')
['__add__', '__class__', '__contains__', ...more..., 'split', 'splitlines',
'startswith','strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']
The dir results for any
      built-in type include a set of attributes that are related to the
      implementation of that type (technically, operator overloading methods);
      much as in modules they all begin and end with double underscores to
      make them distinct, and you can safely ignore them at this point in the
      book (they are used for OOP). For instance, there are 45 list
      attributes, but only 11 that correspond to named methods:
>>> len(dir([])), len([x for x in dir([]) if not x.startswith('__')])
(45, 11)
>>> len(dir('')), len([x for x in dir('') if not x.startswith('__')])
(76, 44)
In fact, to filter out double-underscored items that are not of
      common program interest, run the same list comprehensions but print the
      attributes. For instance, here are the named attributes in lists and
      dictionaries in Python 3.3:
>>> [a for a in dir(list) if not a.startswith('__')]
['append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort']

>>> [a for a in dir(dict) if not a.startswith('__')]
['clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem',
'setdefault', 'update', 'values']
This may seem like a lot to type to get an attribute list, but
      beginning in the next chapter we’ll learn how to wrap such code in an
      importable and reusable function so we don’t need
      to type it again:
>>> def dir1(x): return [a for a in dir(x) if not a.startswith('__')]  # See Part IV
...
>>> dir1(tuple)
['count', 'index']
Notice that you can list built-in type attributes by passing a
      type name to dir instead of a
      literal:
>>> dir(str) == dir('')           # Same result, type name or literal
True
>>> dir(list) == dir([])
True
This works because names like str and list that were once type converter functions
      are actually names of types in Python today; calling one of these
      invokes its constructor to generate an instance of that type. Part VI will have more to say about constructors
      and operator overloading methods when we discuss classes.
The dir function serves as a
      sort of memory-jogger—it provides a list of attribute names, but it does
      not tell you anything about what those names mean. For such extra
      information, we need to move on to the next documentation source.
Note
Some IDEs for Python work, including IDLE, have features that
        list attributes on objects automatically within their GUIs, and can be
        viewed as alternatives to dir.
        IDLE, for example, will list an object’s attributes in a pop-up
        selection window when you type a period after the object’s name and
        pause or press Tab. This is mostly meant as an autocomplete feature,
        though, not an information source. Chapter 3 has more on IDLE.


Docstrings: __doc__
Besides # comments, Python supports documentation that is automatically
      attached to objects and retained at runtime for inspection.
      Syntactically, such comments are coded as strings at the tops of module
      files and function and class statements, before any other executable
      code (# comments, including
      Unix-style #! lines are OK before
      them). Python automatically stuffs the text of these strings, known
      informally as docstrings, into the __doc__ attributes of the corresponding
      objects.
User-defined docstrings
For example, consider the following file, docstrings.py. Its docstrings appear at the
        beginning of the file and at the start of a function and a class
        within it. Here, I’ve used triple-quoted block strings for multiline
        comments in the file and the function, but any sort of string will
        work; single- or double-quoted one-liners like those in the class are
        fine, but don’t allow multiple-line text. We haven’t studied the
        def or class statements in detail yet, so ignore
        everything about them here except the strings at their tops:
"""
Module documentation
Words Go Here
"""

spam = 40

def square(x):
    """
    function documentation
    can we have your liver then?
    """
    return x ** 2          # square

class Employee:
    "class documentation"
    pass

print(square(4))
print(square.__doc__)
The whole point of this documentation protocol is that your
        comments are retained for inspection in __doc__ attributes after the file is
        imported. Thus, to display the docstrings associated with the module
        and its objects, we simply import the file and print their __doc__ attributes, where Python has saved
        the text:
>>> import docstrings
16

    function documentation
    can we have your liver then?

>>> print(docstrings.__doc__)

Module documentation
Words Go Here

>>> print(docstrings.square.__doc__)

    function documentation
    can we have your liver then?

>>> print(docstrings.Employee.__doc__)
    class documentation
Note that you will generally want to use print to print docstrings; otherwise, you’ll
        get a single string with embedded \n newline characters.
You can also attach docstrings to methods
        of classes (covered in Part VI), but
        because these are just def
        statements nested in class
        statements, they’re not a special case. To fetch the docstring of a
        method function inside a class within a module, you would simply
        extend the path to go through the class: module.class.method.__doc__ (we’ll see an
        example of method docstrings in Chapter 29).

Docstring standards and priorities
As mentioned earlier, common practice today recommends hash-mark
        comments for only smaller-scale documentation about an expression,
        statement, or small group of statements. Docstrings are better used
        for higher-level and broader functional documentation for a file,
        function, or class, and have become an expected part of Python
        software. Beyond these guidelines, though, you still must decide what
        to write.
Although some companies have internal standards, there is no
        broad standard about what should go into the text of a docstring.
        There have been various markup language and template proposals (e.g.,
        HTML or XML), but they don’t seem to have caught on in the Python
        world. Frankly, convincing Python programmers to document their code
        using handcoded HTML is probably not going to happen in our lifetimes.
        That may be too much to ask, but this doesn’t apply to documenting
        code in general.
Documentation tends to have a lower priority among some
        programmers than it should. Too often, if you get any comments in a
        file at all, you count yourself lucky (and even better if it’s
        accurate and up to date). I strongly encourage you to document your
        code liberally—it really is an important part of well-written
        programs. When you do, though, there is presently no standard on the
        structure of docstrings; if you want to use them, anything goes today.
        Just as for writing code itself, it’s up to you to create
        documentation content and keep it up to date, but common sense is
        probably your best ally on this task too.

Built-in docstrings
As it turns out, built-in modules and objects in Python use
        similar techniques to attach documentation above and beyond the
        attribute lists returned by dir.
        For example, to see an actual human-readable description of a built-in
        module, import it and print its __doc__ string:
>>> import sys
>>> print(sys.__doc__)
This module provides access to some objects used or maintained by the
interpreter and to functions that interact strongly with the interpreter.

Dynamic objects:

argv -- command line arguments; argv[0] is the script pathname if known
path -- module search path; path[0] is the script directory, else ''
modules -- dictionary of loaded modules
...more text omitted...
Functions, classes, and methods within built-in modules have
        attached descriptions in their __doc__ attributes as well:
>>> print(sys.getrefcount.__doc__)
getrefcount(object) -> integer

Return the reference count of object.  The count returned is generally
one higher than you might expect, because it includes the (temporary)
reference as an argument to getrefcount().
You can also read about built-in functions via their
        docstrings:
>>> print(int.__doc__)
int(x[, base]) -> integer

Convert a string or number to an integer, if possible.  A floating
point argument will be truncated towards zero (this does not include a
...more text omitted...

>>> print(map.__doc__)
map(func, *iterables) --> map object

Make an iterator that computes the function using arguments from
each of the iterables.  Stops when the shortest iterable is exhausted.
You can get a wealth of information about built-in tools by
        inspecting their docstrings this way, but you don’t have to—the
        help function, the topic of the
        next section, does this automatically for you.


PyDoc: The help Function
The docstring technique proved to be so useful that Python eventually added a tool
      that makes docstrings even easier to display. The standard
      PyDoc tool is Python code that knows how to extract
      docstrings and associated structural information and format them into
      nicely arranged reports of various types. Additional tools for
      extracting and formatting docstrings are available in the open source
      domain (including tools that may support structured text—search the Web
      for pointers), but Python ships with PyDoc in its standard
      library.
There are a variety of ways to launch PyDoc, including
      command-line script options that can save the resulting documentation
      for later viewing (described both ahead and in the Python library
      manual). Perhaps the two most prominent PyDoc interfaces are the
      built-in help function
      and the PyDoc GUI- and web-based HTML report interfaces. We met the
      help function briefly in Chapter 4; it invokes PyDoc to
      generate a simple textual report for any Python object. In this mode,
      help text looks much like a “manpage” on Unix-like systems, and in fact
      pages the same way as a Unix “more” outside GUIs like IDLE when there
      are multiple pages of text—press the space bar to move to the next page,
      Enter to go to the next line, and Q to quit:
>>> import sys
>>> help(sys.getrefcount)
Help on built-in function getrefcount in module sys:

getrefcount(...)
    getrefcount(object) -> integer

    Return the reference count of object.  The count returned is generally
    one higher than you might expect, because it includes the (temporary)
    reference as an argument to getrefcount().
Note that you do not have to import sys in order to call help, but you do have to import sys to get help on sys this way; it expects an object reference
      to be passed in. In Pythons 3.3 and 2.7, you can get help for a module
      you have not imported by quoting the module’s name as a string—for
      example, help('re'), help('email.message')—but support for this and
      other modes may differ across Python versions.
For larger objects such as modules and classes, the help display is broken down into multiple
      sections, the preambles of which are shown here. Run this interactively
      to see the full report (I’m running this on 3.3):
>>> help(sys)
Help on built-in module sys:

NAME
    sys

MODULE REFERENCE
    http://docs.python.org/3.3/library/sys
    ...more omitted...

DESCRIPTION
    This module provides access to some objects used or maintained by the
    interpreter and to functions that interact strongly with the interpreter.
    ...more omitted...

FUNCTIONS
    __displayhook__ = displayhook(...)
        displayhook(object) -> None
    ...more omitted...

DATA
    __stderr__ = <_io.TextIOWrapper name='<stderr>' mode='w' encoding='cp4...
    __stdin__ = <_io.TextIOWrapper name='<stdin>' mode='r' encoding='cp437...
    __stdout__ = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='cp4...
    ...more omitted...

FILE
    (built-in)
Some of the information in this report is docstrings, and some of
      it (e.g., function call patterns) is structural information that PyDoc
      gleans automatically by inspecting objects’ internals, when
      available.
Besides modules, you can also use help on built-in functions, methods, and
      types. Usage varies slightly across Python versions, but to get help for
      a built-in type, try either the type name (e.g.,
      dict for dictionary, str for string, list for list); an actual object of the type
      (e.g., {}, '', []); or
      a method of an actual object or type name (e.g., str.join, 's'.join).1 You’ll get a large display that describes all the methods
      available for that type or the usage of that method:
>>> help(dict)
Help on class dict in module builtins:

class dict(object)
 |  dict() -> new empty dictionary.
 |  dict(mapping) -> new dictionary initialized from a mapping object's
 ...more omitted...

>>> help(str.replace)
Help on method_descriptor:

replace(...)
    S.replace (old, new[, count]) -> str

    Return a copy of S with all occurrences of substring
    ...more omitted...

>>> help(''.replace)
...similar to prior result...

>>> help(ord)
Help on built-in function ord in module builtins:

ord(...)
    ord(c) -> integer

    Return the integer ordinal of a one-character string.
Finally, the help function
      works just as well on your modules as it does on built-ins. Here it is
      reporting on the docstrings.py file
      we coded earlier. Again, some of this is docstrings, and some is
      information automatically extracted by inspecting objects’ structures:
>>> import docstrings
>>> help(docstrings.square)
Help on function square in module docstrings:

square(x)
    function documentation
    can we have your liver then?

>>> help(docstrings.Employee)
Help on class Employee in module docstrings:

class Employee(builtins.object)
 |  class documentation
 |
 ...more omitted...

>>> help(docstrings)
Help on module docstrings:

NAME
    docstrings

DESCRIPTION
    Module documentation
    Words Go Here

CLASSES
    builtins.object
        Employee

    class Employee(builtins.object)
     |  class documentation
     |
     ...more omitted...

FUNCTIONS
    square(x)
        function documentation
        can we have your liver then?

DATA
    spam = 40

FILE
    c:\code\docstrings.py

PyDoc: HTML Reports
The text displays of the help
      function are adequate in many contexts, especially at the
      interactive prompt. To readers who’ve grown accustomed to richer
      presentation mediums, though, they may seem a bit primitive. This
      section presents the HTML-based flavor of PyDoc, which renders module
      documentation more graphically for viewing in a web browser, and can
      even open one automatically for you. The way this is run has changed as
      of Python 3.3:
	Prior to 3.3, Python ships with a simple
          GUI desktop client for submitting search requests. This client
          launches a web browser to view documentation produced by an
          automatically started local server.

	As of 3.3, the former GUI client is
          replaced by an all-browser interface scheme, which combines both
          search and display in a web page that communicates with an
          automatically started local server.

	Python 3.2 straddles this fence,
          supporting both the original GUI client scheme, as well as the newer
          all-browser mode mandated as of 3.3.


Because this book’s audience is both users of the
      latest-and-greatest as well as the masses still using older
      tried-and-true Pythons, we’ll explore both schemes here. As we do, keep
      in mind that the way these schemes differ pertains only to the top level
      of their user interfaces. Their documentation displays are nearly
      identical, and under either regime PyDoc can also be used to generate
      both text in a console, and HTML files for later viewing in whatever
      manner you wish.
Python 3.2 and later: PyDoc’s all-browser mode
As of Python 3.3 the original GUI client mode of PyDoc, present
        in 2.X and earlier 3.X releases, is no longer available. This mode is
        present through Python 3.2 with the “Module Docs” Start button entry
        on Windows 7 and earlier, and via the pydoc
        -g command line. This GUI mode was reportedly deprecated in
        3.2, though you had to look closely to notice—it works fine and
        without warning on 3.2 on my machine.
In 3.3, though, this mode goes away altogether, and is replaced
        with a pydoc -b command line, which
        instead spawns both a locally running documentation server, as well as
        a web browser that functions as both search engine client and page
        display. The browser is initially opened on a module index page with
        enhanced functionality. There are additional ways to use PyDoc (e.g.,
        to save the HTML page to a file for later viewing, as described
        ahead), so this is a relatively minor operational change.
To launch the newer browser-only mode of PyDoc in Python 3.2 and
        later, a command line like any of the following suffice: they all use
        the –m Python command-line argument
        for convenience to locate PyDoc’s module file on your module import
        search path. The first assumes Python is on your system path; the
        second employs Python 3.3’s new Windows launcher; and the third gives
        the full path to your Python if the other two schemes won’t work. See
        Appendix A for more on –m, and Appendix B for coverage of the
        Windows launcher.
c:\code> python -m pydoc -b
Server ready at http://localhost:62135/
Server commands: [b]rowser, [q]uit
server> q
Server stopped

c:\code> py −3 -m pydoc -b
Server ready at http://localhost:62144/
Server commands: [b]rowser, [q]uit
server> q
Server stopped

c:\code> C:\python33\python -m pydoc -b
Server ready at http://localhost:62153/
Server commands: [b]rowser, [q]uit
server> q
Server stopped
However you run this command line, the effect is to start PyDoc
        as a locally running web server on a dedicated
        (but by default arbitrary unused) port, and pop up a web browser to
        act as client, displaying a page giving links to
        documentation for all the modules importable on your module search
        path (including the directory where PyDoc is launched). PyDoc’s
        top-level web page interface is captured in Figure 15-1.
Figure 15-1. The top-level index start page of the all-browser PyDoc HTML
          interface in Python 3.2 and later, which as of 3.3 replaces the
          former GUI client in earlier Pythons.

Besides the module index, PyDoc’s web page also includes input
        fields at the top to request a specific module’s documentation page
        (Get) and search for related entries
        (Search), which stand in for the prior
        interface’s GUI client fields. You can also click on this page’s links
        to go to the Module Index (the start page),
        Topics (general Python subjects), and
        Keywords (overviews of statements and some
        expressions).
Notice that the index page in Figure 15-1 lists both
        modules and top-level
        scripts in the current directory—the book’s
        C:\code, where PyDoc was started
        by the earlier command lines. PyDoc is mostly intended for documenting
        importable modules, but can sometimes be used to show documentation
        for scripts too. A selected file must be imported in order to render
        its documentation, and as we’ve learned, importing runs a file’s code.
        Modules normally just define tools when run, so this is usually
        irrelevant.
If you ask for documentation for a top-level script file,
        though, the shell window where you launched PyDoc serves as the
        script’s standard input and output for any user interaction. The net
        effect is that the documentation page for a script will appear after
        it runs, and after its printed output shows up in
        the shell window. This may work better for some scripts than others,
        though; interactive input, for example, may interleave oddly with
        PyDoc’s own server command prompts.
Once you get past the new start page in Figure 15-1, the
        documentation pages for specific modules are essentially the same in
        both the newer all-browser mode and the earlier GUI-client scheme,
        apart from the additional input fields at the top of page in the
        former. For instance, Figure 15-2 shows the new
        documentation display pages—opened on two user-defined modules we’ll
        be writing in the next part of this book, as part of Chapter 21’s benchmarking case study. In
        either scheme, documentation pages contain automatically created
        hyperlinks that allow you to click your way through the documentation
        of related components in your application. For instance, you’ll find
        links to open imported modules’ pages too.
Because of the similarity in their display pages, the next
        section on pre-3.2 PyDoc and its screen shots largely apply after 3.2
        too, so be sure to read ahead for additional notes even if you’re
        using more recent Python. In effect, 3.3’s PyDoc simply cuts out the
        pre-3.2 GUI client “middleman,” while retaining its browser and
        server.
PyDoc in Python 3.3 also still supports other former usage
        modes. For instance, pydoc –p
        port can be used to set its PyDoc server
        port, and pydoc -w
        module still writes a module’s HTML
        documentation to a file named
        module.html for later viewing. Only the pydoc -g GUI client mode is removed and
        replaced by pydoc -b. You can also
        run PyDoc to generate a plain-text form of the documentation (its Unix
        “manpage” flavor shown earlier in this chapter)—the following command
        line is equivalent to the help call
        at an interactive Python prompt:
c:\code> py −3 -m pydoc timeit            # Command-line text help

c:\code> py −3
>>> help("timeit")                        # Interactive prompt text help
As an interactive system, your best bet is to take PyDoc’s
        web-based interface for a test drive, so we’ll cut its usage details
        short here; see Python’s manuals for additional details and
        command-line options. Also note that PyDoc’s server and browser
        functionality come largely “for free” from tools that automate such
        utility in the portable modules of Python’s standard library (e.g.,
        webbrowser, http.server). Consult PyDoc’s Python code in
        the standard library file pydoc.py for additional details and
        inspiration.
Figure 15-2. PyDoc’s module display page in Python 3.2 and later with
          input fields at the top, displaying two modules we will be coding in
          the next part of this book (Chapter 21).

Changing PyDoc’s Colors
You won’t be able to tell in the paper version of this book, but if you
          have an ebook or start PyDoc live, you’ll notice that it chooses
          colors that may or may not be to your liking. Unfortunately, there
          presently is no easy way to customize PyDoc’s colors. They are
          hardcoded deep in its source code, and can’t be passed in as
          arguments to functions or command lines, or changed in configuration
          files or global variables in the PyDoc module itself.
Except that, in an open source system, you can always change
          the code—PyDoc lives in the file pydoc.py in Python’s standard library,
          which is directory C:\Python33\Lib on Windows for Python
          3.3. Its colors are hardcoded RGB value hex strings embedded
          throughout its code. For instance, its string '#eeaa77' defines a 3-byte (24-bit) value, with 2 hexadecimal digits giving a 1-byte (8-bit) level value for each of red, green, and blue (decimal 238, 170, and 119),
          yielding a shade of orange for function banners. The string '#ee77aa' similarly renders the dark
          pinkish color used in nine places, including class and index page
          banners.
To tailor, search for these color value strings and replace
          them with your preferences. In IDLE, an Edit/Find for regular
          expression #\w{6} will locate
          color strings (this matches six alphanumeric characters after a
          # per Python’s re module pattern syntax; see the library
          manual for details).
To pick colors, in most programs with color selection dialogs
          you can map to and from RGB values; the book’s examples include a
          GUI script setcolor.py that
          does the same. In my copy of PyDoc, I replaced all #ee77aa with #008080 (teal) to banish the dark pink.
          Replacing #ffc8d8 with #c0c0c0 (grey) does similar for the light
          pink background of class docstrings.
Such surgery isn’t for the faint of heart—PyDoc’s file is
          currently 2,600 lines long—but makes for a fair exercise in code
          maintenance. Be cautious when replacing colors like #ffffff and #000000 (white and black), and be sure to
          make a backup copy of pydoc.py
          first so you have a fallback. This file uses tools we haven’t yet
          met, but you can safely ignore the rest of its code while you make
          your tactical changes.
Be sure to watch for PyDoc changes on the configurations
          front; this seems a prime candidate for improvement. In fact, there
          already is an effort under way: issue 10716 on the Python
          developers’ list seeks to make PyDoc more user-customizable by
          changing it to support CSS style sheets. If
          successful, this may allow users to make color and other display
          choices in external CSS files instead of PyDoc’s source code.
On the other hand, this is currently not planned to appear
          until Python 3.4, and will require PyDoc’s users to also be
          proficient with CSS code—which unfortunately has a nontrivial
          structure all its own that many people using Python may not
          understand well enough to change. As I write this, for example, the
          proposed PyDoc CSS file is already 234 lines of code that probably
          won’t mean much to people not already familiar with web development
          (and it hardly seems reasonable to ask them to learn a web
          development tool just to tailor PyDoc!).
Today’s PyDoc in 3.3 already supports a CSS style sheet that
          offers some customization options, but only half-heartedly, and
          ships with one that is empty. Until this is hashed out, code changes
          seem the best option. In any event, CSS style sheets are well beyond
          this Python book’s scope—see the Web for details, and check future
          Python release notes for PyDoc developments.


Python 3.2 and earlier: GUI client
This section documents the original GUI client mode of PyDoc,
        for readers using 3.2 and earlier, and gives some addition PyDoc
        context in general. It builds on the basics covered in the prior
        section, which aren’t repeated here, so be sure to at least scan the
        prior section if you’re using an older Python.
As mentioned, through Python 3.2, PyDoc provides a top-level GUI
        interface—a simple but portable Python/tkinter script for submitting
        requests—as well as a documentation server. Requests in the client are
        routed to the server, which produces reports displayed in a popped-up
        web browser. Apart from your having to submit search requests, this
        process is largely automatic.
To start PyDoc in this mode, you generally first launch the
        search engine GUI captured in Figure 15-3. You can start
        this either by selecting the Module Docs item in Python’s Start button
        menu on Windows 7 and earlier, or by launching the pydoc.py script in Python’s standard
        library directory with a -g
        command-line argument: it lives in Lib on Windows, but you can use Python’s
        –m flag to avoid typing script
        paths here too:
c:\code> c:\python32\python -m pydoc -g        # Explicit Python path
c:\code> py −3.2 -m pydoc -g                   # Windows 3.3+ launcher version
Enter the name of a module you’re interested in, and press the
        Enter key; PyDoc will march down your module import search path
        (sys.path), looking for the
        requested module and references to it.
Figure 15-3. The PyDoc top-level search engine GUI client in 3.2 and
          earlier: type the name of a module you want documentation for, press
          Enter, select the module, and then press “go to selected” (or omit
          the module name and press “open browser” to see all available
          modules).

Once you’ve found a promising entry, select it and click “go to
        selected.” PyDoc will spawn a web browser on your machine to display
        the report rendered in HTML format. Figure 15-4 shows the
        information PyDoc displays for the built-in glob module. Notice the hyperlinks in the
        Modules section of this page—you can click these
        to jump to the PyDoc pages for related (imported) modules. For larger
        pages, PyDoc also generates hyperlinks to sections within the
        page.
Figure 15-4. When you find a module in the Figure 15-3 GUI (such as
          this built-in standard library module) and press “go to selected,”
          the module’s documentation is rendered in HTML and displayed in a
          web browser window like this one.

Like the help function
        interface, the GUI interface works on user-defined modules as well as
        built-ins. Figure 15-5
        shows the page generated for our docstrings.py module file coded
        earlier.
Make sure that the directory containing your module is on your
        module import search path—as mentioned, PyDoc must be able to import a
        file to render its documentation. This includes the current working
        directory—PyDoc might not check the directory it was launched from
        (which is probably meaningless when started from the Windows Start
        button anyhow), so you may need to extend your PYTHONPATH
        setting to get this to work. On Pythons 3.2 and 2.7, I had to add “.”
        to my PYTHONPATH to get PyDoc’s GUI
        client mode to look in the directory it was started from by command
        line:
c:\code> set PYTHONPATH=.;%PYTHONPATH%
c:\code> py −3.2 -m pydoc -g
This setting was also required to see the current directory for
        the new all-browser pydoc -b mode
        in 3.2. However, Python 3.3 automatically includes “.” in its index
        list, so no path setting is required to view files in the directory
        where PyDoc is started—a minor but noteworthy improvement.
Figure 15-5. PyDoc can serve up documentation pages for both built-in and
          user-coded modules on the module search path. Here is the page for a
          user-defined module, showing all its documentation strings
          (docstrings) extracted from the source file.

PyDoc can be customized and launched in various ways we won’t
        cover here; see its entry in Python’s standard library manual for more
        details. The main thing to take away from this section is that PyDoc
        essentially gives you implementation reports “for free”—if you are
        good about using docstrings in your files, PyDoc does all the work of
        collecting and formatting them for display. PyDoc helps only for
        objects like functions and modules, but it provides an easy way to
        access a middle level of documentation for such tools—its reports are
        more useful than raw attribute lists, and less exhaustive than the
        standard manuals.
PyDoc can also be run to save the HTML documentation for a
        module in a file for later viewing or printing; see the preceding
        section for pointers. Also, note that PyDoc might not work well if run
        on scripts that read from standard input—PyDoc
        imports the target module to inspect its contents, and there may be no
        connection for standard input text when it is run in GUI mode,
        especially if run from the Windows Start button. Modules that can be
        imported without immediate input requirements will always work under
        PyDoc, though. See also the preceding section’s notes regarding
        scripts in PyDoc’s -b mode in 3.2
        and later; launching PyDoc’s GUI mode by command line works the
        same—you interact in the launch window.
Note
PyDoc GUI client trick of the day: If you
          press the “open browser” button in Figure 15-3’s window,
          PyDoc will produce an index page containing a hyperlink to every
          module you can possibly import on your computer. This includes
          Python standard library modules, modules of installed third-party
          extensions, user-defined modules on your import search path, and
          even statically or dynamically linked-in C-coded modules. Such
          information is hard to come by otherwise without writing code that
          inspects all module sources. On Python 3.2, you’ll want to do this
          immediately after the GUI opens, as it may not fully work after
          searches. Also note that in PyDoc’s all-browser –b interface in 3.2 and later, you get the
          same index functionality on its top-level start page of Figure 15-1.



Beyond docstrings: Sphinx
If you’re looking for a way to document your Python system in a more sophisticated
      way, you may wish to check out Sphinx (currently at
      http://sphinx-doc.org). Sphinx is used by the standard
      Python documentation described in the next section, and many other
      projects. It uses simple reStructuredText as its markup
      language, and inherits much from the Docutils suite
      of reStructuredText parsing and translating tools.
Among other things, Sphinx supports a variety of output formats
      (HTML including Windows HTML Help, LaTeX for printable PDF versions,
      manual pages, and plain text); extensive and automatic cross-references;
      hierarchical structure with automatic links to relatives; automatic
      indexes; automatic code highlighting using Pygments
      (itself a notable Python tool); and more. This is probably overkill for
      smaller programs where docstrings and PyDoc may suffice, but can yield
      professional-grade documentation for large projects. See the Web for
      more details on Sphinx and its related tools.

The Standard Manual Set
For the complete and most up-to-date description of the language and its
      toolset, Python’s standard manuals stand ready to serve. Python’s
      manuals ship in HTML and other formats, and they are installed with the
      Python system on Windows—they are available in your Start button’s menu
      for Python on Windows 7 and earlier, and they can also be opened from
      the Help menu within IDLE. You can also fetch the manual set separately
      from http://www.python.org in a variety of formats, or read it
      online at that site (follow the Documentation link). On Windows, the
      manuals are a compiled help file to support searches, and the online
      versions at the Python website include a web-based search page.
When opened, the Windows format of the manuals displays a root page like that in Figure 15-6, showing the local
      copy on Windows. The two most important entries here are most likely the
      Library Reference (which documents built-in types,
      functions, exceptions, and standard library modules) and the
      Language Reference (which provides a formal
      description of language-level details). The tutorial listed on this page
      also provides a brief introduction for newcomers, which you’re probably
      already beyond.
Figure 15-6. Python’s standard manual set, available online at http://www.python.org, from IDLE’s Help menu, and in
        the Windows 7 and earlier Start button menu. It’s a searchable help
        file on Windows, and there is a search engine for the online version.
        Of these, the Library Reference is the one you’ll want to use most of
        the time.

Of notable interest, the What’s New documents
      in this standard manual set chronicle Python changes made in each
      release beginning with Python 2.0, which came out in late 2000—useful
      for those porting older Python code, or older Python skills. These
      documents are especially useful for uncovering additional details on the
      differences in the Python 2.X and 3.X language lines covered in this
      book, as well as in their standard libraries.

Web Resources
At the official Python website (http://www.python.org), you’ll find links to various
      Python resources, some of which cover special topics or domains. Click
      the Documentation link to access an online tutorial and the Beginners
      Guide to Python. The site also lists non-English Python resources, and
      introductions scaled to different target audiences.
Today you will also find numerous Python wikis, blogs, websites,
      and a host of other resources on the Web at large. To sample the online
      community, try searching for a term like “Python programming” in Google,
      or search on any topic of interest; chances are good you’ll find ample
      material to browse.

Published Books
As a final resource, you can choose from a collection of
      professionally edited and published reference books for Python. Bear in
      mind that books tend to lag behind the cutting edge of Python changes,
      partly because of the work involved in writing, and partly because of
      the natural delays built into the publishing cycle. Usually, by the time
      a book comes out, it’s three or more months behind the current Python
      state (trust me on that—my books have a nasty habit of falling out of
      date in minor ways between the time I write them and the time they hit
      the shelves!). Unlike standard manuals, books are also generally not
      free.
Still, for many, the convenience and quality of a professionally
      published text is worth the cost. Moreover, Python changes so slowly
      that books are usually still relevant years after they are published,
      especially if their authors post updates on the Web. See the preface for
      pointers to other Python books.


Common Coding Gotchas
Before the programming exercises for this part of the book, let’s run
    through some of the most common mistakes beginners make when coding Python
    statements and programs. Many of these are warnings I’ve thrown out
    earlier in this part of the book, collected here for ease of reference.
    You’ll learn to avoid these pitfalls once you’ve gained a bit of Python
    coding experience, but a few words now might help you avoid falling into
    some of these traps initially:
	Don’t forget the colons.
        Always remember to type a : at the
        end of compound statement headers—the first line of an if, while, for, etc. You’ll probably forget at first (I
        did, and so have most of my roughly 4,000 Python students over the
        years), but you can take some comfort from the fact that it will soon
        become an unconscious habit.

	Start in column 1. Be sure to
        start top-level (unnested) code in column 1. That includes unnested
        code typed into module files, as well as unnested code typed at the
        interactive prompt.

	Blank lines matter at the interactive
        prompt. Blank lines in compound statements are always
        irrelevant and ignored in module files, but when you’re typing code at
        the interactive prompt, they end the statement. In other words, blank
        lines tell the interactive command line that you’ve finished a
        compound statement; if you want to continue, don’t hit the Enter key
        at the ... prompt (or in IDLE)
        until you’re really done. This also means you can’t paste multiline
        code at this prompt; it must run one full statement at a time.

	Indent consistently. Avoid
        mixing tabs and spaces in the indentation of a block, unless you know
        what your text editor does with tabs. Otherwise, what you see in your
        editor may not be what Python sees when it counts tabs as a number of
        spaces. This is true in any block-structured language, not just
        Python—if the next programmer has tabs set differently, it will be
        difficult or impossible to understand the structure of your code. It’s
        safer to use all tabs or all spaces for each block.

	Don’t code C in Python. A
        reminder for C/C++ programmers: you don’t need to type parentheses
        around tests in if and while headers (e.g., if (X==1):). You can, if you like (any
        expression can be enclosed in parentheses), but they are fully
        superfluous in this context. Also, do not terminate all your
        statements with semicolons; it’s technically legal to do this in
        Python as well, but it’s totally useless unless you’re placing more
        than one statement on a single line (the end of a line normally
        terminates a statement). And remember, don’t embed assignment
        statements in while loop tests, and
        don’t use {} around blocks (indent
        your nested code blocks consistently instead).

	Use simple for loops instead
        of while or range. Another reminder: a simple for loop (e.g., for
        x in seq:) is almost always simpler to code and often
        quicker to run than a while- or
        range-based counter loop. Because
        Python handles indexing internally for a simple for, it can sometimes be faster than the
        equivalent while, though this can
        vary per code and Python. For code simplicity alone, though, avoid the
        temptation to count things in Python!

	Beware of mutables in
        assignments. I mentioned this in Chapter 11: you need to be
        careful about using mutables in a multiple-target assignment (a = b = []), as well as in an augmented
        assignment (a += [1, 2]). In both
        cases, in-place changes may impact other variables. See Chapter 11 for details if
        you’ve forgotten why this is true.

	Don’t expect results from functions that
        change objects in place. We encountered this one earlier,
        too: in-place change operations like the list.append and list.sort methods introduced in Chapter 8 do not return values (other than
        None), so you should call them
        without assigning the result. It’s not uncommon for beginners to say
        something like mylist =
        mylist.append(X) to try to get the result of an append, but what this actually does is
        assign mylist to None, not to the modified list (in fact,
        you’ll lose your reference to the list altogether).
A more devious example of this pops up in Python 2.X code when
        trying to step through dictionary items in a sorted fashion. It’s
        fairly common to see code like for k in
        D.keys().sort():. This almost works—the keys method builds a keys list, and the
        sort method orders it—but because
        the sort method returns None, the loop fails because it is
        ultimately a loop over None (a
        nonsequence). This fails even sooner in Python 3.X, because dictionary
        keys are views, not lists! To code this correctly, either use the
        newer sorted built-in function,
        which returns the sorted list, or split the method calls out to
        statements: Ks = list(D.keys()),
        then Ks.sort(), and finally,
        for k in Ks:. This, by the way, is
        one case where you may still want to call the keys method explicitly for looping, instead
        of relying on the dictionary iterators—iterators do not sort.

	Always use parentheses to call a
        function. You must add parentheses after a function name to
        call it, whether it takes arguments or not (e.g., use function(), not function). In the next part of this book,
        we’ll learn that functions are simply objects that have a special
        operation—a call that you trigger with the parentheses. They can be
        referenced like any other object without triggering a call.
In classes, this problem seems to occur most often with files;
        it’s common to see beginners type file.close to close a file, rather than
        file.close(). Because it’s legal to
        reference a function without calling it, the first version with no
        parentheses succeeds silently, but it does not close the file!

	Don’t use extensions or paths in imports
        and reloads. Omit directory paths and file extensions in
        import statements—say import mod, not import mod.py. We discussed module basics in
        Chapter 3 and will continue studying
        modules in Part V. Because modules
        may have other extensions besides .py (.pyc, for instance), hardcoding a
        particular extension is not only illegal syntax, it doesn’t make
        sense. Python picks an extension automatically, and any
        platform-specific directory path syntax comes from module search path
        settings, not the import
        statement.

	And other pitfalls in other
        parts. Be sure to also see the built-in type warnings at
        the end of the prior part, as they may qualify as coding issues too.
        There are additional “gotchas” that crop up commonly in Python
        coding—losing a built-in function by reassigning its name, hiding a
        library module by using its name for one of your own, changing mutable
        argument defaults, and so on—but we don’t have enough background to
        cover them yet. To learn more about both what you should and shouldn’t
        do in Python, you’ll have to read on; later parts extend the set of
        “gotchas” and fixes we’ve added to here.



Chapter Summary
This chapter took us on a tour of program documentation—both
    documentation we write ourselves for our own programs, and documentation
    available for tools we use. We met docstrings, explored the online and
    manual resources for Python reference, and learned how PyDoc’s help function and web page interfaces provide
    extra sources of documentation. Because this is the last chapter in this
    part of the book, we also reviewed common coding mistakes to help you
    avoid them.
In the next part of this book, we’ll start applying what we already
    know to larger program constructs. Specifically, the next part takes up
    the topic of functions—a tool used to group
    statements for reuse. Before moving on, however, be sure to work through
    the set of lab exercises for this part of the book that appear at the end
    of this chapter. And even before that, let’s run through this chapter’s
    quiz.

Test Your Knowledge: Quiz
	When should you use documentation strings instead of
        hash-mark comments?

	Name three ways you can view documentation strings.

	How can you obtain a list of the available attributes in an
        object?

	How can you get a list of all available modules on your
        computer?

	Which Python book should you purchase after this one?



Test Your Knowledge: Answers
	Documentation strings (docstrings) are considered best for
        larger, functional documentation, describing the use of modules,
        functions, classes, and methods in your code. Hash-mark comments are
        today best limited to smaller-scale documentation about arcane
        expressions or statements at strategic points on your code. This is
        partly because docstrings are easier to find in a source file, but
        also because they can be extracted and displayed by the PyDoc
        system.

	You can see docstrings by printing an object’s __doc__ attribute, by passing it to PyDoc’s
        help function, and by selecting
        modules in PyDoc’s HTML-based user interfaces—either the -g GUI client mode in Python 3.2 and
        earlier, or the -b all-browser mode
        in Python 3.2 and later (and required as of 3.3). Both run a
        client/server system that displays documentation in a popped-up web
        browser. PyDoc can also be run to save a module’s documentation in an
        HTML file for later viewing or printing.

	The built-in dir(X) function
        returns a list of all the attributes attached to any object. A list
        comprehension of the form [a for a in dir(X)
        if not a.startswith('__')] can be used to filter out
        internals names with underscores (we’ll learn how to wrap this in a
        function in the next part of the book to make it easier to
        use).

	In Python 3.2 and earlier, you can run the PyDoc GUI interface,
        and select “open browser”; this opens a web page containing a link to
        every module available to your programs. This GUI mode no longer works
        as of Python 3.3. In Python 3.2 and later, you get the same
        functionality by running PyDoc’s newer all-browser mode with a
        -b command-line switch; the
        top-level start page displayed in a web browser in this newer mode has
        the same index page listing all available modules.

	Mine, of course. (Seriously, there are hundreds today; the
        preface lists a few recommended follow-up books, both for reference
        and for application tutorials, and you should browse for books that
        fit your needs.)



Test Your Knowledge: Part III Exercises
Now that you know how to code basic program logic, the following exercises will ask
    you to implement some simple tasks with statements. Most of the work is in
    exercise 4, which lets you explore coding alternatives. There are always
    many ways to arrange statements, and part of learning Python is learning
    which arrangements work better than others. You’ll eventually gravitate
    naturally toward what experienced Python programmers call “best practice,”
    but best practice takes practice.
See “Part III, Statements and Syntax” in Appendix D for the solutions.
	Coding basic loops. This exercise asks you
        to experiment with for loops.
	Write a for loop that
            prints the ASCII code of each character in a string named S. Use the built-in function ord(character) to convert each character
            to an ASCII integer. This function technically returns a Unicode
            code point in Python 3.X, but if you restrict its content to ASCII
            characters, you’ll get back ASCII codes. (Test it interactively to
            see how it works.)

	Next, change your loop to compute the
            sum of the ASCII codes of all the characters
            in a string.

	Finally, modify your code again to return a new list that
            contains the ASCII codes of each character in
            the string. Does the expression map(ord,
            S) have a similar effect? How about [ord(c) for c in S]? Why? (Hint: see
            Chapter 14.)



	Backslash characters. What happens on your
        machine when you type the following code interactively?
for i in range(50):
    print('hello %d\n\a' % i)
Beware that if it’s run outside of the IDLE interface this
        example may beep at you, so you may not want to run it in a crowded
        room! IDLE prints odd characters instead of beeping—spoiling much of
        the joke (see the backslash escape characters in Table 7-2).

	Sorting dictionaries. In Chapter 8, we saw that dictionaries are
        unordered collections. Write a for
        loop that prints a dictionary’s items in sorted (ascending) order.
        (Hint: use the dictionary keys and
        list sort methods, or the newer
        sorted built-in function.)

	Program logic alternatives. Consider the
        following code, which uses a while
        loop and found flag to search a
        list of powers of 2 for the value of 2 raised to the fifth power (32).
        It’s stored in a module file called power.py.
L = [1, 2, 4, 8, 16, 32, 64]
X = 5

found = False
i = 0
while not found and i < len(L):
   if 2 ** X == L[i]:
       found = True
   else:
       i = i+1

if found:
    print('at index', i)
else:
    print(X, 'not found')

C:\book\tests> python power.py
at index 5
As is, the example doesn’t follow normal Python coding
        techniques. Follow the steps outlined here to improve it (for all the
        transformations, you may either type your code interactively or store
        it in a script file run from the system command line—using a file
        makes this exercise much easier):
	First, rewrite this code with a while loop else clause to eliminate the found flag and final if statement.

	Next, rewrite the example to use a for loop with an else clause, to eliminate the explicit
            list-indexing logic. (Hint: to get the index of an item, use the
            list index method—L.index(X) returns the offset of the
            first X in list L.)

	Next, remove the loop completely by rewriting the example
            with a simple in operator
            membership expression. (See Chapter 8 for more details, or type this
            to test: 2 in [1,2,3].)

	Finally, use a for loop
            and the list append method to
            generate the powers-of-2 list (L) instead of hardcoding a list
            literal.


Deeper thoughts:
	Do you think it would improve performance to move the
            2 ** X expression outside the
            loops? How would you code that?

	As we saw in exercise 1, Python includes a map(function, list) tool that can
            generate a powers-of-2 list, too: map(lambda x: 2 ** x, range(7)). Try
            typing this code interactively; we’ll meet lambda more formally in the next part of
            this book, especially in Chapter 19. Would a list comprehension
            help here (see Chapter 14)?



	Code maintenance. If you haven’t already
        done so, experiment with making the code changes suggested in this
        chapter’s sidebar “Changing PyDoc’s Colors”. Much of
        the work of real software development is in changing existing code, so
        the sooner you begin doing so, the better. For reference, my edited
        copy of PyDoc is in the book’s examples package, named mypydoc.py; to see how it differs, you can
        run a file compare (fc on Windows)
        with the original pydoc.py in 3.3
        (also included, lest it change radically in 3.4 as the sidebar
        describes). If PyDoc is more easily customized by the time you read
        these words, customize colors per its current convention instead; if
        this involves changing a CSS file, let’s hope the procedure will be
        well documented in Python’s manuals.



1 Note that asking for help on an actual string
          object directly (e.g., help('')) doesn’t work in recent Pythons:
          you usually get no help, because strings are interpreted
          specially—as a request for help on an unimported module, for
          instance (see earlier). You must use the str type name in this context, though both
          other types of actual objects (help([])) and string method names
          referenced through actual objects (help(''.join)) work fine (at least in
          Python 3.3—this has been prone to change over time). There is also
          an interactive help mode, which you start by typing just help().








Part IV. Functions and Generators








Chapter 16. Function Basics
In Part III, we studied basic
  procedural statements in Python. Here, we’ll move on to explore a set of
  additional statements and expressions that we can use to create functions of
  our own.
In simple terms, a function is a device that groups a set of statements so they can be run more
  than once in a program—a packaged procedure invoked by name. Functions also
  can compute a result value and let us specify parameters that serve as
  function inputs and may differ each time the code is run. Coding an
  operation as a function makes it a generally useful tool, which we can use
  in a variety of contexts.
More fundamentally, functions are the alternative to programming by
  cutting and pasting—rather than having multiple
  redundant copies of an operation’s code, we can factor it into a single
  function. In so doing, we reduce our future work radically: if the operation
  must be changed later, we have only one copy to update in the function, not
  many scattered throughout the program.
Functions are also the most basic program structure Python provides
  for maximizing code reuse, and lead us to the larger
  notions of program design. As we’ll see, functions let
  us split complex systems into manageable parts. By implementing each part as
  a function, we make it both reusable and easier to code.
Table 16-1 previews
  the primary function-related tools we’ll study in this part of the book—a
  set that includes call expressions, two ways to make functions (def and lambda), two ways to manage scope visibility
  (global and nonlocal), and two ways to send results back to
  callers (return and yield).
Table 16-1. Function-related statements and expressions	Statement or
          expression	Examples
	Call
          expressions
	myfunc('spam', 'eggs', meat=ham, *rest)

	def
	def printer(message):
    print('Hello ' + message)

	return
	def adder(a, b=1, *c):
    return a + b + c[0]

	global
	x = 'old'
def changer():
    global x; x = 'new'

	nonlocal (3.X)
	def outer():
    x = 'old'
    def changer():
        nonlocal x; x = 'new'

	yield
	def squares(x):
    for i in range(x): yield i ** 2

	lambda
	funcs = [lambda x: x**2, lambda x: x**3]


Why Use Functions?
Before we get into the details, let’s establish a clear picture of
    what functions are all about. Functions are a nearly universal
    program-structuring device. You may have come across them before in other
    languages, where they may have been called
    subroutines or procedures. As a
    brief introduction, functions serve two primary development roles:
	Maximizing code reuse and minimizing redundancy
	As in most programming languages, Python functions are the
          simplest way to package logic you may wish to use in more than one
          place and more than one time. Up until now, all the code we’ve been
          writing has run immediately. Functions allow us to group and
          generalize code to be used arbitrarily many times later. Because
          they allow us to code an operation in a single place and use it in
          many places, Python functions are the most basic
          factoring tool in the language: they allow us
          to reduce code redundancy in our programs, and thereby reduce
          maintenance effort.

	Procedural decomposition
	Functions also provide a tool for splitting systems into
          pieces that have well-defined roles. For instance, to make a pizza
          from scratch, you would start by mixing the dough, rolling it out,
          adding toppings, baking it, and so on. If you were programming a
          pizza-making robot, functions would help you divide the overall
          “make pizza” task into chunks—one function for each subtask in the
          process. It’s easier to implement the smaller tasks in isolation
          than it is to implement the entire process at once. In general,
          functions are about procedure—how to do
          something, rather than what you’re doing it to. We’ll see why this
          distinction matters in Part VI, when we
          start making new objects with classes.


In this part of the book, we’ll explore the tools used to code
    functions in Python: function basics, scope rules, and argument passing,
    along with a few related concepts such as generators and functional tools.
    Because its importance begins to become more apparent at this level of
    coding, we’ll also revisit the notion of polymorphism, which was
    introduced earlier in the book. As you’ll see, functions don’t imply much
    new syntax, but they do lead us to some bigger programming ideas.

Coding Functions
Although it wasn’t made very formal, we’ve already used some functions in earlier
    chapters. For instance, to make a file object, we called the built-in
    open function; similarly, we used the
    len built-in function to ask for the
    number of items in a collection object.
In this chapter, we will explore how to write
    new functions in Python. Functions we write behave
    the same way as the built-ins we’ve already seen: they are called in
    expressions, are passed values, and return results. But writing new
    functions requires the application of a few additional ideas that haven’t
    yet been introduced. Moreover, functions behave very differently in Python
    than they do in compiled languages like C. Here is a brief introduction to
    the main concepts behind Python functions, all of which we will study in
    this part of the book:
	def is executable code. Python functions
        are written with a new statement, the def. Unlike functions in compiled languages
        such as C, def is an executable
        statement—your function does not exist until Python reaches and runs
        the def. In fact, it’s legal (and
        even occasionally useful) to nest def statements inside if statements, while loops, and even other defs. In typical operation, def statements are coded in module files and
        are naturally run to generate functions when the module file they
        reside in is first imported.

	def creates an object and assigns it to a name.
        When Python reaches and runs a def
        statement, it generates a new function object and assigns it to the
        function’s name. As with all assignments, the function name becomes a
        reference to the function object. There’s nothing magic about the name
        of a function—as you’ll see, the function object can be assigned to
        other names, stored in a list, and so on. Function objects may also
        have arbitrary user-defined attributes attached
        to them to record data.

	lambda creates an object but returns it as a result.
        Functions may also be created with the lambda expression, a feature that allows us
        to in-line function definitions in places where a
        def statement won’t work
        syntactically. This is a more advanced concept that we’ll defer until
        Chapter 19.

	return sends a result object back to the caller.
        When a function is called, the caller stops until the function
        finishes its work and returns control to the caller. Functions that
        compute a value send it back to the caller with a return statement; the returned value becomes
        the result of the function call. A return without a value simply returns to the
        caller (and sends back None, the
        default result).

	yield sends a result object back to the caller, but remembers
        where it left off. Functions known as generators may also use
        the yield statement to send back a
        value and suspend their state such that they may be resumed later, to
        produce a series of results over time. This is another advanced topic
        covered later in this part of the book.

	global declares module-level variables that are to be
        assigned. By default, all names assigned in a function are local to that function and
        exist only while the function runs. To assign a name in the enclosing
        module, functions need to list it in a global statement. More generally, names are
        always looked up in scopes—places where variables
        are stored—and assignments bind names to scopes.

	nonlocal declares enclosing function variables that are to be
        assigned. Similarly, the nonlocal statement added in Python 3.X allows a function to assign a name
        that exists in the scope of a syntactically enclosing def statement. This allows enclosing
        functions to serve as a place to retain
        state—information remembered between function
        calls—without using shared global names.

	Arguments are passed by assignment
        (object reference). In Python, arguments are passed to functions by assignment (which,
        as we’ve learned, means by object reference). As you’ll see, in
        Python’s model the caller and function share objects by references,
        but there is no name aliasing. Changing an argument name within a
        function does not also change the corresponding name in the caller,
        but changing passed-in mutable objects in place can change objects
        shared by the caller, and serve as a function result.

	Arguments are passed by position, unless
        you say otherwise. Values you pass in a function call match
        argument names in a function’s definition from left to right by
        default. For flexibility, function calls can also
        pass arguments by name with name=value keyword
        syntax, and unpack arbitrarily many arguments to send with *pargs and
        **kargs
        starred-argument notation. Function definitions
        use the same two forms to specify argument defaults, and collect
        arbitrarily many arguments received.

	Arguments, return values, and variables
        are not declared. As with everything in Python, there are
        no type constraints on functions. In fact, nothing about a function
        needs to be declared ahead of time: you can pass in arguments of any
        type, return any kind of object, and so on. As one consequence, a
        single function can often be applied to a variety of object types—any
        objects that sport a compatible interface
        (methods and expressions) will do, regardless of their specific
        types.


If some of the preceding words didn’t sink in, don’t worry—we’ll
    explore all of these concepts with real code in this part of the book.
    Let’s get started by expanding on some of these ideas and looking at a few
    examples.
def Statements
The def statement creates a
      function object and assigns it to a name. Its general
      format is as follows:
def name(arg1, arg2,... argN):
    statements
As with all compound Python statements, def consists of a header line followed by a
      block of statements, usually indented (or a simple statement after the
      colon). The statement block becomes the function’s
      body—that is, the code Python executes each time
      the function is later called.
The def header line specifies a
      function name that is assigned the function object,
      along with a list of zero or more arguments
      (sometimes called parameters) in parentheses. The argument names in the header are assigned
      to the objects passed in parentheses at the point of call.
Function bodies often contain a return
      statement:
def name(arg1, arg2,... argN):
    ...
    return value
The Python return statement can
      show up anywhere in a function body; when reached, it ends the function
      call and sends a result back to the caller. The return statement consists of an optional
      object value expression that gives the function’s result. If the value
      is omitted, return sends back a
      None.
The return statement itself is
      optional too; if it’s not present, the function exits when the control
      flow falls off the end of the function body. Technically, a function
      without a return statement also
      returns the None object
      automatically, but this return value is usually ignored at the
      call.
Functions may also contain yield statements, which are designed to
      produce a series of values over time, but we’ll defer discussion of
      these until we survey generator topics in Chapter 20.

def Executes at Runtime
The Python def is a true
      executable statement: when it runs, it creates a new function object
      and assigns it to a name. (Remember, all we have in Python is
      runtime; there is no such thing as a separate
      compile time.) Because it’s a statement, a def can appear anywhere a statement can—even
      nested in other statements. For instance, although defs normally are run when the module
      enclosing them is imported, it’s also completely legal to nest a
      function def inside an
      if statement to select between
      alternative definitions:
if test:
    def func():            # Define func this way
        ...
else:
    def func():            # Or else this way
        ...
...
func()                     # Call the version selected and built
One way to understand this code is to realize that the def is much like an = statement: it simply assigns a name at
      runtime. Unlike in compiled languages such as C, Python functions do not
      need to be fully defined before the program runs. More generally,
      defs are not evaluated until they are
      reached and run, and the code inside defs is not evaluated until the functions are
      later called.
Because function definition happens at runtime, there’s nothing
      special about the function name. What’s important is the object to which
      it refers:
othername = func           # Assign function object
othername()                # Call func again
Here, the function was assigned to a different name and called
      through the new name. Like everything else in Python, functions are just
      objects; they are recorded explicitly in memory at
      program execution time. In fact, besides calls, functions allow
      arbitrary attributes to be attached to record
      information for later use:
def func(): ...            # Create function object
func()                     # Call object
func.attr = value          # Attach attributes


A First Example: Definitions and Calls
Apart from such runtime concepts (which tend to seem most unique to
    programmers with backgrounds in traditional compiled languages), Python
    functions are straightforward to use. Let’s code a first real example to
    demonstrate the basics. As you’ll see, there are two sides to the function
    picture: a definition (the def that creates a function) and a
    call (an expression that tells Python to run the
    function’s body).
Definition
Here’s a definition typed interactively that defines a function called
      times, which returns the product of
      its two arguments:
>>> def times(x, y):       # Create and assign function
...     return x * y       # Body executed when called
...
When Python reaches and runs this def, it creates a new function object that
      packages the function’s code and assigns the object to the name times. Typically, such a statement is coded in
      a module file and runs when the enclosing file is imported; for
      something this small, though, the interactive prompt suffices.

Calls
The def statement makes a
      function but does not call it. After the def has run, you can call (run) the function
      in your program by adding parentheses after the function’s name. The
      parentheses may optionally contain one or more object arguments, to be
      passed (assigned) to the names in the function’s header:
>>> times(2, 4)            # Arguments in parentheses
8
This expression passes two arguments to times. As mentioned previously, arguments are
      passed by assignment, so in this case the name x in the function header is assigned the value
      2, y is assigned the value 4, and the function’s body is run. For this
      function, the body is just a return
      statement that sends back the result as the value of the call
      expression. The returned object was printed here interactively (as in
      most languages, 2 * 4 is 8 in Python), but if we needed to use it later
      we could instead assign it to a variable. For example:
>>> x = times(3.14, 4)     # Save the result object
>>> x
12.56
Now, watch what happens when the function is called a third time,
      with very different kinds of objects passed in:
>>> times('Ni', 4)         # Functions are "typeless"
'NiNiNiNi'
This time, our function means something completely different
      (Monty Python reference again intended). In this third call, a string
      and an integer are passed to x and
      y, instead of two numbers. Recall
      that * works on both numbers and
      sequences; because we never declare the types of variables, arguments,
      or return values in Python, we can use times to either multiply
      numbers or repeat sequences.
In other words, what our times
      function means and does depends on what we pass into it. This is a core
      idea in Python (and perhaps the key to using the language well), which
      merits a bit of expansion here.

Polymorphism in Python
As we just saw, the very meaning of the expression x * y in our simple times function depends completely upon the
      kinds of objects that x and y are—thus, the same function can perform
      multiplication in one instance and repetition in another. Python leaves
      it up to the objects to do something reasonable for
      the syntax. Really, * is just a
      dispatch mechanism that routes control to the objects being
      processed.
This sort of type-dependent behavior is known as
      polymorphism, a term we first met in Chapter 4 that essentially means that
      the meaning of an operation depends on the objects being operated upon.
      Because it’s a dynamically typed language, polymorphism runs rampant in
      Python. In fact, every operation is a polymorphic
      operation in Python: printing, indexing, the * operator, and much more.
This is deliberate, and it accounts for much of the language’s
      conciseness and flexibility. A single function, for instance, can
      generally be applied to a whole category of object types automatically.
      As long as those objects support the expected
      interface (a.k.a. protocol), the function can
      process them. That is, if the objects passed into a function have the
      expected methods and expression operators, they are plug-and-play
      compatible with the function’s logic.
Even in our simple times
      function, this means that any two objects that
      support a * will work, no matter what
      they may be, and no matter when they are coded. This function will work
      on two numbers (performing multiplication), or a string and a number
      (performing repetition), or any other combination of objects supporting
      the expected interface—even class-based objects we have not even
      imagined yet.
Moreover, if the objects passed in do not
      support this expected interface, Python will detect the error when the
      * expression is run and raise an
      exception automatically. It’s therefore usually pointless to code error
      checking ourselves. In fact, doing so would limit our function’s
      utility, as it would be restricted to work only on objects whose types
      we test for.
This turns out to be a crucial philosophical difference between
      Python and statically typed languages like C++ and Java: in Python, your
      code is not supposed to care about specific data
      types. If it does, it will be limited to working on just the types you
      anticipated when you wrote it, and it will not support other compatible
      object types that may be coded in the future. Although it is possible to
      test for types with tools like the type built-in function, doing so breaks your
      code’s flexibility. By and large, we code to object interfaces in Python, not data
      types.1
Of course, some programs have unique requirements, and this
      polymorphic model of programming means we have to test our code to
      detect errors, rather than providing type declarations a compiler can
      use to detect some types of errors for us ahead of time. In exchange for
      an initial bit of testing, though, we radically reduce the amount of
      code we have to write and radically increase our code’s flexibility. As
      you’ll learn, it’s a net win in practice.


A Second Example: Intersecting Sequences
Let’s look at a second function example that does something a bit more
    useful than multiplying arguments and further illustrates function
    basics.
In Chapter 13, we coded a for loop that collected items held in common in
    two strings. We noted there that the code wasn’t as useful as it could be
    because it was set up to work only on specific variables and could not be
    rerun later. Of course, we could copy the code and paste it into each
    place where it needs to be run, but this solution is neither good nor
    general—we’d still have to edit each copy to support different sequence
    names, and changing the algorithm would then require changing multiple
    copies.
Definition
By now, you can probably guess that the solution to this dilemma
      is to package the for loop inside a
      function. Doing so offers a number of advantages:
	Putting the code in a function makes it a tool that you can
          run as many times as you like.

	Because callers can pass in arbitrary arguments, functions are
          general enough to work on any two sequences (or other iterables) you
          wish to intersect.

	When the logic is packaged in a function, you have to change
          code in only one place if you ever need to change the way the
          intersection works.

	Coding the function in a module file means it can be imported
          and reused by any program run on your machine.


In effect, wrapping the code in a function makes it a general
      intersection utility:
def intersect(seq1, seq2):
    res = []                     # Start empty
    for x in seq1:               # Scan seq1
        if x in seq2:            # Common item?
            res.append(x)        # Add to end
    return res
The transformation from the simple code of Chapter 13 to this function is straightforward;
      we’ve just nested the original logic under a def header and made the objects on which it
      operates passed-in parameter names. Because this function computes a
      result, we’ve also added a return
      statement to send a result object back to the caller.

Calls
Before you can call a function, you have to make it. To do this,
      run its def statement, either by
      typing it interactively or by coding it in a module file and importing
      the file. Once you’ve run the def,
      you can call the function by passing any two sequence objects in
      parentheses:
>>> s1 = "SPAM"
>>> s2 = "SCAM"
>>> intersect(s1, s2)            # Strings
['S', 'A', 'M']
Here, we’ve passed in two strings, and we get back a list
      containing the characters in common. The algorithm the function uses is
      simple: “for every item in the first argument, if that item is also in
      the second argument, append the item to the result.” It’s a little
      shorter to say that in Python than in English, but it works out the
      same.
To be fair, our intersect function is fairly slow (it executes
      nested loops), isn’t really mathematical intersection (there may be
      duplicates in the result), and isn’t required at all (as we’ve seen,
      Python’s set data type provides a built-in intersection operation).
      Indeed, the function could be replaced with a single list comprehension
      expression, as it exhibits the classic loop collector code
      pattern:
>>> [x for x in s1 if x in s2]
['S', 'A', 'M']
As a function basics example, though, it does the job—this single
      piece of code can apply to an entire range of object types, as the next
      section explains. In fact, we’ll improve and extend this to support
      arbitrarily many operands in Chapter 18, after we
      learn more about argument passing modes.

Polymorphism Revisited
Like all good functions in Python, intersect is
      polymorphic. That is, it works on arbitrary types, as long as they
      support the expected object interface:
>>> x = intersect([1, 2, 3], (1, 4))      # Mixed types
>>> x                                     # Saved result object
[1]
This time, we passed in different types of objects to our
      function—a list and a tuple (mixed types)—and it still picked out the
      common items. Because you don’t have to specify the types of arguments
      ahead of time, the intersect function
      happily iterates through any kind of sequence objects you send it, as
      long as they support the expected interfaces.
For intersect, this means that
      the first argument has to support the for loop, and the second has to support the
      in membership test. Any two such
      objects will work, regardless of their specific types—that includes
      physically stored sequences like strings and lists; all the iterable
      objects we met in Chapter 14,
      including files and dictionaries; and even any class-based objects we
      code that apply operator overloading techniques we’ll discuss later in
      the book.2
Here again, if we pass in objects that do not support these
      interfaces (e.g., numbers), Python will automatically detect the
      mismatch and raise an exception for us—which is exactly what we want,
      and the best we could do on our own if we coded explicit type tests. By
      not coding type tests and allowing Python to detect the mismatches for
      us, we both reduce the amount of code we need to write and increase our
      code’s flexibility.

Local Variables
Probably the most interesting part of this example, though, is its names. It
      turns out that the variable res
      inside intersect is what in Python is
      called a local variable—a name that is visible only
      to code inside the function def and
      that exists only while the function runs. In fact, because all names
      assigned in any way inside a function are
      classified as local variables by default, nearly all the names in
      intersect are local variables:
	res is obviously assigned,
          so it is a local variable.

	Arguments are passed by assignment, so seq1 and seq2 are, too.

	The for loop assigns items
          to a variable, so the name x is
          also local.


All these local variables appear when the function is called and
      disappear when the function exits—the return statement at the end of intersect sends back the result
      object, but the name res goes away. Because of this, a function’s
      variables won’t remember values between calls; although the object
      returned by a function lives on, retaining other sorts of state
      information requires other sorts of techniques. To fully explore the
      notion of locals and state, though, we need to move on to the scopes
      coverage of Chapter 17.


Chapter Summary
This chapter introduced the core ideas behind function
    definition—the syntax and operation of the def and return statements, the behavior of function call
    expressions, and the notion and benefits of polymorphism in Python
    functions. As we saw, a def statement
    is executable code that creates a function object at runtime; when the
    function is later called, objects are passed into it by assignment (recall
    that assignment means object reference in Python, which, as we learned in
    Chapter 6, really means pointer
    internally), and computed values are sent back by return. We also began exploring the concepts of
    local variables and scopes in this chapter, but we’ll save all the details
    on those topics for Chapter 17. First, though, a quick
    quiz.

Test Your Knowledge: Quiz
	What is the point of coding functions?

	At what time does Python create a function?

	What does a function return if it has no return statement in it?

	When does the code nested inside the function definition
        statement run?

	What’s wrong with checking the types of objects passed into a
        function?



Test Your Knowledge: Answers
	Functions are the most basic way of avoiding code
        redundancy in Python—factoring code into
        functions means that we have only one copy of an operation’s code to
        update in the future. Functions are also the basic unit of code
        reuse in Python—wrapping code in functions makes
        it a reusable tool, callable in a variety of programs. Finally,
        functions allow us to divide a complex system into manageable parts,
        each of which may be developed individually.

	A function is created when Python reaches and runs the def statement; this statement creates a
        function object and assigns it the function’s name. This normally
        happens when the enclosing module file is imported by another module
        (recall that imports run the code in a file from top to bottom,
        including any defs), but it can
        also occur when a def is typed
        interactively or nested in other statements, such as ifs.

	A function returns the None
        object by default if the control flow falls off the end of the
        function body without running into a return statement. Such functions are usually
        called with expression statements, as assigning their None results to variables is generally
        pointless. A return statement with
        no expression in it also returns None.

	The function body (the code nested inside the function
        definition statement) is run when the function is later called with a
        call expression. The body runs anew each time the function is
        called.

	Checking the types of objects passed into a function effectively
        breaks the function’s flexibility, constraining the function to work
        on specific types only. Without such checks, the function would likely
        be able to process an entire range of object types—any objects that
        support the interface expected by the function will work. (The term
        interface means the set of methods and expression
        operators the function’s code runs.)



1 This polymorphic behavior has in recent years come to also be
          known as duck typing—the essential idea being
          that your code is not supposed to care if an object is a
          duck, only that it quacks.
          Anything that quacks will do, duck or not, and the implementation of
          quacks is up to the object, a principle which will become even more
          apparent when we study classes in Part VI. Graphic metaphor to be sure, though
          this is really just a new label for an older idea, and use cases for
          quacking software would seem limited in the tangible world (he says,
          bracing for emails from militant ornithologists...).
2 This code will always work if we intersect files’ contents
          obtained with file.readlines().
          It may not work to intersect lines in open input files directly,
          though, depending on the file object’s implementation of the
          in operator or general iteration.
          Files must generally be rewound (e.g., with a file.seek(0) or another open) after they have been read to
          end-of-file once, and so are single-pass iterators. As we’ll see in
          Chapter 30 when we study operator
          overloading, objects implement the in operator either by providing the
          specific __contains__ method or
          by supporting the general iteration protocol with the __iter__ or older __getitem__ methods; classes can code
          these methods arbitrarily to define what iteration means for their
          data.








Chapter 17. Scopes
Chapter 16 introduced basic function
  definitions and calls. As we saw, Python’s core function model is simple to
  use, but even simple function examples quickly led us to questions about the
  meaning of variables in our code. This chapter moves on to present the
  details behind Python’s scopes—the places where
  variables are defined and looked up. Like module files, scopes help prevent
  name clashes across your program’s code: names defined in one program unit
  don’t interfere with names in another.
As we’ll see, the place where a name is assigned in our code is
  crucial to determining what the name means. We’ll also find that scope usage
  can have a major impact on program maintenance effort; overuse of
  globals, for example, is a generally bad thing. On the
  plus side, we’ll learn that scopes can provide a way to retain
  state information between function calls, and offer an
  alternative to classes in some roles.
Python Scope Basics
Now that you’re ready to start writing your own functions, we need to get more
    formal about what names mean in Python. When you use a name in a program,
    Python creates, changes, or looks up the name in what is known as a namespace—a place where names
    live. When we talk about the search for a name’s value in relation to
    code, the term scope refers to a namespace: that is,
    the location of a name’s assignment in your source code determines the
    scope of the name’s visibility to your code.
Just about everything related to names, including scope classification, happens at assignment
    time in Python. As we’ve seen, names in Python spring into existence when
    they are first assigned values, and they must be assigned before they are
    used. Because names are not declared ahead of time, Python uses the
    location of the assignment of a name to associate it with (i.e.,
    bind it to) a particular namespace. In other words,
    the place where you assign a name in your source code determines the
    namespace it will live in, and hence its scope of
    visibility.
Besides packaging code for reuse, functions add an extra namespace
    layer to your programs to minimize the potential for collisions among
    variables of the same name—by default, all names assigned inside
    a function are associated with that function’s namespace, and no
    other. This rule means that:
	Names assigned inside a def
        can only be seen by the code within that def. You cannot even refer to such names
        from outside the function.

	Names assigned inside a def
        do not clash with variables outside the def, even if the same names are used
        elsewhere. A name X assigned
        outside a given def (i.e., in a
        different def or at the top level
        of a module file) is a completely different variable from a name
        X assigned inside that def.


In all cases, the scope of a variable (where it can be used) is
    always determined by where it is assigned in your source code and has
    nothing to do with which functions call which. In fact, as we’ll learn in
    this chapter, variables may be assigned in three different places,
    corresponding to three different scopes:
	If a variable is assigned inside a def, it is local to
        that function.

	If a variable is assigned in an enclosing def, it is nonlocal to
        nested functions.

	If a variable is assigned outside all defs, it is global to
        the entire file.


We call this lexical scoping because variable scopes are determined entirely by the
    locations of the variables in the source code of your program files, not
    by function calls.
For example, in the following module file, the X = 99 assignment creates a
    global variable named X (visible everywhere in this file), but the
    X = 88 assignment creates a
    local variable X
    (visible only within the def
    statement):
X = 99                     # Global (module) scope X

def func():
    X = 88                 # Local (function) scope X: a different variable
Even though both variables are named X, their scopes make them different. The net
    effect is that function scopes help to avoid name clashes in your programs
    and help to make functions more self-contained program units—their code
    need not be concerned with names used elsewhere.
Scope Details
Before we started writing functions, all the code we wrote was at
      the top level of a module (i.e., not nested in a def), so the names we used either lived in the
      module itself or were built-ins predefined by Python (e.g., open). Technically, the interactive prompt is
      a module named __main__ that prints
      results and doesn’t save its code; in all other ways, though, it’s like
      the top level of a module file.
Functions, though, provide nested namespaces (scopes) that
      localize the names they use, such that names inside a function won’t
      clash with those outside it (in a module or another function). Functions
      define a local scope and modules define a
      global scope with the following properties:
	The enclosing module is a global
          scope. Each module is a global scope—that is, a namespace in which
          variables created (assigned) at the top level of the module file
          live. Global variables become attributes of a module object to the
          outside world after imports but can also be used as simple variables
          within the module file itself.

	The global scope spans a single file
          only. Don’t be fooled by the word “global” here—names at
          the top level of a file are global to code within that single file
          only. There is really no notion of a single, all-encompassing global
          file-based scope in Python. Instead, names are partitioned into
          modules, and you must always import a module explicitly if you want
          to be able to use the names its file defines. When you hear “global”
          in Python, think “module.”

	Assigned names are local unless
          declared global or nonlocal. By default, all the names
          assigned inside a function definition are put in the local scope
          (the namespace associated with the function call). If you need to
          assign a name that lives at the top level of the module enclosing
          the function, you can do so by declaring it in a global statement inside the function. If you need to assign a name that lives in
          an enclosing def, as of Python
          3.X you can do so by declaring it in a nonlocal
          statement.

	All other names are enclosing function
          locals, globals, or built-ins. Names not assigned a value
          in the function definition are assumed to be
          enclosing scope locals, defined in a physically
          surrounding def statement;
          globals that live in the enclosing module’s
          namespace; or built-ins in the predefined built-ins module Python provides.

	Each call to a function creates a new
          local scope. Every time you call a function, you create a new local
          scope—that is, a namespace in which the names created inside that
          function will usually live. You can think of each def statement
          (and lambda expression) as defining a new local scope, but the local scope
          actually corresponds to a function call.
          Because Python allows functions to call themselves to loop—an
          advanced technique known as recursion and noted briefly in
          Chapter 9 when we
          explored comparisons—each active call receives its own copy of the
          function’s local variables. Recursion is useful in functions we
          write as well, to process structures whose shapes can’t be predicted
          ahead of time; we’ll explore it more fully in Chapter 19.


There are a few subtleties worth underscoring here. First, keep in
      mind that code typed at the interactive command prompt lives
      in a module, too, and follows the normal scope rules: they are global
      variables, accessible to the entire interactive session. You’ll learn
      more about modules in the next part of this book.
Also note that any type of assignment within
      a function classifies a name as local. This includes = statements, module names in import, function names in def, function argument names, and so on. If
      you assign a name in any way within a def, it will become a local to that function
      by default.
Conversely, in-place changes to objects do not classify names as locals; only actual name
      assignments do. For instance, if the name L is assigned to a list at the top level of a
      module, a statement L = X within a
      function will classify L as a local,
      but L.append(X) will not. In the
      latter case, we are changing the list object that L references, not L itself—L
      is found in the global scope as usual, and Python happily modifies it
      without requiring a global (or
      nonlocal) declaration. As usual, it
      helps to keep the distinction between names and objects clear: changing
      an object is not an assignment to a name.

Name Resolution: The LEGB Rule
If the prior section sounds confusing, it really boils down to three simple
      rules. Within a def statement:
	Name assignments create or change local
          names by default.

	Name references search at most four
          scopes: local, then enclosing functions (if any), then global, then
          built-in.

	Names declared in global
          and nonlocal statements map
          assigned names to enclosing module and function scopes,
          respectively.


In other words, all names assigned inside a function def statement (or a lambda, an expression we’ll meet later) are
      locals by default. Functions can freely use names assigned in
      syntactically enclosing functions and the global scope, but they must
      declare such nonlocals and globals in order to change them.
Python’s name-resolution scheme is sometimes called the LEGB rule, after the scope
      names:
	When you use an unqualified name inside a function, Python
          searches up to four scopes—the local (L) scope,
          then the local scopes of any enclosing (E)
          defs and lambdas, then the global (G) scope, and then
          the built-in (B) scope—and stops at the first
          place the name is found. If the name is not found during this
          search, Python reports an error.

	When you assign a name in a function (instead of just
          referring to it in an expression), Python always creates or changes
          the name in the local scope, unless it’s declared to be global or
          nonlocal in that function.

	When you assign a name outside any function (i.e., at the top
          level of a module file, or at the interactive prompt), the local
          scope is the same as the global scope—the module’s namespace.


Because names must be assigned before they can be used (as we
      learned in Chapter 6), there are
      no automatic components in this model: assignments always determine name
      scopes unambiguously. Figure 17-1 illustrates
      Python’s four scopes. Note that the second scope lookup layer,
      E—the scopes of enclosing defs or lambdas—can technically correspond to more
      than one lookup level. This case only comes into play when you nest
      functions within functions, and is enhanced by the nonlocal statement in 3.X.1
Figure 17-1. The LEGB scope lookup rule. When a variable is referenced,
        Python searches for it in this order: in the local scope, in any
        enclosing functions’ local scopes, in the global scope, and finally in
        the built-in scope. The first occurrence wins. The place in your code
        where a variable is assigned usually determines its scope. In Python
        3.X, nonlocal declarations can also force names to be mapped to
        enclosing function scopes, whether assigned or not.

Also keep in mind that these rules apply only to simple
      variable names (e.g., spam). In Parts V and VI, we’ll see that
      qualified attribute names (e.g.,
      object.spam) live in particular objects and follow a
      completely different set of lookup rules than those covered here.
      References to attribute names following periods (.) search one or more
      objects, not scopes, and in fact may invoke
      something called inheritance in Python’s OOP model;
      more on this in Part VI of this book.
Other Python scopes: Preview
Though obscure at this point in the book, there are technically
        three more scopes in Python—temporary loop variables in some
        comprehensions, exception reference variables in some try handlers, and local scopes in class statements.
        The first two of these are special cases that rarely impact real code,
        and the third falls under the LEGB umbrella rule.
Most statement blocks and other constructs do not localize the
        names used within them, with the following version-specific exceptions
        (whose variables are not available to, but also will not clash with,
        surrounding code, and which involve topics covered in full
        later):
	Comprehension variables—the variable
            X used to refer to the current iteration item in a comprehension
            expression such as [X for X in
            I]. Because they might clash with other names and
            reflect internal state in generators, in 3.X, such variables are
            local to the expression itself in all comprehension forms:
            generator, list, set, and dictionary. In 2.X, they are local to
            generator expressions and set and dictionary comprehensions, but
            not to list comprehensions that map their names to the scope
            outside the expression. By contrast, for loop statements never localize their
            variables to the statement block in any Python. See Chapter 20 for more details and
            examples.

	Exception variables—the variable
            X used to reference the raised exception in a try statement handler clause such as
            except E as X. Because they
            might defer garbage collection’s memory recovery, in 3.X, such
            variables are local to that except block, and in fact are removed
            when the block is exited (even if you’ve used it earlier in your
            code!). In 2.X, these variables live on after the try statement. See Chapter 34 for additional
            information.


These contexts augment the LEGB rule, rather than modifying it.
        Variables assigned in a comprehension, for example, are simply bound
        to a further nested and special-case scope; other names referenced
        within these expressions follow the usual LEGB lookup rules.
It’s also worth noting that the class statement we’ll meet in Part VI creates a new local
        scope too for the names assigned inside the top level of its block. As
        for def, names assigned inside a
        class don’t clash with names
        elsewhere, and follow the LEGB lookup rule, where the class block is the “L” level. Like modules
        and imports, these names also morph into class object attributes after
        the class statements ends.
Unlike functions, though, class names are not created per call: class
        object calls generate instances, which inherit
        names assigned in the class and
        record per-object state as attributes. As we’ll also learn in Chapter 29, although the LEGB rule is used to
        resolve names used in both the top level of a class itself as well as
        the top level of method functions nested within it, classes themselves
        are skipped by scope lookups—their names must be
        fetched as object attributes. Because Python searches enclosing
        functions for referenced names, but not enclosing classes, the LEGB
        rule still applies to OOP code.


Scope Example
Let’s step through a larger example that demonstrates scope ideas. Suppose we
      wrote the following code in a module file:
# Global scope
X = 99                # X and func assigned in module: global

def func(Y):          # Y and Z assigned in function: locals
    # Local scope
    Z = X + Y         # X is a global
    return Z

func(1)               # func in module: result=100
This module and the function it contains use a number of names to
      do their business. Using Python’s scope rules, we can classify the names
      as follows:
	Global names: X, func
	X is global because it’s
            assigned at the top level of the module file; it can be referenced
            inside the function as a simple unqualified variable without being
            declared global. func is global
            for the same reason; the def
            statement assigns a function object to the name func at the top level of the
            module.

	Local names: Y, Z
	Y and Z are local to the function (and exist
            only while the function runs) because they are both assigned
            values in the function definition: Z by virtue of the = statement, and Y because arguments are always passed by
            assignment.


The underlying rationale for this name-segregation scheme is that
      local variables serve as temporary names that you
      need only while a function is running. For instance, in the preceding
      example, the argument Y and the
      addition result Z exist only inside
      the function; these names don’t interfere with the enclosing module’s
      namespace (or any other function, for that matter). In fact, local
      variables are removed from memory when the function call exits, and
      objects they reference may be garbage-collected if
      not referenced elsewhere. This is an automatic, internal step, but it
      helps minimize memory requirements.
The local/global distinction also makes functions easier to
      understand, as most of the names a function uses appear in the function
      itself, not at some arbitrary place in a module. Also, because you can
      be sure that local names will not be changed by some remote function in
      your program, they tend to make programs easier to debug and modify.
      Functions are self-contained units of software.

The Built-in Scope
We’ve been talking about the built-in scope in the abstract, but it’s a bit simpler
      than you may think. Really, the built-in scope is just a built-in module
      called builtins, but
      you have to import builtins to query
      built-ins because the name builtins
      is not itself built in...
No, I’m serious! The built-in scope is implemented as a standard
      library module named builtins in 3.X,
      but that name itself is not placed in the built-in scope, so you have to
      import it in order to inspect it. Once you do, you can run a dir call to see which names are predefined. In
      Python 3.3 (see ahead for 2.X usage):
>>> import builtins
>>> dir(builtins)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
...many more names omitted...
'ord', 'pow', 'print', 'property', 'quit', 'range', 'repr', 'reversed',
'round', 'set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum',
'super', 'tuple', 'type', 'vars', 'zip']
The names in this list constitute the built-in scope in Python; roughly the first half are
      built-in exceptions, and the second half are built-in functions. Also in
      this list are the special names None,
      True, and False, though they are treated as reserved
      words in 3.X. Because Python automatically searches this module last in
      its LEGB lookup, you get all the names in this list “for free”—that is,
      you can use them without importing any modules. Thus, there are really
      two ways to refer to a built-in function—by taking advantage of the LEGB
      rule, or by manually importing the builtins module:
>>> zip                         # The normal way
<class 'zip'>

>>> import builtins             # The hard way: for customizations
>>> builtins.zip
<class 'zip'>

>>> zip is builtins.zip         # Same object, different lookups
True
The second of these approaches is sometimes useful in advanced
      ways we’ll meet in this chapter’s sidebars.
Redefining built-in names: For better or worse
The careful reader might also notice that because the LEGB
        lookup procedure takes the first occurrence of a
        name that it finds, names in the local scope may override variables of
        the same name in both the global and built-in scopes, and global names
        may override built-ins. A function can, for instance, create a local
        variable called open by assigning
        to it:
def hider():
    open = 'spam'              # Local variable, hides built-in here
    ...
    open('data.txt')           # Error: this no longer opens a file in this scope!
However, this will hide the built-in function called open that lives in the built-in (outer)
        scope, such that the name open will
        no longer work within the function to open files—it’s now a string,
        not the opener function. This isn’t a problem if you don’t need to
        open files in this function, but triggers an error if you attempt to
        open through this name.
This can even occur more simply at the interactive prompt, which
        works as a global, module scope:
>>> open = 99                   # Assign in global scope, hides built-in here too
Now, there is nothing inherently wrong with
        using a built-in name for variables of your own, as long as you don’t
        need the original built-in version. After all, if these were truly off
        limits, we would need to memorize the entire built-in names list and
        treat all its names as reserved. With over 140 names in this module in
        3.3, that would be far too restrictive and daunting:
>>> len(dir(builtins)), len([x for x in dir(builtins) if not x.startswith('__')])
(148, 142)
In fact, there are times in advanced programming where you may
        really want to replace a built-in name by
        redefining it in your code—to define a custom open that verifies access attempts, for
        instance (see this chapter’s sidebar “Breaking the Universe in Python 2.X” for more on this
        thread).
Still, redefining a built-in name is often a bug, and a nasty
        one at that, because Python will not issue a warning message about it.
        Tools like PyChecker (see the Web) can warn you
        of such mistakes, but knowledge may be your best defense on this
        point: don’t redefine a built-in name you need. If you accidentally
        reassign a built-in name at the interactive prompt this way, you can
        either restart your session or run a del name
        statement to remove the redefinition from your scope, thereby
        restoring the original in the built-in scope.
Note that functions can similarly hide global variables of the
        same name with locals, but this is more broadly useful, and in fact is
        much of the point of local scopes—because they minimize the potential
        for name clashes, your functions are self-contained namespace
        scopes:
X = 88                         # Global X

def func():
    X = 99                     # Local X: hides global, but we want this here

func()
print(X)                       # Prints 88: unchanged
Here, the assignment within the function creates a local
        X that is a completely different
        variable from the global X in the
        module outside the function. As one consequence, though, there is no
        way to change a name outside a function without
        adding a global (or nonlocal) declaration to the def, as described in the next section.
Note
Version skew note: Actually, the tongue
          twisting gets a bit worse. The Python 3.X builtins module used here is named
          __builtin__ in Python 2.X. In
          addition, the name __builtins__
          (with the s) is preset in most global scopes,
          including the interactive session, to reference the module known as
          builtins in 3.X and __builtin__ in 2.X, so you can often use
          __builtins__ without an import
          but cannot run an import on that name itself—it’s a preset variable,
          not a module’s name.
That is, in 3.X builtins is
          __builtins__ is True
          after you import builtins, and in
          2.X __builtin__ is __builtins__
          is True after you import __builtin__. The upshot is that we can
          usually inspect the built-in scope by simply running dir(__builtins__) with no import in both
          3.X and 2.X, but we are advised to use builtins for real work and customization
          in 3.X, and __builtin__ for the
          same in 2.X. Who said documenting this stuff was easy?

Breaking the Universe in Python 2.X
Here’s another thing you can do in Python that you probably shouldn’t—because the names
          True and False in 2.X are just variables in the
          built-in scope and are not reserved, it’s possible to reassign them
          with a statement like True =
          False. Don’t worry: you won’t actually break the logical
          consistency of the universe in so doing! This statement merely
          redefines the word True for the
          single scope in which it appears to return False. All other scopes still find the
          originals in the built-in scope.
For more fun, though, in Python 2.X you could say __builtin__.True = False, to reset
          True to False for the entire Python process. This
          works because there is only one built-in scope module in a program,
          shared by all its clients. Alas, this type of assignment has been
          disallowed in Python 3.X, because True and False are treated as actual reserved
          words, just like None. In 2.X,
          though, it sends IDLE into a strange panic state that resets the
          user code process (in other words, don’t try this at home,
          kids).
This technique can be useful, however, both to illustrate the
          underlying namespace model, and for tool writers who must change
          built-ins such as open to
          customized functions. By reassigning a function’s name in the
          built-in scope, you reset it to your customization for every module
          in the process. If you do, you’ll probably also need to remember the
          original version to call from your customization—in fact, we’ll see
          one way to achieve this for a custom open in the sidebar “Why You Will Care: Customizing open” after we’ve
          had a chance to explore nested scope closures and state retention
          options.
Also, note again that third-party tools such as PyChecker, and
          others such as PyLint, will warn about common programming mistakes,
          including accidental assignment to built-in names (this is usually
          known as “shadowing” a built-in in such tools). It’s not a bad idea
          to run your first few Python programs through tools like these to
          see what they point out.




The global Statement
The global statement and its nonlocal 3.X
    cousin are the only things that are remotely like declaration statements
    in Python. They are not type or size declarations, though; they are
    namespace declarations. The global statement tells Python that a function
    plans to change one or more global names—that is, names that live in the
    enclosing module’s scope (namespace).
We’ve talked about global in
    passing already. Here’s a summary:
	Global names are variables assigned at the top level of the
        enclosing module file.

	Global names must be declared only if they are assigned within a
        function.

	Global names may be referenced within a function without being
        declared.


In other words, global allows us
    to change names that live outside a def at the top level of a module file. As we’ll
    see later, the nonlocal statement is
    almost identical but applies to names in the enclosing def’s local scope, rather than names in the
    enclosing module.
The global statement consists of
    the keyword global, followed by one or
    more names separated by commas. All the listed names will be mapped to the
    enclosing module’s scope when assigned or referenced within the function
    body. For instance:
X = 88                         # Global X

def func():
    global X
    X = 99                     # Global X: outside def

func()
print(X)                       # Prints 99
We’ve added a global declaration
    to the example here, such that the X
    inside the def now refers to the
    X outside the def; they are the same variable this time, so
    changing X inside the function changes
    the X outside it. Here is a slightly
    more involved example of global at
    work:
y, z = 1, 2                    # Global variables in module
def all_global():
    global x                   # Declare globals assigned
    x = y + z                  # No need to declare y, z: LEGB rule
Here, x, y, and z are
    all globals inside the function all_global. y
    and z are global because they aren’t
    assigned in the function; x is global
    because it was listed in a global
    statement to map it to the module’s scope explicitly. Without the global here, x would be considered local by virtue of the
    assignment.
Notice that y and z are not declared global; Python’s LEGB lookup
    rule finds them in the module automatically. Also, notice that x does not even exist in the enclosing module
    before the function runs; in this case, the first assignment in the
    function creates x in the
    module.
Program Design: Minimize Global Variables
Functions in general, and global variables in particular, raise some larger
      design questions. How should our functions communicate? Although some of
      these will become more apparent when you begin writing larger functions
      of your own, a few guidelines up front might spare you from problems
      later. In general, functions should rely on arguments and return values
      instead of globals, but I need to explain why.
By default, names assigned in functions are locals, so if you want
      to change names outside functions you have to write extra code (e.g.,
      global statements). This is
      deliberate—as is common in Python, you have to say more to do the
      potentially “wrong” thing. Although there are times when globals are
      useful, variables assigned in a def
      are local by default because that is normally the best policy. Changing
      globals can lead to well-known software engineering problems: because
      the variables’ values are dependent on the order of calls to arbitrarily
      distant functions, programs can become difficult to debug, or to
      understand at all.
Consider this module file, for example, which is presumably
      imported and used elsewhere:
X = 99
def func1():
    global X
    X = 88

def func2():
    global X
    X = 77
Now, imagine that it is your job to modify or reuse this code.
      What will the value of X be here?
      Really, that question has no meaning unless it’s qualified with a point
      of reference in time—the value of X is timing-dependent, as it depends on which
      function was called last (something we can’t tell from this file
      alone).
The net effect is that to understand this code, you have to trace
      the flow of control through the entire program.
      And, if you need to reuse or modify the code, you have to keep the
      entire program in your head all at once. In this case, you can’t really
      use one of these functions without bringing along the other. They are
      dependent on—that is, coupled with—the global
      variable. This is the problem with globals: they generally make code
      more difficult to understand and reuse than code consisting of
      self-contained functions that rely on locals.
On the other hand, short of using tools like nested scope closures
      or object-oriented programming with classes, global variables are
      probably the most straightforward way in Python to retain shared
      state information—information that a function needs
      to remember for use the next time it is called. Local variables
      disappear when the function returns, but globals do not. As we’ll see
      later, other techniques can achieve this, too, and allow for multiple
      copies of the retained information, but they are generally more complex
      than pushing values out to the global scope for retention in simple use
      cases where this applies.
Moreover, some programs designate a single module to collect
      globals; as long as this is expected, it is not as harmful. Programs
      that use multithreading to do parallel processing in Python also
      commonly depend on global variables—they become shared memory between
      functions running in parallel threads, and so act as a communication device.2
For now, though, especially if you are relatively new to
      programming, avoid the temptation to use globals whenever you can—they
      tend to make programs difficult to understand and reuse, and won’t work
      for cases where one copy of saved data is not enough. Try to communicate
      with passed-in arguments and return values instead. Six months from now,
      both you and your coworkers may be happy you did.

Program Design: Minimize Cross-File Changes
Here’s another scope-related design issue: although we can change
      variables in another file directly, we usually shouldn’t. Module files
      were introduced in Chapter 3 and are
      covered in more depth in the next part of this book. To illustrate their
      relationship to scopes, consider these two module files:
# first.py
X = 99                    # This code doesn't know about second.py

# second.py
import first
print(first.X)            # OK: references a name in another file
first.X = 88              # But changing it can be too subtle and implicit
The first defines a variable X,
      which the second prints and then changes by assignment. Notice that we
      must import the first module into the second file to get to its variable
      at all—as we’ve learned, each module is a self-contained namespace
      (package of variables), and we must import one module to see inside it
      from another. That’s the main point about modules: by segregating
      variables on a per-file basis, they avoid name collisions across files,
      in much the same way that local variables avoid name clashes across
      functions.
Really, though, in terms of this chapter’s topic, the global scope
      of a module file becomes the attribute namespace of
      the module object once it is imported—importers automatically have
      access to all of the file’s global variables, because a file’s global
      scope morphs into an object’s attribute namespace when it is
      imported.
After importing the first module, the second module prints its
      variable and then assigns it a new value. Referencing the module’s
      variable to print it is fine—this is how modules are linked together
      into a larger system normally. The problem with the assignment to
      first.X, however, is that it is far
      too implicit: whoever’s charged with maintaining or reusing the first
      module probably has no clue that some arbitrarily far-removed module on
      the import chain can change X out
      from under him or her at runtime. In fact, the second module may be in a
      completely different directory, and so difficult to notice at
      all.
Although such cross-file variable changes are always possible in
      Python, they are usually much more subtle than you will want. Again,
      this sets up too strong a coupling between the two
      files—because they are both dependent on the value of the variable
      X, it’s difficult to understand or
      reuse one file without the other. Such implicit cross-file dependencies
      can lead to inflexible code at best, and outright bugs at worst.
Here again, the best prescription is generally to not do this—the
      best way to communicate across file boundaries is to call functions,
      passing in arguments and getting back return values. In this specific
      case, we would probably be better off coding an accessor function to manage the
      change:
# first.py
X = 99

def setX(new):            # Accessors make external changes explicit
    global X              # And can manage access in a single place
    X = new

# second.py
import first
first.setX(88)            # Call the function instead of changing directly
This requires more code and may seem like a trivial change, but it
      makes a huge difference in terms of readability and maintainability—when
      a person reading the first module by itself sees a function, that person
      will know that it is a point of interface and will
      expect the change to the X. In other
      words, it removes the element of surprise that is rarely a good thing in
      software projects. Although we cannot prevent cross-file changes from
      happening, common sense dictates that they should be minimized unless
      widely accepted across the program.
Note
When we meet classes in Part VI,
        we’ll see similar techniques for coding attribute accessors. Unlike
        modules, classes can also intercept attribute fetches automatically
        with operator overloading, even when accessors aren’t used by their
        clients.


Other Ways to Access Globals
Interestingly, because global-scope variables morph into the attributes
      of a loaded module object, we can emulate the global statement by importing the enclosing
      module and assigning to its attributes, as in the following example
      module file. Code in this file imports the enclosing module, first by
      name, and then by indexing the sys.modules loaded
      modules table (more on this table in Chapter 22 and Chapter 25):
# thismod.py

var = 99                              # Global variable == module attribute

def local():
    var = 0                           # Change local var

def glob1():
    global var                        # Declare global (normal)
    var += 1                          # Change global var

def glob2():
    var = 0                           # Change local var
    import thismod                    # Import myself
    thismod.var += 1                  # Change global var

def glob3():
    var = 0                           # Change local var
    import sys                        # Import system table
    glob = sys.modules['thismod']     # Get module object (or use __name__)
    glob.var += 1                     # Change global var

def test():
    print(var)
    local(); glob1(); glob2(); glob3()
    print(var)
When run, this adds 3 to the global variable (only the first
      function does not impact it):
>>> import thismod
>>> thismod.test()
99
102
>>> thismod.var
102
This works, and it illustrates the equivalence of globals to
      module attributes, but it’s much more work than using the global statement to make your intentions
      explicit.
As we’ve seen, global allows us
      to change names in a module outside a function. It has a close relative
      named nonlocal that can be used to
      change names in enclosing functions, too—but to understand how that can
      be useful, we first need to explore enclosing functions in
      general.


Scopes and Nested Functions
So far, I’ve omitted one part of Python’s scope rules on purpose, because it’s
    relatively uncommon to encounter it in practice. However, it’s time to
    take a deeper look at the letter E in the LEGB lookup
    rule. The E layer was added in Python 2.2; it takes
    the form of the local scopes of any and all enclosing function’s local
    scopes. Enclosing scopes are sometimes also called statically
    nested scopes. Really, the nesting is a lexical one—nested
    scopes correspond to physically and syntactically nested code structures
    in your program’s source code text.
Nested Scope Details
With the addition of nested function scopes, variable lookup rules
      become slightly more complex. Within a function:
	A reference (X) looks for the name X first in the
          current local scope (function); then in the local scopes of any
          lexically enclosing functions in your source code, from inner to
          outer; then in the current global scope (the module file); and
          finally in the built-in scope (the module builtins). global declarations make the search begin
          in the global (module file) scope instead.

	An assignment (X = value) creates or changes the name X
          in the current local scope, by default. If X is declared global
          within the function, the assignment creates or changes the name
          X in the enclosing module’s scope
          instead. If, on the other hand, X
          is declared nonlocal within the function in 3.X
          (only), the assignment changes the name X in the closest enclosing function’s
          local scope.


Notice that the global
      declaration still maps variables to the enclosing module. When nested
      functions are present, variables in enclosing functions may be
      referenced, but they require 3.X nonlocal declarations to be changed.

Nested Scope Examples
To clarify the prior section’s points, let’s illustrate with some
      real code. Here is what an enclosing function scope looks like (type
      this into a script file or at the interactive prompt to run it
      live):
X = 99                   # Global scope name: not used

def f1():
    X = 88               # Enclosing def local
    def f2():
        print(X)         # Reference made in nested def
    f2()

f1()                     # Prints 88: enclosing def local
First off, this is legal Python code: the def is simply an executable statement, which
      can appear anywhere any other statement can—including nested in another
      def. Here, the nested def runs while a call to the function f1 is running; it generates a function and
      assigns it to the name f2, a local
      variable within f1’s local scope. In
      a sense, f2 is a temporary function
      that lives only during the execution of (and is visible only to code in)
      the enclosing f1.
But notice what happens inside f2: when it prints the variable X, it refers to the X that lives in the enclosing f1 function’s local scope. Because functions
      can access names in all physically enclosing def statements, the X in f2 is
      automatically mapped to the X in
      f1, by the LEGB lookup rule.
This enclosing scope lookup works even if the enclosing function
      has already returned. For example, the following code defines a function
      that makes and returns another function, and
      represents a more common usage pattern:
def f1():
    X = 88
    def f2():
        print(X)         # Remembers X in enclosing def scope
    return f2            # Return f2 but don't call it

action = f1()            # Make, return function
action()                 # Call it now: prints 88
In this code, the call to action is really running the function we named
      f2 when f1 ran. This works because functions are
      objects in Python like everything else, and can be passed back as return
      values from other functions. Most importantly, f2 remembers the enclosing scope’s X in f1,
      even though f1 is no longer
      active—which leads us to the next topic.

Factory Functions: Closures
Depending on whom you ask, this sort of behavior is also sometimes called a
      closure or a factory
      function—the former describing a functional programming
      technique, and the latter denoting a design pattern. Whatever
      the label, the function object in question remembers values in enclosing
      scopes regardless of whether those scopes are still present in memory.
      In effect, they have attached packets of memory (a.k.a. state retention),
      which are local to each copy of the nested function created, and often
      provide a simple alternative to classes in this role.
A simple function factory
Factory functions (a.k.a. closures) are sometimes used by
        programs that need to generate event handlers on the fly in response
        to conditions at runtime. For instance, imagine a GUI that must define
        actions according to user inputs that cannot be anticipated when the
        GUI is built. In such cases, we need a function that creates and
        returns another function, with information that may vary per function
        made.
To illustrate this in simple terms, consider the following
        function, typed at the interactive prompt (and shown here without the
        “...” continuation-line prompts, per the presentation note
        ahead):
>>> def maker(N):
        def action(X):                    # Make and return action
            return X ** N                 # action retains N from enclosing scope
        return action
This defines an outer function that simply generates and returns
        a nested function, without calling it—maker makes action, but simply returns action without running it. If we call the
        outer function:
>>> f = maker(2)                          # Pass 2 to argument N
>>> f
<function maker.<locals>.action at 0x0000000002A4A158>
what we get back is a reference to the generated nested
        function—the one created when the nested def runs. If we now call what we got back
        from the outer function:
>>> f(3)                                  # Pass 3 to X, N remembers 2: 3 ** 2
9
>>> f(4)                                  # 4 ** 2
16
we invoke the nested function—the one called action within maker. In other words, we’re calling the
        nested function that maker created
        and passed back.
Perhaps the most unusual part of this, though, is that the
        nested function remembers integer 2, the value of the variable N in maker, even though maker has returned and exited by the time we
        call action. In effect, N from the enclosing local scope is retained
        as state information attached to the generated action, which is why we get back its
        argument squared when it is later called.
Just as important, if we now call the outer function again, we
        get back a new nested function with
        different state information attached. That is, we
        get the argument cubed instead of squared when calling the new
        function, but the original still squares as before:
>>> g = maker(3)                          # g remembers 3, f remembers 2
>>> g(4)                                  # 4 ** 3
64
>>> f(4)                                  # 4 ** 2
16
This works because each call to a factory function like this
        gets its own set of state information. In our
        case, the function we assign to name g remembers 3, and f
        remembers 2, because each has its
        own state information retained by the variable N in maker.
This is a somewhat advanced technique that you may not see very
        often in most code, and may be popular among programmers with
        backgrounds in functional programming languages. On the other hand,
        enclosing scopes are often employed by the lambda function-creation expressions we’ll
        expand on later in this chapter—because they are expressions, they are
        almost always nested within a def.
        For example, a lambda would serve
        in place of a def in our
        example:
>>> def maker(N):
        return lambda X: X ** N           # lambda functions retain state too

>>> h = maker(3)
>>> h(4)                                  # 4 ** 3 again
64
For a more tangible example of closures at work, see the
        upcoming sidebar “Why You Will Care: Customizing open”. It uses similar
        techniques to store information for later use in an enclosing
        scope.
Note
Presentation note: In this chapter, I’ve
          started listing interactive examples without the “...”
          continuation-line prompts that may or may not
          appear in your interface (they do at the shell, but not in IDLE).
          This convention will be followed from this point on to make larger
          code examples a bit easier to cut and paste from an ebook or other.
          I’m assuming that by now you understand indentation rules and have
          had your fair share of typing Python code, and some functions and
          classes ahead may be too large for rote input.
I’m also listing more and more code alone or in
          files, and switching between these and
          interactive input arbitrarily; when you see a “>>>” prompt,
          the code is typed interactively, and can generally be cut and pasted
          into your Python shell if you omit the “>>>” itself. If
          this fails, you can still run by pasting line by line, or editing in
          a file.


Closures versus classes, round 1
To some, classes, described in full in Part VI of this book,
        may seem better at state retention like this, because they make their
        memory more explicit with attribute assignments. Classes also directly
        support additional tools that closure functions do not, such as
        customization by inheritance and operator overloading, and more
        naturally implement multiple behaviors in the form of methods. Because
        of such distinctions, classes may be better at implementing more
        complete objects.
Still, closure functions often provide a lighter-weight and
        viable alternative when retaining state is the only goal. They provide
        for per-call localized storage for data required by a single nested
        function. This is especially true when we add the 3.X nonlocal statement described ahead to allow
        enclosing scope state changes (in 2.X, enclosing scopes are read-only,
        and so have more limited uses).
From a broader perspective, there are multiple ways for Python
        functions to retain state between calls. Although the values of normal
        local variables go away when a function returns, values can be
        retained from call to call in global variables; in class instance
        attributes; in the enclosing scope references we’ve met here; and in
        argument defaults and function attributes. Some might include mutable
        default arguments to this list too (though others may wish they
        didn’t).
We’ll preview class-based alternatives and meet function
        attributes later in this chapter, and get the full story on arguments
        and defaults in Chapter 18. To help us judge how
        defaults compete on state retention, though, the next section gives
        enough of an introduction to get us started.
Note
Closures can also be created when a class is nested in a def: the values of the enclosing
          function’s local names are retained by references within the class,
          or one of its method functions. See Chapter 29 for more on nested classes. As
          we’ll see in later examples (e.g., Chapter 39’s
          decorators), the outer def in
          such code serves a similar role: it becomes a class factory, and
          provides state retention for the nested class.



Retaining Enclosing Scope State with Defaults
In early versions of Python (prior to 2.2), the sort of code in the prior
      section failed because nested defs
      did not do anything about scopes—a reference to a variable within
      f2 in the following would search only
      the local (f2), then global (the code
      outside f1), and then built-in
      scopes. Because it skipped the scopes of enclosing functions, an error
      would result. To work around this, programmers typically used
      default argument values to pass in and remember the
      objects in an enclosing scope:
def f1():
    x = 88
    def f2(x=x):                # Remember enclosing scope X with defaults
        print(x)
    f2()

f1()                            # Prints 88
This coding style works in all Python releases, and you’ll still
      see this pattern in some existing Python code. In fact, it’s still
      required for loop variables, as we’ll see in a
      moment, which is why it remains worth studying today. In short, the
      syntax arg=val in a def header means that the argument arg will default to the value val if no real value is passed to arg in a call. This syntax is used here to
      explicitly assign enclosing scope state to be retained.
Specifically, in the modified f2 here, the x=x means that the argument x will default to the value of x in the enclosing scope—because the second
      x is evaluated before Python steps
      into the nested def, it still refers
      to the x in f1. In effect, the default argument remembers
      what x was in f1: the object 88.
That’s fairly complex, and it depends entirely on the timing of
      default value evaluations. In fact, the nested scope lookup rule was
      added to Python to make defaults unnecessary for this role—today, Python
      automatically remembers any values required in the enclosing scope for
      use in nested defs.
Of course, the best prescription for much code is simply to avoid
      nesting defs within defs, as it will make your programs much
      simpler—in the Pythonic view, flat is generally
      better than nested. The following is an equivalent of the prior example
      that avoids nesting altogether. Notice the forward reference in this
      code—it’s OK to call a function defined after the function that calls
      it, as long as the second def runs
      before the first function is actually called. Code inside a def is never evaluated until the function is
      actually called:
>>> def f1():
        x = 88                  # Pass x along instead of nesting
        f2(x)                   # Forward reference OK

>>> def f2(x):
        print(x)                # Flat is still often better than nested!

>>> f1()
88
If you avoid nesting this way, you can almost forget about the
      nested scopes concept in Python. On the other hand, the nested functions
      of closure (factory) functions are fairly common in modern Python code,
      as are lambda functions—which almost
      naturally appear nested in defs and
      often rely on the nested scopes layer, as the next section
      explains.
Nested scopes, defaults, and lambdas
Although they see increasing use in defs these days, you may be more likely to care about nested
        function scopes when you start coding or reading lambda expressions. We’ve met lambda briefly and won’t cover it in depth until Chapter 19, but in short, it’s an
        expression that generates a new function to be called later, much like
        a def statement. Because it’s an
        expression, though, it can be used in places that def cannot, such as within list and
        dictionary literals.
Like a def, a lambda expression also introduces a new
        local scope for the function it creates. Thanks to the enclosing
        scopes lookup layer, lambdas can
        see all the variables that live in the functions in which they are
        coded. Thus, the following code—a variation on the factory we saw
        earlier—works, but only because the nested scope rules are
        applied:
def func():
    x = 4
    action = (lambda n: x ** n)          # x remembered from enclosing def
    return action

x = func()
print(x(2))                              # Prints 16, 4 ** 2
Prior to the introduction of nested function scopes, programmers
        used defaults to pass values from an enclosing scope into lambdas, just as for defs. For instance, the following works on
        all Pythons:
def func():
    x = 4
    action = (lambda n, x=x: x ** n)     # Pass x in manually
    return action
Because lambdas are
        expressions, they naturally (and even normally) nest inside enclosing
        defs. Hence, they were perhaps the
        biggest initial beneficiaries of the addition of enclosing function
        scopes in the lookup rules; in most cases, it is no longer necessary
        to pass values into lambdas with
        defaults.

Loop variables may require defaults, not scopes
There is one notable exception to the rule I just gave (and a reason why I’ve shown you
        the otherwise dated default argument technique we just saw): if a
        lambda or def defined within a function is nested
        inside a loop, and the nested function references an enclosing scope
        variable that is changed by that loop, all functions generated within
        the loop will have the same value—the value the referenced variable
        had in the last loop iteration. In such cases,
        you must still use defaults to save the variable’s
        current value instead.
This may seem a fairly obscure case, but it can come up in
        practice more often than you may think, especially in code that
        generates callback handler functions for a number of widgets in a
        GUI—for instance, handlers for button-clicks for all the buttons in a
        row. If these are created in a loop, you may need to be careful to
        save state with defaults, or all your buttons’ callbacks may wind up
        doing the same thing.
Here’s an illustration of this phenomenon reduced to simple
        code: the following attempts to build up a list of functions that each
        remember the current variable i
        from the enclosing scope:
>>> def makeActions():
        acts = []
        for i in range(5):                       # Tries to remember each i
            acts.append(lambda x: i ** x)        # But all remember same last i!
        return acts

>>> acts = makeActions()
>>> acts[0]
<function makeActions.<locals>.<lambda> at 0x0000000002A4A400>
This doesn’t quite work, though—because the enclosing scope
        variable is looked up when the nested functions are later
        called, they all effectively remember the same
        value: the value the loop variable had on the
        last loop iteration. That is, when we pass a
        power argument of 2 in each of the following calls, we get back 4 to
        the power of 2 for each function in the list, because i is the same in all of them—4:
>>> acts[0](2)                                   # All are 4 ** 2, 4=value of last i
16
>>> acts[1](2)                                   # This should be 1 ** 2 (1)
16
>>> acts[2](2)                                   # This should be 2 ** 2 (4)
16
>>> acts[4](2)                                   # Only this should be 4 ** 2 (16)
16
This is the one case where we still have to explicitly retain
        enclosing scope values with default arguments, rather than enclosing
        scope references. That is, to make this sort of code work, we must
        pass in the current value of the enclosing
        scope’s variable with a default. Because defaults are evaluated when
        the nested function is created (not when it’s
        later called), each remembers its own value for
        i:
>>> def makeActions():
        acts = []
        for i in range(5):                       # Use defaults instead
            acts.append(lambda x, i=i: i ** x)   # Remember current i
        return acts

>>> acts = makeActions()
>>> acts[0](2)                                   # 0 ** 2
0
>>> acts[1](2)                                   # 1 ** 2
1
>>> acts[2](2)                                   # 2 ** 2
4
>>> acts[4](2)                                   # 4 ** 2
16
This may seem an odd special case, but it reflects Python’s implementation of variable scopes, and will become more important as you start writing larger programs.
        We’ll talk more about defaults in Chapter 18 and
        lambdas in Chapter 19, so you may also want to return
        and review this section later.3

Arbitrary scope nesting
Before ending this discussion, we should note that scopes may
        nest arbitrarily, but only enclosing function def statements (not classes, described in
        Part VI) are searched when names are
        referenced:
>>> def f1():
        x = 99
        def f2():
            def f3():
                print(x)        # Found in f1's local scope!
            f3()
        f2()

>>> f1()
99
Python will search the local scopes of all
        enclosing defs, from inner to
        outer, after the referencing function’s local scope and before the
        module’s global scope or built-ins. However, this sort of code is even
        less likely to pop up in practice. Again, in Python, we say
        flat is better than nested, and this still holds
        generally true even with the addition of nested scope closures. Except
        in limited contexts, your life (and the lives of your coworkers) will
        generally be better if you minimize nested function definitions.



The nonlocal Statement in 3.X
In the prior section we explored the way that nested functions can
    reference variables in an enclosing function’s scope,
    even if that function has already returned. It turns out that, in Python
    3.X (though not in 2.X), we can also change such
    enclosing scope variables, as long as we declare them in nonlocal statements. With this statement, nested
    defs can have both read and write
    access to names in enclosing functions. This makes nested scope closures
    more useful, by providing changeable state information.
The nonlocal statement is similar
    in both form and role to global,
    covered earlier. Like global, nonlocal declares that a name will be changed in
    an enclosing scope. Unlike global,
    though, nonlocal applies to a name in
    an enclosing function’s scope, not the global module scope outside all
    defs. Also unlike global, nonlocal names must already exist in the
    enclosing function’s scope when declared—they can exist only in enclosing
    functions and cannot be created by a first assignment in a nested def.
In other words, nonlocal both
    allows assignment to names in enclosing function scopes and limits scope
    lookups for such names to enclosing defs. The net effect is a more direct and
    reliable implementation of changeable state information, for contexts that
    do not desire or need classes with attributes, inheritance, and multiple
    behaviors.
nonlocal Basics
Python 3.X introduces a new nonlocal statement, which has meaning only
      inside a function:
def func():
    nonlocal name1, name2, ...            # OK here

>>> nonlocal X
SyntaxError: nonlocal declaration not allowed at module level
This statement allows a nested function to change one or more
      names defined in a syntactically enclosing function’s scope. In Python
      2.X, when one function def is nested
      in another, the nested function can reference any of the names defined
      by assignment in the enclosing def’s
      scope, but it cannot change them. In 3.X, declaring the enclosing
      scopes’ names in a nonlocal statement
      enables nested functions to assign and thus change such names as
      well.
This provides a way for enclosing functions to provide
      writeable state information, remembered when the
      nested function is later called. Allowing the state to change makes it
      more useful to the nested function (imagine a counter in the enclosing
      scope, for instance). In 2.X, programmers usually achieve similar goals
      by using classes or other schemes. Because nested functions have become
      a more common coding pattern for state retention, though, nonlocal makes it more generally
      applicable.
Besides allowing names in enclosing defs to be changed, the nonlocal statement also forces the issue for
      references—much like the global
      statement, nonlocal causes searches
      for the names listed in the statement to begin in the enclosing defs’ scopes, not in the local scope of the
      declaring function. That is, nonlocal
      also means “skip my local scope entirely.”
In fact, the names listed in a nonlocal must have been
      previously defined in an enclosing def when the nonlocal is reached, or an error is raised.
      The net effect is much like global:
      global means the names reside in the
      enclosing module, and nonlocal means
      they reside in an enclosing def.
      nonlocal is even more strict,
      though—scope search is restricted to only enclosing
      defs. That is, nonlocal names can
      appear only in enclosing defs, not in
      the module’s global scope or built-in scopes outside the defs.
The addition of nonlocal does
      not alter name reference scope rules in general; they still work as
      before, per the “LEGB” rule described earlier. The nonlocal statement mostly serves to allow
      names in enclosing scopes to be changed rather than just referenced.
      However, both global and nonlocal statements do tighten up and even
      restrict the lookup rules somewhat, when coded in a function:
	global makes scope
          lookup begin in the enclosing module’s scope and
          allows names there to be assigned. Scope lookup continues on to the
          built-in scope if the name does not exist in the module, but
          assignments to global names always create or change them in the
          module’s scope.

	nonlocal restricts scope
          lookup to just enclosing defs,
          requires that the names already exist there, and allows them to be
          assigned. Scope lookup does not continue on to the global or
          built-in scopes.


In Python 2.X, references to enclosing def scope names are allowed, but not
      assignment. However, you can still use classes with explicit attributes
      to achieve the same changeable state information effect as nonlocals
      (and you may be better off doing so in some contexts); globals and
      function attributes can sometimes accomplish similar goals as well. More
      on this in a moment; first, let’s turn to some working code to make this
      more concrete.

nonlocal in Action
On to some examples, all run in 3.X. References to enclosing
      def scopes work in 3.X as they do in
      2.X—in the following, tester builds
      and returns the function nested, to
      be called later, and the state
      reference in nested maps the local
      scope of tester using the normal
      scope lookup rules:
C:\code> c:\python33\python

>>> def tester(start):
        state = start             # Referencing nonlocals works normally
        def nested(label):
            print(label, state)   # Remembers state in enclosing scope
        return nested

>>> F = tester(0)
>>> F('spam')
spam 0
>>> F('ham')
ham 0
Changing a name in an enclosing def’s scope is not allowed by default, though;
      this is the normal case in 2.X as well:
>>> def tester(start):
        state = start
        def nested(label):
            print(label, state)
            state += 1            # Cannot change by default (never in 2.X)
        return nested

>>> F = tester(0)
>>> F('spam')
UnboundLocalError: local variable 'state' referenced before assignment
Using nonlocal for changes
Now, under 3.X, if we declare state in the tester scope as nonlocal within nested, we get to change it inside the
        nested function, too. This works even though tester has returned and exited by the time
        we call the returned nested
        function through the name F:
>>> def tester(start):
        state = start             # Each call gets its own state
        def nested(label):
            nonlocal state        # Remembers state in enclosing scope
            print(label, state)
            state += 1            # Allowed to change it if nonlocal
        return nested

>>> F = tester(0)
>>> F('spam')                     # Increments state on each call
spam 0
>>> F('ham')
ham 1
>>> F('eggs')
eggs 2
As usual with enclosing scope references, we can call the
        tester factory (closure) function
        multiple times to get multiple copies of its state in memory. The
        state object in the enclosing scope
        is essentially attached to the nested function object returned; each call
        makes a new, distinct state object,
        such that updating one function’s state won’t impact the other. The
        following continues the prior listing’s interaction:
>>> G = tester(42)                # Make a new tester that starts at 42
>>> G('spam')
spam 42

>>> G('eggs')                     # My state information updated to 43
eggs 43

>>> F('bacon')                    # But F's is where it left off: at 3
bacon 3                           # Each call has different state information
In this sense, Python’s nonlocals are more functional than
        function locals typical in some other languages: in a closure
        function, nonlocals are per-call, multiple copy
        data.

Boundary cases
Though useful, nonlocals come with some subtleties to be aware of. First, unlike the
        global statement, nonlocal names really
        must have previously been assigned in an
        enclosing def’s scope when a
        nonlocal is evaluated, or else
        you’ll get an error—you cannot create them dynamically by assigning
        them anew in the enclosing scope. In fact, they are checked at
        function definition time before either an enclosing or nested function
        is called:
>>> def tester(start):
        def nested(label):
            nonlocal state        # Nonlocals must already exist in enclosing def!
            state = 0
            print(label, state)
        return nested

SyntaxError: no binding for nonlocal 'state' found

>>> def tester(start):
        def nested(label):
            global state          # Globals don't have to exist yet when declared
            state = 0             # This creates the name in the module now
            print(label, state)
        return nested

>>> F = tester(0)
>>> F('abc')
abc 0
>>> state
0
Second, nonlocal restricts
        the scope lookup to just enclosing defs; nonlocals are not looked up in the
        enclosing module’s global scope or the built-in scope outside all
        defs, even if they are already
        there:
>>> spam = 99
>>> def tester():
        def nested():
            nonlocal spam         # Must be in a def, not the module!
            print('Current=', spam)
            spam += 1
        return nested

SyntaxError: no binding for nonlocal 'spam' found
These restrictions make sense once you realize that Python would
        not otherwise generally know which enclosing scope to create a
        brand-new name in. In the prior listing, should spam be assigned in tester, or the module outside? Because this
        is ambiguous, Python must resolve nonlocals at function
        creation time, not function call time.



Why nonlocal? State Retention Options
Given the extra complexity of nested functions, you might wonder what the
    fuss is about. Although it’s difficult to see in our small examples, state
    information becomes crucial in many programs. While functions can return
    results, their local variables won’t normally retain other values that
    must live on between calls. Moreover, many applications require such
    values to differ per context of use.
As mentioned earlier, there are a variety of ways to “remember”
    information across function and method calls in Python. While there are
    tradeoffs for all, nonlocal does
    improve this story for enclosing scope references—the nonlocal statement allows multiple copies of
    changeable state to be retained in memory. It
    addresses simple state-retention needs where classes may not be warranted
    and global variables do not apply, though function attributes can often
    serve similar roles more portably. Let’s review the options to see how
    they stack up.
State with nonlocal: 3.X only
As we saw in the prior section, the following code allows state to
      be retained and modified in an enclosing scope. Each call to tester creates a self-contained
      package of changeable information, whose names do
      not clash with any other part of the program:
>>> def tester(start):
        state = start                  # Each call gets its own state
        def nested(label):
            nonlocal state             # Remembers state in enclosing scope
            print(label, state)
            state += 1                 # Allowed to change it if nonlocal
        return nested

>>> F = tester(0)
>>> F('spam')                          # State visible within closure only
spam 0
>>> F.state
AttributeError: 'function' object has no attribute 'state'
We need to declare variables nonlocal only if they must be changed
      (other enclosing scope name references are automatically retained as
      usual), and nonlocal names are still not visible outside the enclosing
      function.
Unfortunately, this code works in Python 3.X only. If you are
      using Python 2.X, other options are available, depending on your goals.
      The next three sections present some alternatives. Some of the code in
      these sections uses tools we haven’t covered yet and is intended
      partially as preview, but we’ll keep the examples simple here so that
      you can compare and contrast along the way.

State with Globals: A Single Copy Only
One common prescription for achieving the nonlocal effect in 2.X and earlier is to
      simply move the state out to the global scope (the
      enclosing module):
>>> def tester(start):
        global state                   # Move it out to the module to change it
        state = start                  # global allows changes in module scope
        def nested(label):
            global state
            print(label, state)
            state += 1
        return nested

>>> F = tester(0)
>>> F('spam')                          # Each call increments shared global state
spam 0
>>> F('eggs')
eggs 1
This works in this case, but it requires global declarations in both functions and is
      prone to name collisions in the global scope (what if “state” is already
      being used?). A worse, and more subtle, problem is that it only allows
      for a single shared copy of the state information
      in the module scope—if we call tester
      again, we’ll wind up resetting the module’s state variable, such that prior calls will see
      their state overwritten:
>>> G = tester(42)                     # Resets state's single copy in global scope
>>> G('toast')
toast 42

>>> G('bacon')
bacon 43

>>> F('ham')                           # But my counter has been overwritten!
ham 44
As shown earlier, when you are using nonlocal and nested function closures instead
      of global, each call to tester remembers its own unique copy of the
      state object.

State with Classes: Explicit Attributes (Preview)
The other prescription for changeable state information in 2.X and earlier is to use
      classes with attributes to make state information
      access more explicit than the implicit magic of scope lookup rules. As
      an added benefit, each instance of a class gets a fresh copy of the
      state information, as a natural byproduct of Python’s object model.
      Classes also support inheritance, multiple behaviors, and other
      tools.
We haven’t explored classes in detail yet, but as a brief preview
      for comparison, the following is a reformulation of the earlier tester/nested functions as a class, which records
      state in objects explicitly as they are created. To make sense of this
      code, you need to know that a def
      within a class like this works
      exactly like a normal def, except
      that the function’s self argument
      automatically receives the implied subject of the call (an instance
      object created by calling the class itself). The function named __init__ is run automatically when the class
      is called:
>>> class tester:                          # Class-based alternative (see Part VI)
        def __init__(self, start):         # On object construction,
            self.state = start             # save state explicitly in new object
        def nested(self, label):
            print(label, self.state)       # Reference state explicitly
            self.state += 1                # Changes are always allowed

>>> F = tester(0)                          # Create instance, invoke __init__
>>> F.nested('spam')                       # F is passed to self
spam 0
>>> F.nested('ham')
ham 1
In classes, we save every attribute
      explicitly, whether it’s changed or just referenced, and they are
      available outside the class. As for nested functions and nonlocal, the class alternative supports
      multiple copies of the retained data:
>>> G = tester(42)                         # Each instance gets new copy of state
>>> G.nested('toast')                      # Changing one does not impact others
toast 42
>>> G.nested('bacon')
bacon 43

>>> F.nested('eggs')                       # F's state is where it left off
eggs 2
>>> F.state                                # State may be accessed outside class
3
With just slightly more magic—which we’ll delve into later in this
      book—we could also make our class objects look like callable functions
      using operator overloading. __call__
      intercepts direct calls on an instance, so we don’t need to call a named
      method:
>>> class tester:
        def __init__(self, start):
            self.state = start
        def __call__(self, label):         # Intercept direct instance calls
            print(label, self.state)       # So .nested() not required
            self.state += 1

>>> H = tester(99)
>>> H('juice')                             # Invokes __call__
juice 99
>>> H('pancakes')
pancakes 100
Don’t sweat the details in this code too much at this point in the
      book; it’s mostly a preview, intended for general comparison to closures
      only. We’ll explore classes in depth in Part VI, and will look at specific operator
      overloading tools like __call__ in
      Chapter 30. The point to notice here is
      that classes can make state information more obvious, by leveraging
      explicit attribute assignment instead of implicit scope lookups. In
      addition, class attributes are always changeable and don’t require a
      nonlocal statement, and classes are
      designed to scale up to implementing richer objects with many attributes
      and behaviors.
While using classes for state information is generally a good rule
      of thumb to follow, they might also be overkill in
      cases like this, where state is a single counter. Such trivial state
      cases are more common than you might think; in such contexts, nested
      defs are sometimes more lightweight
      than coding classes, especially if you’re not familiar with OOP yet.
      Moreover, there are some scenarios in which nested defs may actually work
      better than classes—stay tuned for the description
      of method decorators in Chapter 39 for an example that is far beyond this chapter’s
      already well-stretched scope!

State with Function Attributes: 3.X and 2.X
As a portable and often simpler state-retention option, we can also
      sometimes achieve the same effect as nonlocals with function
      attributes—user-defined names attached to functions directly.
      When you attach user-defined attributes to nested functions generated by
      enclosing factory functions, they can also serve as per-call, multiple
      copy, and writeable state, just like nonlocal scope closures and class
      attributes. Such user-defined attribute names won’t clash with names
      Python creates itself, and as for nonlocal, need be used only for state
      variables that must be changed; other scope
      references are retained and work normally.
Crucially, this scheme is portable—like
      classes, but unlike nonlocal,
      function attributes work in both Python 3.X and 2.X. In fact, they’ve
      been available since 2.1, much longer than 3.X’s nonlocal. Because factory functions make a new
      function on each call anyhow, this does not require extra objects—the
      new function’s attributes become per-call state in much the same way as
      nonlocals, and are similarly associated with the generated function in
      memory.
Moreover, function attributes allow state variables to be accessed
      outside the nested function, like class attributes;
      with nonlocal, state variables can be
      seen directly only within the nested def. If you need to access a call counter
      externally, it’s a simple function attribute fetch in this model.
Here’s a final version of our example based on this technique—it
      replaces a nonlocal with an attribute
      attached to the nested function. This scheme may not seem as intuitive
      to some at first glance; you access state through the function’s name
      instead of as simple variables, and must initialize after the nested
      def. Still, it’s far more portable,
      allows state to be accessed externally, and saves a line by not
      requiring a nonlocal
      declaration:
>>> def tester(start):
        def nested(label):
            print(label, nested.state)     # nested is in enclosing scope
            nested.state += 1              # Change attr, not nested itself
        nested.state = start               # Initial state after func defined
        return nested

>>> F = tester(0)
>>> F('spam')                              # F is a 'nested' with state attached
spam 0
>>> F('ham')
ham 1
>>> F.state                                # Can access state outside functions too
2
Because each call to the outer function produces a new nested
      function object, this scheme supports multiple copy
      per-call changeable data just like nonlocal
      closures and classes—a usage mode that global variables cannot
      provide:
>>> G = tester(42)                         # G has own state, doesn't overwrite F's
>>> G('eggs')
eggs 42
>>> F('ham')
ham 2

>>> F.state                                # State is accessible and per-call
3
>>> G.state
43
>>> F is G                                 # Different function objects
False
This code relies on the fact that the function name nested is a local variable in the tester scope enclosing nested; as such, it can be referenced freely
      inside nested. This code also relies
      on the fact that changing an object in place is not an assignment to a
      name; when it increments nested.state, it is changing part of the
      object nested references, not the
      name nested itself. Because we’re not
      really assigning a name in the enclosing scope, no nonlocal declaration is required.
Function attributes are supported in both Python 3.X and 2.X;
      we’ll explore them further in Chapter 19. Importantly, we’ll see there that
      Python uses naming conventions in both 2.X and 3.X that ensure that the
      arbitrary names you assign as function attributes won’t clash with names
      related to internal implementation, making the namespace equivalent to a
      scope. Subjective factors aside, function attributes’ utility does
      overlap with the newer nonlocal in
      3.X, making the latter technically redundant and far less
      portable.
State with mutables: Obscure ghost of Pythons past?
On a related note, it’s also possible to change a
        mutable object in the enclosing scope in 2.X and
        3.X without declaring its name nonlocal. The following, for example, works
        the same as the previous version, is just as portable, and provides
        changeable per-call state:
def tester(start):
    def nested(label):
        print(label, state[0])             # Leverage in-place mutable change
        state[0] += 1                      # Extra syntax, deep magic?
    state = [start]
    return nested
This leverages the mutability of lists, and like function
        attributes, relies on the fact that in-place object changes do not
        classify a name as local. This is perhaps more obscure than either
        function attributes or 3.X’s nonlocal, though—a technique that predates
        even function attributes, and seems to lie today somewhere on the
        spectrum from clever hack to dark magic! You’re probably better off
        using named function attributes than lists and numeric offsets this
        way, though this may show up in code you must use.
To summarize: globals, nonlocals, classes, and function
        attributes all offer changeable state-retention options. Globals
        support only single-copy shared data; nonlocals can be changed in 3.X
        only; classes require a basic knowledge of OOP; and both classes and
        function attributes provide portable solutions that allow state to be
        accessed directly from outside the stateful callable object itself. As
        usual, the best tool for your program depends upon your program’s
        goals.
We’ll revisit all the state options introduced here in Chapter 39 in a more realistic context—decorators, a tool
        that by nature involves multilevel state retention. State options have
        additional selection factors (e.g., performance), which we’ll have to
        leave unexplored here for space (we’ll learn how to time code speed in
        Chapter 21). For now, it’s time to
        move on to explore argument passing modes.
Why You Will Care: Customizing open
For another example of closures at work, consider changing the
          built-in open call
          to a custom version, as suggested in this chapter’s earlier sidebar
          “Breaking the Universe in Python 2.X”. If the custom
          version needs to call the original, it must save it before changing
          it, and retain it for later use—a classic state retention scenario.
          Moreover, if we wish to support multiple customizations to the same
          function, globals won’t do: we need per-customizer state.
The following, coded for Python 3.X in file makeopen.py, is one way to achieve this
          (in 2.X, change the built-in scope name and prints). It uses a
          nested scope closure to remember a value for later use, without
          relying on global variables—which can clash and allow just one
          value, and without using a class—that may require more code than is
          warranted here:
import builtins

def makeopen(id):
    original = builtins.open
    def custom(*pargs, **kargs):
        print('Custom open call %r:' % id , pargs, kargs)
        return original(*pargs, **kargs)
    builtins.open = custom
To change open for every
          module in a process, this code reassigns it in the built-in scope to
          a custom version coded with a nested def, after saving the original in the
          enclosing scope so the customization can call it later. This code is
          also partially preview, as it relies on
          starred-argument forms to collect and later
          unpack arbitrary positional and keyword arguments meant for open—a topic coming up in the next
          chapter. Much of the magic here, though, is nested scope closures:
          the custom open found by the
          scope lookup rules retains the original for later use:
>>> F = open('script2.py')           # Call built-in open in builtins
>>> F.read()
'import sys\nprint(sys.path)\nx = 2\nprint(x ** 32)\n'

>>> from makeopen import makeopen    # Import open resetter function
>>> makeopen('spam')                 # Custom open calls built-in open

>>> F = open('script2.py')           # Call custom open in builtins
Custom open call 'spam': ('script2.py',) {}
>>> F.read()
'import sys\nprint(sys.path)\nx = 2\nprint(x ** 32)\n'
Because each customization remembers the former built-in scope
          version in its own enclosing scope, they can even be
          nested naturally in ways that global variables
          cannot support—each call to the makeopen closure function remembers its
          own versions of id and original, so multiple customizations may
          be run:
>>> makeopen('eggs')                 # Nested customizers work too!
>>> F = open('script2.py')           # Because each retains own state
Custom open call 'eggs': ('script2.py',) {}
Custom open call 'spam': ('script2.py',) {}
>>> F.read()
'import sys\nprint(sys.path)\nx = 2\nprint(x ** 32)\n'
As is, our function simply adds possibly nested call tracing
          to a built-in function, but the general technique may have other
          applications. A class-based equivalent to this may require more code
          because it would need to save the id and original values explicitly in object
          attributes—but requires more background knowledge than we yet have,
          so consider this a Part VI preview
          only:
import builtins

class makeopen:                # See Part VI: call catches self()
    def __init__(self, id):
        self.id = id
        self.original = builtins.open
        builtins.open = self
    def __call__(self, *pargs, **kargs):
        print('Custom open call %r:' % self.id, pargs, kargs)
        return self.original(*pargs, **kargs)
The point to notice here is that classes may be more explicit
          but also may take extra code when state retention is the only goal.
          We’ll see additional closure use cases later, especially when
          exploring decorators in Chapter 39, where we’ll find the closures are actually
          preferred to classes in certain roles.




Chapter Summary
In this chapter, we studied one of two key concepts related to
    functions: scopes, which determine how variables are
    looked up when used. As we learned, variables are considered local to the
    function definitions in which they are assigned, unless they are
    specifically declared to be global or nonlocal. We also explored some more
    advanced scope concepts here, including nested function scopes and
    function attributes. Finally, we looked at some general design ideas, such
    as the need to avoid globals and cross-file changes.
In the next chapter, we’re going to continue our function tour with
    the second key function-related concept: argument passing. As we’ll find,
    arguments are passed into a function by assignment, but Python also
    provides tools that allow functions to be flexible in how items are
    passed. Before we move on, let’s take this chapter’s quiz to review the
    scope concepts we’ve covered here.

Test Your Knowledge: Quiz
	What is the output of the following code, and why?
>>> X = 'Spam'
>>> def func():
        print(X)

>>> func()

	What is the output of this code, and why?
>>> X = 'Spam'
>>> def func():
        X = 'NI!'

>>> func()
>>> print(X)

	What does this code print, and why?
>>> X = 'Spam'
>>> def func():
        X = 'NI'
        print(X)

>>> func()
>>> print(X)

	What output does this code produce? Why?
>>> X = 'Spam'
>>> def func():
        global X
        X = 'NI'

>>> func()
>>> print(X)

	What about this code—what’s the output, and why?
>>> X = 'Spam'
>>> def func():
        X = 'NI'
        def nested():
            print(X)
        nested()

>>> func()
>>> X

	How about this example: what is its output in Python 3.X, and
        why?
>>> def func():
        X = 'NI'
        def nested():
            nonlocal X
            X = 'Spam'
        nested()
        print(X)

>>> func()

	Name three or more ways to retain state information in a Python
        function.



Test Your Knowledge: Answers
	The output here is 'Spam',
        because the function references a global variable in the enclosing
        module (because it is not assigned in the function, it is considered
        global).

	The output here is 'Spam'
        again because assigning the variable inside the function makes it a
        local and effectively hides the global of the same name. The print statement finds the variable unchanged
        in the global (module) scope.

	It prints 'NI' on one line
        and 'Spam' on another, because the
        reference to the variable within the function finds the assigned local
        and the reference in the print
        statement finds the global.

	This time it just prints 'NI'
        because the global declaration forces the variable assigned inside the
        function to refer to the variable in the enclosing global
        scope.

	The output in this case is again 'NI' on one line and 'Spam' on another, because the print statement in the nested function finds
        the name in the enclosing function’s local scope, and the display at
        the end finds the variable in the global scope.

	This example prints 'Spam',
        because the nonlocal statement
        (available in Python 3.X but not 2.X) means that the assignment to
        X inside the nested function
        changes X in the enclosing
        function’s local scope. Without this statement, this assignment would
        classify X as local to the nested
        function, making it a different variable; the code would then print
        'NI' instead.

	Although the values of local variables go away when a function
        returns, you can make a Python function retain state information by
        using shared global variables, enclosing function scope references
        within nested functions, or using default argument values. Function
        attributes can sometimes allow state to be attached to the function
        itself, instead of looked up in scopes. Another alternative, using
        classes and OOP, sometimes supports state retention better than any of
        the scope-based techniques because it makes it explicit with attribute
        assignments; we’ll explore this option in Part VI.



1 The scope lookup rule was called the “LGB rule” in the first
          edition of this book. The enclosing def “E” layer was added later in Python to
          obviate the task of passing in enclosing scope names explicitly with
          default arguments—a topic usually of marginal interest to Python
          beginners that we’ll defer until later in this chapter. Since this
          scope is now addressed by the nonlocal statement in Python 3.X, the
          lookup rule might be better named “LNGB” today, but backward
          compatibility matters in books, too. The present form of this
          acronym also does not account for the newer obscure scopes of some
          comprehensions and exception handlers, but acronyms longer than four
          letters tend to defeat their purpose!
2 Multithreading runs function calls in
          parallel with the rest of the program and is supported by Python’s
          standard library modules _thread,
          threading, and queue (thread, threading, and Queue in Python 2.X). Because all threaded
          functions run in the same process, global scopes often serve as one
          form of shared memory between them (threads may share both names in
          global scopes, as well as objects in a process’s memory space).
          Threading is commonly used for long-running tasks in GUIs, to
          implement nonblocking operations in general and to maximize CPU
          capacity. It is also beyond this book’s scope; see the Python
          library manual, as well as the follow-up texts listed in the preface
          (such as O’Reilly’s Programming
          Python), for more details.
3 In the section “Function Gotchas”, we’ll
            also see that there is a similar issue with using mutable objects
            like lists and dictionaries for default arguments (e.g., def f(a=[]))—because defaults are
            implemented as single objects attached to functions, mutable
            defaults retain state from call to call, rather then being
            initialized anew on each call. Depending on whom you ask, this is
            either considered a feature that supports another way to implement
            state retention, or a strange corner of the language; more on this
            at the end of Chapter 21.








Chapter 18. Arguments
Chapter 17 explored the details behind Python’s
  scopes—the places where variables are defined and
  looked up. As we learned, the place where a name is defined in our code
  determines much of its meaning. This chapter continues the function story by
  studying the concepts in Python argument passing—the
  way that objects are sent to functions as inputs. As we’ll see, arguments
  (a.k.a. parameters) are assigned to names in a function, but they have more
  to do with object references than with variable scopes. We’ll also find that
  Python provides extra tools, such as keywords, defaults, and arbitrary
  argument collectors and extractors that allow for wide flexibility in the
  way arguments are sent to a function, and we’ll put them to work in
  examples.
Argument-Passing Basics
Earlier in this part of the book, I noted that arguments are passed by
    assignment. This has a few ramifications that aren’t
    always obvious to newcomers, which I’ll expand on in this section. Here is
    a rundown of the key points in passing arguments to functions:
	Arguments are passed by automatically
        assigning objects to local variable names. Function
        arguments—references to (possibly) shared objects sent by the
        caller—are just another instance of Python assignment at work. Because
        references are implemented as pointers, all arguments are, in effect,
        passed by pointer. Objects passed as arguments are never automatically
        copied.

	Assigning to argument names inside a
        function does not affect the caller. Argument names in the
        function header become new, local names when the function runs, in the
        scope of the function. There is no aliasing between function argument
        names and variable names in the scope of the caller.

	Changing a mutable object argument in a
        function may impact the caller. On the other hand, as
        arguments are simply assigned to passed-in objects, functions can
        change passed-in mutable objects in place, and the results may affect
        the caller. Mutable arguments can be input and output for
        functions.


For more details on references, see Chapter 6; everything we learned there
    also applies to function arguments, though the assignment to argument
    names is automatic and implicit.
Python’s pass-by-assignment scheme isn’t quite the same as C++’s
    reference parameters option, but it turns out to be very similar to the
    argument-passing model of the C language (and others) in practice:
	Immutable arguments are effectively
        passed “by value.” Objects such as integers and strings are passed by object
        reference instead of by copying, but because you can’t change
        immutable objects in place anyhow, the effect is much like making a
        copy.

	Mutable arguments are effectively passed
        “by pointer.” Objects such as lists and dictionaries are also passed by object
        reference, which is similar to the way C passes arrays as
        pointers—mutable objects can be changed in place in the function, much
        like C arrays.


Of course, if you’ve never used C, Python’s argument-passing mode
    will seem simpler still—it involves just the assignment of objects to
    names, and it works the same whether the objects are mutable or
    not.
Arguments and Shared References
To illustrate argument-passing properties at work, consider the following code:
>>> def f(a):                 # a is assigned to (references) the passed object
        a = 99                # Changes local variable a only

>>> b = 88
>>> f(b)                      # a and b both reference same 88 initially
>>> print(b)                  # b is not changed
88
In this example the variable a
      is assigned the object 88 at the
      moment the function is called with f(b), but a
      lives only within the called function. Changing a inside the function has no effect on the
      place where the function is called; it simply resets the local variable
      a to a completely different
      object.
That’s what is meant by a lack of name
      aliasing—assignment to an argument name inside a
      function (e.g., a=99) does not
      magically change a variable like b in
      the scope of the function call. Argument names may share passed objects
      initially (they are essentially pointers to those objects), but only
      temporarily, when the function is first called. As soon as an argument
      name is reassigned, this relationship ends.
At least, that’s the case for assignment to argument
      names themselves. When arguments are passed
      mutable objects like lists and dictionaries, we
      also need to be aware that in-place changes to such
      objects may live on after a function exits, and
      hence impact callers. Here’s an example that demonstrates this
      behavior:
>>> def changer(a, b):        # Arguments assigned references to objects
        a = 2                 # Changes local name's value only
        b[0] = 'spam'         # Changes shared object in place

>>> X = 1
>>> L = [1, 2]                # Caller:
>>> changer(X, L)             # Pass immutable and mutable objects
>>> X, L                      # X is unchanged, L is different!
(1, ['spam', 2])
In this code, the changer
      function assigns values to argument a
      itself, and to a component of the object referenced
      by argument b. These two assignments
      within the function are only slightly different in syntax but have
      radically different results:
	Because a is a local
          variable name in the function’s scope, the first assignment has no
          effect on the caller—it simply changes the local variable a to reference a completely different
          object, and does not change the binding of the name X in the caller’s scope. This is the same
          as in the prior example.

	Argument b is a local
          variable name, too, but it is passed a mutable object (the list that
          L references in the caller’s
          scope). As the second assignment is an in-place object change, the
          result of the assignment to b[0]
          in the function impacts the value of L after the function returns.


Really, the second assignment statement in changer doesn’t change b—it changes part of the object that b currently references. This in-place change
      impacts the caller only because the changed object outlives the function
      call. The name L hasn’t changed
      either—it still references the same, changed object—but it seems as
      though L differs after the call
      because the value it references has been modified within the function.
      In effect, the list name L serves as
      both input to and output from the function.
Figure 18-1
      illustrates the name/object bindings that exist immediately after the
      function has been called, and before its code has run.
If this example is still confusing, it may help to notice that the
      effect of the automatic assignments of the passed-in arguments is the
      same as running a series of simple assignment statements. In terms of
      the first argument, the assignment has no effect on the caller:
>>> X = 1
>>> a = X               # They share the same object
>>> a = 2               # Resets 'a' only, 'X' is still 1
>>> print(X)
1
Figure 18-1. References: arguments. Because arguments are passed by
        assignment, argument names in the function may share objects with
        variables in the scope of the call. Hence, in-place changes to mutable
        arguments in a function can impact the caller. Here, a and b in the
        function initially reference the objects referenced by variables X and
        L when the function is first called. Changing the list through
        variable b makes L appear different after the call returns.

The assignment through the second argument does affect a variable
      at the call, though, because it is an in-place object change:
>>> L = [1, 2]
>>> b = L               # They share the same object
>>> b[0] = 'spam'       # In-place change: 'L' sees the change too
>>> print(L)
['spam', 2]
If you recall our discussions about shared mutable objects in
      Chapter 6 and Chapter 9, you’ll recognize
      the phenomenon at work: changing a mutable object in place can impact
      other references to that object. Here, the effect is to make one of the
      arguments work like both an input and an output of the function.

Avoiding Mutable Argument Changes
This behavior of in-place changes to mutable arguments isn’t a bug—it’s simply the
      way argument passing works in Python, and turns out to be widely useful
      in practice. Arguments are normally passed to functions by reference
      because that is what we normally want. It means we can pass large
      objects around our programs without making multiple copies along the
      way, and we can easily update these objects as we go. In fact, as we’ll
      see in Part VI, Python’s class model
      depends upon changing a passed-in “self” argument
      in place, to update object state.
If we don’t want in-place changes within functions to impact
      objects we pass to them, though, we can simply make explicit copies of
      mutable objects, as we learned in Chapter 6. For function arguments, we
      can always copy the list at the point of call, with tools like list, list.copy as of 3.3, or an empty slice:
L = [1, 2]
changer(X, L[:])        # Pass a copy, so our 'L' does not change
We can also copy within the function itself, if we never want to
      change passed-in objects, regardless of how the function is
      called:
def changer(a, b):
    b = b[:]            # Copy input list so we don't impact caller
    a = 2
    b[0] = 'spam'       # Changes our list copy only
Both of these copying schemes don’t stop the function from
      changing the object—they just prevent those changes from impacting the
      caller. To really prevent changes, we can always convert to immutable
      objects to force the issue. Tuples, for example, raise an exception when
      changes are attempted:
L = [1, 2]
changer(X, tuple(L))    # Pass a tuple, so changes are errors
This scheme uses the built-in tuple function, which builds a new tuple out
      of all the items in a sequence (really, any iterable). It’s also
      something of an extreme—because it forces the function to be written to
      never change passed-in arguments, this solution might impose more
      limitations on the function than it should, and so should generally be
      avoided (you never know when changing arguments might come in handy for
      other calls in the future). Using this technique will also make the
      function lose the ability to call any list-specific methods on the
      argument, including methods that do not change the object in
      place.
The main point to remember here is that functions might update
      mutable objects like lists and dictionaries passed into them. This isn’t
      necessarily a problem if it’s expected, and often serves useful
      purposes. Moreover, functions that change passed-in mutable objects in
      place are probably designed and intended to do so—the change is likely
      part of a well-defined API that you shouldn’t violate by making
      copies.
However, you do have to be aware of this property—if objects
      change out from under you unexpectedly, check whether a called function
      might be responsible, and make copies when objects are passed if
      needed.

Simulating Output Parameters and Multiple Results
We’ve already discussed the return
      statement and used it in a few examples. Here’s another way to use this
      statement: because return can send
      back any sort of object, it can return multiple
      values by packaging them in a tuple or other collection type.
      In fact, although Python doesn’t support what some languages label “call
      by reference” argument passing, we can usually simulate it by returning
      tuples and assigning the results back to the original argument names in
      the caller:
>>> def multiple(x, y):
        x = 2               # Changes local names only
        y = [3, 4]
        return x, y         # Return multiple new values in a tuple

>>> X = 1
>>> L = [1, 2]
>>> X, L = multiple(X, L)   # Assign results to caller's names
>>> X, L
(2, [3, 4])
It looks like the code is returning two values here, but it’s
      really just one—a two-item tuple with the optional surrounding
      parentheses omitted. After the call returns, we can use tuple assignment
      to unpack the parts of the returned tuple. (If you’ve forgotten why this
      works, flip back to “Tuples” in Chapter 4 and Chapter 9, and “Assignment
      Statements” in Chapter 11.) The net effect of
      this coding pattern is to both send back multiple results and simulate
      the output parameters of other languages by
      explicit assignments. Here, X
      and L change after the call, but only
      because the code said so.
Note
Unpacking arguments in Python 2.X: The
        preceding example unpacks a tuple returned by the function with tuple
        assignment. In Python 2.X, it’s also possible to automatically unpack
        tuples in arguments passed to a function. In 2.X
        (only), a function defined by this header:
def f((a, (b, c))):
can be called with tuples that match the expected structure:
        f((1, (2, 3))) assigns a, b, and
        c to 1, 2, and
        3, respectively. Naturally, the
        passed tuple can also be an object created before the call (f(T)). This def syntax is no longer supported in Python
        3.X. Instead, code this function as:
def f(T): (a, (b, c)) = T
to unpack in an explicit assignment statement. This explicit
        form works in both 3.X and 2.X. Argument unpacking is reportedly an
        obscure and rarely used feature in Python 2.X (except in code that
        uses it!). Moreover, a function header in 2.X supports only the
        tuple form of sequence assignment; more general
        sequence assignments (e.g., def f((a, [b,
        c])):) fail on syntax errors in 2.X as well and require the
        explicit assignment form mandated in 3.X. Conversely, arbitrary
        sequences in the call successfully match tuples in the header (e.g.,
        f((1, [2, 3])), f((1, "ab"))).
Tuple unpacking argument syntax is also disallowed by 3.X in
        lambda function argument lists: see
        the Chapter 20 sidebar “Why You Will Care: List Comprehensions and map” for a lambda unpacking example. Somewhat
        asymmetrically, tuple unpacking assignment is still automatic in 3.X
        for loops targets; see Chapter 13 for examples.



Special Argument-Matching Modes
As we’ve just seen, arguments are always passed by
    assignment in Python; names in the def header are assigned to passed-in objects. On
    top of this model, though, Python provides additional tools that alter the
    way the argument objects in a call are matched with
    argument names in the header prior to assignment. These tools are all
    optional, but they allow us to write functions that support more flexible
    calling patterns, and you may encounter some libraries that require
    them.
By default, arguments are matched by position,
    from left to right, and you must pass exactly as many arguments as there
    are argument names in the function header. However, you can also specify
    matching by name, provide default values, and use collectors for extra
    arguments.
Argument Matching Basics
Before we go into the syntactic details, I want to stress that
      these special modes are optional and deal only with matching objects to
      names; the underlying passing mechanism after the matching takes place
      is still assignment. In fact, some of these tools are intended more for
      people writing libraries than for application developers. But because
      you may stumble across these modes even if you don’t code them yourself,
      here’s a synopsis of the available tools:
	Positionals: matched from left to right
	The normal case, which we’ve mostly been using so far, is to match
            passed argument values to argument names in a function header by
            position, from left to right.

	Keywords: matched by argument name
	Alternatively, callers can specify which argument in the function is to
            receive a value by using the argument’s name in the call, with the
            name=value syntax.

	Defaults: specify values for optional arguments that aren’t
          passed
	Functions themselves can specify default values for arguments
            to receive if the call passes too few values, again using the
            name=value syntax.

	Varargs collecting: collect arbitrarily many positional or
          keyword arguments
	Functions can use special arguments preceded with one or two * characters to collect an arbitrary
            number of possibly extra arguments. This feature is often referred
            to as varargs, after a variable-length
            argument list tool in the C language; in Python, the arguments are
            collected in a normal object.

	Varargs unpacking: pass arbitrarily many positional or keyword
          arguments
	Callers can also use the * syntax to unpack argument collections
            into separate arguments. This is the inverse of a * in a function header—in the header it
            means collect arbitrarily many arguments, while in the call it
            means unpack arbitrarily many arguments, and pass them
            individually as discrete values.

	Keyword-only arguments: arguments that must be passed by
          name
	In Python 3.X (but not 2.X), functions can also specify
            arguments that must be passed by name with keyword arguments, not
            by position. Such arguments are typically used to define
            configuration options in addition to actual arguments.



Argument Matching Syntax
Table 18-1 summarizes the
      syntax that invokes the special argument-matching modes.
Table 18-1. Function argument-matching forms	Syntax	Location	Interpretation
	func(value)
	Caller
	Normal argument: matched
              by position

	func(name=value)
	Caller
	Keyword argument: matched
              by name

	func(*iterable)
	Caller
	Pass all objects in
              iterable as individual positional
              arguments

	func(**dict)
	Caller
	Pass all key/value pairs
              in dict as individual keyword
              arguments

	def func(name)
	Function
	Normal argument: matches
              any passed value by position or name

	def func(name=value)
	Function
	Default argument value,
              if not passed in the call

	def func(*name)
	Function
	Matches and collects
              remaining positional arguments in a tuple

	def func(**name)
	Function
	Matches and collects
              remaining keyword arguments in a dictionary

	def func(*other, name)
	Function
	Arguments that must be
              passed by keyword only in calls (3.X)

	def func(*, name=value)	Function
	Arguments that must be
              passed by keyword only in calls (3.X)


These special matching modes break down into function calls and
      definitions as follows:
	In a function call (the first four rows
          of the table), simple values are matched by position, but using the
          name=value form tells Python to
          match by name to arguments instead; these are called
          keyword arguments. Using a *iterable or **dict in a call allows us to package up
          arbitrarily many positional or keyword objects in sequences (and
          other iterables) and dictionaries, respectively, and unpack them as
          separate, individual arguments when they are passed to the
          function.

	In a function header (the rest of the
          table), a simple name is matched
          by position or name depending on how the caller passes it, but the
          name=value form specifies a
          default value. The *name form collects any extra unmatched
          positional arguments in a tuple, and the **name form collects extra keyword
          arguments in a dictionary. In Python 3.X, any normal or defaulted
          argument names following a *name
          or a bare * are
          keyword-only arguments and must be passed by
          keyword in calls.


Of these, keyword arguments and defaults are probably the most
      commonly used in Python code. We’ve informally used both of these
      earlier in this book:
	We’ve already used keywords to specify
          options to the 3.X print
          function, but they are more general—keywords allow us to label any
          argument with its name, to make calls more informational.

	We met defaults earlier, too, as a way to
          pass in values from the enclosing function’s scope, but they are
          also more general—they allow us to make any argument optional,
          providing its default value in a function definition.


As we’ll see, the combination of defaults in a function header and
      keywords in a call further allows us to pick and choose which defaults
      to override.
In short, special argument-matching modes let you be fairly
      liberal about how many arguments must be passed to a function. If a
      function specifies defaults, they are used if you pass too
      few arguments. If a function uses the * variable argument list forms, you can
      seemingly pass too many arguments; the * names collect the extra arguments in data
      structures for processing in the function.

The Gritty Details
If you choose to use and combine the special argument-matching
      modes, Python will ask you to follow these ordering rules among the
      modes’ optional components:
	In a function call, arguments must appear
          in this order: any positional arguments (value); followed by a combination of any
          keyword arguments (name=value)
          and the *iterable form; followed
          by the **dict form.

	In a function header, arguments must
          appear in this order: any normal arguments (name); followed by any default arguments
          (name=value); followed by the
          *name (or * in 3.X) form; followed by any name or name=value keyword-only arguments (in
          3.X); followed by the **name
          form.


In both the call and header, the **args form must
      appear last if present. If you mix arguments in any other order, you
      will get a syntax error because the combinations can be ambiguous. The
      steps that Python internally carries out to match arguments before
      assignment can roughly be described as follows:
	Assign nonkeyword arguments by position.

	Assign keyword arguments by matching names.

	Assign extra nonkeyword arguments to *name tuple.

	Assign extra keyword arguments to **name dictionary.

	Assign default values to unassigned arguments in
          header.


After this, Python checks to make sure each argument is passed
      just one value; if not, an error is raised. When all matching is
      complete, Python assigns argument names to the objects passed to
      them.
The actual matching algorithm Python uses is a bit more complex
      (it must also account for keyword-only arguments in 3.X, for instance),
      so we’ll defer to Python’s standard language manual for a more exact
      description. It’s not required reading, but tracing Python’s matching
      algorithm may help you to understand some convoluted cases, especially
      when modes are mixed.
Note
In Python 3.X only, argument names in a function header can also
        have annotation values, specified as name:value (or name:value=default when defaults are
        present). This is simply additional syntax for arguments and does not
        augment or change the argument-ordering rules described here. The
        function itself can also have an annotation value, given as def f()->value. Python attaches
        annotation values to the function object. See the discussion of
        function annotation in Chapter 19 for
        more details.


Keyword and Default Examples
This is all simpler in code than the preceding descriptions may imply. If you don’t
      use any special matching syntax, Python matches names by position from
      left to right, like most other languages. For instance, if you define a
      function that requires three arguments, you must call it with three
      arguments:
>>> def f(a, b, c): print(a, b, c)

>>> f(1, 2, 3)
1 2 3
Here, we pass by position—a is
      matched to 1, b is matched to 2, and so on (this works the same in Python
      3.X and 2.X, but extra tuple parentheses are displayed in 2.X because
      we’re using 3.X print calls
      again).
Keywords
In Python, though, you can be more specific about what goes
        where when you call a function. Keyword arguments allow us to match by
        name, instead of by position. Using the same
        function:
>>> f(c=3, b=2, a=1)
1 2 3
The c=3 in this call, for
        example, means send 3 to the
        argument named c. More formally,
        Python matches the name c in the
        call to the argument named c in the
        function definition’s header, and then passes the value 3 to that argument. The net effect of this
        call is the same as that of the prior call, but notice that the
        left-to-right order of the arguments no longer matters when keywords
        are used because arguments are matched by name, not by position. It’s
        even possible to combine positional and keyword arguments in a single
        call. In this case, all positionals are matched first from left to
        right in the header, before keywords are matched by name:
>>> f(1, c=3, b=2)            # a gets 1 by position, b and c passed by name
1 2 3
When most people see this the first time, they wonder why one
        would use such a tool. Keywords typically have two roles in Python.
        First, they make your calls a bit more self-documenting (assuming that
        you use better argument names than a, b, and
        c!). For example, a call of this
        form:
func(name='Bob', age=40, job='dev')
is much more meaningful than a call with three naked values
        separated by commas, especially in larger programs—the keywords serve
        as labels for the data in the call. The second major use of keywords
        occurs in conjunction with defaults, which we turn to next.

Defaults
We talked about defaults in brief earlier, when discussing
        nested function scopes. In short, defaults allow us to make selected
        function arguments optional; if not passed a value, the argument is
        assigned its default before the function runs. For example, here is a
        function that requires one argument and defaults two:
>>> def f(a, b=2, c=3): print(a, b, c)          # a required, b and c optional
When we call this function, we must provide a value for a, either by position or by keyword;
        however, providing values for b and
        c is optional. If we don’t pass
        values to b and c, they default to 2 and 3,
        respectively:
>>> f(1)                   # Use defaults
1 2 3
>>> f(a=1)
1 2 3
If we pass two values, only c
        gets its default, and with three values, no defaults are used:
>>> f(1, 4)                # Override defaults
1 4 3
>>> f(1, 4, 5)
1 4 5
Finally, here is how the keyword and default features interact.
        Because they subvert the normal left-to-right positional mapping,
        keywords allow us to essentially skip over arguments with
        defaults:
>>> f(1, c=6)              # Choose defaults
1 2 6
Here, a gets 1 by position, c gets 6
        by keyword, and b, in between,
        defaults to 2.
Be careful not to confuse the special name=value syntax in a function header and a
        function call; in the call it means a
        match-by-name keyword argument, while in the
        header it specifies a default for an optional
        argument. In both cases, this is not an assignment statement (despite
        its appearance); it is special syntax for these two contexts, which
        modifies the default argument-matching mechanics.

Combining keywords and defaults
Here is a slightly larger example that demonstrates keywords and
        defaults in action. In the following, the caller must always pass at
        least two arguments (to match spam
        and eggs), but the other two are
        optional. If they are omitted, Python assigns toast and ham to the defaults specified in the
        header:
def func(spam, eggs, toast=0, ham=0):   # First 2 required
    print((spam, eggs, toast, ham))

func(1, 2)                              # Output: (1, 2, 0, 0)
func(1, ham=1, eggs=0)                  # Output: (1, 0, 0, 1)
func(spam=1, eggs=0)                    # Output: (1, 0, 0, 0)
func(toast=1, eggs=2, spam=3)           # Output: (3, 2, 1, 0)
func(1, 2, 3, 4)                        # Output: (1, 2, 3, 4)
Notice again that when keyword arguments are used in the call,
        the order in which the arguments are listed doesn’t matter; Python
        matches by name, not by position. The caller must supply values for
        spam and eggs, but they can be matched by position or
        by name. Again, keep in mind that the form name=value means different things in the
        call and the def: a keyword in the
        call and a default in the header.
Note
Beware mutable defaults: As footnoted in
          the prior chapter, if you code a default to be a mutable object
          (e.g., def f(a=[])), the same,
          single mutable object is reused every time the
          function is later called—even if it is changed in place within the
          function. The net effect is that the argument’s default retains its
          value from the prior call, and is not reset to its original value
          coded in the def header. To reset
          anew on each call, move the assignment into the function body
          instead. Mutable defaults allow state retention, but this is often a
          surprise. Since this is such a common trap, we’ll postpone further
          exploration until this part’s “gotchas” list at the end of Chapter 21.



Arbitrary Arguments Examples
The last two matching extensions, * and
      **, are designed to support functions
      that take any number of arguments. Both can appear
      in either the function definition or a function call, and they have
      related purposes in the two locations.
Headers: Collecting arguments
The first use, in the function definition, collects unmatched positional arguments into
        a tuple:
>>> def f(*args): print(args)
When this function is called, Python collects all the positional
        arguments into a new tuple and assigns the
        variable args to that tuple.
        Because it is a normal tuple object, it can be indexed, stepped
        through with a for loop, and so
        on:
>>> f()
()
>>> f(1)
(1,)
>>> f(1, 2, 3, 4)
(1, 2, 3, 4)
The ** feature is similar,
        but it only works for keyword arguments—it
        collects them into a new dictionary, which can
        then be processed with normal dictionary tools. In a sense, the
        ** form allows you to convert from
        keywords to dictionaries, which you can then step through with
        keys calls, dictionary iterators,
        and the like (this is roughly what the dict call does when passed keywords, but it
        returns the new dictionary):
>>> def f(**args): print(args)

>>> f()
{}
>>> f(a=1, b=2)
{'a': 1, 'b': 2}
Finally, function headers can combine normal arguments, the
        *, and the ** to implement wildly flexible call
        signatures. For instance, in the following, 1 is passed to a by position, 2 and 3
        are collected into the pargs
        positional tuple, and x and
        y wind up in the kargs keyword dictionary:
>>> def f(a, *pargs, **kargs): print(a, pargs, kargs)

>>> f(1, 2, 3, x=1, y=2)
1 (2, 3) {'y': 2, 'x': 1}
Such code is rare, but shows up in functions that need to
        support multiple call patterns (for backward compatibility, for
        instance). In fact, these features can be combined in even more
        complex ways that may seem ambiguous at first glance—an idea we will
        revisit later in this chapter. First, though, let’s see what happens
        when * and ** are coded in function calls instead of
        definitions.

Calls: Unpacking arguments
In all recent Python releases, we can use the * syntax when we call a function, too. In
        this context, its meaning is the inverse of its meaning in the
        function definition—it unpacks a collection of arguments, rather than
        building a collection of arguments. For example, we can pass four
        arguments to a function in a tuple and let Python unpack them into
        individual arguments:
>>> def func(a, b, c, d): print(a, b, c, d)

>>> args = (1, 2)
>>> args += (3, 4)
>>> func(*args)                            # Same as func(1, 2, 3, 4)
1 2 3 4
Similarly, the ** syntax in a
        function call unpacks a dictionary of key/value pairs into separate
        keyword arguments:
>>> args = {'a': 1, 'b': 2, 'c': 3}
>>> args['d'] = 4
>>> func(**args)                           # Same as func(a=1, b=2, c=3, d=4)
1 2 3 4
Again, we can combine normal, positional, and keyword arguments
        in the call in very flexible ways:
>>> func(*(1, 2), **{'d': 4, 'c': 3})      # Same as func(1, 2, d=4, c=3)
1 2 3 4
>>> func(1, *(2, 3), **{'d': 4})           # Same as func(1, 2, 3, d=4)
1 2 3 4
>>> func(1, c=3, *(2,), **{'d': 4})        # Same as func(1, 2, c=3, d=4)
1 2 3 4
>>> func(1, *(2, 3), d=4)                  # Same as func(1, 2, 3, d=4)
1 2 3 4
>>> func(1, *(2,), c=3, **{'d':4})         # Same as func(1, 2, c=3, d=4)
1 2 3 4
This sort of code is convenient when you cannot predict the
        number of arguments that will be passed to a function when you write
        your script; you can build up a collection of arguments at runtime
        instead and call the function generically this way. Again, don’t
        confuse the */** starred-argument syntax in the function
        header and the function call—in the header it
        collects any number of arguments, while in the
        call it unpacks any number of arguments. In both,
        one star means positionals, and two applies to keywords.
Note
As we saw in Chapter 14,
          the *pargs form in a call is an
          iteration context, so technically it accepts
          any iterable object, not just tuples or other sequences as shown in
          the examples here. For instance, a file object works after the
          *, and unpacks its lines into
          individual arguments (e.g., func(*open('fname')). Watch for additional
          examples of this utility in Chapter 20, after we study
          generators.
This generality is supported in both Python 3.X and 2.X, but
          it holds true only for calls—a *pargs in a call allows any iterable, but
          the same form in a def header
          always bundles extra arguments into a tuple.
          This header behavior is similar in spirit and syntax to the * in Python 3.X extended sequence
          unpacking assignment forms we met in Chapter 11 (e.g., x, *y = z), though that star usage always
          creates lists, not tuples.


Applying functions generically
The prior section’s examples may seem academic (if not downright esoteric),
        but they are used more often than you might expect. Some programs need
        to call arbitrary functions in a generic fashion, without knowing
        their names or arguments ahead of time. In fact, the real power of the
        special “varargs” call syntax is that you don’t need to know how many
        arguments a function call requires before you write a script. For
        example, you can use if logic to
        select from a set of functions and argument lists, and call any of
        them generically (functions in some of the following examples are
        hypothetical):
if sometest:
    action, args = func1, (1,)             # Call func1 with one arg in this case
else:
    action, args = func2, (1, 2, 3)        # Call func2 with three args here
...etc...
action(*args)                              # Dispatch generically
This leverages both the *
        form, and the fact that functions are objects that may be both
        referenced by, and called through, any variable. More generally, this
        varargs call syntax is useful anytime you cannot predict the arguments
        list. If your user selects an arbitrary function via a user interface,
        for instance, you may be unable to hardcode a function call when
        writing your script. To work around this, simply build up the
        arguments list with sequence operations, and call it with
        starred-argument syntax to unpack the arguments:
>>> ...define or import func3...
>>> args = (2,3)
>>> args += (4,)
>>> args
(2, 3, 4)
>>> func3(*args)
Because the arguments list is passed in as a tuple here, the
        program can build it at runtime. This technique also comes in handy
        for functions that test or time other functions. For instance, in the
        following code we support any function with any arguments by passing
        along whatever arguments were sent in (this is file tracer0.py in the book examples
        package):
def tracer(func, *pargs, **kargs):         # Accept arbitrary arguments
    print('calling:', func.__name__)
    return func(*pargs, **kargs)           # Pass along arbitrary arguments

def func(a, b, c, d):
    return a + b + c + d

print(tracer(func, 1, 2, c=3, d=4))
This code uses the built-in __name__ attribute
        attached to every function (as you might expect, it’s the function’s
        name string), and uses stars to collect and then unpack the arguments
        intended for the traced function. In other words, when this code is
        run, arguments are intercepted by the tracer and then
        propagated with varargs call syntax:
calling: func
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For another example of this technique, see the preview near the
        end of the preceding chapter, where it was used to reset the built-in
        open function. We’ll code
        additional examples of such roles later in this book; see especially
        the sequence timing examples in Chapter 21 and the various decorator
        utilities we will code in Chapter 39. It’s a common
        technique in general tools.

The defunct apply built-in (Python 2.X)
Prior to Python 3.X, the effect of the *args and **args varargs call syntax could be achieved
        with a built-in function named apply. This original technique has been
        removed in 3.X because it is now redundant (3.X cleans up many such
        dusty tools that have been subsumed over the years). It’s still
        available in all Python 2.X releases, though, and you may come across
        it in older 2.X code.
In short, the following are equivalent prior to Python
        3.X:
func(*pargs, **kargs)             # Newer call syntax: func(*sequence, **dict)
apply(func, pargs, kargs)         # Defunct built-in:  apply(func, sequence, dict)
For example, consider the following function, which accepts any
        number of positional or keyword arguments:
>>> def echo(*args, **kwargs): print(args, kwargs)

>>> echo(1, 2, a=3, b=4)
(1, 2) {'a': 3, 'b': 4}
In Python 2.X, we can call it generically with apply, or with the call syntax that is now
        required in 3.X:
>>> pargs = (1, 2)
>>> kargs = {'a':3, 'b':4}

>>> apply(echo, pargs, kargs)
(1, 2) {'a': 3, 'b': 4}

>>> echo(*pargs, **kargs)
(1, 2) {'a': 3, 'b': 4}
Both forms work for built-in functions in 2.X too (notice 2.X’s
        trailing L for its long
        integers):
>>> apply(pow, (2, 100))
1267650600228229401496703205376L
>>> pow(*(2, 100))
1267650600228229401496703205376L
The unpacking call syntax form is newer than the apply function, is preferred in general, and
        is required in 3.X. (Technically, the syntax was added in 2.0; the function was deprecated in 2.3, is still usable without warning in 2.7, but is gone in 3.X.) Apart from its symmetry with the * collector forms in def headers, and the fact that it requires
        fewer keystrokes, the newer call syntax also allows us to pass along
        additional arguments without having to manually extend argument
        sequences or dictionaries:
>>> echo(0, c=5, *pargs, **kargs)      # Normal, keyword, *sequence, **dictionary
(0, 1, 2) {'a': 3, 'c': 5, 'b': 4}
That is, the call syntax form is more
        general. Since it’s required in 3.X, you should now disavow
        all knowledge of apply (unless, of
        course, it appears in 2.X code you must use or maintain...).


Python 3.X Keyword-Only Arguments
Python 3.X generalizes the ordering rules in function headers to allow us to
      specify keyword-only arguments—arguments that must
      be passed by keyword only and will never be filled in by a positional
      argument. This is useful if we want a function to both process any
      number of arguments and accept possibly optional configuration
      options.
Syntactically, keyword-only arguments are coded as named arguments
      that may appear after *args in the
      arguments list. All such arguments must be passed using keyword syntax
      in the call. For example, in the following, a may be passed by name or position, b collects any extra positional arguments, and
      c must be passed by keyword only. In
      3.X:
>>> def kwonly(a, *b, c):
        print(a, b, c)

>>> kwonly(1, 2, c=3)
1 (2,) 3
>>> kwonly(a=1, c=3)
1 () 3
>>> kwonly(1, 2, 3)
TypeError: kwonly() missing 1 required keyword-only argument: 'c'
We can also use a * character
      by itself in the arguments list to indicate that a function does not
      accept a variable-length argument list but still expects all arguments
      following the * to be passed as
      keywords. In the next function, a may
      be passed by position or name again, but b and c
      must be keywords, and no extra positionals are allowed:
>>> def kwonly(a, *, b, c):
        print(a, b, c)

>>> kwonly(1, c=3, b=2)
1 2 3
>>> kwonly(c=3, b=2, a=1)
1 2 3
>>> kwonly(1, 2, 3)
TypeError: kwonly() takes 1 positional argument but 3 were given
>>> kwonly(1)
TypeError: kwonly() missing 2 required keyword-only arguments: 'b' and 'c'
You can still use defaults for keyword-only arguments, even though
      they appear after the * in the
      function header. In the following code, a may be passed by name or position, and
      b and c are optional but must be passed by keyword
      if used:
>>> def kwonly(a, *, b='spam', c='ham'):
        print(a, b, c)

>>> kwonly(1)
1 spam ham
>>> kwonly(1, c=3)
1 spam 3
>>> kwonly(a=1)
1 spam ham
>>> kwonly(c=3, b=2, a=1)
1 2 3
>>> kwonly(1, 2)
TypeError: kwonly() takes 1 positional argument but 2 were given
In fact, keyword-only arguments with defaults are optional, but
      those without defaults effectively become required
      keywords for the function:
>>> def kwonly(a, *, b, c='spam'):
        print(a, b, c)

>>> kwonly(1, b='eggs')
1 eggs spam
>>> kwonly(1, c='eggs')
TypeError: kwonly() missing 1 required keyword-only argument: 'b'
>>> kwonly(1, 2)
TypeError: kwonly() takes 1 positional argument but 2 were given

>>> def kwonly(a, *, b=1, c, d=2):
        print(a, b, c, d)

>>> kwonly(3, c=4)
3 1 4 2
>>> kwonly(3, c=4, b=5)
3 5 4 2
>>> kwonly(3)
TypeError: kwonly() missing 1 required keyword-only argument: 'c'
>>> kwonly(1, 2, 3)
TypeError: kwonly() takes 1 positional argument but 3 were given
Ordering rules
Finally, note that keyword-only arguments must be specified
        after a single star, not two—named arguments cannot appear after the
        **args arbitrary keywords form, and
        a ** can’t appear by itself in the
        arguments list. Both attempts generate a syntax error:
>>> def kwonly(a, **pargs, b, c):
SyntaxError: invalid syntax
>>> def kwonly(a, **, b, c):
SyntaxError: invalid syntax
This means that in a function header,
        keyword-only arguments must be coded before the **args arbitrary keywords form and after the
        *args arbitrary positional form,
        when both are present. Whenever an argument name appears before
        *args, it is a possibly default
        positional argument, not keyword-only:
>>> def f(a, *b, **d, c=6): print(a, b, c, d)          # Keyword-only before **!
SyntaxError: invalid syntax

>>> def f(a, *b, c=6, **d): print(a, b, c, d)          # Collect args in header

>>> f(1, 2, 3, x=4, y=5)                               # Default used
1 (2, 3) 6 {'y': 5, 'x': 4}

>>> f(1, 2, 3, x=4, y=5, c=7)                          # Override default
1 (2, 3) 7 {'y': 5, 'x': 4}

>>> f(1, 2, 3, c=7, x=4, y=5)                          # Anywhere in keywords
1 (2, 3) 7 {'y': 5, 'x': 4}

>>> def f(a, c=6, *b, **d): print(a, b, c, d)          # c is not keyword-only here!

>>> f(1, 2, 3, x=4)
1 (3,) 2 {'x': 4}
In fact, similar ordering rules hold true in function
        calls: when keyword-only arguments are passed,
        they must appear before a **args
        form. The keyword-only argument can be coded either before or after
        the *args, though, and may be
        included in **args:
>>> def f(a, *b, c=6, **d): print(a, b, c, d)          # KW-only between * and **

>>> f(1, *(2, 3), **dict(x=4, y=5))                    # Unpack args at call
1 (2, 3) 6 {'y': 5, 'x': 4}

>>> f(1, *(2, 3), **dict(x=4, y=5), c=7)               # Keywords before **args!
SyntaxError: invalid syntax

>>> f(1, *(2, 3), c=7, **dict(x=4, y=5))               # Override default
1 (2, 3) 7 {'y': 5, 'x': 4}

>>> f(1, c=7, *(2, 3), **dict(x=4, y=5))               # After or before *
1 (2, 3) 7 {'y': 5, 'x': 4}

>>> f(1, *(2, 3), **dict(x=4, y=5, c=7))               # Keyword-only in **
1 (2, 3) 7 {'y': 5, 'x': 4}
Trace through these cases on your own, in conjunction with the
        general argument-ordering rules described formally earlier. They may
        appear to be worst cases in the artificial examples here, but they can
        come up in real practice, especially for people who write libraries
        and tools for other Python programmers to use.

Why keyword-only arguments?
So why care about keyword-only arguments? In short, they make it
        easier to allow a function to accept both any number of positional
        arguments to be processed, and configuration options passed as
        keywords. While their use is optional, without keyword-only arguments
        extra work may be required to provide defaults for such options and to
        verify that no superfluous keywords were passed.
Imagine a function that processes a set of passed-in objects and
        allows a tracing flag to be passed:
process(X, Y, Z)                    # Use flag's default
process(X, Y, notify=True)          # Override flag default
Without keyword-only arguments we have to use both *args and
        **args and manually inspect the
        keywords, but with keyword-only arguments less code is required. The
        following guarantees that no positional argument will be incorrectly
        matched against notify and requires
        that it be a keyword if passed:
def process(*args, notify=False): ...
Since we’re going to see a more realistic example of this later
        in this chapter, in “Emulating the Python 3.X print Function,” I’ll
        postpone the rest of this story until then. For an additional example
        of keyword-only arguments in action, see the iteration options timing
        case study in Chapter 21. And for
        additional function definition enhancements in Python 3.X, stay tuned
        for the discussion of function annotation syntax in Chapter 19.



The min Wakeup Call!
OK—it’s time for something more realistic. To make this chapter’s concepts
    more concrete, let’s work through an exercise that demonstrates a
    practical application of argument-matching tools.
Suppose you want to code a function that is able to compute the
    minimum value from an arbitrary set of arguments and an arbitrary set of
    object data types. That is, the function should accept zero or more
    arguments, as many as you wish to pass. Moreover, the function should work
    for all kinds of Python object types: numbers, strings, lists, lists of
    dictionaries, files, and even None. (To
    be fair, Python 3.X users don’t need to support dictionaries, because
    their dictionaries don’t support direct comparisons; see Chapters 8 and
    9.)
The first requirement provides a natural example of how the * feature can be put to good use—we can collect
    arguments into a tuple and step over each of them in turn with a simple
    for loop. The second part of the
    problem definition is easy: because every object type supports
    comparisons, we don’t have to specialize the function per type (an
    application of polymorphism); we can simply compare
    objects blindly and let Python worry about what sort of comparison to
    perform according to the objects being compared.
Full Credit
The following file shows three ways to code this operation, at
      least one of which was suggested by a student in one of my courses (this
      example is often a group exercise to circumvent dozing after
      lunch):
	The first function fetches the first argument (args is a tuple) and traverses the rest by
          slicing off the first (there’s no point in comparing an object to
          itself, especially if it might be a large structure).

	The second version lets Python pick off the first and rest of
          the arguments automatically, and so avoids an index and
          slice.

	The third converts from a tuple to a list with the built-in
          list call and employs the list
          sort method.


The sort method is coded in C,
      so it can be quicker than the other approaches at times, but the linear
      scans of the first two techniques may make them faster much of the
      time.1 The file mins.py
      contains the code for all three solutions:
def min1(*args):
    res = args[0]
    for arg in args[1:]:
        if arg < res:
            res = arg
    return res

def min2(first, *rest):
    for arg in rest:
        if arg < first:
            first = arg
    return first

def min3(*args):
    tmp = list(args)            # Or, in Python 2.4+: return sorted(args)[0]
    tmp.sort()
    return tmp[0]

print(min1(3, 4, 1, 2))
print(min2("bb", "aa"))
print(min3([2,2], [1,1], [3,3]))
All three solutions produce the same result when the file is run.
      Try typing a few calls interactively to experiment with these on your
      own:
% python mins.py
1
aa
[1, 1]
Notice that none of these three variants tests for the case where
      no arguments are passed in. They could, but there’s no point in doing so
      here—in all three solutions, Python will automatically raise an
      exception if no arguments are passed in. The first variant raises an
      exception when we try to fetch item 0, the second when Python detects an
      argument list mismatch, and the third when we try to return item 0 at
      the end.
This is exactly what we want to happen—because these functions
      support any data type, there is no valid sentinel value that we could
      pass back to designate an error, so we may as well let the exception be
      raised. There are exceptions to this rule (e.g., you might test for
      errors yourself if you’d rather avoid actions run before reaching the
      code that triggers an error automatically), but in general it’s better
      to assume that arguments will work in your functions’ code and let
      Python raise errors for you when they do not.

Bonus Points
You can get bonus points here for changing these functions to
      compute the maximum, rather than minimum, values.
      This one’s easy: the first two versions only require changing < to >, and the third simply requires that we
      return tmp[−1] instead of tmp[0]. For an extra point, be sure to set the
      function name to “max” as well (though this part is strictly
      optional).
It’s also possible to generalize a single function to compute
      either a minimum or a maximum value, by evaluating
      comparison expression strings with a tool like the eval built-in function (see the library
      manual, and various appearances here, especially in Chapter 10) or passing in an arbitrary
      comparison function. The file minmax.py shows how to implement the latter
      scheme:
def minmax(test, *args):
    res = args[0]
    for arg in args[1:]:
        if test(arg, res):
            res = arg
    return res

def lessthan(x, y): return x < y                # See also: lambda, eval
def grtrthan(x, y): return x > y

print(minmax(lessthan, 4, 2, 1, 5, 6, 3))       # Self-test code
print(minmax(grtrthan, 4, 2, 1, 5, 6, 3))

% python minmax.py
1
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Functions are another kind of object that can be passed into a
      function like this one. To make this a max (or other) function, for example, we
      simply pass in the right sort of test
      function. This may seem like extra work, but the main point of
      generalizing functions this way—instead of cutting and pasting to change
      just a single character—is that we’ll only have one version to change in
      the future, not two.

The Punch Line...
Of course, all this was just a coding exercise. There’s really no
      reason to code min or max functions, because both are built-ins in
      Python! We met them briefly in Chapter 5 in
      conjunction with numeric tools, and again in Chapter 14 when exploring iteration
      contexts. The built-in versions work almost exactly like ours, but
      they’re coded in C for optimal speed and accept either a single iterable
      or multiple arguments. Still, though it’s superfluous in this context,
      the general coding pattern we used here might be useful in other
      scenarios.


Generalized Set Functions
Let’s look at a more useful example of special argument-matching modes at work.
    At the end of Chapter 16, we wrote a function that
    returned the intersection of two sequences (it picked out items that
    appeared in both). Here is a version that intersects an arbitrary number
    of sequences (one or more) by using the varargs matching form *args to collect all the passed-in arguments.
    Because the arguments come in as a tuple, we can process them in a simple
    for loop. Just for fun, we’ll code a
    union function that also accepts an
    arbitrary number of arguments to collect items that appear in any of the
    operands:
def intersect(*args):
    res = []
    for x in args[0]:                  # Scan first sequence
        if x in res: continue          # Skip duplicates
        for other in args[1:]:         # For all other args
            if x not in other: break   # Item in each one?
        else:                          # No: break out of loop
            res.append(x)              # Yes: add items to end
    return res

def union(*args):
    res = []
    for seq in args:                   # For all args
        for x in seq:                  # For all nodes
            if not x in res:
                res.append(x)          # Add new items to result
    return res
Because these are tools potentially worth reusing (and they’re too
    big to retype interactively), we’ll store the functions in a module file
    called inter2.py (if you’ve forgotten
    how modules and imports work, see the introduction in Chapter 3, or stay tuned for in-depth coverage in
    Part V). In both functions, the arguments
    passed in at the call come in as the args tuple. As in the original intersect, both work on any kind of sequence.
    Here, they are processing strings, mixed types, and more than two
    sequences:
% python
>>> from inter2 import intersect, union
>>> s1, s2, s3 = "SPAM", "SCAM", "SLAM"

>>> intersect(s1, s2), union(s1, s2)           # Two operands
(['S', 'A', 'M'], ['S', 'P', 'A', 'M', 'C'])

>>> intersect([1, 2, 3], (1, 4))               # Mixed types
[1]

>>> intersect(s1, s2, s3)                      # Three operands
['S', 'A', 'M']

>>> union(s1, s2, s3)
['S', 'P', 'A', 'M', 'C', 'L']
To test more thoroughly, the following codes a function to apply the
    two tools to arguments in different orders using a simple shuffling
    technique that we saw in Chapter 13—it slices
    to move the first to the end on each loop, uses a * to unpack arguments, and sorts so results are
    comparable:
>>> def tester(func, items, trace=True):
       for i in range(len(items)):
           items = items[1:] + items[:1]
           if trace: print(items)
           print(sorted(func(*items)))

>>> tester(intersect, ('a', 'abcdefg', 'abdst', 'albmcnd'))
('abcdefg', 'abdst', 'albmcnd', 'a')
['a']
('abdst', 'albmcnd', 'a', 'abcdefg')
['a']
('albmcnd', 'a', 'abcdefg', 'abdst')
['a']
('a', 'abcdefg', 'abdst', 'albmcnd')
['a']

>>> tester(union, ('a', 'abcdefg', 'abdst', 'albmcnd'), False)
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'l', 'm', 'n', 's', 't']
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'l', 'm', 'n', 's', 't']
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'l', 'm', 'n', 's', 't']
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'l', 'm', 'n', 's', 't']

>>> tester(intersect, ('ba', 'abcdefg', 'abdst', 'albmcnd'), False)
['a', 'b']
['a', 'b']
['a', 'b']
['a', 'b']
The argument scrambling here doesn’t generate all possible argument
    orders (that would require a full permutation, and 24 orderings for 4
    arguments), but suffices to check if argument order impacts results here.
    If you test these further, you’ll notice that
    duplicates won’t appear in either intersection or
    union results, which qualify them as set operations from a mathematical
    perspective:
>>> intersect([1, 2, 1, 3], (1, 1, 4))
[1]
>>> union([1, 2, 1, 3], (1, 1, 4))
[1, 2, 3, 4]
>>> tester(intersect, ('ababa', 'abcdefga', 'aaaab'), False)
['a', 'b']
['a', 'b']
['a', 'b']
These are still far from optimal from an algorithmic perspective,
    but due to the following note, we’ll leave further improvements to this
    code as suggested exercise. Also notice that the argument scrambling in
    our tester function might be a generally useful tool, and the tester would
    be simpler if we delegated this to another function, one that would be
    free to create or generate argument combinations as it saw fit:
>>> def tester(func, items, trace=True):
        for args in scramble(items):
            ...use args...
In fact we will—watch for this example to be revised in Chapter 20 to address this last point,
    after we’ve learned how to code user-defined
    generators. We’ll also recode the set operations one
    last time in Chapter 32 and a solution to a
    Part VI exercise as
    classes that extend the list object with methods.
Note
Because Python now has a set object type
      (described in Chapter 5), none of the
      set-processing examples in this book are strictly required anymore; they
      are included just as demonstrations of coding techniques, and are today
      instructional only. Because it’s constantly improving and growing,
      Python has an uncanny way of conspiring to make my book examples
      obsolete over time!


Emulating the Python 3.X print Function
To round out the chapter, let’s look at one last example of argument matching at work.
    The code you’ll see here is intended for use in Python 2.X or earlier (it
    works in 3.X, too, but is pointless there): it uses both the *args arbitrary positional tuple and the
    **args arbitrary keyword-arguments
    dictionary to simulate most of what the Python 3.X print function does. Python might have offered
    code like this as an option in 3.X rather than
    removing the 2.X print entirely, but
    3.X chose a clean break with the past instead.
As we learned in Chapter 11, this isn’t actually
    required, because 2.X programmers can always enable the 3.X print function with an import of this form
    (available in 2.6 and 2.7):
from __future__ import print_function
To demonstrate argument matching in general, though, the following
    file, print3.py, does the same job in
    a small amount of reusable code, by building up the print string and
    routing it per configuration arguments:
#!python
"""
Emulate most of the 3.X print function for use in 2.X (and 3.X).
Call signature: print3(*args, sep=' ', end='\n', file=sys.stdout)
"""
import sys

def print3(*args, **kargs):
    sep  = kargs.get('sep', ' ')            # Keyword arg defaults
    end  = kargs.get('end', '\n')
    file = kargs.get('file', sys.stdout)
    output = ''
    first  = True
    for arg in args:
        output += ('' if first else sep) + str(arg)
        first = False
    file.write(output + end)
To test it, import this into another file or the interactive prompt,
    and use it like the 3.X print function.
    Here is a test script, testprint3.py
    (notice that the function must be called “print3”, because “print” is a
    reserved word in 2.X):
from print3 import print3
print3(1, 2, 3)
print3(1, 2, 3, sep='')                     # Suppress separator
print3(1, 2, 3, sep='...')
print3(1, [2], (3,), sep='...')             # Various object types

print3(4, 5, 6, sep='', end='')             # Suppress newline
print3(7, 8, 9)
print3()                                    # Add newline (or blank line)

import sys
print3(1, 2, 3, sep='??', end='.\n', file=sys.stderr)    # Redirect to file
When this is run under 2.X, we get the same results as 3.X’s
    print function:
C:\code> c:\python27\python testprint3.py
1 2 3
123
1...2...3
1...[2]...(3,)
4567 8 9

1??2??3.
Although pointless in 3.X, the results are identical when run there.
    As usual, the generality of Python’s design allows us to prototype or
    develop concepts in the Python language itself. In this case,
    argument-matching tools are as flexible in Python code as they are in
    Python’s internal implementation.
Using Keyword-Only Arguments
It’s interesting to notice that this example could be coded with Python 3.X
      keyword-only arguments, described earlier in this chapter, to
      automatically validate configuration arguments. The following variant,
      in the file print3_alt1.py,
      illustrates:
#!python3
"Use 3.X only keyword-only args"
import sys

def print3(*args, sep=' ', end='\n', file=sys.stdout):
    output = ''
    first  = True
    for arg in args:
        output += ('' if first else sep) + str(arg)
        first = False
    file.write(output + end)
This version works the same as the original, and it’s a prime
      example of how keyword-only arguments come in handy. The original
      version assumes that all positional arguments are to be printed, and all
      keywords are for options only. That’s almost sufficient, but any extra
      keyword arguments are silently ignored. A call like the following, for
      instance, will generate an exception correctly with the keyword-only
      form:
>>> print3(99, name='bob')
TypeError: print3() got an unexpected keyword argument 'name'
but will silently ignore the name argument in the original version. To
      detect superfluous keywords manually, we could use dict.pop() to
      delete fetched entries, and check if the dictionary is not empty. The
      following version, in the file print3_alt2.py, is equivalent to the
      keyword-only version—it triggers a built-in exception with a raise statement,
      which works just as though Python had done so (we’ll study this in more
      detail in Part VII):
#!python
"Use 2.X/3.X keyword args deletion with defaults"
import sys

def print3(*args, **kargs):
    sep  = kargs.pop('sep', ' ')
    end  = kargs.pop('end', '\n')
    file = kargs.pop('file', sys.stdout)
    if kargs: raise TypeError('extra keywords: %s' % kargs)
    output = ''
    first  = True
    for arg in args:
        output += ('' if first else sep) + str(arg)
        first = False
    file.write(output + end)
This works as before, but it now catches extraneous keyword
      arguments, too:
>>> print3(99, name='bob')
TypeError: extra keywords: {'name': 'bob'}
This version of the function runs under Python 2.X, but it
      requires four more lines of code than the keyword-only version.
      Unfortunately, the extra code is unavoidable in this case—the
      keyword-only version works on 3.X only, which negates most of the reason
      that I wrote this example in the first place: a 3.X emulator that only
      works on 3.X isn’t incredibly useful! In programs written to run on 3.X
      only, though, keyword-only arguments can simplify a specific category of
      functions that accept both arguments and options. For another example of
      3.X keyword-only arguments, be sure to see the iteration timing
      case study in Chapter 21.
Why You Will Care: Keyword Arguments
As you can probably tell, advanced argument-matching modes can
        be complex. They are also largely optional in your code; you can get
        by with just simple positional matching, and it’s probably a good idea
        to do so when you’re starting out. However, because some Python tools
        make use of them, some general knowledge of these modes is
        important.
For example, keyword arguments play an important role in tkinter, the
        de facto standard GUI API for Python (this module’s name is Tkinter in Python 2.X). We touch on tkinter only briefly at various points in
        this book, but in terms of its call patterns, keyword arguments set
        configuration options when GUI components are built. For instance, a
        call of the form:
from tkinter import *
widget = Button(text="Press me", command=someFunction)
creates a new button and specifies its text and callback
        function, using the text and
        command keyword arguments. Since
        the number of configuration options for a widget can be large, keyword
        arguments let you pick and choose which to apply. Without them, you
        might have to either list all the possible options by position or hope
        for a judicious positional argument defaults protocol that would
        handle every possible option arrangement.
Many built-in functions in Python expect us to use keywords for
        usage-mode options as well, which may or may not have defaults. As we
        learned in Chapter 8, for instance,
        the sorted built-in:
sorted(iterable, key=None, reverse=False)
expects us to pass an iterable object to be sorted, but also
        allows us to pass in optional keyword arguments to specify a
        dictionary sort key function and a reversal flag, which default to
        None and False, respectively. Since we normally don’t
        use these options, they may be omitted to use defaults.
As we’ve also seen, the dict,
        str.format, and 3.X print calls accept keywords as well—other
        usages we had to introduce in earlier chapters because of their
        forward dependence on argument-passing modes we’ve studied here (alas,
        those who change Python already know Python!).



Chapter Summary
In this chapter, we studied the second of two key concepts related
    to functions: arguments—how objects are passed into a
    function. As we learned, arguments are passed into a function by
    assignment, which means by object reference (which really means by
    pointer). We also studied some more advanced extensions, including default
    and keyword arguments, tools for using arbitrarily many arguments, and
    keyword-only arguments in 3.X. Finally, we saw how mutable arguments can
    exhibit the same behavior as other shared references to objects—unless the
    object is explicitly copied when it’s sent in, changing a passed-in
    mutable in a function can impact the caller.
The next chapter continues our look at functions by exploring some
    more advanced function-related ideas: function annotations, recursion,
    lambdas, and functional tools such as
    map and filter. Many of these concepts stem from the
    fact that functions are normal objects in Python, and so support some
    advanced and very flexible processing modes. Before diving into those
    topics, however, take this chapter’s quiz to review the argument ideas
    we’ve studied here.

Test Your Knowledge: Quiz
In most of this quiz’s questions, results may vary slightly in 2.X—with
    enclosing parentheses and commas when multiple values are printed. To
    match the 3.X answers exactly in 2.X, import print_function from __future__ before starting.
	What is the output of the following code, and why?
>>> def func(a, b=4, c=5):
        print(a, b, c)

>>> func(1, 2)

	What is the output of this code, and why?
>>> def func(a, b, c=5):
        print(a, b, c)

>>> func(1, c=3, b=2)

	How about this code: what is its output, and why?
>>> def func(a, *pargs):
        print(a, pargs)

>>> func(1, 2, 3)

	What does this code print, and why?
>>> def func(a, **kargs):
        print(a, kargs)

>>> func(a=1, c=3, b=2)

	What gets printed by this, and why?
>>> def func(a, b, c=3, d=4): print(a, b, c, d)

>>> func(1, *(5, 6))

	One last time: what is the output of this code, and why?
>>> def func(a, b, c): a = 2; b[0] = 'x'; c['a'] = 'y'

>>> l=1; m=[1]; n={'a':0}
>>> func(l, m,  n)
>>> l, m, n



Test Your Knowledge: Answers
	The output here is 1 2 5,
        because 1 and 2 are passed to a and b
        by position, and c is omitted in
        the call and defaults to 5.

	The output this time is 1 2
        3: 1 is passed to
        a by position, and b and c
        are passed 2 and 3 by name (the left-to-right order doesn’t
        matter when keyword arguments are used like this).

	This code prints 1 (2, 3),
        because 1 is passed to a and the *pargs collects the remaining positional
        arguments into a new tuple object. We can step through the extra
        positional arguments tuple with any iteration tool (e.g., for arg in pargs: ...).

	This time the code prints 1 {'b': 2,
        'c': 3}, because 1 is
        passed to a by name and the
        **kargs collects the remaining
        keyword arguments into a dictionary. We could step through the extra
        keyword arguments dictionary by key with any iteration tool (e.g.,
        for key in kargs: ...). Note that
        the order of the dictionary’s keys may vary per Python and other
        variables.

	The output here is 1 5 6 4:
        the 1 matches a by position, 5 and 6
        match b and c by *name positionals (6 overrides c’s default), and d defaults to 4 because it was not passed a value.

	This displays (1, ['x'], {'a':
        'y'})—the first assignment in the function doesn’t impact
        the caller, but the second two do because they change passed-in
        mutable objects in place.



1 Actually, this is fairly complicated. The Python sort routine is coded in C and uses a
          highly optimized algorithm that attempts to take advantage of
          partial ordering in the items to be sorted. It’s named “timsort”
          after Tim Peters, its creator, and in its documentation it claims to
          have “supernatural performance” at times (pretty good, for a sort!).
          Still, sorting is an inherently exponential operation (it must chop
          up the sequence and put it back together many times), and the other
          versions simply perform one linear left-to-right scan. The net
          effect is that sorting is quicker if the arguments are partially
          ordered, but is likely to be slower otherwise (this still holds true
          in test runs in 3.3). Even so, Python performance can change over
          time, and the fact that sorting is implemented in the C language can
          help greatly; for an exact analysis, you should time the
          alternatives with the time or
          timeit modules—we’ll see how in
          Chapter 21.








Chapter 19. Advanced Function Topics
This chapter introduces a collection of more advanced function-related
  topics: recursive functions, function attributes and annotations, the
  lambda expression, and functional
  programming tools such as map and
  filter. These are all somewhat advanced
  tools that, depending on your job description, you may not encounter on a
  regular basis. Because of their roles in some domains, though, a basic
  understanding can be useful; lambdas, for
  instance, are regular customers in GUIs, and functional programming
  techniques are increasingly common in Python code.
Part of the art of using functions lies in the interfaces between
  them, so we will also explore some general function design principles here.
  The next chapter continues this advanced theme with an exploration of
  generator functions and expressions and a revival of list comprehensions in
  the context of the functional tools we will study here.
Function Design Concepts
Now that we’ve had a chance to study function basics in Python, let’s begin this
    chapter with a few words of context. When you start using functions in
    earnest, you’re faced with choices about how to glue components
    together—for instance, how to decompose a task into purposeful functions
    (known as cohesion), how your functions should communicate (called
    coupling), and so on. You also need to take into account concepts
    such as the size of your functions, because they directly impact code
    usability. Some of this falls into the category of structured analysis and
    design, but it applies to Python code as to any other.
We introduced some ideas related to function and module coupling in
    Chapter 17 when studying scopes, but here is a review of a
    few general guidelines for readers new to function design
    principles:
	Coupling: use arguments for inputs
        and return for outputs. Generally, you should strive to
        make a function independent of things outside of it. Arguments and
        return statements are often the
        best ways to isolate external dependencies to a small number of
        well-known places in your code.

	Coupling: use global variables only when
        truly necessary. Global variables (i.e., names in the
        enclosing module) are usually a poor way for functions to communicate.
        They can create dependencies and timing issues that make programs
        difficult to debug, change, and reuse.

	Coupling: don’t change mutable arguments
        unless the caller expects it. Functions can change parts of
        passed-in mutable objects, but (as with global variables) this creates
        a tight coupling between the caller and callee, which can make a
        function too specific and brittle.

	Cohesion: each function should have a
        single, unified purpose. When designed well, each of your
        functions should do one thing—something you can summarize in a simple
        declarative sentence. If that sentence is very broad (e.g., “this
        function implements my whole program”), or contains lots of
        conjunctions (e.g., “this function gives employee raises
        and submits a pizza order”), you might want to
        think about splitting it into separate and simpler functions.
        Otherwise, there is no way to reuse the code behind the steps mixed
        together in the function.

	Size: each function should be relatively
        small. This naturally follows from the preceding goal, but
        if your functions start spanning multiple pages on your display, it’s
        probably time to split them. Especially given that Python code is so
        concise to begin with, a long or deeply nested function is often a
        symptom of design problems. Keep it simple, and keep it short.

	Coupling: avoid changing variables in
        another module file directly. We introduced this concept in
        Chapter 17, and we’ll revisit it in the next part of
        the book when we focus on modules. For reference, though, remember
        that changing variables across file boundaries sets up a coupling
        between modules similar to how global variables couple functions—the
        modules become difficult to understand and reuse. Use accessor functions whenever possible, instead of direct
        assignment statements.


Figure 19-1
    summarizes the ways functions can talk to the outside world; inputs may
    come from items on the left side, and results may be sent out in any of
    the forms on the right. Good function designers prefer to use only
    arguments for inputs and return
    statements for outputs, whenever possible.
Figure 19-1. Function execution environment. Functions may obtain input and
      produce output in a variety of ways, though functions are usually easier
      to understand and maintain if you use arguments for input and return
      statements and anticipated mutable argument changes for output. In
      Python 3.X only, outputs may also take the form of declared nonlocal
      names that exist in an enclosing function scope.

Of course, there are plenty of exceptions to the preceding design
    rules, including some related to Python’s OOP support. As you’ll see in Part VI, Python classes depend
    on changing a passed-in mutable object—class functions set attributes of
    an automatically passed-in argument called self to change per-object state information (e.g., self.name='bob'). Moreover, if classes are not
    used, global variables are often the most straightforward way for
    functions in modules to retain single-copy state between calls. Side
    effects are usually dangerous only if they’re unexpected.
In general though, you should strive to minimize external
    dependencies in functions and other program components. The more
    self-contained a function is, the easier it will be
    to understand, reuse, and modify.

Recursive Functions
We mentioned recursion in relation to comparisons of core types in Chapter 9. While discussing
    scope rules near the start of Chapter 17, we also briefly
    noted that Python supports recursive
    functions—functions that call themselves either directly or
    indirectly in order to loop. In this section, we’ll explore what this
    looks like in our functions’ code.
Recursion is a somewhat advanced topic, and it’s relatively rare to
    see in Python, partly because Python’s procedural statements include
    simpler looping structures. Still, it’s a useful technique to know about,
    as it allows programs to traverse structures that have arbitrary and
    unpredictable shapes and depths—planning travel routes, analyzing
    language, and crawling links on the Web, for example. Recursion is even an
    alternative to simple loops and iterations, though not necessarily the
    simplest or most efficient one.
Summation with Recursion
Let’s look at some examples. To sum a list (or other sequence) of numbers, we can either
      use the built-in sum function or
      write a more custom version of our own. Here’s what a custom summing
      function might look like when coded with recursion:
>>> def mysum(L):
        if not L:
            return 0
        else:
            return L[0] + mysum(L[1:])           # Call myself recursively

>>> mysum([1, 2, 3, 4, 5])
15
At each level, this function calls itself recursively to compute
      the sum of the rest of the list, which is later
      added to the item at the front. The recursive loop
      ends and zero is returned when the list becomes empty. When using
      recursion like this, each open level of call to the function has its own
      copy of the function’s local scope on the runtime call stack—here, that
      means L is different in each
      level.
If this is difficult to understand (and it often is for new
      programmers), try adding a print of
      L to the function and run it again,
      to trace the current list at each call level:
>>> def mysum(L):
        print(L)                                 # Trace recursive levels
        if not L:                                # L shorter at each level
            return 0
        else:
            return L[0] + mysum(L[1:])

>>> mysum([1, 2, 3, 4, 5])
[1, 2, 3, 4, 5]
[2, 3, 4, 5]
[3, 4, 5]
[4, 5]
[5]
[]
15
As you can see, the list to be summed grows smaller at each
      recursive level, until it becomes empty—the termination of the recursive
      loop. The sum is computed as the recursive calls unwind on
      returns.

Coding Alternatives
Interestingly, we can use Python’s if/else ternary expression (described in Chapter 12) to save some code real estate
      here. We can also generalize for any summable type (which is easier if
      we assume at least one item in the input, as we did in Chapter 18’s minimum value example) and use Python 3.X’s
      extended sequence assignment to make the first/rest unpacking simpler
      (as covered in Chapter 11):
def mysum(L):
    return 0 if not L else L[0] + mysum(L[1:])           # Use ternary expression

def mysum(L):
    return L[0] if len(L) == 1 else L[0] + mysum(L[1:])  # Any type, assume one

def mysum(L):
    first, *rest = L
    return first if not rest else first + mysum(rest)    # Use 3.X ext seq assign
The latter two of these fail for empty lists but allow for
      sequences of any object type that supports +, not just numbers:
>>> mysum([1])                              # mysum([]) fails in last 2
1
>>> mysum([1, 2, 3, 4, 5])
15
>>> mysum(('s', 'p', 'a', 'm'))             # But various types now work
'spam'
>>> mysum(['spam', 'ham', 'eggs'])
'spamhameggs'
Run these on your own for more insight. If you study these three
      variants, you’ll find that:
	The latter two also work on a single string argument (e.g.,
          mysum('spam')), because strings
          are sequences of one-character strings.

	The third variant works on arbitrary iterables, including open
          input files (mysum(open(name))), but the others do not because they
          index (Chapter 14 illustrates
          extended sequence assignment on files).

	The function header def mysum(first,
          *rest), although similar to the third variant, wouldn’t
          work at all, because it expects individual arguments, not a single
          iterable.


Keep in mind that recursion can be direct, as in the examples so
      far, or indirect, as in the following (a function
      that calls another function, which calls back to its caller). The net
      effect is the same, though there are two function calls at each level
      instead of one:
>>> def mysum(L):
        if not L: return 0
        return nonempty(L)                  # Call a function that calls me

>>> def nonempty(L):
        return L[0] + mysum(L[1:])          # Indirectly recursive

>>> mysum([1.1, 2.2, 3.3, 4.4])
11.0

Loop Statements Versus Recursion
Though recursion works for summing in the prior sections’ examples, it’s probably
      overkill in this context. In fact, recursion is not used nearly as often
      in Python as in more esoteric languages like Prolog or Lisp, because
      Python emphasizes simpler procedural statements like loops, which are
      usually more natural. The while, for example,
      often makes things a bit more concrete, and it doesn’t require that a
      function be defined to allow recursive calls:
>>> L = [1, 2, 3, 4, 5]
>>> sum = 0
>>> while L:
        sum += L[0]
        L = L[1:]

>>> sum
15
Better yet, for loops iterate
      for us automatically, making recursion largely extraneous in many
      cases (and, in all likelihood, less efficient in terms of memory space
      and execution time):
>>> L = [1, 2, 3, 4, 5]
>>> sum = 0
>>> for x in L: sum += x

>>> sum
15
With looping statements, we don’t require a fresh copy of a local
      scope on the call stack for each iteration, and we avoid the speed costs
      associated with function calls in general. (Stay tuned for Chapter 21’s timer case study for ways to
      compare the execution times of alternatives like these.)

Handling Arbitrary Structures
On the other hand, recursion—or equivalent explicit stack-based algorithms
      we’ll meet shortly—can be required to traverse arbitrarily shaped
      structures. As a simple example of recursion’s role in this context,
      consider the task of computing the sum of all the numbers in a nested
      sublists structure like this:
[1, [2, [3, 4], 5], 6, [7, 8]]                   # Arbitrarily nested sublists
Simple looping statements won’t work here because this is not a
      linear iteration. Nested looping statements do not suffice either,
      because the sublists may be nested to arbitrary depth and in an
      arbitrary shape—there’s no way to know how many nested loops to code to
      handle all cases. Instead, the following code accommodates such general
      nesting by using recursion to visit sublists along the way:
# file sumtree.py

def sumtree(L):
    tot = 0
    for x in L:                                  # For each item at this level
        if not isinstance(x, list):
            tot += x                             # Add numbers directly
        else:
            tot += sumtree(x)                    # Recur for sublists
    return tot

L = [1, [2, [3, 4], 5], 6, [7, 8]]               # Arbitrary nesting
print(sumtree(L))                                # Prints 36

# Pathological cases
print(sumtree([1, [2, [3, [4, [5]]]]]))          # Prints 15 (right-heavy)
print(sumtree([[[[[1], 2], 3], 4], 5]))          # Prints 15 (left-heavy)
Trace through the test cases at the bottom of this script to see
      how recursion traverses their nested lists.
Recursion versus queues and stacks
It sometimes helps to understand that internally, Python implements
        recursion by pushing information on a call stack at each recursive
        call, so it remembers where it must return and continue later. In
        fact, it’s generally possible to implement recursive-style procedures
        without recursive calls, by using an explicit stack or queue of your
        own to keep track of remaining steps.
For instance, the following computes the same sums as the prior
        example, but uses an explicit list to schedule when it will visit
        items in the subject, instead of issuing recursive calls; the item at
        the front of the list is always the next to be processed and
        summed:
def sumtree(L):                                  # Breadth-first, explicit queue
    tot = 0
    items = list(L)                              # Start with copy of top level
    while items:
        front = items.pop(0)                     # Fetch/delete front item
        if not isinstance(front, list):
            tot += front                         # Add numbers directly
        else:
            items.extend(front)                  # <== Append all in nested list
    return tot
Technically, this code traverses the list in
        breadth-first fashion by levels, because it adds
        nested lists’ contents to the end of the list, forming a
        first-in-first-out queue. To emulate the traversal of the recursive call version
        more closely, we can change it to perform
        depth-first traversal simply by adding the
        content of nested lists to the front of the list, forming a last-in-first-out
        stack:
def sumtree(L):                                  # Depth-first, explicit stack
    tot = 0
    items = list(L)                              # Start with copy of top level
    while items:
        front = items.pop(0)                     # Fetch/delete front item
        if not isinstance(front, list):
            tot += front                         # Add numbers directly
        else:
            items[:0] = front                    # <== Prepend all in nested list
    return tot
For more on the last two examples (and another variant), see
        file sumtree2.py in the book’s
        examples. It adds items list tracing so you can watch it grow in both
        schemes, and can show numbers as they are visited so you see the
        search order. For instance, the breadth-first and depth-first variants
        visit items in the same three test lists used for the recursive
        version in the following orders, respectively (sums are shown
        last):
c:\code> sumtree2.py
1, 6, 2, 5, 7, 8, 3, 4, 36
1, 2, 3, 4, 5, 15
5, 4, 3, 2, 1, 15
----------------------------------------
1, 2, 3, 4, 5, 6, 7, 8, 36
1, 2, 3, 4, 5, 15
1, 2, 3, 4, 5, 15
----------------------------------------
In general, though, once you get the hang of recursive calls,
        they are more natural than the explicit scheduling lists they
        automate, and are generally preferred unless you need to traverse
        structure in specialized ways. Some programs, for example, perform a
        best-first search that requires an explicit
        search queue ordered by relevance or other criteria. If you
        think of a web crawler that scores pages visited by content, the
        applications may start to become clearer.

Cycles, paths, and stack limits
As is, these programs suffice for our example, but larger
        recursive applications can sometimes require a bit more infrastructure
        than shown here: they may need to avoid cycles or repeats, record
        paths taken for later use, and expand stack space when using recursive
        calls instead of explicit queues or stacks.
For instance, neither the recursive call nor the explicit queue/stack
        examples in this section do anything about avoiding
        cycles—visiting a location already visited.
        That’s not required here, because we’re traversing strictly
        hierarchical list object trees. If data can be a cyclic graph, though,
        both these schemes will fail: the recursive call version will fall
        into an infinite recursive loop (and may run out of call-stack space),
        and the others will fall into simple infinite loops, re-adding the
        same items to their lists (and may or may not run out of general
        memory). Some programs also need to avoid repeated processing for a
        state reached more than once, even if that wouldn’t lead to a
        loop.
To do better, the recursive call version could simply keep and
        pass a set, dictionary, or list of states visited so far and check for
        repeats as it goes. We will use this scheme in later recursive
        examples in this book:
  if state not in visited:
      visited.add(state)          # x.add(state), x[state]=True, or x.append(state)
      ...proceed...
The nonrecursive alternatives could similarly avoid adding
        states already visited with code like the following.
        Note that checking for duplicates already on the items list would
        avoid scheduling a state twice, but would not prevent revisiting a
        state traversed earlier and hence removed from that list:
  visited.add(front)
  ...proceed...
  items.extend([x for x in front if x not in visited])
This model doesn’t quite apply to this section’s use case that
        simply adds numbers in lists, but larger applications will be able to
        identify repeated states—a URL of a previously visited web page, for
        instance. In fact, we’ll use such techniques to avoid cycles and
        repeats in later examples listed in the next section.
Some programs may also need to record complete paths for each state
        followed so they can report solutions when finished. In such cases,
        each item in the nonrecursive scheme’s stack or queue may be a full
        path list that suffices for a record of states visited, and contains
        the next item to explore at either end.
Also note that standard Python limits the
        depth of its runtime call stack—crucial to recursive call programs—to
        trap infinite recursion errors. To expand it, use the sys
        module:
>>> sys.getrecursionlimit()         # 1000 calls deep default
1000
>>> sys.setrecursionlimit(10000)    # Allow deeper nesting
>>> help(sys.setrecursionlimit)     # Read more about it
The maximum allowed setting can vary per platform. This isn’t
        required for programs that use stacks or queues to avoid recursive
        calls and gain more control over the traversal process.

More recursion examples
Although this section’s example is artificial, it is representative
        of a larger class of programs; inheritance trees and module import
        chains, for example, can exhibit similarly general structures, and
        computing structures such as permutations can require arbitrarily many
        nested loops. In fact, we will use recursion again in such roles in
        more realistic examples later in this book:
	In Chapter 20’s
            permute.py, to shuffle
            arbitrary sequences

	In Chapter 25’s reloadall.py, to traverse import
            chains

	In Chapter 29’s classtree.py, to traverse class
            inheritance trees

	In Chapter 31’s lister.py, to traverse class
            inheritance trees again

	In Appendix
            D’s solutions to two exercises at the end of this part of
            the book: countdowns and factorials


The second and third of these will also detect states already
        visited to avoid cycles and repeats. Although simple loops should
        generally be preferred to recursion for linear iterations on the
        grounds of simplicity and efficiency, we’ll find that recursion is
        essential in scenarios like those in these later examples.
Moreover, you sometimes need to be aware of the potential of
        unintended recursion in your programs. As you’ll
        also see later in the book, some operator overloading methods in
        classes such as __setattr__ and
        __getattribute__ and even __repr__ have the potential to recursively
        loop if used incorrectly. Recursion is a powerful tool, but it tends
        to be best when both understood and expected!



Function Objects: Attributes and Annotations
Python functions are more flexible than you might think. As we’ve
    seen in this part of the book, functions in Python are much more than
    code-generation specifications for a compiler—Python functions are
    full-blown objects, stored in pieces of memory all
    their own. As such, they can be freely passed around a program and called
    indirectly. They also support operations that have little to do with calls
    at all—attribute storage and annotation.
Indirect Function Calls: “First Class” Objects
Because Python functions are objects, you can write programs that process them
      generically. Function objects may be assigned to other names, passed to
      other functions, embedded in data structures, returned from one function
      to another, and more, as if they were simple numbers or strings.
      Function objects also happen to support a special operation: they can be
      called by listing arguments in parentheses after a function expression.
      Still, functions belong to the same general category as other
      objects.
This is usually called a first-class object
      model; it’s ubiquitous in Python, and a necessary part of
      functional programming. We’ll explore this programming mode more fully
      in this and the next chapter; because its motif is founded on the notion
      of applying functions, functions must be treated as data.
We’ve seen some of these generic use cases for functions in
      earlier examples, but a quick review helps to underscore the object
      model. For example, there’s really nothing special about the name used
      in a def statement: it’s just a
      variable assigned in the current scope, as if it had appeared on the
      left of an = sign. After a def runs, the function name is simply a
      reference to an object—you can reassign that object
      to other names freely and call it through any reference:
>>> def echo(message):                   # Name echo assigned to function object
        print(message)

>>> echo('Direct call')                  # Call object through original name
Direct call

>>> x = echo                             # Now x references the function too
>>> x('Indirect call!')                  # Call object through name by adding ()
Indirect call!
Because arguments are passed by assigning objects, it’s just as
      easy to pass functions to other functions as
      arguments. The callee may then call the passed-in function just by
      adding arguments in parentheses:
>>> def indirect(func, arg):
        func(arg)                        # Call the passed-in object by adding ()

>>> indirect(echo, 'Argument call!')     # Pass the function to another function
Argument call!
You can even stuff function objects into data structures, as
      though they were integers or strings. The following, for example,
      embeds the function twice in a list of tuples, as a
      sort of actions table. Because Python compound types like these can
      contain any sort of object, there’s no special case here, either:
>>> schedule = [ (echo, 'Spam!'), (echo, 'Ham!') ]
>>> for (func, arg) in schedule:
        func(arg)                        # Call functions embedded in containers

Spam!
Ham!
This code simply steps through the schedule list, calling the echo function with one argument each time
      through (notice the tuple-unpacking assignment in the for loop header, introduced in Chapter 13). As we saw in Chapter 17’s examples, functions can also be created and
      returned for use elsewhere—the
      closure created in this mode also retains state
      from the enclosing scope:
>>> def make(label):                     # Make a function but don't call it
        def echo(message):
            print(label + ':' + message)
        return echo

>>> F = make('Spam')                     # Label in enclosing scope is retained
>>> F('Ham!')                            # Call the function that make returned
Spam:Ham!
>>> F('Eggs!')
Spam:Eggs!
Python’s universal first-class object model and lack of type
      declarations make for an incredibly flexible programming
      language.

Function Introspection
Because they are objects, we can also process functions with normal object
      tools. In fact, functions are more flexible than you might expect. For
      instance, once we make a function, we can call it as usual:
>>> def func(a):
        b = 'spam'
        return b * a

>>> func(8)
'spamspamspamspamspamspamspamspam'
But the call expression is just one operation defined to work on
      function objects. We can also inspect their attributes generically (the
      following is run in Python 3.3, but 2.X results are similar):
>>> func.__name__
'func'
>>> dir(func)
['__annotations__', '__call__', '__class__', '__closure__', '__code__',
...more omitted: 34 total...
'__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']
Introspection tools allow us to explore implementation details
      too—functions have attached code objects, for
      example, which provide details on aspects such as the functions’ local
      variables and arguments:
>>> func.__code__
<code object func at 0x00000000021A6030, file "<stdin>", line 1>

>>> dir(func.__code__)
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__',
...more omitted: 37 total...
'co_argcount', 'co_cellvars', 'co_code', 'co_consts', 'co_filename',
'co_firstlineno', 'co_flags', 'co_freevars', 'co_kwonlyargcount', 'co_lnotab',
'co_name', 'co_names', 'co_nlocals', 'co_stacksize', 'co_varnames']

>>> func.__code__.co_varnames
('a', 'b')
>>> func.__code__.co_argcount
1
Tool writers can make use of such information to manage functions
      (in fact, we will too in Chapter 39, to implement
      validation of function arguments in decorators).

Function Attributes
Function objects are not limited to the system-defined attributes listed in the
      prior section, though. As we learned in Chapter 17, it’s
      been possible to attach arbitrary user-defined
      attributes to them as well since Python 2.1:
>>> func
<function func at 0x000000000296A1E0>
>>> func.count = 0
>>> func.count += 1
>>> func.count
1
>>> func.handles = 'Button-Press'
>>> func.handles
'Button-Press'
>>> dir(func)
['__annotations__', '__call__', '__class__', '__closure__', '__code__',
...and more: in 3.X all others have double underscores so your names won't clash...
__str__', '__subclasshook__', 'count', 'handles']
Python’s own implementation-related data stored on functions
      follows naming conventions that prevent them from clashing with the more
      arbitrary attribute names you might assign yourself. In 3.X, all
      function internals’ names have leading and trailing double underscores
      (“__X__”); 2.X follows the same scheme, but also assigns some names that
      begin with “func_X”:
c:\code> py −3
>>> def f(): pass

>>> dir(f)
...run on your own to see...
>>> len(dir(f))
34
>>> [x for x in dir(f) if not x.startswith('__')]
[]

c:\code> py −2
>>> def f(): pass

>>> dir(f)
...run on your own to see...
>>> len(dir(f))
31
>>> [x for x in dir(f) if not x.startswith('__')]
['func_closure', 'func_code', 'func_defaults', 'func_dict', 'func_doc',
'func_globals', 'func_name']
If you’re careful not to name attributes the same way, you can
      safely use the function’s namespace as though it were your own namespace
      or scope.
As we saw in that chapter, such attributes can be used to
      attach state information to function
      objects directly, instead of using other techniques such as globals,
      nonlocals, and classes. Unlike nonlocals, such attributes are accessible
      anywhere the function itself is, even from outside its code.
In a sense, this is also a way to emulate “static locals” in other
      languages—variables whose names are local to a function, but whose
      values are retained after a function exits. Attributes are related to
      objects instead of scopes (and must be referenced through the function
      name within its code), but the net effect is similar.
Moreover, as we learned in Chapter 17, when
      attributes are attached to functions generated by other
      factory functions, they also support multiple copy,
      per-call, and writeable state retention, much like nonlocal closures and
      class instance attributes.

Function Annotations in 3.X
In Python 3.X (but not 2.X), it’s also possible to attach annotation
      information—arbitrary user-defined data about a function’s
      arguments and result—to a function object. Python provides special
      syntax for specifying annotations, but it doesn’t do anything with them
      itself; annotations are completely optional, and when present are simply
      attached to the function object’s __annotations__ attribute for use by other tools. For instance, such a tool might
      use annotations in the context of error testing.
We met Python 3.X’s keyword-only arguments in the preceding
      chapter; annotations generalize function header syntax further. Consider
      the following nonannotated function, which is coded with three arguments
      and returns a result:
>>> def func(a, b, c):
        return a + b + c

>>> func(1, 2, 3)
6
Syntactically, function annotations are coded in def header lines, as arbitrary expressions
      associated with arguments and return values. For arguments, they appear
      after a colon immediately following the argument’s name; for return
      values, they are written after a -> following the arguments list. This code,
      for example, annotates all three of the prior function’s arguments, as
      well as its return value:
>>> def func(a: 'spam', b: (1, 10), c: float) -> int:
        return a + b + c

>>> func(1, 2, 3)
6
Calls to an annotated function work as usual, but when annotations
      are present Python collects them in a dictionary
      and attaches it to the function object itself. Argument names become
      keys, the return value annotation is stored under key “return” if coded
      (which suffices because this reserved word can’t be used as an argument
      name), and the values of annotation keys are assigned to the results of
      the annotation expressions:
>>> func.__annotations__
{'c': <class 'float'>, 'b': (1, 10), 'a': 'spam', 'return': <class 'int'>}
Because they are just Python objects attached to a Python object,
      annotations are straightforward to process. The following annotates just
      two of three arguments and steps through the attached annotations
      generically:
>>> def func(a: 'spam', b, c: 99):
        return a + b + c

>>> func(1, 2, 3)
6
>>> func.__annotations__
{'c': 99, 'a': 'spam'}

>>> for arg in func.__annotations__:
       print(arg, '=>', func.__annotations__[arg])

c => 99
a => spam
There are two fine points to note here. First, you can still use
      defaults for arguments if you code annotations—the
      annotation (and its : character)
      appear before the default (and its =
      character). In the following, for example, a:
      'spam' = 4 means that argument a defaults to 4 and is annotated with the string 'spam':
>>> def func(a: 'spam' = 4, b: (1, 10) = 5, c: float = 6) -> int:
        return a + b + c

>>> func(1, 2, 3)
6
>>> func()                       # 4 + 5 + 6   (all defaults)
15
>>> func(1, c=10)                # 1 + 5 + 10  (keywords work normally)
16
>>> func.__annotations__
{'c': <class 'float'>, 'b': (1, 10), 'a': 'spam', 'return': <class 'int'>}
Second, note that the blank spaces in the
      prior example are all optional—you can use spaces between components in
      function headers or not, but omitting them might degrade your code’s
      readability to some observers (and probably improve it to
      others!):
>>> def func(a:'spam'=4, b:(1,10)=5, c:float=6)->int:
        return a + b + c

>>> func(1, 2)                   # 1 + 2 + 6
9
>>> func.__annotations__
{'c': <class 'float'>, 'b': (1, 10), 'a': 'spam', 'return': <class 'int'>}
Annotations are a new feature in 3.X, and some of their potential
      uses remain to be uncovered. It’s easy to imagine annotations being used
      to specify constraints for argument types or values, though, and larger
      APIs might use this feature as a way to register function interface
      information.
In fact, we’ll see a potential application in Chapter 39, where we’ll look at annotations as an
      alternative to function decorator arguments—a more
      general concept in which information is coded outside the function
      header and so is not limited to a single role. Like Python itself,
      annotation is a tool whose roles are shaped by your imagination.
Finally, note that annotations work only in def statements, not lambda expressions, because lambda’s syntax already limits the utility of
      the functions it defines. Coincidentally, this brings us to our next
      topic.


Anonymous Functions: lambda
Besides the def statement,
    Python also provides an expression form that generates
    function objects. Because of its similarity to a tool in the Lisp
    language, it’s called lambda.1 Like def, this expression
    creates a function to be called later, but it returns the function instead
    of assigning it to a name. This is why lambdas are sometimes known as
    anonymous (i.e., unnamed) functions. In practice,
    they are often used as a way to inline a function definition, or to defer
    execution of a piece of code.
lambda Basics
The lambda’s general form is
      the keyword lambda, followed by one
      or more arguments (exactly like the arguments list you enclose in
      parentheses in a def header),
      followed by an expression after a colon:
lambda argument1, argument2,... argumentN : expression using arguments
Function objects returned by running lambda expressions work exactly the same as
      those created and assigned by defs,
      but there are a few differences that make lambdas useful in specialized roles:
	lambda is an expression, not a statement. Because
          of this, a lambda can appear in
          places a def is not allowed by
          Python’s syntax—inside a list literal or a function call’s
          arguments, for example. With def,
          functions can be referenced by name but must be created elsewhere.
          As an expression, lambda returns
          a value (a new function) that can optionally be assigned a name. In
          contrast, the def statement
          always assigns the new function to the name in the header, instead
          of returning it as a result.

	lambda’s body is a single expression, not a block of
          statements. The lambda’s body is similar to what you’d put
          in a def body’s return statement; you simply type the
          result as a naked expression, instead of explicitly returning it.
          Because it is limited to an expression, a lambda is less general than a def—you can only squeeze so much logic
          into a lambda body without using
          statements such as if. This is by
          design, to limit program nesting: lambda is designed for coding simple
          functions, and def handles larger
          tasks.


Apart from those distinctions, defs and lambdas do the same sort of work. For
      instance, we’ve seen how to make a function with a def statement:
>>> def func(x, y, z): return x + y + z

>>> func(2, 3, 4)
9
But you can achieve the same effect with a lambda expression by explicitly assigning its
      result to a name through which you can later call the function:
>>> f = lambda x, y, z: x + y + z
>>> f(2, 3, 4)
9
Here, f is assigned the
      function object the lambda expression
      creates; this is how def works, too,
      but its assignment is automatic.
Defaults work on lambda
      arguments, just like in a def:
>>> x = (lambda a="fee", b="fie", c="foe": a + b + c)
>>> x("wee")
'weefiefoe'
The code in a lambda body also
      follows the same scope lookup rules as code inside a def. lambda
      expressions introduce a local scope much like a nested def, which automatically sees names in
      enclosing functions, the module, and the built-in scope (via the LEGB
      rule, and per Chapter 17):
>>> def knights():
        title = 'Sir'
        action = (lambda x: title + ' ' + x)      # Title in enclosing def scope
        return action                             # Return a function object

>>> act = knights()
>>> msg = act('robin')                            # 'robin' passed to x
>>> msg
'Sir robin'

>>> act                                           # act: a function, not its result
<function knights.<locals>.<lambda> at 0x00000000029CA488>
In this example, prior to Release 2.2, the value for the name
      title would typically have been
      passed in as a default argument value instead; flip back to the scopes
      coverage in Chapter 17 if you’ve forgotten why.

Why Use lambda?
Generally speaking, lambda
      comes in handy as a sort of function shorthand that allows you to embed
      a function’s definition within the code that uses it. They are entirely
      optional—you can always use def
      instead, and should if your function requires the
      power of full statements that the lambda’s expression cannot easily provide—but
      they tend to be simpler coding constructs in scenarios where you just
      need to embed small bits of executable code inline at the place it is to
      be used.
For instance, we’ll see later that callback handlers are
      frequently coded as inline lambda
      expressions embedded directly in a registration call’s arguments list,
      instead of being defined with a def
      elsewhere in a file and referenced by name (see the sidebar “Why You Will Care: lambda Callbacks” for an
      example).
lambda is also commonly used to
      code jump tables, which are lists or
      dictionaries of actions to be performed on demand. For example:
L = [lambda x: x ** 2,               # Inline function definition
     lambda x: x ** 3,
     lambda x: x ** 4]               # A list of three callable functions

for f in L:
    print(f(2))                      # Prints 4, 8, 16

print(L[0](3))                       # Prints 9
The lambda expression is most
      useful as a shorthand for def, when
      you need to stuff small pieces of executable code into places where
      statements are illegal syntactically. The preceding code snippet, for
      example, builds up a list of three functions by embedding lambda expressions inside a list literal; a
      def won’t work inside a list literal
      like this because it is a statement, not an expression. The equivalent
      def coding would require temporary
      function names (which might clash with others) and function definitions
      outside the context of intended use (which might be hundreds of lines
      away):
def f1(x): return x ** 2
def f2(x): return x ** 3             # Define named functions
def f3(x): return x ** 4

L = [f1, f2, f3]                     # Reference by name

for f in L:
    print(f(2))                      # Prints 4, 8, 16

print(L[0](3))                       # Prints 9
Multiway branch switches: The finale
In fact, you can do the same sort of thing with dictionaries and
        other data structures in Python to build up more general sorts of
        action tables. Here’s another example to illustrate, at the interactive prompt:
>>> key = 'got'
>>> {'already': (lambda: 2 + 2),
     'got':     (lambda: 2 * 4),
     'one':     (lambda: 2 ** 6)}[key]()
8
Here, when Python makes the temporary dictionary, each of the
        nested lambdas generates and leaves
        behind a function to be called later. Indexing by key fetches one of
        those functions, and parentheses force the fetched function to be
        called. When coded this way, a dictionary becomes a more general
        multiway branching tool than what I could fully show you in Chapter 12’s coverage of if statements.
To make this work without lambda, you’d need to instead code three
        def statements somewhere else in
        your file, outside the dictionary in which the functions are to be
        used, and reference the functions by name:
>>> def f1(): return 2 + 2

>>> def f2(): return 2 * 4

>>> def f3(): return 2 ** 6

>>> key = 'one'
>>> {'already': f1, 'got': f2, 'one': f3}[key]()
64
This works, too, but your defs may be arbitrarily far away in your
        file, even if they are just little bits of code. The code
        proximity that lambdas
        provide is especially useful for functions that will only be used in a
        single context—if the three functions here are not useful anywhere
        else, it makes sense to embed their definitions within the dictionary
        as lambdas. Moreover, the def form requires you to make up names for
        these little functions that may clash with other names in this file
        (perhaps unlikely, but always possible).2
lambdas also come in handy in
        function-call argument lists as a way to inline temporary function
        definitions not used anywhere else in your program; we’ll see some
        examples of such other uses later in this chapter, when we study
        map.


How (Not) to Obfuscate Your Python Code
The fact that the body of a lambda has to be a single expression (not a series of statements) would
      seem to place severe limits on how much logic you can pack into a
      lambda. If you know what you’re
      doing, though, you can code most statements in Python as
      expression-based equivalents.
For example, if you want to print from the
      body of a lambda function, simply say print(X) in Python 3.X where this becomes a
      call expression instead of a statement, or say sys.stdout.write(str(X)+'\n') in either Python
      2.X or 3.X to make sure it’s an expression portably (recall from Chapter 11 that this is what
      print really does). Similarly, to
      nest selection logic in a lambda, you can use the if/else
      ternary expression introduced in Chapter 12, or the equivalent but trickier
      and/or combination also described there. As you
      learned earlier, the following statement:
if a:
    b
else:
    c
can be emulated by either of these roughly equivalent
      expressions:
b if a else c
((a and b) or c)
Because expressions like these can be placed inside a lambda, they may be used to implement
      selection logic within a lambda
      function:
>>> lower = (lambda x, y: x if x < y else y)
>>> lower('bb', 'aa')
'aa'
>>> lower('aa', 'bb')
'aa'
Furthermore, if you need to perform loops
      within a lambda, you can also embed
      things like map calls and list
      comprehension expressions—tools we met in earlier chapters and will
      revisit in this and the next chapter:
>>> import sys
>>> showall = lambda x: list(map(sys.stdout.write, x))        # 3.X: must use list
>>> t = showall(['spam\n', 'toast\n', 'eggs\n'])              # 3.X: can use print
spam
toast
eggs
>>> showall = lambda x: [sys.stdout.write(line) for line in x]
>>> t = showall(('bright\n', 'side\n', 'of\n', 'life\n'))
bright
side
of
life
>>> showall = lambda x: [print(line, end='') for line in x]   # Same: 3.X only
>>> showall = lambda x: print(*x, sep='', end='')             # Same: 3.X only
There is a limit to emulating statements with expressions: you
      can’t directly achieve an assignment statement’s effect, for instance,
      though tools like the setattr
      built-in, the __dict__ of
      namespaces, and methods that change mutable objects in place can
      sometimes stand in, and functional programming techniques can take you
      deep into the dark realm of convoluted expression.
Now that I’ve shown you these tricks, I am required to ask you to
      please only use them as a last resort. Without due care, they can lead
      to unreadable (a.k.a. obfuscated) Python code. In
      general, simple is better than complex, explicit is better than
      implicit, and full statements are better than arcane expressions. That’s
      why lambda is limited to expressions.
      If you have larger logic to code, use def; lambda
      is for small pieces of inline code. On the other hand, you may find
      these techniques useful in moderation.

Scopes: lambdas Can Be Nested Too
lambdas are the main beneficiaries of nested function scope lookup (the
      E in the LEGB scope rule we studied in Chapter 17). As a review, in the following the lambda appears inside a def—the typical case—and so can access the
      value that the name x had in the
      enclosing function’s scope at the time that the enclosing function was
      called:
>>> def action(x):
        return (lambda y: x + y)         # Make and return function, remember x

>>> act = action(99)
>>> act
<function action.<locals>.<lambda> at 0x00000000029CA2F0>
>>> act(2)                               # Call what action returned
101
What wasn’t illustrated in the prior discussion of nested function
      scopes is that a lambda also has
      access to the names in any enclosing lambda. This case is somewhat obscure, but
      imagine if we recoded the prior def
      with a lambda:
>>> action = (lambda x: (lambda y: x + y))
>>> act = action(99)
>>> act(3)
102
>>> ((lambda x: (lambda y: x + y))(99))(4)
103
Here, the nested lambda
      structure makes a function that makes a function when called. In both
      cases, the nested lambda’s code has
      access to the variable x in the
      enclosing lambda. This works, but it
      seems fairly convoluted code; in the interest of readability, nested
      lambdas are generally best avoided.
Why You Will Care: lambda Callbacks
Another very common application of lambda
        is to define inline callback functions for Python’s tkinter GUI API (this module is named Tkinter in Python 2.X). For example, the
        following creates a button that prints a message on the console when
        pressed, assuming tkinter is
        available on your computer (it is by default on Windows, Mac, Linux,
        and other OSs):
import sys
from tkinter import Button, mainloop  # Tkinter in 2.X
x = Button(
        text='Press me',
        command=(lambda:sys.stdout.write('Spam\n')))  # 3.X: print()
x.pack()
mainloop() # This may be optional in console mode
Here, we register the callback handler by passing a function
        generated with a lambda to the
        command keyword argument. The
        advantage of lambda over def here is that the code that handles a
        button press is right here, embedded in the button-creation
        call.
In effect, the lambda
        defers execution of the handler until the event
        occurs: the write call happens on
        button presses, not when the button is created, and effectively
        “knows” the string it should write when the event occurs.
Because the nested function scope rules apply to lambdas as well, they are also easier to use
        as callback handlers, as of Python 2.2—they automatically see names in
        the functions in which they are coded and no longer require passed-in
        defaults in most cases. This is especially handy for accessing the
        special self instance argument that is a local variable in enclosing class
        method functions (more on classes in Part VI):
class MyGui:
    def makewidgets(self):
        Button(command=(lambda: self.onPress("spam")))
    def onPress(self, message):
        ...use message...
In early versions of Python, even self had to be passed in to a lambda with defaults. As we’ll see later,
        class objects with __call__ and
        bound methods often serve in callback roles
        too—watch for coverage of these in Chapter 30 and Chapter 31.



Functional Programming Tools
By most definitions, today’s Python blends support for multiple programming
    paradigms: procedural (with its basic statements), object-oriented (with
    its classes), and functional. For the latter of these, Python includes a
    set of built-ins used for functional
    programming—tools that apply functions to sequences and other
    iterables. This set includes tools that call functions on an iterable’s
    items (map); filter out items based on
    a test function (filter); and apply
    functions to pairs of items and running results (reduce).
Though the boundaries are sometimes a bit grey, by most definitions
    Python’s functional programming arsenal also includes the first-class object model
    explored earlier, the nested scope closures and
    anonymous function lambdas we met earlier in this
    part of the book, the generators and
    comprehensions we’ll be expanding on in the next
    chapter, and perhaps the function and class
    decorators of this book’s final part. For our
    purposes here, let’s wrap up this chapter with a quick survey of built-in
    functions that apply other functions to iterables automatically.
Mapping Functions over Iterables: map
One of the more common things programs do with lists and other sequences
      is apply an operation to each item and collect the results—selecting
      columns in database tables, incrementing pay fields of employees in a
      company, parsing email attachments, and so on. Python has multiple tools
      that make such collection-wide operations easy to code. For instance,
      updating all the counters in a list can be done easily with a for loop:
>>> counters = [1, 2, 3, 4]
>>>
>>> updated = []
>>> for x in counters:
        updated.append(x + 10)                 # Add 10 to each item

>>> updated
[11, 12, 13, 14]
But because this is such a common operation, Python also provides
      built-ins that do most of the work for you. The map function applies a passed-in function to
      each item in an iterable object and returns a list containing all the
      function call results. For example:
>>> def inc(x): return x + 10                  # Function to be run

>>> list(map(inc, counters))                   # Collect results
[11, 12, 13, 14]
We met map briefly in Chapter 13 and Chapter 14, as a way to apply a built-in
      function to items in an iterable. Here, we make more general use of it
      by passing in a user-defined function to be applied
      to each item in the list—map calls
      inc on each list item and collects
      all the return values into a new list. Remember that map is an iterable in Python 3.X, so a
      list call is used to force it to
      produce all its results for display here; this isn’t necessary in 2.X
      (see Chapter 14 if you’ve
      forgotten this requirement).
Because map expects a function
      to be passed in and applied, it also happens to be one of the places
      where lambda commonly appears:
>>> list(map((lambda x: x + 3), counters))     # Function expression
[4, 5, 6, 7]
Here, the function adds 3 to each item in the counters list; as this little function isn’t
      needed elsewhere, it was written inline as a lambda. Because such uses of map are equivalent to for loops, with a little extra code you can
      always code a general mapping utility yourself:
>>> def mymap(func, seq):
        res = []
        for x in seq: res.append(func(x))
        return res
Assuming the function inc is
      still as it was when it was shown previously, we can map it across a
      sequence (or other iterable) with either the built-in or our
      equivalent:
>>> list(map(inc, [1, 2, 3]))             # Built-in is an iterable
[11, 12, 13]
>>> mymap(inc, [1, 2, 3])                 # Ours builds a list (see generators)
[11, 12, 13]
However, as map is a built-in,
      it’s always available, always works the same way, and has some
      performance benefits (as we’ll prove in Chapter 21, it’s faster than a manually
      coded for loop in some usage modes).
      Moreover, map can be used in more
      advanced ways than shown here. For instance, given multiple sequence
      arguments, it sends items taken from sequences in parallel as distinct
      arguments to the function:
>>> pow(3, 4)                             # 3**4
81
>>> list(map(pow, [1, 2, 3], [2, 3, 4]))  # 1**2, 2**3, 3**4
[1, 8, 81]
With multiple sequences, map
      expects an N-argument function for N sequences. Here, the pow function takes two arguments on each
      call—one from each sequence passed to map. It’s not much extra work to simulate this
      multiple-sequence generality in code, too, but we’ll postpone doing so
      until later in the next chapter, after we’ve met some additional
      iteration tools.
The map call is similar to the
      list comprehension expressions we studied in Chapter 14 and will revisit in the next
      chapter from a functional perspective:
>>> list(map(inc, [1, 2, 3, 4]))
[11, 12, 13, 14]
>>> [inc(x) for x in [1, 2, 3, 4]]        # Use () parens to generate items instead
[11, 12, 13, 14]
In some cases, map may be
      faster to run than a list comprehension (e.g., when mapping a built-in
      function), and it may also require less coding. On the other hand,
      because map applies a
      function call to each item instead of an arbitrary
      expression, it is a somewhat less general tool, and
      often requires extra helper functions or lambdas. Moreover, wrapping a comprehension in
      parentheses instead of square brackets creates an object that
      generates values on request to save memory and
      increase responsiveness, much like map in 3.X—a topic we’ll take up in the next
      chapter.

Selecting Items in Iterables: filter
The map function is a
      primary and relatively straightforward representative of
      Python’s functional programming toolset. Its close relatives, filter and reduce, select an iterable’s items based on a
      test function and apply functions to item pairs, respectively.
Because it also returns an iterable, filter (like range) requires a list call to display all its results in 3.X.
      For example, the following filter
      call picks out items in a sequence that are greater than zero:
>>> list(range(−5, 5))                                   # An iterable in 3.X
[−5, −4, −3, −2, −1, 0, 1, 2, 3, 4]

>>> list(filter((lambda x: x > 0), range(−5, 5)))        # An iterable in 3.X
[1, 2, 3, 4]
We met filter briefly earlier
      in a Chapter 12 sidebar, and while
      exploring 3.X iterables in Chapter 14. Items in the sequence or
      iterable for which the function returns a true result are added to the
      result list. Like map, this function
      is roughly equivalent to a for loop,
      but it is built-in, concise, and often fast:
>>> res = []
>>> for x in range(−5, 5):                               # The statement equivalent
        if x > 0:
            res.append(x)

>>> res
[1, 2, 3, 4]
Also like map, filter can be emulated by list
      comprehension syntax with often-simpler results (especially
      when it can avoid creating a new function), and with a similar
      generator expression when delayed production of
      results is desired—though we’ll save the rest of this story for the next
      chapter:
>>> [x for x in range(−5, 5) if x > 0]                   # Use () to generate items
[1, 2, 3, 4]

Combining Items in Iterables: reduce
The functional reduce call,
      which is a simple built-in function in 2.X but lives in
      the functools module in
      3.X, is more complex. It accepts an iterable to process, but it’s not an
      iterable itself—it returns a single result. Here are two reduce calls that compute the sum and product
      of the items in a list:
>>> from functools import reduce                         # Import in 3.X, not in 2.X
>>> reduce((lambda x, y: x + y), [1, 2, 3, 4])
10
>>> reduce((lambda x, y: x * y), [1, 2, 3, 4])
24
At each step, reduce passes the
      current sum or product, along with the next item from the list, to the
      passed-in lambda function. By
      default, the first item in the sequence initializes the starting value.
      To illustrate, here’s the for loop
      equivalent to the first of these calls, with the addition hardcoded
      inside the loop:
>>> L = [1,2,3,4]
>>> res = L[0]
>>> for x in L[1:]:
        res = res + x

>>> res
10
Coding your own version of reduce is actually fairly straightforward. The
      following function emulates most of the built-in’s behavior and helps
      demystify its operation in general:
>>> def myreduce(function, sequence):
        tally = sequence[0]
        for next in sequence[1:]:
            tally = function(tally, next)
        return tally

>>> myreduce((lambda x, y: x + y), [1, 2, 3, 4, 5])
15
>>> myreduce((lambda x, y: x * y), [1, 2, 3, 4, 5])
120
The built-in reduce also allows
      an optional third argument, effectively placed before the items in the
      sequence to serve as an initial value and a default result when the
      sequence is empty, but we’ll leave this extension as a suggested
      exercise.
If this coding technique has sparked your interest, you might also
      be interested in the standard library operator
      module, which provides functions that correspond to built-in expressions
      and so comes in handy for some uses of functional tools (see Python’s
      library manual for more details on this module):
>>> import operator, functools
>>> functools.reduce(operator.add, [2, 4, 6])        # Function-based +
12
>>> functools.reduce((lambda x, y: x + y), [2, 4, 6])
12
Together, map, filter, and reduce support powerful functional programming
      techniques. As mentioned, many observers would also extend the
      functional programming toolset in Python to include nested function
      scope closures (a.k.a. factory functions) and the anonymous function
      lambda—both discussed earlier—as well
      as generators and
      comprehensions, topics we will return to in the
      next chapter.


Chapter Summary
This chapter took us on a tour of advanced function-related
    concepts: recursive functions; function annotations; lambda expression functions; functional tools
    such as map, filter, and reduce; and general function design ideas. The
    next chapter continues the advanced topics motif with a look at generators
    and a reprisal of iterables and list comprehensions—tools that are just as
    related to functional programming as to looping statements. Before you
    move on, though, make sure you’ve mastered the concepts covered here by
    working through this chapter’s quiz.

Test Your Knowledge: Quiz
	How are lambda
        expressions and def statements
        related?

	What’s the point of using lambda?

	Compare and contrast map,
        filter, and reduce.

	What are function annotations, and how are they used?

	What are recursive functions, and how are they used?

	What are some general design guidelines for coding
        functions?

	Name three or more ways that functions can communicate results
        to a caller.



Test Your Knowledge: Answers
	Both lambda and def create function objects to be called
        later. Because lambda is an
        expression, though, it returns a function object instead of assigning
        it to a name, and it can be used to nest a function definition in
        places where a def will not work
        syntactically. A lambda allows for
        only a single implicit return value expression, though; because it
        does not support a block of statements, it is not ideal for larger
        functions.

	lambdas allow us to “inline”
        small units of executable code, defer its execution, and provide it
        with state in the form of default arguments and enclosing scope
        variables. Using a lambda is never
        required; you can always code a def
        instead and reference the function by name. lambdas come in handy, though, to embed
        small pieces of deferred code that are unlikely to be used elsewhere
        in a program. They commonly appear in callback-based programs such as
        GUIs, and they have a natural affinity with functional tools like
        map and filter that expect a processing
        function.

	These three built-in functions all apply another function to
        items in a sequence (or other iterable) object and collect results.
        map passes each item to the
        function and collects all results, filter collects items for which the function
        returns a True value, and reduce computes a single value by applying
        the function to an accumulator and successive items. Unlike the other
        two, reduce is available in the
        functools module in 3.X, not the
        built-in scope; reduce is a
        built-in in 2.X.

	Function annotations, available in 3.X (3.0 and later), are
        syntactic embellishments of a function’s arguments and result, which
        are collected into a dictionary assigned to the function’s __annotations__ attribute. Python places no
        semantic meaning on these annotations, but simply packages them for
        potential use by other tools.

	Recursive functions call themselves either directly or
        indirectly in order to loop. They may be used to traverse arbitrarily
        shaped structures, but they can also be used for iteration in general
        (though the latter role is often more simply and efficiently coded
        with looping statements). Recursion can often be simulated or replaced
        by code that uses explicit stacks or queues to have more control over
        traversals.

	Functions should generally be small and as self-contained as
        possible, have a single unified purpose, and communicate with other
        components through input arguments and return values. They may use
        mutable arguments to communicate results too if changes are expected,
        and some types of programs imply other communication
        mechanisms.

	Functions can send back results with return statements, by changing passed-in
        mutable arguments, and by setting global variables. Globals are
        generally frowned upon (except for very special cases, like
        multithreaded programs) because they can make code more difficult to
        understand and use. return
        statements are usually best, but changing mutables is fine (and even
        useful), if expected. Functions may also communicate results with
        system devices such as files and sockets, but these are beyond our
        scope here.



1 The lambda tends to
        intimidate people more than it should. This reaction seems to stem
        from the name “lambda” itself—a name that comes from the Lisp
        language, which got it from lambda calculus, which is a form of
        symbolic logic. In Python, though, it’s really just a keyword that
        introduces the expression syntactically. Obscure mathematical heritage
        aside, lambda is simpler to use
        than you may think: it’s simply an alternative way to code a function,
        albeit without full statements, decorators, or 3.X annotations.
2 A student once noted that you could skip the dispatch table
            dictionary in such code if the function name is the same as its
            string lookup key—run an eval(funcname)() to kick off the call. While true in
            this case and sometimes useful, as we saw earlier (e.g., Chapter 10), eval is relatively slow (it must compile
            and run code), and insecure (you must trust the string’s source).
            More fundamentally, jump tables are generally subsumed by
            polymorphic method dispatch in Python: calling a method does the
            “right thing” based on the type of object. To see why, stay tuned
            for Part VI.








Chapter 20. Comprehensions and Generations
This chapter continues the advanced function topics theme, with a
  reprisal of the comprehension and iteration concepts previewed in Chapter 4 and introduced in Chapter 14. Because
  comprehensions are as much related to the prior
  chapter’s functional tools (e.g., map and filter)
  as they are to for loops, we’ll revisit
  them in this context here. We’ll also take a second look at iterables in
  order to study generator functions and their
  generator expression relatives—user-defined ways to
  produce results on demand.
Iteration in Python also encompasses user-defined
  classes, but we’ll defer that final part of this story
  until Part VI, when we study operator
  overloading. As this is the last pass we’ll make over built-in iteration
  tools, though, we will summarize the various tools we’ve met thus far. The
  next chapter continues this thread by timing the relative performance of
  these tools as a larger case study. Before that, though, let’s continue the
  comprehensions and iterations story, and extend it to include value
  generators.
List Comprehensions and Functional Tools
As mentioned early in this book, Python supports the procedural, object-oriented, and
    function programming paradigms. In fact, Python has a host of tools that
    most would consider functional in nature, which we
    enumerated in the preceding chapter—closures, generators, lambdas,
    comprehensions, maps, decorators, function objects, and more. These tools
    allow us to apply and combine functions in powerful ways, and often offer
    state retention and coding solutions that are alternatives to classes and
    OOP.
For instance, the prior chapter explored tools such as map and filter—key members of Python’s early functional
    programming toolset inspired by the Lisp language—that map operations over
    iterables and collect results. Because this is such a common task in
    Python coding, Python eventually sprouted a new expression—the list comprehension—that is even
    more flexible than the tools we just studied.
Per Python history, list comprehensions were originally inspired by
    a similar tool in the functional programming language Haskell, around the
    time of Python 2.0. In short, list comprehensions apply an arbitrary
    expression to items in an iterable, rather than
    applying a function. Accordingly, they can be more general tools. In later
    releases, the comprehension was extended to other roles—sets,
    dictionaries, and even the value generator expressions we’ll explore in
    this chapter. It’s not just for lists anymore.
We first met list comprehensions in Chapter 4’s preview, and studied them
    further in Chapter 14, in
    conjunction with looping statements. Because they’re also related to
    functional programming tools like the map and filter calls, though, we’ll resurrect the topic
    here for one last look. Technically, this feature is not tied to
    functions—as we’ll see, list comprehensions can be a more general tool
    than map and filter—but it is sometimes best understood by
    analogy to function-based alternatives.
List Comprehensions Versus map
Let’s work through an example that demonstrates the basics. As we saw in Chapter 7, Python’s built-in ord function returns the integer code point of a single character (the
      chr built-in is the converse—it returns the character for an integer code
      point). These happen to be ASCII codes if your characters fall into the ASCII
      character set’s 7-bit code point range:
>>> ord('s')
115
Now, suppose we wish to collect the ASCII codes of
      all characters in an entire string. Perhaps the
      most straightforward approach is to use a simple for loop and append the results to a
      list:
>>> res = []
>>> for x in 'spam':
        res.append(ord(x))                # Manual results collection

>>> res
[115, 112, 97, 109]
Now that we know about map,
      though, we can achieve similar results with a single function call
      without having to manage list construction in the code:
>>> res = list(map(ord, 'spam'))          # Apply function to sequence (or other)
>>> res
[115, 112, 97, 109]
However, we can get the same results from a list comprehension
      expression—while map maps a
      function over an iterable, list comprehensions map
      an expression over a sequence or other
      iterable:
>>> res = [ord(x) for x in 'spam']        # Apply expression to sequence (or other)
>>> res
[115, 112, 97, 109]
List comprehensions collect the results of applying an arbitrary
      expression to an iterable of values and return them in a new list.
      Syntactically, list comprehensions are enclosed in square brackets—to
      remind you that they construct lists. In their simple form, within the
      brackets you code an expression that names a variable followed by what
      looks like a for loop header that
      names the same variable. Python then collects the expression’s results
      for each iteration of the implied loop.
The effect of the preceding example is similar to that of the
      manual for loop and the map call. List comprehensions become more
      convenient, though, when we wish to apply an arbitrary expression to an
      iterable instead of a function:
>>> [x ** 2 for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
Here, we’ve collected the squares of the numbers 0 through 9
      (we’re just letting the interactive prompt print the resulting list
      object; assign it to a variable if you need to retain it). To do similar
      work with a map call, we would
      probably need to invent a little function to implement the square
      operation. Because we won’t need this function elsewhere, we’d typically
      (but not necessarily) code it inline, with a lambda, instead of using a def statement elsewhere:
>>> list(map((lambda x: x ** 2), range(10)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
This does the same job, and it’s only a few keystrokes longer than
      the equivalent list comprehension. It’s also only marginally more
      complex (at least, once you understand the lambda). For more advanced kinds of
      expressions, though, list comprehensions will often require considerably
      less typing. The next section shows why.

Adding Tests and Nested Loops: filter
List comprehensions are even more general than shown so far. For instance, as we learned in
      Chapter 14, you can code an
      if clause after the for to add selection logic. List
      comprehensions with if clauses can be
      thought of as analogous to the filter
      built-in discussed in the preceding chapter—they skip an iterable’s
      items for which the if clause is not
      true.
To demonstrate, following are both schemes picking up even numbers
      from 0 to 4; like the map list
      comprehension alternative of the prior section, the filter version here must invent a little
      lambda function for the test
      expression. For comparison, the equivalent for loop is shown here as well:
>>> [x for x in range(5) if x % 2 == 0]
[0, 2, 4]

>>> list(filter((lambda x: x % 2 == 0), range(5)))
[0, 2, 4]

>>> res = []
>>> for x in range(5):
        if x % 2 == 0:
            res.append(x)

>>> res
[0, 2, 4]
All of these use the modulus (remainder of division) operator,
      %, to detect even numbers: if there
      is no remainder after dividing a number by 2, it must be even. The
      filter call here is not much longer
      than the list comprehension either. However, we can combine an if clause and an arbitrary expression in our
      list comprehension, to give it the effect of a filter and a map, in a single expression:
>>> [x ** 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
This time, we collect the squares of the even numbers from 0
      through 9: the for loop skips numbers
      for which the attached if clause on
      the right is false, and the expression on the left computes the squares.
      The equivalent map call would require
      a lot more work on our part—we would have to combine filter selections with map iteration, making for a noticeably more
      complex expression:
>>> list( map((lambda x: x**2), filter((lambda x: x % 2 == 0), range(10))) )
[0, 4, 16, 36, 64]
Formal comprehension syntax
In fact, list comprehensions are more general still. In their
        simplest form, you must always code an accumulation expression and a
        single for clause:
[ expression for target in iterable ]
Though all other parts are optional, they allow richer
        iterations to be expressed—you can code any number of nested for loops in a list comprehension, and each
        may have an optional associated if
        test to act as a filter. The general structure of list comprehensions
        looks like this:
[ expression for target1 in iterable1 if condition1
             for target2 in iterable2 if condition2 ...
             for targetN in iterableN if conditionN ]
This same syntax is inherited by set and
        dictionary comprehensions as well as the
        generator expressions coming up, though these use
        different enclosing characters (curly braces or often-optional
        parentheses), and the dictionary comprehension begins with two
        expressions separated by a colon (for key and value).
We experimented with the if
        filter clause in the previous section. When for clauses are nested
        within a list comprehension, they work like equivalent nested for loop statements. For example:
>>> res = [x + y for x in [0, 1, 2] for y in [100, 200, 300]]
>>> res
[100, 200, 300, 101, 201, 301, 102, 202, 302]
This has the same effect as this substantially more verbose
        equivalent:
>>> res = []
>>> for x in [0, 1, 2]:
        for y in [100, 200, 300]:
            res.append(x + y)

>>> res
[100, 200, 300, 101, 201, 301, 102, 202, 302]
Although list comprehensions construct list results, remember
        that they can iterate over any sequence or other iterable type. Here’s
        a similar bit of code that traverses strings instead of lists of
        numbers, and so collects concatenation results:
>>> [x + y for x in 'spam' for y in 'SPAM']
['sS', 'sP', 'sA', 'sM', 'pS', 'pP', 'pA', 'pM',
'aS', 'aP', 'aA', 'aM', 'mS', 'mP', 'mA', 'mM']
Each for clause can have an
        associated if filter, no matter how
        deeply the loops are nested—though use cases for the following sort of
        code, apart from perhaps multidimensional arrays, start to become more
        and more difficult to imagine at this level:
>>> [x + y for x in 'spam' if x in 'sm' for y in 'SPAM' if y in ('P', 'A')]
['sP', 'sA', 'mP', 'mA']

>>> [x + y + z for x in 'spam' if x in 'sm'
               for y in 'SPAM' if y in ('P', 'A')
               for z in '123'  if z > '1']
['sP2', 'sP3', 'sA2', 'sA3', 'mP2', 'mP3', 'mA2', 'mA3']
Finally, here is a similar list comprehension that illustrates
        the effect of attached if
        selections on nested for clauses
        applied to numeric objects rather than strings:
>>> [(x, y) for x in range(5) if x % 2 == 0 for y in range(5) if y % 2 == 1]
[(0, 1), (0, 3), (2, 1), (2, 3), (4, 1), (4, 3)]
This expression combines even numbers from 0 through 4 with odd
        numbers from 0 through 4. The if
        clauses filter out items in each iteration. Here is the equivalent
        statement-based code:
>>> res = []
>>> for x in range(5):
        if x % 2 == 0:
            for y in range(5):
                if y % 2 == 1:
                    res.append((x, y))

>>> res
[(0, 1), (0, 3), (2, 1), (2, 3), (4, 1), (4, 3)]
Recall that if you’re confused about what a complex list
        comprehension does, you can always nest the list comprehension’s
        for and if clauses inside each other like
        this—indenting each clause successively further to the right—to derive
        the equivalent statements. The result is longer, but perhaps clearer
        in intent to some human readers on first glance, especially those more
        familiar with basic statements.
The map and filter equivalent of this last example would
        be wildly complex and deeply nested, so I won’t even try showing it
        here. I’ll leave its coding as an exercise for Zen masters, ex–Lisp
        programmers, and the criminally insane!


Example: List Comprehensions and Matrixes
Not all list comprehensions are so artificial, of course. Let’s look at one more
      application to stretch a few synapses. As we saw in Chapter 4 and Chapter 8, one basic way to code matrixes
      (a.k.a. multidimensional arrays) in Python is with nested list
      structures. The following, for example, defines two 3 × 3 matrixes as
      lists of nested lists:
>>> M = [[1, 2, 3],
         [4, 5, 6],
         [7, 8, 9]]

>>> N = [[2, 2, 2],
         [3, 3, 3],
         [4, 4, 4]]
Given this structure, we can always index rows, and columns within
      rows, using normal index operations:
>>> M[1]              # Row 2
[4, 5, 6]

>>> M[1][2]           # Row 2, item 3
6
List comprehensions are powerful tools for processing such
      structures, though, because they automatically scan rows and columns for
      us. For instance, although this structure stores the matrix by rows, to
      collect the second column we can simply iterate
      across the rows and pull out the desired column, or iterate through
      positions in the rows and index as we go:
>>> [row[1] for row in M]                          # Column 2
[2, 5, 8]

>>> [M[row][1] for row in (0, 1, 2)]               # Using offsets
[2, 5, 8]
Given positions, we can also easily perform tasks such as pulling
      out a diagonal. The first of the following
      expressions uses range to generate
      the list of offsets and then indexes with the row and column the same,
      picking out M[0][0], then M[1][1], and so on. The second scales the
      column index to fetch M[0][2],
      M[1][1], etc. (we assume the matrix
      has the same number of rows and columns):
>>> [M[i][i] for i in range(len(M))]               # Diagonals
[1, 5, 9]
>>> [M[i][len(M)-1-i] for i in range(len(M))]
[3, 5, 7]
Changing such a matrix in place requires
      assignment to offsets (use range
      twice if shapes differ):
>>> L = [[1, 2, 3], [4, 5, 6]]
>>> for i in range(len(L)):
        for j in range(len(L[i])):                 # Update in place
            L[i][j] += 10

>>> L
[[11, 12, 13], [14, 15, 16]]
We can’t really do the same with list comprehensions, as they make
      new lists, but we could always assign their results
      to the original name for a similar effect. For example, we can apply an
      operation to every item in a matrix, producing results in either a
      simple vector or a matrix of the same shape:
>>> [col + 10 for row in M for col in row]         # Assign to M to retain new value
[11, 12, 13, 14, 15, 16, 17, 18, 19]

>>> [[col + 10 for col in row] for row in M]
[[11, 12, 13], [14, 15, 16], [17, 18, 19]]
To understand these, translate to their simple statement form
      equivalents that follow—indent parts that are further to the right in
      the expression (as in the first loop in the following), and make a new
      list when comprehensions are nested on the left (like the second loop in
      the following). As its statement equivalent makes clearer, the second
      expression in the preceding works because the row iteration is an outer
      loop: for each row, it runs the nested column iteration to build up one
      row of the result matrix:
>>> res = []
>>> for row in M:                                  # Statement equivalents
        for col in row:                            # Indent parts further right
            res.append(col + 10)

>>> res
[11, 12, 13, 14, 15, 16, 17, 18, 19]

>>> res = []
>>> for row in M:
        tmp = []                                   # Left-nesting starts new list
        for col in row:
            tmp.append(col + 10)
        res.append(tmp)

>>> res
[[11, 12, 13], [14, 15, 16], [17, 18, 19]]
Finally, with a bit of creativity, we can also use list
      comprehensions to combine values of multiple
      matrixes. The following first builds a flat list that
      contains the result of multiplying the matrixes pairwise, and then
      builds a nested list structure having the same values by nesting list
      comprehensions again:
>>> M
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> N
[[2, 2, 2], [3, 3, 3], [4, 4, 4]]

>>> [M[row][col] * N[row][col] for row in range(3) for col in range(3)]
[2, 4, 6, 12, 15, 18, 28, 32, 36]

>>> [[M[row][col] * N[row][col] for col in range(3)] for row in range(3)]
[[2, 4, 6], [12, 15, 18], [28, 32, 36]]
This last expression works because the row iteration is an outer
      loop again; it’s equivalent to this statement-based code:
res = []
for row in range(3):
    tmp = []
    for col in range(3):
        tmp.append(M[row][col] * N[row][col])
    res.append(tmp)
And for more fun, we can use zip to pair items to be multiplied—the
      following comprehension and loop statement forms both produce the same
      list-of-lists pairwise multiplication result as the last preceding
      example (and because zip is a
      generator of values in 3.X, this isn’t as inefficient as it may
      seem):
[[col1 * col2 for (col1, col2) in zip(row1, row2)] for (row1, row2) in zip(M, N)]

res = []
for (row1, row2) in zip(M, N):
    tmp = []
    for (col1, col2) in zip(row1, row2):
        tmp.append(col1 * col2)
    res.append(tmp)
Compared to their statement equivalents, the list comprehension
      versions here require only one line of code, might run substantially
      faster for large matrixes, and just might make your head explode! Which
      brings us to the next section.

Don’t Abuse List Comprehensions: KISS
With such generality, list comprehensions can quickly become, well,
      incomprehensible, especially when nested. Some programming tasks are
      inherently complex, and we can’t sugarcoat them to make them any simpler
      than they are (see the upcoming permutations for a prime example). Tools
      like comprehensions are powerful solutions when used wisely, and there’s
      nothing inherently wrong with using them in your scripts.
At the same time, code like that of the prior section may push the
      complexity envelope more than it should—and, frankly, tends to
      disproportionately pique the interest of those holding the darker and
      misguided assumption that code obfuscation somehow implies talent.
      Because such tools tend to appeal to some people more than they probably
      should, I need to be clear about their scope here.
This book demonstrates advanced comprehensions to teach, but in
      the real world, using complicated and tricky code where not warranted is
      both bad engineering and bad software citizenship. To repurpose a line
      from the first chapter: programming is not about being clever and
      obscure—it’s about how clearly your program communicates its
      purpose.
Or, to quote from Python’s import this
      motto:
Simple is better than complex.

Writing complicated comprehension code may be a fun academic
      recreation, but it doesn’t have a place in programs that others will
      someday need to understand.
Consequently, my advice is to use simple for loops when getting started with Python,
      and comprehensions or map in isolated
      cases where they are easy to apply. The “keep it simple” rule applies
      here as always: code conciseness is a much less important goal than code
      readability. If you have to translate code to statements to understand
      it, it should probably be statements in the first place. In other words,
      the age-old acronym KISS still applies: Keep It
      Simple—followed either by a word that is today too sexist (Sir), or
      another that is too colorful for a family-oriented book like
      this...
On the other hand: performance, conciseness,
        expressiveness
However, in this case, there is currently a substantial performance
        advantage to the extra complexity: based on tests run under Python
        today, map calls can be twice as
        fast as equivalent for loops, and
        list comprehensions are often faster than map calls. This speed difference can vary
        per usage pattern and Python, but is generally due to the fact that
        map and list comprehensions run at
        C language speed inside the interpreter, which is often much faster
        than stepping through Python for
        loop bytecode within the PVM.
In addition, list comprehensions offer a code
        conciseness that’s compelling and even warranted
        when that reduction in size doesn’t also imply a reduction in meaning
        for the next programmer. Moreover, many find the
        expressiveness of comprehensions to be a powerful
        ally. Because map and list
        comprehensions are both expressions, they also can show up
        syntactically in places that for
        loop statements cannot, such as in the bodies of lambda functions, within list and dictionary
        literals, and more.
Because of this, list comprehensions and map calls are worth knowing and using for
        simpler kinds of iterations, especially if your application’s speed is
        an important consideration. Still, because for loops make logic more explicit, they are
        generally recommended on the grounds of simplicity, and often make for
        more straightforward code. When used, you should try to keep your
        map calls and list comprehensions
        simple; for more complex tasks, use full statements instead.
Note
As I’ve stated before, performance
          generalizations like those just given here can depend on call
          patterns, as well as changes and optimizations in Python itself.
          Recent Python releases have sped up the simple for loop statement, for example. On some
          code, though, list comprehensions are still substantially faster
          than for loops and even faster
          than map, though map can still win when the alternatives
          must apply a function call, built-in functions or otherwise. At
          least until this story changes arbitrarily—to time these
          alternatives yourself, see tools in the standard library’s time module or in the newer timeit module added in Release 2.4, or
          stay tuned for the extended coverage of both of these in the next
          chapter, where we’ll prove the prior paragraph’s claims.

Why You Will Care: List Comprehensions and map
Here are some more realistic examples of list comprehensions and map in action. We solved the first with
          list comprehensions in Chapter 14, but we’ll revive it here
          to add map alternatives. Recall
          that the file readlines method
          returns lines with \n end-of-line
          characters at the ends (the following assumes a 3-line text file in
          the current directory):
>>> open('myfile').readlines()
['aaa\n', 'bbb\n', 'ccc\n']
If you don’t want the end-of-line characters, you can slice
          them off all the lines in a single step with a list comprehension or
          a map call (map results are iterables in Python 3.X,
          so we must run them through list
          to display all their results at once):
>>> [line.rstrip() for line in open('myfile').readlines()]
['aaa', 'bbb', 'ccc']

>>> [line.rstrip() for line in open('myfile')]
['aaa', 'bbb', 'ccc']

>>> list(map((lambda line: line.rstrip()), open('myfile')))
['aaa', 'bbb', 'ccc']
The last two of these make use of file iterators; as we saw in
          Chapter 14, this means that
          you don’t need a method call to read lines in iteration contexts
          such as these. The map call is
          slightly longer than the list comprehension, but neither has to
          manage result list construction explicitly.
A list comprehension can also be used as a sort of column
          projection operation. Python’s standard SQL database API returns
          query results as a sequence of sequences like the following—the list
          is the table, tuples are rows, and items in tuples are column
          values:
>>> listoftuple = [('bob', 35, 'mgr'), ('sue', 40, 'dev')]
A for loop could pick up
          all the values from a selected column manually, but map and list comprehensions can do it in a
          single step, and faster:
>>> [age for (name, age, job) in listoftuple]
[35, 40]

>>> list(map((lambda row: row[1]), listoftuple))
[35, 40]
The first of these makes use of tuple
          assignment to unpack row tuples in the list, and the second uses indexing.
          In Python 2.X (but not in 3.X—see the note on 2.X argument unpacking
          in Chapter 18), map can use tuple unpacking on its
          argument, too:
# 2.X only
>>> list(map((lambda (name, age, job): age), listoftuple))
[35, 40]
See other books and resources for more on Python’s database
          API.
Besides the distinction between running functions versus
          expressions, the biggest difference between map and list comprehensions in Python 3.X
          is that map is an
          iterable, generating results on demand. To
          achieve the same memory economy and execution time division, list
          comprehensions must be coded as generator
          expressions—one of the major topics this chapter turns to
          next.




Generator Functions and Expressions
Python today supports procrastination much more than it did in the past—it
    provides tools that produce results only when needed, instead of all at
    once. We’ve seen this at work in built-in tools: files that read lines on
    request, and functions like map and
    zip that produce items on demand in
    3.X. Such laziness isn’t confined to Python itself, though. In particular,
    two language constructs delay result creation whenever possible in
    user-defined operations:
	Generator functions (available since 2.3)
        are coded as normal def statements,
        but use yield statements to return results one at a time, suspending and resuming
        their state between each.

	Generator expressions (available since 2.4)
        are similar to the list comprehensions of the prior section, but they
        return an object that produces results on demand instead of building a
        result list.


Because neither constructs a result list all at once, they save
    memory space and allow computation time to be split across result
    requests. As we’ll see, both of these ultimately perform their
    delayed-results magic by implementing the iteration
    protocol we studied in Chapter 14.
These features are not new (generator functions were available as an
    option as early as Python 2.2), and are fairly common in Python code
    today. Python’s notion of generators owes much to other programming
    languages, especially Icon. Though they may initially seem unusual if
    you’re accustomed to simpler programming models, you’ll probably find
    generators to be a powerful tool where applicable. Moreover, because they
    are a natural extension to the function, comprehension, and iteration
    ideas we’ve already explored, you already know more about coding
    generators than you might expect.
Generator Functions: yield Versus return
In this part of the book, we’ve learned about coding normal functions that receive input
      parameters and send back a single result immediately. It is also
      possible, however, to write functions that may send back a value and
      later be resumed, picking up where they left off. Such functions,
      available in both Python 2.X and 3.X, are known as generator
      functions because they generate a sequence of values over
      time.
Generator functions are like normal functions in most respects,
      and in fact are coded with normal def
      statements. However, when created, they are compiled specially into an
      object that supports the iteration protocol. And when called, they don’t
      return a result: they return a result generator that can appear in any
      iteration context. We studied iterables in Chapter 14, and Figure 14-1 gave a formal and
      graphic summary of their operation. Here, we’ll revisit them to see how
      they relate to generators.
State suspension
Unlike normal functions that return a value and exit, generator functions
        automatically suspend and resume their execution and state around the
        point of value generation. Because of that, they are often a useful
        alternative to both computing an entire series of values up front and
        manually saving and restoring state in classes. The
        state that generator functions retain when they
        are suspended includes both their code location, and their entire
        local scope. Hence, their local variables retain
        information between results, and make it available when the functions
        are resumed.
The chief code difference between generator and normal functions
        is that a generator yields a value, rather than
        returning one—the yield statement suspends the function and
        sends a value back to the caller, but retains enough state to enable
        the function to resume from where it left off. When resumed, the
        function continues execution immediately after the last yield run. From the function’s perspective,
        this allows its code to produce a series of values over time, rather
        than computing them all at once and sending them back in something
        like a list.

Iteration protocol integration
To truly understand generator functions, you need to know that they are
        closely bound up with the notion of the iteration protocol in Python.
        As we’ve seen, iterator objects define a __next__ method (next in 2.X), which either returns the next
        item in the iteration, or raises the special StopIteration exception to end the
        iteration. An iterable object’s iterator is fetched initially with the
        iter built-in function, though this
        step is a no-op for objects that are their own iterator.
Python for loops, and all
        other iteration contexts, use this iteration protocol to step through
        a sequence or value generator, if the protocol is supported (if not,
        iteration falls back on repeatedly indexing sequences instead). Any
        object that supports this interface works in all iteration
        tools.
To support this protocol, functions containing a yield statement are compiled specially as
        generators—they are not normal functions, but
        rather are built to return an object with the expected iteration
        protocol methods. When later called, they return a generator object
        that supports the iteration interface with an automatically created
        method named __next__ to start or
        resume execution.
Generator functions may also have a return statement that, along with falling
        off the end of the def block,
        simply terminates the generation of values—technically, by raising
        a StopIteration
        exception after any normal function exit actions. From the caller’s
        perspective, the generator’s __next__
        method resumes the function and runs until either the next
        yield result is returned or a
        StopIteration is raised.
The net effect is that generator functions, coded as def statements containing yield statements, are automatically made to
        support the iteration object protocol and thus may be used in any
        iteration context to produce results over time and on demand.
Note
As noted in Chapter 14,
          in Python 2.X, iterator objects define a method named next instead of __next__. This includes the generator
          objects we are using here. In 3.X this method is renamed to __next__. The next built-in function is provided as a
          convenience and portability tool: next(I) is the same as I.__next__() in 3.X and I.next() in 2.6 and 2.7. Prior to 2.6,
          programs simply call I.next()
          instead to iterate manually.


Generator functions in action
To illustrate generator basics, let’s turn to some code. The
        following code defines a generator function that can be used to
        generate the squares of a series of numbers over time:
>>> def gensquares(N):
        for i in range(N):
            yield i ** 2        # Resume here later
This function yields a value, and so returns to its caller, each
        time through the loop; when it is resumed, its prior state is
        restored, including the last values of its variables i and N,
        and control picks up again immediately after the yield statement. For example, when it’s used
        in the body of a for loop, the
        first iteration starts the function and gets its first result;
        thereafter, control returns to the function after its yield statement each time through the
        loop:
>>> for i in gensquares(5):     # Resume the function
        print(i, end=' : ')     # Print last yielded value

0 : 1 : 4 : 9 : 16 :
>>>
To end the generation of values, functions either use a return statement with no value or simply
        allow control to fall off the end of the function body.1
To most people, this process seems a bit implicit (if not
        magical) on first encounter. It’s actually quite tangible, though. If
        you really want to see what is going on inside the for, call the generator function
        directly:
>>> x = gensquares(4)
>>> x
<generator object gensquares at 0x000000000292CA68>
You get back a generator object that
        supports the iteration protocol we met in Chapter 14—the generator function was
        compiled to return this automatically. The returned generator object
        in turn has a __next__ method that
        starts the function or resumes it from where it last yielded a value,
        and raises a StopIteration
        exception when the end of the series of values is reached and the
        function returns. For convenience, the next(X) built-in calls an object’s X.__next__() method for us in 3.X (and
        X.next() in 2.X):
>>> next(x)                     # Same as x.__next__() in 3.X
0
>>> next(x)                     # Use x.next() or next() in 2.X
1
>>> next(x)
4
>>> next(x)
9
>>> next(x)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
As we learned in Chapter 14, for loops (and other iteration contexts)
        work with generators in the same way—by calling the __next__ method repeatedly, until an
        exception is caught. For a generator, the result is to produce yielded
        values over time. If the object to be iterated over does not support
        this protocol, for loops instead
        use the indexing protocol to iterate.
Notice that the top-level iter call of the iteration protocol isn’t
        required here because generators are their own iterator, supporting
        just one active iteration scan. To put that another way generators
        return themselves for iter, because
        they support next directly. This
        also holds true in the generator expressions we’ll meet later in this
        chapter (more on this ahead):
>>> y = gensquares(5)           # Returns a generator which is its own iterator
>>> iter(y) is y                # iter() is not required: a no-op here
True
>>> next(y)                     # Can run next()immediately
0

Why generator functions?
Given the simple examples we’re using to illustrate
        fundamentals, you might be wondering just why you’d ever care to code
        a generator at all. In this section’s example, for instance, we could
        also simply build the list of yielded values all at once:
>>> def buildsquares(n):
        res = []
        for i in range(n): res.append(i ** 2)
        return res

>>> for x in buildsquares(5): print(x, end=' : ')

0 : 1 : 4 : 9 : 16 :
For that matter, we could use any of the for loop, map, or list comprehension
        techniques:
>>> for x in [n ** 2 for n in range(5)]:
        print(x, end=' : ')

0 : 1 : 4 : 9 : 16 :

>>> for x in map((lambda n: n ** 2), range(5)):
        print(x, end=' : ')

0 : 1 : 4 : 9 : 16 :
However, generators can be better in terms of both memory use
        and performance in larger programs. They allow functions to avoid
        doing all the work up front, which is especially useful when the
        result lists are large or when it takes a lot of computation to
        produce each value. Generators distribute the time required to produce
        the series of values among loop iterations.
Moreover, for more advanced uses, generators can provide a
        simpler alternative to manually saving the state between iterations in
        class objects—with generators, variables accessible in the function’s
        scopes are saved and restored automatically.2 We’ll discuss class-based iterables in more detail in
        Part VI.
Generator functions are also much more broadly focused than
        implied so far. They can operate on and return any type of object, and
        as iterables may appear in any of Chapter 14’s iteration
        contexts, including tuple calls,
        enumerations, and dictionary comprehensions:
>>> def ups(line):
        for sub in line.split(','):               # Substring generator
            yield sub.upper()

>>> tuple(ups('aaa,bbb,ccc'))                     # All iteration contexts
('AAA', 'BBB', 'CCC')

>>> {i: s for (i, s) in enumerate(ups('aaa,bbb,ccc'))}
{0: 'AAA', 1: 'BBB', 2: 'CCC'}
In a moment we’ll see the same assets for generator
        expressions—a tool that trades function flexibility for comprehension
        conciseness. Later in this chapter we’ll also see that generators can
        sometimes make the impossible possible, by producing components of
        result sets that would be far too large to create all at once. First,
        though, let’s explore some advanced generator function
        features.

Extended generator function protocol: send versus next
In Python 2.5, a send method
        was added to the generator function protocol. The send method advances to the next item in the series of results, just
        like __next__, but also provides a
        way for the caller to communicate with the generator, to affect its
        operation.
Technically, yield is now an
        expression form that returns the item passed to send, not a statement (though it can be
        called either way—as yield X, or
        A = (yield X)). The expression must
        be enclosed in parentheses unless it’s the only item on the right side
        of the assignment statement. For example, X =
        yield Y is OK, as is X = (yield Y)
        + 42.
When this extra protocol is used, values are sent into a
        generator G by calling G.send(value). The generator’s code is then resumed, and
        the yield expression in the
        generator returns the value passed to send. If the regular G.__next__() method (or its next(G) equivalent) is called to advance,
        the yield simply returns None. For example:
>>> def gen():
       for i in range(10):
           X = yield i
           print(X)

>>> G = gen()
>>> next(G)              # Must call next() first, to start generator
0
>>> G.send(77)           # Advance, and send value to yield expression
77
1
>>> G.send(88)
88
2
>>> next(G)              # next() and X.__next__() send None
None
3
The send method can be used,
        for example, to code a generator that its caller can terminate by
        sending a termination code, or redirect by passing a new position in
        data being processed inside the generator.
In addition, generators in 2.5 and later also support a throw(type) method to raise an exception inside the
        generator at the latest yield, and
        a close method that raises a
        special GeneratorExit exception
        inside the generator to terminate the iteration entirely. These are
        advanced features that we won’t delve into in more detail here; see
        reference texts and Python’s standard manuals for more information,
        and watch for more on exceptions in Part VII.
Note that while Python 3.X provides a next(X) convenience built-in that calls the
        X.__next__() method of an object,
        other generator methods, like send,
        must be called as methods of generator objects directly (e.g.,
        G.send(X)). This makes sense if you
        realize that these extra methods are implemented on built-in generator
        objects only, whereas the __next__
        method applies to all iterable objects—both built-in types and
        user-defined classes.
Also note that Python 3.3 introduces an extension to yield—a from clause—that allows generators to
        delegate to nested generators. Since this is an extension to what is
        already a fairly advanced topic, we’ll delegate this topic itself to a
        sidebar, and move on here to a tool that’s close enough to be called a
        twin.


Generator Expressions: Iterables Meet Comprehensions
Because the delayed evaluation of generator functions was so useful, it
      eventually spread to other tools. In both Python 2.X and 3.X, the
      notions of iterables and list comprehensions are combined in a new tool:
      generator expressions. Syntactically, generator
      expressions are just like normal list comprehensions, and support all
      their syntax—including if filters and
      loop nesting—but they are enclosed in parentheses instead of square
      brackets (like tuples, their enclosing parentheses are often
      optional):
>>> [x ** 2 for x in range(4)]          # List comprehension: build a list
[0, 1, 4, 9]

>>> (x ** 2 for x in range(4))          # Generator expression: make an iterable
<generator object <genexpr> at 0x00000000029A8288>
In fact, at least on a functionality basis, coding a list
      comprehension is essentially the same as wrapping a generator expression
      in a list built-in call to force it
      to produce all its results in a list at once:
>>> list(x ** 2 for x in range(4))      # List comprehension equivalence
[0, 1, 4, 9]
Operationally, however, generator expressions are very different:
      instead of building the result list in memory, they return a
      generator object—an automatically created iterable.
      This iterable object in turn supports the iteration
      protocol to yield one piece of the result list at a time in
      any iteration context. The iterable object also retains generator state
      while active—the variable x in the
      preceding expressions, along with the generator’s code location.
The net effect is much like that of generator functions, but in
      the context of a comprehension expression: we get
      back an object that remembers where it left off after each part of its
      result is returned. Also like generator functions, looking under the
      hood at the protocol that these objects automatically support can help
      demystify them; the iter call is
      again not required at the top here, for reasons we’ll expand on
      ahead:
>>> G = (x ** 2 for x in range(4))
>>> iter(G) is G                           # iter(G) optional: __iter__ returns self
True
>>> next(G)                                # Generator objects: automatic methods
0
>>> next(G)
1
>>> next(G)
4
>>> next(G)
9
>>> next(G)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

>>> G
<generator object <genexpr> at 0x00000000029A8318>
Again, we don’t typically see the next iterator machinery under the hood of a
      generator expression like this because for loops trigger it for us
      automatically:
>>> for num in (x ** 2 for x in range(4)):          # Calls next() automatically
        print('%s, %s' % (num, num / 2.0))

0, 0.0
1, 0.5
4, 2.0
9, 4.5
As we’ve already learned, every iteration context does
      this—including for loops; the
      sum, map, and sorted built-in functions; list
      comprehensions; and other iteration contexts we learned about in Chapter 14, such as the any, all,
      and list built-in functions. As
      iterables, generator expressions can appear in any
      of these iteration contexts, just like the result of a generator
      function call.
For example, the following deploys generator expressions in the
      string join method call and tuple
      assignment, iteration contexts both. In the first test here, join runs the generator and joins the substrings it produces with nothing
      between—to simply concatenate:
>>> ''.join(x.upper() for x in 'aaa,bbb,ccc'.split(','))
'AAABBBCCC'

>>> a, b, c = (x + '\n' for x in 'aaa,bbb,ccc'.split(','))
>>> a, c
('aaa\n', 'ccc\n')
Notice how the join call in the
      preceding doesn’t require extra parentheses around
      the generator. Syntactically, parentheses are not
      required around a generator expression that is the sole item
      already enclosed in parentheses used for other purposes—like those of a
      function call. Parentheses are required in all other cases, however,
      even if they seem extra, as in the second call to sorted that follows:
>>> sum(x ** 2 for x in range(4))                           # Parens optional
14
>>> sorted(x ** 2 for x in range(4))                        # Parens optional
[0, 1, 4, 9]
>>> sorted((x ** 2 for x in range(4)), reverse=True)        # Parens required
[9, 4, 1, 0]
Like the often-optional parentheses in tuples, there is no widely
      accepted rule on this, though a generator expression does not have as
      clear a role as a fixed collection of other objects as a tuple, making
      extra parentheses seem perhaps more spurious here.
Why generator expressions?
Just like generator functions, generator expressions are a memory-space
        optimization—they do not require the entire result list to be
        constructed all at once, as the square-bracketed list comprehension
        does. Also like generator functions, they divide the work of results
        production into smaller time slices—they yield
        results in piecemeal fashion, instead of making the caller wait for
        the full set to be created in a single call.
On the other hand, generator expressions may also run slightly
        slower than list comprehensions in practice, so
        they are probably best used only for very large result sets, or
        applications that cannot wait for full results generation. A more
        authoritative statement about performance, though, will have to await
        the timing scripts we’ll code in the next chapter.
Though more subjective, generator expressions offer
        coding advantages too—as the next sections
        show.

Generator expressions versus map
One way to see the coding benefits of generator expressions is to compare
        them to other functional tools, as we did for list comprehensions. For
        example, generator expressions often are equivalent to 3.X map calls, because both generate result
        items on request. Like list comprehensions, though, generator
        expressions may be simpler to code when the operation applied is not a
        function call. In 2.X, map makes
        temporary lists and generator expressions do not, but the same coding
        comparisons apply:
>>> list(map(abs, (−1, −2, 3, 4)))                          # Map function on tuple
[1, 2, 3, 4]
>>> list(abs(x) for x in (−1, −2, 3, 4))                    # Generator expression
[1, 2, 3, 4]

>>> list(map(lambda x: x * 2, (1, 2, 3, 4)))                # Nonfunction case
[2, 4, 6, 8]
>>> list(x * 2 for x in (1, 2, 3, 4))                       # Simpler as generator?
[2, 4, 6, 8]
The same holds true for text-processing use cases like the
        join call we saw earlier—a list
        comprehension makes an extra temporary list of results, which is
        completely pointless in this context because the
        list is not retained, and map loses
        simplicity points compared to generator expression syntax when the
        operation being applied is not a call:
>>> line = 'aaa,bbb,ccc'
>>> ''.join([x.upper() for x in line.split(',')])           # Makes a pointless list
'AAABBBCCC'

>>> ''.join(x.upper() for x in line.split(','))             # Generates results
'AAABBBCCC'
>>> ''.join(map(str.upper, line.split(',')))                # Generates results
'AAABBBCCC'

>>> ''.join(x * 2 for x in line.split(','))                 # Simpler as generator?
'aaaaaabbbbbbcccccc'
>>> ''.join(map(lambda x: x * 2, line.split(',')))
'aaaaaabbbbbbcccccc'
Both map and generator
        expressions can also be arbitrarily nested, which
        supports general use in programs, and requires a list call or other iteration context to
        start the process of producing results. For example, the list
        comprehension in the following produces the same result as the 3.X
        map and generator equivalents that
        follow it, but makes two physical lists; the others generate just one
        integer at a time with nested generators, and the generator expression
        form may more clearly reflect its intent:
>>> [x * 2 for x in [abs(x) for x in (−1, −2, 3, 4)]]       # Nested comprehensions
[2, 4, 6, 8]

>>> list(map(lambda x: x * 2, map(abs, (−1, −2, 3, 4))))    # Nested maps
[2, 4, 6, 8]

>>> list(x * 2 for x in (abs(x) for x in (−1, −2, 3, 4)))   # Nested generators
[2, 4, 6, 8]
Although the effect of all three of these is to combine
        operations, the generators do so without making multiple temporary
        lists. In 3.X, the next example both nests and
        combines generators—the nested generator expression is activated by
        map, which in turn is only
        activated by list.
>>> import math
>>> list(map(math.sqrt, (x ** 2 for x in range(4))))        # Nested combinations
[0.0, 1.0, 2.0, 3.0]
Technically speaking, the range on the right in the preceding is a
        value generator in 3.X too, activated by the generator expression
        itself—three levels of value generation, which
        produce individual values from inner to outer only on request, and
        which “just works” because of Python’s iteration tools and protocol.
        In fact, generator nestings can be arbitrarily mixed and deep, though
        some may be more valid than others:
>>> list(map(abs, map(abs, map(abs, (−1, 0, 1)))))          # Nesting gone bad?
[1, 0, 1]
>>> list(abs(x) for x in (abs(x) for x in (abs(x) for x in (−1, 0, 1))))
[1, 0, 1]
These last examples illustrate how general generators can be,
        but are also coded in an intentionally complex form to underscore that
        generator expressions have the same potential for abuse as the list
        comprehensions discussed earlier—as usual, you should keep them simple
        unless they must be complex, a theme we’ll revisit later in this
        chapter.
When used well, though, generator expressions combine the
        expressiveness of list comprehensions with the space and time benefits
        of other iterables. Here, for example, nonnested
        approaches provide simpler solutions but still leverage generators’
        strengths—per a Python motto, flat is generally better than nested:
>>> list(abs(x) * 2 for x in (−1, −2, 3, 4))                # Unnested equivalents
[2, 4, 6, 8]
>>> list(math.sqrt(x ** 2) for x in range(4))               # Flat is often better
[0.0, 1.0, 2.0, 3.0]
>>> list(abs(x) for x in (−1, 0, 1))
[1, 0, 1]

Generator expressions versus filter
Generator expressions also support all the usual list comprehension
        syntax—including if clauses, which
        work like the filter call we met
        earlier. Because filter is an
        iterable in 3.X that generates its results on request, a generator
        expression with an if clause is
        operationally equivalent (in 2.X, filter produces a temporary list that the
        generator does not, but the code comparisons again apply). Again, the
        join in the following suffices to
        force all forms to produce their results:
>>> line = 'aa bbb c'
>>> ''.join(x for x in line.split() if len(x) > 1)          # Generator with 'if'
'aabbb'
>>> ''.join(filter(lambda x: len(x) > 1, line.split()))     # Similar to filter
'aabbb'
The generator seems marginally simpler than the filter here. As for list comprehensions,
        though, adding processing steps to filter results requires a map too, which makes filter noticeably more complex than a
        generator expression:
>>> ''.join(x.upper() for x in line.split() if len(x) > 1)
'AABBB'
>>> ''.join(map(str.upper, filter(lambda x: len(x) > 1, line.split())))
'AABBB'
In effect, generator expressions do for 3.X iterables like
        map and filter what list comprehensions do for the
        2.X list-builder flavors of these calls—they provide more general
        coding structures that do not rely on functions, but still delay
        results production. Also like list comprehensions, there is always a
        statement-based equivalent to a generator expression, though it
        sometimes renders substantially more code:
>>> ''.join(x.upper() for x in line.split() if len(x) > 1)
'AABBB'

>>> res = ''
>>> for x in line.split():                                   # Statement equivalent?
        if len(x) > 1:                                       # This is also a join
            res += x.upper()

>>> res
'AABBB'
In this case, though, the statement form isn’t quite the same—it
        cannot produce items one at a time, and it’s also emulating the effect
        of the join that forces results to
        be produced all at once. The true equivalent to a generator expression
        would be a generator function with a yield, as the next section shows.


Generator Functions Versus Generator Expressions
Let’s recap what we’ve covered so far in this section:
	Generator functions
	A function def statement
            that contains a yield
            statement is turned into a generator function. When called, it
            returns a new generator object with automatic
            retention of local scope and code position; an automatically
            created __iter__ method that
            simply returns itself; and an automatically created __next__ method (next in 2.X) that starts the function or
            resumes it where it last left off, and raises StopIteration when finished producing
            results.

	Generator expressions
	A comprehension expression enclosed in parentheses is known
            as a generator expression. When run, it returns a new
            generator object with the same automatically
            created method interface and state retention as a generator
            function call’s results—with an __iter__ method that simply returns
            itself; and a _next__ method
            (next in 2.X) that starts the
            implied loop or resumes it where it last left off, and raises
            StopIteration when finished
            producing results.


The net effect is to produce results on demand in iteration
      contexts that employ these interfaces automatically.
As implied by some of the preceding sections, the same iteration
      can often be coded with either a generator function
      or a generator expression. The following generator expression, for
      example, repeats each character in a string four times:
>>> G = (c * 4 for c in 'SPAM')           # Generator expression
>>> list(G)                               # Force generator to produce all results
['SSSS', 'PPPP', 'AAAA', 'MMMM']
The equivalent generator function requires slightly more code, but
      as a multiple-statement function it will be able to code more logic and
      use more state information if needed. In fact, this is essentially the
      same as the prior chapter’s tradeoff between lambda and def—expression conciseness versus statement
      power:
>>> def timesfour(S):                     # Generator function
        for c in S:
            yield c * 4

>>> G = timesfour('spam')
>>> list(G)                               # Iterate automatically
['ssss', 'pppp', 'aaaa', 'mmmm']
To clients, the two are more similar than different. Both
      expressions and functions support both automatic and manual
      iteration—the prior list call
      iterates automatically, and the following iterate manually:
>>> G = (c * 4 for c in 'SPAM')
>>> I = iter(G)                           # Iterate manually (expression)
>>> next(I)
'SSSS'
>>> next(I)
'PPPP'

>>> G = timesfour('spam')
>>> I = iter(G)                           # Iterate manually (function)
>>> next(I)
'ssss'
>>> next(I)
'pppp'
In either case, Python automatically creates a generator object,
      which has both the methods required by the iteration protocol, and state
      retention for variables in the generator’s code and its current code
      location. Notice how we make new generators here to iterate again—as
      explained in the next section, generators are one-shot iterators.
First, though, here’s the true statement-based equivalent of
      expression at the end of the prior section: a function that yields
      values—though the difference is irrelevant if the code using it produces
      all results with a tool like join:
>>> line = 'aa bbb c'

>>> ''.join(x.upper() for x in line.split() if len(x) > 1)     # Expression
'AABBB'

>>> def gensub(line):                                          # Function
        for x in line.split():
            if len(x) > 1:
                yield x.upper()

>>> ''.join(gensub(line))                                      # But why generate?
'AABBB'
Though generators have valid roles, in cases like this the use of
      generators over the simple statement equivalent shown earlier may be
      difficult to justify, except on stylistic grounds. On the other hand,
      trading four lines for one may to many seem fairly compelling stylistic
      grounds!

Generators Are Single-Iteration Objects
A subtle but important point: both generator functions and generator expressions
      are their own iterators and thus support just one active
      iteration—unlike some built-in types, you can’t have multiple
      iterators of either positioned at different locations in the set of
      results. Because of this, a generator’s iterator is the generator
      itself; in fact, as suggested earlier, calling iter on a generator expression or function is
      an optional no-op:
>>> G = (c * 4 for c in 'SPAM')
>>> iter(G) is G                          # My iterator is myself: G has __next__
True
If you iterate over the results stream manually with multiple
      iterators, they will all point to the same position:
>>> G = (c * 4 for c in 'SPAM')           # Make a new generator
>>> I1 = iter(G)                          # Iterate manually
>>> next(I1)
'SSSS'
>>> next(I1)
'PPPP'
>>> I2 = iter(G)                          # Second iterator at same position!
>>> next(I2)
'AAAA'
Moreover, once any iteration runs to completion, all are
      exhausted—we have to make a new generator to start again:
>>> list(I1)                              # Collect the rest of I1's items
['MMMM']
>>> next(I2)                              # Other iterators exhausted too
StopIteration

>>> I3 = iter(G)                          # Ditto for new iterators
>>> next(I3)
StopIteration

>>> I3 = iter(c * 4 for c in 'SPAM')      # New generator to start over
>>> next(I3)
'SSSS'
The same holds true for generator functions—the following def statement-based equivalent supports just
      one active iterator and is exhausted after one pass:
>>> def timesfour(S):
        for c in S:
            yield c * 4

>>> G = timesfour('spam')                 # Generator functions work the same way
>>> iter(G) is G
True
>>> I1, I2 = iter(G), iter(G)
>>> next(I1)
'ssss'
>>> next(I1)
'pppp'
>>> next(I2)                              # I2 at same position as I1
'aaaa'
This is different from the behavior of some built-in types, which
      support multiple iterators and passes and reflect their in-place changes
      in active iterators:
>>> L = [1, 2, 3, 4]
>>> I1, I2 = iter(L), iter(L)
>>> next(I1)
1
>>> next(I1)
2
>>> next(I2)                              # Lists support multiple iterators
1
>>> del L[2:]                             # Changes reflected in iterators
>>> next(I1)
StopIteration
Though not readily apparent in these simple examples, this can
      matter in your code: if you wish to scan a generator’s values multiple
      times, you must either create a new generator for each scan or build a
      rescannable list out of its values—a single generator’s values will be
      consumed and exhausted after a single pass. See this chapter’s sidebar
      “Why You Will Care: One-Shot Iterations” for a prime
      example of the sort of code that must accommodate this generator
      property.
When we begin coding class-based iterables in Part VI, we’ll also see that it’s up to us to
      decide how many iterations we wish to support for our objects, if any.
      In general, objects that wish to support multiple scans will return
      supplemental class objects instead of themselves. The next section
      previews more of this model.
The Python 3.3 yield from Extension
Python 3.3 introduces extended syntax for the yield statement that allows delegation to a
        subgenerator with a from
        generator clause. In simple cases, it’s the
        equivalent to a yielding for
        loop—the list here in the following
        forces the generator to produce all its values, and the comprehension
        in parentheses is a generator expression, covered in this
        chapter:
>>> def both(N):
        for i in range(N): yield i
        for i in (x ** 2 for x in range(N)): yield i

>>> list(both(5))
[0, 1, 2, 3, 4, 0, 1, 4, 9, 16]
The new 3.3 syntax makes this arguably more concise and
        explicit, and supports all the usual generator usage contexts:
>>> def both(N):
        yield from range(N)
        yield from (x ** 2 for x in range(N))

>>> list(both(5))
[0, 1, 2, 3, 4, 0, 1, 4, 9, 16]

>>> ' : '.join(str(i) for i in both(5))
'0 : 1 : 2 : 3 : 4 : 0 : 1 : 4 : 9 : 16'
In more advanced roles, however, this extension allows
        subgenerators to receive sent and
        thrown values directly from the calling scope,
        and return a final value to the outer generator. The net effect is to
        allow such generators to be split into multiple subgenerators much as
        a single function can be split into multiple subfunctions.
Since this is only available in 3.3 and later, and is beyond
        this chapter’s generator coverage in general, we’ll defer to Python
        3.3’s manuals for additional details. For an additional yield from example, also see the solution to
        this part’s Exercise 11 described at the end of Chapter 21.


Generation in Built-in Types, Tools, and Classes
Finally, although we’ve focused on coding value generators ourselves in this section, don’t
      forget that many built-in types behave in similar ways—as we saw in
      Chapter 14, for example,
      dictionaries are iterables with iterators that
      produce keys on each iteration:
>>> D = {'a':1, 'b':2, 'c':3}
>>> x = iter(D)
>>> next(x)
'c'
>>> next(x)
'b'
Like the values produced by handcoded generators, dictionary keys
      may be iterated over both manually and with automatic iteration tools
      including for loops, map calls, list comprehensions, and the many
      other contexts we met in Chapter 14:
>>> for key in D:
        print(key, D[key])

c 3
b 2
a 1
As we’ve also seen, for file iterators,
      Python simply loads lines from the file on demand:
>>> for line in open('temp.txt'):
        print(line, end='')

Tis but
a flesh wound.
While built-in type iterables are bound to a specific type of
      value generation, the concept is similar to the multipurpose generators
      we code with expressions and functions. Iteration contexts like for loops accept any iterable that has the
      expected methods, whether user-defined or built-in.
Generators and library tools: Directory walkers
Though beyond this book’s scope, many Python standard library
        tools generate values today too, including email parsers, and the
        standard directory walker—which at
        each level of a tree yields a tuple of the current directory, its
        subdirectories, and its files:
>>> import os
>>> for (root, subs, files) in os.walk('.'):         # Directory walk generator
        for name in files:                           # A Python 'find' operation
            if name.startswith('call'):
                print(root, name)

. callables.py
.\dualpkg callables.py
In fact, os.walk is coded
        as a recursive function in Python in its os.py standard library file, in C:\Python33\Lib on Windows. Because it uses
        yield (and in 3.3 yield from instead of a for loop) to return results, it’s a normal
        generator function, and hence an iterable object:
>>> G = os.walk(r'C:\code\pkg')
>>> iter(G) is G                     # Single-scan iterator: iter(G) optional
True
>>> I = iter(G)
>>> next(I)
('C:\\code\\pkg', ['__pycache__'], ['eggs.py', 'eggs.pyc', 'main.py', ...etc...])
>>> next(I)
('C:\\code\\pkg\\__pycache__', [], ['eggs.cpython-33.pyc', ...etc...])
>>> next(I)
StopIteration
By yielding results as it goes, the walker does not require its
        clients to wait for an entire tree to be scanned. See Python’s manuals
        and follow-up books such as Programming
        Python for more on this tool. Also see Chapter 14 and others for os.popen—a
        related iterable used to run a shell command and read its
        output.

Generators and function application
In Chapter 18, we noted that starred arguments
        can unpack an iterable into individual arguments.
        Now that we’ve seen generators, we can also see what this means in
        code. In both 3.X and 2.X (though 2.X’s range is a list):
>>> def f(a, b, c): print('%s, %s, and %s' % (a, b, c))

>>> f(0, 1, 2)                       # Normal positionals
0, 1, and 2
>>> f(*range(3))                     # Unpack range values: iterable in 3.X
0, 1, and 2
>>> f(*(i for i in range(3)))        # Unpack generator expression values
0, 1, and 2
This applies to dictionaries and views too (though dict.values
        is also a list in 2.X, and order is arbitrary when passing values by
        position):
>>> D = dict(a='Bob', b='dev', c=40.5); D
{'b': 'dev', 'c': 40.5, 'a': 'Bob'}
>>> f(a='Bob', b='dev', c=40.5)      # Normal keywords
Bob, dev, and 40.5
>>> f(**D)                           # Unpack dict: key=value
Bob, dev, and 40.5
>>> f(*D)                            # Unpack keys iterator
b, c, and a
>>> f(*D.values())                   # Unpack view iterator: iterable in 3.X
dev, 40.5, and Bob
Because the built-in print
        function in 3.X prints all its variable number of arguments, this also
        makes the following three forms equivalent—the latter using a * to unpack the results forced from a
        generator expression (though the second also creates a list of return
        values, and the first may leave your cursor at the end of the output
        line in some shells, but not in the IDLE GUI):
>>> for x in 'spam': print(x.upper(), end=' ')
S P A M

>>> list(print(x.upper(), end=' ') for x in 'spam')
S P A M [None, None, None, None]

>>> print(*(x.upper() for x in 'spam'))
S P A M
See Chapter 14 for an
        additional example that unpacks a file’s lines by iterator into
        arguments.

Preview: User-defined iterables in classes
Although beyond the scope of this chapter, it is also possible
        to implement arbitrary user-defined generator objects with
        classes that conform to the iteration protocol.
        Such classes define a special __iter__
        method run by the iter built-in
        function, which in turn returns an object having a __next__ method (next in 2.X) run by the next built-in function:
class SomeIterable:
    def __iter__(...): ...     # On iter(): return self or supplemental object
    def __next__(...): ...     # On next(): coded here, or in another class
As the prior section suggested, these classes usually return
        their objects directly for single-iteration behavior, or a
        supplemental object with scan-specific state for multiple-scan
        support.
Alternatively, a user-defined iterable class’s method functions
        can sometimes use yield to
        transform themselves into generators, with an automatically created
        __next__ method—a common
        application of yield we’ll meet in
        Chapter 30 that is both wildly
        implicit and potentially useful! A __getitem__ indexing method is also available as a fallback option for
        iteration, though this is often not as flexible as the __iter__ and __next__ scheme (but has advantages for
        coding sequences).
The instance objects created from such a class are considered
        iterable and may be used in for
        loops and all other iteration contexts. With classes, though, we have
        access to richer logic and data structuring options, such as
        inheritance, that other generator constructs cannot offer by
        themselves. By coding methods, classes also can make iteration
        behavior much more explicit than the “magic”
        generator objects associated with built-in types and generator
        functions and expressions (though classes wield some magic of their
        own).
Hence, the iterator and generator story won’t really be complete
        until we’ve seen how it maps to classes, too. For now, we’ll have to
        settle for postponing its conclusion—and its final sequel—until we
        study class-based iterables in Chapter 30.


Example: Generating Scrambled Sequences
To demonstrate the power of iteration tools in action, let’s turn to some more
      complete use case examples. In Chapter 18, we wrote a
      testing function that scrambled the order of arguments used to test
      generalized intersection and union functions. There, I noted that this
      might be better coded as a generator of values. Now that we’ve learned
      how to write generators, this serves to illustrate a practical
      application.
One note up front: because they slice and concatenate objects, all
      the examples in the section (including the permutations at the end) work
      only on sequences like strings and lists, not on
      arbitrary iterables like files, maps, and other
      generators. That is, some of these examples will be
      generators themselves, producing values on request, but they cannot
      process generators as their inputs. Generalization for broader
      categories is left as an open issue, though the code here will suffice
      unchanged if you wrap nonsequence generators in list calls before passing them in.
Scrambling sequences
As coded in Chapter 18, we can reorder a
        sequence with slicing and concatenation, moving the front item to the
        end on each loop; slicing instead of indexing the
        item allows + to work for arbitrary
        sequence types:
>>> L, S = [1, 2, 3], 'spam'
>>> for i in range(len(S)):            # For repeat counts 0..3
        S = S[1:] + S[:1]              # Move front item to the end
        print(S, end=' ')

pams amsp mspa spam

>>> for i in range(len(L)):
        L = L[1:] + L[:1]              # Slice so any sequence type works
        print(L, end=' ')

[2, 3, 1] [3, 1, 2] [1, 2, 3]
Alternatively, as we saw in Chapter 13, we get the same results by moving an
        entire front section to the end, though the order of the results
        varies slightly:
>>> for i in range(len(S)):            # For positions 0..3
        X = S[i:] + S[:i]              # Rear part + front part (same effect)
        print(X, end=' ')

spam pams amsp mspa

Simple functions
As is, this code works on specific named variables only. To
        generalize, we can turn it into a simple function
        to work on any object passed to its argument and return a result;
        since the first of these exhibits the classic list comprehension
        pattern, we can save some work by coding it as such in the
        second:
>>> def scramble(seq):
        res = []
        for i in range(len(seq)):
            res.append(seq[i:] + seq[:i])
        return res

>>> scramble('spam')
['spam', 'pams', 'amsp', 'mspa']

>>> def scramble(seq):
        return [seq[i:] + seq[:i] for i in range(len(seq))]

>>> scramble('spam')
['spam', 'pams', 'amsp', 'mspa']

>>> for x in scramble((1, 2, 3)):
        print(x, end=' ')

(1, 2, 3) (2, 3, 1) (3, 1, 2)
We could use recursion here as well, but it’s probably overkill
        in this context.

Generator functions
The preceding section’s simple approach works, but must build an
        entire result list in memory all at once (not great on memory usage if
        it’s massive), and requires the caller to wait until the entire list
        is complete (less than ideal if this takes a substantial amount of
        time). We can do better on both fronts by translating this to a
        generator function that yields one result at a
        time, using either coding scheme:
>>> def scramble(seq):
        for i in range(len(seq)):
            seq = seq[1:] + seq[:1]              # Generator function
            yield seq                            # Assignments work here

>>> def scramble(seq):
        for i in range(len(seq)):                # Generator function
            yield seq[i:] + seq[:i]              # Yield one item per iteration

>>> list(scramble('spam'))                       # list() generates all results
['spam', 'pams', 'amsp', 'mspa']
>>> list(scramble((1, 2, 3)))                    # Any sequence type works
[(1, 2, 3), (2, 3, 1), (3, 1, 2)]
>>>
>>> for x in scramble((1, 2, 3)):                # for loops generate results
        print(x, end=' ')

(1, 2, 3) (2, 3, 1) (3, 1, 2)
Generator functions retain their local scope state while active,
        minimize memory space requirements, and divide the work into shorter
        time slices. As full functions, they are also very general.
        Importantly, for loops and other
        iteration tools work the same whether stepping through a real list or
        a generator of values—the function can select between the two schemes
        freely, and even change strategies in the future.

Generator expressions
As we’ve seen, generator
        expressions—comprehensions in parentheses instead of square
        brackets—also generate values on request and retain their local state.
        They’re not as flexible as full functions, but because they yield
        their values automatically, expressions can often be more concise in
        specific use cases like this:
>>> S
'spam'
>>> G = (S[i:] + S[:i] for i in range(len(S)))   # Generator expression equivalent
>>> list(G)
['spam', 'pams', 'amsp', 'mspa']
Notice that we can’t use the assignment statement of the first
        generator function version here, because generator expressions cannot
        contain statements. This makes them a bit narrower in scope; in many
        cases, though, expressions can do similar work, as shown here. To
        generalize a generator expression for an arbitrary subject, wrap it in
        a simple function that takes an argument and
        returns a generator that uses it:
>>> F = lambda seq: (seq[i:] + seq[:i] for i in range(len(seq)))
>>> F(S)
<generator object <genexpr> at 0x00000000029883F0>
>>>
>>> list(F(S))
['spam', 'pams', 'amsp', 'mspa']
>>> list(F([1, 2, 3]))
[[1, 2, 3], [2, 3, 1], [3, 1, 2]]

>>> for x in F((1, 2, 3)):
        print(x, end=' ')

(1, 2, 3) (2, 3, 1) (3, 1, 2)

Tester client
Finally, we can use either the generator function or its
        expression equivalent in Chapter 18’s
        tester to produce scrambled arguments—the
        sequence scrambling function becomes a tool we can use in other
        contexts:
# file scramble.py

def scramble(seq):
    for i in range(len(seq)):                # Generator function
        yield seq[i:] + seq[:i]              # Yield one item per iteration

scramble2 = lambda seq: (seq[i:] + seq[:i] for i in range(len(seq)))
And by moving the values generation out to an external tool, the
        tester becomes simpler:
>>> from scramble import scramble
>>> from inter2 import intersect, union
>>>
>>> def tester(func, items, trace=True):
        for args in scramble(items):         # Use generator (or: scramble2(items))
            if trace: print(args)
            print(sorted(func(*args)))

>>> tester(intersect, ('aab', 'abcde', 'ababab'))
('aab', 'abcde', 'ababab')
['a', 'b']
('abcde', 'ababab', 'aab')
['a', 'b']
('ababab', 'aab', 'abcde')
['a', 'b']

>>> tester(intersect, ([1, 2], [2, 3, 4], [1, 6, 2, 7, 3]), False)
[2]
[2]
[2]

Permutations: All possible combinations
These techniques have many other real-world
        applications—consider generating attachments in an email message or
        points to be plotted in a GUI. Moreover, other types of sequence
        scrambles serve central roles in other applications, from searches to
        mathematics. As is, our sequence scrambler is a simple reordering, but
        some programs warrant the more exhaustive set of all possible
        orderings we get from permutations—produced using
        recursive functions in both list-builder and generator forms by the
        following module file:
# File permute.py

def permute1(seq):
    if not seq:                               # Shuffle any sequence: list
        return [seq]                          # Empty sequence
    else:
        res = []
        for i in range(len(seq)):
            rest = seq[:i] + seq[i+1:]        # Delete current node
            for x in permute1(rest):          # Permute the others
                res.append(seq[i:i+1] + x)    # Add node at front
        return res

def permute2(seq):
    if not seq:                               # Shuffle any sequence: generator
        yield seq                             # Empty sequence
    else:
        for i in range(len(seq)):
            rest = seq[:i] + seq[i+1:]        # Delete current node
            for x in permute2(rest):          # Permute the others
                yield seq[i:i+1] + x          # Add node at front
Both of these functions produce the same results, though the
        second defers much of its work until it is asked for a result. This
        code is a bit advanced, especially the second of these functions (and
        to some Python newcomers might even be categorized as cruel and
        inhumane punishment!). Still, as I’ll explain in a moment, there are
        cases where the generator approach can be highly useful.
Study and test this code for more insight, and add prints to
        trace if it helps. If it’s still a mystery, try to make sense of the
        first version first; remember that generator functions simply return
        objects with methods that handle next operations run by for loops at each level, and don’t produce
        any results until iterated; and trace through some of the following
        examples to see how they’re handled by this code.
Permutations produce more orderings than the original
        shuffler—for N items, we get N! (factorial) results instead of just N
        (24 for 4: 4 * 3 * 2 * 1). In fact, that’s why we need
        recursion here: the number of nested loops is
        arbitrary, and depends on the length of the sequence permuted:
>>> from scramble import scramble
>>> from permute import permute1, permute2

>>> list(scramble('abc'))                            # Simple scrambles: N
['abc', 'bca', 'cab']

>>> permute1('abc')                                  # Permutations larger: N!
['abc', 'acb', 'bac', 'bca', 'cab', 'cba']
>>> list(permute2('abc'))                            # Generate all combinations
['abc', 'acb', 'bac', 'bca', 'cab', 'cba']

>>> G = permute2('abc')                              # Iterate (iter() not needed)
>>> next(G)
'abc'
>>> next(G)
'acb'
>>> for x in permute2('abc'): print(x)               # Automatic iteration
...prints six lines...
The list and generator versions’ results are the same, though
        the generator minimizes both space usage and delays for results. For
        larger items, the set of all permutations is much larger than the
        simpler scrambler’s:
>>> permute1('spam') == list(permute2('spam'))
True
>>> len(list(permute2('spam'))), len(list(scramble('spam')))
(24, 4)

>>> list(scramble('spam'))
['spam', 'pams', 'amsp', 'mspa']
>>> list(permute2('spam'))
['spam', 'spma', 'sapm', 'samp', 'smpa', 'smap', 'psam', 'psma', 'pasm', 'pams',
 'pmsa', 'pmas', 'aspm', 'asmp', 'apsm', 'apms', 'amsp', 'amps', 'mspa', 'msap',
 'mpsa', 'mpas', 'masp', 'maps']
Per Chapter 19, there are
        nonrecursive alternatives here too, using explicit stacks or queues,
        and other sequence orderings are common (e.g., fixed-size subsets and
        combinations that filter out duplicates of differing order), but these
        require coding extensions we’ll forgo here. See the book Programming
        Python for more on this theme, or experiment further on your
        own.


Don’t Abuse Generators: EIBTI
Generators are a somewhat advanced tool, and might be better treated as an optional
      topic, but for the fact that they permeate the Python language,
      especially in 3.X. In fact, they seem less optional to this book’s
      audience than Unicode (which was exiled to Part VIII). As we’ve seen, fundamental built-in tools
      such as range, map, dictionary keys, and even files are now generators, so
      you must be familiar with the concept even if you don’t write new
      generators of your own. Moreover, user-defined generators are
      increasingly common in Python code that you might come across today—in
      the Python standard library, for instance.
In general, the same cautions I gave for list comprehensions apply
      here as well: don’t complicate your code with user-defined generators if
      they are not warranted. Especially for smaller programs and data sets,
      there may be no good reason to use these tools. In such cases, simple
      lists of results will suffice, will be easier to understand, will be
      garbage-collected automatically, and may be produced quicker (and they
      are today: see the next chapter). Advanced tools like generators that
      rely on implicit “magic” can be fun to experiment with, but they have no
      place in real code that must be used by others except when clearly
      justified.
Or, to quote from Python’s import
      this motto again:
Explicit is better than implicit.

The acronym for this, EIBTI, is one of
      Python’s core guidelines, and for good reason: the more explicit your
      code is about its behavior, the more likely it is that the next
      programmer will be able to understand it. This applies directly to
      generators, whose implicit behavior may very well be more difficult for
      some to grasp than less obscure alternatives. Always: keep it simple
      unless it must be complicated!
On the other hand: Space and time, conciseness,
        expressiveness
That being said, there are specific use cases that generators
        can address well. They can reduce memory footprint in some programs,
        reduce delays in others, and can occasionally make the impossible
        possible. Consider, for example, a program that must produce all
        possible permutations of a nontrivial sequence. Since the number of
        combinations is a factorial that explodes
        exponentially, the preceding permute1 recursive list-builder function
        will either introduce a noticeable and perhaps interminable pause or
        fail completely due to memory requirements, whereas the permute2 recursive generator will not—it
        returns each individual result quickly, and can handle very large
        result sets:
>>> import math
>>> math.factorial(10)               # 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
3628800
>>> from permute import permute1, permute2
>>> seq = list(range(10))
>>> p1 = permute1(seq)               # 37 seconds on a 2GHz quad-core machine
                                     # Creates a list of 3.6M numbers
>>> len(p1), p1[0], p1[1]
(3628800, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 9, 8])
In this case, the list builder pauses for 37 seconds on my
        computer to build a 3.6-million-item list, but the generator can begin
        returning results immediately:
>>> p2 = permute2(seq)               # Returns generator immediately
>>> next(p2)                         # And produces each result quickly on request
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> next(p2)
[0, 1, 2, 3, 4, 5, 6, 7, 9, 8]

>>> p2 = list(permute2(seq))         # About 28 seconds, though still impractical
>>> p1 == p2                         # Same set of results generated
True
Naturally, we might be able to optimize the list builder’s code
        to run quicker (e.g., an explicit stack instead of recursion might
        change its performance), but for larger sequences, it’s not an option
        at all—at just 50 items, the number of permutations precludes building
        a results list, and would take far too long for mere mortals like us
        (and larger values will overflow the preset recursion stack depth
        limit: see the preceding chapter). The generator, however, is still
        viable—it is able to produce individual results immediately:
>>> math.factorial(50)
30414093201713378043612608166064768844377641568960512000000000000
>>> p3 = permute2(list(range(50)))
>>> next(p3)                         # permute1 is not an option here!
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49]
For more fun—and to yield results that are more variable and
        less obviously deterministic—we could also use Python’s random
        module of Chapter 5 to randomly shuffle the
        sequence to be permuted before the permuter begins its work. (In fact,
        we might be able to use the random shuffler as a permutation generator
        in general, as long as we either can assume that it won’t repeat
        shuffles during the time we consume them, or test its results against
        prior shuffles to avoid repeats—and hope that we do not live in the
        strange universe where a random sequence repeats the same result an
        infinite number of times!). In the following, each permute2 and next call returns immediately as before, but
        a permute1 hangs:
>>> import random
>>> math.factorial(20)               # permute1 is not an option here
2432902008176640000
>>> seq = list(range(20))

>>> random.shuffle(seq)              # Shuffle sequence randomly first
>>> p = permute2(seq)
>>> next(p)
[10, 17, 4, 14, 11, 3, 16, 19, 12, 8, 6, 5, 2, 15, 18, 7, 1, 0, 13, 9]
>>> next(p)
[10, 17, 4, 14, 11, 3, 16, 19, 12, 8, 6, 5, 2, 15, 18, 7, 1, 0, 9, 13]

>>> random.shuffle(seq)
>>> p = permute2(seq)
>>> next(p)
[16, 1, 5, 14, 15, 12, 0, 2, 6, 19, 10, 17, 11, 18, 13, 7, 4, 9, 8, 3]
>>> next(p)
[16, 1, 5, 14, 15, 12, 0, 2, 6, 19, 10, 17, 11, 18, 13, 7, 4, 9, 3, 8]
The main point here is that generators can sometimes produce
        results from large solution sets when list builders cannot. Then
        again, it’s not clear how common such use cases may be in the real
        world, and this doesn’t necessarily justify the
        implicit flavor of value generation that we get
        with generator functions and expressions. As we’ll see in Part VI, value generation can also be coded as
        iterable objects with classes. Class-based
        iterables can produce items on request too, and are far more
        explicit than the magic objects and methods
        produced for generator functions and expressions.
Part of programming is finding a balance among tradeoffs like
        these, and there are no absolute rules here. While the benefits of
        generators may sometimes justify their use, maintainability should
        always be a top priority too. Like comprehensions, generators also
        offer an expressiveness and code
        economy that’s hard to resist if you understand how they
        work—but you’ll want to weigh this against the frustration of
        coworkers who might not.


Example: Emulating zip and map with Iteration Tools
To help you evaluate their roles further, let’s take a quick look at one more example
      of generators in action that illustrates just how expressive they can
      be. Once you know about comprehensions, generators, and other iteration
      tools, it turns out that emulating many of Python’s functional built-ins
      is both straightforward and instructive. For example, we’ve already seen
      how the built-in zip and map functions combine iterables and project
      functions across them, respectively. With multiple iterable arguments,
      map projects the function across
      items taken from each iterable in much the same way that zip pairs them up (3.X’s
      map truncates shorter iterables; 2.X pads them with
      None):
>>> S1 = 'abc'
>>> S2 = 'xyz123'
>>> list(zip(S1, S2))                          # zip pairs items from iterables
[('a', 'x'), ('b', 'y'), ('c', 'z')]

# zip pairs items, truncates at shortest
>>> list(zip([−2, −1, 0, 1, 2]))               # Single sequence: 1-ary tuples
[(−2,), (−1,), (0,), (1,), (2,)]
>>> list(zip([1, 2, 3], [2, 3, 4, 5]))         # N sequences: N-ary tuples
[(1, 2), (2, 3), (3, 4)]

# map passes paired items to function, truncates
>>> list(map(abs, [−2, −1, 0, 1, 2]))          # Single sequence: 1-ary function
[2, 1, 0, 1, 2]
>>> list(map(pow, [1, 2, 3], [2, 3, 4, 5]))    # N sequences: N-ary function, 3.X
[1, 8, 81]

# map and zip accept arbitrary iterables
>>> list(map(lambda x, y: x + y, open('script2.py'), open('script2.py')))
['import sys\nimport sys\n', 'print(sys.path)\nprint(sys.path)\n', ...etc...]

>>> [x + y for (x, y) in zip(open('script2.py'), open('script2.py'))]
['import sys\nimport sys\n', 'print(sys.path)\nprint(sys.path)\n', ...etc...]
Though they’re being used for different purposes, if you study
      these examples long enough, you might notice a relationship between
      zip results and mapped function
      arguments that our next example can exploit.
Coding your own map(func, ...)
Although the map and zip built-ins are fast and convenient, it’s
        always possible to emulate them in code of our own. In the preceding
        chapter, for example, we saw a function that emulated the map built-in for a single sequence (or other
        iterable) argument. It doesn’t take much more work to allow for
        multiple sequences, as the built-in does:
# map(func, seqs...) workalike with zip

def mymap(func, *seqs):
    res = []
    for args in zip(*seqs):
        res.append(func(*args))
    return res

print(mymap(abs, [-2, −1, 0, 1, 2]))
print(mymap(pow, [1, 2, 3], [2, 3, 4, 5]))
This version relies heavily upon the special *args argument-passing syntax—it collects
        multiple sequence (really, iterable) arguments, unpacks them as
        zip arguments to combine, and then
        unpacks the paired zip results as
        arguments to the passed-in function. That is, we’re using the fact
        that the zipping is essentially a nested operation in mapping. The
        test code at the bottom applies this to both one and two sequences to
        produce this output—the same we would get with the built-in map (this code is in file mymap.py in the book’s examples if you want
        to run it live):
[2, 1, 0, 1, 2]
[1, 8, 81]
Really, though, the prior version exhibits the classic
        list comprehension pattern, building a list of
        operation results within a for
        loop. We can code our map more concisely as an equivalent one-line
        list comprehension:
# Using a list comprehension

def mymap(func, *seqs):
    return [func(*args) for args in zip(*seqs)]

print(mymap(abs, [−2, −1, 0, 1, 2]))
print(mymap(pow, [1, 2, 3], [2, 3, 4, 5]))
When this is run the result is the same as before, but the code
        is more concise and might run faster (more on performance in the
        section “Timing Iteration Alternatives”). Both of the
        preceding mymap versions build
        result lists all at once, though, and this can waste memory for larger
        lists. Now that we know about generator functions and
        expressions, it’s simple to recode both these alternatives
        to produce results on demand instead:
# Using generators: yield and (...)

def mymap(func, *seqs):
    for args in zip(*seqs):
        yield func(*args)

def mymap(func, *seqs):
    return (func(*args) for args in zip(*seqs))
These versions produce the same results but return generators
        designed to support the iteration protocol—the first yields one result
        at a time, and the second returns a generator expression’s result to
        do the same. They produce the same results if we wrap them in list calls to force them to produce their
        values all at once:
print(list(mymap(abs, [−2, −1, 0, 1, 2])))
print(list(mymap(pow, [1, 2, 3], [2, 3, 4, 5])))
No work is really done here until the list calls force the generators to run, by
        activating the iteration protocol. The generators returned by these
        functions themselves, as well as that returned by the Python 3.X
        flavor of the zip built-in they
        use, produce results only on demand.

Coding your own zip(...) and map(None, ...)
Of course, much of the magic in the examples shown so far lies
        in their use of the zip built-in to
        pair arguments from multiple sequences or iterables. Our map workalikes are also really emulating the
        behavior of the Python 3.X map—they
        truncate at the length of the shortest argument, and they do not
        support the notion of padding results when lengths differ, as map does in Python 2.X with a None argument:
C:code> c:\python27\python
>>> map(None, [1, 2, 3], [2, 3, 4, 5])
[(1, 2), (2, 3), (3, 4), (None, 5)]
>>> map(None, 'abc', 'xyz123')
[('a', 'x'), ('b', 'y'), ('c', 'z'), (None, '1'), (None, '2'), (None, '3')]
Using iteration tools, we can code workalikes that emulate both
        truncating zip and 2.X’s padding
        map—these turn out to be nearly the
        same in code:
# zip(seqs...) and 2.X map(None, seqs...) workalikes

def myzip(*seqs):
    seqs = [list(S) for S in seqs]
    res  = []
    while all(seqs):
        res.append(tuple(S.pop(0) for S in seqs))
    return res

def mymapPad(*seqs, pad=None):
    seqs = [list(S) for S in seqs]
    res  = []
    while any(seqs):
        res.append(tuple((S.pop(0) if S else pad) for S in seqs))
    return res

S1, S2 = 'abc', 'xyz123'
print(myzip(S1, S2))
print(mymapPad(S1, S2))
print(mymapPad(S1, S2, pad=99))
Both of the functions coded here work on any type of
        iterable object, because they run their arguments
        through the list built-in to force
        result generation (e.g., files would work as arguments, in addition to
        sequences like strings). Notice the use of the all and any built-ins here—these return True if all and any items in an iterable are
        True (or equivalently, nonempty),
        respectively. These built-ins are used to stop looping when any or all
        of the listified arguments become empty after deletions.
Also note the use of the Python 3.X
        keyword-only argument, pad; unlike the 2.X map, our version will allow any pad object
        to be specified (if you’re using 2.X, use a **kargs form to support this option instead; see Chapter 18 for details). When these functions are run, the
        following results are printed—a zip, and two padding maps:
[('a', 'x'), ('b', 'y'), ('c', 'z')]
[('a', 'x'), ('b', 'y'), ('c', 'z'), (None, '1'), (None, '2'), (None, '3')]
[('a', 'x'), ('b', 'y'), ('c', 'z'), (99, '1'), (99, '2'), (99, '3')]
These functions aren’t amenable to list comprehension
        translation because their loops are too specific. As before, though,
        while our zip and map workalikes currently build and return
        result lists, it’s just as easy to turn them into
        generators with yield so that they each return one piece of
        their result set at a time. The results are the same as before, but we
        need to use list again to force the
        generators to yield their values for display:
# Using generators: yield

def myzip(*seqs):
    seqs = [list(S) for S in seqs]
    while all(seqs):
        yield tuple(S.pop(0) for S in seqs)

def mymapPad(*seqs, pad=None):
    seqs = [list(S) for S in seqs]
    while any(seqs):
        yield tuple((S.pop(0) if S else pad) for S in seqs)

S1, S2 = 'abc', 'xyz123'
print(list(myzip(S1, S2)))
print(list(mymapPad(S1, S2)))
print(list(mymapPad(S1, S2, pad=99)))
Finally, here’s an alternative implementation of our zip and map emulators—rather than deleting arguments
        from lists with the pop method, the
        following versions do their job by calculating the minimum and
        maximum argument lengths. Armed
        with these lengths, it’s easy to code nested list comprehensions to
        step through argument index ranges:
# Alternate implementation with lengths

def myzip(*seqs):
    minlen = min(len(S) for S in seqs)
    return [tuple(S[i] for S in seqs) for i in range(minlen)]

def mymapPad(*seqs, pad=None):
    maxlen = max(len(S) for S in seqs)
    index  = range(maxlen)
    return [tuple((S[i] if len(S) > i else pad) for S in seqs) for i in index]

S1, S2 = 'abc', 'xyz123'
print(myzip(S1, S2))
print(mymapPad(S1, S2))
print(mymapPad(S1, S2, pad=99))
Because these use len and
        indexing, they assume that arguments are
        sequences or similar, not arbitrary iterables,
        much like our earlier sequence scramblers and permuters. The outer
        comprehensions here step through argument index ranges, and the inner
        comprehensions (passed to tuple)
        step through the passed-in sequences to pull out arguments in
        parallel. When they’re run, the results are as before.
Most strikingly, generators and iterators seem to run rampant in
        this example. The arguments passed to min and max are generator expressions, which run to
        completion before the nested comprehensions begin iterating. Moreover,
        the nested list comprehensions employ two levels of delayed
        evaluation—the Python 3.X range
        built-in is an iterable, as is the generator expression argument to
        tuple.
In fact, no results are produced here until the square brackets
        of the list comprehensions request values to place in the result
        list—they force the comprehensions and generators to run. To turn
        these functions themselves into generators instead of list builders,
        use parentheses instead of square brackets again. Here’s the case for
        our zip:
# Using generators: (...)

def myzip(*seqs):
    minlen = min(len(S) for S in seqs)
    return (tuple(S[i] for S in seqs) for i in range(minlen))

S1, S2 = 'abc', 'xyz123'
print(list(myzip(S1, S2)))         # Go!... [('a', 'x'), ('b', 'y'), ('c', 'z')]
In this case, it takes a list
        call to activate the generators and other iterables to produce their
        results. Experiment with these on your own for more details.
        Developing further coding alternatives is left as a suggested exercise
        (see also the sidebar “Why You Will Care: One-Shot Iterations” for investigation
        of one such option).
Note
Watch for more yield
          examples in Chapter 30, where we’ll
          use it in conjunction with the __iter__ operator overloading method to
          implement user-defined iterable objects in an automated fashion. The
          state retention of local variables in this role serves as an
          alternative to class attributes in the same spirit as the closure
          functions of Chapter 17; as we’ll see, though, this
          technique combines classes and functional tools
          instead of posing a paradigm alternative.

Why You Will Care: One-Shot Iterations
In Chapter 14, we
          saw how some built-ins (like map) support only a single traversal and
          are empty after it occurs, and I promised to show you an example of
          how that can become subtle but important in practice. Now that we’ve
          studied a few more iteration topics, I can make good on this
          promise. Consider the following clever alternative coding for this
          chapter’s zip emulation examples,
          adapted from one in Python’s manuals at the time I wrote these
          words:
def myzip(*args):
    iters = map(iter, args)
    while iters:
        res = [next(i) for i in iters]
        yield tuple(res)
Because this code uses iter
          and next, it works on any type of
          iterable. Note that there is no reason to catch the StopIteration raised by the next(i) inside the comprehension here when
          any one of the arguments’ iterators is exhausted—allowing it to pass
          ends this generator function and has the same effect that a return statement would. The while iters: suffices to loop if at least
          one argument is passed, and avoids an infinite loop otherwise (the
          list comprehension would always return an empty list).
This code works fine in Python 2.X as is:
>>> list(myzip('abc', 'lmnop'))
[('a', 'l'), ('b', 'm'), ('c', 'n')]
But it falls into an infinite loop and fails in Python 3.X,
          because the 3.X map returns a
          one-shot iterable object instead of a list as in 2.X. In 3.X, as
          soon as we’ve run the list comprehension inside the loop once,
          iters will be exhausted but still
          True (and res will be []) forever. To make this work in 3.X, we
          need to use the list built-in
          function to create an object that can support multiple
          iterations:
def myzip(*args):
    iters = list(map(iter, args))       # Allow multiple scans
    ...rest as is...
Run this on your own to trace its operation. The lesson here:
          wrapping map calls in list calls in 3.X is not just for
          display!




Comprehension Syntax Summary
We’ve been focusing on list comprehensions and generators in this chapter, but keep in
    mind that there are two other comprehension expression forms available in
    both 3.X and 2.7: set and dictionary comprehensions. We met these briefly
    in Chapter 5 and Chapter 8, but with our new knowledge of
    comprehensions and generators, you should now be able to grasp these
    extensions in full:
	For sets, the new literal form {1, 3, 2} is equivalent to set([1, 3, 2]), and the new set
        comprehension syntax {f(x) for x in S if
        P(x)} is like the generator expression set(f(x) for x in S if P(x)), where f(x) is an arbitrary expression.

	For dictionaries, the new dictionary
        comprehension syntax {key: val for (key, val)
        in zip(keys, vals)} works like the form dict(zip(keys, vals)), and {x: f(x) for x in items} is like the
        generator expression dict((x, f(x)) for x in
        items).


Here’s a summary of all the comprehension alternatives in 3.X and
    2.7. The last two are new and are not available in 2.6 and earlier:
>>> [x * x for x in range(10)]            # List comprehension: builds list
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]      # Like list(generator expr)

>>> (x * x for x in range(10))            # Generator expression: produces items
<generator object at 0x009E7328>          # Parens are often optional

>>> {x * x for x in range(10)}            # Set comprehension, 3.X and 2.7
{0, 1, 4, 81, 64, 9, 16, 49, 25, 36}      # {x, y} is a set in these versions too

>>> {x: x * x for x in range(10)}         # Dictionary comprehension, 3.X and 2.7
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
Scopes and Comprehension Variables
Now that we’ve seen all comprehension forms, be sure to also review Chapter 17’s overview of the localization of loop variables in
      these expressions. Python 3.X localizes loop
      variables in all four forms—temporary loop variable names in generator,
      set, dictionary, and list comprehensions are local to the expression.
      They don’t clash with names outside, but are also not available there,
      and work differently than the for
      loop iteration statement:
c:\code> py −3
>>> (X for X in range(5))
<generator object <genexpr> at 0x00000000028E4798>
>>> X
NameError: name 'X' is not defined

>>> X = 99
>>> [X for X in range(5)]         # 3.X: generator, set, dict, and list localize
[0, 1, 2, 3, 4]
>>> X
99

>>> Y = 99
>>> for Y in range(5): pass       # But loop statements do not localize names

>>> Y
4
As mentioned in Chapter 17, 3.X variables assigned
      in a comprehension are really a further nested special-case scope; other
      names referenced within these expressions follow the usual LEGB rules.
      In the following generator, for example, Z is localized in the comprehension, but
      Y and X are found in the enclosing local and global
      scopes as usual:
>>> X = 'aaa'
>>> def func():
        Y = 'bbb'
        print(''.join(Z for Z in X + Y))       # Z comprehension, Y local, X global

>>> func()
aaabbb
Python 2.X is the same in this regard, except
      that list comprehension variables are not
      localized—they work just like for
      loops and keep their last iteration values, but are also open to
      unexpected clashes with outside names. Generator, set, and dictionary
      forms localize names as in 3.X:
c:\code> py −2
>>> (X for X in range(5))
<generator object <genexpr> at 0x0000000002147EE8>
>>> X
NameError: name 'X' is not defined

>>> X = 99
>>> [X for X in range(5)]         # 2.X: List does not localize its names, like for
[0, 1, 2, 3, 4]
>>> X
4

>>> Y = 99
>>> for Y in range(5): pass       # for loops do not localize names in 2.X or 3.X

>>> Y
4
If you care about version portability, and symmetry with the
      for loop statement, use unique
      names for variables in comprehension expressions as a rule of thumb. The
      2.X behavior makes sense given that a generator object is discarded
      after it finishes producing results, but a list comprehension is
      equivalent to a for loop—though this
      analogy doesn’t hold for the set and dictionary forms that localize
      their names in both Pythons, and are, somewhat coincidentally, the topic
      of the next section.

Comprehending Set and Dictionary Comprehensions
In a sense, set and dictionary comprehensions are just syntactic sugar for
      passing generator expressions to the type names. Because both accept any
      iterable, a generator works well here:
>>> {x * x for x in range(10)}                # Comprehension
{0, 1, 4, 81, 64, 9, 16, 49, 25, 36}
>>> set(x * x for x in range(10))             # Generator and type name
{0, 1, 4, 81, 64, 9, 16, 49, 25, 36}

>>> {x: x * x for x in range(10)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
>>> dict((x, x * x) for x in range(10))
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

>>> x                                         # Loop variable localized in 2.X + 3.X
NameError: name 'x' is not defined
As for list comprehensions, though, we can always build the result
      objects with manual code, too. Here are statement-based equivalents of
      the last two comprehensions (though they differ in that name
      localization, per the prior section):
>>> res = set()
>>> for x in range(10):                        # Set comprehension equivalent
        res.add(x * x)

>>> res
{0, 1, 4, 81, 64, 9, 16, 49, 25, 36}

>>> res = {}
>>> for x in range(10):                        # Dict comprehension equivalent
        res[x] = x * x

>>> res
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

>>> x   # Localized in comprehension expressions, but not in loop statements
9
Notice that although both set and dictionary comprehensions accept
      and scan iterables, they have no notion of
      generating results on demand—both forms build
      complete objects all at once. If you mean to produce keys and values
      upon request, a generator expression is more appropriate:
>>> G = ((x, x * x) for x in range(10))
>>> next(G)
(0, 0)
>>> next(G)
(1, 1)

Extended Comprehension Syntax for Sets and Dictionaries
Like list comprehensions and generator expressions, both set and
      dictionary comprehensions support nested associated if clauses to filter items out of the
      result—the following collect squares of even items (i.e., items having
      no remainder for division by 2) in a range:
>>> [x * x for x in range(10) if x % 2 == 0]           # Lists are ordered
[0, 4, 16, 36, 64]
>>> {x * x for x in range(10) if x % 2 == 0}           # But sets are not
{0, 16, 4, 64, 36}
>>> {x: x * x for x in range(10) if x % 2 == 0}        # Neither are dict keys
{0: 0, 8: 64, 2: 4, 4: 16, 6: 36}
Nested for loops work as well,
      though the unordered and no-duplicates nature of both types of objects
      can make the results a bit less straightforward to decipher:
>>> [x + y for x in [1, 2, 3] for y in [4, 5, 6]]      # Lists keep duplicates
[5, 6, 7, 6, 7, 8, 7, 8, 9]
>>> {x + y for x in [1, 2, 3] for y in [4, 5, 6]}      # But sets do not
{8, 9, 5, 6, 7}
>>> {x: y for x in [1, 2, 3] for y in [4, 5, 6]}       # Neither do dict keys
{1: 6, 2: 6, 3: 6}
Like list comprehensions, the set and dictionary varieties can
      also iterate over any type of iterable—lists, strings, files, ranges,
      and anything else that supports the iteration protocol:
>>> {x + y for x in 'ab' for y in 'cd'}
{'ac', 'bd', 'bc', 'ad'}

>>> {x + y: (ord(x), ord(y)) for x in 'ab' for y in 'cd'}
{'ac': (97, 99), 'bd': (98, 100), 'bc': (98, 99), 'ad': (97, 100)}

>>> {k * 2 for k in ['spam', 'ham', 'sausage'] if k[0] == 's'}
{'sausagesausage', 'spamspam'}

>>> {k.upper(): k * 2 for k in ['spam', 'ham', 'sausage'] if k[0] == 's'}
{'SAUSAGE': 'sausagesausage', 'SPAM': 'spamspam'}
For more details, experiment with these tools on your own. They
      may or may not have a performance advantage over the generator or
      for loop alternatives, but we would
      have to time their performance explicitly to be sure—which seems a
      natural segue to the next chapter.


Chapter Summary
This chapter wrapped up our coverage of built-in comprehension and
    iteration tools. It explored list comprehensions in the context of
    functional tools, and presented generator functions and expressions as
    additional iteration protocol tools. As a finale, we also summarized the
    four forms of comprehension in Python today—list, generator, set, and
    dictionary. Though we’ve now seen all the built-in iteration tools, the
    subject will resurface when we study user-defined iterable class objects
    in Chapter 30.
The next chapter is something of a continuation of the theme of this
    one—it rounds out this part of the book with a case study that times the
    performance of the tools we’ve studied here, and serves as a more
    realistic example at the midpoint in this book. Before we move ahead to
    benchmarking comprehensions and generators, though, this chapter’s quizzes
    give you a chance to review what you’ve learned about them here.

Test Your Knowledge: Quiz
	What is the difference between enclosing a list comprehension in
        square brackets and parentheses?

	How are generators and iterators related?

	How can you tell if a function is a generator function?

	What does a yield statement
        do?

	How are map calls and list
        comprehensions related? Compare and contrast the two.



Test Your Knowledge: Answers
	List comprehensions in square brackets produce the result list
        all at once in memory. When they are enclosed in parentheses instead,
        they are actually generator expressions—they have a similar meaning
        but do not produce the result list all at once. Instead, generator
        expressions return a generator object, which yields one item in the
        result at a time when used in an iteration context.

	Generators are iterable objects that support the iteration
        protocol automatically—they have an iterator with a __next__ method (next in 2.X) that repeatedly advances to the
        next item in a series of results and raises an exception at the end of
        the series. In Python, we can code generator functions with def and yield, generator expressions with
        parenthesized comprehensions, and generator objects with classes that
        define a special method named __iter__ (discussed later in the
        book).

	A generator function has a yield statement somewhere in its code.
        Generator functions are otherwise identical to normal functions
        syntactically, but they are compiled specially by Python so as to
        return an iterable generator object when called. That object retains
        state and code location between values.

	When present, this statement makes Python compile the function
        specially as a generator; when called, the function returns a
        generator object that supports the iteration protocol. When the
        yield statement is run, it sends a
        result back to the caller and suspends the function’s state; the
        function can then be resumed after the last yield statement, in response to a next built-in or __next__ method call issued by the caller.
        In more advanced roles, the generator send method similarly resumes the generator,
        but can also pass a value that shows up as the yield expression’s value. Generator
        functions may also have a return
        statement, which terminates the generator.

	The map call is similar to a
        list comprehension—both produce a series of values, by collecting the
        results of applying an operation to each item in a sequence or other
        iterable, one item at a time. The primary difference is that map applies a function call to each item,
        and list comprehensions apply arbitrary expressions. Because of this,
        list comprehensions are more general; they can apply a function call
        expression like map, but map requires a function to apply other kinds
        of expressions. List comprehensions also support extended syntax such
        as nested for loops and if clauses that subsume the filter built-in. In Python 3.X, map also differs in that it produces a
        generator of values; the list comprehension
        materializes the result list in memory all at once. In 2.X, both tools
        create result lists.



1 Technically, Python treats return statement values in
            generator functions as syntax errors in 2.X, and in all 3.X prior
            to 3.3. As of 3.3, a return statement value is allowed and
            attached to the StopIteration object, but the
            value is ignored in automatic iterations contexts, and using this
            makes code incompatible with all prior releases.
2 Interestingly, generator functions are also something of a
            “poor man’s” multithreading device—they
            interleave a function’s work with that of its caller, by dividing
            its operation into steps run between yields. Generators are not threads,
            though: the program is explicitly directed to and from the
            function within a single thread of control. In one sense,
            threading is more general (producers can run truly independently
            and post results to a queue), but generators may be simpler to
            code. See the footnote in Chapter 17 for a brief
            introduction to Python multithreading tools. Note that because
            control is routed explicitly at yield and next calls, generators are also not
            backtracking, but are more strongly related
            to coroutines—formal concepts that are both
            beyond this chapter’s scope.








Chapter 21. The Benchmarking Interlude
Now that we know about coding functions and iteration tools, we’re
  going to take a short side trip to put both of them to work. This chapter
  closes out the function part of this book with a larger case study that
  times the relative performance of the iteration tools we’ve met so
  far.
Along the way, this case study surveys Python’s code timing tools,
  discusses benchmarking techniques in general, and allows us to explore code
  that’s a bit more realistic and useful than most of what we’ve seen up to
  this point. We’ll also measure the speed of current Python implementations—a
  data point that may or may not be significant, depending on the type of code
  you write.
Finally, because this is the last chapter in this part of the book,
  we’ll close with the usual sets of “gotchas” and exercises to help you start
  coding the ideas you’ve read about. First, though, let’s have some fun with
  a tangible Python application.
Timing Iteration Alternatives
We’ve met quite a few iteration alternatives in this book. Like much in
    programming, they represent tradeoffs—in terms of both subjective factors
    like expressiveness, and more objective criteria such as performance. Part
    of your job as a programmer and engineer is selecting tools based on
    factors like these.
In terms of performance, I’ve mentioned a few times that list
    comprehensions sometimes have a speed advantage over for loop statements, and that map calls can be faster or slower than both
    depending on call patterns. The generator functions and expressions of the
    preceding chapter tend to be slightly slower than list comprehensions,
    though they minimize memory space requirements and don’t delay the caller
    for result generation when there are many results to generate.
All that is generally true today, but relative performance can vary
    over time because Python’s internals are constantly being changed and
    optimized, and code structure can influence speed arbitrarily. If you want
    to verify their performance for yourself, you need to time these
    alternatives on your own computer and your own version of Python.
Timing Module: Homegrown
Luckily, Python makes it easy to time code. For example, to get
      the total time taken to run multiple calls to a function with arbitrary
      positional arguments, the following first-cut function might
      suffice:
# File timer0.py
import time
def timer(func, *args):                 # Simplistic timing function
    start = time.clock()
    for i in range(1000):
        func(*args)
    return time.clock() - start         # Total elapsed time in seconds
This works—it fetches time values from Python’s time module, and subtracts the system start time from the stop time
      after running 1,000 calls to the passed-in function with the passed-in
      arguments. On my computer in Python 3.3:
>>> from timer0 import timer
>>> timer(pow, 2, 1000)                 # Time to call pow(2, 1000) 1000 times
0.00296260674205626
>>> timer(str.upper, 'spam')            # Time to call 'spam'.upper() 1000 times
0.0005165746166859719
Though simple, this timer is also fairly limited, and deliberately
      exhibits some classic mistakes in both function design and benchmarking.
      Among these, it:
	Doesn’t support keyword arguments in the
          tested function call

	Hardcodes the repetitions count

	Charges the cost of range
          to the tested function’s time

	Always uses time.clock,
          which might not be best outside Windows

	Doesn’t give callers a way to verify that the tested function
          actually worked

	Only gives total time, which might
          fluctuate on some heavily loaded machines


In other words, timing code is more complex than you might expect!
      To be more general and accurate, let’s expand this into still simple but
      more useful timer utility functions we can use both to see how iteration
      alternative options stack up now, and apply to other timing needs in the
      future. These functions are coded in a module file so they can be used
      in a variety of programs, and have docstrings giving some basic details
      that PyDoc can display on request—see Figure 15-2 in Chapter 15 for a screenshot of the
      documentation pages rendered for the timing modules we’re coding
      here:
# File timer.py
"""
Homegrown timing tools for function calls.
Does total time, best-of time, and best-of-totals time
"""

import time, sys
timer = time.clock if sys.platform[:3] == 'win' else time.time

def total(reps, func, *pargs, **kargs):
    """
    Total time to run func() reps times.
    Returns (total time, last result)
    """
    repslist = list(range(reps))                 # Hoist out, equalize 2.x, 3.x
    start = timer()                              # Or perf_counter/other in 3.3+
    for i in repslist:
        ret = func(*pargs, **kargs)
    elapsed = timer() - start
    return (elapsed, ret)

def bestof(reps, func, *pargs, **kargs):
    """
    Quickest func() among reps runs.
    Returns (best time, last result)
    """
    best = 2 ** 32                               # 136 years seems large enough
    for i in range(reps):                        # range usage not timed here
        start = timer()
        ret = func(*pargs, **kargs)
        elapsed = timer() - start                # Or call total() with reps=1
        if elapsed < best: best = elapsed        # Or add to list and take min()
    return (best, ret)

def bestoftotal(reps1, reps2, func, *pargs, **kargs):
    """
    Best of totals:
    (best of reps1 runs of (total of reps2 runs of func))
    """
    return bestof(reps1, total, reps2, func, *pargs, **kargs)
Operationally, this module implements both
      total time and best time
      calls, and a nested best of totals that combines
      the other two. In each, it times a call to any function with any
      positional and keyword arguments passed individually, by fetching the
      start time, calling the function, and subtracting the start time from
      the stop time. Points to notice about how this version addresses the
      shortcomings of its predecessor:
	Python’s time module gives
          access to the current time, with precision that varies per platform.
          On Windows its clock function
          is claimed to give microsecond granularity and so is very accurate.
          Because the time function
          may be better on Unix, this script selects between them
          automatically based on the platform string in the sys module; it starts with “win” if running in Windows. See also
          the sidebar “New Timer Calls in 3.3” on other
          time options in 3.3 and later not
          used here for portability; we will also be timing Python 2.X where
          these newer calls are not available, and their results on Windows
          appear similar in 3.3 in any event.

	The range call is hoisted
          out of the timing loop in the total function, so its construction cost
          is not charged to the timed function in Python 2.X. In 3.X range is an iterable, so this step is
          neither required nor harmful, but we still run the result through
          list so its traversal cost is the
          same in both 2.X and 3.X. This doesn’t apply to the bestof function, since no range factors are charged to the test’s
          time.

	The reps count is passed in
          as an argument, before the test function and its arguments, to allow
          repetition to vary per call.

	Any number of both positional and keyword
          arguments are collected with
          starred-argument syntax, so they must be sent
          individually, not in a sequence or dictionary. If needed, callers
          can unpack argument collections into individual arguments with stars
          in the call, as done by the bestoftotal function at the end. See Chapter 18 for a refresher if this code doesn’t make
          sense.

	The first function in this module returns
          total elapsed time for all calls in a tuple,
          along with the timed function’s final return value so callers can
          verify its operation.

	The second function does similar, but returns the
          best (minimum) time among all calls instead of
          the total—more useful if you wish to filter out the impacts of other
          activity on your computer, but less for tests that run too quickly
          to produce substantial runtimes.

	To address the prior point, the last function in this file
          runs nested total tests within a best-of test, to get the
          best-of-totals time. The nested total operation
          can make runtimes more useful, but we still get the best-of filter.
          This function’s code may be easier to understand if you remember
          that every function is a passable object, even the testing functions
          themselves.


From a larger perspective, because these functions are coded in a
      module file, they become generally useful tools anywhere we wish to
      import them. Modules and imports were introduced in Chapter 3, and you’ll learn more about them in
      the next part of this book; for now, simply import the module and call
      the function to use one of this file’s timers. In simple usage, this
      module is similar to its predecessor, but will be more robust in larger
      contexts. In Python 3.3 again:
>>> import timer
>>> timer.total(1000, pow, 2, 1000)[0]          # Compare to timer0 results above
0.0029542985410557776
>>> timer.total(1000, str.upper, 'spam')        # Returns (time, last call's result)
(0.000504845391709686, 'SPAM')

>>> timer.bestof(1000, str.upper, 'spam')       # 1/1000 as long as total time
(4.887177027512735e-07, 'SPAM')
>>> timer.bestof(1000, pow, 2, 1000000)[0]
0.00393515497972885

>>> timer.bestof(50, timer.total, 1000, str.upper, 'spam')
(0.0005468751145372153, (0.0005004469323637295, 'SPAM'))
>>> timer.bestoftotal(50, 1000, str.upper, 'spam')
(0.000566912540591602, (0.0005195069228989269, 'SPAM'))
The last two calls here calculate the
      best-of-totals times—the lowest time among 50 runs,
      each of which computes the total time to call str.upper 1,000
      times (roughly corresponding to the total times at the start of this
      listing). The function used in the last call is really just a
      convenience that maps to the call form preceding it; both return the
      best-of tuple, which embeds the last total call’s result tuple.
Compare these last two results to the following generator-based
      alternative:
>>> min(timer.total(1000, str.upper, 'spam') for i in range(50))
(0.0005155971812769167, 'SPAM')
Taking the min of an iteration of total results this way has a similar effect
      because the times in the result tuples dominate comparisons made by
      min (they are leftmost in the tuple).
      We could use this in our module too (and will in later variations); it
      varies slightly by omitting a very small overhead in the best-of
      function’s code and not nesting result tuples, though either result
      suffices for relative comparisons. As is, the best-of function must pick
      a high initial lowest time value—though 136 years is probably longer
      than most of the tests you’re likely to run!
>>> ((((2 ** 32) / 60) / 60) / 24) / 365           # Plus a few extra days
136.19251953323186
>>> ((((2 ** 32) // 60) // 60) // 24) // 365       # Floor: see Chapter 5
136
New Timer Calls in 3.3
This section uses the time
        module’s clock and time calls because they apply to all readers
        of this book. Python 3.3 introduces new interfaces in this module that
        are designed to be more portable. Specifically, the behavior of this
        module’s clock and time calls varies per platform, but its new
        perf_counter and process_time functions have well-defined and
        platform-neutral semantics:
	time.perf_counter()
            returns the value in fractional seconds of a performance
            counter, defined as a clock with the highest available resolution
            to measure a short duration. It includes time elapsed during sleep
            states and is system-wide.

	time.process_time()
            returns the value in fractional seconds of the sum of the system
            and user CPU time of the current process. It does not include time
            elapsed during sleep, and is process-wide by definition.


For both of these calls, the reference point of the returned
        value is undefined, so that only the difference
        between the results of consecutive calls is valid. The perf_counter call can be thought of as wall
        time, and as of Python 3.3 is used by default for benchmarking in the
        timeit module discussed ahead;
        process_time gives CPU time
        portably.
The time.clock call is still
        usable on Windows today, as shown in this book. It is documented as
        being deprecated in 3.3’s manuals, but issues no warning when used
        there—meaning it may or may not become officially deprecated in later
        releases. If needed, you can detect a Python 3.3 or later with code
        like this, which I opted to not use for the sake of brevity and timer
        comparability:
if sys.version_info[0] >= 3 and sys.version_info[1] >= 3:
    timer = time.perf_counter     # or process_time
else:
    timer = time.clock if sys.platform[:3] == 'win' else time.time
Alternatively, the following code would also add portability and
        insulate you from future deprecations, though it depends on exception
        topics we haven’t studied in full yet, and its choices may also make
        cross-version speed comparisons invalid—timers may differ in
        resolution!
try:
    timer = time.perf_counter     # or process_time
except AttributeError:
    timer = time.clock if sys.platform[:3] == 'win' else time.time
If I were writing this book for Python 3.3+ readers only, I’d
        use the new and apparently improved calls here, and you should in your
        work too if they apply to you. The newer calls won’t work for users of
        any other Pythons, though, and that’s still the majority of the Python
        world today. It would be easier to pretend that the past doesn’t
        matter, but that would not only be evasive of reality, it might also
        be just plain rude.


Timing Script
Now, to time iteration tool speed (our original goal), run the following script—it
      uses the timer module we wrote to time the relative speeds of the list
      construction techniques we’ve studied:
# File timeseqs.py
"Test the relative speed of iteration tool alternatives."

import sys, timer                                # Import timer functions
reps = 10000
repslist = list(range(reps))                     # Hoist out, list in both 2.X/3.X

def forLoop():
    res = []
    for x in repslist:
        res.append(abs(x))
    return res

def listComp():
    return [abs(x) for x in repslist]

def mapCall():
    return list(map(abs, repslist))              # Use list() here in 3.X only!
  # return map(abs, repslist)

def genExpr():
    return list(abs(x) for x in repslist)        # list() required to force results

def genFunc():
    def gen():
        for x in repslist:
            yield abs(x)
    return list(gen())                           # list() required to force results

print(sys.version)
for test in (forLoop, listComp, mapCall, genExpr, genFunc):
    (bestof, (total, result)) = timer.bestoftotal(5, 1000, test)
    print ('%-9s: %.5f => [%s...%s]' %
           (test.__name__, bestof, result[0], result[-1]))
This script tests five alternative ways to build lists of results.
      As shown, its reported times reflect on the order of 10 million steps
      for each of the five test functions—each builds a list of 10,000 items
      1,000 times. This process is repeated 5 times to get the best-of time
      for each of the 5 test functions, yielding a whopping 250 million total
      steps for the script at large (impressive but reasonable on most
      machines these days).
Notice how we have to run the results of the generator expression
      and function through the built-in list call to force them to yield all of their
      values; if we did not, in both 2.X and 3.X we would just produce
      generators that never do any real work. In Python 3.X only we must do
      the same for the map result, since it
      is now an iterable object as well; for 2.X, the list around map must be removed manually to avoid charging
      an extra list construction overhead per test (though its impact seems
      negligible in most tests).
In a similar way, the inner loops’ range result is hoisted out to the top of the
      module to remove its construction cost from total time, and wrapped in a
      list call so that its traversal cost
      isn’t skewed by being a generator in 3.X only (much as we did in the
      timer module too). This may be overshadowed by the cost of the inner
      iterations loop, but it’s best to remove as many variables as we
      can.
Also notice how the code at the bottom steps through a tuple of
      five function objects and prints the __name__ of each: as we’ve seen, this is a
      built-in attribute that gives a function’s name.1

Timing Results
When the script of the prior section is run under Python 3.3, I get these results
      on my Windows 7 laptop—map is
      slightly faster than list comprehensions, both are quicker than for loops, and generator expressions and
      functions place in the middle (times here are total time in
      seconds):
C:\code> c:\python33\python timeseqs.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
forLoop  : 1.33290 => [0...9999]
listComp : 0.69658 => [0...9999]
mapCall  : 0.56483 => [0...9999]
genExpr  : 1.08457 => [0...9999]
genFunc  : 1.07623 => [0...9999]
If you study this code and its output long enough, you’ll notice
      that generator expressions run slower than list comprehensions today.
      Although wrapping a generator expression in a list call makes it
      functionally equivalent to a square-bracketed list
      comprehension, the internal implementations of the
      two expressions appear to differ (though we’re also effectively timing
      the list call for the generator
      test):
return [abs(x) for x in repslist]            # 0.69 seconds
return list(abs(x) for x in repslist)        # 1.08 seconds: differs internally
Though the exact cause would require deeper analysis (and possibly
      source code study), this seems to make sense given that the generator
      expression must do extra work to save and restore its state during value
      production; the list comprehension does not, and runs quicker by a small
      constant here and in later tests.
Interestingly, when I ran this on Windows Vista under Python 3.0
      for the fourth edition of this book, and on Windows XP with Python 2.5
      for the third, the results were relatively similar—list comprehensions
      were nearly twice as fast as equivalent for loop statements, and map was slightly quicker than list
      comprehensions when mapping a function such as the abs (absolute value) built-in this way. Python
      2.5’s absolute times were roughly four to five times slower than the
      current 3.3 output, but this likely reflects quicker laptops much more
      than any improvements in Python.
In fact, most of the Python 2.7 results for
      this script are slightly quicker than 3.3 on this same machine today—I
      removed the list call from the
      map test in the following to avoid
      creating the results list twice in that test, though it adds only a very
      small constant time if left in:
c:\code> c:\python27\python timeseqs.py
2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMD64)]
forLoop  : 1.24902 => [0...9999]
listComp : 0.66970 => [0...9999]
mapCall  : 0.57018 => [0...9999]
genExpr  : 0.90339 => [0...9999]
genFunc  : 0.90542 => [0...9999]
For comparison, following are the same tests’ speed results under
      the current PyPy, the optimized Python
      implementation discussed in Chapter 2,
      whose current 1.9 release implements the Python 2.7 language. PyPy is
      roughly 10X (an order of magnitude) quicker here; it will do even better
      when we revisit Python version comparisons later in this chapter using
      tools with different code structures (though it will lose on a few other
      tests as well):
c:\code> c:\PyPy\pypy-1.9\pypy.exe timeseqs.py
2.7.2 (341e1e3821ff, Jun 07 2012, 15:43:00)
[PyPy 1.9.0 with MSC v.1500 32 bit]
forLoop  : 0.10106 => [0...9999]
listComp : 0.05629 => [0...9999]
mapCall  : 0.10022 => [0...9999]
genExpr  : 0.17234 => [0...9999]
genFunc  : 0.17519 => [0...9999]
On PyPy alone, list comprehensions beat map in this test, but the fact that all of
      PyPy’s results are so much quicker today seems the larger point here. On
      CPython, map is still quickest so
      far.
The impact of function calls: map
Watch what happens, though, if we change this script to perform
        an inline operation on each iteration, such as addition, instead of
        calling a built-in function like abs (the omitted parts of the following file
        are the same as before, and I put list back in around map for testing on 3.3 only):
# File timeseqs2.py (differing parts)
...
def forLoop():
    res = []
    for x in repslist:
        res.append(x + 10)
    return res

def listComp():
    return [x + 10 for x in repslist]

def mapCall():
    return list(map((lambda x: x + 10), repslist))          # list() in 3.X only

def genExpr():
    return list(x + 10 for x in repslist)                   # list() in 2.X + 3.X

def genFunc():
    def gen():
        for x in repslist:
            yield x + 10
    return list(gen())                                      # list in 2.X + 3.X
...
Now the need to call a user-defined function for the map call makes it slower than the for loop statements, despite the fact that
        the looping statements version is larger in terms of code—or
        equivalently, the removal of function calls may make the others
        quicker (more on this in an upcoming note). On Python 3.3:
c:\code> c:\python33\python timeseqs2.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
forLoop  : 1.35136 => [10...10009]
listComp : 0.73730 => [10...10009]
mapCall  : 1.68588 => [10...10009]
genExpr  : 1.10963 => [10...10009]
genFunc  : 1.11074 => [10...10009]
These results have also been consistent in CPython. The prior
        edition’s Python 3.0 results on a slower machine were again relatively
        similar, though about twice as slow due to test machine differences
        (Python 2.5 results on an even slower machine were again four to five
        times as slow as the current results).
Because the interpreter optimizes so much internally,
        performance analysis of Python code like this is a very tricky affair.
        Without numbers, though, it’s virtually impossible to guess which
        method will perform the best—the best you can do is time your own
        code, on your computer, with your version of Python.
In this case, what we can say for certain is that on this
        Python, using a user-defined function in map calls seems to slow performance
        substantially (though + may also be
        slower than a trivial abs), and
        that list comprehensions run quickest in this case (though slower than
        map in some others). List
        comprehensions seem consistently twice as fast as for loops, but even this must be
        qualified—the list comprehension’s relative speed might be affected by
        its extra syntax (e.g., if
        filters), Python changes, and usage modes we did not time here.
As I’ve mentioned before, however, performance should not be
        your primary concern when writing Python code—the first thing you
        should do to optimize Python code is to not optimize Python code!
        Write for readability and simplicity first, then
        optimize later, if and only if needed. It could very well be that any
        of the five alternatives is quick enough for the data sets your
        program needs to process; if so, program clarity should be the chief
        goal.
Note
For deeper truth, change this code to apply a simple
          user-defined function in all five iteration techniques timed. For
          instance (from timeseqs2B.py of
          the book’s examples):
def F(x): return x
def listComp():
    return [F(x) for x in repslist]
def mapCall():
    return list(map(F, repslist))
The results, in file timeseqs-results.txt, are then relatively
          similar to using a built-in function like abs—at least in CPython, map is quickest. More generally, among the
          five iteration techniques, map is
          fastest today if all five call any function,
          built in or not, but slowest when the others do not.
That is, map appears to be
          slower simply because it requires function
          calls, and function calls are relatively slow in general.
          Since map can’t avoid calling
          functions, it can lose simply by association! The other iteration
          tools win because they can operate without function calls. We’ll
          prove this finding in tests run under the timeit module ahead.



Timing Module Alternatives
The timing module of the preceding section works, but it could be
      a bit more user-friendly. Most obviously, its functions require passing
      in a repetitions count as a first argument, and provide no default for
      it—a minor point, perhaps, but less than ideal in a general-purpose
      tool. We could also leverage the min
      technique we saw earlier to simplify the return value slightly and
      remove a minor overhead charge.
The following implements an alternative timer module that
      addresses these points, allowing the repeat count to be passed in as a
      keyword argument named _reps:
# File timer2.py (2.X and 3.X)
"""
total(spam, 1, 2, a=3, b=4, _reps=1000) calls and times spam(1, 2, a=3, b=4)
_reps times, and returns total time for all runs, with final result.

bestof(spam, 1, 2, a=3, b=4, _reps=5) runs best-of-N timer to attempt to
filter out system load variation, and returns best time among _reps tests.

bestoftotal(spam, 1, 2, a=3, b=4, _reps1=5, _reps=1000) runs best-of-totals
test, which takes the best among _reps1 runs of (the total of _reps runs);
"""

import time, sys
timer = time.clock if sys.platform[:3] == 'win' else time.time

def total(func, *pargs, **kargs):
    _reps = kargs.pop('_reps', 1000)    # Passed-in or default reps
    repslist = list(range(_reps))       # Hoist range out for 2.X lists
    start = timer()
    for i in repslist:
        ret = func(*pargs, **kargs)
    elapsed = timer() - start
    return (elapsed, ret)

def bestof(func, *pargs, **kargs):
    _reps = kargs.pop('_reps', 5)
    best = 2 ** 32
    for i in range(_reps):
        start = timer()
        ret = func(*pargs, **kargs)
        elapsed = timer() - start
        if elapsed < best: best = elapsed
    return (best, ret)

def bestoftotal(func, *pargs, **kargs):
    _reps1 = kargs.pop('_reps1', 5)
    return min(total(func, *pargs, **kargs) for i in range(_reps1))
This module’s docstring at the top of the file describes its
      intended usage. It uses dictionary pop operations to remove the _reps argument from arguments intended for the
      test function and provide it with a default (it has an unusual name to
      avoid clashing with real keyword arguments meant for the function being
      timed).
Notice how the best of totals here uses the min and generator scheme we saw earlier
      instead of nested calls, in part because this simplifies results and
      avoids a minor time overhead in the prior version (whose code fetches
      best of time after total time has been computed),
      but also because it must support two distinct
      repetition keywords with defaults—total and bestof can’t both use the same argument name.
      Add argument prints in the code if it would help to trace its
      operation.
To test with this new timer module, you can change the timing
      scripts as follows, or use the precoded version in the book’s examples
      file timeseqs_timer2.py; the
      results are essentially the same as before (this is primarily just an
      API change), so I won’t list them again here:
import sys, timer2
...
for test in (forLoop, listComp, mapCall, genExpr, genFunc):
    (total, result) = timer2.bestoftotal(test, _reps1=5, _reps=1000)

# Or:
#   (total, result) = timer2.bestoftotal(test)
#   (total, result) = timer2.bestof(test, _reps=5)
#   (total, result) = timer2.total(test, _reps=1000)
#   (bestof, (total, result)) = timer2.bestof(timer2.total, test, _reps=5)

    print ('%-9s: %.5f => [%s...%s]' %
           (test.__name__, total, result[0], result[-1]))
You can also run a few interactive tests as we did for the
      original version—the results are again essentially the same as before,
      but we pass in the repetition counts as keywords that provide defaults
      if omitted; in Python 3.3:
>>> from timer2 import total, bestof, bestoftotal
>>> total(pow, 2, 1000)[0]                                 # 2 ** 1000, 1K dflt reps
0.0029562534118596773
>>> total(pow, 2, 1000, _reps=1000)[0]                     # 2 ** 1000, 1K reps
0.0029733585316193967
>>> total(pow, 2, 1000, _reps=1000000)[0]                  # 2 ** 1000, 1M reps
1.2451676814889865

>>> bestof(pow, 2, 100000)[0]                              # 2 ** 100K, 5 dflt reps
0.0007550688578703557
>>> bestof(pow, 2, 1000000, _reps=30)[0]                   # 2 ** 1M, best of 30
0.004040229286800923

>>> bestoftotal(str.upper, 'spam', _reps1=30, _reps=1000)  # Best of 30, tot of 1K
(0.0004945823198454491, 'SPAM')
>>> bestof(total, str.upper, 'spam', _reps=30)             # Nested calls work too
(0.0005463863968202531, (0.0004994694969298052, 'SPAM'))
To see how keywords are supported now, define a function with more
      arguments and pass some by name:
>>> def spam(a, b, c, d): return a + b + c + d

>>> total(spam, 1, 2, c=3, d=4, _reps=1000)
(0.0009730369554290519, 10)
>>> bestof(spam, 1, 2, c=3, d=4, _reps=1000)
(9.774353202374186e-07, 10)
>>> bestoftotal(spam, 1, 2, c=3, d=4, _reps1=1000, _reps=1000)
(0.00037289161070930277, 10)
>>> bestoftotal(spam, *(1, 2), _reps1=1000, _reps=1000, **dict(c=3, d=4))
(0.00037289161070930277, 10)
Using keyword-only arguments in 3.X
One last point on this thread: we can also make use of Python 3.X
        keyword-only arguments here to simplify the timer
        module’s code. As we learned in Chapter 18,
        keyword-only arguments are ideal for configuration options such as our
        functions’ _reps argument. They
        must be coded after a * and before
        a ** in the function
        header, and in a function
        call they must be passed by keyword and appear
        before the ** if used. The
        following is a keyword-only-based alternative to the prior module.
        Though simpler, it compiles and runs under Python 3.X only, not
        2.X:
# File timer3.py (3.X only)
"""
Same usage as timer2.py, but uses 3.X keyword-only default arguments
instead of dict pops for simpler code.  No need to hoist range() out
of tests in 3.X: always a generator in 3.X, and this can't run on 2.X.
"""
import time, sys
timer = time.clock if sys.platform[:3] == 'win' else time.time

def total(func, *pargs, _reps=1000, **kargs):
    start = timer()
    for i in range(_reps):
        ret = func(*pargs, **kargs)
    elapsed = timer() - start
    return (elapsed, ret)

def bestof(func, *pargs, _reps=5, **kargs):
    best = 2 ** 32
    for i in range(_reps):
        start = timer()
        ret = func(*pargs, **kargs)
        elapsed = timer() - start
        if elapsed < best: best = elapsed
    return (best, ret)

def bestoftotal(func, *pargs, _reps1=5, **kargs):
    return min(total(func, *pargs, **kargs) for i in range(_reps1))
This version is used the same way as the prior version and
        produces identical results, so I won’t relist its outputs on the same
        tests here; experiment on your own as you wish. If you do, pay
        attention to the argument ordering rules in calls. A former bestof that ran total, for instance, called like
        this:
 (elapsed, ret) = total(func, *pargs, _reps=1, **kargs)
See Chapter 18 for more on keyword-only
        arguments in 3.X; they can simplify code for configurable tools like
        this one but are not backward compatible with 2.X Pythons. If you want
        to compare 2.X and 3.X speed, or support programmers using either
        Python line, the prior version is likely a better choice.
Also keep in mind that for trivial functions like some of those
        tested for the prior version, the costs of the timer’s code may
        sometimes be as significant as those of a simple timed function, so
        you should not take timer results too absolutely. The timer’s results
        can help you judge relative speeds of coding
        alternatives, though, and may be more meaningful for operations that
        run longer or are repeated often.


Other Suggestions
For more insight, try modifying the repetition counts used by
      these modules, or explore the alternative timeit
      module in Python’s standard library, which automates timing of code,
      supports command-line usage modes, and finesses some platform-specific
      issues—in fact, we’ll put it to work in the next section.
You might also want to look at the profile standard library module for a complete source code profiler tool.
      We’ll learn more about it in Chapter 36 in the context of development
      tools for large projects. In general, you should profile code to isolate
      bottlenecks before recoding and timing alternatives as we’ve done
      here.
You might try modifying or emulating the timing script to measure
      the speed of the 3.X and 2.7 set and dictionary
      comprehensions shown in the preceding chapter, and their
      for loop equivalents. Using them is
      less common in Python programs than building lists of results, so we’ll
      leave this task in the suggested exercise column (please, no
      wagering...); the next section will partly spoil the surprise.
Finally, keep the timing module we wrote here filed away for
      future reference—we’ll repurpose it to measure performance of
      alternative numeric square root operations in an
      exercise at the end of this chapter. If you’re
      interested in pursuing this topic further, we’ll also experiment with
      techniques for timing dictionary comprehensions versus for loops interactively in the exercises.


Timing Iterations and Pythons with timeit
The preceding section used homegrown timing functions to compare code speed. As
    mentioned there, the standard library also ships with a module named
    timeit that can be used in similar
    ways, but offers added flexibility and may better insulate clients from
    some platform differences.
As usual in Python, it’s important to understand fundamental
    principles like those illustrated in the prior section. Python’s
    “batteries included” approach means you’ll usually find precoded options
    as well, though you still need to know the ideas underlying them to use
    them properly. Indeed, this module is a prime example of this—it seems to
    have had a history of being misused by people who don’t yet understand the
    principles it embodies. Now that we’ve learned the basics, though, let’s
    move ahead to a tool that can automate much of our work.
Basic timeit Usage
Let’s start with this module’s fundamentals before leveraging them
      in larger scripts. With timeit, tests
      are specified by either callable objects or
      statement strings; the latter can hold multiple
      statements if they use ; separators
      or \n characters for line breaks, and
      spaces or tabs to indent statements in nested blocks (e.g., \n\t). Tests may also give setup actions, and
      can be launched from both command lines and
      API calls, and from both scripts and the
      interactive prompt.
Interactive usage and API calls
For example, the timeit
        module’s repeat call returns a list giving the total time taken to run a test
        a number of times, for each of
        repeat runs—the min of this list yields the best time among
        the runs, and helps filter out system load fluctuations that can
        otherwise skew timing results artificially high.
The following shows this call in action, timing a list
        comprehension on two versions of CPython and the
        optimized PyPy implementation of Python described
        in Chapter 2 (it currently supports
        Python 2.7 code). The results here give the best total time in seconds
        among 5 runs that each execute the code string 1,000 times; the code
        string itself constructs a 1,000-item list of integers each time
        through (see Appendix B for
        the Windows launcher used for variety in the first two of these
        commands):
c:\code> py −3
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit...
>>> import timeit
>>> min(timeit.repeat(stmt="[x ** 2 for x in range(1000)]", number=1000, repeat=5))
0.5062382371756811

c:\code> py −2
Python 2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMD64)] on win32
>>> import timeit
>>> min(timeit.repeat(stmt="[x ** 2 for x in range(1000)]", number=1000, repeat=5))
0.0708020004193198

c:\code> c:\pypy\pypy-1.9\pypy.exe
Python 2.7.2 (341e1e3821ff, Jun 07 2012, 15:43:00)
[PyPy 1.9.0 with MSC v.1500 32 bit] on win32
>>>> import timeit
>>>> min(timeit.repeat(stmt="[x ** 2 for x in range(1000)]", number=1000, repeat=5))
0.0059330329674303905
You’ll notice that PyPy checks in at 10X faster than CPython 2.7
        here, and a whopping 100X faster than CPython 3.3, despite the fact
        that PyPy is a potentially slower 32-bit build. This is a small
        artificial benchmark, of course, but seems arguably stunning
        nonetheless, and reflects a relative speed ranking that is generally
        supported by other tests run in this book (though as we’ll see,
        CPython still beats PyPy on some types of code).
This particular test measures the speed of both a list
        comprehension and integer math. The latter varies between lines:
        CPython 3.X has a single integer type, and CPython 2.X has both short
        and long integers. This may explain part of the
        size of the difference, but the results are valid
        nonetheless. Noninteger tests yield similar rankings (e.g., a
        floating-point test in the solutions to this part’s exercises), and
        integer math matters—the one and two order of magnitude (power of 10)
        speedups here will be realized by many real programs, because integers
        and iterations are ubiquitous in Python code.
These results also differ from the preceding section’s relative
        version speeds, where CPython 2.7 was slightly quicker than 3.3, and
        PyPy was 10X quicker overall, a figure affirmed by most other tests in
        this book too. Apart from the different type of code being timed here,
        the different coding structure inside timeit may have an effect too—for code
        strings like those tested here, timeit builds, compiles, and executes a
        function def statement string that
        embeds the test string, thereby avoiding a function call per inner
        loop. As we’ll see in the next section, though, this appears
        irrelevant from a relative-speed perspective.

Command-line usage
The timeit module has
        reasonable defaults and can be also run as a script, either by explicit
        filename or automatically located on the module search path with
        Python’s –m flag (see Appendix A). All the following run
        Python (a.k.a. CPython) 3.3. In this mode timeit reports the average time for a
        single –n
        loop, in either microseconds (labeled “usec”), milliseconds (“msec”),
        or seconds (“sec”); to compare results here to the total time values
        reported by other tests, multiply by the number of loops run—500 usec
        here * 1,000 loops is 500 msec, or half a second in total time:
c:\code> C:\python33\Lib\timeit.py -n 1000 "[x ** 2 for x in range(1000)]"
1000 loops, best of 3: 506 usec per loop

c:\code> python -m timeit -n 1000 "[x ** 2 for x in range(1000)]"
1000 loops, best of 3: 504 usec per loop

c:\code> py −3 -m timeit -n 1000 -r 5 "[x ** 2 for x in range(1000)]"
1000 loops, best of 5: 505 usec per loop
As an example, we can use command lines to verify that choice of
        timer call doesn’t impact cross-version speed comparisons run in this
        chapter so far—3.3 uses its new calls by default, and that might
        matter if timer precision differs widely. To prove that this is
        irrelevant, the following uses the -c flag to force timeit to use time.clock in all versions, an option that 3.3’s manuals call deprecated,
        but required to even the score with prior versions (I’m setting my
        system path to include PyPy here for command brevity):
c:\code> set PATH=%PATH%;C:\pypy\pypy-1.9

c:\code> py −3 -m timeit -n 1000 -r 5 -c "[x ** 2 for x in range(1000)]"
1000 loops, best of 5: 502 usec per loop
c:\code> py −2 -m timeit -n 1000 -r 5 -c "[x ** 2 for x in range(1000)]"
1000 loops, best of 5: 70.6 usec per loop
c:\code> pypy -m timeit -n 1000 -r 5 -c  "[x ** 2 for x in range(1000)]"
1000 loops, best of 5: 5.44 usec per loop

C:\code> py −3 -m timeit -n 1000 -r 5 -c "[abs(x) for x in range(10000)]"
1000 loops, best of 5: 815 usec per loop
C:\code> py −2 -m timeit -n 1000 -r 5 -c "[abs(x) for x in range(10000)]"
1000 loops, best of 5: 700 usec per loop
C:\code> pypy -m timeit -n 1000 -r 5 -c  "[abs(x) for x in range(10000)]"
1000 loops, best of 5: 61.7 usec per loop
These results are essentially the same as those for earlier
        tests in this chapter on the same types of code. When applying
        x ** 2, CPython 2.7 and PyPy are
        again 10X and 100X faster than CPython 3.3, respectively, showing that
        timer choice isn’t a factor. For the abs(x) we timed under the homegrown timer
        earlier (timeseqs.py), these two
        Pythons are faster than 3.3 by a small constant and 10X just as
        before, implying that timeit’s
        different code structure doesn’t impact relative comparisons—the type
        of code being tested fully determines the size of speed
        differences.
Subtle point: notice that the results of the last three of these
        tests, which mimic tests run for the homegrown timer earlier, are
        basically the same as before, but seem to incur a small net overhead
        for range usage differences—it was
        a prebuilt list formerly, but here is either a 3.X generator or a 2.X
        list built anew on each inner total loop. In other words, we’re not
        timing the exact same thing, but the relative speeds of the Pythons
        tested are the same.

Timing multiline statements
To time larger multiline sections of code in API call mode,
        use line breaks and tabs or spaces to satisfy Python’s syntax; code
        read from a source file already will. Because you pass Python string
        objects to a Python function in this mode, there are no shell
        considerations, though be careful to escape nested quotes if needed.
        The following, for instance, times Chapter 13 loop alternatives in Python 3.3; you
        can use the same pattern to time the file-line-reader alternatives in
        Chapter 14:
c:\code> py −3
>>> import timeit
>>> min(timeit.repeat(number=10000, repeat=3,
        stmt="L = [1, 2, 3, 4, 5]\nfor i in range(len(L)): L[i] += 1"))
0.01397292797131814

>>> min(timeit.repeat(number=10000, repeat=3,
        stmt="L = [1, 2, 3, 4, 5]\ni=0\nwhile i < len(L):\n\tL[i] += 1\n\ti += 1"))
0.015452276471516813

>>> min(timeit.repeat(number=10000, repeat=3,
        stmt="L = [1, 2, 3, 4, 5]\nM = [x + 1 for x in L]"))
0.009464995838568635
To run multiline statements like these in
        command-line mode, appease your shell by passing
        each statement line as a separate argument, with whitespace for
        indentation—timeit concatenates all
        the lines together with a newline character between them, and later
        reindents for its own statement nesting purposes. Leading spaces may
        work better for indentation than tabs in this mode, and be sure to
        quote the code arguments if required by your shell:
c:\code> py −3 -m timeit -n 1000 -r 3 "L = [1,2,3,4,5]" "i=0" "while i < len(L):"
 "    L[i] += 1" "    i += 1"
1000 loops, best of 3: 1.54 usec per loop

c:\code> py −3 -m timeit -n 1000 -r 3 "L = [1,2,3,4,5]" "M = [x + 1 for x in L]"
1000 loops, best of 3: 0.959 usec per loop

Other usage modes: Setup, totals, and objects
The timeit module also allows
        you to provide setup code that is
        run in the main statement’s scope, but whose time is not charged to
        the main statement’s total—potentially useful for initialization code
        you wish to exclude from total time, such as imports of required
        modules, test function definition, and test data creation. Because
        they’re run in the same scope, any names created by setup code are
        available to the main test statement; names defined in the interactive
        shell generally are not.
To specify setup code, use a –s in command-line mode (or many of these
        for multiline setups) and a setup
        argument string in API call mode. This can focus tests more sharply,
        as in the following, which splits list initialization off to a setup
        statement to time just iteration. As a rule of thumb, though, the more
        code you include in a test statement, the more applicable its results
        will generally be to realistic code:
c:\code> python -m timeit -n 1000 -r 3 "L = [1,2,3,4,5]" "M = [x + 1 for x in L]"
1000 loops, best of 3: 0.956 usec per loop

c:\code> python -m timeit -n 1000 -r 3 -s "L = [1,2,3,4,5]" "M = [x + 1 for x in L]"
1000 loops, best of 3: 0.775 usec per loop
Here’s a setup example in API call mode: I used the following
        type of code to time the sort-based option in Chapter 18’s minimum value example—ordered ranges sort
        much faster than random numbers, and are faster sorted than scanned
        linearly in the example’s code under 3.3 (adjacent strings are
        concatenated here):
>>> from timeit import repeat

>>> min(repeat(number=1000, repeat=3,
setup='from mins import min1, min2, min3\n'
      'vals=list(range(1000))',
stmt= 'min3(*vals)'))
0.0387865921275079

>>> min(repeat(number=1000, repeat=3,
setup='from mins import min1, min2, min3\n'
      'import random\nvals=[random.random() for i in range(1000)]',
stmt= 'min3(*vals)'))
0.275656482278373
With timeit, you can also ask
        for just total time, use the module’s class API, time callable objects
        instead of strings, accept automatic loop counts, and use class-based
        techniques and additional command-line switches and API argument
        options we don’t have space to show here—consult Python’s library
        manual for more details:
c:\code> py −3
>>> import timeit
>>> timeit.timeit(stmt='[x ** 2 for x in range(1000)]', number=1000)  # Total time
0.5238125259325834

>>> timeit.Timer(stmt='[x ** 2 for x in range(1000)]').timeit(1000)   # Class API
0.5282652329644009

>>> timeit.repeat(stmt='[x ** 2 for x in range(1000)]', number=1000, repeat=3)
[0.5299034147194845, 0.5082454007998365, 0.5095136232504416]

>>> def testcase():
        y = [x ** 2 for x in range(1000)]     # Callable objects or code strings

>>> min(timeit.repeat(stmt=testcase, number=1000, repeat=3))
0.5073828140463377


Benchmark Module and Script: timeit
Rather than go into more details on this module, let’s study a program that deploys it to time both
      coding alternatives and Python versions. The following file, pybench.py, is set up to time a set of
      statements coded in scripts that import and use it, under either the
      version running its code or all Python versions named in a list. It uses
      some application-level tools described ahead. Because it mostly applies
      ideas we’ve already learned and is amply documented, though, I’m going
      to list this as mostly self-study material, and an exercise in reading
      Python code.
"""
pybench.py: Test speed of one or more Pythons on a set of simple
code-string benchmarks.  A function, to allow stmts to vary.
This system itself runs on both 2.X and 3.X, and may spawn both.

Uses timeit to test either the Python running this script by API
calls, or a set of Pythons by reading spawned command-line outputs
(os.popen) with Python's -m flag to find timeit on module search path.

Replaces $listif3 with a list() around generators for 3.X and an
empty string for 2.X, so 3.X does same work as 2.X.  In command-line
mode only, must split multiline statements into one separate quoted
argument per line so all will be run (else might run/time first line
only), and replace all \t in indentation with 4 spaces for uniformity.

Caveats: command-line mode (only) may fail if test stmt embeds double
quotes, quoted stmt string is incompatible with shell in general, or
command line exceeds a length limit on platform's shell--use API call
mode or homegrown timer; does not yet support a setup statement: as is,
time of all statements in the test stmt are charged to the total time.
"""

import sys, os, timeit
defnum, defrep= 1000, 5   # May vary per stmt

def runner(stmts, pythons=None, tracecmd=False):
    """
    Main logic: run tests per input lists, caller handles usage modes.
    stmts:   [(number?, repeat?, stmt-string)], replaces $listif3 in stmt
    pythons: None=this python only, or [(ispy3?, python-executable-path)]
    """
    print(sys.version)
    for (number, repeat, stmt) in stmts:
        number = number or defnum
        repeat = repeat or defrep  # 0=default

        if not pythons:
            # Run stmt on this python: API call
            # No need to split lines or quote here
            ispy3 = sys.version[0] == '3'
            stmt  = stmt.replace('$listif3', 'list' if ispy3 else '')
            best  = min(timeit.repeat(stmt=stmt, number=number, repeat=repeat))
            print('%.4f  [%r]' % (best, stmt[:70]))

        else:
            # Run stmt on all pythons: command line
            # Split lines into quoted arguments
            print('-' * 80)
            print('[%r]' % stmt)
            for (ispy3, python) in pythons:
                stmt1 = stmt.replace('$listif3', 'list' if ispy3 else '')
                stmt1 = stmt1.replace('\t', ' ' * 4)
                lines = stmt1.split('\n')
                args  = ' '.join('"%s"' % line for line in lines)
                cmd = '%s -m timeit -n %s -r %s %s' % (python, number, repeat, args)
                print(python)
                if tracecmd: print(cmd)
                print('\t' + os.popen(cmd).read().rstrip())
This file is really only half the picture, though. Testing scripts
      use this module’s function, passing in concrete though variable lists of
      statements and Pythons to be tested, as appropriate for the usage mode
      desired. For example, the following script, pybench_cases.py, tests a handful of
      statements and Pythons, and allows command-line arguments to determine
      part of its operation: –a tests all
      listed Pythons instead of just one, and an added –t traces constructed command lines so you can
      see how multiline statements and indentation are handled per the
      command-line formats shown earlier (see both files’ docstrings for
      details):
"""
pybench_cases.py: Run pybench on a set of pythons and statements.

Select modes by editing this script or using command-line arguments (in
sys.argv): e.g., run a "C:\python27\python pybench_cases.py" to test just
one specific version on stmts, "pybench_cases.py -a" to test all pythons
listed, or a "py −3 pybench_cases.py -a -t" to trace command lines too.
"""

import pybench, sys

pythons = [                                                         # (ispy3?, path)
    (1, 'C:\python33\python'),
    (0, 'C:\python27\python'),
    (0, 'C:\pypy\pypy-1.9\pypy')
]

stmts = [                                                           # (num,rpt,stmt)
    (0, 0, "[x ** 2 for x in range(1000)]"),                        # Iterations
    (0, 0, "res=[]\nfor x in range(1000): res.append(x ** 2)"),     # \n=multistmt
    (0, 0, "$listif3(map(lambda x: x ** 2, range(1000)))"),         # \n\t=indent
    (0, 0, "list(x ** 2 for x in range(1000))"),                    # $=list or ''
    (0, 0, "s = 'spam' * 2500\nx = [s[i] for i in range(10000)]"),  # String ops
    (0, 0, "s = '?'\nfor i in range(10000): s += '?'"),
]

tracecmd = '-t' in sys.argv                           # -t: trace command lines?
pythons  = pythons if '-a' in sys.argv else None      # -a: all in list, else one?
pybench.runner(stmts, pythons, tracecmd)

Benchmark Script Results
Here is this script’s output when run to test a specific
      version (the Python running the script)—this mode uses direct
      API calls, not command lines, with total time listed in the left column,
      and the statement tested on the right. I’m again using the 3.3 Windows
      launcher in the first two of these tests to time
      CPython 3.3 and 2.7, and am running release 1.9 of
      the PyPy implementation in the third:
c:\code> py −3 pybench_cases.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
0.5015  ['[x ** 2 for x in range(1000)]']
0.5655  ['res=[]\nfor x in range(1000): res.append(x ** 2)']
0.6044  ['list(map(lambda x: x ** 2, range(1000)))']
0.5425  ['list(x ** 2 for x in range(1000))']
0.8746  ["s = 'spam' * 2500\nx = [s[i] for i in range(10000)]"]
2.8060  ["s = '?'\nfor i in range(10000): s += '?'"]

c:\code> py −2 pybench_cases.py
2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMD64)]
0.0696  ['[x ** 2 for x in range(1000)]']
0.1285  ['res=[]\nfor x in range(1000): res.append(x ** 2)']
0.1636  ['(map(lambda x: x ** 2, range(1000)))']
0.0952  ['list(x ** 2 for x in range(1000))']
0.6143  ["s = 'spam' * 2500\nx = [s[i] for i in range(10000)]"]
2.0657  ["s = '?'\nfor i in range(10000): s += '?'"]

c:\code> c:\pypy\pypy-1.9\pypy pybench_cases.py
2.7.2 (341e1e3821ff, Jun 07 2012, 15:43:00)
[PyPy 1.9.0 with MSC v.1500 32 bit]
0.0059  ['[x ** 2 for x in range(1000)]']
0.0102  ['res=[]\nfor x in range(1000): res.append(x ** 2)']
0.0099  ['(map(lambda x: x ** 2, range(1000)))']
0.0156  ['list(x ** 2 for x in range(1000))']
0.1298  ["s = 'spam' * 2500\nx = [s[i] for i in range(10000)]"]
5.5242  ["s = '?'\nfor i in range(10000): s += '?'"]
The following shows this script’s output when run to test
      multiple Python versions for each statement string.
      In this mode the script itself is run by Python 3.3, but it launches
      shell command lines that start other Pythons to run the
      timeit module on the test statement
      strings. This mode must split, format, and quote multiline statements
      for use in command lines according to timeit expectations and shell
      requirements.
This mode also relies on the -m
      Python command-line flag to locate timeit on the module search path and run it as
      a script, and the os.popen and
      sys.argv standard library tools to run a shell command and inspect
      command-line arguments, respectively. See Python manuals and other
      sources for more on these calls; os.popen is also mentioned briefly in the
      files coverage of Chapter 9, and demonstrated
      in the loops coverage in Chapter 13. Run
      with a –t flag to watch the command
      lines run:
c:\code> py −3 pybench_cases.py -a
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
--------------------------------------------------------------------------------
['[x ** 2 for x in range(1000)]']
C:\python33\python
        1000 loops, best of 5: 499 usec per loop
C:\python27\python
        1000 loops, best of 5: 71.4 usec per loop
C:\pypy\pypy-1.9\pypy
        1000 loops, best of 5: 5.71 usec per loop
--------------------------------------------------------------------------------
['res=[]\nfor x in range(1000): res.append(x ** 2)']
C:\python33\python
        1000 loops, best of 5: 562 usec per loop
C:\python27\python
        1000 loops, best of 5: 130 usec per loop
C:\pypy\pypy-1.9\pypy
        1000 loops, best of 5: 9.81 usec per loop
--------------------------------------------------------------------------------
['$listif3(map(lambda x: x ** 2, range(1000)))']
C:\python33\python
        1000 loops, best of 5: 599 usec per loop
C:\python27\python
        1000 loops, best of 5: 161 usec per loop
C:\pypy\pypy-1.9\pypy
        1000 loops, best of 5: 9.45 usec per loop
--------------------------------------------------------------------------------
['list(x ** 2 for x in range(1000))']
C:\python33\python
        1000 loops, best of 5: 540 usec per loop
C:\python27\python
        1000 loops, best of 5: 92.3 usec per loop
C:\pypy\pypy-1.9\pypy
        1000 loops, best of 5: 15.1 usec per loop
--------------------------------------------------------------------------------
["s = 'spam' * 2500\nx = [s[i] for i in range(10000)]"]
C:\python33\python
        1000 loops, best of 5: 873 usec per loop
C:\python27\python
        1000 loops, best of 5: 614 usec per loop
C:\pypy\pypy-1.9\pypy
        1000 loops, best of 5: 118 usec per loop
--------------------------------------------------------------------------------
["s = '?'\nfor i in range(10000): s += '?'"]
C:\python33\python
        1000 loops, best of 5: 2.81 msec per loop
C:\python27\python
        1000 loops, best of 5: 1.94 msec per loop
C:\pypy\pypy-1.9\pypy
        1000 loops, best of 5: 5.68 msec per loop
As you can see, in most of these tests, CPython 2.7 is still
      quicker than CPython 3.3, and PyPy is noticeably faster than both of
      them—except on the last test where PyPy is twice as slow as CPython,
      presumably due to memory management differences. On the other hand,
      timing results are often relative at best. In addition to other general
      timing caveats mentioned in this chapter:
	timeit may skew results in
          ways beyond our scope to explore here (e.g., garbage
          collection).

	There is a baseline overhead, which differs per Python
          version, that is ignored here (but appears trivial).

	This script runs very small statements that may or may not
          reflect real-world code (but are still valid).

	Results may occasionally vary in ways that seem random (using
          process time may help here).

	All results here are highly prone to change over time (in each
          new Python release, in fact!).


In other words, you should draw your own conclusions from these
      numbers, and run these tests on your Pythons and machines for results
      more relevant to your needs. To time the baseline overhead of each
      Python, run timeit with no statement
      argument, or equivalently, with a pass
      statement.

More Fun with Benchmarks
For more insight, try running the script on other Python versions and other
      statement test strings. The file pybench_cases2.py in this book’s examples
      distribution adds more tests to see how CPython 3.3 compares to 3.2, how
      PyPy’s 2.0 beta stacks up against its current release, and how
      additional use cases fare.
A win for map and a rare loss for PyPy
For example, the following tests in pybench_cases2.py measure the impact of
        charging other iteration operations with a function call, which
        improves map’s chances of winning
        the day per this chapter’s earlier note—map usually loses by its association with
        function calls in general:
# pybench_cases2.py

pythons += [
    (1, 'C:\python32\python'),
    (0, 'C:\pypy\pypy-2.0-beta1\pypy')]

stmts += [
# Use function calls: map wins
    (0, 0, "[ord(x) for x in 'spam' * 2500]"),
    (0, 0, "res=[]\nfor x in 'spam' * 2500: res.append(ord(x))"),
    (0, 0, "$listif3(map(ord, 'spam' * 2500))"),
    (0, 0, "list(ord(x) for x in 'spam' * 2500)"),
# Set and dicts
    (0, 0, "{x ** 2 for x in range(1000)}"),
    (0, 0, "s=set()\nfor x in range(1000): s.add(x ** 2)"),
    (0, 0, "{x: x ** 2 for x in range(1000)}"),
    (0, 0, "d={}\nfor x in range(1000): d[x] = x ** 2"),
# Pathological: 300k digits
    (1, 1, "len(str(2**1000000))")]  # Pypy loses on this today
Here is the script’s results on these statement tests on CPython
        3.X, showing how map is quickest
        when function calls level the playing field (it lost earlier when the
        other tests ran an inline x **
        2):
c:\code> py −3 pybench_cases2.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
0.7237  ["[ord(x) for x in 'spam' * 2500]"]
1.3471  ["res=[]\nfor x in 'spam' * 2500: res.append(ord(x))"]
0.6160  ["list(map(ord, 'spam' * 2500))"]
1.1244  ["list(ord(x) for x in 'spam' * 2500)"]
0.5446  ['{x ** 2 for x in range(1000)}']
0.6053  ['s=set()\nfor x in range(1000): s.add(x ** 2)']
0.5278  ['{x: x ** 2 for x in range(1000)}']
0.5414  ['d={}\nfor x in range(1000): d[x] = x ** 2']
1.8933  ['len(str(2**1000000))']
As before, on these tests today 2.X clocks in faster than 3.X
        and PyPy is faster still on all of these tests but the last—which it
        loses by a full order of magnitude (10X), though it wins all the other
        tests here by the same degree. However, if you run file tests precoded
        in pybench_cases2.py you’ll see
        that PyPy also loses to CPython when reading files line by line, as
        for the following test tuple on the stmts list:
    (0, 0, "f=open('C:/Python33/Lib/pdb.py')\nfor line in f: x=line\nf.close()"),
This test opens and reads a 60K, 1,675-line text file line by
        line using file iterators. Its input loop presumably dominates overall
        test time. On this test, CPython 2.7 is twice as fast as 3.3, but PyPy
        is again an order of magnitude slower than CPython in general. You can
        find this case in the pybench_cases2 results files, or verify
        interactively or by command line (this is just what pybench does internally):
c:\code> py −3 -m timeit -n 1000 -r 5 "f=open('C:/Python33/Lib/pdb.py')"
 "for line in f: x=line" "f.close()"

>>> import timeit
>>> min(timeit.repeat(number=1000, repeat=5,
    stmt="f=open('C:/Python33/Lib/pdb.py')\nfor line in f: x=line\nf.close()"))
For another example that measures both list comprehensions and
        PyPy’s current file speed, see the file listcomp-speed.txt in the book examples
        package; it uses direct PyPy command lines to run code from Chapter 14 with similar results:
        PyPy’s line input is slower today by roughly a factor of 10.
I’ll omit other Pythons’ output here both for space and because
        these findings could very well change by the time you read these
        words. As usual, different types of code can exhibit different types
        of performance. While PyPy may optimize much algorithmic code, it may
        or may not optimize yours. You can find additional results in the
        book’s examples package, but you may be better served by running these
        tests on your own to verify these findings today or observe their
        possibly different results in the future.

The impact of function calls revisited
As suggested earlier, map
        also wins for added user-defined functions—the
        following tests prove the earlier note’s claim that map wins the race in CPython if
        any function must be applied by its
        alternatives:
stmts = [
    (0, 0, "def f(x): return x\n[f(x) for x in 'spam' * 2500]"),
    (0, 0, "def f(x): return x\nres=[]\nfor x in 'spam' * 2500: res.append(f(x))"),
    (0, 0, "def f(x): return x\n$listif3(map(f, 'spam' * 2500))"),
    (0, 0, "def f(x): return x\nlist(f(x) for x in 'spam' * 2500)")]

c:\code> py −3 pybench_cases2.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
1.5400  ["def f(x): return x\n[f(x) for x in 'spam' * 2500]"]
2.0506  ["def f(x): return x\nres=[]\nfor x in 'spam' * 2500: res.append(f(x))"]
1.2489  ["def f(x): return x\nlist(map(f, 'spam' * 2500))"]
1.6526  ["def f(x): return x\nlist(f(x) for x in 'spam' * 2500)"]
Compare this with the preceding section’s ord tests; though user-defined functions may
        be slower than built-ins, the larger speed hit today seems to be
        functions in general, whether they are built-in or not. Notice that
        the total time here includes the cost of making a helper function,
        though only one for every 10,000 inner loop repetitions—a negligible
        factor per both common sense and additional tests run.

Comparing techniques: Homegrown versus batteries
For perspective, let’s see how this section’s timeit-based results compare to the
        homegrown-based timer results of the prior section, by running the
        file timeseqs3.py in this book’s
        examples package—it uses the homegrown timer but performs the same
        x ** 2 operation and uses the same
        repetition counts as pybench_cases.py:
c:\code> py −3 timeseqs3.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
forLoop  : 0.55022 => [0...998001]
listComp : 0.48787 => [0...998001]
mapCall  : 0.59499 => [0...998001]
genExpr  : 0.52773 => [0...998001]
genFunc  : 0.52603 => [0...998001]

c:\code> py −3 pybench_cases.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
0.5015  ['[x ** 2 for x in range(1000)]']
0.5657  ['res=[]\nfor x in range(1000): res.append(x ** 2)']
0.6025  ['list(map(lambda x: x ** 2, range(1000)))']
0.5404  ['list(x ** 2 for x in range(1000))']
0.8711  ["s = 'spam' * 2500\nx = [s[i] for i in range(10000)]"]
2.8009  ["s = '?'\nfor i in range(10000): s += '?'"]
The homegrown timer results are very similar to the pybench-based results of this section that
        use timeit, though it’s not
        entirely apples-to-apples—the homegrown timer-based timeseqs3.py incurs a function call per its
        middle totals loop and a slight overhead in best of logic of the timer
        itself, but also uses a prebuilt list instead of a 3.X range generator in its inner loop, which
        seems to make it slightly net faster on comparable tests (and I’d call
        this example a “sanity check,” but I’m not sure the term applies in
        benchmarking!).

Room for improvement: Setup
Like most software, this section’s program is open-ended and could be expanded arbitrarily. As one
        example, the files pybench2.py
        and pybench2_cases.py in the
        book’s examples package add support for timeit’s setup
        statement option described earlier, in both API call and command-line
        modes.
This feature was omitted initially for brevity, and frankly,
        because my tests didn’t seem to require it—timing more code gives a
        more complete picture when comparing Pythons, and setup actions cost
        the same when timing alternatives on a single Python. Even so, it’s
        sometimes useful to provide setup code that is run once in the tested
        code’s scope, but whose time is not charged to the statement’s total—a
        module import, object initialization, or helper function definition,
        for example.
I won’t list these two files in whole, but here are their
        important varying bits as an example of software evolution at work—as
        for the test statement, the setup code statement is passed as is in
        API call mode, but is split and space-indented in command-line mode
        and passed with one -s argument per
        line (“$listif3” isn’t used because setup code is not timed):
# pybench2.py
...
def runner(stmts, pythons=None, tracecmd=False):
    for (number, repeat, setup, stmt) in stmts:
        if not pythons:
            ...
            best = min(timeit.repeat(
                              setup=setup, stmt=stmt, number=number, repeat=repeat))
        else:
            setup = setup.replace('\t', ' ' * 4)
            setup = ' '.join('-s "%s"' % line for line in setup.split('\n'))
            ...
            for (ispy3, python) in pythons:
                ...
                cmd = '%s -m timeit -n %s -r %s %s %s' %
                              (python, number, repeat, setup, args)

# pybench2_cases.py
import pybench2, sys
...
stmts = [                                                     # (num,rpt,setup,stmt)
    (0, 0, "", "[x ** 2 for x in range(1000)]"),
    (0, 0, "", "res=[]\nfor x in range(1000): res.append(x ** 2)"),

    (0, 0, "def f(x):\n\treturn x",
           "[f(x) for x in 'spam' * 2500]"),
    (0, 0, "def f(x):\n\treturn x",
           "res=[]\nfor x in 'spam' * 2500:\n\tres.append(f(x))"),

    (0, 0, "L = [1, 2, 3, 4, 5]", "for i in range(len(L)): L[i] += 1"),
    (0, 0, "L = [1, 2, 3, 4, 5]", "i=0\nwhile i < len(L):\n\tL[i] += 1\n\ti += 1")]
...
pybench2.runner(stmts, pythons, tracecmd)
Run this script with the –a
        and –t command-line flags to see
        how command lines are constructed for setup code. For instance, the
        following test specification tuple generates the command line that
        follows it for 3.3—not nice to look at, perhaps, but sufficient to
        pass lines from Windows to timeit,
        to be concatenated with line breaks between and inserted into a
        generated timing function with appropriate reindentation:
    (0, 0, "def f(x):\n\treturn x",
           "res=[]\nfor x in 'spam' * 2500:\n\tres.append(f(x))")

C:\python33\python -m timeit -n 1000 -r 5 -s "def f(x):" -s "    return x" "res=[]"
 "for x in 'spam' * 2500:" "    res.append(f(x))"
In API call mode, code strings are passed unchanged, because
        there’s no need to placate a shell, and embedded tabs and end-of-line
        characters suffice. Experiment on your own to uncover more about
        Python code alternatives’ speed. You may eventually run into shell
        limitations for larger sections of code in command-line mode, but both
        our homegrown timer and pybench’s
        timeit-based API call mode support
        more arbitrary code. Benchmarks can be great sport, but we’ll have to
        leave future improvements as suggested exercises.



Other Benchmarking Topics: pystones
This chapter has focused on code timing fundamentals that you can use on your
    own code, that apply to Python benchmarking in general, and that served as
    a common use case for developing larger examples for this book.
    Benchmarking Python is a broader and richer domain than so far implied,
    though. If you’re interested in pursuing this topic further, search the
    Web for links. Among the topics you’ll find:
	pystone.py—a program designed for measuring
        Python speed across a range of code that ships with Python in its
        Lib\test directory

	http://speed.python.org—a project site for coordinating
        work on common Python benchmarks

	http://speed.pypy.org—the PyPy benchmarking site that
        the preceding bullet is partially emulating


The pystone test, for example, is based on a C
    language benchmark program that was translated to Python by Python
    original creator Guido van Rossum. It provides another way to measure the
    relative speeds of Python implementations, and seems to generally support
    our findings here:
c:\Python33\Lib\test> cd C:\python33\lib\test
c:\Python33\Lib\test> py −3 pystone.py
Pystone(1.1) time for 50000 passes = 0.685303
This machine benchmarks at 72960.4 pystones/second

c:\Python33\Lib\test> cd c:\python27\lib\test
c:\Python27\Lib\test> py −2 pystone.py
Pystone(1.1) time for 50000 passes = 0.463547
This machine benchmarks at 107864 pystones/second

c:\Python27\Lib\test> c:\pypy\pypy-1.9\pypy pystone.py
Pystone(1.1) time for 50000 passes = 0.099975
This machine benchmarks at 500125 pystones/second
Since it’s time to wrap up this chapter, this will have to suffice
    as independent confirmation of our tests’ results. Analyzing the meaning
    of pystone’s results is left as suggested exercise; its code is not
    identical across 3.X and 2.X, but appears to differ today only in terms of
    print operations and an initialization of a global. Also keep in mind that
    benchmarking is just one of many aspects of Python code analysis; for
    pointers on options in related domains (e.g., testing), see Chapter 36’s review of Python development
    tools.

Function Gotchas
Now that we’ve reached the end of the function story, let’s review some
    common pitfalls. Functions have some jagged edges that you might not
    expect. They’re all relatively obscure, and a few have started to fall
    away from the language completely in recent releases, but most have been
    known to trip up new users.
Local Names Are Detected Statically
As you know, Python classifies names assigned in a function as
      locals by default; they live in the function’s
      scope and exist only while the function is running. What you may not
      realize is that Python detects locals statically, when it compiles the
      def’s code, rather than by noticing
      assignments as they happen at runtime. This leads to one of the most
      common oddities posted on the Python newsgroup by beginners.
Normally, a name that isn’t assigned in a function is looked up in
      the enclosing module:
>>> X = 99

>>> def selector():       # X used but not assigned
        print(X)          # X found in global scope

>>> selector()
99
Here, the X in the function
      resolves to the X in the module. But
      watch what happens if you add an assignment to X after the reference:
>>> def selector():
        print(X)          # Does not yet exist!
        X = 88            # X classified as a local name (everywhere)
                          # Can also happen for "import X", "def X"...
>>> selector()
UnboundLocalError: local variable 'X' referenced before assignment
You get the name usage error shown here, but the reason is subtle.
      Python reads and compiles this code when it’s typed interactively or
      imported from a module. While compiling, Python sees the assignment to
      X and decides that X will be a local name everywhere in the
      function. But when the function is actually run, because the assignment
      hasn’t yet happened when the print
      executes, Python says you’re using an undefined name. According to its
      name rules, it should say this; the local X is used before being assigned. In fact, any
      assignment in a function body makes a name local. Imports, =, nested defs, nested classes, and so on are all
      susceptible to this behavior.
The problem occurs because assigned names are treated as locals
      everywhere in a function, not just after the statements where they’re
      assigned. Really, the previous example is ambiguous: was the intention
      to print the global X and create a
      local X, or is this a real
      programming error? Because Python treats X as a local everywhere, it’s seen as an
      error; if you mean to print the global X, you need to declare it in a global statement:
>>> def selector():
        global X                # Force X to be global (everywhere)
        print(X)
        X = 88

>>> selector()
99
Remember, though, that this means the assignment also changes the
      global X, not a local X. Within a function, you can’t use both local
      and global versions of the same simple name. If you really meant to
      print the global and then set a local of the same name, you’d need to
      import the enclosing module and use module attribute notation to get to
      the global version:
>>> X = 99
>>> def selector():
        import __main__         # Import enclosing module
        print(__main__.X)       # Qualify to get to global version of name
        X = 88                  # Unqualified X classified as local
        print(X)                # Prints local version of name

>>> selector()
99
88
Qualification (the .X part)
      fetches a value from a namespace object. The interactive namespace is a
      module called __main__, so __main__.X reaches the global version of
      X. If that isn’t clear, check out
      Chapter 17.
In recent versions Python has improved on this story somewhat by
      issuing for this case the more specific “unbound local” error message
      shown in the example listing (it used to simply raise a generic name
      error); this gotcha is still present in general, though.

Defaults and Mutable Objects
As noted briefly in Chapter 17 and Chapter 18, mutable values for default arguments can retain state
      between calls, though this is often unexpected. In general, default
      argument values are evaluated and saved once when a def statement is run, not each time the
      resulting function is later called. Internally, Python saves one object
      per default argument attached to the function itself.
That’s usually what you want—because defaults are evaluated at
      def time, it lets you save values
      from the enclosing scope, if needed (functions defined within loops by
      factories may even depend on this behavior—see ahead). But because a
      default retains an object between calls, you have to be careful about
      changing mutable defaults. For instance, the following function uses an
      empty list as a default value, and then changes it in place each time
      the function is called:
>>> def saver(x=[]):               # Saves away a list object
        x.append(1)                # Changes same object each time!
        print(x)

>>> saver([2])                     # Default not used
[2, 1]
>>> saver()                        # Default used
[1]
>>> saver()                        # Grows on each call!
[1, 1]
>>> saver()
[1, 1, 1]
Some see this behavior as a feature—because mutable default
      arguments retain their state between function calls, they can serve some
      of the same roles as static local function
      variables in the C language. In a sense, they work much like global
      variables, but their names are local to the functions and so will not
      clash with names elsewhere in a program.
To other observers, though, this seems like a gotcha, especially
      the first time they run into it. There are better ways to retain state
      between calls in Python (e.g., using the nested scope closures we met in
      this part and the classes we will study in Part VI).
Moreover, mutable defaults are tricky to remember (and to
      understand at all). They depend upon the timing of default object
      construction. In the prior example, there is just one list object for
      the default value—the one created when the def is executed. You don’t get a new list
      every time the function is called, so the list grows with each new
      append; it is not reset to empty on each call.
If that’s not the behavior you want, simply make a copy of the
      default at the start of the function body, or move the default value
      expression into the function body. As long as the value resides in code
      that’s actually executed each time the function runs, you’ll get a new
      object each time through:
>>> def saver(x=None):
        if x is None:             # No argument passed?
            x = []                # Run code to make a new list each time
        x.append(1)               # Changes new list object
        print(x)

>>> saver([2])
[2, 1]
>>> saver()                       # Doesn't grow here
[1]
>>> saver()
[1]
By the way, the if statement in
      this example could almost be replaced by the
      assignment x = x or [], which takes
      advantage of the fact that Python’s or returns one of its operand objects: if no
      argument was passed, x would default
      to None, so the or would return the new empty list on the
      right.
However, this isn’t exactly the same. If an empty list were passed
      in, the or expression would cause the
      function to extend and return a newly created list, rather than
      extending and returning the passed-in list like the if version. (The expression becomes [] or [], which evaluates to the new empty
      list on the right; see the section “Truth Tests” if you don’t recall
      why.) Real program requirements may call for either behavior.
Today, another way to achieve the value retention effect of
      mutable defaults in a possibly less confusing way is to use the
      function attributes we discussed in Chapter 19:
>>> def saver():
        saver.x.append(1)
        print(saver.x)

>>> saver.x = []
>>> saver()
[1]
>>> saver()
[1, 1]
>>> saver()
[1, 1, 1]
The function name is global to the function itself, but it need
      not be declared because it isn’t changed directly within the function.
      This isn’t used in exactly the same way, but when coded like this, the
      attachment of an object to the function is much more explicit (and
      arguably less magical).

Functions Without returns
In Python functions, return
      (and yield) statements are optional. When a function doesn’t return a value
      explicitly, the function exits when control falls off the end of the
      function body. Technically, all functions return a value; if you don’t
      provide a return statement, your
      function returns the None object
      automatically:
>>> def proc(x):
        print(x)                 # No return is a None return

>>> x = proc('testing 123...')
testing 123...
>>> print(x)
None
Functions such as this without a return are Python’s equivalent of what are
      called “procedures” in some languages. They’re usually invoked as
      statements, and the None results are
      ignored, as they do their business without computing a useful
      result.
This is worth knowing, because Python won’t tell you if you try to
      use the result of a function that doesn’t return one. As we noted in
      Chapter 11, for
      instance, assigning the result of a list append method won’t raise an error, but you’ll
      get back None, not the modified
      list:
>>> list = [1, 2, 3]
>>> list = list.append(4)        # append is a "procedure"
>>> print(list)                  # append changes list in place
None
Chapter 15’s section “Common Coding Gotchas” discusses this more broadly. In
      general, any functions that do their business as a side effect are
      usually designed to be run as statements, not expressions.

Miscellaneous Function Gotchas
Here are two additional function-related gotchas—mostly reviews,
      but common enough to reiterate.
Enclosing scopes and loop variables: Factory functions
We described this gotcha in Chapter 17’s discussion of
        enclosing function scopes, but as a reminder: when coding factory
        functions (a.k.a. closures), be careful about relying on enclosing
        function scope lookup for variables that are changed by enclosing
        loops—when a generated function is later called, all such references
        will remember the value of the last loop
        iteration in the enclosing function’s scope. In this case, you must
        use defaults to save loop variable values instead of relying on
        automatic lookup in enclosing scopes. See “Loop variables may require defaults, not scopes” in Chapter 17 for more details on this topic.

Hiding built-ins by assignment: Shadowing
Also in Chapter 17, we saw how it’s possible to reassign built-in names in a closer
        local or global scope; the reassignment effectively hides and replaces
        that built-in’s name for the remainder of the scope where the
        assignment occurs. This means you won’t be able to use the original
        built-in value for the name. As long as you don’t need the built-in
        value of the name you’re assigning, this isn’t an issue—many names are
        built in, and they may be freely reused. However, if you reassign a
        built-in name your code relies on, you may have problems. So either
        don’t do that, or use tools like PyChecker that
        can warn you if you do. The good news is that the
        built-ins you commonly use will soon become second nature, and
        Python’s error trapping will alert you early in testing if your
        built-in name is not what you think it is.



Chapter Summary
This chapter rounded out our look at functions and built-in
    iteration tools with a larger case study that measured the performance of
    iteration alternatives and Pythons, and closed with a review of common
    function-related mistakes to help you avoid pitfalls. The iteration story
    has one last sequel in Part VI, where we’ll
    learn how to code user-defined iterable objects that generate values with
    classes and __iter__, in Chapter 30’s operator overloading
    coverage.
This concludes the functions part of this book. In the next part, we
    will expand on what we already know about
    modules—files of tools that form the topmost
    organizational unit in Python, and the structure in which our functions
    always live. After that, we will explore classes, tools that are largely
    packages of functions with special first arguments. As we’ll see,
    user-defined classes can implement objects that tap into the iteration
    protocol, just like the generators and iterables we met here. In fact,
    everything we have learned in this part of the book will apply when
    functions pop up later in the context of class methods.
Before moving on to modules, though, be sure to work through this
    chapter’s quiz and the exercises for this part of the book, to practice
    what we’ve learned about functions here.

Test Your Knowledge: Quiz
	What conclusions can you draw from this chapter about the
        relative speed of Python iteration tools?

	What conclusions can you draw from this chapter about the
        relative speed of the Pythons timed?



Test Your Knowledge: Answers
	In general, list comprehensions are usually the quickest of the
        bunch; map beats list
        comprehensions in Python only when all tools must call functions;
        for loops tend to be slower than
        comprehensions; and generator functions and expressions are slower
        than comprehensions by a constant factor. Under PyPy, some of these
        findings differ; map often turns in
        a different relative performance, for example, and list comprehensions
        seem always quickest, perhaps due to function-level
        optimizations.
At least that’s the case today on the
        Python versions tested, on the test machine used, and for the type of
        code timed—these results may vary if any of these three variables
        differ. Use the homegrown timer or
        standard library timeit to test
        your use cases for more relevant results. Also keep in mind that
        iteration is just one component of a program’s time: more code gives a
        more complete picture.

	In general, PyPy 1.9 (implementing Python 2.7) is typically
        faster than CPython 2.7, and CPython 2.7 is often faster than CPython
        3.3. In most cases timed, PyPy is some 10X faster than CPython, and
        CPython 2.7 is often a small constant faster than CPython 3.3. In
        cases that use integer math, CPython 2.7 can be 10X faster than
        CPython 3.3, and PyPy can be 100X faster than 3.3. In other cases
        (e.g., string operations and file iterators), PyPy can be slower than
        CPython by 10X, though timeit and
        memory management differences may influence some results. The
        pystone benchmark confirms these relative
        rankings, though the sizes of the differences it reports differ due to
        the code timed.
At least that’s the case today on the
        Python versions tested, on the test machine used, and for the type of
        code timed—these results may vary if any of these three variables
        differ. Use the homegrown timer or
        standard library timeit to test
        your use cases for more relevant results. This is especially true when
        timing Python implementations, which may be arbitrarily optimized in
        each new release.



Test Your Knowledge: Part IV Exercises
In these exercises, you’re going to start coding more sophisticated programs. Be
    sure to check the solutions in “Part IV, Functions and Generators” in Appendix D, and be sure to start
    writing your code in module files. You won’t want to retype these
    exercises if you make a mistake.
	The basics. At the Python interactive
        prompt, write a function that prints its single argument to the screen
        and call it interactively, passing a variety of object types: string,
        integer, list, dictionary. Then, try calling it without passing any
        argument. What happens? What happens when you pass two
        arguments?

	Arguments. Write a function called adder in a Python module file. The function
        should accept two arguments and return the sum (or concatenation) of
        the two. Then, add code at the bottom of the file to call the adder function with a variety of object
        types (two strings, two lists, two floating points), and run this file
        as a script from the system command line. Do you have to print the
        call statement results to see results on your screen?

	varargs. Generalize the adder function you wrote in the last
        exercise to compute the sum of an arbitrary number of arguments, and
        change the calls to pass more or fewer than two arguments. What type
        is the return value sum? (Hints: a slice such as S[:0] returns an empty sequence of the same
        type as S, and the type built-in function can test types; but
        see the manually coded min examples
        in Chapter 18 for a simpler approach.) What happens
        if you pass in arguments of different types? What about passing in
        dictionaries?

	Keywords. Change the adder function from exercise 2 to accept and
        sum/concatenate three arguments: def
        adder(good, bad, ugly). Now, provide default values for each
        argument, and experiment with calling the function interactively. Try
        passing one, two, three, and four arguments. Then, try passing keyword
        arguments. Does the call adder(ugly=1,
        good=2) work? Why? Finally, generalize the new adder to accept and sum/concatenate an
        arbitrary number of keyword arguments. This is
        similar to what you did in exercise 3, but you’ll need to iterate over
        a dictionary, not a tuple. (Hint: the dict.keys method returns a list you can step
        through with a for or while, but be sure to wrap it in a list call to index it in 3.X; dict.values may help here too.)

	Dictionary tools. Write a function called
        copyDict(dict) that copies its
        dictionary argument. It should return a new dictionary containing all
        the items in its argument. Use the dictionary keys method to iterate (or, in Python 2.2
        and later, step over a dictionary’s keys without calling keys). Copying sequences is easy (X[:] makes a top-level copy); does this work
        for dictionaries, too? As explained in this exercise’s solution,
        because dictionaries now come with similar tools, this and the next
        exercise are just coding exercises but still serve as representative
        function examples.

	Dictionary tools. Write a function called
        addDict(dict1, dict2) that computes
        the union of two dictionaries. It should return a new dictionary
        containing all the items in both its arguments (which are assumed to
        be dictionaries). If the same key appears in both arguments, feel free
        to pick a value from either. Test your function by writing it in a
        file and running the file as a script. What happens if you pass lists
        instead of dictionaries? How could you generalize your function to
        handle this case, too? (Hint: see the type built-in function used earlier.) Does
        the order of the arguments passed in matter?

	More argument-matching examples. First,
        define the following six functions (either interactively or in a
        module file that can be imported):
def f1(a, b): print(a, b)            # Normal args
def f2(a, *b): print(a, b)           # Positional varargs

def f3(a, **b): print(a, b)          # Keyword varargs

def f4(a, *b, **c): print(a, b, c)   # Mixed modes

def f5(a, b=2, c=3): print(a, b, c)  # Defaults

def f6(a, b=2, *c): print(a, b, c)   # Defaults and positional varargs
Now, test the following calls interactively, and try to explain
        each result; in some cases, you’ll probably need to fall back on the
        matching algorithm shown in Chapter 18. Do you think
        mixing matching modes is a good idea in general? Can you think of
        cases where it would be useful?
>>> f1(1, 2)
>>> f1(b=2, a=1)

>>> f2(1, 2, 3)
>>> f3(1, x=2, y=3)
>>> f4(1, 2, 3, x=2, y=3)

>>> f5(1)
>>> f5(1, 4)

>>> f6(1)
>>> f6(1, 3, 4)

	Primes revisited. Recall the following code
        snippet from Chapter 13, which
        simplistically determines whether a positive integer is prime:
x = y // 2                          # For some y > 1
while x > 1:
    if y % x == 0:                  # Remainder
      print(y, 'has factor', x)
      break                         # Skip else
    x -= 1
else:                               # Normal exit
    print(y, 'is prime')
Package this code as a reusable function in a module file
        (y should be a passed-in argument),
        and add some calls to the function at the bottom of your file. While
        you’re at it, experiment with replacing the first line’s // operator with / to see how true division changes the
        / operator in Python 3.X and breaks
        this code (refer back to Chapter 5 if you need
        a reminder). What can you do about negatives, and the values 0 and 1?
        How about speeding this up? Your outputs should look something like
        this:
13 is prime
13.0 is prime
15 has factor 5
15.0 has factor 5.0

	Iterations and comprehensions. Write code
        to build a new list containing the square roots of all the numbers in
        this list: [2, 4, 9, 16, 25]. Code
        this as a for loop first, then as a
        map call, then as a list
        comprehension, and finally as a generator expression. Use the sqrt function in the built-in math module to do the calculation (i.e.,
        import math and say math.sqrt(x)). Of the four, which approach
        do you like best?

	Timing tools. In Chapter 5, we saw three ways to compute square roots:
        math.sqrt(X), X ** .5, and pow(X,
        .5). If your programs run a lot of these, their relative
        performance might become important. To see which is quickest,
        repurpose the timeseqs.py script
        we wrote in this chapter to time each of these three tools. Use the
        bestof or bestoftotal functions in one of this
        chapter’s timer modules to test
        (you can use either the original, the 3.X-only keyword-only variant,
        or the 2.X/3.X version, and may use Python’s timeit module as well). You might also want
        to repackage the testing code in this script for better reusability—by
        passing a test functions tuple to a general tester function, for
        example (for this exercise a copy-and-modify approach is fine). Which
        of the three square root tools seems to run fastest on your machine
        and Python in general? Finally, how might you go about interactively
        timing the speed of dictionary comprehensions versus for loops?

	Recursive functions. Write a simple
        recursion function named countdown
        that prints numbers as it counts down to zero. For example, a call
        countdown(5) will print: 5 4 3 2 1 stop. There’s no obvious reason to
        code this with an explicit stack or queue, but what about a
        nonfunction approach? Would a generator make sense here?

	Computing factorials. Finally, a computer science classic (but demonstrative
        nonetheless). We employed the notion of factorials in Chapter 20’s coverage of
        permutations: N!, computed as
        N*(N-1)*(N-2)*...1. For instance,
        6! is 6*5*4*3*2*1, or 720. Code and time four functions that, for
        a call fact(N), each return
        N!. Code these four functions (1)
        as a recursive countdown per Chapter 19; (2) using the functional
        reduce call per Chapter 19; (3) with a simple iterative
        counter loop per Chapter 13; and (4) using
        the math.factorial library tool per
        Chapter 20. Use Chapter 21’s timeit to time each of your functions. What
        conclusions can you draw from your results?



1 A preview: notice how we must pass functions into the timer
          manually here. In Chapter 39 and Chapter 40 we’ll see
          decorator-based timer alternatives with which
          timed functions are called normally, but require extra “@” syntax
          where defined. Decorators may be more useful to instrument functions
          with timing logic when they are already being used within a larger
          system, and don’t as easily support the more isolated test call
          patterns assumed here—when decorated, every
          call to the function runs the timing logic, which is either a plus
          or minus depending on your goals.








Part V. Modules and Packages








Chapter 22. Modules: The Big Picture
This chapter begins our in-depth look at the Python module—the
  highest-level program organization unit, which packages program code and
  data for reuse, and provides self-contained namespaces that minimize
  variable name clashes across your programs. In concrete terms, modules
  typically correspond to Python program files. Each file is a module, and
  modules import other modules to use the names they define. Modules might
  also correspond to extensions coded in external languages such as C, Java,
  or C#, and even to directories in package imports. Modules are processed
  with two statements and one important function:
	import
	Lets a client (importer) fetch a module as a whole

	from
	Allows clients to fetch particular names from a module

	imp.reload (reload in 2.X)
	Provides a way to reload a module’s code without stopping
        Python


Chapter 3 introduced module
  fundamentals, and we’ve been using them ever since. The goal here is to
  expand on the core module concepts you’re already familiar with, and move on
  to explore more advanced module usage. This first chapter reviews module
  basics, and offers a general look at the role of modules in overall program
  structure. In the chapters that follow, we’ll dig into the coding details
  behind the theory.
Along the way, we’ll flesh out module details omitted so far—you’ll
  learn about reloads, the __name__ and
  __all__ attributes, package imports,
  relative import syntax, 3.3 namespace packages, and so on. Because modules
  and classes are really just glorified namespaces, we’ll
  formalize namespace concepts here as well.
Why Use Modules?
In short, modules provide an easy way to organize components into a
    system by serving as self-contained packages of variables known as
    namespaces. All the names defined at the top level of a module file become
    attributes of the imported module object. As we saw in the last part of
    this book, imports give access to names in a module’s global scope. That
    is, the module file’s global scope morphs into the
    module object’s attribute namespace when it is imported. Ultimately,
    Python’s modules allow us to link individual files into a larger program
    system.
More specifically, modules have at least three roles:
	Code reuse
	As discussed in Chapter 3,
          modules let you save code in files permanently. Unlike code you type
          at the Python interactive prompt, which goes away when you exit
          Python, code in module files is persistent—it
          can be reloaded and rerun as many times as needed. Just as
          importantly, modules are a place to define names, known as
          attributes, which may be referenced by multiple
          external clients. When used well, this supports a
          modular program design that groups
          functionality into reusable units.

	System namespace partitioning
	Modules are also the highest-level program organization unit
          in Python. Although they are fundamentally just packages of names,
          these packages are also self-contained—you can
          never see a name in another file, unless you explicitly import that
          file. Much like the local scopes of functions, this helps avoid name
          clashes across your programs. In fact, you can’t avoid this
          feature—everything “lives” in a module, both the code you run and
          the objects you create are always implicitly enclosed in modules.
          Because of that, modules are natural tools for grouping system
          components.

	Implementing shared services or data
	From an operational perspective, modules are also useful for
          implementing components that are shared across a system and hence
          require only a single copy. For instance, if
          you need to provide a global object that’s used by more than one
          function or file, you can code it in a module that can then be
          imported by many clients.


At least that’s the abstract story—for you to truly understand the
    role of modules in a Python system, we need to digress for a moment and
    explore the general structure of a Python program.

Python Program Architecture
So far in this book, I’ve sugarcoated some of the complexity in my descriptions
    of Python programs. In practice, programs usually involve more than just
    one file. For all but the simplest scripts, your programs will take the
    form of multifile systems—as the code timing programs
    of the preceding chapter illustrate. Even if you can get by with coding a
    single file yourself, you will almost certainly wind up using external
    files that someone else has already written.
This section introduces the general
    architecture of Python programs—the way you divide a
    program into a collection of source files (a.k.a. modules) and link the
    parts into a whole. As we’ll see, Python fosters a modular program
    structure that groups functionality into coherent and reusable units, in
    ways that are natural, and almost automatic. Along the way, we’ll also
    explore the central concepts of Python modules, imports, and object
    attributes.
How to Structure a Program
At a base level, a Python program consists of text files
      containing Python statements, with one main
      top-level file, and zero or more supplemental files
      known as modules.
Here’s how this works. The top-level (a.k.a. script) file contains
      the main flow of control of your program—this is the file you run to
      launch your application. The module files are libraries of tools used to
      collect components used by the top-level file, and possibly elsewhere.
      Top-level files use tools defined in module files, and modules use tools
      defined in other modules.
Although they are files of code too, module files generally don’t
      do anything when run directly; rather, they define tools intended for
      use in other files. A file imports a module to gain
      access to the tools it defines, which are known as its attributes—variable names
      attached to objects such as functions. Ultimately, we import modules and
      access their attributes to use their tools.

Imports and Attributes
Let’s make this a bit more concrete. Figure 22-1 sketches the
      structure of a Python program composed of three files: a.py, b.py, and c.py. The file a.py is chosen to be the top-level file; it
      will be a simple text file of statements, which is executed from top to
      bottom when launched. The files b.py and c.py are modules; they are simple text files
      of statements as well, but they are not usually launched directly.
      Instead, as explained previously, modules are normally imported by other
      files that wish to use the tools the modules define.
Figure 22-1. Program architecture in Python. A program is a system of
        modules. It has one top-level script file (launched to run the
        program), and multiple module files (imported libraries of tools).
        Scripts and modules are both text files containing Python statements,
        though the statements in modules usually just create objects to be
        used later. Python’s standard library provides a collection of
        precoded modules.

For instance, suppose the file b.py in Figure 22-1 defines a function
      called spam, for external use. As we
      learned when studying functions in Part IV, b.py will contain a Python def statement to generate the function, which
      you can later run by passing zero or more values in parentheses after
      the function’s name:
def spam(text):                # File b.py
    print(text, 'spam')
Now, suppose a.py wants to
      use spam. To this end, it might
      contain Python statements such as the following:
import b                       # File a.py
b.spam('gumby')                # Prints "gumby spam"
The first of these, a Python import statement, gives the file a.py access to everything defined by
      top-level code in the file b.py.
      The code import b roughly
      means:
Load the file b.py (unless
        it’s already loaded), and give me access to all its attributes through
        the name b.

To satisfy such goals, import
      (and, as you’ll see later, from)
      statements execute and load other files on request. More formally, in
      Python, cross-file module linking is not resolved until such import statements are executed at
      runtime; their net effect is to assign module
      names—simple variables like b—to
      loaded module objects. In fact, the module name used in an import statement serves two purposes: it
      identifies the external file to be loaded, but it
      also becomes a variable assigned to the loaded
      module.
Similarly, objects defined by a module are
      also created at runtime, as the import is executing: import literally runs statements in the target
      file one at a time to create its contents. Along the way, every name
      assigned at the top-level of the file becomes an attribute of the
      module, accessible to importers. For example, the second of the
      statements in a.py calls the
      function spam defined in the module
      b—created by running its def statement during the import—using object
      attribute notation. The code b.spam
      means:
Fetch the value of the name spam that lives within the object b.

This happens to be a callable function in our example, so we pass
      a string in parentheses ('gumby'). If
      you actually type these files, save them, and run a.py, the words “gumby spam” will be
      printed.
As we’ve seen, the object.attribute notation appears throughout
      Python code—most objects have useful attributes that are fetched with
      the “.” operator. Some reference callable objects like functions that
      take action (e.g., a salary computer), and others are simple data values
      that denote more static objects and properties (e.g., a person’s
      name).
The notion of importing is also completely general throughout
      Python. Any file can import tools from any other file. For instance, the
      file a.py may import b.py to call its function, but b.py might also import c.py to leverage different tools defined
      there. Import chains can go as deep as you like: in this example, the
      module a can import b, which can import c, which can import b again, and so on.
Besides serving as the highest organizational structure, modules
      (and module packages, described in Chapter 24)
      are also the highest level of code reuse in Python.
      Coding components in module files makes them useful in your original
      program, and in any other programs you may write later. For instance, if
      after coding the program in Figure 22-1 we discover that
      the function b.spam is a
      general-purpose tool, we can reuse it in a completely different program;
      all we have to do is import the file b.py
      again from the other program’s files.

Standard Library Modules
Notice the rightmost portion of Figure 22-1. Some of the
      modules that your programs will import are provided by Python itself and
      are not files you will code.
Python automatically comes with a large collection of utility
      modules known as the standard library. This
      collection, over 200 modules large at last count, contains
      platform-independent support for common programming tasks: operating
      system interfaces, object persistence, text pattern matching, network
      and Internet scripting, GUI construction, and much more. None of these
      tools are part of the Python language itself, but you can use them by
      importing the appropriate modules on any standard Python installation.
      Because they are standard library modules, you can also be reasonably
      sure that they will be available and will work portably on most
      platforms on which you will run Python.
This book’s examples employ a few of the standard library’s
      modules—timeit, sys, and os
      in last chapter’s code, for instance—but we’ll really only scratch the
      surface of the libraries story here. For a complete look, you should
      browse the standard Python library reference manual, available either
      online at http://www.python.org, or with your Python installation
      (via IDLE or Python’s Start button menu on some Windows). The
      PyDoc tool discussed in Chapter 15 is another way to explore
      standard library modules.
Because there are so many modules, this is really the only way to
      get a feel for what tools are available. You can also find tutorials on
      Python library tools in commercial books that cover application-level
      programming, such as O’Reilly’s Programming
      Python, but the manuals are free, viewable in any web browser
      (in HTML format), viewable in other formats (e.g., Windows help), and
      updated each time Python is rereleased. See Chapter 15 for more pointers.


How Imports Work
The prior section talked about importing modules without really explaining
    what happens when you do so. Because imports are at the heart of program
    structure in Python, this section goes into more formal detail on the
    import operation to make this process less abstract.
Some C programmers like to compare the Python module import
    operation to a C #include, but they
    really shouldn’t—in Python, imports are not just textual insertions of one
    file into another. They are really runtime operations that perform three
    distinct steps the first time a program imports a given file:
	Find the module’s file.

	Compile it to byte code (if needed).

	Run the module’s code to build the objects
        it defines.


To better understand module imports, we’ll explore these steps in
    turn. Bear in mind that all three of these steps are carried out only the
    first time a module is imported during a program’s
    execution; later imports of the same module in a program run bypass all of
    these steps and simply fetch the already loaded module object in memory.
    Technically, Python does this by storing loaded modules in a table named
    sys.modules and checking there at the
    start of an import operation. If the module is not present, a three-step
    process begins.
1. Find It
First, Python must locate the module file referenced by an
      import statement. Notice that the
      import statement in the prior
      section’s example names the file without a .py extension and without its directory path:
      it just says import b, instead of
      something like import c:\dir1\b.py.
      Path and extension details are omitted on purpose; instead, Python uses
      a standard module search path and known file types
      to locate the module file corresponding to an import statement.1 Because this is the main part of the import operation that
      programmers must know about, we’ll return to this topic in a
      moment.

2. Compile It (Maybe)
After finding a source code file that matches an import statement by traversing the module
      search path, Python next compiles it to byte code, if necessary. We
      discussed byte code briefly in Chapter 2, but it’s a bit richer than
      explained there. During an import operation Python checks both file
      modification times and the byte code’s Python version number to decide
      how to proceed. The former uses file “timestamps,” and the latter uses
      either a “magic” number embedded in the byte code or a filename,
      depending on the Python release being used. This step chooses an action
      as follows:
	Compile
	If the byte code file is older than the
            source file (i.e., if you’ve changed the source) or was created by
            a different Python version, Python
            automatically regenerates the byte code when the program is
            run.
As discussed ahead, this model is modified somewhat in
            Python 3.2 and later—byte code files are segregated in a __pycache__ subdirectory and named with
            their Python version to avoid contention and recompiles when
            multiple Pythons are installed. This obviates the need to check
            version numbers in the byte code, but the timestamp check is still
            used to detect changes in the source.

	Don’t compile
	If, on the other hand, Python finds a .pyc byte
            code file that is not older than the
            corresponding .py source file and was created by the
            same Python version, it skips the source-to-byte-code compile
            step.
In addition, if Python finds only a byte code file on the
            search path and no source, it simply loads the byte code directly;
            this means you can ship a program as just byte code files and
            avoid sending source. In other words, the compile step is
            bypassed if possible to speed program
            startup.


Notice that compilation happens when a file is being imported.
      Because of this, you will not usually see a .pyc byte code file for the
      top-level file of your program, unless it is also
      imported elsewhere—only imported files leave behind .pyc files on your machine. The byte code of
      top-level files is used internally and discarded; byte code of imported
      files is saved in files to speed future imports.
Top-level files are often designed to be executed directly and not
      imported at all. Later, we’ll see that it is possible to design a file
      that serves both as the top-level code of a program and as a module of
      tools to be imported. Such a file may be both executed and imported, and
      thus does generate a .pyc. To learn
      how this works, watch for the discussion of the special __name__ attribute and __main__ in Chapter 25.

3. Run It
The final step of an import operation executes the byte code of
      the module. All statements in the file are run in turn, from top to
      bottom, and any assignments made to names during this step generate
      attributes of the resulting module object. This is how the tools defined
      by the module’s code are created. For instance, def statements in a file are run at import
      time to create functions and assign attributes within the module to
      those functions. The functions can then be called later in the program
      by the file’s importers.
Because this last import step actually runs the file’s code, if
      any top-level code in a module file does real work, you’ll see its
      results at import time. For example, top-level print statements in a module show output when
      the file is imported. Function def
      statements simply define objects for later use.
As you can see, import operations involve quite a bit of work—they
      search for files, possibly run a compiler, and run Python code. Because
      of this, any given module is imported only once per
      process by default. Future imports skip all three import steps and reuse
      the already loaded module in memory. If you need to import a file again
      after it has already been loaded (for example, to support dynamic
      end-user customizations), you have to force the issue with an imp.reload call—a tool we’ll meet in the next
      chapter.2


Byte Code Files: __pycache__ in Python 3.2+
As mentioned briefly, the way that Python stores files to retain the byte code
    that results from compiling your source has changed in Python 3.2 and
    later. First of all, if Python cannot write a file to save this on your
    computer for any reason, your program still runs fine—Python simply
    creates and uses the byte code in memory and discards it on exit. To speed
    startups, though, it will try to save byte code in a file in order to skip
    the compile step next time around. The way it does this varies per Python
    version:
	In Python 3.1 and earlier (including all of Python 2.X)
	Byte code is stored in files in the same
          directory as the corresponding source files, normally with the filename extension .pyc (e.g., module.pyc). Byte code files are also
          stamped internally with the version of Python that created them
          (known as a “magic” field to developers) so Python knows to
          recompile when this differs in the version of
          Python running your program. For instance, if you upgrade to a new
          Python whose byte code differs, all your byte code files will be
          recompiled automatically due to a version number mismatch, even if
          you haven’t changed your source code.

	In Python 3.2 and later
	Byte code is instead stored in files in a subdirectory named
          __pycache__, which Python
          creates if needed, and which is located in the directory containing
          the corresponding source files. This helps avoid
          clutter in your source directories by
          segregating the byte code files in their own directory. In addition,
          although byte code files still get the .pyc extension as before, they are given
          more descriptive names that include text identifying the
          version of Python that created them (e.g.,
          module.cpython-32.pyc). This
          avoids contention and recompiles: because each
          version of Python installed can have its own uniquely named version
          of byte code files in the __pycache__ subdirectory, running under a
          given version doesn’t overwrite the byte code of another, and
          doesn’t require recompiles. Technically, byte code filenames also
          include the name of the Python that created
          them, so CPython, Jython, and other implementations mentioned in the
          preface and Chapter 2 can coexist
          on the same machine without stepping on each other’s work (once they
          support this model).


In both models, Python always recreates the
    byte code file if you’ve changed the source code file since the last
    compile, but version differences are handled differently—by magic numbers
    and replacement prior to 3.2, and by filenames that allow for multiple
    copies in 3.2 and later.
Byte Code File Models in Action
The following is a quick example of these two models in action
      under 2.X and 3.3. I’ve omitted much of the text displayed by the
      dir directory listing on Windows here
      to save space, and the script used here isn’t listed because it is not
      relevant to this discussion (it’s from Chapter 2, and simply prints two values).
      Prior to 3.2, byte code files show up alongside
      their source files after being created by import operations:
c:\code\py2x> dir
10/31/2012  10:58 AM                39 script0.py

c:\code\py2x> C:\python27\python
>>> import script0
hello world
1267650600228229401496703205376
>>> ^Z

c:\code\py2x> dir
10/31/2012  10:58 AM                39 script0.py
10/31/2012  11:00 AM               154 script0.pyc
However, in 3.2 and later byte code files are
      saved in the __pycache__
      subdirectory and include versions and Python implementation details in
      their names to avoid clutter and contention among the Pythons on your
      computer:
c:\code\py2x> cd ..\py3x
c:\code\py3x> dir
10/31/2012  10:58 AM                39 script0.py

c:\code\py3x> C:\python33\python
>>> import script0
hello world
1267650600228229401496703205376
>>> ^Z

c:\code\py3x> dir
10/31/2012  10:58 AM                39 script0.py
10/31/2012  11:00 AM    <DIR>          __pycache__

c:\code\py3x> dir __pycache__
10/31/2012  11:00 AM               184 script0.cpython-33.pyc
Crucially, under the model used in 3.2 and later, importing the
      same file with a different Python creates a
      different byte code file, instead of overwriting
      the single file as done by the pre-3.2 model—in the
      newer model, each Python version and implementation has its own byte
      code files, ready to be loaded on the next program run (earlier Pythons
      will happily continue using their scheme on the same machine):
c:\code\py3x> C:\python32\python
>>> import script0
hello world
1267650600228229401496703205376
>>> ^Z

c:\code\py3x> dir __pycache__
10/31/2012  12:28 PM               178 script0.cpython-32.pyc
10/31/2012  11:00 AM               184 script0.cpython-33.pyc
Python 3.2’s newer byte code file model is probably superior, as
      it avoids recompiles when there is more than one Python on your
      machine—a common case in today’s mixed 2.X/3.X world. On the other hand,
      it is not without potential incompatibilities in programs that rely on
      the prior file and directory structure. This may be a compatibility
      issue in some tools programs, for instance, though most well-behaved
      tools should work as before. See Python 3.2’s “What’s New?” document for
      details on potential impacts.
Also keep in mind that this process is completely
      automatic—it’s a side effect of running
      programs—and most programmers probably won’t care about or even notice
      the difference, apart from faster startups due to fewer recompiles.


The Module Search Path
As mentioned earlier, the part of the import procedure that most programmers
    will need to care about is usually the first—locating
    the file to be imported (the “find it” part). Because you may need to tell
    Python where to look to find files to import, you need to know how to tap
    into its search path in order to extend it.
In many cases, you can rely on the automatic nature of the module
    import search path and won’t need to configure this path at all. If you
    want to be able to import user-defined files across directory boundaries,
    though, you will need to know how the search path works in order to
    customize it. Roughly, Python’s module search path is composed of the
    concatenation of these major components, some of which are preset for you
    and some of which you can tailor to tell Python where to look:
	The home directory of the program

	PYTHONPATH directories (if
        set)

	Standard library directories

	The contents of any .pth
        files (if present)

	The site-packages home of
        third-party extensions


Ultimately, the concatenation of these five components becomes
    sys.path, a mutable list of directory
    name strings that I’ll expand upon later in this section. The first, third, and fifth elements of the search path are defined automatically. Because
    Python searches the concatenation of these components from first to last,
    though, the second and fourth
    elements can be used to extend the path to include your own source code
    directories. Here is how Python uses each of these path components:
	Home directory (automatic)
	Python first looks for the imported file in the home
          directory. The meaning of this entry depends on how you are running
          the code. When you’re running a program, this
          entry is the directory containing your program’s top-level script
          file. When you’re working interactively, this
          entry is the directory in which you are working (i.e., the current
          working directory).
Because this directory is always searched first, if a program
          is located entirely in a single directory, all of its imports will
          work automatically with no path configuration required. On the other
          hand, because this directory is searched first, its files will also
          override modules of the same name in directories elsewhere on the
          path; be careful not to accidentally hide library modules this way
          if you need them in your program, or use package tools we’ll meet
          later that can partially sidestep this issue.

	PYTHONPATH directories
        (configurable)
	Next, Python searches all directories listed in your PYTHONPATH environment variable setting,
          from left to right (assuming you have set this at all: it’s not
          preset for you). In brief, PYTHONPATH is simply a list of
          user-defined and platform-specific names of directories that contain
          Python code files. You can add all the directories from which you
          wish to be able to import, and Python will extend the module search
          path to include all the directories your PYTHONPATH lists.
Because Python searches the home directory first, this setting
          is only important when importing files across directory
          boundaries—that is, if you need to import a file that is stored in a
          different directory from the file that imports
          it. You’ll probably want to set your PYTHONPATH variable once you start writing
          substantial programs, but when you’re first starting out, as long as
          you save all your module files in the directory in which you’re
          working (i.e., the home directory, like the C:\code used in this book) your imports
          will work without you needing to worry about this setting at
          all.

	Standard library directories (automatic)
	Next, Python automatically searches the directories where the
          standard library modules are installed on your machine. Because
          these are always searched, they normally do not need to be added to
          your PYTHONPATH or included in
          path files (discussed next).

	.pth path file directories
        (configurable)
	Next, a lesser-used feature of Python allows users to add
          directories to the module search path by simply listing them, one
          per line, in a text file whose name ends with a .pth suffix (for “path”). These path
          configuration files are a somewhat advanced installation-related
          feature; we won’t cover them fully here, but they provide an
          alternative to PYTHONPATH
          settings.
In short, text files of directory names dropped in an
          appropriate directory can serve roughly the same role as the
          PYTHONPATH environment variable
          setting. For instance, if you’re running Windows and Python 3.3, a
          file named myconfig.pth may be
          placed at the top level of the Python install directory (C:\Python33) or in the site-packages subdirectory of the
          standard library there (C:\Python33\Lib\site-packages) to extend
          the module search path. On Unix-like systems, this file might be
          located in /usr/local/lib/python3.3/site-packages or
          /usr/local/lib/site-python
          instead.
When such a file is present, Python will add the directories
          listed on each line of the file, from first to last, near the end of
          the module search path list—currently, after PYTHONPATH and standard libraries, but
          before the site-packages
          directory where third-party extensions are often installed. In fact,
          Python will collect the directory names in all the .pth path files it finds and will filter
          out any duplicates and nonexistent directories. Because they are
          files rather than shell settings, path files can apply to all users
          of an installation, instead of just one user or shell. Moreover, for
          some users and applications, text files may be simpler to code than
          environment settings.
This feature is more sophisticated than I’ve described here.
          For more details, consult the Python library manual, and especially
          its documentation for the standard library module site—this module allows the locations of
          Python libraries and path files to be configured, and its
          documentation describes the expected locations of path files in
          general. I recommend that beginners use PYTHONPATH or perhaps a single .pth file, and then only if you must
          import across directories. Path files are used more often by
          third-party libraries, which commonly install a path file in
          Python’s site-packages,
          described next.

	The Lib\site-packages
        directory of third-party extensions (automatic)
	Finally, Python automatically adds the site-packages subdirectory of its
          standard library to the module search path. By convention, this is
          the place that most third-party extensions are installed, often
          automatically by the distutils
          utility described in an upcoming sidebar. Because their install
          directory is always part of the module search path, clients can
          import the modules of such extensions without any path
          settings.


Configuring the Search Path
The net effect of all of this is that both the PYTHONPATH and path file components of the
      search path allow you to tailor the places where imports look for files.
      The way you set environment variables and where you store path files
      varies per platform. For instance, on Windows, you might use your
      Control Panel’s System icon to set PYTHONPATH to a list of directories separated
      by semicolons, like this:
c:\pycode\utilities;d:\pycode\package1
Or you might instead create a text file called C:\Python33\pydirs.pth, which looks like
      this:
c:\pycode\utilities
d:\pycode\package1
These settings are analogous on other platforms, but the details
      can vary too widely for us to cover in this chapter. See Appendix A for pointers on extending
      your module search path with PYTHONPATH or .pth files on various platforms.

Search Path Variations
This description of the module search path is accurate, but
      generic; the exact configuration of the search path is prone to changing
      across platforms, Python releases, and even Python implementations.
      Depending on your platform, additional directories may automatically be
      added to the module search path as well.
For instance, some Pythons may add an entry for the
      current working directory—the directory from which
      you launched your program—in the search path before the PYTHONPATH directories. When you’re launching
      from a command line, the current working directory may not be the same
      as the home directory of your top-level file (i.e., the directory where
      your program file resides), which is always added. Because the current
      working directory can vary each time your program runs, you normally
      shouldn’t depend on its value for import purposes. See Chapter 3 for more on launching programs from
      command lines.3
To see how your Python configures the module search path on your
      platform, you can always inspect sys.path—the topic of the next section.

The sys.path List
If you want to see how the module search path is truly configured
      on your machine, you can always inspect the path as Python knows it by
      printing the built-in sys.path list
      (that is, the path
      attribute of the standard library module sys). This list of directory name strings is
      the actual search path within Python; on imports, Python searches each
      directory in this list from left to right, and uses the first file match
      it finds.
Really, sys.path
      is the module search path. Python configures it at program startup, merging the home directory of the top-level file (or an empty string to designate the current working directory), any PYTHONPATH directories, the standard library’s directories, the contents of any .pth files, and the site-packages directory. The result is a list of directory name
      strings that Python searches on each import of a new file.
Python exposes this list for two good reasons. First, it provides
      a way to verify the search path settings you’ve made—if you don’t see
      your settings somewhere in this list, you need to recheck your work. For
      example, here is what my module search path looks like on Windows under
      Python 3.3, with my PYTHONPATH set to
      C:\code and a C:\Python33\mypath.pth path file that lists
      C:\Users\mark. The empty string at
      the front means current directory, and my two settings are merged in;
      the rest are standard library directories and files and the site-packages home for third-party
      extensions:
>>> import sys
>>> sys.path
['', 'C:\\code', 'C:\\Windows\\system32\\python33.zip', 'C:\\Python33\\DLLs',
'C:\\Python33\\lib', 'C:\\Python33', 'C:\\Users\\mark',
'C:\\Python33\\lib\\site-packages']
Second, if you know what you’re doing, this list provides a way
      for scripts to tailor their search paths manually. As you’ll see by
      example later in this part of the book, by
      modifying the sys.path list, you can modify the search path
      for all future imports made in a program’s run. Such changes last only
      for the duration of the script, however; PYTHONPATH and .pth files offer more permanent ways to
      modify the path—the first per user, and the second per
      installation.
On the other hand, some programs really do
      need to change sys.path. Scripts that
      run on web servers, for example, often run as the user “nobody” to limit
      machine access. Because such scripts cannot usually depend on “nobody”
      to have set PYTHONPATH in any
      particular way, they often set sys.path manually to include required source
      directories, prior to running any import statements. A sys.path.append or sys.path.insert will often suffice, though
      will endure for a single program run only.

Module File Selection
Keep in mind that filename extensions (e.g., .py) are omitted from import statements intentionally. Python
      chooses the first file it can find on the search path that matches the
      imported name. In fact, imports are the point of interface to a host of
      external components—source code, multiple flavors of byte code, compiled
      extensions, and more. Python automatically selects any type that matches
      a module’s name.
Module sources
For example, an import
        statement of the form import b
        might today load or resolve to:
	A source code file named b.py

	A byte code file named b.pyc

	An optimized byte code file named b.pyo (a less common format)

	A directory named b,
            for package imports (described in Chapter 24)

	A compiled extension module, coded in C, C++, or another
            language, and dynamically linked when imported (e.g., b.so on Linux, or b.dll or b.pyd on Cygwin and Windows)

	A compiled built-in module coded in C and statically linked
            into Python

	A ZIP file component that is automatically extracted when
            imported

	An in-memory image, for frozen executables

	A Java class, in the Jython version of Python

	A .NET component, in the IronPython version of Python


C extensions, Jython, and package imports all extend imports
        beyond simple files. To importers, though, differences in the loaded
        file type are completely irrelevant, both when importing and when
        fetching module attributes. Saying import
        b gets whatever module b
        is, according to your module search path, and b.attr fetches an item in the module, be it
        a Python variable or a linked-in C function. Some standard modules we
        will use in this book are actually coded in C, not Python; because
        they look just like Python-coded module files, their clients don’t
        have to care.

Selection priorities
If you have both a b.py and
        a b.so in different directories,
        Python will always load the one found in the first (leftmost)
        directory of your module search path during the left-to-right search
        of sys.path. But what happens if it
        finds both a b.py and a b.so in the same
        directory? In this case, Python follows a standard picking order,
        though this order is not guaranteed to stay the same over time or
        across implementations. In general, you should not depend on which
        type of file Python will choose within a given directory—make your
        module names distinct, or configure your module search path to make
        your module selection preferences explicit.

Import hooks and ZIP files
Normally, imports work as described in this section—they find
        and load files on your machine. However, it is possible to redefine
        much of what an import operation does in Python, using what are known
        as import hooks. These hooks can be used to make
        imports do various useful things, such as loading files from archives,
        performing decryption, and so on.
In fact, Python itself makes use of these hooks to enable files
        to be directly imported from ZIP archives: archived files are
        automatically extracted at import time when a .zip file is selected from the module import search path. One of the
        standard library directories in the earlier sys.path display, for example, is a
        .zip file today. For more
        details, see the Python standard library manual’s description of the
        built-in __import__ function,
        the customizable tool that import statements actually run.
Note
Also see Python 3.3’s “What’s New?” document for updates on
          this front that we’ll mostly omit here for space. In short, in this
          version and later, the __import__
          function is now implemented by importlib.__import__, in part to unify and
          more clearly expose its implementation.
The latter of these calls is also wrapped by importlib.import_module—a tool that, per
          Python’s current manuals, is generally preferred over __import__ for direct calls to import by
          name string, a technique discussed in Chapter 25. Both calls still work today,
          though the __import__ function
          supports customizing imports by replacement in the built-in scope
          (see Chapter 17), and other techniques support
          similar roles. See the Python library manuals for more
          details.


Optimized byte code files
Finally, Python also supports the notion of .pyo optimized byte code files, created and run with the -O Python command-line flag, and
        automatically generated by some install tools. Because these run only
        slightly faster than normal .pyc
        files (typically 5 percent faster), however, they are infrequently
        used. The PyPy system (see Chapter 2
        and Chapter 21), for example,
        provides more substantial speedups. See Appendix A and Chapter 36 for more on .pyo
        files.
Third-Party Software: distutils
This chapter’s description of module search path settings is
          targeted mainly at user-defined source code that you write on your
          own. Third-party extensions for Python typically use the distutils tools
          in the standard library to automatically install themselves, so no
          path configuration is required to use their code.
Systems that use distutils
          generally come with a setup.py
          script, which is run to install them; this script imports and uses
          distutils modules to place such
          systems in a directory that is automatically part of the module
          search path (usually in the Lib\site-packages subdirectory of the
          Python install tree, wherever that resides on the target
          machine).
For more details on distributing and installing with distutils, see the Python standard manual
          set; its use is beyond the scope of this book (for instance, it also
          provides ways to automatically compile C-coded extensions on the
          target machine). Also check out the third-party open source
          eggs system, which adds dependency checking for
          installed Python software.
Note: as this fifth edition is being
          written, there is some talk of deprecating distutils and replacing it with a newer
          distutils2 package in the Python
          standard library. The status of this is unclear—it was anticipated
          in 3.3 but did not appear—so be sure to see Python’s “What’s New”
          documents for updates on this front that may emerge after this book
          is released.




Chapter Summary
In this chapter, we covered the basics of modules, attributes, and
    imports and explored the operation of import statements. We learned that imports find
    the designated file on the module search path, compile it to byte code,
    and execute all of its statements to generate its contents. We also
    learned how to configure the search path to be able to import from
    directories other than the home directory and the standard library
    directories, primarily with PYTHONPATH
    settings.
As this chapter demonstrated, the import operation and modules are
    at the heart of program architecture in Python. Larger programs are
    divided into multiple files, which are linked together at runtime by
    imports. Imports in turn use the module search path to locate files, and
    modules define attributes for external use.
Of course, the whole point of imports and modules is to provide a
    structure to your program, which divides its logic into self-contained
    software components. Code in one module is isolated from code in another;
    in fact, no file can ever see the names defined in another, unless
    explicit import statements are run.
    Because of this, modules minimize name collisions between different parts
    of your program.
You’ll see what this all means in terms of actual statements and
    code in the next chapter. Before we move on, though, let’s run through the
    chapter quiz.

Test Your Knowledge: Quiz
	How does a module source code file become a module object?

	Why might you have to set your PYTHONPATH environment variable?

	Name the five major components of the module import search
        path.

	Name four file types that Python might load in response to an
        import operation.

	What is a namespace, and what does a module’s namespace
        contain?



Test Your Knowledge: Answers
	A module’s source code file automatically becomes a module
        object when that module is imported. Technically, the module’s source
        code is run during the import, one statement at a time, and all the
        names assigned in the process become attributes of the module
        object.

	You only need to set PYTHONPATH to import from directories other
        than the one in which you are working (i.e., the current directory
        when working interactively, or the directory containing your top-level
        file). In practice, this will be a common case for nontrivial
        programs.

	The five major components of the module import search path are
        the top-level script’s home directory (the directory containing it),
        all directories listed in the PYTHONPATH environment variable, the
        standard library directories, all directories listed in .pth path files located in standard places,
        and the site-packages root
        directory for third-party extension installs. Of these, programmers
        can customize PYTHONPATH and
        .pth files.

	Python might load a source code (.py) file, a byte code (.pyc or .pyo) file, a C extension module (e.g., a
        .so file on Linux or a .dll or .pyd file on Windows), or a directory of
        the same name for package imports. Imports may also load more exotic
        things such as ZIP file components, Java classes under the Jython
        version of Python, .NET components under IronPython, and statically
        linked C extensions that have no files present at all. In fact, with
        import hooks, imports can load arbitrary items.

	A namespace is a self-contained package of variables, which are
        known as the attributes of the namespace object.
        A module’s namespace contains all the names assigned by code at the
        top level of the module file (i.e., not nested in def or class statements). Technically, a module’s
        global scope morphs into the module object’s
        attributes namespace. A module’s namespace may also be altered by
        assignments from other files that import it, though this is generally
        frowned upon (see Chapter 17 for more on the downsides
        of cross-file changes).



1 It’s syntactically illegal to include path and extension
          details in a standard import.
          However, package imports, which we’ll discuss
          in Chapter 24, allow import statements to include part of the
          directory path leading to a file as a set of period-separated names.
          Package imports, though, still rely on the normal module search path
          to locate the leftmost directory in a package path (i.e., they are
          relative to a directory in the search path). They also cannot make
          use of any platform-specific directory syntax in the import statements; such syntax only works
          on the search path. Also, note that module file search path issues
          are not as relevant when you run frozen
          executables (discussed in Chapter 2), which typically embed byte
          code in the binary image.
2 As described earlier, Python keeps already imported modules in
          the built-in sys.modules
          dictionary so it can keep track of what’s been loaded. In fact, if
          you want to see which modules are loaded, you can import sys and print list(sys.modules.keys()). There’s more on
          other uses for this internal table in Chapter 25.
3 Also watch for Chapter 24’s discussion
          of the new relative import syntax and search
          rules in Python 3.X; they modify the search path for from statements in files inside packages
          when “.” characters are used (e.g., from .
          import string). By default, a package’s own directory is
          not automatically searched by imports in Python 3.X, unless such
          relative imports are used by files in the package itself.








Chapter 23. Module Coding Basics
Now that we’ve looked at the larger ideas behind modules, let’s turn to some examples of
  modules in action. Although some of the early topics in this chapter will be
  review for linear readers who have already applied them in previous
  chapters’ examples, we’ll find that they quickly lead us to further details
  surrounding Python’s modules that we haven’t yet met, such as nesting,
  reloads, scopes, and more.
Python modules are easy to create; they’re just
  files of Python program code created with a text editor. You don’t need to
  write special syntax to tell Python you’re making a module; almost any text
  file will do. Because Python handles all the details of finding and loading
  modules, modules are also easy to use; clients simply
  import a module, or specific names a module defines, and use the objects
  they reference.
Module Creation
To define a module, simply use your text editor to type some Python code into a
    text file, and save it with a “.py” extension; any such file is
    automatically considered a Python module. All the names assigned at the
    top level of the module become its attributes (names
    associated with the module object) and are exported for clients to
    use—they morph from variable to module object attribute
    automatically.
For instance, if you type the following def into a file called module1.py and import it, you create a module
    object with one attribute—the name printer, which happens to be a reference to a
    function object:
def printer(x):                   # Module attribute
    print(x)
Module Filenames
Before we go on, I should say a few more words about module filenames. You can call
      modules just about anything you like, but module filenames should end in
      a .py suffix if you plan to import
      them. The .py is technically optional for top-level files that will be run
      but not imported, but adding it in all cases makes your files’ types
      more obvious and allows you to import any of your files in the
      future.
Because module names become variable names inside a Python program
      (without the .py), they should also
      follow the normal variable name rules outlined in Chapter 11. For instance, you
      can create a module file named if.py, but you cannot import it because
      if is a reserved word—when you try to
      run import if, you’ll get a syntax
      error. In fact, both the names of module files and
      the names of directories used in package imports
      (discussed in the next chapter) must conform to the rules for variable
      names presented in Chapter 11; they may, for
      instance, contain only letters, digits, and underscores. Package
      directories also cannot contain platform-specific syntax such as spaces
      in their names.
When a module is imported, Python maps the internal module name to
      an external filename by adding a directory path from the module search
      path to the front, and a .py or
      other extension at the end. For instance, a module named M ultimately maps to some external file
      <directory>\M.<extension> that
      contains the module’s code.

Other Kinds of Modules
As mentioned in the preceding chapter, it is also possible to create a Python
      module by writing code in an external language such as C, C++, and
      others (e.g., Java, in the Jython implementation of the language). Such
      modules are called extension modules, and they are
      generally used to wrap up external libraries for use in Python scripts.
      When imported by Python code, extension modules look and feel the same
      as modules coded as Python source code files—they are accessed with
      import statements, and they provide
      functions and objects as module attributes. Extension modules are beyond
      the scope of this book; see Python’s standard manuals or advanced texts
      such as Programming
      Python for more details.


Module Usage
Clients can use the simple module file we just wrote by running an import or from statement. Both statements find, compile,
    and run a module file’s code, if it hasn’t yet been loaded. The chief
    difference is that import fetches the
    module as a whole, so you must qualify to fetch its names; in contrast,
    from fetches (or copies) specific
    names out of the module.
Let’s see what this means in terms of code. All of the following
    examples wind up calling the printer
    function defined in the prior section’s module1.py module file, but in different
    ways.
The import Statement
In the first example, the name module1 serves two
      different purposes—it identifies an external file to be loaded, and it
      becomes a variable in the script, which references the module object
      after the file is loaded:
>>> import module1                         # Get module as a whole (one or more)
>>> module1.printer('Hello world!')        # Qualify to get names
Hello world!
The import statement simply
      lists one or more names of modules to load, separated by commas. Because
      it gives a name that refers to the whole module
      object, we must go through the module name to fetch its attributes
      (e.g., module1.printer).

The from Statement
By contrast, because from copies
      specific names from one file over to another scope,
      it allows us to use the copied names directly in the script without
      going through the module (e.g., printer):
>>> from module1 import printer            # Copy out a variable (one or more)
>>> printer('Hello world!')                # No need to qualify name
Hello world!
This form of from allows us to
      list one or more names to be copied out, separated by commas. Here, it
      has the same effect as the prior example, but because the imported name
      is copied into the scope where the from statement appears, using that name in the
      script requires less typing—we can use it directly instead of naming the
      enclosing module. In fact, we must; from doesn’t assign the name of the module
      itself.
As you’ll see in more detail later, the from statement is really just a minor
      extension to the import statement—it
      imports the module file as usual (running the full three-step procedure
      of the preceding chapter), but adds an extra step that copies one or
      more names (not objects) out of the file. The entire file is loaded, but
      you’re given names for more direct access to its parts.

The from * Statement
Finally, the next example uses a special form of from: when we use a * instead of specific names, we get copies of
      all names assigned at the top level of the
      referenced module. Here again, we can then use the copied name printer in our script without going through
      the module name:
>>> from module1 import *                   # Copy out _all_ variables
>>> printer('Hello world!')
Hello world!
Technically, both import and
      from statements invoke the same
      import operation; the from * form
      simply adds an extra step that copies all the names in the module into
      the importing scope. It essentially collapses one module’s namespace
      into another; again, the net effect is less typing for us. Note that
      only * works in this context; you
      can’t use pattern matching to select a subset of names (though you could
      with more work and a loop through a module’s __dict__, discussed ahead).
And that’s it—modules really are simple to use. To give you a
      better understanding of what really happens when you define and use
      modules, though, let’s move on to look at some of their properties in
      more detail.
Note
In Python 3.X, the from ...*
        statement form described here can be used only at
        the top level of a module file, not within a function. Python 2.X
        allows it to be used within a function, but issues a warning anyhow.
        It’s rare to see this statement used inside a function in practice;
        when present, it makes it impossible for Python to detect variables
        statically, before the function runs. Best practice in all Pythons
        recommends listing all your imports at the top of
        a module file; it’s not required, but makes them easier to
        spot.


Imports Happen Only Once
One of the most common questions people seem to ask when they start using
      modules is, “Why won’t my imports keep working?” They often report that
      the first import works fine, but later imports during an interactive
      session (or program run) seem to have no effect. In fact, they’re not
      supposed to. This section explains why.
Modules are loaded and run on the first import or from, and only the first. This is on
      purpose—because importing is an expensive operation, by default Python
      does it just once per file, per process. Later import operations simply
      fetch the already loaded module object.
Initialization code
As one consequence, because top-level code in a module file is
        usually executed only once, you can use it to initialize variables.
        Consider the file simple.py, for
        example:
print('hello')
spam = 1                   # Initialize variable
In this example, the print
        and = statements run the first time
        the module is imported, and the variable spam is initialized at import time:
% python
>>> import simple          # First import: loads and runs file's code
hello
>>> simple.spam            # Assignment makes an attribute
1
Second and later imports don’t rerun the module’s code; they
        just fetch the already created module object from Python’s internal
        modules table. Thus, the variable spam is not reinitialized:
>>> simple.spam = 2        # Change attribute in module
>>> import simple          # Just fetches already loaded module
>>> simple.spam            # Code wasn't rerun: attribute unchanged
2
Of course, sometimes you really want a
        module’s code to be rerun on a subsequent import. We’ll see how to do
        this with Python’s reload function
        later in this chapter.


import and from Are Assignments
Just like def, import and from are executable
      statements, not compile-time declarations. They may be nested in
      if tests, to select among options;
      appear in function defs, to be loaded
      only on calls (subject to the preceding note); be used in try statements, to provide defaults; and so
      on. They are not resolved or run until Python reaches them while
      executing your program. In other words, imported modules and names are
      not available until their associated import or from statements run.
Changing mutables in modules
Also, like def, the
        import and from are implicit
        assignments:
	import assigns an entire
            module object to a single name.

	from assigns one or more
            names to objects of the same names in another module.


All the things we’ve already discussed about assignment apply to
        module access, too. For instance, names copied with a from become references to shared objects; as
        with function arguments, reassigning a copied name has no effect on
        the module from which it was copied, but changing a shared
        mutable object through a copied name can also
        change it in the module from which it was imported. To illustrate,
        consider the following file, small.py:
x = 1
y = [1, 2]
When importing with from, we
        copy names to the importer’s scope that initially share objects
        referenced by the module’s names:
% python
>>> from small import x, y         # Copy two names out
>>> x = 42                         # Changes local x only
>>> y[0] = 42                      # Changes shared mutable in place
Here, x is not a shared
        mutable object, but y is. The names
        y in the importer and the importee
        both reference the same list object, so changing it from one place
        changes it in the other:
>>> import small                   # Get module name (from doesn't)
>>> small.x                        # Small's x is not my x
1
>>> small.y                        # But we share a changed mutable
[42, 2]
For more background on this, see Chapter 6. And for a graphical picture
        of what from assignments do with
        references, flip back to Figure 18-1 (function
        argument passing), and mentally replace “caller” and “function” with
        “imported” and “importer.” The effect is the same, except that here
        we’re dealing with names in modules, not functions. Assignment works
        the same everywhere in Python.

Cross-file name changes
Recall from the preceding example that the assignment to
        x in the interactive session
        changed the name x in that scope
        only, not the x in the file—there
        is no link from a name copied with from back to the file it came from. To
        really change a global name in another file, you must use import:
% python
>>> from small import x, y         # Copy two names out
>>> x = 42                         # Changes my x only

>>> import small                   # Get module name
>>> small.x = 42                   # Changes x in other module
This phenomenon was introduced in Chapter 17.
        Because changing variables in other modules like this is a common
        source of confusion (and often a bad design choice), we’ll revisit
        this technique again later in this part of the book. Note that the
        change to y[0] in the prior session
        is different; it changes an object, not a name,
        and the name in both modules references the same, changed
        object.


import and from Equivalence
Notice in the prior example that we have to execute an import statement after the from to access the small module name at all. from only copies names from one module to
      another; it does not assign the module name itself. At least
      conceptually, a from statement like
      this one:
from module import name1, name2     # Copy these two names out (only)
is equivalent to this statement sequence:
import module                       # Fetch the module object
name1 = module.name1                # Copy names out by assignment
name2 = module.name2
del module                          # Get rid of the module name
Like all assignments, the from
      statement creates new variables in the importer, which initially refer
      to objects of the same names in the imported file. Only the
      names are copied out, though, not the objects they
      reference, and not the name of the module itself. When we use the
      from * form of this statement
      (from module import *), the
      equivalence is the same, but all the top-level names in the module are
      copied over to the importing scope this way.
Notice that the first step of the from runs a normal import operation, with all the semantics
      outlined in the preceding chapter. Because of this, the from always imports the
      entire module into memory if it has not yet been
      imported, regardless of how many names it copies out of the file. There
      is no way to load just part of a module file (e.g., just one function),
      but because modules are byte code in Python instead of machine code, the
      performance implications are generally negligible.

Potential Pitfalls of the from Statement
Because the from statement
      makes the location of a variable more implicit and obscure
      (name is less meaningful to the
      reader than module.name), some Python
      users recommend using import instead
      of from most of the time. I’m not
      sure this advice is warranted, though; from is commonly and widely used, without too
      many dire consequences. In practice, in realistic programs, it’s often
      convenient not to have to type a module’s name every time you wish to
      use one of its tools. This is especially true for large modules that
      provide many attributes—the standard library’s tkinter GUI module, for example.
It is true that the from
      statement has the potential to corrupt namespaces, at least in
      principle—if you use it to import variables that happen to have the same
      names as existing variables in your scope, your variables will be
      silently overwritten. This problem doesn’t occur with the simple
      import statement because you must
      always go through a module’s name to get to its contents (module.attr will not clash with a variable
      named attr in your scope). As long as
      you understand and expect that this can happen when using from, though, this isn’t a major concern in
      practice, especially if you list the imported names explicitly (e.g.,
      from module import x, y, z).
On the other hand, the from
      statement has more serious issues when used in conjunction with the
      reload call, as imported names might
      reference prior versions of objects. Moreover, the from module import * form really
      can corrupt namespaces and make names difficult to
      understand, especially when applied to more than one file—in this case,
      there is no way to tell which module a name came from, short of
      searching the external source files. In effect, the from * form collapses one namespace into
      another, and so defeats the namespace partitioning feature of modules.
      We will explore these issues in more detail in the section “Module Gotchas” (see Chapter 25).
Probably the best real-world advice here is to generally prefer
      import to from for simple modules, to explicitly list
      the variables you want in most from
      statements, and to limit the from *
      form to just one import per file. That way, any undefined names can be
      assumed to live in the module referenced with the from *. Some care is required when using the
      from statement, but armed with a
      little knowledge, most programmers find it to be a convenient way to
      access modules.
When import is required
The only time you really must use import instead of from is when you must use the same name
        defined in two different modules. For example, if two files define the
        same name differently:
# M.py
def func():
    ...do something...

# N.py
def func():
    ...do something else...
and you must use both versions of the name in your program, the
        from statement will fail—you can
        have only one assignment to the name in your scope:
# O.py
from M import func
from N import func             # This overwrites the one we fetched from M
func()                         # Calls N.func only!
An import will work here,
        though, because including the name of the enclosing module makes the
        two names unique:
# O.py
import M, N                    # Get the whole modules, not their names
M.func()                       # We can call both names now
N.func()                       # The module names make them unique
This case is unusual enough that you’re unlikely to encounter it
        very often in practice. If you do, though, import allows you to avoid the name
        collision. Another way out of this dilemma is using the as extension, which we’ll cover in Chapter 25 but is simple enough to introduce
        here:
# O.py
from M import func as mfunc    # Rename uniquely with "as"
from N import func as nfunc
mfunc(); nfunc()               # Calls one or the other
The as extension works in
        both import and from as a simple renaming tool (it can also
        be used to give a shorter synonym for a long module name in import); more on this form in Chapter 25.



Module Namespaces
Modules are probably best understood as simply packages of names—i.e.,
    places to define names you want to make visible to the rest of a system.
    Technically, modules usually correspond to files, and Python creates a
    module object to contain all the names assigned in a module file. But in
    simple terms, modules are just namespaces (places where names are
    created), and the names that live in a module are called its
    attributes. This section expands on the details
    behind this model.
Files Generate Namespaces
I’ve mentioned that files morph into namespaces, but how
      does this actually happen? The short answer is that every name that is
      assigned a value at the top level of a module file (i.e., not nested in
      a function or class body) becomes an attribute of that module.
For instance, given an assignment statement such as X = 1 at the top level of a module file
      M.py, the name X becomes an attribute of M, which we can refer to from outside the
      module as M.X. The name X also becomes a global variable to other code
      inside M.py, but we need to
      consider the notion of module loading and scopes a bit more formally to
      understand why:
	Module statements run on the first
          import. The first time a module is imported anywhere in a
          system, Python creates an empty module object and executes the
          statements in the module file one after another, from the top of the
          file to the bottom.

	Top-level assignments create module
          attributes. During an import, statements at the top level
          of the file not nested in a def
          or class that assign names (e.g.,
          =, def) create attributes of the module
          object; assigned names are stored in the module’s namespace.

	Module namespaces can be accessed via
          the attribute __dict__ or dir(M). Module namespaces created by
          imports are dictionaries; they may be accessed through the built-in
          __dict__ attribute associated
          with module objects and may be inspected with the dir function.
          The dir function is roughly
          equivalent to the sorted keys list of an object’s __dict__
          attribute, but it includes inherited names for classes, may not be
          complete, and is prone to changing from release to release.

	Modules are a single scope (local is
          global). As we saw in Chapter 17, names at the top
          level of a module follow the same reference/assignment rules as
          names in a function, but the local and global scopes are the
          same—or, more formally, they follow the LEGB scope rule we met in
          Chapter 17, but without the L
          and E lookup layers.
Crucially, though, the module’s global
          scope becomes an attribute dictionary of a
          module object after the module has been loaded.
          Unlike function scopes, where the local namespace exists only while
          the function runs, a module file’s scope becomes a module object’s
          attribute namespace and lives on after the
          import, providing a source of tools to importers.


Here’s a demonstration of these ideas. Suppose we create the
      following module file in a text editor and call it module2.py:
print('starting to load...')
import sys
name = 42

def func(): pass

class klass: pass

print('done loading.')
The first time this module is imported (or run as a program),
      Python executes its statements from top to bottom. Some statements
      create names in the module’s namespace as a side effect, but others do
      actual work while the import is going on. For instance, the two print statements in this file execute at
      import time:
>>> import module2
starting to load...
done loading.
Once the module is loaded, its scope becomes an attribute
      namespace in the module object we get back from import. We can then access attributes in this
      namespace by qualifying them with the name of the enclosing
      module:
>>> module2.sys
<module 'sys' (built-in)>

>>> module2.name
42

>>> module2.func
<function func at 0x000000000222E7B8>

>>> module2.klass
<class 'module2.klass'>
Here, sys, name, func,
      and klass were all assigned while the
      module’s statements were being run, so they are attributes after the
      import. We’ll talk about classes in Part VI,
      but notice the sys attribute—import statements really
      assign module objects to names, and any type of
      assignment to a name at the top level of a file generates a module
      attribute.

Namespace Dictionaries: __dict__
In fact, internally, module namespaces are stored as
      dictionary objects. These are just normal
      dictionaries with all the usual methods. When needed—for instance, to
      write tools that list module content generically as we will in Chapter 25—we can access a module’s namespace
      dictionary through the module’s __dict__
      attribute. Continuing the prior section’s example (remember to wrap this
      in a list call in Python 3.X—it’s a
      view object there, and contents may vary outside 3.3 used here):
>>> list(module2.__dict__.keys())
['__loader__', 'func', 'klass', '__builtins__', '__doc__', '__file__', '__name__',
'name', '__package__', 'sys', '__initializing__', '__cached__']
The names we assigned in the module file become dictionary keys
      internally, so some of the names here reflect top-level assignments in
      our file. However, Python also adds some names in the module’s namespace
      for us; for instance, __file__ gives
      the name of the file the module was loaded from, and __name__ gives its name as known to importers
      (without the .py extension and
      directory path). To see just the names your code assigns, filter out the
      double-underscore names as we’ve done before, in Chapter 15’s dir coverage and Chapter 17’s
      built-in scope coverage:
>>> list(name for name in module2.__dict__.keys() if not name.startswith('__'))
['func', 'klass', 'name', 'sys']
>>> list(name for name in module2.__dict__ if not name.startswith('__'))
['func', 'sys', 'name', 'klass']
This time we’re filtering with a generator
      instead of a list comprehension, and can omit the .keys() because dictionaries generate their
      keys automatically though implicitly; the effect is the same. We’ll see
      similar __dict__ dictionaries on
      class-related objects in Part VI too. In both cases, attribute fetch is
      similar to dictionary indexing, though only the former kicks off
      inheritance in classes:
>>> module2.name, module2.__dict__['name']
(42, 42)

Attribute Name Qualification
Speaking of attribute fetch, now that you’re becoming more familiar
      with modules, we should firm up the notion of name qualification more
      formally too. In Python, you can access the attributes of any object
      that has attributes using the qualification (a.k.a.
      attribute fetch) syntax object.attribute.
Qualification is really an expression that returns the value
      assigned to an attribute name associated with an object. For example,
      the expression module2.sys in the
      previous example fetches the value assigned to sys in module2. Similarly, if we have a built-in list
      object L, L.append returns the append method object associated with that
      list.
It’s important to keep in mind that attribute qualification has
      nothing to do with the scope rules we studied in Chapter 17; it’s an independent concept. When you use
      qualification to access names, you give Python an explicit object from
      which to fetch the specified names. The LEGB scope rule applies only to
      bare, unqualified names—it may be used for the leftmost name in a name
      path, but later names after dots search specific objects instead. Here
      are the rules:
	Simple variables
	X means search for the
            name X in the current scopes
            (following the LEGB rule of Chapter 17).

	Qualification
	X.Y means find X in the current scopes, then search for
            the attribute Y in the object
            X (not in scopes).

	Qualification paths
	X.Y.Z means look up the
            name Y in the object X, then look up Z in the object X.Y.

	Generality
	Qualification works on all objects with attributes: modules,
            classes, C extension types, etc.


In Part VI, we’ll see that attribute
      qualification means a bit more for classes—it’s also the place where
      something called inheritance happens—but in
      general, the rules outlined here apply to all names in Python.

Imports Versus Scopes
As we’ve learned, it is never possible to access names defined in another
      module file without first importing that file. That is, you never
      automatically get to see names in another file, regardless of the
      structure of imports or function calls in your program. A variable’s
      meaning is always determined by the locations of assignments in your
      source code, and attributes are always requested of an object
      explicitly.
For example, consider the following two simple modules. The first,
      moda.py, defines a variable
      X global to code in its file only,
      along with a function that changes the global X in this file:
X = 88                        # My X: global to this file only
def f():
    global X                  # Change this file's X
    X = 99                    # Cannot see names in other modules
The second module, modb.py,
      defines its own global variable X and
      imports and calls the function in the first module:
X = 11                        # My X: global to this file only

import moda                   # Gain access to names in moda
moda.f()                      # Sets moda.X, not this file's X
print(X, moda.X)
When run, moda.f changes the
      X in moda, not the X in modb.
      The global scope for moda.f is always
      the file enclosing it, regardless of which module it is ultimately
      called from:
% python modb.py
11 99
In other words, import operations never give upward visibility to
      code in imported files—an imported file cannot see names in the
      importing file. More formally:
	Functions can never see names in other functions, unless they
          are physically enclosing.

	Module code can never see names in other modules, unless they
          are explicitly imported.


Such behavior is part of the lexical scoping
      notion—in Python, the scopes surrounding a piece of code are completely
      determined by the code’s physical position in your file. Scopes are
      never influenced by function calls or module imports.1

Namespace Nesting
In some sense, although imports do not nest namespaces upward, they do
      nest downward. That is, although an imported module never has direct
      access to names in a file that imports it, using attribute qualification
      paths it is possible to descend into arbitrarily nested modules and
      access their attributes. For example, consider the next three files.
      mod3.py defines a single global
      name and attribute by assignment:
X = 3
mod2.py in turn defines its
      own X, then imports mod3 and uses qualification to access the
      imported module’s attribute:
X = 2
import mod3

print(X, end=' ')             # My global X
print(mod3.X)                 # mod3's X
mod1.py also defines its own
      X, then imports mod2, and fetches attributes in both the first
      and second files:
X = 1
import mod2

print(X, end=' ')             # My global X
print(mod2.X, end=' ')        # mod2's X
print(mod2.mod3.X)            # Nested mod3's X
Really, when mod1 imports
      mod2 here, it sets up a two-level
      namespace nesting. By using the path of names mod2.mod3.X, it can descend into mod3, which is nested in the imported mod2. The net effect is that mod1 can see the Xs in all three files, and hence has access to
      all three global scopes:
% python mod1.py
2 3
1 2 3
The reverse, however, is not true: mod3 cannot see names in mod2, and mod2 cannot see names in mod1. This example may be easier to grasp if
      you don’t think in terms of namespaces and scopes, but instead focus on
      the objects involved. Within mod1,
      mod2 is just a name that refers to an
      object with attributes, some of which may refer to other objects with
      attributes (import is an assignment).
      For paths like mod2.mod3.X, Python
      simply evaluates from left to right, fetching attributes from objects
      along the way.
Note that mod1 can say import mod2, and then mod2.mod3.X, but it cannot say import mod2.mod3—this syntax invokes something
      called package (directory) imports, described in
      the next chapter. Package imports also create module namespace nesting,
      but their import statements are taken
      to reflect directory trees, not simple file import chains.


Reloading Modules
As we’ve seen, a module’s code is run only once per process by default. To
    force a module’s code to be reloaded and rerun, you need to ask Python to
    do so explicitly by calling the reload
    built-in function. In this section, we’ll explore how to use reloads to
    make your systems more dynamic. In a nutshell:
	Imports (via both import and
        from statements) load and run a
        module’s code only the first time the module is imported in a
        process.

	Later imports use the already loaded module object without
        reloading or rerunning the file’s code.

	The reload function forces an
        already loaded module’s code to be reloaded and rerun. Assignments in
        the file’s new code change the existing module object in place.


Why care about reloading modules? In short, dynamic
    customization: the reload
    function allows parts of a program to be changed without stopping the
    whole program. With reload, the effects
    of changes in components can be observed immediately. Reloading doesn’t
    help in every situation, but where it does, it makes for a much shorter
    development cycle. For instance, imagine a database program that must
    connect to a server on startup; because program changes or customizations
    can be tested immediately after reloads, you need to connect only once
    while debugging. Long-running servers can update themselves this way,
    too.
Because Python is interpreted (more or less), it already gets rid of
    the compile/link steps you need to go through to get a C program to run:
    modules are loaded dynamically when imported by a running program.
    Reloading offers a further performance advantage by allowing you to also
    change parts of running programs without stopping.
Though beyond this book’s scope, note that reload currently only works on modules written
    in Python; compiled extension modules coded in a language such as C can be
    dynamically loaded at runtime, too, but they can’t be reloaded (though
    most users probably prefer to code customizations in Python
    anyhow!).
Note
Version skew note: In Python 2.X, reload is available as a built-in function. In
      Python 3.X, it has been moved to the imp standard library module—it’s known as
      imp.reload in 3.X. This simply means
      that an extra import or from statement is required to load this tool
      in 3.X only. Readers using 2.X can ignore these imports in this book’s
      examples, or use them anyhow—2.X also has a reload in its imp module to ease migration to 3.X. Reloading
      works the same regardless of its packaging.

reload Basics
Unlike import and from:
	reload is a function in
          Python, not a statement.

	reload is passed an
          existing module object, not a new name.

	reload lives in a module in
          Python 3.X and must be imported itself.


Because reload expects an
      object, a module must have been previously imported successfully before
      you can reload it (if the import was unsuccessful due to a syntax or
      other error, you may need to repeat it before you can reload the
      module). Furthermore, the syntax of import statements and reload calls differs: as a function reloads
      require parentheses, but import statements do not. Abstractly, reloading
      looks like this:
import module                     # Initial import
...use module.attributes...
...                               # Now, go change the module file
...
from imp import reload            # Get reload itself (in 3.X)
reload(module)                    # Get updated exports
...use module.attributes...
The typical usage pattern is that you import a module, then change
      its source code in a text editor, and then reload it. This can occur
      when working interactively, but also in larger programs that reload
      periodically.
When you call reload, Python
      rereads the module file’s source code and reruns its top-level
      statements. Perhaps the most important thing to know about reload is that it changes a module object
      in place; it does not delete and re-create the
      module object. Because of that, every reference to an entire module
      object anywhere in your program is automatically
      affected by a reload. Here are the details:
	reload runs a module file’s new code in the module’s current
          namespace. Rerunning a module file’s code overwrites its
          existing namespace, rather than deleting and re-creating it.

	Top-level assignments in the file
          replace names with new values. For instance, rerunning a
          def statement replaces the prior
          version of the function in the module’s namespace by reassigning the
          function name.

	Reloads impact all clients that
          use import
          to fetch modules. Because clients
          that use import qualify to fetch
          attributes, they’ll find new values in the module object after a
          reload.

	Reloads impact future
          from clients only. Clients that used from to fetch attributes in the past won’t
          be affected by a reload; they’ll still have references to the old
          objects fetched before the reload.

	Reloads apply to a single module
          only. You must run them on each module you wish to
          update, unless you use code or tools that apply reloads
          transitively.



reload Example
To demonstrate, here’s a more concrete example of reload in action. In the following, we’ll
      change and reload a module file without stopping the interactive Python
      session. Reloads are used in many other scenarios, too (see the sidebar
      “Why You Will Care: Module Reloads”), but we’ll
      keep things simple for illustration here. First, in the text editor of
      your choice, write a module file named changer.py with the following
      contents:
message = "First version"
def printer():
    print(message)
This module creates and exports two names—one bound to a string,
      and another to a function. Now, start the Python interpreter, import the
      module, and call the function it exports. The function will print the
      value of the global message
      variable:
% python
>>> import changer
>>> changer.printer()
First version
Keeping the interpreter active, now edit the module file in
      another window:
...modify changer.py without stopping Python...
% notepad changer.py
Change the global message
      variable, as well as the printer
      function body:
message = "After editing"
def printer():
    print('reloaded:', message)
Then, return to the Python window and reload the module to fetch
      the new code. Notice in the following interaction that importing the
      module again has no effect; we get the original message, even though the
      file’s been changed. We have to call reload in order to get the new version:
...back to the Python interpreter...
>>> import changer
>>> changer.printer()                 # No effect: uses loaded module
First version
>>> from imp import reload
>>> reload(changer)                   # Forces new code to load/run
<module 'changer' from '.\\changer.py'>
>>> changer.printer()                 # Runs the new version now
reloaded: After editing
Notice that reload actually
      returns the module object for us—its result is
      usually ignored, but because expression results are printed at the
      interactive prompt, Python shows a default <module 'name'...>
      representation.
Two final notes here: first, if you use reload, you’ll probably want to pair it with
      import instead of from, as the latter isn’t updated by reload
      operations—leaving your names in a state that’s strange enough to
      warrant postponing further elaboration until this part’s “gotchas” at
      the end of Chapter 25. Second, reload by itself updates only a
      single module, but it’s straightforward to code a
      function that applies it transitively to related modules—an extension
      we’ll save for a case study near the end of Chapter 25.
Why You Will Care: Module Reloads
Besides allowing you to reload (and hence rerun) modules at the
        interactive prompt, module reloads are also useful in larger systems,
        especially when the cost of restarting the entire application is
        prohibitive. For instance, game servers and systems that must connect
        to servers over a network on startup are prime candidates for dynamic
        reloads.
They’re also useful in GUI work (a widget’s callback action can
        be changed while the GUI remains active), and when Python is used as
        an embedded language in a C or C++ program (the enclosing program can
        request a reload of the Python code it runs, without having to stop).
        See Programming
        Python for more on reloading GUI callbacks and embedded Python
        code.
More generally, reloads allow programs to provide highly dynamic
        interfaces. For instance, Python is often used as a
        customization language for larger systems—users
        can customize products by coding bits of Python code onsite, without
        having to recompile the entire product (or even having its source code
        at all). In such worlds, the Python code already adds a dynamic flavor
        by itself.
To be even more dynamic, though, such systems can automatically
        reload the Python customization code periodically at runtime. That
        way, users’ changes are picked up while the system is running; there
        is no need to stop and restart each time the Python code is modified.
        Not all systems require such a dynamic approach, but for those that
        do, module reloads provide an easy-to-use dynamic customization
        tool.



Chapter Summary
This chapter delved into the essentials of module coding tools—the
    import and from statements, and the reload call. We learned how the from statement simply adds an extra step that
    copies names out of a file after it has been imported, and how reload forces a file to be imported again
    without stopping and restarting Python. We also surveyed namespace
    concepts, saw what happens when imports are nested, explored the way files
    become module namespaces, and learned about some potential pitfalls of the
    from statement.
Although we’ve already seen enough to handle module files in our
    programs, the next chapter extends our coverage of the import model by
    presenting package imports—a way for our import statements to specify part of the
    directory path leading to the desired module. As we’ll see, package
    imports give us a hierarchy that is useful in larger systems and allow us
    to break conflicts between same-named modules. Before we move on, though,
    here’s a quick quiz on the concepts presented here.

Test Your Knowledge: Quiz
	How do you make a module?

	How is the from statement
        related to the import
        statement?

	How is the reload function
        related to imports?

	When must you use import
        instead of from?

	Name three potential pitfalls of the from statement.

	What...is the airspeed velocity of an unladen swallow?



Test Your Knowledge: Answers
	To create a module, you simply write a text file containing
        Python statements; every source code file is automatically a module,
        and there is no syntax for declaring one. Import operations load
        module files into module objects in memory. You can also make a module
        by writing code in an external language like C or Java, but such
        extension modules are beyond the scope of this book.

	The from statement imports an
        entire module, like the import
        statement, but as an extra step it also copies one or more variables
        from the imported module into the scope where the from appears. This enables you to use the
        imported names directly (name)
        instead of having to go through the module (module.name).

	By default, a module is imported only once per process. The
        reload function forces a module to
        be imported again. It is mostly used to pick up new versions of a
        module’s source code during development, and in dynamic customization
        scenarios.

	You must use import instead
        of from only when you need to
        access the same name in two different modules; because you’ll have to
        specify the names of the enclosing modules, the two names will be
        unique. The as extension can render
        from usable in this context as
        well.

	The from statement can
        obscure the meaning of a variable (which module it is defined in), can
        have problems with the reload call
        (names may reference prior versions of objects), and can corrupt
        namespaces (it might silently overwrite names you are using in your
        scope). The from * form is worse in
        most regards—it can seriously corrupt namespaces and obscure the
        meaning of variables, so it is probably best used sparingly.

	What do you mean? An African or European swallow?



1 Some languages act differently and provide for dynamic scoping,
            where scopes really may depend on runtime calls. This tends to make code trickier,
            though, because the meaning of a variable can differ over time. In Python, scopes more
            simply correspond to the text of your program.








Chapter 24. Module Packages
So far, when we’ve imported modules, we’ve been loading files. This
  represents typical module usage, and it’s probably the technique you’ll use
  for most imports you’ll code early on in your Python career. However, the
  module import story is a bit richer than I have thus far implied.
In addition to a module name, an import can name a directory path. A directory of Python code
  is said to be a package, so such imports are known
  as package imports. In effect, a package
  import turns a directory on your computer into another Python namespace,
  with attributes corresponding to the subdirectories and module files that
  the directory contains.
This is a somewhat advanced feature, but the hierarchy it provides
  turns out to be handy for organizing the files in a large system and tends
  to simplify module search path settings. As we’ll see, package imports are
  also sometimes required to resolve import ambiguities when multiple program
  files of the same name are installed on a single machine.
Because it is relevant to code in packages only, we’ll also
  introduce Python’s recent relative imports model
  and syntax here. As we’ll see, this model modifies search paths in 3.X,
  and extends the from statement
  for imports within packages in both 2.X and 3.X. This model can make such
  intrapackage imports more explicit and succinct, but comes with some
  tradeoffs that can impact your programs.
Finally, for readers using Python 3.3 and later, its new namespace package model—which allows
  packages to span multiple directories and requires no initialization file—is
  also introduced here. This new-style package model is optional and can be
  used in concert with the original (now known as “regular”) package model,
  but it upends some of the original model’s basic ideas and rules. Because of
  that, we’ll explore regular packages here first for all readers, and present
  namespace packages last as an optional topic.
Package Import Basics
At a base level, package imports are straightforward—in the place where you
    have been naming a simple file in your import statements, you can instead list a path of names separated by
    periods:
import dir1.dir2.mod
The same goes for from
    statements:
from dir1.dir2.mod import x
The “dotted” path in these statements is assumed to correspond to a
    path through the directory hierarchy on your computer, leading to the file
    mod.py (or similar; the extension may
    vary). That is, the preceding statements indicate that on your machine
    there is a directory dir1, which has
    a subdirectory dir2, which contains a
    module file mod.py (or
    similar).
Furthermore, these imports imply that dir1 resides within some container directory
    dir0, which is a component of the
    normal Python module search path. In other words, these two import statements imply a directory structure
    that looks something like this (shown with Windows backslash
    separators):
dir0\dir1\dir2\mod.py               # Or mod.pyc, mod.so, etc.
The container directory dir0
    needs to be added to your module search path unless it’s the home
    directory of the top-level file, exactly as if dir1 were a simple module file.
More formally, the leftmost component in a package import path is
    still relative to a directory included in the
    sys.path module search path list we
    explored in Chapter 22. From there
    down, though, the import statements in your script explicitly give the
    directory paths leading to modules in packages.
Packages and Search Path Settings
If you use this feature, keep in mind that the directory paths in your import statements
      can be only variables separated by periods. You cannot use any
      platform-specific path syntax in your import statements, such as
      C:\dir1, My
      Documents.dir2, or ../dir1—these do not work syntactically.
      Instead, use any such platform-specific syntax in your module search
      path settings to name the container directories.
For instance, in the prior example, dir0—the directory name you add to your
      module search path—can be an arbitrarily long and platform-specific
      directory path leading up to dir1.
      You cannot use an invalid statement like this:
import C:\mycode\dir1\dir2\mod      # Error: illegal syntax
But you can add C:\mycode to
      your PYTHONPATH variable or a .pth file, and
      say this in your script:
import dir1.dir2.mod
In effect, entries on the module search path provide
      platform-specific directory path prefixes, which
      lead to the leftmost names in import
      and from statements. These import
      statements themselves provide the remainder of the directory path in a
      platform-neutral fashion.1
As for simple file imports, you don’t need to add the container
      directory dir0 to your module
      search path if it’s already there—per Chapter 22, it will be if it’s the home
      directory of the top-level file, the directory you’re working in
      interactively, a standard library directory, or the site-packages third-party install root. One
      way or another, though, your module search path must include all the
      directories containing leftmost components in your code’s package import
      statements.

Package __init__.py Files
If you choose to use package imports, there is one more constraint you must follow: at
      least until Python 3.3, each directory named within the path of a
      package import statement must contain a file named __init__.py, or your package imports will
      fail. That is, in the example we’ve been using, both dir1 and dir2 must contain a file called __init__.py; the container directory
      dir0 does not require such a file
      because it’s not listed in the import
      statement itself.
More formally, for a directory structure such as this:
dir0\dir1\dir2\mod.py
and an import statement of the
      form:
import dir1.dir2.mod
the following rules apply:
	dir1 and dir2 both must contain an __init__.py file.

	dir0, the container, does
          not require an __init__.py
          file; this file will simply be ignored if present.

	dir0, not dir0\dir1, must be listed on the module
          search path sys.path.


To satisfy the first two of these rules, package creators must
      create files of the sort we’ll explore here. To satisfy the latter of
      these, dir0 must be an automatic
      path component (the home, libraries, or site-packages directories), or be given in
      PYTHONPATH or .pth file settings or manual sys.path changes.
The net effect is that this example’s directory structure should
      be as follows, with indentation designating directory nesting:
dir0\                               # Container on module search path
    dir1\
        __init__.py
        dir2\
            __init__.py
            mod.py
The __init__.py files can
      contain Python code, just like normal module files. Their names are
      special because their code is run automatically the first time a Python
      program imports a directory, and thus serves primarily as a hook for
      performing initialization steps required by the package. These files can
      also be completely empty, though, and sometimes have additional roles—as
      the next section explains.
Note
As we’ll see near the end of this chapter, the requirement of
        packages to have a file named __init__.py has been lifted as of Python
        3.3. In that release and later, directories of modules with no such
        file may be imported as single-directory namespace
        packages, which work the same but run no
        initialization-time code file. Prior to Python 3.3, though, and in all
        of Python 2.X, packages still require __init__.py files. As described ahead, in
        3.3 and later these files also provide a performance advantage when
        used.

Package initialization file roles
In more detail, the __init__.py file serves as a hook for
        package initialization-time actions, declares a directory as a Python
        package, generates a module namespace for a directory, and implements
        the behavior of from * (i.e.,
        from .. import *) statements when
        used with directory imports:
	Package initialization
	The first time a Python program imports through a
              directory, it automatically runs all the code in the directory’s
              __init__.py file. Because
              of that, these files are a natural place to put code to
              initialize the state required by files in a package. For
              instance, a package might use its initialization file to create
              required data files, open connections to databases, and so on.
              Typically, __init__.py
              files are not meant to be useful if executed directly; they are
              run automatically when a package is first accessed.

	Module usability declarations
	Package __init__.py
              files are also partly present to declare that a directory is a
              Python package. In this role, these files serve to prevent
              directories with common names from unintentionally hiding true
              modules that appear later on the module search path. Without
              this safeguard, Python might pick a directory that has nothing
              to do with your code, just because it appears nested in an
              earlier directory on the search path. As we’ll see later, Python
              3.3’s namespace packages obviate much of this role, but achieve
              a similar effect algorithmically by scanning ahead on the path
              to find later files.

	Module namespace initialization
	In the package import model, the directory paths in your
              script become real nested object paths after an import. For
              instance, in the preceding example, after the import the
              expression dir1.dir2 works
              and returns a module object whose namespace contains all the
              names assigned by dir2’s
              __init__.py initialization
              file. Such files provide a namespace for module objects created
              for directories, which would otherwise have no real associated
              module file.

	from * statement
            behavior
	As an advanced feature, you can use __all__
              lists in __init__.py files
              to define what is exported when a directory is imported with the
              from * statement form. In an
              __init__.py file, the
              __all__ list is taken to be
              the list of submodule names that should be automatically
              imported when from * is used
              on the package (directory) name. If __all__ is not set, the from * statement does not
              automatically load submodules nested in the directory; instead,
              it loads just names defined by assignments in the directory’s
              __init__.py file, including
              any submodules explicitly imported by code in this file. For
              instance, the statement from submodule
              import X in a directory’s __init__.py makes the name X available in that directory’s
              namespace. (We’ll see additional roles for __all__ in Chapter 25: it serves to declare
              from * exports of simple
              files as well.)


You can also simply leave these files empty, if their roles are
        beyond your needs (and frankly, they are often empty in practice).
        They must exist, though, for your directory imports to work at
        all.
Note
Don’t confuse package __init__.py files with the class __init__ constructor methods we’ll meet in
          the next part of the book. The former are files of code run when
          imports first step through a package directory in a program run,
          while the latter are called when an instance is created. Both have
          initialization roles, but they are otherwise very different.




Package Import Example
Let’s actually code the example we’ve been talking about to show how initialization
    files and paths come into play. The following three files are coded in a
    directory dir1 and its subdirectory
    dir2—comments give the pathnames of
    these files:
# dir1\__init__.py
print('dir1 init')
x = 1

# dir1\dir2\__init__.py
print('dir2 init')
y = 2

# dir1\dir2\mod.py
print('in mod.py')
z = 3
Here, dir1 will be either an
    immediate subdirectory of the one we’re working in (i.e., the home
    directory), or an immediate subdirectory of a directory that is listed on
    the module search path (technically, on sys.path). Either way, dir1’s container does not need an __init__.py file.
import statements run each
    directory’s initialization file the first time that directory is
    traversed, as Python descends the path; print statements are included here to trace
    their execution:
C:\code> python               # Run in dir1's container directory
>>> import dir1.dir2.mod      # First imports run init files
dir1 init
dir2 init
in mod.py
>>>
>>> import dir1.dir2.mod      # Later imports do not
Just like module files, an already imported directory may be passed
    to reload to force reexecution of that
    single item. As shown here, reload
    accepts a dotted pathname to reload nested directories and files:
>>> from imp import reload    # from needed in 3.X only
>>> reload(dir1)
dir1 init
<module 'dir1' from '.\\dir1\\__init__.py'>
>>>
>>> reload(dir1.dir2)
dir2 init
<module 'dir1.dir2' from '.\\dir1\\dir2\\__init__.py'>
Once imported, the path in your import statement becomes a nested
    object path in your script. Here, mod is an object nested in the object dir2, which in turn is nested in the object
    dir1:
>>> dir1
<module 'dir1' from '.\\dir1\\__init__.py'>
>>> dir1.dir2
<module 'dir1.dir2' from '.\\dir1\\dir2\\__init__.py'>
>>> dir1.dir2.mod
<module 'dir1.dir2.mod' from '.\\dir1\\dir2\\mod.py'>
In fact, each directory name in the path becomes a variable assigned
    to a module object whose namespace is initialized by all the assignments
    in that directory’s __init__.py file.
    dir1.x refers to the variable x assigned in dir1\__init__.py, much as mod.z refers to the variable z assigned in mod.py:
>>> dir1.x
1
>>> dir1.dir2.y
2
>>> dir1.dir2.mod.z
3
from Versus import with Packages
import statements can be somewhat inconvenient to use with packages, because
      you may have to retype the paths frequently in your program. In the
      prior section’s example, for instance, you must retype and rerun the
      full path from dir1 each time you
      want to reach z. If you try to access
      dir2 or mod directly, you’ll get an error:
>>> dir2.mod
NameError: name 'dir2' is not defined
>>> mod.z
NameError: name 'mod' is not defined
It’s often more convenient, therefore, to use the from statement with packages to avoid retyping
      the paths at each access. Perhaps more importantly, if you ever
      restructure your directory tree, the from statement requires just one path update
      in your code, whereas imports may
      require many. The import as
      extension, discussed formally in the next chapter, can also help here by
      providing a shorter synonym for the full path, and a renaming tool when
      the same name appears in multiple modules:
C:\code> python
>>> from dir1.dir2 import mod             # Code path here only
dir1 init
dir2 init
in mod.py
>>> mod.z                                 # Don't repeat path
3
>>> from dir1.dir2.mod import z
>>> z
3
>>> import dir1.dir2.mod as mod           # Use shorter name (see Chapter 25)
>>> mod.z
3
>>> from dir1.dir2.mod import z as modz   # Ditto if names clash (see Chapter 25)
>>> modz
3


Why Use Package Imports?
If you’re new to Python, make sure that you’ve mastered simple modules before
    stepping up to packages, as they are a somewhat more advanced feature.
    They do serve useful roles, though, especially in larger programs: they
    make imports more informative, serve as an organizational tool, simplify
    your module search path, and can resolve ambiguities.
First of all, because package imports give some directory
    information in program files, they both make it easier to locate your
    files and serve as an organizational tool. Without package paths, you must
    often resort to consulting the module search path to find files. Moreover,
    if you organize your files into subdirectories for functional areas,
    package imports make it more obvious what role a module plays, and so make
    your code more readable. For example, a normal import of a file in a
    directory somewhere on the module search path, like this:
import utilities
offers much less information than an import that includes the
    path:
import database.client.utilities
Package imports can also greatly simplify your PYTHONPATH and .pth file search path settings. In fact, if you
    use explicit package imports for all your cross-directory imports, and you
    make those package imports relative to a common root directory where all
    your Python code is stored, you really only need a single entry on your
    search path: the common root. Finally, package imports serve to resolve
    ambiguities by making explicit exactly which files you want to import—and
    resolve conflicts when the same module name appears in more than one
    place. The next section explores this role in more detail.
A Tale of Three Systems
The only time package imports are actually
      required is to resolve ambiguities that may arise
      when multiple programs with same-named files are installed on a single
      machine. This is something of an install issue, but it can also become a
      concern in general practice—especially given the tendency of developers
      to use simple and similar names for module files. Let’s turn to a
      hypothetical scenario to illustrate.
Suppose that a programmer develops a Python program that contains
      a file called utilities.py for
      common utility code, and a top-level file named main.py that users launch to start the
      program. All over this program, its files say import utilities to load and use the common
      code. When the program is shipped, it arrives as a single .tar or .zip file containing all the program’s files,
      and when it is installed, it unpacks all its files into a single
      directory named system1 on the
      target machine:
system1\
    utilities.py        # Common utility functions, classes
    main.py             # Launch this to start the program
    other.py            # Import utilities to load my tools
Now, suppose that a second programmer develops a different program
      with files also called utilities.py
      and main.py, and again uses
      import utilities throughout the
      program to load the common code file. When this second system is fetched
      and installed on the same computer as the first system, its files will
      unpack into a new directory called system2 somewhere on the receiving
      machine—ensuring that they do not overwrite same-named files from the
      first system:
system2\
    utilities.py        # Common utilities
    main.py             # Launch this to run
    other.py            # Imports utilities
So far, there’s no problem: both systems can coexist and run on
      the same computer. In fact, you won’t even need to configure the module
      search path to use these programs on your computer—because Python always
      searches the home directory first (that is, the directory containing the
      top-level file), imports in either system’s files will automatically see
      all the files in that system’s directory. For instance, if you click on
      system1\main.py, all imports will
      search system1 first. Similarly, if
      you launch system2\main.py,
      system2 will be searched first
      instead. Remember, module search path settings are only needed to import
      across directory boundaries.
However, suppose that after you’ve installed these two programs on
      your machine, you decide that you’d like to use some of the code in each
      of the utilities.py files in a
      system of your own. It’s common utility code, after all, and Python code
      by nature “wants” to be reused. In this case, you’d like to be able to
      say the following from code that you’re writing in a third directory to
      load one of the two files:
import utilities
utilities.func('spam')
Now the problem starts to materialize. To make this work at all,
      you’ll have to set the module search path to include the directories
      containing the utilities.py files.
      But which directory do you put first in the path—system1 or system2?
The problem is the linear nature of the
      search path. It is always scanned from left to right, so no matter how
      long you ponder this dilemma, you will always get just one utilities.py—from the directory listed first
      (leftmost) on the search path. As is, you’ll never be able to import it
      from the other directory at all.
You could try changing sys.path
      within your script before each import operation, but that’s both extra
      work and highly error prone. And changing PYTHONPATH before each Python program run is
      too tedious, and won’t allow you to use both versions in a single file
      in an event. By default, you’re stuck.
This is the issue that packages actually fix. Rather than
      installing programs in independent directories listed on the module
      search path individually, you can package and install them as
      subdirectories under a common root. For instance,
      you might organize all the code in this example as an install hierarchy
      that looks like this:
root\
    system1\
        __init__.py
        utilities.py
        main.py
        other.py
    system2\
        __init__.py
        utilities.py
        main.py
        other.py
    system3\                    # Here or elsewhere
        __init__.py             # Need __init__.py here only if imported elsewhere
        myfile.py               # Your new code here
Now, add just the common root directory to your search path. If
      your code’s imports are all relative to this common root, you can import
      either system’s utility file with a package
      import—the enclosing directory name makes the path (and hence, the
      module reference) unique. In fact, you can import
      both utility files in the same module, as long as
      you use an import statement and
      repeat the full path each time you reference the utility modules:
import system1.utilities
import system2.utilities
system1.utilities.function('spam')
system2.utilities.function('eggs')
The names of the enclosing directories here make the module
      references unique.
Note that you have to use import instead of from with packages only if you need to access
      the same attribute name in two or more paths. If
      the name of the called function here were different in each path, you
      could use from statements to avoid
      repeating the full package path whenever you call one of the functions,
      as described earlier; the as
      extension in from can also be used to
      provide unique synonyms.
Also, notice in the install hierarchy shown earlier that __init__.py files were added to the system1 and system2 directories to make this work, but
      not to the root directory. Only
      directories listed within import
      statements in your code require these files; as we’ve seen, they are run
      automatically the first time the Python process imports through a
      package directory.
Technically, in this case the system3 directory doesn’t have to be under
      root—just the packages of code from
      which you will import. However, because you never know when your own
      modules might be useful in other programs, you might as well place them
      under the common root directory as
      well to avoid similar name-collision problems in the future.
Finally, notice that both of the two original systems’ imports
      will keep working unchanged. Because their home
      directories are searched first, the addition of the common root on the
      search path is irrelevant to code in system1 and system2; they can keep saying just import utilities and expect to find their own
      files when run as programs—though not when used as packages in 3.X, as
      the next section explains. If you’re careful to unpack all your Python
      systems under a common root like this, path configuration also becomes
      simple: you’ll only need to add the common root directory once.
Why You Will Care: Module Packages
Because packages are a standard part of Python, it’s common to see larger
        third-party extensions shipped as sets of package directories, rather
        than flat lists of modules. The win32all Windows extensions package for Python, for instance, was one of the first
        to jump on the package bandwagon. Many of its utility modules reside
        in packages imported with paths. For instance, to load client-side COM
        tools, you use a statement like this:
from win32com.client import constants, Dispatch
This line fetches names from the client module of
        the win32com package—an install
        subdirectory.
Package imports are also pervasive in code run under the Jython
        Java-based implementation of Python, because Java libraries are
        organized into hierarchies as well. In recent Python releases, the
        email and XML tools are likewise organized into package subdirectories
        in the standard library, and Python 3.X groups even more related
        modules into packages—including tkinter GUI tools, HTTP networking
        tools, and more. The following imports access various standard library
        tools in 3.X (2.X usage may vary):
from email.message import Message
from tkinter.filedialog import askopenfilename
from http.server import CGIHTTPRequestHandler
Whether you create package directories or not, you will probably
        import from them eventually.



Package Relative Imports
The coverage of package imports so far has focused mostly on importing
    package files from outside the package. Within the
    package itself, imports of same-package files can use the same full path
    syntax as imports from outside the package—and as we’ll see, sometimes
    should. However, package files can also make use of special
    intrapackage search rules to simplify import statements. That is, rather than listing
    package import paths, imports within the package can be
    relative to the package.
The way this works is version-dependent: Python 2.X implicitly
    searches package directories first on imports, while 3.X requires explicit
    relative import syntax in order to import from the package directory. This
    3.X change can enhance code readability by making same-package imports
    more obvious, but it’s also incompatible with 2.X and may break some
    programs.
If you’re starting out in Python with version 3.X, your focus in
    this section will likely be on its new import syntax and model. If you’ve
    used other Python packages in the past, though, you’ll probably also be
    interested in how the 3.X model differs. Let’s begin our tour with the
    latter perspective on this topic.
Note
As we’ll learn in this section, use of package relative imports
      can actually limit your files’ roles. In short,
      they can no longer be used as executable program files in both 2.X and
      3.X. Because of this, normal package import paths may be a better option
      in many cases. Still, this feature has found its way into many a Python
      file, and merits a review by most Python programmers to better
      understand both its tradeoffs and motivation.

Changes in Python 3.X
The way import operations in packages work has changed slightly in Python
      3.X. This change applies only to imports within files when files are
      used as part of a package directory; imports in other usage modes work
      as before. For imports in packages, though, Python
      3.X introduces two changes:
	It modifies the module import search path semantics to skip
          the package’s own directory by default. Imports check only paths on
          the sys.path search path. These
          are known as absolute imports.

	It extends the syntax of from statements to allow them to
          explicitly request that imports search the package’s directory only,
          with leading dots. This is known as relative
          import syntax.


These changes are fully present in Python 3.X. The new from statement relative syntax is also
      available in Python 2.X, but the default absolute search path change
      must be enabled as an option there. Enabling this can break 2.X
      programs, but is available for 3.X forward compatibility.
The impact of this change is that in 3.X (and optionally in 2.X),
      you must generally use special from
      dotted syntax to import modules located in the same
      package as the importer, unless your imports list a complete path
      relative to a package root on sys.path, or your imports are relative to the
      always-searched home directory of the program’s top-level file (which is
      usually the current working directory).
By default, though, your package directory is not automatically
      searched, and intrapackage imports made by files in a directory used as
      a package will fail without the special from syntax. As we’ll see, in 3.X this can
      affect the way you will structure imports or directories for modules
      meant for use in both top-level programs and importable packages. First,
      though, let’s take a more detailed look at how this all works.

Relative Import Basics
In both Python 3.X and 2.X, from statements can now use leading dots (“.”)
      to specify that they require modules located within the same package
      (known as package relative imports), instead of
      modules located elsewhere on the module import search path (called absolute
      imports). That is:
	Imports with dots: In both Python 3.X and
          2.X, you can use leading dots in from statements’ module names to indicate
          that imports should be relative-only to the
          containing package—such imports will search for modules inside the
          package directory only and will not look for same-named modules
          located elsewhere on the import search path (sys.path). The net effect is that package
          modules override outside modules.

	Imports without dots: In Python 2.X,
          normal imports in a package’s code without leading dots currently
          default to a relative-then-absolute search path
          order—that is, they search the package’s own directory first.
          However, in Python 3.X, normal imports within a package are
          absolute-only by default—in the absence of any
          special dot syntax, imports skip the containing package itself and
          look elsewhere on the sys.path
          search path.


For example, in both Python 3.X and 2.X a statement of the
      form:
from . import spam                        # Relative to this package
instructs Python to import a module named spam located in the same package directory as
      the file in which this statement appears. Similarly, this
      statement:
from .spam import name
means “from a module named spam
      located in the same package as the file that contains this statement,
      import the variable name.”
The behavior of a statement without the
      leading dot depends on which version of Python you use. In 2.X, such an
      import will still default to the original
      relative-then-absolute search path order (i.e., searching the package’s directory first),
      unless a statement of the following form is included at the top of the
      importing file (as its first executable statement):
from __future__ import  absolute_import   # Use 3.X relative import model in 2.X
If present, this statement enables the Python 3.X
      absolute-only search path change. In 3.X, and in
      2.X when enabled, an import without a leading dot in the module name
      always causes Python to skip the relative components of the module
      import search path and look instead in the absolute directories
      that sys.path contains.
      For instance, in 3.X’s model, a statement of the following form will always find a string module somewhere on sys.path, instead of a module of the same name
      in the package:
import string                             # Skip this package's version
By contrast, without the from
      __future__ statement in 2.X, if there’s a local string module in the package, it will be
      imported instead. To get the same behavior in 3.X, and in 2.X when the
      absolute import change is enabled, run a statement of the following form
      to force a relative import:
from . import string                      # Searches this package only
This statement works in both Python 2.X and 3.X today. The only
      difference in the 3.X model is that it is required
      in order to load a module that is located in the same package directory
      as the file in which this appears, when the file is being used as part
      of a package (and unless full package paths are spelled out).
Notice that leading dots can be used to force relative imports
      only with the from statement, not
      with the import statement. In Python
      3.X, the import modname statement is
      always absolute-only, skipping the containing package’s directory. In
      2.X, this statement form still performs relative imports, searching the
      package’s directory first. from
      statements without leading dots behave the same as import statements—absolute-only in 3.X
      (skipping the package directory), and relative-then-absolute in 2.X
      (searching the package directory first).
Other dot-based relative reference patterns are possible, too.
      Within a module file located in a package directory named mypkg, the following alternative import forms
      work as described:
from .string import name1, name2          # Imports names from mypkg.string
from . import string                      # Imports mypkg.string
from .. import string                     # Imports string sibling of mypkg
To understand these latter forms better, and to justify all this
      added complexity, we need to take a short detour to explore the
      rationale behind this change.

Why Relative Imports?
Besides making intrapackage imports more explicit, this feature is designed in part to
      allow scripts to resolve ambiguities that can arise when a same-named
      file appears in multiple places on the module search path. Consider the
      following package directory:
mypkg\
    __init__.py
    main.py
    string.py
This defines a package named mypkg containing modules named mypkg.main and mypkg.string. Now, suppose that the main module tries to import a module named
      string. In Python 2.X and earlier,
      Python will first look in the mypkg
      directory to perform a relative import. It will
      find and import the string.py file
      located there, assigning it to the name string in the mypkg.main module’s namespace.
It could be, though, that the intent of this import was to load
      the Python standard library’s string
      module instead. Unfortunately, in these versions of Python, there’s no
      straightforward way to ignore mypkg.string and look for the standard
      library’s string module located on
      the module search path. Moreover, we cannot resolve this with full
      package import paths, because we cannot depend on any extra package
      directory structure above the standard library being present on every
      machine.
In other words, simple imports in packages can be both ambiguous
      and error-prone. Within a package, it’s not clear whether an import spam statement refers to a module
      within or outside the package. As one consequence, a local module or
      package can hide another hanging directly off of sys.path, whether intentionally or not.
In practice, Python users can avoid reusing the names of standard
      library modules they need for modules of their own (if you need the
      standard string, don’t name a new
      module string!). But this doesn’t
      help if a package accidentally hides a standard module; moreover, Python
      might add a new standard library module in the future that has the same
      name as a module of your own. Code that relies on relative imports is
      also less easy to understand, because the reader may be confused about
      which module is intended to be used. It’s better if the resolution can
      be made explicit in code.
The relative imports solution in 3.X
To address this dilemma, imports run within packages have changed in Python 3.X to be
        absolute-only (and can be made so as an option in 2.X). Under this
        model, an import statement of the
        following form in our example file mypkg/main.py will always find a string module outside
        the package, via an absolute import search of sys.path:
import string                          # Imports string outside package (absolute)
A from import without
        leading-dot syntax is considered absolute as well:
from string import name                # Imports name from string outside package
If you really want to import a module from your package without
        giving its full path from the package root, though, relative imports
        are still possible if you use the dot syntax in the from statement:
from . import string                   # Imports mypkg.string here (relative)
This form imports the string
        module relative to the current package only and is the relative
        equivalent to the prior import
        example’s absolute form (both load a module as a whole). When this
        special relative syntax is used, the package’s directory is the only
        directory searched.
We can also copy specific names from a module with relative
        syntax:
from .string import name1, name2       # Imports names from mypkg.string
This statement again refers to the string module relative to the current
        package. If this code appears in our mypkg.main module, for example, it will
        import name1 and name2 from mypkg.string.
In effect, the “.” in a relative import is taken to stand for
        the package directory containing the file in
        which the import appears. An additional leading dot performs the
        relative import starting from the parent of the
        current package. For example, this statement:
from .. import spam                    # Imports a sibling of mypkg
will load a sibling of mypkg—i.e., the spam module located in the package’s own
        container directory, next to mypkg.
        More generally, code located in some module A.B.C can use any of these forms:
from . import D                        # Imports A.B.D     (. means A.B)
from .. import E                       # Imports A.E       (.. means A)

from .D import X                       # Imports A.B.D.X   (. means A.B)
from ..E import X                      # Imports A.E.X     (.. means A)

Relative imports versus absolute package paths
Alternatively, a file can sometimes name its own package explicitly in an
        absolute import statement, relative to a directory on sys.path. For example, in the following,
        mypkg will be found in an absolute
        directory on sys.path:
from mypkg import string                    # Imports mypkg.string (absolute)
However, this relies on both the configuration and the order of
        the module search path settings, while relative import dot syntax does
        not. In fact, this form requires that the directory immediately
        containing mypkg be included in the
        module search path. It probably is if mypkg is the package root (or else the
        package couldn’t be used from the outside in the first place!), but
        this directory may be nested in a much larger package tree. If
        mypkg isn’t the package’s root,
        absolute import statements must list all the directories below the
        package’s root entry in sys.path
        when naming packages explicitly like this:
from system.section.mypkg import string     # system container on sys.path only
In large or deep packages, that could be substantially more work
        to code than a dot:
from . import string                        # Relative import syntax
With this latter form, the containing package is searched
        automatically, regardless of the search path settings, search path
        order, and directory nesting. On the other hand, the full-path
        absolute form will work regardless of how the file is being used—as
        part of a program or package—as we’ll explore ahead.


The Scope of Relative Imports
Relative imports can seem a bit perplexing on first encounter, but it helps
      if you remember a few key points about them:
	Relative imports apply to imports
          within packages only. Keep in mind that this feature’s
          module search path change applies only to import statements within
          module files used as part of a package—that is,
          intrapackage imports. Normal imports in files
          not used as part of a package still work exactly as described
          earlier, automatically searching the directory containing the
          top-level script first.

	Relative imports apply to
          the from statement only. Also remember that this
          feature’s new syntax applies only to from statements, not import statements. It’s detected by the
          fact that the module name in a from begins with one or more dots
          (periods). Module names that contain embedded dots but don’t have a
          leading dot are package imports, not relative imports.


In other words, package relative imports in 3.X really boil down
      to just the removal of 2.X’s inclusive search path behavior for
      packages, along with the addition of special from syntax to explicitly request that
      relative package-only behavior be used. If you coded your package
      imports in the past so that they did not depend upon 2.X’s implicit
      relative lookup (e.g., by always spelling out full paths from a package
      root), this change is largely a moot point. If you didn’t, you’ll need
      to update your package files to use the new from syntax for local package files, or full
      absolute paths.

Module Lookup Rules Summary
With packages and relative imports, the module search story in Python 3.X
      that we have seen so far can be summarized as follows:
	Basic modules with simple names (e.g., A) are located by searching each directory
          on the sys.path list, from left
          to right. This list is constructed from both system defaults and
          user-configurable settings described in Chapter 22.

	Packages are simply directories of Python modules with a
          special __init__.py file, which
          enables A.B.C directory path
          syntax in imports. In an import of A.B.C, for example, the directory named
          A is located relative to the
          normal module import search of sys.path, B is another package subdirectory within
          A, and C is a module or other importable item
          within B.

	Within a package’s files, normal import and from statements use the same sys.path
          search rule as imports elsewhere. Imports in packages using from statements and leading
          dots, however, are relative to the package;
          that is, only the package directory is checked, and the normal
          sys.path lookup is not used. In
          from . import A, for example, the
          module search is restricted to the directory containing the file in
          which this statement appears.


Python 2.X works the same, except that normal imports without dots
      also automatically search the package directory
      first before proceeding on to sys.path.
In sum, Python imports select between
      relative (in the containing directory) and
      absolute (in a directory on sys.path) resolutions as follows:
	Dotted imports: from . import
          m, from .m import x
	Are relative-only in both 2.X and
            3.X

	Nondotted imports: import
          m, from m import
          x
	Are relative-then-absolute in 2.X, and
            absolute-only in 3.X


As we’ll see later, Python 3.3 adds another flavor to modules—namespace packages—which is
      largely disjointed from the package-relative story we’re covering here.
      This newer model supports package-relative imports too, and is simply a
      different way to construct a package. It augments the import search
      procedure to allow package content to be spread across multiple simple
      directories as a last-resort resolution. Thereafter, though, the
      composite package behaves the same in terms of relative import
      rules.

Relative Imports in Action
But enough theory: let’s run some simple code to demonstrate the concepts
      behind relative imports.
Imports outside packages
First of all, as mentioned previously, this feature does not
        impact imports outside a package. Thus, the following finds the
        standard library string module as expected:
C:\code> c:\Python33\python
>>> import string
>>> string
<module 'string' from 'C:\\Python33\\lib\\string.py'>
But if we add a module of the same name in the directory we’re
        working in, it is selected instead, because the first entry on the
        module search path is the current working directory (CWD):
# code\string.py
print('string' * 8)

C:\code> c:\Python33\python
>>> import string
stringstringstringstringstringstringstringstring
>>> string
<module 'string' from '.\\string.py'>
In other words, normal imports are still relative to the “home”
        directory (the top-level script’s container, or the directory you’re
        working in). In fact, package relative import syntax is not even
        allowed in code that is not in a file being used as part of a
        package:
>>> from . import string
SystemError: Parent module '' not loaded, cannot perform relative import
In this section, code entered at the interactive prompt behaves
        the same as it would if run in a top-level
        script, because the first entry on sys.path is either the interactive working
        directory or the directory containing the top-level file. The only
        difference is that the start of sys.path is an absolute directory, not an
        empty string:
# code\main.py
import string                                         # Same code but in a file
print(string)

C:\code> C:\python33\python main.py                   # Equivalent results in 2.X
stringstringstringstringstringstringstringstring
<module 'string' from 'c:\\code\\string.py'>
Similarly, a from . import
        string in this nonpackage file fails the same as it does at
        the interactive prompt—programs and packages are different file usage
        modes.

Imports within packages
Now, let’s get rid of the local string module we coded in the CWD and build
        a package directory there with two modules, including the required but
        empty code\pkg\__init__.py file.
        Package roots in this section are located in the CWD added
        automatically to sys.path, so we
        don’t need to set PYTHONPATH. I’ll
        also largely omit empty __init__.py files and most error message
        text for space (and non-Windows readers will have to pardon the shell
        commands here, and translate for your platform):
C:\code> del string*           # del __pycache__\string* for bytecode in 3.2+
C:\code> mkdir pkg
c:\code> notepad pkg\__init__.py

# code\pkg\spam.py
import eggs                    # <== Works in 2.X but not 3.X!
print(eggs.X)

# code\pkg\eggs.py
X = 99999
import string
print(string)
The first file in this package tries to import the second with a
        normal import statement. Because
        this is taken to be relative in 2.X but absolute in 3.X, it fails in
        the latter. That is, 2.X searches the containing package first, but
        3.X does not. This is the incompatible behavior
        you have to be aware of in 3.X:
C:\code> c:\Python27\python
>>> import pkg.spam
<module 'string' from 'C:\Python27\lib\string.pyc'>
99999

C:\code> c:\Python33\python
>>> import pkg.spam
ImportError: No module named 'eggs'
To make this work in both 2.X and 3.X,
        change the first file to use the special relative import syntax, so
        that its import searches the package directory in 3.X too:
# code\pkg\spam.py
from . import eggs             # <== Use package relative import in 2.X or 3.X
print(eggs.X)

# code\pkg\eggs.py
X = 99999
import string
print(string)

C:\code> c:\Python27\python
>>> import pkg.spam
<module 'string' from 'C:\Python27\lib\string.pyc'>
99999

C:\code> c:\Python33\python
>>> import pkg.spam
<module 'string' from 'C:\\Python33\\lib\\string.py'>
99999

Imports are still relative to the CWD
Notice in the preceding example that the package modules still have access to
        standard library modules like string—their normal imports are still
        relative to the entries on the module search path. In fact, if you add
        a string module to the CWD again,
        imports in a package will find it there instead of in the standard
        library. Although you can skip the package directory with an absolute
        import in 3.X, you still can’t skip the home directory of the program
        that imports the package:
# code\string.py
print('string' * 8)

# code\pkg\spam.py
from . import eggs
print(eggs.X)

# code\pkg\eggs.py
X = 99999
import string                  # <== Gets string in CWD, not Python lib!
print(string)

C:\code> c:\Python33\python    # Same result in 2.X
>>> import pkg.spam
stringstringstringstringstringstringstringstring
<module 'string' from '.\\string.py'>
99999

Selecting modules with relative and absolute imports
To show how this applies to imports of standard library modules, reset the package
        again. Get rid of the local string
        module, and define a new one inside the package itself:
C:\code> del string*           # del __pycache__\string* for bytecode in 3.2+

# code\pkg\spam.py
import string                  # <== Relative in 2.X, absolute in 3.X
print(string)

# code\pkg\string.py
print('Ni' * 8)
Now, which version of the string module you get depends on which
        Python you use. As before, 3.X interprets the import in the first file
        as absolute and skips the package, but 2.X does not—another example of
        the incompatible behavior in 3.X:
C:\code> c:\Python33\python
>>> import pkg.spam
<module 'string' from 'C:\\Python33\\lib\\string.py'>

C:\code> c:\Python27\python
>>> import pkg.spam
NiNiNiNiNiNiNiNi
<module 'pkg.string' from 'pkg\string.py'>
Using relative import syntax in 3.X forces the package to be
        searched again, as it is in 2.X—by using absolute or relative import
        syntax in 3.X, you can either skip or select the package directory
        explicitly. In fact, this is the use case that the 3.X model
        addresses:
# code\pkg\spam.py
from . import string           # <== Relative in both 2.X and 3.X
print(string)

# code\pkg\string.py
print('Ni' * 8)

C:\code> c:\Python33\python
>>> import pkg.spam
NiNiNiNiNiNiNiNi
<module 'pkg.string' from '.\\pkg\\string.py'>

C:\code> c:\Python27\python
>>> import pkg.spam
NiNiNiNiNiNiNiNi
<module 'pkg.string' from 'pkg\string.py'>

Relative imports search packages only
It’s also important to note that relative import syntax is
        really a binding declaration, not just a
        preference. If we delete the string.py file and any associated byte code
        in this example now, the relative import in spam.py fails in both
        3.X and 2.X, instead of falling back on the standard library (or any
        other) version of this module:
# code\pkg\spam.py
from . import string           # <== Fails in both 2.X and 3.X if no string.py here!

C:\code> del pkg\string*

C:\code> C:\python33\python
>>> import pkg.spam
ImportError: cannot import name string

C:\code> C:\python27\python
>>> import pkg.spam
ImportError: cannot import name string
Modules referenced by relative imports must exist in the package
        directory.

Imports are still relative to the CWD, again
Although absolute imports let you skip package modules this way, they still rely on other
        components of sys.path. For one
        last test, let’s define two string
        modules of our own. In the following, there is one module by that name
        in the CWD, one in the package, and another in the standard
        library:
# code\string.py
print('string' * 8)

# code\pkg\spam.py
from . import string           # <== Relative in both 2.X and 3.X
print(string)

# code\pkg\string.py
print('Ni' * 8)
When we import the string
        module with relative import syntax like this, we get the version in
        the package in both 2.X and 3.X, as desired:
C:\code> c:\Python33\python    # Same result in 2.X
>>> import pkg.spam
NiNiNiNiNiNiNiNi
<module 'pkg.string' from '.\\pkg\\string.py'>
When absolute syntax is used, though, the module we get varies
        per version again. 2.X interprets this as relative to the package
        first, but 3.X makes it “absolute,” which in this case really just
        means it skips the package and loads the version relative to the
        CWD—not the version in the standard library:
# code\string.py
print('string' * 8)

# code\pkg\spam.py
import string                  # <== Relative in 2.X, "absolute" in 3.X: CWD!
print(string)

# code\pkg\string.py
print('Ni' * 8)

C:\code> c:\Python33\python
>>> import pkg.spam
stringstringstringstringstringstringstringstring
<module 'string' from '.\\string.py'>

C:\code> c:\Python27\python
>>> import pkg.spam
NiNiNiNiNiNiNiNi
<module 'pkg.string' from 'pkg\string.pyc'>
As you can see, although packages can explicitly request modules
        within their own directories with dots, their “absolute” imports are
        otherwise still relative to the rest of the normal module search path.
        In this case, a file in the program using the package hides the
        standard library module the package may want. The change in 3.X simply
        allows package code to select files either inside or outside the
        package (i.e., relatively or absolutely). Because import resolution
        can depend on an enclosing context that may not be foreseen, though,
        absolute imports in 3.X are not a guarantee of finding a module in the
        standard library.
Experiment with these examples on your own for more insight. In
        practice, this is not usually as ad hoc as it might seem: you can
        generally structure your imports, search paths, and module names to
        work the way you wish during development. You should keep in mind,
        though, that imports in larger systems may depend upon context of use,
        and the module import protocol is part of a successful library’s design.


Pitfalls of Package-Relative Imports: Mixed Use
Now that you’ve learned about package-relative imports, you should also
      keep in mind that they may not always be your best option. Absolute
      package imports, with a complete directory path relative to a directory
      on sys.path, are still sometimes
      preferred over both implicit package-relative imports in Python 2.X, and
      explicit package-relative import dot syntax in both Python 2.X and 3.X.
      This issue may seem obscure, but will likely become important fairly
      soon after you start coding packages of your own.
As we’ve seen, Python 3.X’s relative import syntax and absolute
      search rule default make intrapackage imports explicit and thus easier
      to notice and maintain, and allow explicit choice in some name conflict
      scenarios. However, there are also two major ramifications of this model
      that you should be aware of:
	In both Python 3.X and 2.X, use of package-relative import
          statements implicitly binds a file to a package directory and role,
          and precludes it from being used in other ways.

	In Python 3.X, the new relative search rule change means that
          a file can no longer serve as both script and package module as
          easily as it could in 2.X.


These constraint’s causes are a bit subtle, but because the
      following are simultaneously true:
	Python 3.X and 2.X do not allow from
          . relative syntax to be used unless the importer is being
          used as part of a package (i.e., is being imported from somewhere
          else).

	Python 3.X does not search a package module’s own directory
          for imports, unless from .
          relative syntax is used (or the module is in the current working
          directory or main script’s home directory).


Use of relative imports prevents you from creating directories
      that serve as both executable programs and externally importable
      packages in 3.X and 2.X. Moreover, some files can no longer serve as
      both script and package module in 3.X as they could in 2.X. In terms of
      import statements, the rules pan out as follows—the first is for
      package mode only in both Pythons, and the second
      is for program mode only in 3.X:
from . import mod      # Not allowed in nonpackage mode in both 2.X and 3.X
import mod             # Does not search file's own directory in package mode in 3.X
The net effect is that for files to be used in either 2.X or 3.X,
      you may need to choose a single usage
      mode—package (with relative imports) or
      program (with simple imports), and isolate true
      package module files in a subdirectory apart from top-level script
      files.
Alternatively, you can attempt manual sys.path changes (a generally brittle and
      error-prone task), or always use full package paths in absolute imports
      instead of either package-relative syntax or simple imports, and assume
      the package root is on the module search path:
from system.section.mypkg import mod   # Works in both program and package mode
Of all these schemes, the last—full package path imports—may be
      the most portable and functional, but we need to turn to more concrete
      code to see why.
The issue
For example, in Python 2.X it’s common to use the same
        single directory as both program and package,
        using normal undotted imports. This relies on the script’s home
        directory to resolve imports when used as a program, and the 2.X
        relative-then-absolute rule to resolve intrapackage imports when used
        as a package. This won’t quite work in 3.X, though—in package mode,
        plain imports do not load modules in the same directory anymore,
        unless that directory also happens to be the same as the main file’s
        container or the current working directory (and hence, be on sys.path).
Here’s what this looks like in action, stripped to a bare
        minimum of code (for brevity in this section I again omit __init__.py package directory files
        required prior to Python 3.3, and for variety use the 3.3 Windows
        launcher covered in Appendix B):
# code\pkg\main.py
import spam

# code\pkg\spam.py
import eggs                     # <== Works if in "." = home of main script file

# code\pkg\eggs.py
print('Eggs' * 4)               # But won't load this file when used as pkg in 3.X!

c:\code> python pkg\main.py     # OK as program, in both 2.X and 3.X
EggsEggsEggsEggs
c:\code> python pkg\spam.py
EggsEggsEggsEggs

c:\code> py −2                  # OK as package in 2.X: relative-then-absolute
>>> import pkg.spam             # 2.X: plain imports search package directory first
EggsEggsEggsEggs

C:\code> py −3                  # But 3.X fails to find file here: absolute only
>>> import pkg.spam             # 3.X: plain imports search only CWD plus sys.path
ImportError: No module named 'eggs'
Your next step might be to add the required relative
        import syntax for 3.X use, but it won’t help here. The
        following retains the single directory for both a main top-level
        script and package modules, and adds the required dots—in both 2.X and
        3.X this now works when the directory is imported as a package, but
        fails when it is used as a program directory (including attempts to
        run a module as a script directly):
# code\pkg\main.py
import spam

# code\pkg\spam.py
from . import eggs              # <== Not a package if main file here (even if me)!

# code\pkg\eggs.py
print('Eggs' * 4)

c:\code> python                 # OK as package but not program in both 3.X and 2.X
>>> import pkg.spam
EggsEggsEggsEggs

c:\code> python pkg\main.py
SystemError: ... cannot perform relative import
c:\code> python pkg\spam.py
SystemError: ... cannot perform relative import

Fix 1: Package subdirectories
In a mixed-use case like this, one solution is to isolate all
        but the main files used only by the program in a
        subdirectory—this way, your intrapackage imports
        still work in all Pythons, you can use the top directory as a
        standalone program, and the nested directory still serves as a package
        for use from other programs:
# code\pkg\main.py
import sub.spam                 # <== Works if move modules to pkg below main file

# code\pkg\sub\spam.py
from . import eggs              # Package relative works now: in subdirectory

# code\pkg\sub\eggs.py
print('Eggs' * 4)

c:\code> python pkg\main.py     # From main script: same result in 2.X and 3.X
EggsEggsEggsEggs

c:\code> python                 # From elsewhere: same result in 2.X and 3.X
>>> import pkg.sub.spam
EggsEggsEggsEggs
The potential downside of this scheme is that you won’t be able
        to run package modules directly to test them with embedded self-test
        code, though tests can be coded separately in their parent directory
        instead:
c:\code> py −3 pkg\sub\spam.py  # But individual modules can't be run to test
SystemError: ... cannot perform relative import

Fix 2: Full path absolute import
Alternatively, full path package import
        syntax would address this case too—it requires the directory above
        the package root to be in your path, though this is probably not an
        extra requirement for a realistic software
        package. Most Python packages will either require this setting, or
        arrange for it to be handled automatically with install tools (such
        as distutils, which may store a
        package’s code in a directory on the default module search path such
        as the site-packages root; see
        Chapter 22 for more
        details):
# code\pkg\main.py
import spam

# code\pkg\spam.py
import pkg.eggs                 # <== Full package paths work in all cases, 2.X+3.X

# code\pkg\eggs.py
print('Eggs' * 4)

c:\code> set PYTHONPATH=C:\code
c:\code> python pkg\main.py     # From main script: Same result in 2.X and 3.X
EggsEggsEggsEggs

c:\code> python                 # From elsewhere: Same result in 2.X and 3.X
>>> import pkg.spam
EggsEggsEggsEggs
Unlike the subdirectory fix, full path absolute imports like
        these also allow you to run your modules standalone to test:
c:\code> python pkg\spam.py     # Individual modules are runnable too in 2.X and 3.X
EggsEggsEggsEggs

Example: Application to module self-test code (preview)
To summarize, here’s another typical example of the issue and
        its full path resolution. This uses a common technique we’ll expand on
        in the next chapter, but the idea is simple enough to include as a
        preview here (though you may want to review this again later—the
        coverage makes more sense here).
Consider the following two modules in a package directory, the
        second of which includes self-test code. In
        short, a module’s __name__
        attribute is the string “__main__” when it is being run as a
        top-level script, but not when it is being imported, which allows it
        to be used as both module and script:
# code\dualpkg\m1.py
def somefunc():
    print('m1.somefunc')

# code\dualpkg\m2.py
...import m1 here...            # Replace me with a real import statement

def somefunc():
    m1.somefunc()
    print('m2.somefunc')

if __name__ == '__main__':
   somefunc()                   # Self-test or top-level script usage mode code
The second of these needs to import the first where the
        “...import m1 here...” placeholder appears. Replacing this line with a
        relative import statement works when the file is used as a package,
        but is not allowed in nonpackage mode by either 2.X or 3.X (results
        and error messages are omitted here for space; see the file dualpkg\results.txt in the book’s examples
        for the full listing):
# code\dualpkg\m2.py
from . import m1

c:\code> py −3
>>> import dualpkg.m2           # OK
C:\code> py −2
>>> import dualpkg.m2           # OK

c:\code> py −3 dualpkg\m2.py    # Fails!
c:\code> py −2 dualpkg\m2.py    # Fails!
Conversely, a simple import statement works in nonpackage mode
        in both 2.X and 3.X, but fails in package mode in 3.X only, because
        such statements do not search the package directory in 3.X:
# code\dualpkg\m2.py
import m1

c:\code> py −3
>>> import dualpkg.m2           # Fails!
c:\code> py −2
>>> import dualpkg.m2           # OK

c:\code> py −3 dualpkg\m2.py    # OK
c:\code> py −2 dualpkg\m2.py    # OK
And finally, using full package paths works again in both usage
        modes and Pythons, as long as the package’s root is on the module
        search path (as it must be to be used elsewhere):
# code\dualpkg\m2.py
import dualpkg.m1 as m1         # And: set PYTHONPATH=c:\code

c:\code> py −3
>>> import dualpkg.m2           # OK
C:\code> py −2
>>> import dualpkg.m2           # OK

c:\code> py −3 dualpkg\m2.py    # OK
c:\code> py −2 dualpkg\m2.py    # OK
In sum, unless you’re willing and able to isolate your modules
        in subdirectories below scripts, full package path imports are
        probably preferable to package-relative imports—though they’re more
        typing, they handle all cases, and they work the same in 2.X and 3.X.
        There may be additional workarounds that involve extra tasks (e.g.,
        manually setting sys.path in your
        code), but we’ll skip them here because they are more obscure and rely
        on import semantics, which is error-prone; full package imports rely
        only on the basic package mechanism.
Naturally, the extent to which this may impact your modules can
        vary per package; absolute imports may also require changes when
        directories are reorganized, and relative imports may become invalid
        if a local module is relocated.
Note
Be sure to also watch for future Python changes on this front.
          Although this book covers Python up to 3.3 only, at this writing,
          there is talk in a PEP of possibly addressing some package issues in
          Python 3.4, perhaps even allowing relative
          imports to be used in program mode. On the other hand, this
          initiative’s scope and outcome is uncertain and would work only on
          3.4 and later; the full path solution given here is version-neutral;
          and 3.4 is more than a year away in any event. That is, you can wait
          for a change to a 3.X change that limited functionality, or simply
          use tried-and-true full package paths.




Python 3.3 Namespace Packages
Now that you’ve learned all about package and package-relative
    imports, I need to explain that there’s a new option that modifies some of
    the ideas we just covered. At least abstractly, as of release 3.3 Python
    has four import models. From original to newest:
	Basic module imports: import
        mod, from mod import
        attr
	The original model: imports of files and their contents,
          relative to the sys.path module
          search path

	Package imports: import
        dir1.dir2.mod, from dir1.mod import
        attr
	Imports that give directory path extensions relative to the
          sys.path module search path,
          where each package is contained in a single directory and has an
          initialization file, in Python 2.X and
          3.X

	Package-relative imports: from . import
        mod (relative), import
        mod (absolute)
	The model used for intrapackage imports of the prior section,
          with its relative or absolute lookup schemes for dotted and
          nondotted imports, available but differing in Python 2.X
          and 3.X

	Namespace packages: import
        splitdir.mod
	The new namespace package model that we’ll survey here, which
          allows packages to span multiple directories, and requires no
          initialization file, introduced in Python
          3.3


The first two of these are self-contained, but the third tightens up
    the search order and extends syntax for intrapackage imports, and the
    fourth upends some of the core notions and requirements of the prior
    package model. In fact, Python 3.3 (and later) now has two flavors of
    packages:
	The original model, now known as regular
        packages

	The alternative model, known as namespace
        packages


This is similar in spirit to the “classic” and “new style” class
    model dichotomy we’ll meet in the next part of this book, though the new
    is more an addition to the old here. The original and new package models
    are not mutually exclusive, and can be used simultaneously in the same
    program. In fact, the new namespace package model works as something of a
    fallback option, recognized only if normal modules
    and regular packages of the same name are not present on the module search
    path.
The rationale for namespace packages is rooted
    in package installation goals that may seem obscure
    unless you are responsible for such tasks, and is better addressed by this
    feature’s PEP document. In short, though, they resolve a potential for
    collision of multiple __init__.py
    files when package parts are merged, by removing this file completely.
    Moreover, by providing standard support for packages that can be split
    across multiple directories and located in multiple sys.path entries, namespace packages both
    enhance install flexibility and provide a common mechanism to replace the
    multiple incompatible solutions that have arisen to address this
    goal.
Though too early to judge their uptake, average Python users may
    find namespace packages to be a useful and alternative extension to the
    regular package model—one that does not require initialization files, and
    allows any directory of code to be used as an importable package. To see
    why, let’s move on to the details.
Namespace Package Semantics
A namespace package is not fundamentally different from a regular package; it is
      just a different way of creating packages. Moreover, they are still
      relative to sys.path at the top
      level: the leftmost component of a dotted namespace package path must
      still be located in an entry on the normal module search path.
In terms of physical structure, though, the two can differ
      substantially. Regular packages still must
      have an __init__.py
      file that is run automatically, and reside in a single directory as
      before. By contrast, new-style namespace packages
      cannot contain an __init__.py, and may span multiple
      directories that are collected at import time. In fact,
      none of the directories that make up a namespace
      package can have an __init__.py,
      but the content nested within each of them is treated as a single
      package.
The import algorithm
To truly understand namespace packages, we have to look under
        the hood to see how the import operation works in 3.3. During imports,
        Python still iterates over each directory in the module search
        path—defined by sys.path for the
        leftmost components of absolute imports, and by a package’s location
        for relative imports and components nested in package paths—just as in
        3.2 and earlier. In 3.3, though, while looking for an imported module
        or package named spam, for each
        directory in the module search path, Python
        tests for a wider variety of matching criteria, in the following
        order:
	If directory\spam\__init__.py is found, a regular
            package is imported and returned.

	If directory\spam.{py, pyc, or other module
            extension} is found, a simple module is imported and
            returned.

	If directory\spam is found and is a directory, it is
            recorded and the scan continues with the next directory in the
            search path.

	If none of the above was found, the scan continues with the
            next directory in the search path.


If the search path scan completes without returning a module or
        package by steps 1 or 2, and at least one directory was recorded by
        step 3, then a namespace package is
        created.
The creation of the namespace package happens immediately, and
        is not deferred until a sublevel import occurs. The new namespace
        package has a __path__ attribute
        set to an iterable of the directory path strings that were found and
        recorded during the scan by step 3, but does not have a __file__.
The __path__ attribute is
        then used in later, deeper accesses to search all package
        components—each recorded entry on a namespace package’s __path__ is searched whenever further nested
        items are requested, much like the sole directory of a regular
        package.
Viewed another way, the __path__ attribute of a namespace package
        serves the same role for lower-level components that sys.path does at the top for the leftmost
        component of package import paths; it becomes the “parent path” for
        accessing lower items using the same four-step procedure just
        sketched.
The net result is that a namespace package is a sort of
        virtual concatenation of directories located via
        possibly multiple module search path entries. Once a namespace package
        is created, though, there is no functional difference between it and a
        regular package; it supports everything we’ve learned for regular
        packages, including package-relative import syntax.


Impacts on Regular Packages: Optional __init__.py
As one consequence of this new import procedure, as of Python 3.3
      packages no longer require __init__.py files—when a single-directory
      package does not have this file, it will be treated as a
      single-directory namespace package, and no warning will be issued. This
      is a major relaxation of prior rules, but a commonly requested change;
      many packages require no initialization code, and it seemed extraneous
      to have to create an empty initialization file in such cases. This is
      finally no longer required as of 3.3.
At the same time, the original regular package model is still
      fully supported, and automatically runs code in __init__.py as before as an
      initialization hook. Moreover, when it’s known that
      a package will never be a portion of a split namespace package, there is
      a performance advantage to coding it as a regular
      package with an __init__.py.
      Creation and loading of a regular package occurs immediately when it is
      located along the path. With namespace packages, all entries in the path
      must be scanned before the package is created. More formally, regular
      packages stop the prior section’s algorithm at step 1; namespace
      packages do not.
Per this change’s PEP, there is no plan to remove support of
      regular packages—at least, that’s the story today; change is always a
      possibility in open source projects (indeed, the prior edition quoted
      plans on string formatting and relative imports in 2.X that were later
      abandoned), so as usual, be sure to watch for future developments on
      this front. Given the performance advantage and auto-initialization code
      of regular packages, though, it seems unlikely that they would be
      removed altogether.

Namespace Packages in Action
To see how namespace packages work, consider the following two modules and
      nested directory structure—with two subdirectories named sub located in different parent directories,
      dir1 and dir2:
C:\code\ns\dir1\sub\mod1.py
C:\code\ns\dir2\sub\mod2.py
If we add both dir1 and
      dir2 to the module search path,
      sub becomes a namespace package
      spanning both, with the two module files available under that name even
      though they live in separate physical directories. Here’s the files’
      contents and the required path settings on Windows: there are no
      __init__.py files here—in fact
      there cannot be in namespace packages, as this is
      their chief physical differentiation:
c:\code> mkdir ns\dir1\sub                # Two dirs of same name in different dirs
c:\code> mkdir ns\dir2\sub                # And similar outside Windows

c:\code> type ns\dir1\sub\mod1.py         # Module files in different directories
print(r'dir1\sub\mod1')

c:\code> type ns\dir2\sub\mod2.py
print(r'dir2\sub\mod2')

c:\code> set PYTHONPATH=C:\code\ns\dir1;C:\code\ns\dir2
Now, when imported directly in 3.3 and later, the namespace
      package is the virtual concatenation of its
      individual directory components, and allows further nested parts to be
      accessed through its single, composite name with normal imports:
c:\code> C:\Python33\python
>>> import sub
>>> sub                                   # Namespace packages: nested search paths
<module 'sub' (namespace)>
>>> sub.__path__
_NamespacePath(['C:\\code\\ns\\dir1\\sub', 'C:\\code\\ns\\dir2\\sub'])

>>> from sub import mod1
dir1\sub\mod1
>>> import sub.mod2                       # Content from two different directories
dir2\sub\mod2

>>> mod1
<module 'sub.mod1' from 'C:\\code\\ns\\dir1\\sub\\mod1.py'>
>>> sub.mod2
<module 'sub.mod2' from 'C:\\code\\ns\\dir2\\sub\\mod2.py'>
This is also true if we import through the namespace package name
      immediately—because the namespace package is made
      when first reached, the timing of path extensions is irrelevant:
c:\code> C:\Python33\python
>>> import sub.mod1
dir1\sub\mod1
>>> import sub.mod2                       # One package spanning two directories
dir2\sub\mod2

>>> sub.mod1
<module 'sub.mod1' from 'C:\\code\\ns\\dir1\\sub\\mod1.py'>
>>> sub.mod2
<module 'sub.mod2' from 'C:\\code\\ns\\dir2\\sub\\mod2.py'>

>>> sub
<module 'sub' (namespace)>
>>> sub.__path__
_NamespacePath(['C:\\code\\ns\\dir1\\sub', 'C:\\code\\ns\\dir2\\sub'])
Interestingly, relative imports work in
      namespace packages too—in the following, the relative import statement
      references a file in the package, even though the referenced file
      resides in a different directory:
c:\code> type ns\dir1\sub\mod1.py
from . import mod2                        # And "from . import string" still fails
print(r'dir1\sub\mod1')

c:\code> C:\Python33\python
>>> import sub.mod1                       # Relative import of mod2 in another dir
dir2\sub\mod2
dir1\sub\mod1
>>> import sub.mod2                       # Already imported module not rerun
>>> sub.mod2
<module 'sub.mod2' from 'C:\\code\\ns\\dir2\\sub\\mod2.py'>
As you can see, namespace packages are like ordinary
      single-directory packages in every way, except for having a split
      physical storage—which is why single directory
      namespaces packages without __init__.py files are exactly like regular
      packages, but with no initialization logic to be run.

Namespace Package Nesting
Namespace packages even support arbitrary nesting—once a
      namespace package is created, it serves essentially the same
      role at its level that sys.path does
      at the top, becoming the “parent path” for lower levels. Continuing the
      prior section’s example:
c:\code> mkdir ns\dir2\sub\lower          # Further nested components
c:\code> type  ns\dir2\sub\lower\mod3.py
print(r'dir2\sub\lower\mod3')

c:\code> C:\Python33\python
>>> import sub.lower.mod3                 # Namespace pkg nested in namespace pkg
dir2\sub\lower\mod3

c:\code> C:\Python33\python
>>> import sub                            # Same effect if accessed incrementally
>>> import sub.mod2
dir2\sub\mod2

>>> import sub.lower.mod3
dir2\sub\lower\mod3

>>> sub.lower                             # A single-directory namespace pkg
<module 'sub.lower' (namespace)>
>>> sub.lower.__path__
_NamespacePath(['C:\\code\\ns\\dir2\\sub\\lower'])
In the preceding, sub is a
      namespace package split across two directories, and sub.lower is a single-directory namespace
      package nested within the portion of sub physically located in dir2. sub.lower is also the namespace package
      equivalent of a regular package with no __init__.py.
This nesting behavior holds true whether the lower component is a
      module, regular package, or another namespace package—by serving as new
      import search paths, namespace packages allow all three to be nested
      within them freely:
c:\code> mkdir ns\dir1\sub\pkg
C:\code> type  ns\dir1\sub\pkg\__init__.py
print(r'dir1\sub\pkg\__init__.py')

c:\code> C:\Python33\python
>>> import sub.mod2                       # Nested module
dir2\sub\mod2
>>> import sub.pkg                        # Nested regular package
dir1\sub\pkg\__init__.py
>>> import sub.lower.mod3                 # Nested namespace package
dir2\sub\lower\mod3

>>> sub                                   # Modules, packages,and namespaces
<module 'sub' (namespace)>
>>> sub.mod2
<module 'sub.mod2' from 'C:\\code\\ns\\dir2\\sub\\mod2.py'>
>>> sub.pkg
<module 'sub.pkg' from 'C:\\code\\ns\\dir1\\sub\\pkg\\__init__.py'>
>>> sub.lower
<module 'sub.lower' (namespace)>
>>> sub.lower.mod3
<module 'sub.lower.mod3' from 'C:\\code\\ns\\dir2\\sub\\lower\\mod3.py'>
Trace through this example’s files and directories for more
      insight. As you can see, namespace packages integrate seamlessly into
      the former import models, and extend it with new functionality.

Files Still Have Precedence over Directories
As explained earlier, part of the purpose of __init__.py files in regular packages is to
      declare the directory as a package—it tells Python to use the directory,
      rather than skipping ahead to a possible file of the same name later on
      the path. This avoids inadvertently choosing a noncode subdirectory that
      accidentally appears early on the path, over a desired module of the
      same name.
Because namespace packages do not require these special files,
      they would seem to invalidate this safeguard. This isn’t the case,
      though—because the namespace algorithm outlined earlier continues
      scanning the path after a namespace directory has been found, files
      later on the path still have priority over earlier directories with no
      __init__.py. For example, consider
      the following directories and modules:
c:\code> mkdir ns2
c:\code> mkdir ns3
c:\code> mkdir   ns3\dir
c:\code> notepad ns3\dir\ns2.py
c:\code> type    ns3\dir\ns2.py
print(r'ns3\dir\ns2.py!')
The ns2 directory here cannot
      be imported in Python 3.2 and earlier—it’s not a regular package, as it
      lacks an __init__.py initialization
      file. This directory can be imported under 3.3, though—it’s a namespace
      package directory in the current working directory, which is always the
      first item on the sys.path module search path irrespective of
      PYTHONPATH settings:
c:\code> set PYTHONPATH=
c:\code> py −3.2
>>> import ns2
ImportError: No module named ns2

c:\code> py −3.3
>>> import ns2
>>> ns2                         # A single-directory namespace package in CWD
<module 'ns2' (namespace)>
>>> ns2.__path__
_NamespacePath(['.\\ns2'])
But watch what happens when the directory containing a file of the
      same name as a namespace directory is added later
      on the search path, via PYTHONPATH
      settings—the file is used instead, because Python keeps searching later
      path entries after a namespace package directory is found. It stops
      searching only when a module or regular package is located, or the path
      has been completely scanned. Namespace packages are returned only if
      nothing else was found along the way:
c:\code> set PYTHONPATH=C:\code\ns3\dir
c:\code> py −3.3
>>> import ns2                  # Use later module file, not same-named directory!
ns3\dir\ns2.py!
>>> ns2
<module 'ns2' from 'C:\\code\\ns3\\dir\\ns2.py'>

>>> import sys
>>> sys.path[:2]                # First '' means current working directory, CWD
['', 'C:\\code\\ns3\\dir']
In fact, setting the path to include a module works the same as it
      does in earlier Pythons, even if a same-named namespace directory
      appears earlier on the path; namespace packages are used in 3.3 only in
      cases that would be errors in earlier Pythons:
c:\code> py −3.2
>>> import ns2
ns3\dir\ns2.py!
>>> ns2
<module 'ns2' from 'C:\code\ns3\dir\ns2.py'>
This is also why none of the directories in a
      namespace package is allowed to have a __init__.py file: as soon as the import
      algorithm finds one that does, it returns a regular package immediately,
      and abandons the path search and the namespace package. Put more
      formally, the import algorithm chooses a namespace package only at the
      end of the path scan, and stops at steps 1 or 2 if
      either a regular package or module file is found sooner.
The net effect is that both module files and
      regular packages anywhere on the module search path have precedence over
      namespace package directories. In the following, for example, a
      namespace package called sub exists
      as the concatenation of same-named directories under dir1 and dir2 on the path:
c:\code> mkdir ns4\dir1\sub
c:\code> mkdir ns4\dir2\sub
c:\code> set PYTHONPATH=c:\code\ns4\dir1;c:\code\ns4\dir2
c:\code> py −3
>>> import sub
>>> sub
<module 'sub' (namespace)>
>>> sub.__path__
_NamespacePath(['c:\\code\\ns4\\dir1\\sub', 'c:\\code\\ns4\\dir2\\sub'])
Much like a module file, though, a regular
      package added in the rightmost path entry takes priority over
      same-named namespace package directories too—the import path scan starts
      recording a namespace package tentatively in dir1 as before, but abandons it when the
      regular package is detected in dir2:
c:\code> notepad ns4\dir2\sub\__init__.py
c:\code> py −3
>>> import sub                  # Use later reg. package, not same-named directory!
>>> sub
<module 'sub' from 'c:\\code\\ns4\\dir2\\sub\\__init__.py'>
Though a useful extension, because namespace packages are
      available only to readers using Python 3.3 (and later) I’m going to
      defer to Python’s manuals for more details on the subject. See
      especially this change’s PEP document for this change’s rationale,
      additional details, and more comprehensive examples.


Chapter Summary
This chapter introduced Python’s package import
    model—an optional but useful way to explicitly list part of the directory
    path leading up to your modules. Package imports are still relative to a
    directory on your module import search path, but your script gives the
    rest of the path to the module explicitly.
As we’ve seen, packages not only make imports more meaningful in
    larger systems, but also simplify import search path settings if all
    cross-directory imports are relative to a common root directory, and
    resolve ambiguities when there is more than one module of the same
    name—including the name of the enclosing directory in a package import
    helps distinguish between them.
Because it’s relevant only to code in packages, we also explored the
    newer relative import model here—a way for imports in
    package files to select modules in the same package explicitly using
    leading dots in a from, instead of
    relying on an older and error-prone implicit package search rule. Finally,
    we surveyed Python 3.3 namespace packages, which
    allow a logical package to span multiple physical directories as a
    fallback option of import searches, and remove the initialization file
    requirements of the prior model.
In the next chapter, we will survey a handful of more advanced
    module-related topics, such as the __name__ usage mode variable and name-string
    imports. As usual, though, let’s close out this chapter first with a short
    quiz to review what you’ve learned here.

Test Your Knowledge: Quiz
	What is the purpose of an __init__.py file in a module package
        directory?

	How can you avoid repeating the full package path every time you
        reference a package’s content?

	Which directories require __init__.py files?

	When must you use import
        instead of from with
        packages?

	What is the difference between from
        mypkg import spam and from . import
        spam?

	What is a namespace package?



Test Your Knowledge: Answers
	The __init__.py file serves
        to declare and initialize a regular module package; Python
        automatically runs its code the first time you import through a
        directory in a process. Its assigned variables become the attributes
        of the module object created in memory to correspond to that
        directory. It is also not optional until 3.3 and later—you can’t
        import through a directory with package syntax unless it contains this
        file.

	Use the from statement with a
        package to copy names out of the package directly, or use the as extension with the import statement to rename the path to a
        shorter synonym. In both cases, the path is listed in only one place,
        in the from or import statement.

	In Python 3.2 and earlier, each directory listed in an executed
        import or from statement must contain an __init__.py file. Other directories,
        including the directory that contains the leftmost component of a
        package path, do not need to include this file.

	You must use import instead
        of from with packages only if you
        need to access the same name defined in more than one path. With
        import, the path makes the
        references unique, but from allows
        only one version of any given name (unless you also use the as extension to rename).

	In Python 3.X, from mypkg import
        spam is an absolute import—the search
        for mypkg skips the package
        directory and the module is located in an absolute directory in
        sys.path. A statement from . import spam, on the other hand, is a
        relative import—spam is looked up relative to the package in
        which this statement is contained only. In Python 2.X, the absolute
        import searches the package directory first before proceeding to
        sys.path; relative imports work as
        described.

	A namespace package is an extension to the
        import model, available in Python 3.3 and later, that corresponds to
        one or more directories that do not have __init__.py files. When Python finds these
        during an import search, and does not find a simple module or regular
        package first, it creates a namespace package that is the virtual
        concatenation of all found directories having the requested module
        name. Further nested components are looked up in all the namespace
        package’s directories. The effect is similar to a regular package, but
        content may be split across multiple directories.



1 The dot path syntax was chosen partly for platform neutrality,
          but also because paths in import
          statements become real nested object paths. This syntax also means
          that you may get odd error messages if you forget to omit the
          .py in your import statements. For example, import mod.py is assumed to be a directory
          path import—it loads mod.py,
          then tries to load a mod\py.py,
          and ultimately issues a potentially confusing “No module named py”
          error message. As of Python 3.3 this error message has been improved
          to say “No module named ‘mod.py’; mod is not a package.”








Chapter 25. Advanced Module Topics
This chapter concludes this part of the book with a collection of more
  advanced module-related topics—data hiding, the __future__ module, the __name__ variable, sys.path changes, listing tools, importing modules
  by name string, transitive reloads, and so on—along with the standard set of
  gotchas and exercises related to what we’ve covered in this part of the
  book.
Along the way, we’ll build some larger and more useful tools than we
  have so far that combine functions and modules. Like functions, modules are
  more effective when their interfaces are well defined, so this chapter also
  briefly reviews module design concepts, some of which we have explored in
  prior chapters.
Despite the word “advanced” used in this chapter’s title for symmetry,
  this is mostly a grab-bag assortment of additional module topics. Because
  some of the topics discussed here are widely used—especially the __name__ trick—be sure to browse here before
  moving on to classes in the next part of the book.
Module Design Concepts
Like functions, modules present design tradeoffs: you have to think about which
    functions go in which modules, module communication mechanisms, and so on.
    All of this will become clearer when you start writing bigger Python
    systems, but here are a few general ideas to keep in mind:
	You’re always in a module in
        Python. There’s no way to write code that doesn’t live in
        some module. As mentioned briefly in Chapter 17 and
        Chapter 21, even code typed at the
        interactive prompt really goes in a built-in module called __main__; the only unique things about the
        interactive prompt are that code runs and is discarded immediately,
        and expression results are printed automatically.

	Minimize module coupling: global
        variables. Like functions, modules work best if they’re written to be closed boxes.
        As a rule of thumb, they should be as independent of global variables
        used within other modules as possible, except for functions and
        classes imported from them. The only things a module should share with
        the outside world are the tools it uses, and the tools it
        defines.

	Maximize module cohesion: unified
        purpose. You can minimize a module’s couplings by maximizing its
        cohesion; if all the components of a module share a general purpose,
        you’re less likely to depend on external names.

	Modules should rarely change other
        modules’ variables. We illustrated this with code in Chapter 17, but it’s worth repeating here: it’s perfectly OK
        to use globals defined in another module (that’s how clients import
        services, after all), but changing globals in another module is often
        a symptom of a design problem. There are exceptions, of course, but
        you should try to communicate results through devices such as function
        arguments and return values, not cross-module changes. Otherwise, your
        globals’ values become dependent on the order of arbitrarily remote
        assignments in other files, and your modules become harder to
        understand and reuse.


As a summary, Figure 25-1 sketches the
    environment in which modules operate. Modules contain variables,
    functions, classes, and other modules (if imported). Functions have local
    variables of their own, as do classes—objects that live within modules and
    which we’ll begin studying in the next chapter. As we saw in Part IV, functions can nest, too, but all
    are ultimately contained by modules at the top.
Figure 25-1. Module execution environment. Modules are imported, but modules
      also import and use other modules, which may be coded in Python or
      another language such as C. Modules in turn contain variables,
      functions, and classes to do their work, and their functions and classes
      may contain variables and other items of their own. At the top, though,
      programs are just sets of modules.


Data Hiding in Modules
As we’ve seen, a Python module exports all the names assigned at the top level of its file.
    There is no notion of declaring which names should and shouldn’t be
    visible outside the module. In fact, there’s no way to prevent a client
    from changing names inside a module if it wants to.
In Python, data hiding in modules is a convention, not a syntactical
    constraint. If you want to break a module by trashing its names, you can,
    but fortunately, I’ve yet to meet a programmer for whom this was a life
    goal. Some purists object to this liberal attitude toward data hiding,
    claiming that it means Python can’t implement encapsulation. However,
    encapsulation in Python is more about packaging than about restricting.
    We’ll expand this idea in the next part in relation to classes, which also
    have no privacy syntax but can often emulate its effect in code.
Minimizing from * Damage: _X and __all__
As a special case, you can prefix names with a single underscore (e.g., _X)
      to prevent them from being copied out when a client imports a module’s
      names with a from *
      statement. This really is intended only to minimize namespace pollution;
      because from * copies out all names,
      the importer may get more than it’s bargained for (including names that
      overwrite names in the importer). Underscores aren’t “private”
      declarations: you can still see and change such names with other import
      forms, such as the import
      statement:
# unders.py
a, _b, c, _d = 1, 2, 3, 4

>>> from unders import *                 # Load non _X names only
>>> a, c
(1, 3)
>>> _b
NameError: name '_b' is not defined

>>> import unders                        # But other importers get every name
>>> unders._b
2
Alternatively, you can achieve a hiding effect similar to
      the _X naming
      convention by assigning a list of variable name strings to the
      variable __all__ at the
      top level of the module. When this feature is used, the from * statement will copy out only those
      names listed in the __all__ list. In
      effect, this is the converse of the _X convention: __all__ identifies names to be copied, while
      _X identifies names
      not to be copied. Python looks for an __all__ list in the module first and copies
      its names irrespective of any underscores; if __all__ is not defined, from * copies all names without a single
      leading underscore:
# alls.py
__all__ = ['a', '_c']                    # __all__ has precedence over _X
a, b, _c, _d = 1, 2, 3, 4

>>> from alls import *                   # Load __all__ names only
>>> a, _c
(1, 3)
>>> b
NameError: name 'b' is not defined

>>> from alls import a, b, _c, _d        # But other importers get every name
>>> a, b, _c, _d
(1, 2, 3, 4)

>>> import alls
>>> alls.a, alls.b, alls._c, alls._d
(1, 2, 3, 4)
Like the _X convention, the
      __all__ list has meaning only to the
      from * statement form and does not
      amount to a privacy declaration: other import statements can still
      access all names, as the last two tests show. Still, module writers can
      use either technique to implement modules that are well behaved when
      used with from *. See also the
      discussion of __all__ lists in
      package __init__.py files in Chapter 24; there, these lists declare submodules to
      be automatically loaded for a from *
      on their container.


Enabling Future Language Features: __future__
Changes to the language that may potentially break existing code are
    usually introduced gradually in Python. They often initially appear as
    optional extensions, which are disabled by default. To turn on such
    extensions, use a special import
    statement of this form:
from __future__ import featurename
When used in a script, this statement must appear as the first
    executable statement in the file (possibly following a docstring or
    comment), because it enables special compilation of code on a per-module
    basis. It’s also possible to submit this statement at the interactive
    prompt to experiment with upcoming language changes; the feature will then
    be available for the remainder of the interactive session.
For example, in this book we’ve seen how to use this statement in
    Python 2.X to activate 3.X true division in Chapter 5, 3.X print
    calls in Chapter 11, and
    3.X absolute imports for packages in Chapter 24.
    Prior editions of this book used this statement form to demonstrate
    generator functions, which required a keyword that was not yet enabled by
    default (they use a featurename of generators).
All of these changes have the potential to break existing code in
    Python 2.X, so they were phased in gradually or offered as optional
    extensions, enabled with this special import. At the same time, some are
    available to allow you to write code that is forward compatible with later
    releases you may port to someday.
For a list of futurisms you may import and turn on this way, run a
    dir call on the __future__ module after importing it, or see its
    library manual entry. Per its documentation, none of its feature names
    will ever be removed, so it’s safe to leave in a __future__ import even in code run by a version
    of Python where the feature is present normally.

Mixed Usage Modes: __name__ and __main__
Our next module-related trick lets you both import a file as a module and run it as
    a standalone program, and is widely used in Python files. It’s actually so
    simple that some miss the point at first: each module has a built-in
    attribute called __name__, which Python
    creates and assigns automatically as follows:
	If the file is being run as a top-level program file, __name__ is set to the string "__main__" when it starts.

	If the file is being imported instead, __name__ is set to the module’s name as
        known by its clients.


The upshot is that a module can test its own __name__ to determine whether it’s being run or
    imported. For example, suppose we create the following module file, named
    runme.py, to export a single function
    called tester:
def tester():
    print("It's Christmas in Heaven...")

if __name__ == '__main__':           # Only when run
    tester()                         # Not when imported
This module defines a function for clients to import and use as
    usual:
c:\code> python
>>> import runme
>>> runme.tester()
It's Christmas in Heaven...
But the module also includes code at the bottom that is set up to
    call the function automatically when this file is run as a program:
c:\code> python runme.py
It's Christmas in Heaven...
In effect, a module’s __name__
    variable serves as a usage mode flag, allowing its
    code to be leveraged as both an importable library
    and a top-level script. Though simple, you’ll see this hook used in the
    majority of the Python program files you are likely to encounter in the
    wild—both for testing and dual usage.
For instance, perhaps the most common way you’ll see the __name__ test applied is for
    self-test code. In short, you can package code that
    tests a module’s exports in the module itself by wrapping it in a __name__ test at the bottom of the file. This
    way, you can use the file in clients by importing it,
    but also test its logic by running it from the system
    shell or via another launching scheme.
Coding self-test code at the bottom of a file under the __name__ test is probably the most common and
    simplest unit-testing protocol in Python. It’s much more convenient than
    retyping all your tests at the interactive prompt. (Chapter 36 will discuss other commonly used
    options for testing Python code—as you’ll see, the unittest and doctest standard library modules provide more
    advanced testing tools.)
In addition, the __name__ trick
    is also commonly used when you’re writing files that can be used both as
    command-line utilities and as tool libraries. For instance, suppose you
    write a file-finder script in Python. You can get more mileage out of your
    code if you package it in functions and add a __name__ test in the file to automatically call
    those functions when the file is run standalone. That way, the script’s
    code becomes reusable in other programs.
Unit Tests with __name__
In fact, we’ve already seen a prime example in this book of an instance where the
      __name__ check could be useful. In
      the section on arguments in Chapter 18, we coded a
      script that computed the minimum value from the set of arguments sent in
      (this was the file minmax.py in
      “The min Wakeup Call!”):
def minmax(test, *args):
    res = args[0]
    for arg in args[1:]:
        if test(arg, res):
            res = arg
    return res

def lessthan(x, y): return x < y
def grtrthan(x, y): return x > y

print(minmax(lessthan, 4, 2, 1, 5, 6, 3))        # Self-test code
print(minmax(grtrthan, 4, 2, 1, 5, 6, 3))
This script includes self-test code at the bottom, so we can test
      it without having to retype everything at the interactive command line
      each time we run it. The problem with the way it is currently coded,
      however, is that the output of the self-test call will appear every time
      this file is imported from another file to be used as a tool—not exactly
      a user-friendly feature! To improve it, we can wrap up the self-test
      call in a __name__ check, so that it
      will be launched only when the file is run as a top-level script, not
      when it is imported (this new version of the module file is renamed
      minmax2.py here):
print('I am:', __name__)

def minmax(test, *args):
    res = args[0]
    for arg in args[1:]:
        if test(arg, res):
            res = arg
    return res

def lessthan(x, y): return x < y
def grtrthan(x, y): return x > y

if __name__ == '__main__':
    print(minmax(lessthan, 4, 2, 1, 5, 6, 3))    # Self-test code
    print(minmax(grtrthan, 4, 2, 1, 5, 6, 3))
We’re also printing the value of __name__ at the top here to trace its value.
      Python creates and assigns this usage-mode variable as soon as it starts
      loading a file. When we run this file as a top-level script, its name is
      set to __main__, so its self-test
      code kicks in automatically:
c:\code> python minmax2.py
I am: __main__
1
6
If we import the file, though, its name is not __main__, so we must explicitly call the
      function to make it run:
c:\code> python
>>> import minmax2
I am: minmax2
>>> minmax2.minmax(minmax2.lessthan, 's', 'p', 'a', 'a')
'a'
Again, regardless of whether this is used for testing, the net
      effect is that we get to use our code in two different
      roles—as a library module of tools, or as an executable
      program.
Note
Per Chapter 24’s discussion of package
        relative imports, this section’s technique can also have some
        implications for imports run by files that are also used as package
        components in 3.X, but can still be leveraged with absolute package
        path imports and other techniques. See the prior chapter’s discussion
        and example for more details.



Example: Dual Mode Code
Here’s a more substantial module example that demonstrates another way
    that the prior section’s __name__ trick
    is commonly employed. The following module, formats.py, defines string formatting utilities
    for importers, but also checks its name to see if it is being run as a
    top-level script; if so, it tests and uses arguments listed on the system
    command line to run a canned or passed-in test. In Python, the sys.argv list contains command-line arguments—it
    is a list of strings reflecting words typed on the command
    line, where the first item is always the name of the script being run. We
    used this in Chapter 21’s benchmark
    tool as switches, but leverage it as a general input mechanism
    here:
#!python
"""
File: formats.py (2.X and 3.X)
Various specialized string display formatting utilities.
Test me with canned self-test or command-line arguments.
To do: add parens for negative money, add more features.
"""

def commas(N):
    """
    Format positive integer-like N for display with
    commas between digit groupings: "xxx,yyy,zzz".
    """
    digits = str(N)
    assert digits.isdigit()
    result = ''
    while digits:
        digits, last3 = digits[:-3], digits[-3:]
        result = (last3 + ',' + result) if result else last3
    return result

def money(N, numwidth=0, currency='$'):
    """
    Format number N for display with commas, 2 decimal digits,
    leading $ and sign, and optional padding: "$  -xxx,yyy.zz".
    numwidth=0 for no space padding, currency='' to omit symbol,
    and non-ASCII for others (e.g., pound=u'\xA3' or u'\u00A3').
    """
    sign   = '-' if N < 0 else ''
    N      = abs(N)
    whole  = commas(int(N))
    fract  = ('%.2f' % N)[-2:]
    number = '%s%s.%s' % (sign, whole, fract)
    return '%s%*s' % (currency, numwidth, number)

if __name__ == '__main__':
    def selftest():
        tests  = 0, 1        # fails: −1, 1.23
        tests += 12, 123, 1234, 12345, 123456, 1234567
        tests += 2 ** 32, 2 ** 100
        for test in tests:
            print(commas(test))

        print('')
        tests  = 0, 1, −1, 1.23, 1., 1.2, 3.14159
        tests += 12.34, 12.344, 12.345, 12.346
        tests += 2 ** 32, (2 ** 32 + .2345)
        tests += 1.2345, 1.2, 0.2345
        tests += −1.2345, −1.2, −0.2345
        tests += −(2 ** 32), −(2**32 + .2345)
        tests += (2 ** 100), −(2 ** 100)
        for test in tests:
            print('%s [%s]' % (money(test, 17), test))

    import sys
    if len(sys.argv) == 1:
        selftest()
    else:
        print(money(float(sys.argv[1]), int(sys.argv[2])))
This file works identically in Python 2.X and 3.X. When run
    directly, it tests itself as before, but it uses options on the command
    line to control the test behavior. Run this file directly with no
    command-line arguments on your own to see what its self-test code
    prints—it’s too extensive to list in full here:
c:\code> python formats.py
0
1
12
123
1,234
12,345
123,456
1,234,567
...etc...
To test specific strings, pass them in on the command line along
    with a minimum field width; the script’s __main__ code passes them on to its money function, which in turn runs commas:
C:\code> python formats.py 999999999 0
$999,999,999.00
C:\code> python formats.py −999999999 0
$-999,999,999.00

C:\code> python formats.py 123456789012345 0
$123,456,789,012,345.00
C:\code> python formats.py −123456789012345 25
$  −123,456,789,012,345.00

C:\code> python formats.py 123.456 0
$123.46
C:\code> python formats.py −123.454 0
$-123.45
As before, because this code is instrumented for dual-mode usage, we
    can also import its tools normally to reuse them as library components in
    scripts, modules, and the interactive prompt:
>>> from formats import money, commas
>>> money(123.456)
'$123.46'
>>> money(-9999999.99, 15)
'$  −9,999,999.99'
>>> X = 99999999999999999999
>>> '%s (%s)' % (commas(X), X)
'99,999,999,999,999,999,999 (99999999999999999999)'
You can use command-line arguments in ways similar to this example
    to provide general inputs to scripts that may also package their code as
    functions and classes for reuse by importers. For more advanced
    command-line processing, see “Python Command-Line Arguments” in Appendix A, and the getopt, optparse, and argparse modules’ documentation in Python’s
    standard library manual. In some scenarios, you might also use the
    built-in input function,
    used in Chapter 3 and Chapter 10, to prompt the shell user for
    test inputs instead of pulling them from the command line. For more on the
    assert statement used here, see Chapter 34.
Note
Also see Chapter 7’s discussion of
      the new {,d} string format method
      syntax added in Python 2.7 and 3.1; this formatting extension separates
      thousands groups with commas much like the code here. The module listed
      here, though, adds money formatting, can be changed, and serves as a
      manual alternative for comma insertions in earlier Pythons.

Currency Symbols: Unicode in Action
This module’s money function
      defaults to dollars, but supports other currency symbols
      by allowing you to pass in non-ASCII Unicode characters. The Unicode
      ordinal with hexadecimal value 00A3, for example, is the pound symbol,
      and 00A5 is the yen. You can code these in a variety of forms,
      as:
	The character’s decoded Unicode code point ordinal (integer)
          in a text string, with either Unicode or hex
          escapes (for 2.X compatibility, use a leading u in such string literals in Python
          3.3)

	The character’s raw encoded form in a byte
          string that is decoded before passed, with hex escapes
          (for 3.X compatibility, use a leading b in such string literals in Python
          2.X)

	The actual character itself in your program’s text, along with
          a source code encoding declaration


We previewed Unicode in Chapter 4 and will get into more
      details in Chapter 37, but its basic
      requirements here are fairly simple, and serve as a decent use case. To
      test alternative currencies, I typed the following in a file, formats_currency.py, because it was too much
      to reenter interactively on changes:
from __future__ import print_function # 2.X
from formats import money
X = 54321.987

print(money(X), money(X, 0, ''))
print(money(X, currency=u'\xA3'), money(X, currency=u'\u00A5'))
print(money(X, currency=b'\xA3'.decode('latin-1')))

print(money(X, currency=u'\u20AC'), money(X, 0, b'\xA4'.decode('iso-8859-15')))
print(money(X, currency=b'\xA4'.decode('latin-1')))
The following gives this test file’s output in Python 3.3 in IDLE,
      and in other contexts configured properly. It works the same in 2.X
      because it prints and codes strings portably. Per Chapter 11, a __future__ import enables 3.X print calls in 2.X. And as introduced in Chapter 4, 3.X b'...' bytes literals are taken as simple
      strings in 2.X, and 2.X u'...'
      Unicode literals as treated as normal strings in 3.X as of 3.3.
$54,321.99 54,321.99
£54,321.99 ¥54,321.99
£54,321.99
€54,321.99 €54,321.99
¤54,321.99
If this works on your computer, you can probably skip the next few
      paragraphs. Depending on your interface and system settings, though,
      getting this to run and display properly may require additional steps.
      On my machine, it behaves correctly when Python and the display medium
      are in sync, but the euro and generic currency symbols in the last two
      lines fail with errors in a basic Command Prompt on Windows.
Specifically, this test script always runs and produces the output
      shown in the IDLE GUI in both 3.X and 2.X, because
      Unicode-to-glyph mappings are handled well. It also works as advertised
      in 3.X on Windows if you redirect the output to a
      file and open it with Notepad, because 3.X encodes content on this
      platform in a default Windows format that Notepad understands:
c:\code> formats_currency.py > temp
c:\code> notepad temp
However, this doesn’t work in 2.X, because Python tries to encode
      printed text as ASCII by default. To show all the non-ASCII characters
      in a Windows Command Prompt window directly, on some computers you may
      need to change the Windows code page (used to
      render characters) as well as Python’s PYTHONIOENCODING environment variable (used as
      the encoding of text in standard streams, including the translation of
      characters to bytes when they are printed) to a common Unicode format
      such as UTF-8:
c:\code> chcp 65001                           # Console matches Python
c:\code> set PYTHONIOENCODING=utf-8           # Python matches console
c:\code> formats_currency.py > temp           # Both 3.X and 2.X write UTF-8 text
c:\code> type temp                            # Console displays it properly
c:\code> notepad temp                         # Notepad recognizes UTF-8 too
You may not need to take these steps on some platforms and even on
      some Windows distributions. I did because my laptop’s code page is set
      to 437 (U.S. characters), but your code pages may vary.
Subtly, the only reason this test works on Python 2.X at all is
      because 2.X allows normal and Unicode strings to be
      mixed, as long as the normal string is all 7-bit
      ASCII characters. On 3.3, the 2.X u'...' Unicode literal is supported for
      compatibility, but taken the same as normal '...' strings, which are always Unicode
      (removing the leading u makes the
      test work in 3.0 through 3.2 too, but breaks 2.X compatibility):
c:\code> py −2
>>> print u'\xA5' + '1', '%s2' % u'\u00A3'    # 2.X: unicode/str mix for ASCII str
¥1 £2

c:\code> py −3
>>> print(u'\xA5' + '1', '%s2' % u'\u00A3')   # 3.X: str is Unicode, u'' optional
¥1 £2
>>> print('\xA5' + '1', '%s2' % '\u00A3')
¥1 £2
Again, there’s much more on Unicode in Chapter 37—a topic many see as peripheral,
      but which can crop up even in relatively simple contexts like this! The
      takeaway point here is that, operational issues aside, a carefully coded
      script can often manage to support Unicode in both 3.X and 2.X.

Docstrings: Module Documentation at Work
Finally, because this example’s main file uses the docstring feature introduced
      in Chapter 15, we can use the
      help function or PyDoc’s GUI/browser
      modes to explore its tools as well—modules are almost automatically
      general-purpose tools. Here’s help at
      work; Figure 25-2 gives
      the PyDoc view on our file.
>>> import formats
>>> help(formats)
Help on module formats:

NAME
    formats

DESCRIPTION
    File: formats.py (2.X and 3.X)
    Various specialized string display formatting utilities.
    Test me with canned self-test or command-line arguments.
    To do: add parens for negative money, add more features.

FUNCTIONS
    commas(N)
        Format positive integer-like N for display with
        commas between digit groupings: "xxx,yyy,zzz".

    money(N, numwidth=0, currency='$')
        Format number N for display with commas, 2 decimal digits,
        leading $ and sign, and optional padding: "$  -xxx,yyy.zz".
        numwidth=0 for no space padding, currency='' to omit symbol,
        and non-ASCII for others (e.g., pound=u'£' or u'£').

FILE
    c:\code\formats.py
Figure 25-2. PyDoc’s view of formats.py, obtained by running a “py −3 -m
        pydoc –b” command line in 3.2 and later and clicking on the file’s
        index entry (see Chapter 15)



Changing the Module Search Path
Let’s return to more general module topics. In Chapter 22, we learned that the module
    search path is a list of directories that can be customized via the
    environment variable PYTHONPATH, and
    possibly via .pth files. What I
    haven’t shown you until now is how a Python program itself can actually
    change the search path by changing the built-in sys.path list.
    Per Chapter 22, sys.path is initialized on startup, but
    thereafter you can delete, append, and reset its components however you
    like:
>>> import sys
>>> sys.path
['', 'c:\\temp', 'C:\\Windows\\system32\\python33.zip', ...more deleted...]

>>> sys.path.append('C:\\sourcedir')         # Extend module search path
>>> import string                            # All imports search the new dir last
Once you’ve made such a change, it will impact all future imports
    anywhere while a Python program runs, as all importers share the same
    single sys.path list (there’s only one
    copy of a given module in memory during a program’s run—that’s why
    reload exists). In fact, this list may
    be changed arbitrarily:
>>> sys.path = [r'd:\temp']                  # Change module search path
>>> sys.path.append('c:\\lp5e\\examples')    # For this run (process) only
>>> sys.path.insert(0, '..')
>>> sys.path
['..', 'd:\\temp', 'c:\\lp5e\\examples']
>>> import string
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ImportError: No module named 'string'
Thus, you can use this technique to dynamically configure a search
    path inside a Python program. Be careful, though: if you delete a critical
    directory from the path, you may lose access to critical utilities. In the
    prior example, for instance, we no longer have access to the string module because we deleted the Python
    source library’s directory from the path!
Also, remember that such sys.path
    settings endure for only as long as the Python session or program
    (technically, process) that made them runs; they are
    not retained after Python exits. By contrast, PYTHONPATH and .pth file path configurations live in the
    operating system instead of a running Python program, and so are more
    global: they are picked up by every program on your machine and live on
    after a program completes. On some systems, the former can be per-user and
    the latter can be installation-wide.

The as Extension for import and from
Both the import and from statements were eventually extended to allow an imported name to be
    given a different name in your script. We’ve used this extension earlier,
    but here are some additional details: the following import statement:
import modulename as name                     # And use name, not modulename
is equivalent to the following, which renames the module in the
    importer’s scope only (it’s still known by its original name to other
    files):
import modulename
name = modulename
del modulename                                # Don't keep original name
After such an import, you can—and
    in fact must—use the name listed after the as to refer to the module. This works in a
    from statement, too, to assign a name
    imported from a file to a different name in the importer’s scope; as
    before you get only the new name you provide, not its original:
from modulename import attrname as name       # And use name, not attrname
As discussed in Chapter 23, this
    extension is commonly used to provide short synonyms
    for longer names, and to avoid name clashes when you
    are already using a name in your script that would otherwise be
    overwritten by a normal import
    statement:
import reallylongmodulename as name           # Use shorter nickname
name.func()

from module1 import utility as util1          # Can have only 1 "utility"
from module2 import utility as util2
util1(); util2()
It also comes in handy for providing a short, simple name for an
    entire directory path and avoiding name collisions when using the
    package import feature described in Chapter 24:
import dir1.dir2.mod as mod                   # Only list full path once
mod.func()

from dir1.dir2.mod import func as modfunc     # Rename to make unique if needed
modfunc()
This is also something of a hedge against name changes: if a new
    release of a library renames a module or tool your code uses extensively,
    or provides a new alternative you’d rather use instead, you can simply
    rename it to its prior name on import to avoid breaking your code:
import newname as oldname
from library import newname as oldname
...and keep happily using oldname until you have time to update all your code...
For example, this approach can address some 3.X library changes
    (e.g., 3.X’s tkinter versus 2.X’s
    Tkinter), though they’re often
    substantially more than just a new name!

Example: Modules Are Objects
Because modules expose most of their interesting properties as
    built-in attributes, it’s easy to write programs that manage other
    programs. We usually call such manager programs metaprograms because they work
    on top of other systems. This is also referred to as
    introspection, because programs can see and process
    object internals. Introspection is a somewhat advanced feature, but it can
    be useful for building programming tools.
For instance, to get to an attribute called name in a module called M, we can use attribute qualification or index
    the module’s attribute dictionary, exposed in the built-in __dict__ attribute we met in Chapter 23. Python
    also exports the list of all loaded modules as the sys.modules dictionary and provides a built-in called getattr that lets us fetch attributes from their
    string names—it’s like saying object.attr, but attr is an expression that yields a string at runtime. Because of that, all the following
    expressions reach the same attribute and object:1
M.name                                        # Qualify object by attribute
M.__dict__['name']                            # Index namespace dictionary manually
sys.modules['M'].name                         # Index loaded-modules table manually
getattr(M, 'name')                            # Call built-in fetch function
By exposing module internals like this, Python helps you build
    programs about programs. For example, here is a module named mydir.py that puts these ideas to work to
    implement a customized version of the built-in dir function. It defines and exports a function called listing, which takes a module object as an
    argument and prints a formatted listing of the module’s namespace sorted
    by name:
#!python
"""
mydir.py: a module that lists the namespaces of other modules
"""
from __future__ import print_function  # 2.X compatibility

seplen = 60
sepchr = '-'

def listing(module, verbose=True):
    sepline = sepchr * seplen
    if verbose:
        print(sepline)
        print('name:', module.__name__, 'file:', module.__file__)
        print(sepline)

    count = 0
    for attr in sorted(module.__dict__):      # Scan namespace keys (or enumerate)
        print('%02d) %s' % (count, attr), end = ' ')
        if attr.startswith('__'):
            print('<built-in name>')          # Skip __file__, etc.
        else:
            print(getattr(module, attr))      # Same as .__dict__[attr]
        count += 1

    if verbose:
        print(sepline)
        print(module.__name__, 'has %d names' % count)
        print(sepline)

if __name__ == '__main__':
    import mydir
    listing(mydir)                            # Self-test code: list myself
Notice the docstring at the top; as in the prior formats.py example, because we may want to use
    this as a general tool, the docstring provides functional information
    accessible via help and GUI/browser
    mode of PyDoc—a tool that uses similar introspection tools to do its job.
    A self-test is also provided at the bottom of this
    module, which narcissistically imports and lists itself. Here’s the sort
    of output produced in Python 3.3; this script works on 2.X too (where it
    may list fewer names) because it prints from the __future__:
c:\code> py −3 mydir.py
------------------------------------------------------------
name: mydir file: c:\code\mydir.py
------------------------------------------------------------
00) __builtins__ <built-in name>
01) __cached__ <built-in name>
02) __doc__ <built-in name>
03) __file__ <built-in name>
04) __initializing__ <built-in name>
05) __loader__ <built-in name>
06) __name__ <built-in name>
07) __package__ <built-in name>
08) listing <function listing at 0x000000000295B488>
09) print_function _Feature((2, 6, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 65536)
10) sepchr -
11) seplen 60
------------------------------------------------------------
mydir has 12 names
------------------------------------------------------------
To use this as a tool for listing other modules, simply pass the
    modules in as objects to this file’s function. Here it is listing
    attributes in the tkinter GUI module in
    the standard library (a.k.a. Tkinter in
    Python 2.X); it will technically work on any object with __name__, __file__, and __dict__ attributes:
>>> import mydir
>>> import tkinter
>>> mydir.listing(tkinter)
------------------------------------------------------------
name: tkinter file: C:\Python33\lib\tkinter\__init__.py
------------------------------------------------------------
00) ACTIVE active
01) ALL all
02) ANCHOR anchor
03) ARC arc
04) At <function At at 0x0000000002BD41E0>
...many more names omitted...
156) image_types <function image_types at 0x0000000002BE2378>
157) mainloop <function mainloop at 0x0000000002BCBBF8>
158) sys <module 'sys' (built-in)>
159) wantobjects 1
160) warnings <module 'warnings' from 'C:\\Python33\\lib\\warnings.py'>
------------------------------------------------------------
tkinter has 161 names
------------------------------------------------------------
We’ll meet getattr and its
    relatives again later. The point to notice here is that mydir is a program that lets you browse other
    programs. Because Python exposes its internals, you can process objects
    generically.2

Importing Modules by Name String
The module name in an import
    or from statement is a hardcoded
    variable name. Sometimes, though, your program will get the name of a
    module to be imported as a string at runtime—from a user selection in a
    GUI, or a parse of an XML document, for instance. Unfortunately, you can’t
    use import statements directly to load
    a module given its name as a string—Python expects a variable name that’s
    taken literally and not evaluated, not a string or expression. For
    instance:
>>> import 'string'
  File "<stdin>", line 1
    import "string"
                  ^
SyntaxError: invalid syntax
It also won’t work to simply assign the string to a variable
    name:
x = 'string'
import x
Here, Python will try to import a file x.py, not the string module—the name in an import statement both becomes a variable
    assigned to the loaded module and identifies the external file
    literally.
Running Code Strings
To get around this, you need to use special tools to load a module
      dynamically from a string that is generated at runtime. The most general
      approach is to construct an import
      statement as a string of Python code and pass it to the exec built-in function to run (exec is a statement in Python 2.X, but it can
      be used exactly as shown here—the parentheses are simply
      ignored):
>>> modname = 'string'
>>> exec('import ' + modname)      # Run a string of code
>>> string                         # Imported in this namespace
<module 'string' from 'C:\\Python33\\lib\\string.py'>
We met the exec function (and
      its cousin for expressions, eval)
      earlier, in Chapter 3 and Chapter 10. It compiles a string of code
      and passes it to the Python interpreter to be executed. In Python, the
      byte code compiler is available at runtime, so you can write programs
      that construct and run other programs like this. By default, exec runs the code in the current scope, but
      you can get more specific by passing in optional namespace dictionaries
      if needed. It also has security issues noted earlier in the book, which
      may be minor in a code string you are building yourself.

Direct Calls: Two Options
The only real drawback to exec
      here is that it must compile the import statement each time it runs, and
      compiling can be slow. Precompiling to byte code with the compile built-in
      may help for code strings run many times, but in most cases it’s
      probably simpler and may run quicker to use the built-in __import__ function to load from a name string instead, as noted in Chapter 22. The effect is similar, but
      __import__ returns the module object,
      so assign it to a name here to keep it:
>>> modname = 'string'
>>> string = __import__(modname)
>>> string
<module 'string' from 'C:\\Python33\\lib\\string.py'>
As also noted in Chapter 22,
      the newer call importlib.import_module does the same work,
      and is generally preferred in more recent Pythons for direct calls to
      import by name string—at least per the current “official” policy stated
      in Python’s manuals:
>>> import importlib
>>> modname = 'string'
>>> string = importlib.import_module(modname)
>>> string
<module 'string' from 'C:\\Python33\\lib\\string.py'>
The import_module call takes a
      module name string, and an optional second argument that gives the
      package used as the anchor point for resolving
      relative imports, which defaults to None. This call works the same as __import__ in its basic roles, but see
      Python’s manuals for more details.
Though both calls still work, in Pythons where both are available,
      the original __import__ is generally
      intended for customizing import operations by reassignment in the
      built-in scope (and any future changes in “official” policy are beyond
      the scope of this book!).


Example: Transitive Module Reloads
This section develops a module tool that ties together and applies some earlier
    topics, and serves as a larger case study to close out this chapter and
    part. We studied module reloads in Chapter 23, as a way to pick up changes in code
    without stopping and restarting a program. When you reload a module,
    though, Python reloads only that particular module’s file; it doesn’t
    automatically reload modules that the file being reloaded happens to
    import.
For example, if you reload some module A, and A
    imports modules B and C, the reload applies only to A, not to B
    and C. The statements inside A that import B and C are
    rerun during the reload, but they just fetch the already loaded B and C
    module objects (assuming they’ve been imported before). In actual yet
    abstract code, here’s the file A.py:
# A.py
import B                   # Not reloaded when A is!
import C                   # Just an import of an already loaded module: no-ops

% python
>>> . . .
>>> from imp import reload
>>> reload(A)
By default, this means that you cannot depend on reloads to pick up
    changes in all the modules in your program transitively—instead, you must
    use multiple reload calls to update the
    subcomponents independently. This can require substantial work for large
    systems you’re testing interactively. You can design your systems to
    reload their subcomponents automatically by adding reload calls in parent modules like A, but this complicates the modules’
    code.
A Recursive Reloader
A better approach is to write a general tool to do transitive reloads
      automatically by scanning modules’ __dict__ namespace attributes and checking
      each item’s type to find nested
      modules to reload. Such a utility function could call itself
      recursively to navigate arbitrarily shaped and deep
      import dependency chains. Module __dict__ attributes were introduced in Chapter 23 and employed earlier in this chapter,
      and the type call was presented in
      Chapter 9; we just need
      to combine the two tools.
The module reloadall.py
      listed next defines a reload_all
      function that automatically reloads a module, every module that the
      module imports, and so on, all the way to the bottom of each import
      chain. It uses a dictionary to keep track of already reloaded modules,
      recursion to walk the import chains, and the standard library’s types module,
      which simply predefines type results
      for built-in types. The visited
      dictionary technique works to avoid cycles here when imports are
      recursive or redundant, because module objects are immutable and so can
      be dictionary keys; as we learned in Chapter 5
      and Chapter 8, a
      set would offer similar functionality if we use
      visited.add(module) to insert:
#!python
"""
reloadall.py: transitively reload nested modules (2.X + 3.X).
Call reload_all with one or more imported module objects.
"""

import types
from imp import reload                                   # from required in 3.X

def status(module):
    print('reloading ' + module.__name__)

def tryreload(module):
    try:
        reload(module)                                   # 3.3 (only?) fails on some
    except:
        print('FAILED: %s' % module)

def transitive_reload(module, visited):
    if not module in visited:                            # Trap cycles, duplicates
        status(module)                                   # Reload this module
        tryreload(module)                                # And visit children
        visited[module] = True
        for attrobj in module.__dict__.values():         # For all attrs
            if type(attrobj) == types.ModuleType:        # Recur if module
                transitive_reload(attrobj, visited)

def reload_all(*args):
    visited = {}                                         # Main entry point
    for arg in args:                                     # For all passed in
        if type(arg) == types.ModuleType:
            transitive_reload(arg, visited)

def tester(reloader, modname):                           # Self-test code
    import importlib, sys                                # Import on tests only
    if len(sys.argv) > 1: modname = sys.argv[1]          # command line (or passed)
    module  = importlib.import_module(modname)           # Import by name string
    reloader(module)                                     # Test passed-in reloader

if __name__ == '__main__':
    tester(reload_all, 'reloadall')                      # Test: reload myself?
Besides namespace dictionaries, this script makes use of other
      tools we’ve studied here: it includes a __name__ test to launch self-test code when
      run as a top-level script only, and its tester function uses sys.argv to inspect command-line arguments and
      importlib to import a module by name
      string passed in as a function or command-line argument. One curious
      bit: notice how this code must wrap the basic reload call in a try statement to catch exceptions—in Python
      3.3, reloads sometimes fail due to a rewrite of the import machinery.
      The try was previewed in Chapter 10, and is covered in full in
      Part VII.
Testing recursive reloads
Now, to leverage this utility for normal use, import its
        reload_all function and pass it an
        already loaded module object—just as you would for the built-in
        reload function. When the file runs
        standalone, its self-test code calls reload_all automatically, reloading its own
        module by default if no command-line arguments are used. In this mode,
        the module must import itself because its own name is not defined in
        the file without an import. This code works in both 3.X and 2.X
        because we’ve used + and % instead of a comma in the prints, though
        the set of modules used and thus reloaded may vary across
        lines:
C:\code> c:\Python33\python reloadall.py
reloading reloadall
reloading types

c:\code> C:\Python27\python reloadall.py
reloading reloadall
reloading types
With a command-line argument, the tester instead reloads the
        given module by its name string—here, the benchmark module we coded in
        Chapter 21. Note that we give a
        module name in this mode, not a filename (as for import statements,
        don’t include the .py extension);
        the script ultimately imports the module using the module search path
        as usual:
c:\code> reloadall.py pybench
reloading pybench
reloading timeit
reloading itertools
reloading sys
reloading time
reloading gc
reloading os
reloading errno
reloading ntpath
reloading stat
reloading genericpath
reloading copyreg
Perhaps most commonly, we can also deploy this module at the
        interactive prompt—here, in 3.3 for some standard
        library modules. Notice how os is
        imported by tkinter, but tkinter reaches sys before os can (if you want to test this on Python
        2.X, substitute Tkinter for
        tkinter):
>>> from reloadall import reload_all
>>> import os, tkinter
>>> reload_all(os)                        # Normal usage mode
reloading os
reloading ntpath
reloading stat
reloading sys
reloading genericpath
reloading errno
reloading copyreg

>>> reload_all(tkinter)
reloading tkinter
reloading _tkinter
reloading warnings
reloading sys
reloading linecache
reloading tokenize
reloading builtins
FAILED: <module 'builtins'>
reloading re
...etc...
reloading os
reloading ntpath
reloading stat
reloading genericpath
reloading errno
...etc...
And finally here is a session that shows the effect of normal
        versus transitive reloads—changes made to the two nested files are not
        picked up by reloads, unless the transitive utility is used:
import b     # File a.py
X = 1

import c     # File b.py
Y = 2

Z = 3        # File c.py

C:\code> py −3
>>> import a
>>> a.X, a.b.Y, a.b.c.Z
(1, 2, 3)

# Without stopping Python, change all three files' assignment values and save

>>> from imp import reload
>>> reload(a)                             # Built-in reload is top level only
<module 'a' from '.\\a.py'>
>>> a.X, a.b.Y, a.b.c.Z
(111, 2, 3)

>>> from reloadall import reload_all
>>> reload_all(a)                         # Normal usage mode
reloading a
reloading b
reloading c
>>> a.X, a.b.Y, a.b.c.Z                   # Reloads all nested modules too
(111, 222, 333)
Study the reloader’s code and results for more on its operation.
        The next section exercises its tools further.


Alternative Codings
For all the recursion fans in the audience, the following lists an
      alternative recursive coding for the function in
      the prior section—it uses a set instead of a
      dictionary to detect cycles, is marginally more
      direct because it eliminates a top-level loop, and
      serves to illustrate recursive function techniques in general (compare
      with the original to see how this differs). This version also gets some
      of its work for free from the original, though the order in which it
      reloads modules might vary if namespace dictionary order does
      too:
"""
reloadall2.py: transitively reload nested modules (alternative coding)
"""

import types
from imp import reload                              # from required in 3.X
from reloadall import status, tryreload, tester

def transitive_reload(objects, visited):
    for obj in objects:
        if type(obj) == types.ModuleType and obj not in visited:
            status(obj)
            tryreload(obj)                          # Reload this, recur to attrs
            visited.add(obj)
            transitive_reload(obj.__dict__.values(), visited)

def reload_all(*args):
    transitive_reload(args, set())

if __name__ == '__main__':
    tester(reload_all, 'reloadall2')                # Test code: reload myself?
As we saw in Chapter 19, there is
      usually an explicit stack or queue equivalent to
      most recursive functions, which may be preferable in some
      contexts. The following is one such transitive reloader; it uses a
      generator expression to filter out nonmodules and modules already
      visited in the current module’s namespace. Because it both pops and adds
      items at the end of its list, it is stack based, though the order of
      both pushes and dictionary values influences the order in which it
      reaches and reloads modules—it visits submodules in namespace
      dictionaries from right to left, unlike the left-to-right order of the
      recursive versions (trace through the code to see how). We could change
      this, but dictionary order is arbitrary anyhow.
"""
reloadall3.py: transitively reload nested modules (explicit stack)
"""

import types
from imp import reload                              # from required in 3.X
from reloadall import status, tryreload, tester

def transitive_reload(modules, visited):
    while modules:
        next = modules.pop()                        # Delete next item at end
        if (type(next) == types.ModuleType          # Valid module object?
            and next not in visited):               # Not already reloaded?
            status(next)                            # Reload this, push attrs
            tryreload(next)
            visited.add(next)
            modules.extend(next.__dict__.values())

def reload_all(*modules):
    transitive_reload(list(modules), set())

if __name__ == '__main__':
    tester(reload_all, 'reloadall3')                # Test code: reload myself?
If the recursion and nonrecursion used in this example is
      confusing, see the discussion of recursive functions in Chapter 19 for background on the
      subject.
Testing reload variants
To prove that these work the same, let’s test all three of our
        reloader variants. Thanks to their common testing function, we can run
        all three from a command line both with no arguments to test the
        module reloading itself, and with the name of a module to be reloaded
        listed on the command line (in sys.argv):
c:\code> reloadall.py
reloading reloadall
reloading types

c:\code> reloadall2.py
reloading reloadall2
reloading types

c:\code> reloadall3.py
reloading reloadall3
reloading types
Though it’s hard to see here, we really are testing the
        individual reloader alternatives—each of these tests shares a common
        tester function, but passes it the
        reload_all from its own file. Here
        are the variants reloading the 3.X tkinter GUI module and all the modules its
        imports reach:
c:\code> reloadall.py tkinter
reloading tkinter
reloading _tkinter
reloading tkinter._fix
...etc...
c:\code> reloadall2.py tkinter
reloading tkinter
reloading tkinter.constants
reloading tkinter._fix
...etc...
c:\code> reloadall3.py tkinter
reloading tkinter
reloading sys
reloading tkinter.constants
...etc...
All three work on both Python 3.X and 2.X too—they’re careful to
        unify prints with formatting, and avoid using version-specific tools
        (though you must use 2.X module names like Tkinter, and I’m using the 3.3 Windows
        launcher here to run per Appendix B):
c:\code> py −2 reloadall.py
reloading reloadall
reloading types

c:\code> py −2 reloadall2.py Tkinter
reloading Tkinter
reloading _tkinter
reloading FixTk
...etc...
As usual we can test interactively, too, by importing and
        calling either a module’s main reload entry point with a module
        object, or the testing function with a reloader function and module
        name string:
C:\code> py −3
>>> import reloadall, reloadall2, reloadall3
>>> import tkinter
>>> reloadall.reload_all(tkinter)                           # Normal use case
reloading tkinter
reloading tkinter._fix
reloading os
...etc...
>>> reloadall.tester(reloadall2.reload_all, 'tkinter')      # Testing utility
reloading tkinter
reloading tkinter._fix
reloading os
...etc...
>>> reloadall.tester(reloadall3.reload_all, 'reloadall3')   # Mimic self-test code
reloading reloadall3
reloading types
Finally, if you look at the output of tkinter reloads earlier, you may notice that
        each of the three variants may produce results in a different
        order; they all depend on namespace dictionary
        ordering, and the last also relies on the order in which items are
        added to its stack. In fact, under Python 3.3, the reload order for a
        given reloader can vary from run to run. To ensure that all three are
        reloading the same modules irrespective of the order in which they do
        so, we can use sets (or sorts) to test for order-neutral equality of
        their printed messages—obtained here by running shell commands with the os.popen utility we met in Chapter 13 and used in Chapter 21:
>>> import os
>>> res1 = os.popen('reloadall.py tkinter').readlines()
>>> res2 = os.popen('reloadall2.py tkinter').readlines()
>>> res3 = os.popen('reloadall3.py tkinter').readlines()
>>> res1[:3]
['reloading tkinter\n', 'reloading sys\n', 'reloading tkinter._fix\n']

>>> res1 == res2, res2 == res3
(False, False)
>>> set(res1) == set(res2), set(res2) == set(res3)
(True, True)
Run these scripts, study their code, and experiment on your own
        for more insight; these are the sort of importable tools you might
        want to add to your own source code library. Watch for a similar
        testing technique in the coverage of class tree listers in Chapter 31, where we’ll apply it to passed
        class objects and extend it further.
Also keep in mind that all three variants reload only modules
        that were loaded with import
        statements—since names copied with from statements do not cause a module to be
        nested and referenced in the importer’s namespace, their containing
        module is not reloaded. More fundamentally, the transitive reloaders
        rely on the fact that module reloads update module objects
        in place, such that all references to those
        modules in any scope will see the updated version automatically.
        Because they copy names out, from
        importers are not updated by reloads—transitive or not—and supporting
        this may require either source code analysis, or customization of the
        import operation (see Chapter 22
        for pointers).
Tool impacts like this are perhaps another reason to prefer
        import to from—which brings us to the end of this
        chapter and part, and the standard set of warnings for this part’s topic.



Module Gotchas
In this section, we’ll take a look at the usual collection of boundary cases
    that can make life interesting for Python beginners. Some are review here,
    and a few are so obscure that coming up with representative examples can
    be a challenge, but most illustrate something important about the
    language.
Module Name Clashes: Package and Package-Relative Imports
If you have two modules of the same name, you may only be able to import one of them—by
      default, the one whose directory is leftmost in the sys.path module search path will always be
      chosen. This isn’t an issue if the module you prefer is in your
      top-level script’s directory; since that is always first in the module
      path, its contents will be located first automatically. For
      cross-directory imports, however, the linear nature of the module search
      path means that same-named files can clash.
To fix, either avoid same-named files or use
      the package imports feature of Chapter 24. If
      you need to get to both same-named files, structure your source files in
      subdirectories, such that package import directory names make the module
      references unique. As long as the enclosing package directory names are
      unique, you’ll be able to access either or both of the same-named
      modules.
Note that this issue can also crop up if you accidentally use a
      name for a module of your own that happens to be the same as a standard
      library module you need—your local module in the program’s home
      directory (or another directory early in the module path) can hide and
      replace the library module.
To fix, either avoid using the same name as
      another module you need or store your modules in a package directory and
      use Python 3.X’s package-relative import model, available in 2.X as an
      option. In this model, normal imports skip the package directory (so
      you’ll get the library’s version), but special dotted import statements
      can still select the local version of the module if needed.

Statement Order Matters in Top-Level Code
As we’ve seen, when a module is first imported (or reloaded), Python executes
      its statements one by one, from the top of the file to the bottom. This
      has a few subtle implications regarding forward references that are
      worth underscoring here:
	Code at the top level of a module file
          (not nested in a function) runs as soon as Python reaches it during
          an import; because of that, it cannot reference names assigned
          lower in the file.

	Code inside a function body doesn’t run
          until the function is called; because names in a function aren’t
          resolved until the function actually runs, they can usually
          reference names anywhere in the file.


Generally, forward references are only a concern in top-level
      module code that executes immediately; functions can reference names
      arbitrarily. Here’s a file that illustrates forward reference dos and
      don’ts:
func1()                           # Error: "func1" not yet assigned

def func1():
    print(func2())                # OK: "func2" looked up later

func1()                           # Error: "func2" not yet assigned

def func2():
    return "Hello"

func1()                           # OK: "func1" and "func2" assigned
When this file is imported (or run as a standalone program),
      Python executes its statements from top to bottom. The first call to
      func1 fails because the func1 def hasn’t run yet. The call to func2 inside func1 works as long as func2’s def
      has been reached by the time func1 is
      called—and it hasn’t when the second top-level func1 call is run. The last call to func1 at the bottom of the file works because
      func1 and func2 have both been assigned.
Mixing defs with top-level code
      is not only difficult to read, it’s also dependent on statement
      ordering. As a rule of thumb, if you need to mix immediate code with
      defs, put your defs at the top of the file and your top-level
      code at the bottom. That way, your functions are guaranteed to be
      defined and assigned by the time Python runs the code that uses
      them.

from Copies Names but Doesn’t Link
Although it’s commonly used, the from statement is the source of a variety of potential gotchas in Python.
      As we’ve learned, the from statement
      is really an assignment to names in the importer’s scope—a name-copy
      operation, not a name aliasing. The implications of this are the same as
      for all assignments in Python, but they’re subtle, especially given that
      the code that shares the objects lives in different files. For instance,
      suppose we define the following module, nested1.py:
# nested1.py
X = 99
def printer(): print(X)
If we import its two names using from in another module, nested2.py, we get copies of those names, not
      links to them. Changing a name in the importer resets only the binding
      of the local version of that name, not the name in nested1.py:
# nested2.py
from nested1 import X, printer    # Copy names out
X = 88                            # Changes my "X" only!
printer()                         # nested1's X is still 99

% python nested2.py
99
If we use import to get the
      whole module and then assign to a qualified name, however, we change the
      name in nested1.py. Attribute
      qualification directs Python to a name in the module object, rather than
      a name in the importer, nested3.py:
# nested3.py
import nested1                    # Get module as a whole
nested1.X = 88                    # OK: change nested1's X
nested1.printer()

% python nested3.py
88

from * Can Obscure the Meaning of Variables
I mentioned this earlier but saved the details for here. Because you don’t
      list the variables you want when using the from
      module import * statement form, it can accidentally overwrite
      names you’re already using in your scope. Worse, it can make it
      difficult to determine where a variable comes from. This is especially
      true if the from * form is used on
      more than one imported file.
For example, if you use from *
      on three modules in the following, you’ll have no way of knowing what a
      raw function call really means, short of searching all three external
      module files—all of which may be in other directories:
>>> from module1 import *          # Bad: may overwrite my names silently
>>> from module2 import *          # Worse: no way to tell what we get!
>>> from module3 import *
>>> . . .

>>> func()                         # Huh???
The solution again is not to do this: try to explicitly list the
      attributes you want in your from
      statements, and restrict the from *
      form to at most one imported module per file. That way, any undefined
      names must by deduction be in the module named in the single from *. You can avoid the issue altogether if
      you always use import instead of
      from, but that advice is too harsh;
      like much else in programming, from
      is a convenient tool if used wisely. Even this example isn’t an absolute
      evil—it’s OK for a program to use this technique to collect names in a
      single space for convenience, as long as it’s well known.

reload May Not Impact from Imports
Here’s another from-related
      gotcha: as discussed previously, because from copies (assigns) names when run, there’s
      no link back to the modules where the names came from. Names imported
      with from simply become references to
      objects, which happen to have been referenced by the same names in the
      importee when the from ran.
Because of this behavior, reloading the importee has no effect on
      clients that import its names using from. That is, the client’s names will still
      reference the original objects fetched with from, even if the names in the original module
      are later reset:
from module import X          # X may not reflect any module reloads!
 . . .
from imp import reload
reload(module)                # Changes module, but not my names
X                             # Still references old object
To make reloads more effective, use import and name qualification instead of
      from. Because qualifications always
      go back to the module, they will find the new bindings of module names
      after reloading has updated the module’s content in
      place:
import module                 # Get module, not names
 . . .
from imp import reload
reload(module)                # Changes module in place
module.X                      # Get current X: reflects module reloads
As a related consequence, our transitive reloader earlier in this
      chapter doesn’t apply to names fetched with from, only import; again, if you’re going to use reloads,
      you’re probably better off with import.

reload, from, and Interactive Testing
In fact, the prior gotcha is even more subtle than it appears. Chapter 3 warned that it’s usually better not to
      launch programs with imports and reloads because of the complexities
      involved. Things get even worse when from is brought into the mix. Python beginners
      most often stumble onto its issues in scenarios like this—imagine that
      after opening a module file in a text edit window, you launch an
      interactive session to load and test your module with from:
from module import function
function(1, 2, 3)
Finding a bug, you jump back to the edit window, make a change,
      and try to reload the module this way:
from imp import reload
reload(module)
This doesn’t work, because the from statement assigned only the name function, not module. To refer to the module in a reload, you have to first bind its name with
      an import statement at least
      once:
from imp import reload
import module
reload(module)
function(1, 2, 3)
However, this doesn’t quite work either—reload updates the module object in place, but
      as discussed in the preceding section, names like function that were copied out of the module in
      the past still refer to the old objects; in this
      instance, function is still the
      original version of the function. To really get the new function, you
      must refer to it as module.function
      after the reload, or rerun the
      from:
from imp import reload
import module
reload(module)
from module import function        # Or give up and use module.function()
function(1, 2, 3)
Now, the new version of the function will finally run, but it
      seems an awful lot of work to get there.
As you can see, there are problems inherent in using reload with from: not only do you have to remember to
      reload after imports, but you also have to remember to rerun your
      from statements after reloads. This
      is complex enough to trip up even an expert once in a while. In fact,
      the situation has gotten even worse in Python 3.X, because you must also
      remember to import reload
      itself!
The short story is that you should not expect reload and from to play together nicely. Again, the best
      policy is not to combine them at all—use reload with import, or launch your programs other ways, as
      suggested in Chapter 3: using the Run→Run
      Module menu option in IDLE, file icon clicks, system command lines, or
      the exec built-in function.

Recursive from Imports May Not Work
I saved the most bizarre (and, thankfully, obscure) gotcha for last.
      Because imports execute a file’s statements from top to bottom, you need
      to be careful when using modules that import each other. This is often
      called recursive imports, but the recursion doesn’t
      really occur (in fact, circular may be a better
      term here)—such imports won’t get stuck in infinite importing loops.
      Still, because the statements in a module may not all have been run when
      it imports another module, some of its names may not yet exist.
If you use import to fetch the
      module as a whole, this probably doesn’t matter; the module’s names
      won’t be accessed until you later use qualification to fetch their
      values, and by that time the module is likely complete. But if you use
      from to fetch specific names, you
      must bear in mind that you will only have access to names in that module
      that have already been assigned when a recursive import is kicked
      off.
For instance, consider the following modules, recur1 and recur2. recur1 assigns a name X, and then imports recur2 before assigning the name Y. At this point, recur2 can fetch recur1 as a whole with an import—it already exists in Python’s internal
      modules table, which makes it importable, and also prevents the imports
      from looping. But if recur2 uses
      from, it will be able to see only the
      name X; the name Y, which is assigned below the import in recur1, doesn’t yet exist, so you get an
      error:
# recur1.py
X = 1
import recur2                             # Run recur2 now if it doesn't exist
Y = 2

# recur2.py
from recur1 import X                      # OK: "X" already assigned
from recur1 import Y                      # Error: "Y" not yet assigned

C:\code> py −3
>>> import recur1
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File ".\recur1.py", line 2, in <module>
    import recur2
  File ".\recur2.py", line 2, in <module>
    from recur1 import Y
ImportError: cannot import name Y
Python avoids rerunning recur1’s statements when they are imported
      recursively from recur2 (otherwise
      the imports would send the script into an infinite loop that might
      require a Ctrl-C solution or worse), but recur1’s namespace is incomplete when it’s
      imported by recur2.
The solution? Don’t use from in
      recursive imports (no, really!). Python won’t get stuck in a cycle if
      you do, but your programs will once again be dependent on the order of
      the statements in the modules. In fact, there are two ways out of this
      gotcha:
	You can usually eliminate import cycles like this by careful
          design—maximizing cohesion and minimizing coupling are good first
          steps.

	If you can’t break the cycles completely, postpone module name
          accesses by using import and
          attribute qualification (instead of from and direct names), or by running your
          froms either inside functions
          (instead of at the top level of the module) or near the bottom of
          your file to defer their execution.


There is additional perspective on this issue in the exercises at
      the end of this chapter—which we’ve officially reached.


Chapter Summary
This chapter surveyed some more advanced module-related concepts. We
    studied data hiding techniques, enabling new language features with the
    __future__ module, the __name__ usage mode variable, transitive
    reloads, importing by name strings, and more. We also explored and
    summarized module design issues, wrote some more substantial programs, and
    looked at common mistakes related to modules to help you avoid them in
    your code.
The next chapter begins our look at Python’s
    class—its object-oriented programming tool. Much of
    what we’ve covered in the last few chapters will apply there, too: classes
    live in modules and are namespaces as well, but they add an extra
    component to attribute lookup called inheritance
    search. As this is the last chapter in this part of the book,
    however, before we dive into that topic, be sure to work through this
    part’s set of lab exercises. And before that, here is this chapter’s quiz
    to review the topics covered here.

Test Your Knowledge: Quiz
	What is significant about variables at the top level of a module
        whose names begin with a single underscore?

	What does it mean when a module’s __name__ variable is the string "__main__"?

	If the user interactively types the name of a module to test,
        how can your code import it?

	How is changing sys.path
        different from setting PYTHONPATH
        to modify the module search path?

	If the module __future__
        allows us to import from the future, can we also import from the
        past?



Test Your Knowledge: Answers
	Variables at the top level of a module whose names begin with a
        single underscore are not copied out to the
        importing scope when the from *
        statement form is used. They can still be accessed by an import or the normal from statement form, though. The __all__ list is similar, but the logical
        converse; its contents are the only names that
        are copied out on a from
        *.

	If a module’s __name__
        variable is the string "__main__",
        it means that the file is being executed as a top-level script instead
        of being imported from another file in the program. That is, the file
        is being used as a program, not a library. This usage mode variable
        supports dual-mode code and tests.

	User input usually comes into a script as a string; to import
        the referenced module given its string name, you can build and run an
        import statement with exec, or pass the string name in a call to
        the __import__ or importlib.import_module.

	Changing sys.path only
        affects one running program (process), and is temporary—the change
        goes away when the program ends. PYTHONPATH settings live in the operating
        system—they are picked up globally by all your programs on a machine,
        and changes to these settings endure after programs exit.

	No, we can’t import from the past in Python. We can install (or
        stubbornly use) an older version of the language, but the latest
        Python is generally the best Python (at least within lines—see 2.X
        longevity!).



Test Your Knowledge: Part V Exercises
See “Part V, Modules and Packages” in Appendix D for the solutions.
	Import basics. Write a program that counts the lines and characters in
        a file (similar in spirit to part of what wc does on Unix). With your text editor,
        code a Python module called mymod.py that exports three top-level
        names:
	A countLines(name)
            function that reads an input file and counts the number of lines
            in it (hint: file.readlines
            does most of the work for you, and len does the rest, though you could
            count with for and file
            iterators to support massive files too).

	A countChars(name)
            function that reads an input file and counts the number of
            characters in it (hint: file.read returns a single string, which
            may be used in similar ways).

	A test(name) function
            that calls both counting functions with a given input filename.
            Such a filename generally might be passed in, hardcoded, input
            with the input built-in
            function, or pulled from a command line via the sys.argv list shown in this chapter’s
            formats.py and reloadall.py examples; for now, you can
            assume it’s a passed-in function argument.


All three mymod functions
        should expect a filename string to be passed in. If you type more than
        two or three lines per function, you’re working much too hard—use the
        hints I just gave!
Next, test your module interactively, using import and attribute references to fetch
        your exports. Does your PYTHONPATH
        need to include the directory where you created mymod.py? Try running your module on
        itself: for example, test("mymod.py"). Note that test opens the file twice; if you’re feeling
        ambitious, you may be able to improve this by passing an open file
        object into the two count functions (hint: file.seek(0) is a file rewind).

	from/from *. Test your
        mymod module from exercise 1
        interactively by using from to load
        the exports directly, first by name, then using the from * variant to fetch everything.

	__main__. Add a line in your mymod module that calls the test function automatically only when the
        module is run as a script, not when it is imported. The line you add
        will probably test the value of __name__ for the string "__main__", as shown in this chapter. Try
        running your module from the system command line; then, import the
        module and test its functions interactively. Does it still work in
        both modes?

	Nested imports. Write a second module,
        myclient.py, that imports
        mymod and tests its functions; then
        run myclient from the system
        command line. If myclient uses
        from to fetch from mymod, will mymod’s functions be accessible from the top
        level of myclient? What if it
        imports with import instead? Try
        coding both variations in myclient
        and test interactively by importing myclient and inspecting its __dict__ attribute.

	Package imports. Import your file from a
        package. Create a subdirectory called mypkg nested in a directory on your module
        import search path, copy or move the mymod.py module file you created in
        exercise 1 or 3 into the new directory, and try to import it with a
        package import of the form import
        mypkg.mymod and call its functions. Try to fetch your
        counter functions with a from
        too.
You’ll need to add an __init__.py file in the directory your
        module was moved to make this go, but it should work on all major
        Python platforms (that’s part of the reason Python uses “.” as a path
        separator). The package directory you create can be simply a
        subdirectory of the one you’re working in; if it is, it will be found
        via the home directory component of the search path, and you won’t
        have to configure your path. Add some code to your __init__.py, and see if it runs on each
        import.

	Reloads. Experiment with module reloads:
        perform the tests in Chapter 23’s
        changer.py example, changing the
        called function’s message and/or behavior repeatedly, without stopping
        the Python interpreter. Depending on your system, you might be able to
        edit changer in another window, or
        suspend the Python interpreter and edit in the same window (on Unix, a
        Ctrl-Z key combination usually suspends the current process, and an
        fg command later resumes it, though
        a text edit window probably works just as well).

	Circular imports. In the section on
        recursive (a.k.a. circular) import gotchas, importing recur1 raised an error. But if you restart
        Python and import recur2
        interactively, the error doesn’t occur—test this and see for yourself.
        Why do you think it works to import recur2, but not recur1? (Hint: Python stores new modules in
        the built-in sys.modules table—a
        dictionary—before running their code; later imports fetch the module
        from this table first, whether the module is “complete” yet or not.)
        Now, try running recur1 as a
        top-level script file: python
        recur1.py. Do you get the same error that occurs when
        recur1 is imported interactively?
        Why? (Hint: when modules are run as programs, they aren’t imported, so
        this case has the same effect as importing recur2 interactively; recur2 is the first module imported.) What
        happens when you run recur2 as a
        script? Circular imports are uncommon and rarely this bizarre in
        practice. On the other hand, if you can understand why they are a
        potential problem, you know a lot about Python’s import semantics.



1 As we saw briefly in “Other Ways to Access Globals” in Chapter 17, because a function can access its enclosing
        module by going through the sys.modules table like this, it can also be
        used to emulate the effect of the global statement. For instance, the effect
        of global X; X=0 can be simulated
        (albeit with much more typing!) by saying this inside a function:
        import sys; glob=sys.modules[__name__];
        glob.X=0. Remember, each module gets a __name__ attribute for free; it’s visible as
        a global name inside the functions within the module. This trick
        provides another way to change both local and global variables of the
        same name inside a function.
2 You can preload tools such as mydir.listing and the reloader we’ll meet in
        a moment into the interactive namespace by importing them in the file
        referenced by the PYTHONSTARTUP
        environment variable. Because code in the startup file runs in the
        interactive namespace (module __main__), importing common tools in the
        startup file can save you some typing. See Appendix A for more details.








Part VI. Classes and OOP








Chapter 26. OOP: The Big Picture
So far in this book, we’ve been using the term “object” generically.
  Really, the code written up to this point has been
  object-based—we’ve passed objects around our scripts,
  used them in expressions, called their methods, and so on. For our code to
  qualify as being truly object-oriented (OO), though,
  our objects will generally need to also participate in something called an
  inheritance hierarchy.
This chapter begins our exploration of the Python
  class—a coding structure and device used to implement
  new kinds of objects in Python that support inheritance. Classes are
  Python’s main object-oriented programming (OOP) tool, so we’ll also look at
  OOP basics along the way in this part of the book. OOP offers a different
  and often more effective way of programming, in which we factor code to
  minimize redundancy, and write new programs by
  customizing existing code instead of changing it in
  place.
In Python, classes are created with a new statement: the class. As you’ll see, the objects defined with
  classes can look a lot like the built-in types we studied earlier in the
  book. In fact, classes really just apply and extend the ideas we’ve already
  covered; roughly, they are packages of functions that use and process
  built-in object types. Classes, though, are designed to create and manage
  new objects, and support inheritance—a mechanism of code
  customization and reuse above and beyond anything we’ve seen so far.
One note up front: in Python, OOP is entirely optional, and you don’t
  need to use classes just to get started. You can get plenty of work done
  with simpler constructs such as functions, or even simple top-level script
  code. Because using classes well requires some up-front planning, they tend
  to be of more interest to people who work in strategic
  mode (doing long-term product development) than to people who work in
  tactical mode (where time is in very short
  supply).
Still, as you’ll see in this part of the book, classes turn out to be
  one of the most useful tools Python provides. When used well, classes can
  actually cut development time radically. They’re also employed in popular
  Python tools like the tkinter GUI API, so most Python programmers will
  usually find at least a working knowledge of class basics helpful.
Why Use Classes?
Remember when I told you that programs “do things with stuff” in Chapter 4 and Chapter 10? In simple terms, classes are
    just a way to define new sorts of stuff, reflecting
    real objects in a program’s domain. For instance, suppose we decide to
    implement that hypothetical pizza-making robot we used as an example in
    Chapter 16. If we implement it using classes, we
    can model more of its real-world structure and relationships. Two aspects
    of OOP prove useful here:
	Inheritance
	Pizza-making robots are kinds of robots, so they possess the
          usual robot-y properties. In OOP terms, we say they “inherit”
          properties from the general category of all robots. These common
          properties need to be implemented only once for the general case and
          can be reused in part or in full by all types of robots we may build
          in the future.

	Composition
	Pizza-making robots are really collections of components that work
          together as a team. For instance, for our robot to be successful, it
          might need arms to roll dough, motors to maneuver to the oven, and
          so on. In OOP parlance, our robot is an example of composition; it
          contains other objects that it activates to do its bidding. Each
          component might be coded as a class, which defines its own behavior
          and relationships.


General OOP ideas like inheritance and composition apply to any
    application that can be decomposed into a set of objects. For example, in
    typical GUI systems, interfaces are written as collections of
    widgets—buttons, labels, and so on—which are all drawn when their
    container is drawn (composition). Moreover, we may be
    able to write our own custom widgets—buttons with unique fonts, labels
    with new color schemes, and the like—which are specialized versions of
    more general interface devices (inheritance).
From a more concrete programming perspective, classes are Python
    program units, just like functions and modules: they are another
    compartment for packaging logic and data. In fact, classes also define new
    namespaces, much like modules. But, compared to other program units we’ve
    already seen, classes have three critical distinctions that make them more
    useful when it comes to building new objects:
	Multiple instances
	Classes are essentially factories for generating one or more
          objects. Every time we call a class, we generate a new object with a
          distinct namespace. Each object generated from a class has access to
          the class’s attributes and gets a namespace of
          its own for data that varies per object. This is similar to the
          per-call state retention of Chapter 17’s closure
          functions, but is explicit and natural in classes, and is just one
          of the things that classes do. Classes offer a complete programming
          solution.

	Customization via inheritance
	Classes also support the OOP notion of inheritance; we can
          extend a class by redefining its attributes outside the class itself
          in new software components coded as subclasses. More generally,
          classes can build up namespace hierarchies, which define names to be
          used by objects created from classes in the hierarchy. This supports
          multiple customizable behaviors more directly than other
          tools.

	Operator overloading
	By providing special protocol methods, classes can define objects that
          respond to the sorts of operations we saw at work on built-in types.
          For instance, objects made with classes can be sliced, concatenated,
          indexed, and so on. Python provides hooks that classes can use to
          intercept and implement any built-in type operation.


At its base, the mechanism of OOP in Python is largely just
    two bits of magic: a special first argument in
    functions (to receive the subject of a call) and inheritance attribute
    search (to support programming by customization). Other than this, the
    model is largely just functions that ultimately process built-in types.
    While not radically new, though, OOP adds an extra layer of structure that
    supports better programming than flat procedural models. Along with the
    functional tools we met earlier, it represents a major abstraction step
    above computer hardware that helps us build more sophisticated
    programs.

OOP from 30,000 Feet
Before we see what this all means in terms of code, I’d like to say
    a few words about the general ideas behind OOP. If you’ve never done
    anything object-oriented in your life before now, some of the terminology
    in this chapter may seem a bit perplexing on the first pass. Moreover, the
    motivation for these terms may be elusive until you’ve had a chance to
    study the ways that programmers apply them in larger systems. OOP is as
    much an experience as a technology.
Attribute Inheritance Search
The good news is that OOP is much simpler to understand and use in Python than in other
      languages, such as C++ or Java. As a dynamically typed scripting
      language, Python removes much of the syntactic clutter and complexity
      that clouds OOP in other tools. In fact, much of the OOP story in Python
      boils down to this expression:
object.attribute
We’ve been using this expression throughout the book to access
      module attributes, call methods of objects, and so on. When we say this
      to an object that is derived from a class statement, however, the expression kicks
      off a search in Python—it searches a tree of linked
      objects, looking for the first appearance of
      attribute that it can find. When classes are
      involved, the preceding Python expression effectively translates to the
      following in natural language:
Find the first occurrence of
        attribute by looking in
        object, then in all classes above it, from
        bottom to top and left to right.

In other words, attribute fetches are simply tree searches. The
      term inheritance is applied because objects lower
      in a tree inherit attributes attached to objects higher in that tree. As
      the search proceeds from the bottom up, in a sense, the objects linked
      into a tree are the union of all the attributes defined in all their
      tree parents, all the way up the tree.
In Python, this is all very literal: we really do build up trees
      of linked objects with code, and Python really does climb this tree at
      runtime searching for attributes every time we use the
      object.attribute
      expression. To make this more concrete, Figure 26-1 sketches an
      example of one of these trees.
Figure 26-1. A class tree, with two instances at the bottom (I1 and I2), a
        class above them (C1), and two superclasses at the top (C2 and C3).
        All of these objects are namespaces (packages of variables), and the
        inheritance search is simply a search of the tree from bottom to top
        looking for the lowest occurrence of an attribute name. Code implies
        the shape of such trees.

In this figure, there is a tree of five objects labeled with
      variables, all of which have attached attributes, ready to be searched.
      More specifically, this tree links together three class
      objects (the ovals C1,
      C2, and C3) and two instance
      objects (the rectangles I1
      and I2) into an inheritance search
      tree. Notice that in the Python object model, classes and the instances
      you generate from them are two distinct object types:
	Classes
	Serve as instance factories. Their attributes provide
            behavior—data and functions—that is inherited by all the instances
            generated from them (e.g., a function to compute an employee’s
            salary from pay and hours).

	Instances
	Represent the concrete items in a program’s domain. Their
            attributes record data that varies per specific object (e.g., an
            employee’s Social Security number).


In terms of search trees, an instance inherits attributes from its
      class, and a class inherits attributes from all classes above it in the
      tree.
In Figure 26-1, we
      can further categorize the ovals by their relative positions in the
      tree. We usually call classes higher in the tree (like C2 and C3)
      superclasses; classes lower in the tree (like C1) are known as
      subclasses. These terms refer to both relative tree positions and roles.
      Superclasses provide behavior shared by all their subclasses, but
      because the search proceeds from the bottom up, subclasses may override
      behavior defined in their superclasses by redefining superclass names
      lower in the tree.1
As these last few words are really the crux of the matter of
      software customization in OOP, let’s expand on this concept. Suppose we
      build up the tree in Figure 26-1, and then say
      this:
I2.w
Right away, this code invokes inheritance. Because this is an
      object.attribute
      expression, it triggers a search of the tree in Figure 26-1—Python will search
      for the attribute w by looking in
      I2 and above. Specifically, it will
      search the linked objects in this order:
I2, C1, C2, C3
and stop at the first attached w it finds (or raise an error if w isn’t found at all). In this case, w won’t be found until C3 is searched because it appears only in that
      object. In other words, I2.w resolves
      to C3.w by virtue of the automatic
      search. In OOP terminology, I2
      “inherits” the attribute w from
      C3.
Ultimately, the two instances inherit four attributes from their
      classes: w, x, y, and
      z. Other attribute references will
      wind up following different paths in the tree. For example:
	I1.x and I2.x both find x in C1
          and stop because C1 is lower than
          C2.

	I1.y and I2.y both find y in C1
          because that’s the only place y
          appears.

	I1.z and I2.z both find z in C2
          because C2 is further to the left
          than C3.

	I2.name finds name in I2 without climbing the tree at
          all.


Trace these searches through the tree in Figure 26-1 to get a feel for
      how inheritance searches work in Python.
The first item in the preceding list is perhaps the most important
      to notice—because C1 redefines the
      attribute x lower in the tree, it
      effectively replaces the version above it in
      C2. As you’ll see in a moment, such
      redefinitions are at the heart of software customization in OOP—by
      redefining and replacing the attribute, C1 effectively customizes what it inherits
      from its superclasses.

Classes and Instances
Although they are technically two separate object types in the Python model, the classes
      and instances we put in these trees are almost identical—each type’s
      main purpose is to serve as another kind of namespace—a package of variables,
      and a place where we can attach attributes. If classes and instances
      therefore sound like modules, they should; however, the objects in class
      trees also have automatically searched links to other namespace objects,
      and classes correspond to statements, not entire files.
The primary difference between classes and instances is that
      classes are a kind of factory for generating
      instances. For example, in a realistic application, we might have an
      Employee class that defines what it
      means to be an employee; from that class, we generate actual Employee instances. This is another difference
      between classes and modules—we only ever have one instance of a given
      module in memory (that’s why we have to reload a module to get its new
      code), but with classes, we can make as many instances as we
      need.
Operationally, classes will usually have functions attached to them (e.g., computeSalary), and the instances will have
      more basic data items used by the class’s functions (e.g., hoursWorked). In fact, the object-oriented
      model is not that different from the classic data-processing model of
      programs plus records—in OOP,
      instances are like records with “data,” and classes are the “programs”
      for processing those records. In OOP, though, we also have the notion of
      an inheritance hierarchy, which supports software customization better
      than earlier models.

Method Calls
In the prior section, we saw how the attribute reference I2.w in our example class tree was translated
      to C3.w by the inheritance search
      procedure in Python. Perhaps just as important to understand as the
      inheritance of attributes, though, is what happens when we try to
      call methods—functions attached to
      classes as attributes.
If this I2.w reference is a
      function call, what it really means is “call the
      C3.w function to process I2.” That is, Python will automatically map
      the call I2.w() into the call
      C3.w(I2), passing in the instance as
      the first argument to the inherited function.
In fact, whenever we call a function attached to a class in this fashion, an instance
      of the class is always implied. This implied subject or context is part
      of the reason we refer to this as an
      object-oriented model—there is always a subject
      object when an operation is run. In a more realistic example, we might
      invoke a method called giveRaise
      attached as an attribute to an Employee class; such a call has no meaning
      unless qualified with the employee to whom the raise should be
      given.
As we’ll see later, Python passes in the implied instance to a
      special first argument in the method, called self by convention. Methods go through this
      argument to process the subject of the call. As we’ll also learn,
      methods can be called through either an instance—bob.giveRaise()—or a class—Employee.giveRaise(bob)—and both forms serve
      purposes in our scripts. These calls also illustrate both of the key
      ideas in OOP: to run a bob.giveRaise() method call, Python:
	Looks up giveRaise from
          bob, by inheritance search

	Passes bob to the located
          giveRaise function, in the
          special self argument


When you call Employee.giveRaise(bob), you’re just
      performing both steps yourself. This description is technically the
      default case (Python has additional method types we’ll meet later), but
      it applies to the vast majority of the OOP code written in the language.
      To see how methods receive their subjects, though, we need to move on to
      some code.

Coding Class Trees
Although we are speaking in the abstract here, there is tangible code behind all these ideas, of
      course. We construct trees and their objects with class statements and class calls, which we’ll
      meet in more detail later. In short:
	Each class statement
          generates a new class object.

	Each time a class is called, it generates a new instance
          object.

	Instances are automatically linked to the classes from which
          they are created.

	Classes are automatically linked to their superclasses
          according to the way we list them in parentheses in a class header line; the left-to-right order
          there gives the order in the tree.


To build the tree in Figure 26-1, for example, we
      would run Python code of the following form. Like function definition,
      classes are normally coded in module files and are run during an import
      (I’ve omitted the guts of the class
      statements here for brevity):
class C2: ...                      # Make class objects (ovals)
class C3: ...
class C1(C2, C3): ...              # Linked to superclasses (in this order)

I1 = C1()                          # Make instance objects (rectangles)
I2 = C1()                          # Linked to their classes
Here, we build the three class objects by running three class statements, and make the two instance
      objects by calling the class C1
      twice, as though it were a function. The instances remember the class
      they were made from, and the class C1
      remembers its listed superclasses.
Technically, this example is using something called multiple
      inheritance, which simply means that a class has more than
      one superclass above it in the class tree—a useful technique when you
      wish to combine multiple tools. In Python, if there is more than one
      superclass listed in parentheses in a class statement (like C1’s here), their left-to-right order gives
      the order in which those superclasses will be searched for attributes by
      inheritance. The leftmost version of a name is used by default, though
      you can always choose a name by asking for it from the class it lives in
      (e.g., C3.z).
Because of the way inheritance searches proceed, the object to
      which you attach an attribute turns out to be crucial—it determines the
      name’s scope. Attributes attached to instances pertain only to those
      single instances, but attributes attached to classes are shared by all
      their subclasses and instances. Later, we’ll study the code that hangs
      attributes on these objects in depth. As we’ll find:
	Attributes are usually attached to classes by assignments made
          at the top level in class
          statement blocks, and not nested inside function def statements there.

	Attributes are usually attached to instances by assignments to
          the special argument passed to functions coded inside classes,
          called self.


For example, classes provide behavior for their instances with
      method functions we create by coding def statements inside class statements. Because such nested defs assign names within the class, they wind
      up attaching attributes to the class object that will be inherited by
      all instances and subclasses:
class C2: ...                    # Make superclass objects
class C3: ...

class C1(C2, C3):                # Make and link class C1
    def setname(self, who):      # Assign name: C1.setname
        self.name = who          # Self is either I1 or I2

I1 = C1()                        # Make two instances
I2 = C1()
I1.setname('bob')                # Sets I1.name to 'bob'
I2.setname('sue')                # Sets I2.name to 'sue'
print(I1.name)                   # Prints 'bob'
There’s nothing syntactically unique about def in this context. Operationally, though,
      when a def appears
      inside a class like this, it is
      usually known as a method, and it automatically
      receives a special first argument—called self by convention—that provides a handle back
      to the instance to be processed. Any values you pass to the method
      yourself go to arguments after self
      (here, to who).2
Because classes are factories for multiple instances, their
      methods usually go through this automatically passed-in self argument whenever they need to fetch or
      set attributes of the particular instance being processed by a method
      call. In the preceding code, self is
      used to store a name in one of two instances.
Like simple variables, attributes of classes and instances are not
      declared ahead of time, but spring into existence the first time they
      are assigned values. When a method assigns to a self attribute, it creates or changes an
      attribute in an instance at the bottom of the class tree (i.e., one of
      the rectangles in Figure 26-1) because self automatically refers to the instance
      being processed—the subject of the call.
In fact, because all the objects in class trees are just namespace
      objects, we can fetch or set any of their attributes by going through
      the appropriate names. Saying C1.setname is as valid as saying I1.setname, as long as the names C1 and I1
      are in your code’s scopes.

Operator Overloading
As currently coded, our C1
      class doesn’t attach a name
      attribute to an instance until the setname method is called. Indeed, referencing
      I1.name before calling I1.setname would produce an undefined name
      error. If a class wants to guarantee that an attribute like name is always set in its instances, it more
      typically will fill out the attribute at construction time, like
      this:
class C2: ...                    # Make superclass objects
class C3: ...

class C1(C2, C3):
    def __init__(self, who):     # Set name when constructed
        self.name = who          # Self is either I1 or I2

I1 = C1('bob')                   # Sets I1.name to 'bob'
I2 = C1('sue')                   # Sets I2.name to 'sue'
print(I1.name)                   # Prints 'bob'
If it’s coded or inherited, Python automatically calls a method
      named __init__ each time an instance
      is generated from a class. The new instance is passed in to the self argument of __init__ as usual, and any values listed in
      parentheses in the class call go to arguments two and beyond. The effect
      here is to initialize instances when they are made, without requiring
      extra method calls.
The __init__ method is
      known as the constructor because of
      when it is run. It’s the most commonly used representative of a larger
      class of methods called operator overloading
      methods, which we’ll discuss in more detail in the chapters
      that follow. Such methods are inherited in class trees as usual and have
      double underscores at the start and end of their names to make them
      distinct. Python runs them automatically when instances that support
      them appear in the corresponding operations, and they are mostly an
      alternative to using simple method calls. They’re also optional: if
      omitted, the operations are not supported. If no __init__ is present, class calls return an
      empty instance, without initializing it.
For example, to implement set intersection, a class might either
      provide a method named intersect, or
      overload the & expression
      operator to dispatch to the required logic by coding a method named
      __and__. Because the operator scheme
      makes instances look and feel more like built-in types, it allows some
      classes to provide a consistent and natural interface, and be compatible
      with code that expects a built-in type. Still, apart from the __init__ constructor—which appears in most
      realistic classes—many programs may be better off with simpler named
      methods unless their objects are similar to built-ins. A giveRaise may make sense for an Employee, but a & might not.

OOP Is About Code Reuse
And that, along with a few syntax details, is most of the OOP story in Python. Of course,
      there’s a bit more to it than just inheritance. For example, operator
      overloading is much more general than I’ve described so far—classes may
      also provide their own implementations of operations such as indexing,
      fetching attributes, printing, and more. By and large, though, OOP is
      about looking up attributes in trees with a special first argument in
      functions.
So why would we be interested in building and searching trees of
      objects? Although it takes some experience to see how, when used well,
      classes support code reuse in ways that other
      Python program components cannot. In fact, this is their highest
      purpose. With classes, we code by customizing existing software, instead
      of either changing existing code in place or starting from scratch for
      each new project. This turns out to be a powerful paradigm in realistic
      programming.
At a fundamental level, classes are really just packages of
      functions and other names, much like modules. However, the automatic
      attribute inheritance search that we get with classes supports
      customization of software above and beyond what we can do with modules
      and functions. Moreover, classes provide a natural structure for code
      that packages and localizes logic and names, and so aids in
      debugging.
For instance, because methods are simply functions with a special
      first argument, we can mimic some of their behavior by manually passing
      objects to be processed to simple functions. The participation of
      methods in class inheritance, though, allows us to naturally customize
      existing software by coding subclasses with new method definitions,
      rather than changing existing code in place. There is really no such
      concept with modules and functions.
Polymorphism and classes
As an example, suppose you’re assigned the task of implementing an employee
        database application. As a Python OOP programmer, you might begin by
        coding a general superclass that defines default behaviors common to
        all the kinds of employees in your organization:
class Employee:                      # General superclass
    def computeSalary(self): ...     # Common or default behaviors
    def giveRaise(self): ...
    def promote(self): ...
    def retire(self): ...
Once you’ve coded this general behavior, you can specialize it
        for each specific kind of employee to reflect how the various types
        differ from the norm. That is, you can code subclasses that customize
        just the bits of behavior that differ per employee type; the rest of
        the employee types’ behavior will be inherited from the more general
        class. For example, if engineers have a unique salary computation rule
        (perhaps it’s not hours times rate), you can replace just that one
        method in a subclass:
class Engineer(Employee):            # Specialized subclass
     def computeSalary(self): ...    # Something custom here
Because the computeSalary
        version here appears lower in the class tree, it will replace
        (override) the general version in Employee. You then create instances of the
        kinds of employee classes that the real employees belong to, to get
        the correct behavior:
bob = Employee()                     # Default behavior
sue = Employee()                     # Default behavior
tom = Engineer()                     # Custom salary calculator
Notice that you can make instances of any class in a tree, not
        just the ones at the bottom—the class you make an instance from
        determines the level at which the attribute search will begin, and
        thus which versions of the methods it will employ.
Ultimately, these three instance objects might wind up embedded
        in a larger container object—for instance, a list, or an instance of
        another class—that represents a department or company using the
        composition idea mentioned at the start of this chapter. When you
        later ask for these employees’ salaries, they will be computed
        according to the classes from which the objects were made, due to the
        principles of the inheritance search:
company = [bob, sue, tom]            # A composite object
for emp in company:
    print(emp.computeSalary())       # Run this object's version: default or custom
This is yet another instance of the idea of
        polymorphism introduced in Chapter 4 and expanded in Chapter 16. Recall that polymorphism means that the
        meaning of an operation depends on the object being operated on. That
        is, code shouldn’t care about what an object is,
        only about what it does. Here, the method
        computeSalary is located by
        inheritance search in each object before it is called. The net effect
        is that we automatically run the correct version for the object being processed.
        Trace the code to see why.3
In other applications, polymorphism might also be used to
        hide (i.e., encapsulate) interface
        differences. For example, a program that processes data streams might
        be coded to expect objects with input and output methods, without
        caring what those methods actually do:
def processor(reader, converter, writer):
    while True:
        data = reader.read()
        if not data: break
        data = converter(data)
        writer.write(data)
By passing in instances of subclasses that specialize the
        required read and write method interfaces for various data
        sources, we can reuse the processor
        function for any data source we need to use, both now and in the
        future:
class Reader:
    def read(self): ...              # Default behavior and tools
    def other(self): ...
class FileReader(Reader):
    def read(self): ...              # Read from a local file
class SocketReader(Reader):
    def read(self): ...              # Read from a network socket
...
processor(FileReader(...),   Converter,  FileWriter(...))
processor(SocketReader(...), Converter,  TapeWriter(...))
processor(FtpReader(...),    Converter,  XmlWriter(...))
Moreover, because the internal implementations of those read and write methods have been factored into single
        locations, they can be changed without impacting code such as this
        that uses them. The processor
        function might even be a class itself to allow the conversion logic of
        converter to be filled in by
        inheritance, and to allow readers and writers to be embedded by
        composition (we’ll see how this works later in this part of the
        book).

Programming by customization
Once you get used to programming this way (by software
        customization), you’ll find that when it’s time to write a new
        program, much of your work may already be done—your task largely
        becomes one of mixing together existing superclasses that already
        implement the behavior required by your program. For example, someone
        else might have written the Employee, Reader, and Writer classes in this section’s examples
        for use in completely different programs. If so, you get all of that
        person’s code “for free.”
In fact, in many application domains, you can fetch or purchase
        collections of superclasses, known as frameworks,
        that implement common programming tasks as classes, ready to be mixed
        into your applications. These frameworks might provide database
        interfaces, testing protocols, GUI toolkits, and so on. With
        frameworks, you often simply code a subclass that fills in an expected
        method or two; the framework classes higher in the tree do most of the
        work for you. Programming in such an OOP world is just a matter of
        combining and specializing already debugged code by writing subclasses
        of your own.
Of course, it takes a while to learn how to leverage classes to
        achieve such OOP utopia. In practice, object-oriented work also
        entails substantial design work to fully realize the code reuse
        benefits of classes—to this end, programmers have begun cataloging
        common OOP structures, known as design patterns,
        to help with design issues. The actual code you write to do OOP in
        Python, though, is so simple that it will not in itself pose an
        additional obstacle to your OOP quest. To see why, you’ll have to
        move on to Chapter 27.



Chapter Summary
We took an abstract look at classes and OOP in this chapter, taking
    in the big picture before we dive into syntax details. As we’ve seen, OOP
    is mostly about an argument named self,
    and a search for attributes in trees of linked objects called inheritance.
    Objects at the bottom of the tree inherit attributes from objects higher
    up in the tree—a feature that enables us to program by customizing code,
    rather than changing it or starting from scratch. When used well, this
    model of programming can cut development time radically.
The next chapter will begin to fill in the coding details behind the
    picture painted here. As we get deeper into Python classes, though, keep
    in mind that the OOP model in Python is very simple; as we’ve seen here,
    it’s really just about looking up attributes in object trees and a special
    function argument. Before we move on, here’s a quick quiz to review what
    we’ve covered here.

Test Your Knowledge: Quiz
	What is the main point of OOP in Python?

	Where does an inheritance search look for an attribute?

	What is the difference between a class object and an instance
        object?

	Why is the first argument in a class’s method function
        special?

	What is the __init__ method
        used for?

	How do you create a class instance?

	How do you create a class?

	How do you specify a class’s superclasses?



Test Your Knowledge: Answers
	OOP is about code reuse—you factor code to minimize redundancy
        and program by customizing what already exists instead of changing
        code in place or starting from scratch.

	An inheritance search looks for an attribute first in the
        instance object, then in the class the instance was created from, then
        in all higher superclasses, progressing from the bottom to the top of
        the object tree, and from left to right (by default). The search stops
        at the first place the attribute is found. Because the lowest version
        of a name found along the way wins, class hierarchies naturally
        support customization by extension in new subclasses.

	Both class and instance objects are namespaces (packages of
        variables that appear as attributes). The main difference between them
        is that classes are a kind of factory for creating multiple instances.
        Classes also support operator overloading methods, which instances
        inherit, and treat any functions nested in the class as methods for
        processing instances.

	The first argument in a class’s method function is special
        because it always receives the instance object that is the implied
        subject of the method call. It’s usually called self by convention. Because method functions
        always have this implied subject and object context by default, we say
        they are “object-oriented” (i.e., designed to process or change
        objects).

	If the __init__ method is
        coded or inherited in a class, Python calls it automatically each time
        an instance of that class is created. It’s known as the constructor
        method; it is passed the new instance implicitly, as well as any
        arguments passed explicitly to the class name. It’s also the most
        commonly used operator overloading method. If no __init__ method is present, instances simply
        begin life as empty namespaces.

	You create a class instance by calling the class name as though
        it were a function; any arguments passed into the class name show up
        as arguments two and beyond in the __init__ constructor method. The new
        instance remembers the class it was created from for inheritance
        purposes.

	You create a class by running a class statement; like function definitions,
        these statements normally run when the enclosing module file is
        imported (more on this in the next chapter).

	You specify a class’s superclasses by listing them in
        parentheses in the class statement,
        after the new class’s name. The left-to-right order in which the
        classes are listed in the parentheses gives the left-to-right
        inheritance search order in the class tree.



1 In other literature and circles, you may also occasionally see
          the terms base classes and derived
          classes used to describe superclasses and subclasses,
          respectively. Python people and this book tend to use the latter
          terms.
2 If you’ve ever used C++ or Java, you’ll recognize that
          Python’s self is the same as the
          this pointer, but
          self is always explicit in both headers and
          bodies of Python methods to make attribute accesses more obvious: a
          name has fewer possible meanings.
3 The company list in this
            example could be a database if stored in a file with Python object
            pickling, introduced in Chapter 9, to make the
            employees persistent. Python also comes with a module named
            shelve, which allows the
            pickled representation of class instances to be stored in an
            access-by-key filesystem; we’ll deploy it in Chapter 28.








Chapter 27. Class Coding Basics
Now that we’ve talked about OOP in the abstract, it’s time to see how this translates to
  actual code. This chapter begins to fill in the syntax details behind the
  class model in Python.
If you’ve never been exposed to OOP in the past, classes can seem
  somewhat complicated if taken in a single dose. To make class coding easier
  to absorb, we’ll begin our detailed exploration of OOP by taking a first
  look at some basic classes in action in this chapter. We’ll expand on the
  details introduced here in later chapters of this part of the book, but in
  their basic form, Python classes are easy to understand.
In fact, classes have just three primary distinctions. At a base
  level, they are mostly just namespaces, much like the modules we studied in
  Part V. Unlike modules, though, classes
  also have support for generating multiple objects, for namespace
  inheritance, and for operator overloading. Let’s begin our class statement tour by exploring each of these
  three distinctions in turn.
Classes Generate Multiple Instance Objects
To understand how the multiple objects idea works, you have to first understand
    that there are two kinds of objects in Python’s OOP model:
    class objects and instance
    objects. Class objects provide default behavior and serve as factories for
    instance objects. Instance objects are the real objects your programs
    process—each is a namespace in its own right, but inherits (i.e., has
    automatic access to) names in the class from which it was created. Class
    objects come from statements, and instances come from calls; each time you
    call a class, you get a new instance of that class.
This object-generation concept is very different from most of the
    other program constructs we’ve seen so far in this book. In effect,
    classes are essentially factories for generating
    multiple instances. By contrast, only one copy of each module is ever
    imported into a single program. In fact, this is why reload works as it does, updating a
    single-instance shared object in place. With classes, each instance can
    have its own, independent data, supporting multiple versions of the object
    that the class models.
In this role, class instances are similar to the per-call state of
    the closure (a.k.a. factory) functions of Chapter 17, but this is a natural part of the class model, and
    state in classes is explicit attributes instead of implicit scope
    references. Moreover, this is just part of what classes do—they also
    support customization by inheritance, operator overloading, and multiple
    behaviors via methods. Generally speaking, classes are a more complete
    programming tool, though OOP and function programming are not
    mutually exclusive paradigms. We may combine them by using functional
    tools in methods, by coding methods that are themselves generators, by
    writing user-defined iterators (as we’ll see in Chapter 30), and so on.
The following is a quick summary of the bare essentials of Python
    OOP in terms of its two object types. As you’ll see, Python classes are in
    some ways similar to both defs and
    modules, but they may be quite different from what you’re used to in other
    languages.
Class Objects Provide Default Behavior
When we run a class statement,
      we get a class object. Here’s a rundown of the main properties of Python
      classes:
	The class statement
          creates a class object and assigns it a
          name. Just like the function def statement, the Python class statement is an
          executable statement. When reached and run, it
          generates a new class object and assigns it to the name in the
          class header. Also, like defs, class statements typically run when the
          files they are coded in are first imported.

	Assignments inside
          class statements make class attributes. Just like
          in module files, top-level assignments within a class statement (not nested in a def) generate attributes in a class
          object. Technically, the class
          statement defines a local scope that morphs
          into the attribute namespace of the class object, just like a
          module’s global scope. After running a class statement, class attributes are
          accessed by name qualification:
          object.name.

	Class attributes provide object state
          and behavior. Attributes of a class object record state information and behavior to
          be shared by all instances created from the class; function def statements nested inside a class generate
          methods, which process instances.



Instance Objects Are Concrete Items
When we call a class object, we get an instance object. Here’s an
      overview of the key points behind class instances:
	Calling a class object like a function
          makes a new instance object. Each time a class is called, it creates and returns a new
          instance object. Instances represent concrete items in your
          program’s domain.

	Each instance object inherits class
          attributes and gets its own namespace. Instance objects created from classes are new
          namespaces; they start out empty but inherit attributes that live in
          the class objects from which they were generated.

	Assignments to attributes
          of self in methods make per-instance attributes.
          Inside a class’s method functions, the first argument (called
          self by convention) references
          the instance object being processed; assignments to attributes of
          self create or change data in the
          instance, not the class.


The end result is that classes define common, shared data and
      behavior, and generate instances. Instances reflect concrete application
      entities, and record per-instance data that may vary per object.

A First Example
Let’s turn to a real example to show how these ideas work in practice. To
      begin, let’s define a class named FirstClass by running a Python class statement interactively:
>>> class FirstClass:               # Define a class object
        def setdata(self, value):   # Define class's methods
            self.data = value       # self is the instance
        def display(self):
            print(self.data)        # self.data: per instance
We’re working interactively here, but typically, such a statement would
      be run when the module file it is coded in is imported. Like functions
      created with defs, this class won’t
      even exist until Python reaches and runs this statement.
Like all compound statements, the class starts with a header line that lists the
      class name, followed by a body of one or more nested and (usually)
      indented statements. Here, the nested statements are defs; they define functions that implement the
      behavior the class means to export.
As we learned in Part IV,
      def is really an assignment. Here, it
      assigns function objects to the names setdata and display in the class statement’s scope, and so generates
      attributes attached to the class—FirstClass.setdata and FirstClass.display. In fact, any name assigned
      at the top level of the class’s nested block becomes an attribute of the
      class.
Functions inside a class are usually called methods. They’re coded with
      normal defs, and they support
      everything we’ve learned about functions already (they can have
      defaults, return values, yield items on request, and so on). But in a
      method function, the first argument automatically receives an implied
      instance object when called—the subject of the call. We need to create a
      couple of instances to see how this works:
>>> x = FirstClass()                # Make two instances
>>> y = FirstClass()                # Each is a new namespace
By calling the class this way (notice the
      parentheses), we generate instance objects, which are just namespaces
      that have access to their classes’ attributes. Properly speaking, at
      this point, we have three objects: two instances and a class. Really, we
      have three linked namespaces, as sketched in Figure 27-1. In OOP terms, we
      say that x “is a” FirstClass, as is y—they both inherit names attached to the
      class.
Figure 27-1. Classes and instances are linked namespace objects in a class
        tree that is searched by inheritance. Here, the “data” attribute is
        found in instances, but “setdata” and “display” are in the class above
        them.

The two instances start out empty but have links back to the class
      from which they were generated. If we qualify an instance with the name
      of an attribute that lives in the class object, Python fetches the name
      from the class by inheritance search (unless it also lives in the
      instance):
>>> x.setdata("King Arthur")        # Call methods: self is x
>>> y.setdata(3.14159)              # Runs: FirstClass.setdata(y, 3.14159)
Neither x nor y
        has a setdata attribute of its own, so to find it, Python
        follows the link from instance to class. And that’s about all there is to inheritance in
        Python: it happens at attribute qualification time, and it just involves looking up names in
        linked objects—here, by following the is-a links in Figure 27-1.
In the setdata function inside
      FirstClass, the value passed in is
      assigned to self.data. Within a
      method, self—the name given to the
      leftmost argument by convention—automatically refers to the instance
      being processed (x or y), so the assignments store values in the
      instances’ namespaces, not the class’s; that’s how the data names in Figure 27-1 are
      created.
Because classes can generate multiple instances, methods must go
      through the self argument to get to
      the instance to be processed. When we call the class’s display method to print self.data, we see that it’s different in each
      instance; on the other hand, the name display itself is the same in x and y, as
      it comes (is inherited) from the class:
>>> x.display()                     # self.data differs in each instance
King Arthur
>>> y.display()                     # Runs: FirstClass.display(y)
3.14159
Notice that we stored different object types in the data member in each instance—a string and a
      floating-point number. As with everything else in Python, there are no
      declarations for instance attributes (sometimes called
      members); they spring into existence the first time
      they are assigned values, just like simple variables. In fact, if we
      were to call display on one of our
      instances before calling setdata, we would trigger an undefined name
      error—the attribute named data
      doesn’t even exist in memory until it is assigned within the setdata method.
As another way to appreciate how dynamic this model is, consider
      that we can change instance attributes in the class itself, by assigning
      to self in methods, or
      outside the class, by assigning to an explicit
      instance object:
>>> x.data = "New value"            # Can get/set attributes
>>> x.display()                     # Outside the class too
New value
Although less common, we could even generate an entirely
      new attribute in the instance’s namespace by
      assigning to its name outside the class’s method functions:
>>> x.anothername = "spam"          # Can set new attributes here too!
This would attach a new attribute called anothername, which may or may not be used by
      any of the class’s methods, to the instance object x. Classes usually create all of the
      instance’s attributes by assignment to the self argument, but they don’t have to—programs
      can fetch, change, or create attributes on any objects to which they
      have references.
It usually doesn’t make sense to add data that the class cannot
      use, and it’s possible to prevent this with extra “privacy” code based
      on attribute access operator overloading, as we’ll discuss later in this
      book (see Chapter 30 and Chapter 39). Still, free attribute access translates to
      less syntax, and there are cases where it’s even useful—for example, in
      coding data records of the sort we’ll see later in this chapter.


Classes Are Customized by Inheritance
Let’s move on to the second major distinction of classes. Besides serving as
    factories for generating multiple instance objects, classes also allow us
    to make changes by introducing new components (called
    subclasses), instead of changing existing components
    in place.
As we’ve seen, instance objects generated from a class inherit the
    class’s attributes. Python also allows classes to inherit from other
    classes, opening the door to coding hierarchies of
    classes that specialize behavior—by redefining attributes in subclasses
    that appear lower in the hierarchy, we override the more general
    definitions of those attributes higher in the tree. In effect, the further
    down the hierarchy we go, the more specific the software becomes. Here,
    too, there is no parallel with modules, whose attributes live in a single,
    flat namespace that is not as amenable to customization.
In Python, instances inherit from classes, and classes inherit from
    superclasses. Here are the key ideas behind the machinery of attribute
    inheritance:
	Superclasses are listed in parentheses
        in a class header. To make a class inherit attributes from another class, just
        list the other class in parentheses in the new class statement’s header line. The class
        that inherits is usually called a subclass, and
        the class that is inherited from is its
        superclass.

	Classes inherit attributes from their
        superclasses. Just as instances inherit the attribute names defined in their
        classes, classes inherit all of the attribute names defined in their
        superclasses; Python finds them automatically when they’re accessed,
        if they don’t exist in the subclasses.

	Instances inherit attributes from all
        accessible classes. Each instance gets names from the class it’s generated from, as well
        as all of that class’s superclasses. When looking for a name, Python
        checks the instance, then its class, then all superclasses.

	Each object.attribute
        reference invokes a new, independent
        search. Python performs an independent search of the class
        tree for each attribute fetch expression. This includes references to
        instances and classes made outside class statements (e.g., X.attr), as well
        as references to attributes of the self instance argument in a class’s method
        functions. Each self.attr
        expression in a method invokes a new search for
        attr in self and above.

	Logic changes are made by subclassing,
        not by changing superclasses. By redefining superclass names in subclasses lower in the
        hierarchy (class tree), subclasses replace and thus customize
        inherited behavior.


The net effect—and the main purpose of all this searching—is that
    classes support factoring and customization of code better than any other
    language tool we’ve seen so far. On the one hand, they allow us to
    minimize code redundancy (and so reduce maintenance costs) by factoring
    operations into a single, shared implementation; on the other, they allow
    us to program by customizing what already exists, rather than changing it
    in place or starting from scratch.
Note
Strictly speaking, Python’s inheritance is a
      bit richer than described here, when we factor in new-style descriptors
      and metaclasses—advanced topics we’ll study later—but we can safely
      restrict our scope to instances and their classes, both at this point in
      the book and in most Python application code. We’ll define inheritance
      formally in Chapter 40.

A Second Example
To illustrate the role of inheritance, this next example builds on the previous one.
      First, we’ll define a new class, SecondClass, that inherits all of FirstClass’s names and provides one of its
      own:
>>> class SecondClass(FirstClass):                   # Inherits setdata
        def display(self):                           # Changes display
            print('Current value = "%s"' % self.data)
SecondClass defines the
      display method to print with a
      different format. By defining an attribute with the same name as an
      attribute in FirstClass, SecondClass effectively replaces the display attribute in its superclass.
Recall that inheritance searches proceed upward from instances to
      subclasses to superclasses, stopping at the first appearance of the
      attribute name that it finds. In this case, since the display name in SecondClass will be found before the one in
      FirstClass, we say that SecondClass overrides
      FirstClass’s display. Sometimes we call this act of
      replacing attributes by redefining them lower in the tree
      overloading.
The net effect here is that SecondClass specializes FirstClass by changing the behavior of the
      display method. On the other hand,
      SecondClass (and any instances
      created from it) still inherits the setdata method in FirstClass verbatim. Let’s make an instance to
      demonstrate:
>>> z = SecondClass()
>>> z.setdata(42)           # Finds setdata in FirstClass
>>> z.display()             # Finds overridden method in SecondClass
Current value = "42"
As before, we make a SecondClass instance object by calling it. The
      setdata call still runs the version
      in FirstClass, but this time the
      display attribute comes from SecondClass and prints a custom message. Figure 27-2 sketches the
      namespaces involved.
Now, here’s a crucial thing to notice about OOP: the
      specialization introduced in SecondClass is completely
      external to FirstClass. That is, it doesn’t affect
      existing or future FirstClass
      objects, like the x from the prior
      example:
>>> x.display()             # x is still a FirstClass instance (old message)
New value
Figure 27-2. Specialization: overriding inherited names by redefining them
        in extensions lower in the class tree. Here, SecondClass redefines and
        so customizes the “display” method for its instances.

Rather than changing FirstClass, we customized
      it. Naturally, this is an artificial example, but as a rule, because
      inheritance allows us to make changes like this in external components
      (i.e., in subclasses), classes often support extension and reuse better
      than functions or modules can.

Classes Are Attributes in Modules
Before we move on, remember that there’s nothing magic about a class name.
      It’s just a variable assigned to an object when the class statement runs, and the object can be
      referenced with any normal expression. For instance, if our FirstClass were coded in a module file instead
      of being typed interactively, we could import it and use its name
      normally in a class header
      line:
from modulename import FirstClass           # Copy name into my scope
class SecondClass(FirstClass):              # Use class name directly
    def display(self): ...
Or, equivalently:
import modulename                           # Access the whole module
class SecondClass(modulename.FirstClass):   # Qualify to reference
    def display(self): ...
Like everything else, class names always live within a module, so
      they must follow all the rules we studied in Part V. For example, more than one class can
      be coded in a single module file—like other statements in a module,
      class statements are run during
      imports to define names, and these names become distinct module
      attributes. More generally, each module may arbitrarily mix any number
      of variables, functions, and classes, and all names in a module behave
      the same way. The file food.py
      demonstrates:
# food.py
var = 1                                       # food.var
def func(): ...                               # food.func
class spam: ...                               # food.spam
class ham:  ...                               # food.ham
class eggs: ...                               # food.eggs
This holds true even if the module and class happen to have the
      same name. For example, given the following file, person.py:
class person: ...
we need to go through the module to fetch the class as
      usual:
import person                                 # Import module
x = person.person()                           # Class within module
Although this path may look redundant, it’s required: person.person refers to the person class inside the person module. Saying just person gets the module, not the class, unless
      the from statement is used:
from person import person                     # Get class from module
x = person()                                  # Use class name
As with any other variable, we can never see a class in a file
      without first importing and somehow fetching it from its enclosing file.
      If this seems confusing, don’t use the same name for a module and a
      class within it. In fact, common convention in Python dictates that
      class names should begin with an uppercase letter,
      to help make them more distinct:
import person                                 # Lowercase for modules
x = person.Person()                           # Uppercase for classes
Also, keep in mind that although classes and modules are both
      namespaces for attaching attributes, they correspond to very different
      source code structures: a module reflects an entire
      file, but a class is a
      statement within a file. We’ll say more about such
      distinctions later in this part of the book.


Classes Can Intercept Python Operators
Let’s move on to the third and final major difference between classes
    and modules: operator overloading. In simple terms, operator
    overloading lets objects coded with classes intercept and
    respond to operations that work on built-in types: addition, slicing,
    printing, qualification, and so on. It’s mostly just an automatic dispatch
    mechanism—expressions and other built-in operations route control to
    implementations in classes. Here, too, there is nothing similar in
    modules: modules can implement function calls, but not the behavior of
    expressions.
Although we could implement all class behavior as method functions,
    operator overloading lets objects be more tightly integrated with Python’s
    object model. Moreover, because operator overloading makes our own objects
    act like built-ins, it tends to foster object interfaces that are more
    consistent and easier to learn, and it allows class-based objects to be
    processed by code written to expect a built-in type’s interface. Here is a
    quick rundown of the main ideas behind overloading operators:
	Methods named with double underscores
        (__X__) are special
        hooks. In Python classes we implement operator overloading by
        providing specially named methods to intercept operations. The Python
        language defines a fixed and unchangeable mapping from each of these
        operations to a specially named method.

	Such methods are called automatically
        when instances appear in built-in operations. For instance,
        if an instance object inherits an __add__ method, that method is called
        whenever the object appears in a +
        expression. The method’s return value becomes the result of the
        corresponding expression.

	Classes may override most built-in type
        operations. There are dozens of special operator
        overloading method names for intercepting and implementing nearly
        every operation available for built-in types. This includes
        expressions, but also basic operations like printing and object
        creation.

	There are no defaults for operator
        overloading methods, and none are required. If a class does
        not define or inherit an operator overloading method, it just means
        that the corresponding operation is not supported for the class’s
        instances. If there is no __add__,
        for example, + expressions raise
        exceptions.

	New-style classes have some defaults,
        but not for common operations. In Python 3.X, and so-called
        “new style” classes in 2.X that we’ll define later, a root class named
        object does provide defaults for
        some __X__ methods, but not for many, and not for
        most commonly used operations.

	Operators allow classes to integrate
        with Python’s object model. By overloading type operations,
        the user-defined objects we implement with classes can act just like
        built-ins, and so provide consistency as well as compatibility with
        expected interfaces.


Operator overloading is an optional feature; it’s used primarily by
    people developing tools for other Python programmers, not by application
    developers. And, candidly, you probably shouldn’t use
    it just because it seems clever or “cool.” Unless a class needs to mimic
    built-in type interfaces, it should usually stick to simpler named
    methods. Why would an employee database application support expressions
    like * and +, for example? Named methods like giveRaise and promote would usually make more sense.
Because of this, we won’t go into details on every operator
    overloading method available in Python in this book. Still, there is one
    operator overloading method you are likely to see in almost every
    realistic Python class: the __init__
    method, which is known as the constructor method and
    is used to initialize objects’ state. You should pay special attention to
    this method, because __init__, along
    with the self argument, turns out to be
    a key requirement to reading and understanding most OOP code in
    Python.
A Third Example
On to another example. This time, we’ll define a subclass of the prior section’s
      SecondClass that implements three
      specially named attributes that Python will call automatically:
	__init__ is run when a new
          instance object is created: self
          is the new ThirdClass
          object.1

	__add__ is run when a
          ThirdClass instance appears in a
          + expression.

	__str__ is run when an
          object is printed (technically, when it’s converted to its print
          string by the str built-in
          function or its Python internals equivalent).


Our new subclass also defines a normally named method called
      mul, which changes the instance
      object in place. Here’s the new subclass:
>>> class ThirdClass(SecondClass):                     # Inherit from SecondClass
        def __init__(self, value):                     # On "ThirdClass(value)"
            self.data = value
        def __add__(self, other):                      # On "self + other"
            return ThirdClass(self.data + other)
        def __str__(self):                             # On "print(self)", "str()"
            return '[ThirdClass: %s]' % self.data
        def mul(self, other):                          # In-place change: named
            self.data *= other

>>> a = ThirdClass('abc')           # __init__ called
>>> a.display()                     # Inherited method called
Current value = "abc"
>>> print(a)                        # __str__: returns display string
[ThirdClass: abc]

>>> b = a + 'xyz'                   # __add__: makes a new instance
>>> b.display()                     # b has all ThirdClass methods
Current value = "abcxyz"
>>> print(b)                        # __str__: returns display string
[ThirdClass: abcxyz]

>>> a.mul(3)                        # mul: changes instance in place
>>> print(a)
[ThirdClass: abcabcabc]
ThirdClass “is a” SecondClass, so its instances inherit the
      customized display method from
      SecondClass of the preceding section.
      This time, though, ThirdClass
      creation calls pass an argument (e.g., “abc”). This argument is passed
      to the value argument in the __init__ constructor and assigned to self.data there. The net effect is that
      ThirdClass arranges to set the
      data attribute automatically at
      construction time, instead of requiring setdata calls after the fact.
Further, ThirdClass objects can
      now show up in + expressions and
      print calls. For +, Python passes the instance object on the
      left to the self argument in __add__ and the value on the right to other, as illustrated in Figure 27-3; whatever __add__ returns becomes the result of the
      + expression (more on its result in a
      moment).
Figure 27-3. In operator overloading, expression operators and other
        built-in operations performed on class instances are mapped back to
        specially named methods in the class. These special methods are
        optional and may be inherited as usual. Here, a + expression triggers
        the __add__ method.

For print, Python passes the
      object being printed to self in
      __str__; whatever string this method
      returns is taken to be the print string for the object. With __str__ (or its more broadly relevant twin
      __repr__, which we’ll meet and use in
      the next chapter), we can use a normal print to display objects of this class,
      instead of calling the special display method.
Specially named methods such as __init__, __add__, and __str__ are inherited by subclasses and
      instances, just like any other names assigned in a class. If they’re not coded in a class, Python
      looks for such names in all its superclasses, as usual. Operator
      overloading method names are also not built-in or reserved words; they
      are just attributes that Python looks for when objects appear in various
      contexts. Python usually calls them automatically, but they may
      occasionally be called by your code as well. For example, the __init__ method is often called manually to
      trigger initialization steps in a superclass, as we’ll see in the next
      chapter.
Returning results, or not
Some operator overloading methods like __str__ require results, but others are more
        flexible. For example, notice how the __add__ method makes and returns a
        new instance object of its class, by calling
        ThirdClass with the result
        value—which in turn triggers __init__ to initialize the result. This is a
        common convention, and explains why b in the listing has a display method; it’s a ThirdClass object too, because that’s what
        + returns for this class’s objects.
        This essentially propagates the type.
By contrast, mul
        changes the current instance object in place, by
        reassigning the self attribute. We
        could overload the * expression to
        do the latter, but this would be too different from the behavior of
        * for built-in types such as
        numbers and strings, for which it always makes new objects. Common
        practice dictates that overloaded operators should work the same way
        that built-in operator implementations do. Because operator
        overloading is really just an expression-to-method dispatch mechanism,
        though, you can interpret operators any way you like in your own
        class objects.


Why Use Operator Overloading?
As a class designer, you can choose to use operator overloading or
      not. Your choice simply depends on how much you want your object to look
      and feel like built-in types. As mentioned earlier, if you omit an
      operator overloading method and do not inherit it from a superclass, the
      corresponding operation will not be supported for your instances; if
      it’s attempted, an exception will be raised (or, in some cases like
      printing, a standard default will be used).
Frankly, many operator overloading methods tend to be used only
      when you are implementing objects that are mathematical in nature; a
      vector or matrix class may overload the addition operator, for example,
      but an employee class likely would not. For simpler classes, you might
      not use overloading at all, and would rely instead on explicit method
      calls to implement your objects’ behavior.
On the other hand, you might decide to use operator overloading if
      you need to pass a user-defined object to a function that was coded to
      expect the operators available on a built-in type like a list or a
      dictionary. Implementing the same operator set in your class will ensure
      that your objects support the same expected object interface and so are
      compatible with the function. Although we won’t cover every operator
      overloading method in this book, we’ll survey additional common operator
      overloading techniques in action in Chapter 30.
One overloading method we will use often here is the __init__ constructor method, used to
      initialize newly created instance objects, and present in almost every
      realistic class. Because it allows classes to fill out the attributes in
      their new instances immediately, the constructor is useful for almost
      every kind of class you might code. In fact, even though instance
      attributes are not declared in Python, you can usually find out which
      attributes an instance will have by inspecting its class’s __init__ method.
Of course, there’s nothing wrong with experimenting with
      interesting language tools, but they don’t always translate to
      production code. With time and experience, you’ll find these programming
      patterns and guidelines to be natural and nearly automatic.


The World’s Simplest Python Class
We’ve begun studying class statement
    syntax in detail in this chapter, but I’d again like to remind you that
    the basic inheritance model that classes produce is very simple—all it
    really involves is searching for attributes in trees of linked objects. In
    fact, we can create a class with nothing in it at all. The following
    statement makes a class with no attributes attached, an empty namespace
    object:
>>> class rec: pass              # Empty namespace object
We need the no-operation pass
    placeholder statement (discussed in Chapter 13) here because we don’t have any methods
    to code. After we make the class by running this statement interactively,
    we can start attaching attributes to the class by assigning names to it
    completely outside of the original class statement:
>>> rec.name = 'Bob'             # Just objects with attributes
>>> rec.age  = 40
And, after we’ve created these attributes by assignment, we can
    fetch them with the usual syntax. When used this way, a class is roughly
    similar to a “struct” in C, or a “record” in Pascal. It’s basically an
    object with field names attached to it (as we’ll see ahead, doing similar
    with dictionary keys requires extra characters):
>>> print(rec.name)              # Like a C struct or a record
Bob
Notice that this works even though there are no
    instances of the class yet; classes are objects in their own
    right, even without instances. In fact, they are just self-contained
    namespaces; as long as we have a reference to a class, we can set or
    change its attributes anytime we wish. Watch what happens when we do
    create two instances, though:
>>> x = rec()                    # Instances inherit class names
>>> y = rec()
These instances begin their lives as completely empty namespace
    objects. Because they remember the class from which they were made,
    though, they will obtain the attributes we attached to the class by
    inheritance:
>>> x.name, y.name               # name is stored on the class only
('Bob', 'Bob')
Really, these instances have no attributes of their own; they simply
    fetch the name attribute from the class
    object where it is stored. If we do assign an attribute to an instance,
    though, it creates (or changes) the attribute in that object, and no
    other—crucially, attribute references kick off
    inheritance searches, but attribute assignments
    affect only the objects in which the assignments are made. Here, this
    means that x gets its own name, but y
    still inherits the name attached to the
    class above it:
>>> x.name = 'Sue'               # But assignment changes x only
>>> rec.name, x.name, y.name
('Bob', 'Sue', 'Bob')
In fact, as we’ll explore in more detail in Chapter 29, the attributes of a namespace object
    are usually implemented as dictionaries, and class inheritance trees are
    (generally speaking) just dictionaries with links to other dictionaries.
    If you know where to look, you can see this explicitly.
For example, the __dict__
    attribute is the namespace dictionary for most class-based objects. Some
    classes may also (or instead) define attributes in __slots__, an advanced and seldom-used feature
    that we’ll note in Chapter 28, but
    largely postpone until Chapter 31 and Chapter 32. Normally, __dict__ literally is an instance’s attribute
    namespace.
To illustrate, the following was run in Python 3.3; the order of
    names and set of __X__ internal names present can vary from release
    to release, and we filter out built-ins with a generator expression as
    we’ve done before, but the names we assigned are present in all:
>>> list(rec.__dict__.keys())
['age', '__module__', '__qualname__', '__weakref__', 'name', '__dict__', '__doc__']

>>> list(name for name in rec.__dict__ if not name.startswith('__'))
['age', 'name']
>>> list(x.__dict__.keys())
['name']
>>> list(y.__dict__.keys())           # list() not required in Python 2.X
[]
Here, the class’s namespace dictionary shows the name and age
    attributes we assigned to it, x has its
    own name, and y is still empty. Because of this model, an
    attribute can often be fetched by either dictionary
    indexing or attribute notation, but only if it’s present on the object in
    question—attribute notation kicks off inheritance search, but indexing
    looks in the single object only (as we’ll see later,
    both have valid roles):
>>> x.name, x.__dict__['name']        # Attributes present here are dict keys
('Sue', 'Sue')
>>> x.age                             # But attribute fetch checks classes too
40
>>> x.__dict__['age']                 # Indexing dict does not do inheritance
KeyError: 'age'
To facilitate inheritance search on attribute fetches, each instance
    has a link to its class that Python creates for us—it’s called __class__, if you want to inspect it:
>>> x.__class__                       # Instance to class link
<class '__main__.rec'>
Classes also have a __bases__ attribute,
    which is a tuple of references to their superclass objects—in this example
    just the implied object root class in
    Python 3.X we’ll explore later (you’ll get an empty tuple in 2.X
    instead):
>>> rec.__bases__                     # Class to superclasses link, () in 2.X
(<class 'object'>,)
These two attributes are how class trees are literally represented
    in memory by Python. Internal details like these are not required
    knowledge—class trees are implied by the code you run, and their search is
    normally automatic—but they can often help demystify the model.
The main point to take away from this look under the hood is that
    Python’s class model is extremely dynamic. Classes and instances are just
    namespace objects, with attributes created on the fly by assignment. Those
    assignments usually happen within the class statements you code, but they can occur
    anywhere you have a reference to one of the objects in the tree.
Even methods, normally created by a def nested in a class, can be created completely independently
    of any class object. The following, for example, defines a simple function
    outside of any class that takes one argument:
>>> def uppername(obj):
        return obj.name.upper()       # Still needs a self argument (obj)
There is nothing about a class here yet—it’s a simple function, and
    it can be called as such at this point, provided we pass in an object
    obj with a name attribute, whose value in turn has an
    upper method—our class instances happen
    to fit the expected interface, and kick off string uppercase
    conversion:
>>> uppername(x)                      # Call as a simple function
'SUE'
If we assign this simple function to an attribute of our class,
    though, it becomes a method, callable through any
    instance, as well as through the class name itself as long as we pass in
    an instance manually—a technique we’ll leverage further in the
    next chapter:2
>>> rec.method = uppername            # Now it's a class's method!

>>> x.method()                        # Run  method to process x
'SUE'

>>> y.method()                        # Same, but pass y to self
'BOB'

>>> rec.method(x)                     # Can call through instance or class
'SUE'
Normally, classes are filled out by class statements, and instance attributes are
    created by assignments to self
    attributes in method functions. The point again, though, is that they
    don’t have to be; OOP in Python really is mostly about looking up
    attributes in linked namespace objects.
Records Revisited: Classes Versus Dictionaries
Although the simple classes of the prior section are meant to illustrate class
      model basics, the techniques they employ can also be used for real work.
      For example, Chapter 8 and Chapter 9 showed how to use
      dictionaries, tuples, and lists to record properties of entities in our
      programs, generically called records. It turns out
      that classes can often serve better in this role—they package
      information like dictionaries, but can also bundle processing logic in
      the form of methods. For reference, here is an example for tuple- and
      dictionary-based records we used earlier in the book (using one of many
      dictionary coding techniques):
>>> rec = ('Bob', 40.5, ['dev', 'mgr'])     # Tuple-based record
>>> print(rec[0])
Bob

>>> rec = {}
>>> rec['name'] = 'Bob'                     # Dictionary-based record
>>> rec['age']  = 40.5                      # Or {...}, dict(n=v), etc.
>>> rec['jobs'] = ['dev', 'mgr']
>>>
>>> print(rec['name'])
Bob
This code emulates tools like records in other languages. As we
      just saw, though, there are also multiple ways to do the same with
      classes. Perhaps the simplest is this—trading keys for
      attributes:
>>> class rec: pass

>>> rec.name = 'Bob'                        # Class-based record
>>> rec.age  = 40.5
>>> rec.jobs = ['dev', 'mgr']
>>>
>>> print(rec.name)
Bob
This code has substantially less syntax than the dictionary
      equivalent. It uses an empty class
      statement to generate an empty namespace object. Once we make the empty
      class, we fill it out by assigning class attributes over time, as
      before.
This works, but a new class
      statement will be required for each distinct record we will need.
      Perhaps more typically, we can instead generate
      instances of an empty class to represent each
      distinct entity:
>>> class rec: pass

>>> pers1 = rec()                           # Instance-based records
>>> pers1.name = 'Bob'
>>> pers1.jobs = ['dev', 'mgr']
>>> pers1.age  = 40.5
>>>
>>> pers2 = rec()
>>> pers2.name = 'Sue'
>>> pers2.jobs = ['dev', 'cto']
>>>
>>> pers1.name, pers2.name
('Bob', 'Sue')
Here, we make two records from the same class. Instances start out
      life empty, just like classes. We then fill in the records by assigning
      to attributes. This time, though, there are two separate objects, and
      hence two separate name attributes.
      In fact, instances of the same class don’t even have to have the same
      set of attribute names; in this example, one has a unique age name. Instances really are distinct
      namespaces, so each has a distinct attribute dictionary. Although they
      are normally filled out consistently by a class’s methods, they are more
      flexible than you might expect.
Finally, we might instead code a more full-blown class to
      implement the record and its processing—something
      that data-oriented dictionaries do not directly support:
>>> class Person:
        def __init__(self, name, jobs, age=None):      # class = data + logic
            self.name = name
            self.jobs = jobs
            self.age  = age
        def info(self):
            return (self.name, self.jobs)

>>> rec1 = Person('Bob', ['dev', 'mgr'], 40.5)         # Construction calls
>>> rec2 = Person('Sue', ['dev', 'cto'])
>>>
>>> rec1.jobs, rec2.info()                             # Attributes + methods
(['dev', 'mgr'], ('Sue', ['dev', 'cto']))
This scheme also makes multiple instances, but the class is not
      empty this time: we’ve added logic (methods) to
      initialize instances at construction time and collect attributes into a
      tuple on request. The constructor imposes some consistency on instances
      here by always setting the name,
      job, and age attributes, even though the latter can be
      omitted when an object is made. Together, the class’s methods and
      instance attributes create a package, which
      combines both data and
      logic.
We could further extend this code by adding logic to compute
      salaries, parse names, and so on. Ultimately, we might link the class
      into a larger hierarchy to inherit and customize an existing set of
      methods via the automatic attribute search of classes, or perhaps even
      store instances of the class in a file with Python object pickling to
      make them persistent. In fact, we will—in the next
      chapter, we’ll expand on this analogy between classes and records with a
      more realistic running example that demonstrates class basics in
      action.
To be fair to other tools, in this form, the two class
      construction calls above more closely resemble dictionaries made all at
      once, but still seem less cluttered and provide extra processing
      methods. In fact, the class’s construction calls more closely resemble
      Chapter 9’s
      named tuples—which makes sense, given that named
      tuples really are classes with extra logic to map
      attributes to tuple offsets:
>>> rec = dict(name='Bob', age=40.5, jobs=['dev', 'mgr'])        # Dictionaries

>>> rec = {'name': 'Bob', 'age': 40.5, 'jobs': ['dev', 'mgr']}

>>> rec = Rec('Bob', 40.5, ['dev', 'mgr'])                       # Named tuples
In the end, although types like dictionaries and tuples are
      flexible, classes allow us to add behavior to objects in ways that
      built-in types and simple functions do not directly support. Although we
      can store functions in dictionaries, too, using them to process implied
      instances is nowhere near as natural and structured as it is in classes.
      To see this more clearly, let’s move ahead to the next chapter.


Chapter Summary
This chapter introduced the basics of coding classes in Python. We
    studied the syntax of the class
    statement, and we saw how to use it to build up a class inheritance tree.
    We also studied how Python automatically fills in the first argument in
    method functions, how attributes are attached to objects in a class tree
    by simple assignment, and how specially named operator overloading methods
    intercept and implement built-in operations for our instances (e.g.,
    expressions and printing).
Now that we’ve learned all about the mechanics of coding classes in
    Python, the next chapter turns to a larger and more realistic example that
    ties together much of what we’ve learned about OOP so far, and introduces
    some new topics. After that, we’ll continue our look at class coding,
    taking a second pass over the model to fill in some of the details that
    were omitted here to keep things simple. First, though, let’s work through
    a quiz to review the basics we’ve covered so far.

Test Your Knowledge: Quiz
	How are classes related to modules?

	How are instances and classes created?

	Where and how are class attributes created?

	Where and how are instance attributes created?

	What does self mean in a
        Python class?

	How is operator overloading coded in a Python class?

	When might you want to support operator overloading in your
        classes?

	Which operator overloading method is most commonly used?

	What are two key concepts required to understand Python OOP
        code?



Test Your Knowledge: Answers
	Classes are always nested inside a module; they are attributes
        of a module object. Classes and modules are both namespaces, but
        classes correspond to statements (not entire files) and support the
        OOP notions of multiple instances, inheritance, and operator
        overloading (modules do not). In a sense, a module is like a
        single-instance class, without inheritance, which corresponds to an
        entire file of code.

	Classes are made by running class statements; instances are created by
        calling a class as though it were a function.

	Class attributes are created by assigning attributes to a class
        object. They are normally generated by top-level assignments nested in
        a class statement—each name
        assigned in the class statement
        block becomes an attribute of the class object (technically, the
        class statement’s local scope
        morphs into the class object’s attribute namespace, much like a
        module). Class attributes can also be created, though, by assigning
        attributes to the class anywhere a reference to the class object
        exists—even outside the class
        statement.

	Instance attributes are created by assigning attributes to an
        instance object. They are normally created within a class’s method
        functions coded inside the class
        statement, by assigning attributes to the self argument (which is always the implied
        instance). Again, though, they may be created by assignment anywhere a
        reference to the instance appears, even outside the class statement. Normally, all instance
        attributes are initialized in the __init__ constructor method; that way, later
        method calls can assume the attributes already exist.

	self is the name commonly given to the first
          (leftmost) argument in a class’s method function; Python automatically fills it in with
          the instance object that is the implied subject of the method call. This argument need not
          be called self (though this is a very strong
          convention); its position is what is significant. (Ex-C++ or Java programmers might prefer to call it this because in those languages that name reflects the same idea; in Python,
          though, this argument must always be explicit.)

	Operator overloading is coded in a Python class with specially
        named methods; they all begin and end with double underscores to make
        them unique. These are not built-in or reserved names; Python just
        runs them automatically when an instance appears in the corresponding
        operation. Python itself defines the mappings from operations to
        special method names.

	Operator overloading is useful to implement objects that
        resemble built-in types (e.g., sequences or numeric objects such as
        matrixes), and to mimic the built-in type interface expected by a
        piece of code. Mimicking built-in type interfaces enables you to pass
        in class instances that also have state information (i.e., attributes
        that remember data between operation calls). You shouldn’t use
        operator overloading when a simple named method will suffice,
        though.

	The __init__ constructor
        method is the most commonly used; almost every class uses this method
        to set initial values for instance attributes and perform other
        startup tasks.

	The special self argument in method functions and
          the __init__ constructor method are the two
          cornerstones of OOP code in Python; if you get these, you should be able to read the text
          of most OOP Python code—apart from these, it’s largely just packages of functions. The
          inheritance search matters too, of course, but self
          represents the automatic object argument, and __init__ is
          widespread.



1 Not to be confused with the __init__.py files in module packages!
              The method here is a class constructor function used to
              initialize the newly created instance, not a module package. See
              Chapter 24 for more details.
2 In fact, this is one of the reasons the self argument must
        always be explicit in Python methods—because methods can be created as
        simple functions independent of a class, they need to make the implied
        instance argument explicit. They can be called as either functions or
        methods, and Python can neither guess nor assume that a simple
        function might eventually become a class’s method. The main reason for
        the explicit self argument, though,
        is to make the meanings of names more obvious: names not referenced
        through self are simple variables
        mapped to scopes, while names referenced through self with attribute notation are obviously
        instance attributes.








Chapter 28. A More Realistic Example
We’ll dig into more class syntax details in the next chapter. Before
  we do, though, I’d like to show you a more realistic example of classes in action that’s more practical
  than what we’ve seen so far. In this chapter, we’re going to build a set of
  classes that do something more concrete—recording and processing information
  about people. As you’ll see, what we call instances and
  classes in Python programming can often serve the same
  roles as records and programs in
  more traditional terms.
Specifically, in this chapter we’re going to code two classes:
	Person—a class that creates and
      processes information about people

	Manager—a customization of
      Person that modifies inherited
      behavior


Along the way, we’ll make instances of both classes and test out their
  functionality. When we’re done, I’ll show you a nice example use case for
  classes—we’ll store our instances in a shelve
  object-oriented database, to make them permanent. That way, you can use this
  code as a template for fleshing out a full-blown personal database written
  entirely in Python.
Besides actual utility, though, our aim here is also
  educational: this chapter provides a tutorial on
  object-oriented programming in Python. Often, people grasp the last
  chapter’s class syntax on paper, but have trouble seeing how to get started
  when confronted with having to code a new class from scratch. Toward this
  end, we’ll take it one step at a time here, to help you learn the basics;
  we’ll build up the classes gradually, so you can see how their features come
  together in complete programs.
In the end, our classes will still be relatively small in terms of
  code, but they will demonstrate all of the main ideas
  in Python’s OOP model. Despite its syntax details, Python’s class system
  really is largely just a matter of searching for an attribute in a tree of
  objects, along with a special first argument for functions.
Step 1: Making Instances
OK, so much for the design phase—let’s move on to implementation. Our first task
    is to start coding the main class, Person. In your favorite text editor, open a new
    file for the code we’ll be writing. It’s a fairly strong convention in
    Python to begin module names with a lowercase letter and class names with
    an uppercase letter; like the name of self arguments in methods, this is not required
    by the language, but it’s so common that deviating might be confusing to
    people who later read your code. To conform, we’ll call our new module
    file person.py and our class within
    it Person, like this:
# File person.py (start)

class Person:                             # Start a class
All our work will be done in this file until later in this chapter.
    We can code any number of functions and classes in a single module file in
    Python, and this one’s person.py name
    might not make much sense if we add unrelated components to it later. For
    now, we’ll assume everything in it will be Person-related. It probably should be anyhow—as
    we’ve learned, modules tend to work best when they have a single,
    cohesive purpose.
Coding Constructors
Now, the first thing we want to do with our Person class is record basic information about
      people—to fill out record fields, if you will. Of course, these are
      known as instance object attributes in
      Python-speak, and they generally are created by assignment to self attributes in a class’s method functions.
      The normal way to give instance attributes their first values is to
      assign them to self in the __init__
      constructor method, which contains code run
      automatically by Python each time an instance is created. Let’s add one
      to our class:
# Add record field initialization

class Person:
    def __init__(self, name, job, pay):      # Constructor takes three arguments
        self.name = name                     # Fill out fields when created
        self.job  = job                      # self is the new instance object
        self.pay  = pay
This is a very common coding pattern: we pass in the data to be
      attached to an instance as arguments to the constructor method and
      assign them to self to retain them
      permanently. In OO terms, self is the
      newly created instance object, and name, job,
      and pay become state
      information—descriptive data saved on an object for later
      use. Although other techniques (such as enclosing scope reference
      closures) can save details, too, instance attributes make this very
      explicit and easy to understand.
Notice that the argument names appear twice
      here. This code might even seem a bit redundant at first, but it’s not.
      The job argument, for example, is a
      local variable in the scope of the __init__ function, but self.job is an attribute of the instance
      that’s the implied subject of the method call. They are two different
      variables, which happen to have the same name. By assigning the job local to the self.job attribute with self.job=job, we save the passed-in job on the instance for later use. As usual in
      Python, where a name is assigned, or what object it is assigned to,
      determines what it means.
Speaking of arguments, there’s really nothing magical about
      __init__, apart from the fact that
      it’s called automatically when an instance is made and has a special
      first argument. Despite its weird name, it’s a normal function and
      supports all the features of functions we’ve already covered. We can,
      for example, provide defaults for some of its
      arguments, so they need not be provided in cases where their values
      aren’t available or useful.
To demonstrate, let’s make the job argument optional—it will default to
      None, meaning the person being
      created is not (currently) employed. If job defaults to None, we’ll probably want to default pay to 0,
      too, for consistency (unless some of the people you know manage to get
      paid without having jobs!). In fact, we have to specify a default for
      pay because according to Python’s
      syntax rules and Chapter 18, any arguments in a
      function’s header after the first default must all have defaults,
      too:
# Add defaults for constructor arguments

class Person:
    def __init__(self, name, job=None, pay=0):         # Normal function args
        self.name = name
        self.job  = job
        self.pay  = pay
What this code means is that we’ll need to pass in a name when
      making Persons, but job and pay
      are now optional; they’ll default to None and 0
      if omitted. The self argument, as
      usual, is filled in by Python automatically to refer to the instance
      object—assigning values to attributes of self attaches them to the new instance.

Testing As You Go
This class doesn’t do much yet—it essentially just fills out the fields of a new
      record—but it’s a real working class. At this point we could add more
      code to it for more features, but we won’t do that yet. As you’ve
      probably begun to appreciate already, programming in Python is really a
      matter of incremental prototyping—you write some
      code, test it, write more code, test again, and so on. Because Python
      provides both an interactive session and nearly immediate turnaround
      after code changes, it’s more natural to test as you go than to write a
      huge amount of code to test all at once.
Before adding more features, then, let’s test what we’ve got so
      far by making a few instances of our class and displaying their
      attributes as created by the constructor. We could do this
      interactively, but as you’ve also probably surmised by now, interactive
      testing has its limits—it gets tedious to have to reimport modules and
      retype test cases each time you start a new testing session. More
      commonly, Python programmers use the interactive prompt for simple
      one-off tests but do more substantial testing by writing code at the
      bottom of the file that contains the objects to be tested, like
      this:
# Add incremental self-test code

class Person:
    def __init__(self, name, job=None, pay=0):
        self.name = name
        self.job  = job
        self.pay  = pay

bob = Person('Bob Smith')                         # Test the class
sue = Person('Sue Jones', job='dev', pay=100000)  # Runs __init__ automatically
print(bob.name, bob.pay)                          # Fetch attached attributes
print(sue.name, sue.pay)                          # sue's and bob's attrs differ
Notice here that the bob object
      accepts the defaults for job and
      pay, but sue provides values explicitly. Also note
      how we use keyword arguments when
      making sue; we could pass by position
      instead, but the keywords may help remind us later what the data is, and
      they allow us to pass the arguments in any left-to-right order we like.
      Again, despite its unusual name, __init__ is a normal function, supporting
      everything you already know about functions—including both defaults and
      pass-by-name keyword arguments.
When this file runs as a script, the test code at the bottom makes
      two instances of our class and prints two attributes of each (name and pay):
C:\code> person.py
Bob Smith 0
Sue Jones 100000
You can also type this file’s test code at Python’s interactive
      prompt (assuming you import the Person class there first), but coding canned
      tests inside the module file like this makes it much easier to rerun
      them in the future.
Although this is fairly simple code, it’s already demonstrating
      something important. Notice that bob’s name
      is not sue’s, and sue’s pay
      is not bob’s. Each is an independent
      record of information. Technically, bob and sue
      are both namespace objects—like all class
      instances, they each have their own independent copy of the state
      information created by the class. Because each instance of a class has
      its own set of self attributes,
      classes are a natural for recording information for multiple objects
      this way; just like built-in types such as lists and dictionaries,
      classes serve as a sort of object factory.
Other Python program structures, such as functions and modules,
      have no such concept. Chapter 17’s closure functions come
      close in terms of per-call state, but don’t have the multiple methods,
      inheritance, and larger structure we get from classes.

Using Code Two Ways
As is, the test code at the bottom of the file works, but there’s
      a big catch—its top-level print
      statements run both when the file is run as a script and when it is
      imported as a module. This means if we ever decide to import the class
      in this file in order to use it somewhere else (and we will soon in this
      chapter), we’ll see the output of its test code every time the file is
      imported. That’s not very good software citizenship, though: client
      programs probably don’t care about our internal tests and won’t want to
      see our output mixed in with their own.
Although we could split the test code off into a separate file,
      it’s often more convenient to code tests in the same file as the items
      to be tested. It would be better to arrange to run the test statements
      at the bottom only when the file is run for
      testing, not when the file is imported. That’s exactly what the module
      __name__ check is designed for, as you learned in the preceding part of
      this book. Here’s what this addition looks like—add the required test
      and indent your self-test code:
# Allow this file to be imported as well as run/tested

class Person:
    def __init__(self, name, job=None, pay=0):
        self.name = name
        self.job  = job
        self.pay  = pay

if __name__ == '__main__':                  # When run for testing only
    # self-test code
    bob = Person('Bob Smith')
    sue = Person('Sue Jones', job='dev', pay=100000)
    print(bob.name, bob.pay)
    print(sue.name, sue.pay)
Now, we get exactly the behavior we’re after—running the file as a
      top-level script tests it because its __name__ is __main__, but importing it as a library of
      classes later does not:
C:\code> person.py
Bob Smith 0
Sue Jones 100000

C:\code> python
Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) ...
>>> import person
>>>
When imported, the file now defines the class, but does not use
      it. When run directly, this file creates two instances of our class as
      before, and prints two attributes of each; again, because each instance
      is an independent namespace object, the values of their attributes
      differ.
Version Portability: Prints
All of this chapter’s code works on both Python 2.X and 3.X, but I’m running it
        under Python 3.X, and a few of its outputs use 3.X print function calls with multiple
        arguments. As explained in Chapter 11, this means that
        some of its outputs may vary slightly under Python 2.X. If you run
        under 2.X the code will work as is, but you’ll notice parentheses
        around some output lines because the extra parentheses in a print turn multiple items into a tuple in
        2.X only:
C:\code> c:\python27\python person.py
('Bob Smith', 0)
('Sue Jones', 100000)
If this difference is the sort of detail that might keep you
        awake at nights, simply remove the parentheses to use 2.X print statements, or add an import of Python
        3.X’s print function at the top of your script, as shown in Chapter 11 (I’d add this
        everywhere here, but it’s a bit distracting):
from __future__ import print_function
You can also avoid the extra parentheses portably by using
        formatting to yield a single object to print. Either of the following
        works in both 2.X and 3.X, though the method form is newer:
print('{0} {1}'.format(bob.name, bob.pay))    # Format method
print('%s %s' % (bob.name, bob.pay))          # Format expression
As also described in Chapter 11, such formatting
        may be required in some cases, because objects
        nested in a tuple may print differently than
        those printed as top-level objects—the former prints with __repr__ and the latter with __str__ (operator overloading methods
        discussed further in this chapter as well as Chapter 30).
To sidestep this issue, this edition codes displays with
        __repr__ (the fallback in all
        cases, including nesting and the interactive prompt) instead of
        __str__ (the default for prints) so
        that all object appearances print the same in 3.X and 2.X, even those
        in superfluous tuple parentheses!



Step 2: Adding Behavior Methods
Everything looks good so far—at this point, our class is essentially a record
    factory; it creates and fills out fields of records
    (attributes of instances, in more Pythonic terms). Even as limited as it
    is, though, we can still run some operations on its objects. Although
    classes add an extra layer of structure, they ultimately do most of their
    work by embedding and processing basic core data
    types like lists and strings. In other words, if you already
    know how to use Python’s simple core types, you already know much of the
    Python class story; classes are really just a minor structural
    extension.
For example, the name field of
    our objects is a simple string, so we can extract last names from our
    objects by splitting on spaces and indexing. These are all core data type
    operations, which work whether their subjects are embedded in class
    instances or not:
>>> name = 'Bob Smith'      # Simple string, outside class
>>> name.split()            # Extract last name
['Bob', 'Smith']
>>> name.split()[-1]        # Or [1], if always just two parts
'Smith'
Similarly, we can give an object a pay raise by updating its
    pay field—that is, by changing its
    state information in place with an assignment. This task also involves
    basic operations that work on Python’s core objects, regardless of whether
    they are standalone or embedded in a class structure (I’m formatting the
    result in the following to mask the fact that different Pythons print a
    different number of decimal digits):
>>> pay = 100000            # Simple variable, outside class
>>> pay *= 1.10             # Give a 10% raise
>>> print('%.2f' % pay)     # Or: pay = pay * 1.10, if you like to type
110000.00                   # Or: pay = pay + (pay * .10), if you _really_ do!
To apply these operations to the Person objects created by our script, simply do
    to bob.name and sue.pay what we just did to name and pay.
    The operations are the same, but the subjects are attached as attributes
    to objects created from our class:
# Process embedded built-in types: strings, mutability

class Person:
    def __init__(self, name, job=None, pay=0):
        self.name = name
        self.job  = job
        self.pay  = pay

if __name__ == '__main__':
    bob = Person('Bob Smith')
    sue = Person('Sue Jones', job='dev', pay=100000)
    print(bob.name, bob.pay)
    print(sue.name, sue.pay)
    print(bob.name.split()[-1])            # Extract object's last name
    sue.pay *= 1.10                        # Give this object a raise
    print('%.2f' % sue.pay)
We’ve added the last three lines here; when they’re run, we extract
    bob’s last name by using basic string
    and list operations on his name field, and give sue a pay raise by modifying her pay attribute in place with basic number
    operations. In a sense, sue is also a
    mutable object—her state changes in place just like a
    list after an append call. Here’s the
    new version’s output:
Bob Smith 0
Sue Jones 100000
Smith
110000.00
The preceding code works as planned, but if you show it to a veteran
    software developer he or she will probably tell you that its general
    approach is not a great idea in practice. Hardcoding operations like these
    outside of the class can lead to maintenance problems
    in the future.
For example, what if you’ve hardcoded the last-name-extraction
    formula at many different places in your program? If you ever need to
    change the way it works (to support a new name structure, for instance),
    you’ll need to hunt down and update every occurrence.
    Similarly, if the pay-raise code ever changes (e.g., to require approval
    or database updates), you may have multiple copies to modify. Just finding
    all the appearances of such code may be problematic in larger
    programs—they may be scattered across many files, split into individual
    steps, and so on. In a prototype like this, frequent change is almost
    guaranteed.
Coding Methods
What we really want to do here is employ a software design concept known
      as encapsulation—wrapping up operation logic behind
      interfaces, such that each operation is coded only once in our program.
      That way, if our needs change in the future, there is just one copy to
      update. Moreover, we’re free to change the single copy’s internals
      almost arbitrarily, without breaking the code that uses it.
In Python terms, we want to code operations on objects in a
      class’s methods, instead of littering them
      throughout our program. In fact, this is one of the things that classes
      are very good at—factoring code to remove
      redundancy and thus optimize maintainability. As an
      added bonus, turning operations into methods enables them to be applied
      to any instance of the class, not just those that they’ve been hardcoded
      to process.
This is all simpler in code than it may sound in theory. The
      following achieves encapsulation by moving the two operations from code
      outside the class to methods inside the class. While we’re at it, let’s
      change our self-test code at the bottom to use the new methods we’re
      creating, instead of hardcoding operations:
# Add methods to encapsulate operations for maintainability

class Person:
    def __init__(self, name, job=None, pay=0):
        self.name = name
        self.job  = job
        self.pay  = pay
    def lastName(self):                               # Behavior methods
        return self.name.split()[-1]                  # self is implied subject
    def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))      # Must change here only

if __name__ == '__main__':
    bob = Person('Bob Smith')
    sue = Person('Sue Jones', job='dev', pay=100000)
    print(bob.name, bob.pay)
    print(sue.name, sue.pay)
    print(bob.lastName(), sue.lastName())             # Use the new methods
    sue.giveRaise(.10)                                # instead of hardcoding
    print(sue.pay)
As we’ve learned, methods are simply normal
      functions that are attached to classes and designed to process instances
      of those classes. The instance is the subject of the method call and is
      passed to the method’s self argument
      automatically.
The transformation to the methods in this version is
      straightforward. The new lastName
      method, for example, simply does to self what the previous version hardcoded for
      bob, because self is the implied subject when the method is
      called. lastName also returns the
      result, because this operation is a called function now; it computes a
      value for its caller to use arbitrarily, even if it is just to be
      printed. Similarly, the new giveRaise method just does to
      self what we did to sue before.
When run now, our file’s output is similar to before—we’ve mostly
      just refactored the code to allow for easier
      changes in the future, not altered its behavior:
Bob Smith 0
Sue Jones 100000
Smith Jones
110000
A few coding details are worth pointing out here. First, notice
      that sue’s pay is now still an
      integer after a pay raise—we convert the math
      result back to an integer by calling the int built-in within the method. Changing the
      value to either int or float is probably not a significant concern
      for this demo: integer and floating-point objects have the same
      interfaces and can be mixed within expressions. Still, we may need to
      address truncation and rounding issues in a real system—money probably
      is significant to Persons!
As we learned in Chapter 5, we might handle
      this by using the round(N, 2)
      built-in to round and retain cents, using the decimal type to fix precision, or storing
      monetary values as full floating-point numbers and displaying them with
      a %.2f or {0:.2f} formatting string to show cents as we
      did earlier. For now, we’ll simply truncate any cents with int. For another idea, also see the money function in the formats.py module of Chapter 25; you could import this tool to show
      pay with commas, cents, and currency signs.
Second, notice that we’re also printing sue’s last name this time—because the
      last-name logic has been encapsulated in a method, we get to use it on
      any instance of the class. As we’ve seen, Python
      tells a method which instance to process by automatically passing it in
      to the first argument, usually called self. Specifically:
	In the first call, bob.lastName(), bob is the implied subject passed to
          self.

	In the second call, sue.lastName(), sue goes to self instead.


Trace through these calls to see how the instance winds up in
      self—it’s a key concept. The net
      effect is that the method fetches the name of the implied subject each
      time. The same happens for giveRaise.
      We could, for example, give bob a
      raise by calling giveRaise for both
      instances this way, too. Unfortunately for bob, though, his zero starting pay will
      prevent him from getting a raise as the program is currently
      coded—nothing times anything is nothing, something we may want to
      address in a future 2.0 release of our software.
Finally, notice that the giveRaise method assumes that percent is passed in as a floating-point
      number between zero and one. That may be too radical an assumption in
      the real world (a 1000% raise would probably be a bug for most of us!);
      we’ll let it pass for this prototype, but we might want to test or at
      least document this in a future iteration of this code. Stay tuned for a
      rehash of this idea in a later chapter in this book, where we’ll code
      something called function decorators and explore
      Python’s assert
      statement—alternatives that can do the validity test for us
      automatically during development. In Chapter 39, for
      example, we’ll write a tool that lets us validate with strange
      incantations like the following:
    @rangetest(percent=(0.0, 1.0))               # Use decorator to validate
    def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))


Step 3: Operator Overloading
At this point, we have a fairly full-featured class that generates and
    initializes instances, along with two new bits of behavior for processing
    instances in the form of methods. So far, so good.
As it stands, though, testing is still a bit less convenient than it
    needs to be—to trace our objects, we have to manually fetch and print
    individual attributes (e.g., bob.name, sue.pay). It would be nice if displaying an
    instance all at once actually gave us some useful information.
    Unfortunately, the default display format for an instance object isn’t
    very good—it displays the object’s class name, and its address in memory
    (which is essentially useless in Python, except as a unique
    identifier).
To see this, change the last line in the script to print(sue) so it displays the object as a whole.
    Here’s what you’ll get—the output says that sue is an “object” in 3.X, and an “instance” in
    2.X as coded:
Bob Smith 0
Sue Jones 100000
Smith Jones
<__main__.Person object at 0x00000000029A0668>
Providing Print Displays
Fortunately, it’s easy to do better by employing operator
      overloading—coding methods in a class that intercept and
      process built-in operations when run on the class’s instances.
      Specifically, we can make use of what are probably the second most
      commonly used operator overloading methods in Python, after __init__: the
      __repr__ method we’ll deploy here,
      and its __str__ twin introduced in
      the preceding chapter.
These methods are run automatically every time an instance is
      converted to its print string. Because that’s what printing an object
      does, the net transitive effect is that printing an object displays
      whatever is returned by the object’s __str__ or __repr__ method, if the object either defines
      one itself or inherits one from a superclass. Double-underscored names
      are inherited just like any other.
Technically, __str__ is
      preferred by print and str, and __repr__ is used as a fallback for these roles
      and in all other contexts. Although the two can be used to implement
      different displays in different contexts, coding just __repr__ alone suffices to give a single
      display in all cases—prints, nested appearances, and interactive echoes.
      This still allows clients to provide an alternative display with
      __str__, but for limited contexts
      only; since this is a self-contained example, this is a moot point
      here.
The __init__ constructor method
      we’ve already coded is, strictly speaking, operator overloading too—it
      is run automatically at construction time to initialize a newly created
      instance. Constructors are so common, though, that they almost seem like
      a special case. More focused methods like __repr__ allow us to tap into specific
      operations and provide specialized behavior when
      our objects are used in those contexts.
Let’s put this into code. The following extends our class to give
      a custom display that lists attributes when our class’s instances are
      displayed as a whole, instead of relying on the less useful default
      display:
# Add __repr__ overload method for printing objects

class Person:
    def __init__(self, name, job=None, pay=0):
        self.name = name
        self.job  = job
        self.pay  = pay
    def lastName(self):
        return self.name.split()[-1]
    def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))
    def __repr__(self):                                        # Added method
        return '[Person: %s, %s]' % (self.name, self.pay)      # String to print

if __name__ == '__main__':
    bob = Person('Bob Smith')
    sue = Person('Sue Jones', job='dev', pay=100000)
    print(bob)
    print(sue)
    print(bob.lastName(), sue.lastName())
    sue.giveRaise(.10)
    print(sue)
Notice that we’re doing string % formatting to build the display string in
      __repr__ here; at the bottom, classes
      use built-in type objects and operations like these to get their work
      done. Again, everything you’ve already learned about both built-in types
      and functions applies to class-based code. Classes largely just add an
      additional layer of structure that packages
      functions and data together and supports extensions.
We’ve also changed our self-test code to print objects directly,
      instead of printing individual attributes. When run, the output is more
      coherent and meaningful now; the “[...]” lines are returned by our new
      __repr__, run automatically by print
      operations:
[Person: Bob Smith, 0]
[Person: Sue Jones, 100000]
Smith Jones
[Person: Sue Jones, 110000]
Design note: as we’ll learn in Chapter 30, the __repr__ method is often used to provide an
      as-code low-level display of an object when present, and __str__ is reserved for more user-friendly
      informational displays like ours here. Sometimes classes provide both a
      __str__ for user-friendly displays
      and a __repr__ with extra details for
      developers to view. Because printing runs __str__ and the interactive prompt echoes
      results with __repr__, this can
      provide both target audiences with an appropriate display.
Since __repr__ applies to more
      display cases, including nested appearances, and because we’re not
      interested in displaying two different formats, the all-inclusive
      __repr__ is sufficient for our class.
      Here, this also means that our custom display will be used in 2.X if we
      list both bob and sue in a 3.X print call—a technically nested appearance,
      per the sidebar in “Version Portability: Prints”.


Step 4: Customizing Behavior by Subclassing
At this point, our class captures much of the OOP machinery in Python: it makes
    instances, provides behavior in methods, and even does a bit of operator
    overloading now to intercept print operations in __repr__. It effectively packages our data and
    logic together into a single, self-contained software
    component, making it easy to locate code and straightforward to
    change it in the future. By allowing us to encapsulate behavior, it also
    allows us to factor that code to avoid redundancy and its associated
    maintenance headaches.
The only major OOP concept it does not yet capture is
    customization by inheritance. In some sense, we’re
    already doing inheritance, because instances inherit methods from their
    classes. To demonstrate the real power of OOP, though, we need to define a
    superclass/subclass relationship that allows us to extend our software and
    replace bits of inherited behavior. That’s the main idea behind OOP, after
    all; by fostering a coding model based upon customization of work already
    done, it can dramatically cut development time.
Coding Subclasses
As a next step, then, let’s put OOP’s methodology to use and customize our
      Person class by extending our
      software hierarchy. For the purpose of this tutorial, we’ll define a
      subclass of Person called Manager that replaces the inherited giveRaise method with a more specialized
      version. Our new class begins as follows:
class Manager(Person):                          # Define a subclass of Person
This code means that we’re defining a new class named Manager, which inherits from and may add
      customizations to the superclass Person. In plain terms, a Manager is almost like a Person (admittedly, a very long journey for a
      very small joke...), but Manager has
      a custom way to give raises.
For the sake of argument, let’s assume that when a Manager gets a raise, it receives the
      passed-in percentage as usual, but also gets an extra bonus that
      defaults to 10%. For instance, if a Manager’s raise is specified as 10%, it will
      really get 20%. (Any relation to Persons living or dead is, of course, strictly
      coincidental.) Our new method begins as follows; because this
      redefinition of giveRaise will be
      closer in the class tree to Manager
      instances than the original version in Person, it effectively replaces, and thereby
      customizes, the operation. Recall that according to the inheritance
      search rules, the lowest version of the name
      wins:1
class Manager(Person):                          # Inherit Person attrs
    def giveRaise(self, percent, bonus=.10):    # Redefine to customize

Augmenting Methods: The Bad Way
Now, there are two ways we might code this Manager
      customization: a good way and a bad way. Let’s start with the
      bad way, since it might be a bit easier to
      understand. The bad way is to cut and paste the code of giveRaise in Person and modify it for Manager, like this:
class Manager(Person):
    def giveRaise(self, percent, bonus=.10):
        self.pay = int(self.pay * (1 + percent + bonus))   # Bad: cut and paste
This works as advertised—when we later call the giveRaise method of a Manager instance, it will run this custom
      version, which tacks on the extra bonus. So what’s wrong with something
      that runs correctly?
The problem here is a very general one: anytime you copy code with
      cut and paste, you essentially double your
      maintenance effort in the future. Think about it: because we copied the
      original version, if we ever have to change the way raises are given
      (and we probably will), we’ll have to change the code in
      two places, not one. Although this is a small and
      artificial example, it’s also representative of a universal
      issue—anytime you’re tempted to program by copying code this way, you
      probably want to look for a better approach.

Augmenting Methods: The Good Way
What we really want to do here is somehow
      augment the original giveRaise, instead of replacing it altogether.
      The good way to do that in Python is by calling to
      the original version directly, with augmented arguments, like
      this:
class Manager(Person):
    def giveRaise(self, percent, bonus=.10):
        Person.giveRaise(self, percent + bonus)            # Good: augment original
This code leverages the fact that a class’s method can always be
      called either through an instance (the usual way,
      where Python sends the instance to the self argument automatically) or through the
      class (the less common scheme, where you must pass
      the instance manually). In more symbolic terms, recall that a normal
      method call of this form:
instance.method(args...)
is automatically translated by Python into this equivalent
      form:
class.method(instance, args...)
where the class containing the method to be run is determined by
      the inheritance search rule applied to the method’s name. You can code
      either form in your script, but there is a slight
      asymmetry between the two—you must remember to pass along the instance
      manually if you call through the class directly. The method always needs
      a subject instance one way or another, and Python provides it
      automatically only for calls made through an instance. For calls through
      the class name, you need to send an instance to self yourself; for code inside a method like
      giveRaise, self already is the
      subject of the call, and hence the instance to pass along.
Calling through the class directly effectively subverts
      inheritance and kicks the call higher up the class tree to run a
      specific version. In our case, we can use this technique to invoke the
      default giveRaise in Person, even though it’s been redefined at the
      Manager level. In some sense, we
      must call through Person this way, because a self.giveRaise() inside Manager’s giveRaise code would loop—since self already is a Manager, self.giveRaise() would resolve again to
      Manager.giveRaise, and so on and so
      forth recursively until available memory is
      exhausted.
This “good” version may seem like a small difference in code, but
      it can make a huge difference for future code
      maintenance—because the giveRaise logic lives in just one place now
      (Person’s method), we have only one
      version to change in the future as needs evolve. And really, this form
      captures our intent more directly anyhow—we want to perform the standard
      giveRaise operation, but simply tack
      on an extra bonus. Here’s our entire module file with this step
      applied:
# Add customization of one behavior in a subclass

class Person:
    def __init__(self, name, job=None, pay=0):
        self.name = name
        self.job  = job
        self.pay  = pay
    def lastName(self):
        return self.name.split()[-1]
    def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))
    def __repr__(self):
        return '[Person: %s, %s]' % (self.name, self.pay)

class Manager(Person):
    def giveRaise(self, percent, bonus=.10):           # Redefine at this level
        Person.giveRaise(self, percent + bonus)        # Call Person's version

if __name__ == '__main__':
    bob = Person('Bob Smith')
    sue = Person('Sue Jones', job='dev', pay=100000)
    print(bob)
    print(sue)
    print(bob.lastName(), sue.lastName())
    sue.giveRaise(.10)
    print(sue)
    tom = Manager('Tom Jones', 'mgr', 50000)           # Make a Manager: __init__
    tom.giveRaise(.10)                                 # Runs custom version
    print(tom.lastName())                              # Runs inherited method
    print(tom)                                         # Runs inherited __repr__
To test our Manager subclass
      customization, we’ve also added self-test code that makes a Manager, calls its methods, and prints it.
      When we make a Manager, we pass in a
      name, and an optional job and pay as before—because Manager had no __init__ constructor, it inherits that in
      Person. Here’s the new version’s
      output:
[Person: Bob Smith, 0]
[Person: Sue Jones, 100000]
Smith Jones
[Person: Sue Jones, 110000]
Jones
[Person: Tom Jones, 60000]
Everything looks good here: bob
      and sue are as before, and when
      tom the Manager is given a 10% raise, he really gets
      20% (his pay goes from $50K to $60K), because the customized giveRaise in Manager is run for him only. Also notice how
      printing tom as a whole at the end of
      the test code displays the nice format defined in Person’s __repr__: Manager objects get this, lastName, and the __init__ constructor method’s code “for free”
      from Person, by inheritance.
What About super?
To extend inherited methods, the examples in this chapter simply call the original
        through the superclass name: Person.giveRaise(...). This is the
        traditional and simplest scheme in Python, and the one used in most of
        this book.
Java programmers may especially be interested to know that
        Python also has a super built-in
        function that allows calling back to a superclass’s methods more
        generically—but it’s cumbersome to use in 2.X; differs in form between
        2.X and 3.X; relies on unusual semantics in 3.X; works unevenly with
        Python’s operator overloading; and does not always mesh well with
        traditionally coded multiple inheritance, where a single superclass
        call won’t suffice.
In its defense, the super
        call has a valid use case too—cooperative same-named method dispatch
        in multiple inheritance trees—but it relies on the “MRO” ordering of
        classes, which many find esoteric and artificial;
        unrealistically assumes universal deployment to be used reliably; does
        not fully support method replacement and varying argument lists; and
        to many observers seems an obscure solution to a use case that is rare
        in real Python code.
Because of these downsides, this book prefers to call
        superclasses by explicit name instead of super, recommends the same policy for
        newcomers, and defers presenting super until Chapter 32. It’s usually best judged after you
        learn the simpler, and generally more traditional and “Pythonic” ways
        of achieving the same goals, especially if you’re new to OOP. Topics
        like MROs and cooperative multiple inheritance dispatch seem a lot to
        ask of beginners—and others.
And to any Java programmers in the audience: I suggest resisting
        the temptation to use Python’s super until you’ve had a chance to study its
        subtle implications. Once you step up to multiple inheritance, it’s
        not what you think it is, and more than you probably expect. The class
        it invokes may not be the superclass at all, and can even vary per
        context. Or to paraphrase a movie line: Python’s super is like a box of
        chocolates—you never know what you’re going to
        get!


Polymorphism in Action
To make this acquisition of inherited behavior even more striking, we can add the
      following code at the end of our file temporarily:
if __name__ == '__main__':
    ...
    print('--All three--')
    for obj in (bob, sue, tom):               # Process objects generically
        obj.giveRaise(.10)                    # Run this object's giveRaise
        print(obj)                            # Run the common __repr__
Here’s the resulting output, with its new parts highlighted in
      bold:
[Person: Bob Smith, 0]
[Person: Sue Jones, 100000]
Smith Jones
[Person: Sue Jones, 110000]
Jones
[Person: Tom Jones, 60000]
--All three--
[Person: Bob Smith, 0]
[Person: Sue Jones, 121000]
[Person: Tom Jones, 72000]
In the added code, object is
      either a Person
      or a Manager, and Python runs the
      appropriate giveRaise
      automatically—our original version in Person for bob and sue, and our customized version in Manager for tom. Trace the method calls yourself to see
      how Python selects the right giveRaise method for each object.
This is just Python’s notion of polymorphism,
      which we met earlier in the book, at work again—what giveRaise does depends on what you do it to.
      Here, it’s made all the more obvious when it selects from code we’ve
      written ourselves in classes. The practical effect in this code is that
      sue gets another 10% but tom gets another 20%, because giveRaise is dispatched based upon
      the object’s type. As we’ve learned, polymorphism is at the heart of
      Python’s flexibility. Passing any of our three objects to a function
      that calls a giveRaise method, for
      example, would have the same effect: the appropriate version would be
      run automatically, depending on which type of object was passed.
On the other hand, printing runs the same
      __repr__ for all three objects,
      because it’s coded just once in Person. Manager both specializes and applies the code
      we originally wrote in Person.
      Although this example is small, it’s already leveraging OOP’s talent for
      code customization and reuse; with classes, this almost seems automatic
      at times.

Inherit, Customize, and Extend
In fact, classes can be even more flexible than our example implies. In general,
      classes can inherit,
      customize, or extend existing
      code in superclasses. For example, although we’re focused on
      customization here, we can also add unique methods to Manager that are not present in Person, if Managers require something completely
      different (Python namesake reference intended). The following snippet
      illustrates. Here, giveRaise
      redefines a superclass’s method to customize it, but someThingElse defines something new to
      extend:
class Person:
    def lastName(self): ...
    def giveRaise(self): ...
    def __repr__(self): ...

class Manager(Person):                       # Inherit
    def giveRaise(self, ...): ...            # Customize
    def someThingElse(self, ...): ...        # Extend

tom = Manager()
tom.lastName()             # Inherited verbatim
tom.giveRaise()            # Customized version
tom.someThingElse()        # Extension here
print(tom)                 # Inherited overload method
Extra methods like this code’s someThingElse extend the
      existing software and are available on Manager objects only, not on Persons. For the purposes of this tutorial,
      however, we’ll limit our scope to customizing some of Person’s behavior by redefining it, not adding
      to it.

OOP: The Big Idea
As is, our code may be small, but it’s fairly functional. And really, it
      already illustrates the main point behind OOP in general: in OOP, we
      program by customizing what has already been done,
      rather than copying or changing existing code. This isn’t always an
      obvious win to newcomers at first glance, especially given the extra
      coding requirements of classes. But overall, the programming style
      implied by classes can cut development time radically compared to other
      approaches.
For instance, in our example we could theoretically have
      implemented a custom giveRaise
      operation without subclassing, but none of the other options yield code
      as optimal as ours:
	Although we could have simply coded Manager from scratch
          as new, independent code, we would have had to reimplement all the
          behaviors in Person that are the
          same for Managers.

	Although we could have simply changed the
          existing Person class in place
          for the requirements of Manager’s
          giveRaise, doing so would
          probably break the places where we still need the original Person behavior.

	Although we could have simply copied the
          Person class in its entirety,
          renamed the copy to Manager, and
          changed its giveRaise, doing so
          would introduce code redundancy that would double our work in the
          future—changes made to Person in
          the future would not be picked up automatically, but would have to
          be manually propagated to Manager’s code. As usual, the
          cut-and-paste approach may seem quick now, but it doubles your work
          in the future.


The customizable hierarchies we can build
      with classes provide a much better solution for software that will
      evolve over time. No other tools in Python support this development
      mode. Because we can tailor and extend our prior work by coding new
      subclasses, we can leverage what we’ve already done, rather than
      starting from scratch each time, breaking what already works, or
      introducing multiple copies of code that may all have to be updated in
      the future. When done right, OOP is a powerful programmer’s ally.


Step 5: Customizing Constructors, Too
Our code works as it is, but if you study the current version closely, you may
    be struck by something a bit odd—it seems pointless to have to provide a
    mgr job name for Manager objects when we create them: this is
    already implied by the class itself. It would be better if we could
    somehow fill in this value automatically when a Manager is made.
The trick we need to improve on this turns out to be the
    same as the one we employed in the prior section: we
    want to customize the constructor logic for Managers in such a way as to provide a job name
    automatically. In terms of code, we want to redefine an __init__ method in Manager that provides the mgr string for us. And as in giveRaise customization, we also want to run the
    original __init__ in Person by calling through the class name, so it
    still initializes our objects’ state information attributes.
The following extension to person.py will do the job—we’ve coded the new
    Manager constructor and changed the
    call that creates tom to not pass in
    the mgr job name:
# File person.py
# Add customization of constructor in a subclass

class Person:
    def __init__(self, name, job=None, pay=0):
        self.name = name
        self.job  = job
        self.pay  = pay
    def lastName(self):
        return self.name.split()[-1]
    def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))
    def __repr__(self):
        return '[Person: %s, %s]' % (self.name, self.pay)

class Manager(Person):
    def __init__(self, name, pay):                     # Redefine constructor
        Person.__init__(self, name, 'mgr', pay)        # Run original with 'mgr'
    def giveRaise(self, percent, bonus=.10):
        Person.giveRaise(self, percent + bonus)

if __name__ == '__main__':
    bob = Person('Bob Smith')
    sue = Person('Sue Jones', job='dev', pay=100000)
    print(bob)
    print(sue)
    print(bob.lastName(), sue.lastName())
    sue.giveRaise(.10)
    print(sue)
    tom = Manager('Tom Jones', 50000)                   # Job name not needed:
    tom.giveRaise(.10)                                  # Implied/set by class
    print(tom.lastName())
    print(tom)
Again, we’re using the same technique to augment the __init__ constructor here that we used for
    giveRaise earlier—running the
    superclass version by calling through the class name directly and passing
    the self instance along explicitly.
    Although the constructor has a strange name, the effect is identical.
    Because we need Person’s construction
    logic to run too (to initialize instance attributes), we really have to
    call it this way; otherwise, instances would not have any attributes
    attached.
Calling superclass constructors from redefinitions this way turns
    out to be a very common coding pattern in Python. By itself, Python uses
    inheritance to look for and call only one __init__ method at construction time—the
    lowest one in the class tree. If you need higher
    __init__ methods to be run at
    construction time (and you usually do), you must call them manually, and
    usually through the superclass’s name. The upside to this is that you can
    be explicit about which argument to pass up to the superclass’s
    constructor and can choose to not call it at all: not
    calling the superclass constructor allows you to replace its logic
    altogether, rather than augmenting it.
The output of this file’s self-test code is the same as before—we
    haven’t changed what it does, we’ve simply restructured to get rid of some
    logical redundancy:
[Person: Bob Smith, 0]
[Person: Sue Jones, 100000]
Smith Jones
[Person: Sue Jones, 110000]
Jones
[Person: Tom Jones, 60000]
OOP Is Simpler Than You May Think
In this complete form, and despite their relatively small sizes, our classes
      capture nearly all the important concepts in Python’s OOP
      machinery:
	Instance creation—filling out instance attributes

	Behavior methods—encapsulating logic in a class’s
          methods

	Operator overloading—providing behavior for built-in
          operations like printing

	Customizing behavior—redefining methods in subclasses to
          specialize them

	Customizing constructors—adding initialization logic to
          superclass steps


Most of these concepts are based upon just three simple ideas: the
      inheritance search for attributes in object trees, the special self argument in methods, and operator
      overloading’s automatic dispatch to methods.
Along the way, we’ve also made our code easy to change in the
      future, by harnessing the class’s propensity for factoring code to
      reduce redundancy. For example, we wrapped up logic
      in methods and called back to superclass methods from extensions to
      avoid having multiple copies of the same code. Most of these steps were
      a natural outgrowth of the structuring power of classes.
By and large, that’s all there is to OOP in Python. Classes
      certainly can become larger than this, and there are some more advanced
      class concepts, such as decorators and metaclasses, which we will meet
      in later chapters. In terms of the basics, though, our classes already
      do it all. In fact, if you’ve grasped the workings of the classes we’ve
      written, most OOP Python code should now be within your reach.

Other Ways to Combine Classes
Having said that, I should also tell you that although the basic mechanics of OOP are
      simple in Python, some of the art in larger programs lies in the way
      that classes are put together. We’re focusing on
      inheritance in this tutorial because that’s the
      mechanism the Python language provides, but programmers sometimes
      combine classes in other ways, too.
For example, a common coding pattern involves nesting objects
      inside each other to build up composites. We’ll
      explore this pattern in more detail in Chapter 31, which is really more about design
      than about Python. As a quick example, though, we could use this
      composition idea to code our Manager
      extension by embedding a Person, instead of inheriting from it.
The following alternative, coded in file person-composite.py, does so by using
      the __getattr__
      operator overloading method to intercept undefined attribute fetches and
      delegate them to the embedded object with the getattr built-in.
      The getattr call was introduced in
      Chapter 25—it’s the same as X.Y attribute fetch notation and thus performs
      inheritance, but the attribute name Y
      is a runtime string—and __getattr__
      is covered in full in Chapter 30, but
      its basic usage is simple enough to leverage here.
By combining these tools, the giveRaise method here still achieves
      customization, by changing the argument passed along to the embedded
      object. In effect, Manager becomes a
      controller layer that passes calls down to the
      embedded object, rather than up to superclass
      methods:
# File person-composite.py
# Embedding-based Manager alternative

class Person:
    ...same...

class Manager:
    def __init__(self, name, pay):
        self.person = Person(name, 'mgr', pay)      # Embed a Person object
    def giveRaise(self, percent, bonus=.10):
        self.person.giveRaise(percent + bonus)      # Intercept and delegate
    def __getattr__(self, attr):
        return getattr(self.person, attr)           # Delegate all other attrs
    def __repr__(self):
        return str(self.person)                     # Must overload again (in 3.X)

if __name__ == '__main__':
    ...same...
The output of this version is the same as the prior, so I won’t
      list it again. The more important point here is that this Manager alternative is representative of a
      general coding pattern usually known as
      delegation—a composite-based structure that manages
      a wrapped object and propagates method calls to it.
This pattern works in our example, but it requires about twice as
      much code and is less well suited than inheritance to the kinds of
      direct customizations we meant to express (in fact, no reasonable Python
      programmer would code this example this way in practice, except perhaps
      those writing general tutorials!). Manager isn’t really a Person here, so we need extra code to manually
      dispatch method calls to the embedded object; operator overloading
      methods like __repr__ must be
      redefined (in 3.X, at least, as noted in the upcoming sidebar “Catching Built-in Attributes in 3.X”); and adding new
      Manager behavior is less
      straightforward since state information is one level removed.
Still, object embedding, and design patterns
      based upon it, can be a very good fit when embedded objects require more
      limited interaction with the container than direct customization
      implies. A controller layer, or proxy, like this
      alternative Manager, for example,
      might come in handy if we want to adapt a class to an expected interface
      it does not support, or trace or validate calls to another object’s
      methods (indeed, we will use a nearly identical coding pattern when we
      study class decorators later in the book).
Moreover, a hypothetical Department class like the following could
      aggregate other objects in order to treat them as a
      set. Replace the self-test code at the bottom of the person.py file temporarily to try this on
      your own; the file person-department.py in the book’s examples
      does:
# File person-department.py
# Aggregate embedded objects into a composite

class Person:
    ...same...

class Manager(Person):
    ...same...

class Department:
    def __init__(self, *args):
        self.members = list(args)
    def addMember(self, person):
        self.members.append(person)
    def giveRaises(self, percent):
        for person in self.members:
            person.giveRaise(percent)
    def showAll(self):
        for person in self.members:
            print(person)

if __name__ == '__main__':
    bob = Person('Bob Smith')
    sue = Person('Sue Jones', job='dev', pay=100000)
    tom = Manager('Tom Jones', 50000)

    development = Department(bob, sue)          # Embed objects in a composite
    development.addMember(tom)
    development.giveRaises(.10)                 # Runs embedded objects' giveRaise
    development.showAll()                       # Runs embedded objects' __repr__
When run, the department’s showAll method lists all of its contained
      objects after updating their state in true polymorphic fashion with
      giveRaises:
[Person: Bob Smith, 0]
[Person: Sue Jones, 110000]
[Person: Tom Jones, 60000]
Interestingly, this code uses both inheritance
      and composition—Department is a composite that embeds and
      controls other objects to aggregate, but the embedded Person and Manager objects themselves use inheritance to
      customize. As another example, a GUI might similarly use
      inheritance to customize the behavior or appearance
      of labels and buttons, but also composition to
      build up larger packages of embedded widgets, such as input forms,
      calculators, and text editors. The class structure to use depends on the
      objects you are trying to model—in fact, the ability to model real-world
      entities this way is one of OOP’s strengths.
Design issues like composition are explored in Chapter 31, so we’ll postpone further
      investigations for now. But again, in terms of the basic mechanics of
      OOP in Python, our Person and
      Manager classes already tell the
      entire story. Now that you’ve mastered the basics of OOP, though,
      developing general tools for applying it more easily in your scripts is
      often a natural next step—and the topic of the next section.
Catching Built-in Attributes in 3.X
An implementation note: in Python 3.X—and in 2.X when 3.X’s “new style” classes are
        enabled—the alternative delegation-based Manager class of the file person-composite.py that we coded in this
        chapter will not be able to intercept and delegate operator
        overloading method attributes like __repr__ without redefining them itself.
        Although we know that __repr__ is
        the only such name used in our specific example, this is a general
        issue for delegation-based classes.
Recall that built-in operations like printing and addition
        implicitly invoke operator overloading methods such as __repr__ and __add__. In 3.X’s new-style classes,
        built-in operations like these do not route their implicit attribute fetches through generic attribute managers:
        neither __getattr__ (run for
        undefined attributes) nor its cousin __getattribute__ (run for all attributes) is invoked. This is why we have to
        redefine __repr__ redundantly in
        the alternative Manager, in order
        to ensure that printing is routed to the embedded Person object in 3.X.
Comment out this method to see this live—the Manager instance prints with a default in
        3.X, but still uses Person’s
        __repr__ in 2.X. In fact, the
        __repr__ in Manager isn’t required in 2.X at all, as
        it’s coded to use 2.X normal and default (a.k.a.
        “classic”) classes:
c:\code> py −3 person-composite.py
[Person: Bob Smith, 0]
...etc...
<__main__.Manager object at 0x00000000029AA8D0>

c:\code> py −2 person-composite.py
[Person: Bob Smith, 0]
...etc...
[Person: Tom Jones, 60000]
Technically, this happens because built-in operations begin
        their implicit search for method names at the
        instance in 2.X’s default
        classic classes, but start at the
        class in 3.X’s mandated
        new-style classes, skipping the instance
        entirely. By contrast, explicit by-name attribute fetches are always
        routed to the instance first in both models. In 2.X classic classes,
        built-ins route attributes this way too—printing, for example, routes
        __repr__ through __getattr__. This is why commenting out
        Manager’s __repr__ has no effect in 2.X: the call is
        delegated to Person. New-style
        classes also inherit a default for __repr__ from their automatic object superclass that would foil __getattr__, but the new-style __getattribute__ doesn’t intercept the name
        either.
This is a change, but isn’t a show-stopper—delegation-based
        new-style classes can generally redefine operator overloading methods
        to delegate them to wrapped objects, either manually or via tools or
        superclasses. This topic is too advanced to explore further in this
        tutorial, though, so don’t sweat the details too much here. Watch for
        it to be revisited in Chapter 31 and
        Chapter 32 (the latter of which defines
        new-style classes more formally); to impact examples again in the
        attribute management coverage of Chapter 38
        and the Private class decorator in
        Chapter 39 (the last of these also codes
        workarounds); and to be a special-case factor in a nearly formal
        inheritance definition in Chapter 40. In a language like Python that supports both
        attribute interception and operator overloading, the impacts of this
        change can be as broad as this spread implies!



Step 6: Using Introspection Tools
Let’s make one final tweak before we throw our objects onto a database. As they are,
    our classes are complete and demonstrate most of the basics of OOP in
    Python. They still have two remaining issues we probably should iron out,
    though, before we go live with them:
	First, if you look at the display of the objects as they are
        right now, you’ll notice that when you print tom the Manager, the display labels him as a
        Person. That’s not technically
        incorrect, since Manager is a kind
        of customized and specialized Person. Still, it would be more accurate to
        display an object with the most specific (that is,
        lowest) class possible: the one an object is made
        from.

	Second, and perhaps more importantly, the current display format
        shows only the attributes we include in our
        __repr__, and that might not
        account for future goals. For example, we can’t yet verify that
        tom’s job name has been set to
        mgr correctly by Manager’s constructor, because the __repr__ we coded for Person does not print this field. Worse, if
        we ever expand or otherwise change the set of attributes assigned to
        our objects in __init__, we’ll have
        to remember to also update __repr__
        for new names to be displayed, or it will become out of sync over
        time.


The last point means that, yet again, we’ve made potential extra
    work for ourselves in the future by introducing
    redundancy in our code. Because any disparity in
    __repr__ will be reflected in the
    program’s output, this redundancy may be more obvious than the other forms
    we addressed earlier; still, avoiding extra work in the future is
    generally a good thing.
Special Class Attributes
We can address both issues with Python’s introspection
      tools—special attributes and functions that give us access to
      some of the internals of objects’ implementations. These tools are
      somewhat advanced and generally used more by people writing tools for
      other programmers to use than by programmers developing applications.
      Even so, a basic knowledge of some of these tools is useful because they
      allow us to write code that processes classes in generic ways. In our
      code, for example, there are two hooks that can help us out, both of
      which were introduced near the end of the preceding chapter and used in
      earlier examples:
	The built-in instance.__class__ attribute provides a link from an instance to the class from
          which it was created. Classes in turn have a __name__, just like modules, and a
          __bases__ sequence that provides
          access to superclasses. We can use these here to print the name of
          the class from which an instance is made rather than one we’ve
          hardcoded.

	The built-in object.__dict__ attribute provides a dictionary with one key/value pair for
          every attribute attached to a namespace object (including modules,
          classes, and instances). Because it is a dictionary, we can fetch
          its keys list, index by key, iterate over its keys, and so on, to
          process all attributes generically. We can use this here to print
          every attribute in any instance, not just those we hardcode in
          custom displays, much as we did in Chapter 25’s module tools.


We met the first of these categories in the prior chapter, but
      here’s a quick review at Python’s interactive prompt with the latest
      versions of our person.py classes.
      Notice how we load Person at the
      interactive prompt with a from
      statement here—class names live in and are imported from modules,
      exactly like function names and other variables:
>>> from person import Person
>>> bob = Person('Bob Smith')
>>> bob                                        # Show bob's __repr__ (not __str__)
[Person: Bob Smith, 0]
>>> print(bob)                                 # Ditto: print => __str__ or __repr__
[Person: Bob Smith, 0]

>>> bob.__class__                              # Show bob's class and its name
<class 'person.Person'>
>>> bob.__class__.__name__
'Person'

>>> list(bob.__dict__.keys())                  # Attributes are really dict keys
['pay', 'job', 'name']                         # Use list to force list in 3.X

>>> for key in bob.__dict__:
        print(key, '=>', bob.__dict__[key])    # Index manually

pay => 0
job => None
name => Bob Smith

>>> for key in bob.__dict__:
        print(key, '=>', getattr(bob, key))    # obj.attr, but attr is a var

pay => 0
job => None
name => Bob Smith
As noted briefly in the prior chapter, some attributes accessible
      from an instance might not be stored in the __dict__ dictionary if the instance’s class
      defines __slots__: an optional and
      relatively obscure feature of new-style classes (and hence all classes
      in Python 3.X) that stores attributes sequentially in the instance; may
      preclude an instance __dict__
      altogether; and which we won’t study in full until Chapter 31 and Chapter 32. Since slots really belong to classes
      instead of instances, and since they are rarely used in any event, we
      can reasonably ignore them here and focus on the normal __dict__.
As we do, though, keep in mind that some programs may need to
      catch exceptions for a missing __dict__, or use hasattr to test or getattr with a default if its users might
      deploy slots. As we’ll see in Chapter 32,
      the next section’s code won’t fail if used by a class with slots (its
      lack of them is enough to guarantee a __dict__) but slots—and other “virtual”
      attributes—won’t be reported as instance data.

A Generic Display Tool
We can put these interfaces to work in a superclass that displays accurate
      class names and formats all attributes of an instance of any class. Open
      a new file in your text editor to code the following—it’s a new,
      independent module named classtools.py that implements just such a
      class. Because its __repr__ display
      overload uses generic introspection tools, it will work on any
      instance, regardless of the instance’s attributes set. And
      because this is a class, it automatically becomes a general formatting
      tool: thanks to inheritance, it can be mixed into any
      class that wishes to use its display format. As an added
      bonus, if we ever want to change how instances are displayed we need
      only change this class, as every class that inherits its __repr__ will automatically pick up the new format when it’s next
      run:
# File classtools.py (new)
"Assorted class utilities and tools"

class AttrDisplay:
    """
    Provides an inheritable display overload method that shows
    instances with their class names and a name=value pair for
    each attribute stored on the instance itself (but not attrs
    inherited from its classes). Can be mixed into any class,
    and will work on any instance.
    """
    def gatherAttrs(self):
        attrs = []
        for key in sorted(self.__dict__):
            attrs.append('%s=%s' % (key, getattr(self, key)))
        return ', '.join(attrs)

    def __repr__(self):
        return '[%s: %s]' % (self.__class__.__name__, self.gatherAttrs())

if __name__ == '__main__':

    class TopTest(AttrDisplay):
        count = 0
        def __init__(self):
            self.attr1 = TopTest.count
            self.attr2 = TopTest.count+1
            TopTest.count += 2

    class SubTest(TopTest):
        pass

    X, Y = TopTest(), SubTest()      # Make two instances
    print(X)                         # Show all instance attrs
    print(Y)                         # Show lowest class name
Notice the docstrings here—because this is a general-purpose tool,
      we want to add some functional documentation for potential users to
      read. As we saw in Chapter 15,
      docstrings can be placed at the top of simple functions and modules, and
      also at the start of classes and any of their methods; the help function and the PyDoc tool extract and
      display these automatically. We’ll revisit docstrings for classes in
      Chapter 29.
When run directly, this module’s self-test makes two instances and
      prints them; the __repr__ defined
      here shows the instance’s class, and all its attributes’ names and
      values, in sorted attribute name order. This output is the same in
      Python 3.X and 2.X because each object’s display is a single constructed
      string:
C:\code> classtools.py
[TopTest: attr1=0, attr2=1]
[SubTest: attr1=2, attr2=3]
Another design note here: because this class uses __repr__ instead of __str__ its displays are used in all contexts,
      but its clients also won’t have the option of providing an alternative
      low-level display—they can still add a __str__, but this applies to print and str only. In a more general tool, using
      __str__ instead limits a display’s scope, but leaves clients the option of
      adding a __repr__ for a secondary
      display at interactive prompts and nested appearances. We’ll follow this
      alternative policy when we code expanded versions of this class in Chapter 31; for this demo, we’ll stick with the
      all-inclusive __repr__.

Instance Versus Class Attributes
If you study the classtools
      module’s self-test code long enough, you’ll notice that its class
      displays only instance attributes, attached to the
      self object at the bottom of the
      inheritance tree; that’s what self’s __dict__ contains. As an intended consequence,
      we don’t see attributes inherited by the instance from classes above it
      in the tree (e.g., count in this
      file’s self-test code—a class attribute used as an instance counter). Inherited
      class attributes are attached to the class only, not copied down to
      instances.
If you ever do wish to include inherited attributes too, you can
      climb the __class__
      link to the instance’s class, use the __dict__ there to fetch class attributes, and
      then iterate through the class’s __bases__
      attribute to climb to even higher superclasses, repeating as necessary.
      If you’re a fan of simple code, running a built-in dir call on
      the instance instead of using __dict__ and climbing would have much the same
      effect, since dir results include
      inherited names in the sorted results list. In Python 2.7:
>>> from person import Person           # 2.X: keys is list, dir shows less
>>> bob = Person('Bob Smith')

>>> bob.__dict__.keys()                 # Instance attrs only
['pay', 'job', 'name']

>>> dir(bob)                            # Plus inherited attrs in classes
['__doc__', '__init__', '__module__', '__repr__', 'giveRaise', 'job', 'lastName',
'name', 'pay']
If you’re using Python 3.X, your output will vary, and may be more
      than you bargained for; here’s the 3.3 result for the last two
      statements (keys list order can vary per run):
>>> list(bob.__dict__.keys())           # 3.X keys is a view, not a list
['name', 'job', 'pay']

>>> dir(bob)                            # 3.X includes class type methods
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__',
...more omitted: 31 attrs...
'__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__',
'giveRaise', 'job', 'lastName', 'name', 'pay']
The code and output here varies between Python 2.X and 3.X,
      because 3.X’s dict.keys is not a
      list, and 3.X’s dir returns extra
      class-type implementation attributes. Technically, dir returns more in 3.X because classes are
      all “new style” and inherit a large set of operator overloading names
      from the class type. In fact, as usual you’ll probably want to filter
      out most of the __X__ names in the 3.X dir result, since they are internal
      implementation details and not something you’d normally want to
      display:
>>> len(dir(bob))
31
>>> list(name for name in dir(bob) if not name.startswith('__'))
['giveRaise', 'job', 'lastName', 'name', 'pay']
In the interest of space, we’ll leave optional display of
      inherited class attributes with either tree climbs or dir as suggested experiments for now. For more
      hints on this front, though, watch for the classtree.py inheritance tree climber we will
      write in Chapter 29, and the lister.py attribute listers and climbers
      we’ll code in Chapter 31.

Name Considerations in Tool Classes
One last subtlety here: because our AttrDisplay class in the classtools module is a general tool designed
      to be mixed into other arbitrary classes, we have to be aware of the
      potential for unintended name collisions with
      client classes. As is, I’ve assumed that client subclasses may want to
      use both its __repr__ and gatherAttrs, but the latter of these may be
      more than a subclass expects—if a subclass innocently defines a gatherAttrs name of its own, it will likely
      break our class, because the lower version in the subclass will be used
      instead of ours.
To see this for yourself, add a gatherAttrs to TopTest in the file’s self-test code; unless
      the new method is identical, or intentionally customizes the original,
      our tool class will no longer work as planned—self.gatherAttrs within AttrDisplay searches anew from the TopTest instance:
    class TopTest(AttrDisplay):
        ....
        def gatherAttrs(self):         # Replaces method in AttrDisplay!
            return 'Spam'
This isn’t necessarily bad—sometimes we want other methods to be
      available to subclasses, either for direct calls or for customization
      this way. If we really meant to provide a __repr__ only, though, this is less than
      ideal.
To minimize the chances of name collisions like this, Python
      programmers often prefix methods not meant for external use with
      a single underscore: _gatherAttrs in our case. This isn’t foolproof
      (what if another class defines _gatherAttrs, too?), but it’s usually
      sufficient, and it’s a common Python naming convention for methods
      internal to a class.
A better and less commonly used solution would be to use
      two underscores at the front of the method name
      only: __gatherAttrs for us. Python
      automatically expands such names to include the enclosing class’s name,
      which makes them truly unique when looked up by the inheritance search.
      This is a feature usually called pseudoprivate class
      attributes, which we’ll expand on in Chapter 31 and deploy in an expanded version of
      this class there. For now, we’ll make both our methods available.

Our Classes’ Final Form
Now, to use this generic tool in our classes, all we need to do is import
      it from its module, mix it in by inheritance in our top-level class, and
      get rid of the more specific __repr__
      we coded before. The new display overload method will be inherited by
      instances of Person, as well as
      Manager; Manager gets __repr__ from Person, which now obtains it from the AttrDisplay coded in another module. Here is
      the final version of our person.py
      file with these changes applied:
# File classtools.py (new)
...as listed earlier...

# File person.py (final)
"""
Record and process information about people.
Run this file directly to test its classes.
"""
from classtools import AttrDisplay                    # Use generic display tool

class Person(AttrDisplay):                            # Mix in a repr at this level
    """
    Create and process person records
    """
    def __init__(self, name, job=None, pay=0):
        self.name = name
        self.job  = job
        self.pay  = pay

    def lastName(self):                               # Assumes last is last
        return self.name.split()[-1]

    def giveRaise(self, percent):                     # Percent must be 0..1
        self.pay = int(self.pay * (1 + percent))

class Manager(Person):
    """
    A customized Person with special requirements
    """
    def __init__(self, name, pay):
        Person.__init__(self, name, 'mgr', pay)       # Job name is implied

    def giveRaise(self, percent, bonus=.10):
        Person.giveRaise(self, percent + bonus)

if __name__ == '__main__':
    bob = Person('Bob Smith')
    sue = Person('Sue Jones', job='dev', pay=100000)
    print(bob)
    print(sue)
    print(bob.lastName(), sue.lastName())
    sue.giveRaise(.10)
    print(sue)
    tom = Manager('Tom Jones', 50000)
    tom.giveRaise(.10)
    print(tom.lastName())
    print(tom)
As this is the final revision, we’ve added a few
      comments here to document our work—docstrings for
      functional descriptions and # for
      smaller notes, per best-practice conventions, as well as blank
      lines between methods for readability—a generally good style
      choice when classes or methods grow large, which I resisted earlier for
      these small classes, in part to save space and keep the code more
      compact.
When we run this code now, we see all the attributes of our
      objects, not just the ones we hardcoded in the original __repr__. And our final issue is resolved:
      because AttrDisplay takes class names
      off the self instance directly, each
      object is shown with the name of its closest (lowest) class—tom displays as a Manager now, not a Person, and we can finally verify that his job
      name has been correctly filled in by the Manager constructor:
C:\code> person.py
[Person: job=None, name=Bob Smith, pay=0]
[Person: job=dev, name=Sue Jones, pay=100000]
Smith Jones
[Person: job=dev, name=Sue Jones, pay=110000]
Jones
[Manager: job=mgr, name=Tom Jones, pay=60000]
This is the more useful display we were after. From a larger
      perspective, though, our attribute display class has become a
      general tool, which we can mix into any class by
      inheritance to leverage the display format it defines. Further, all its
      clients will automatically pick up future changes in our tool. Later in
      the book, we’ll meet even more powerful class tool concepts, such as
      decorators and metaclasses; along with Python’s many introspection
      tools, they allow us to write code that augments and manages classes in
      structured and maintainable ways.


Step 7 (Final): Storing Objects in a Database
At this point, our work is almost complete. We now have a two-module
    system that not only implements our original design goals for
    representing people, but also provides a general attribute display tool we
    can use in other programs in the future. By coding functions and classes
    in module files, we’ve ensured that they naturally support reuse. And by
    coding our software as classes, we’ve ensured that it naturally supports
    extension.
Although our classes work as planned, though, the objects they
    create are not real database records. That is, if we kill Python, our
    instances will disappear—they’re transient objects in memory and are not
    stored in a more permanent medium like a file, so they won’t be available
    in future program runs. It turns out that it’s easy to make instance
    objects more permanent, with a Python feature called object persistence—making
    objects live on after the program that creates them exits. As a final step
    in this tutorial, let’s make our objects permanent.
Pickles and Shelves
Object persistence is implemented by three standard library modules, available
      in every Python:
	pickle
	Serializes arbitrary Python objects to and from a string of
            bytes

	dbm (named anydbm in Python 2.X)
	Implements an access-by-key filesystem for storing strings

	shelve
	Uses the other two modules to store Python objects on a file by
            key


We met these modules very briefly in Chapter 9 when we studied
      file basics. They provide powerful data storage options. Although we
      can’t do them complete justice in this tutorial or book, they are simple
      enough that a brief introduction is enough to get you started.
The pickle module
The pickle module is a sort
        of super-general object formatting and deformatting tool: given a
        nearly arbitrary Python object in memory, it’s clever enough to
        convert the object to a string of bytes, which it can use later to
        reconstruct the original object in memory. The pickle module can handle almost any object
        you can create—lists, dictionaries, nested combinations thereof, and
        class instances. The latter are especially useful things to pickle,
        because they provide both data (attributes) and behavior (methods); in
        fact, the combination is roughly equivalent to “records” and
        “programs.” Because pickle is so
        general, it can replace extra code you might otherwise write to create
        and parse custom text file representations for your objects. By
        storing an object’s pickle string on a file, you effectively make it
        permanent and persistent: simply load and unpickle it later to
        re-create the original object.

The shelve module
Although it’s easy to use pickle by itself to store objects in simple
        flat files and load them from there later, the shelve module provides an extra layer of
        structure that allows you to store pickled objects by
        key. shelve
        translates an object to its pickled string with pickle and stores that string under a key in
        a dbm file; when later loading,
        shelve fetches the pickled string
        by key and re-creates the original object in memory with pickle. This is all quite a trick, but to
        your script a shelve2 of pickled objects looks just like a
        dictionary—you index by key to fetch, assign to keys to store, and use dictionary tools such
        as len, in, and dict.keys to get information. Shelves
        automatically map dictionary operations to objects stored in a
        file.
In fact, to your script the only coding difference between a
        shelve and a normal dictionary is that you must
        open shelves initially and must
        close them after making changes. The net effect
        is that a shelve provides a simple database for storing and fetching
        native Python objects by keys, and thus makes them persistent across
        program runs. It does not support query tools such as SQL, and it
        lacks some advanced features found in enterprise-level databases (such
        as true transaction processing), but native Python objects stored on a
        shelve may be processed with the full power of the Python language
        once they are fetched back by key.


Storing Objects on a Shelve Database
Pickling and shelves are somewhat advanced topics, and we won’t go into
      all their details here; you can read more about them in the standard
      library manuals, as well as application-focused books such as the Programming
      Python follow-up text. This is all simpler in Python than in
      English, though, so let’s jump into some code.
Let’s write a new script that throws objects of our classes onto a
      shelve. In your text editor, open a new file we’ll call makedb.py. Since this is a new file, we’ll
      need to import our classes in order to create a few instances to store.
      We used from to load a class at the
      interactive prompt earlier, but really, as with functions and other
      variables, there are two ways to load a class from a file (class names
      are variables like any other, and not at all magic in this
      context):
import person                                    # Load class with import
bob = person.Person(...)                         # Go through module name

from person import Person                        # Load class with from
bob = Person(...)                                # Use name directly
We’ll use from to load in our
      script, just because it’s a bit less to type. To keep this simple, copy
      or retype in our new script the self-test lines from person.py that make instances of our classes,
      so we have something to store (this is a simple demo, so we won’t worry
      about the test-code redundancy here). Once we have some instances, it’s
      almost trivial to store them on a shelve. We simply import the shelve module, open a new shelve with an
      external filename, assign the objects to keys in the shelve, and close
      the shelve when we’re done because we’ve made changes:
# File makedb.py: store Person objects on a shelve database

from person import Person, Manager               # Load our classes
bob = Person('Bob Smith')                        # Re-create objects to be stored
sue = Person('Sue Jones', job='dev', pay=100000)
tom = Manager('Tom Jones', 50000)

import shelve
db = shelve.open('persondb')                     # Filename where objects are stored
for obj in (bob, sue, tom):                      # Use object's name attr as key
    db[obj.name] = obj                           # Store object on shelve by key
db.close()                                       # Close after making changes
Notice how we assign objects to the shelve using their own names
      as keys. This is just for convenience; in a shelve, the
      key can be any string, including one we might
      create to be unique using tools such as process IDs and timestamps
      (available in the os and time standard library modules). The only rule
      is that the keys must be strings and should be unique, since we can
      store just one object per key, though that object can be a list,
      dictionary, or other object containing many objects itself.
In fact, the values we store under keys can
      be Python objects of almost any sort—built-in types like strings, lists,
      and dictionaries, as well as user-defined class instances, and nested
      combinations of all of these and more. For example, the name and job attributes of our objects could be nested
      dictionaries and lists as in earlier incarnations in this book (though
      this would require a bit of redesign to the current code).
That’s all there is to it—if this script has no output when run,
      it means it probably worked; we’re not printing anything, just creating
      and storing objects in a file-based database.
C:\code> makedb.py

Exploring Shelves Interactively
At this point, there are one or more real files in the current directory whose
      names all start with “persondb”. The actual files created can vary per
      platform, and just as in the built-in open function, the filename in shelve.open() is
      relative to the current working directory unless it includes a directory
      path. Wherever they are stored, these files implement a keyed-access
      file that contains the pickled representation of our three Python
      objects. Don’t delete these files—they are your database, and are what
      you’ll need to copy or transfer when you back up or move your
      storage.
You can look at the shelve’s files if you want to, either from
      Windows Explorer or the Python shell, but they are binary hash files,
      and most of their content makes little sense outside the context of the
      shelve module. With Python 3.X and no
      extra software installed, our database is stored in three files (in 2.X,
      it’s just one file, persondb,
      because the bsddb extension
      module is preinstalled with Python for shelves; in 3.X,
      bsddb is an optional third-party open
      source add-on).
For example, Python’s standard library glob module allows us to get directory
      listings in Python code to verify the files here, and we can open the
      files in text or binary mode to explore strings and bytes:
>>> import glob
>>> glob.glob('person*')
['person-composite.py', 'person-department.py', 'person.py', 'person.pyc',
'persondb.bak', 'persondb.dat', 'persondb.dir']

>>> print(open('persondb.dir').read())
'Sue Jones', (512, 92)
'Tom Jones', (1024, 91)
'Bob Smith', (0, 80)

>>> print(open('persondb.dat','rb').read())
b'\x80\x03cperson\nPerson\nq\x00)\x81q\x01}q\x02(X\x03\x00\x00\x00jobq\x03NX\x03\x00
...more omitted...
This content isn’t impossible to decipher, but it can vary on
      different platforms and doesn’t exactly qualify as a user-friendly
      database interface! To verify our work better, we can write another
      script, or poke around our shelve at the interactive prompt. Because
      shelves are Python objects containing Python objects, we can process
      them with normal Python syntax and development modes. Here, the
      interactive prompt effectively becomes a database
      client:
>>> import shelve
>>> db = shelve.open('persondb')                 # Reopen the shelve

>>> len(db)                                      # Three 'records' stored
3
>>> list(db.keys())                              # keys is the index
['Sue Jones', 'Tom Jones', 'Bob Smith']          # list() to make a list in 3.X

>>> bob = db['Bob Smith']                        # Fetch bob by key
>>> bob                                          # Runs __repr__ from AttrDisplay
[Person: job=None, name=Bob Smith, pay=0]

>>> bob.lastName()                               # Runs lastName from Person
'Smith'

>>> for key in db:                               # Iterate, fetch, print
        print(key, '=>', db[key])

Sue Jones => [Person: job=dev, name=Sue Jones, pay=100000]
Tom Jones => [Manager: job=mgr, name=Tom Jones, pay=50000]
Bob Smith => [Person: job=None, name=Bob Smith, pay=0]

>>> for key in sorted(db):
        print(key, '=>', db[key])                # Iterate by sorted keys

Bob Smith => [Person: job=None, name=Bob Smith, pay=0]
Sue Jones => [Person: job=dev, name=Sue Jones, pay=100000]
Tom Jones => [Manager: job=mgr, name=Tom Jones, pay=50000]
Notice that we don’t have to import our Person or Manager classes here in order to load or use
      our stored objects. For example, we can call bob’s lastName method freely, and get his custom
      print display format automatically, even though we don’t have his
      Person class in our scope here. This
      works because when Python pickles a class instance, it records its
      self instance attributes, along with
      the name of the class it was created from and the module where the class
      lives. When bob is later fetched from
      the shelve and unpickled, Python will automatically reimport the class
      and link bob to it.
The upshot of this scheme is that class instances automatically
      acquire all their class behavior when they are loaded in the future. We
      have to import our classes only to make new instances, not to process
      existing ones. Although a deliberate feature, this scheme has somewhat
      mixed consequences:
	The downside is that classes and their
          module’s files must be importable when an
          instance is later loaded. More formally, pickleable classes must be
          coded at the top level of a module file accessible from a directory
          listed on the sys.path module
          search path (and shouldn’t live in the topmost script files’ module
          __main__ unless they’re always in that module when used). Because of
          this external module file requirement, some applications choose to
          pickle simpler objects such as dictionaries or lists, especially if
          they are to be transferred across the Internet.

	The upside is that changes in a class’s
          source code file are automatically picked up when instances of the
          class are loaded again; there is often no need to update stored
          objects themselves, since updating their class’s code changes their
          behavior.


Shelves also have well-known limitations (the database suggestions
      at the end of this chapter mention a few of these). For simple object
      storage, though, shelves and pickles are remarkably easy-to-use
      tools.

Updating Objects on a Shelve
Now for one last script: let’s write a program that updates an instance
      (record) each time it runs, to prove the point that our objects really
      are persistent—that their current values are
      available every time a Python program runs. The following file,
      updatedb.py, prints the database
      and gives a raise to one of our stored objects each time. If you trace
      through what’s going on here, you’ll notice that we’re getting a lot of
      utility “for free”—printing our objects automatically employs the
      general __repr__ overloading method,
      and we give raises by calling the giveRaise method we wrote earlier. This all
      “just works” for objects based on OOP’s inheritance model, even when
      they live in a file:
# File updatedb.py: update Person object on database

import shelve
db = shelve.open('persondb')               # Reopen shelve with same filename

for key in sorted(db):                     # Iterate to display database objects
    print(key, '\t=>', db[key])            # Prints with custom format

sue = db['Sue Jones']                      # Index by key to fetch
sue.giveRaise(.10)                         # Update in memory using class's method
db['Sue Jones'] = sue                      # Assign to key to update in shelve
db.close()                                 # Close after making changes
Because this script prints the database when it starts up, we have
      to run it at least twice to see our objects change. Here it is in
      action, displaying all records and increasing sue’s pay each time it is run (it’s a pretty
      good script for sue...something to
      schedule to run regularly as a cron
      job perhaps?):
C:\code> updatedb.py
Bob Smith       => [Person: job=None, name=Bob Smith, pay=0]
Sue Jones       => [Person: job=dev, name=Sue Jones, pay=100000]
Tom Jones       => [Manager: job=mgr, name=Tom Jones, pay=50000]

C:\code> updatedb.py
Bob Smith       => [Person: job=None, name=Bob Smith, pay=0]
Sue Jones       => [Person: job=dev, name=Sue Jones, pay=110000]
Tom Jones       => [Manager: job=mgr, name=Tom Jones, pay=50000]

C:\code> updatedb.py
Bob Smith       => [Person: job=None, name=Bob Smith, pay=0]
Sue Jones       => [Person: job=dev, name=Sue Jones, pay=121000]
Tom Jones       => [Manager: job=mgr, name=Tom Jones, pay=50000]

C:\code> updatedb.py
Bob Smith       => [Person: job=None, name=Bob Smith, pay=0]
Sue Jones       => [Person: job=dev, name=Sue Jones, pay=133100]
Tom Jones       => [Manager: job=mgr, name=Tom Jones, pay=50000]
Again, what we see here is a product of the shelve and pickle tools we get from Python, and of the
      behavior we coded in our classes ourselves. And once again, we can
      verify our script’s work at the interactive prompt—the shelve’s
      equivalent of a database client:
C:\code> python
>>> import shelve
>>> db = shelve.open('persondb')             # Reopen database
>>> rec = db['Sue Jones']                    # Fetch object by key
>>> rec
[Person: job=dev, name=Sue Jones, pay=146410]
>>> rec.lastName()
'Jones'
>>> rec.pay
146410
For another example of object persistence in this book, see the
      sidebar in Chapter 31 titled “Why You Will Care: Classes and Persistence”. It stores a
      somewhat larger composite object in a flat file with pickle instead of shelve, but the effect is similar. For more
      details and examples for both pickles and shelves, see also Chapter 9 (file basics) and
      Chapter 37 (3.X string tool changes),
      other books, and Python’s manuals.


Future Directions
And that’s a wrap for this tutorial. At this point, you’ve seen all the basics of
    Python’s OOP machinery in action, and you’ve learned ways to avoid
    redundancy and its associated maintenance issues in your code. You’ve
    built full-featured classes that do real work. As an added bonus, you’ve
    made them real database records by storing them in a Python shelve, so
    their information lives on persistently.
There is much more we could explore here, of course. For example, we
    could extend our classes to make them more realistic, add new kinds of
    behavior to them, and so on. Giving a raise, for instance, should in
    practice verify that pay increase rates are between zero and one—an
    extension we’ll add when we meet decorators later in this book. You might
    also mutate this example into a personal contacts database, by changing
    the state information stored on objects, as well as the classes’ methods
    used to process it. We’ll leave this a suggested exercise open to your
    imagination.
We could also expand our scope to use tools that either come with
    Python or are freely available in the open source world:
	GUIs
	As is, we can only process our database with the interactive
          prompt’s command-based interface, and scripts. We could also work on
          expanding our object database’s usability by adding a desktop
          graphical user interface for browsing and updating its records. GUIs
          can be built portably with either Python’s tkinter (Tkinter in 2.X) standard library support,
          or third-party toolkits such as WxPython and PyQt. tkinter ships with Python, lets you build
          simple GUIs quickly, and is ideal for learning GUI programming
          techniques; WxPython and PyQt tend to be more complex to use but
          often produce higher-grade GUIs in the end.

	Websites
	Although GUIs are convenient and fast, the Web is hard to beat in terms
          of accessibility. We might also implement a website for browsing and
          updating records, instead of or in addition to GUIs and the
          interactive prompt. Websites can be constructed with either basic
          CGI scripting tools that come with Python, or full-featured
          third-party web frameworks such as Django, TurboGears, Pylons,
          web2Py, Zope, or Google’s App Engine. On the Web, your data can
          still be stored in a shelve, pickle file, or other Python-based
          medium; the scripts that process it are simply run automatically on
          a server in response to requests from web browsers and other
          clients, and they produce HTML to interact with a user, either
          directly or by interfacing with framework APIs. Rich Internet
          application (RIA) systems such as Silverlight and pyjamas also
          attempt to combine GUI-like interactivity with web-based
          deployment.

	Web services
	Although web clients can often parse information in the
          replies from websites (a technique colorfully known as “screen scraping”), we might go
          further and provide a more direct way to fetch records on the Web
          via a web services interface such as SOAP or XML-RPC calls—APIs
          supported by either Python itself or the third-party open source
          domain, which generally map data to and from XML format for
          transmission. To Python scripts, such APIs return data more directly
          than text embedded in the HTML of a reply page.

	Databases
	If our database becomes higher-volume or critical, we might
          eventually move it from shelves to a more full-featured storage
          mechanism such as the open source ZODB object-oriented database system (OODB), or a more
          traditional SQL-based relational database system such as MySQL,
          Oracle, or PostgreSQL. Python itself comes with the in-process
          SQLite database system built-in, but other open source options are
          freely available on the Web. ZODB, for example, is similar to
          Python’s shelve but addresses
          many of its limitations, better supporting larger databases,
          concurrent updates, transaction processing, and automatic
          write-through on in-memory changes (shelves can cache objects and
          flush to disk at close time with their writeback option, but this has
          limitations: see other resources). SQL-based systems like MySQL
          offer enterprise-level tools for database storage and may be
          directly used from a Python script. As we saw in Chapter 9, MongoDB offers
          an alternative approach that stores JSON documents, which closely
          parallel Python dictionaries and lists, and are language neutral,
          unlike pickle data.

	ORMs
	If we do migrate to a relational database system for storage,
          we don’t have to sacrifice Python’s OOP tools. Object-relational
          mappers (ORMs) like SQLObject and SQLAlchemy can automatically map
          relational tables and rows to and from Python classes and instances,
          such that we can process the stored data using normal Python class
          syntax. This approach provides an alternative to OODBs like shelve and ZODB and leverages the power of
          both relational databases and Python’s class model.


While I hope this introduction whets your appetite for future
    exploration, all of these topics are of course far beyond the scope of
    this tutorial and this book at large. If you want to explore any of them
    on your own, see the Web, Python’s standard library manuals, and
    application-focused books such as Programming
    Python. In the latter I pick up this example where we’ve stopped
    here, showing how to add both a GUI and a website on top of the database
    to allow for browsing and updating instance records. I hope to see you
    there eventually, but first, let’s return to class fundamentals and finish
    up the rest of the core Python language story.

Chapter Summary
In this chapter, we explored all the fundamentals of Python classes
    and OOP in action, by building upon a simple but real example, step by
    step. We added constructors, methods, operator overloading, customization
    with subclasses, and introspection-based tools, and we met other concepts
    such as composition, delegation, and polymorphism along the way.
In the end, we took objects created by our classes and made them
    persistent by storing them on a shelve object database—an easy-to-use
    system for saving and retrieving native Python objects by key. While
    exploring class basics, we also encountered multiple ways to factor our
    code to reduce redundancy and minimize future maintenance costs. Finally,
    we briefly previewed ways to extend our code with application-programming
    tools such as GUIs and databases, covered in follow-up books.
In the next chapters of this part of the book, we’ll return to our
    study of the details behind Python’s class model and investigate its
    application to some of the design concepts used to combine classes in
    larger programs. Before we move ahead, though, let’s work through this
    chapter’s quiz to review what we covered here. Since we’ve already done a
    lot of hands-on work in this chapter, we’ll close with a set of mostly
    theory-oriented questions designed to make you trace through some of the
    code and ponder some of the bigger ideas behind it.

Test Your Knowledge: Quiz
	When we fetch a Manager
        object from the shelve and print it, where does the display format
        logic come from?

	When we fetch a Person object
        from a shelve without importing its module, how does the object know
        that it has a giveRaise method that
        we can call?

	Why is it so important to move processing into methods, instead
        of hardcoding it outside the class?

	Why is it better to customize by subclassing rather than copying
        the original and modifying?

	Why is it better to call back to a superclass method to run
        default actions, instead of copying and modifying its code in a
        subclass?

	Why is it better to use tools like __dict__ that allow objects to be processed
        generically than to write more custom code for each type of
        class?

	In general terms, when might you choose to use object embedding
        and composition instead of inheritance?

	What would you have to change if the objects coded in this
        chapter used a dictionary for names and a list for jobs, as in similar
        examples earlier in this book?

	How might you modify the classes in this chapter to implement a
        personal contacts database in Python?



Test Your Knowledge: Answers
	In the final version of our classes, Manager ultimately inherits its __repr__ printing method from AttrDisplay in the separate classtools module and two levels up in the
        class tree. Manager doesn’t have
        one itself, so the inheritance search climbs to its Person superclass; because there is no
        __repr__ there either, the search
        climbs higher and finds it in AttrDisplay. The class names listed in
        parentheses in a class statement’s
        header line provide the links to higher superclasses.

	Shelves (really, the pickle
        module they use) automatically relink an instance to the class it was
        created from when that instance is later loaded back into memory.
        Python reimports the class from its module internally, creates an
        instance with its stored attributes, and sets the instance’s __class__ link to point to its original
        class. This way, loaded instances automatically obtain all their
        original methods (like lastName,
        giveRaise, and __repr__), even if we have not imported the
        instance’s class into our scope.

	It’s important to move processing into methods so that there is
        only one copy to change in the future, and so that the methods can be
        run on any instance. This is Python’s notion of
        encapsulation—wrapping up logic behind
        interfaces, to better support future code maintenance. If you don’t do
        so, you create code redundancy that can multiply your work effort as
        the code evolves in the future.

	Customizing with subclasses reduces development effort. In OOP,
        we code by customizing what has already been
        done, rather than copying or changing existing code. This is the real
        “big idea” in OOP—because we can easily extend our prior work by
        coding new subclasses, we can leverage what we’ve already done. This
        is much better than either starting from scratch each time, or
        introducing multiple redundant copies of code that may all have to be
        updated in the future.

	Copying and modifying code doubles your
        potential work effort in the future, regardless of the context. If a
        subclass needs to perform default actions coded in a superclass
        method, it’s much better to call back to the original through the
        superclass’s name than to copy its code. This also holds true for
        superclass constructors. Again, copying code creates redundancy, which
        is a major issue as code evolves.

	Generic tools can avoid hardcoded solutions that must be kept in
        sync with the rest of the class as it evolves over time. A generic
        __repr__ print method, for example,
        need not be updated each time a new attribute is added to instances in
        an __init__ constructor. In
        addition, a generic print method
        inherited by all classes appears and need be modified in only one
        place—changes in the generic version are picked up by all classes that
        inherit from the generic class. Again, eliminating code
        redundancy cuts future development effort; that’s
        one of the primary assets classes bring to the table.

	Inheritance is best at coding extensions based on direct
        customization (like our Manager
        specialization of Person).
        Composition is well suited to scenarios where multiple objects are
        aggregated into a whole and directed by a controller layer class.
        Inheritance passes calls up to reuse, and
        composition passes down to delegate. Inheritance
        and composition are not mutually exclusive; often, the objects
        embedded in a controller are themselves customizations based upon
        inheritance.

	Not much since this was really a first-cut prototype, but the
        lastName method would need to be
        updated for the new name format; the Person constructor would have to change the
        job default to an empty list; and the Manager class would probably need to pass
        along a job list in its constructor instead of a single string
        (self-test code would change as well, of course). The good news is
        that these changes would need to be made in just one place—in our
        classes, where such details are encapsulated. The database scripts
        should work as is, as shelves support arbitrarily nested data.

	The classes in this chapter could be used as boilerplate
        “template” code to implement a variety of types of databases.
        Essentially, you can repurpose them by modifying the constructors to
        record different attributes and providing whatever methods are
        appropriate for the target application. For instance, you might use
        attributes such as name, address, birthday, phone, email, and so on for a contacts database,
        and methods appropriate for this purpose. A method named sendmail, for example, might use Python’s
        standard library smtplib module to
        send an email to one of the contacts automatically when called (see
        Python’s manuals or application-level books for more details on such
        tools). The AttrDisplay tool we
        wrote here could be used verbatim to print your objects, because it is
        intentionally generic. Most of the shelve database code here can be
        used to store your objects, too, with minor changes.



1 And no offense to any managers in the audience, of course. I
          once taught a Python class in New Jersey, and nobody laughed at this
          joke, among others. The organizers later told me it was a group of
          managers evaluating Python.
2 Yes, we use “shelve” as a noun in Python, much to the
            chagrin of a variety of editors I’ve worked with over the years,
            both electronic and human.








Chapter 29. Class Coding Details
If you haven’t quite gotten all of Python OOP yet, don’t worry; now that we’ve had a first tour, we’re going to
  dig a bit deeper and study the concepts introduced earlier in further
  detail. In this and the following chapter, we’ll take another look at class
  mechanics. Here, we’re going to study classes, methods, and inheritance,
  formalizing and expanding on some of the coding ideas introduced in Chapter 27. Because the class is our last namespace
  tool, we’ll summarize Python’s namespace and scope concepts as well.
The next chapter continues this in-depth second pass over class
  mechanics by covering one specific aspect: operator overloading. Besides
  presenting additional details, this chapter and the next also give us an
  opportunity to explore some larger classes than those we have studied so
  far.
Content note: if you’ve been reading linearly, some of this chapter
  will be review and summary of topics introduced in the preceding chapter’s
  case study, revisited here by language topics with smaller and more
  self-contained examples for readers new to OOP. Others may be tempted to
  skip some of this chapter, but be sure to see the namespace coverage here,
  as it explains some subtleties in Python’s class model.
The class Statement
Although the Python class statement
    may seem similar to tools in other OOP languages on the surface, on closer
    inspection, it is quite different from what some programmers are used to.
    For example, as in C++, the class
    statement is Python’s main OOP tool, but unlike in C++, Python’s class is
    not a declaration. Like a def, a
    class statement is an object builder,
    and an implicit assignment—when run, it generates a class object and
    stores a reference to it in the name used in the header. Also like a
    def, a class statement is true executable code—your
    class doesn’t exist until Python reaches and runs the class statement that defines it. This typically
    occurs while importing the module it is coded in, but not before.
General Form
class is a compound statement, with a body of statements typically indented
      appearing under the header. In the header, superclasses are listed in
      parentheses after the class name, separated by commas. Listing more than
      one superclass leads to multiple inheritance, which we’ll discuss more
      formally in Chapter 31. Here is the
      statement’s general form:
class name(superclass,...):           # Assign to name
    attr = value                      # Shared class data
    def method(self,...):             # Methods
        self.attr = value             # Per-instance data
Within the class statement, any
      assignments generate class attributes, and specially named methods
      overload operators; for instance, a function called __init__ is called at instance object
      construction time, if defined.

Example
As we’ve seen, classes are mostly just
      namespaces—that is, tools for defining names (i.e.,
      attributes) that export data and logic to clients. A class statement effectively defines a
      namespace. Just as in a module file, the statements nested in a class statement body create its attributes.
      When Python executes a class
      statement (not a call to a class), it runs all the statements in its
      body, from top to bottom. Assignments that happen during this process
      create names in the class’s local scope, which become attributes in the
      associated class object. Because of this, classes resemble both modules and
      functions:
	Like functions, class
          statements are local scopes where names created by nested
          assignments live.

	Like names in a module, names assigned in a class statement become attributes in a
          class object.


The main distinction for classes is that their namespaces are also
      the basis of inheritance in Python; reference
      attributes that are not found in a class or instance object are fetched
      from other classes.
Because class is a compound
      statement, any sort of statement can be nested inside its body—print, assignments, if, def,
      and so on. All the statements inside the class statement run when the class statement itself runs (not when the
      class is later called to make an instance). Typically, assignment
      statements inside the class statement
      make data attributes, and nested defs
      make method attributes. In general, though, any type of name assignment
      at the top level of a class statement
      creates a same-named attribute of the resulting class object.
For example, assignments of simple nonfunction objects to class
      attributes produce data attributes, shared by
      all instances:
>>> class SharedData:
        spam = 42          # Generates a class data attribute

>>> x = SharedData()       # Make two instances
>>> y = SharedData()
>>> x.spam, y.spam         # They inherit and share 'spam' (a.k.a. SharedData.spam)
(42, 42)
Here, because the name spam is
      assigned at the top level of a class
      statement, it is attached to the class and so will be shared by all
      instances. We can change it by going through the class name, and we can refer to it through either
      instances or the class:1
>>> SharedData.spam = 99
>>> x.spam, y.spam, SharedData.spam
(99, 99, 99)
Such class attributes can be used to manage information that spans
      all the instances—a counter of the number of instances generated, for
      example (we’ll expand on this idea by example in Chapter 32). Now, watch what happens if we
      assign the name spam through an
      instance instead of the class:
>>> x.spam = 88
>>> x.spam, y.spam, SharedData.spam
(88, 99, 99)
Assignments to instance attributes create or change the names in the
      instance, rather than in the shared class. More generally, inheritance
      searches occur only on attribute references, not on
      assignment: assigning to an object’s attribute always changes that
      object, and no other.2 For example, y.spam is
      looked up in the class by inheritance, but the assignment to x.spam attaches a name to x itself.
Here’s a more comprehensive example of this behavior that stores
      the same name in two places. Suppose we run the following class:
class MixedNames:                            # Define class
    data = 'spam'                            # Assign class attr
    def __init__(self, value):               # Assign method name
        self.data = value                    # Assign instance attr
    def display(self):
        print(self.data, MixedNames.data)    # Instance attr, class attr
This class contains two defs,
      which bind class attributes to method functions. It also contains an
      = assignment statement; because this
      assignment assigns the name data
      inside the class, it lives in the
      class’s local scope and becomes an attribute of the class object. Like
      all class attributes, this data is
      inherited and shared by all instances of the class that don’t have
      data attributes of their own.
When we make instances of this class, the name data is attached to those instances by the
      assignment to self.data in the
      constructor method:
>>> x = MixedNames(1)          # Make two instance objects
>>> y = MixedNames(2)          # Each has its own data
>>> x.display(); y.display()   # self.data differs, MixedNames.data is the same
1 spam
2 spam
The net result is that data
      lives in two places: in the instance objects (created by the self.data assignment in __init__), and in the class from which they
      inherit names (created by the data
      assignment in the class). The class’s
      display method prints both versions,
      by first qualifying the self
      instance, and then the class.
By using these techniques to store attributes in different
      objects, we determine their scope of visibility. When attached to
      classes, names are shared; in instances, names record per-instance data,
      not shared behavior or data. Although inheritance searches look up names
      for us, we can always get to an attribute anywhere in a tree by
      accessing the desired object directly.
In the preceding example, for instance, specifying x.data or self.data will return an instance name, which
      normally hides the same name in the class; however, MixedNames.data grabs the class’s version of
      the name explicitly. The next section describes one of the most common
      roles for such coding patterns, and explains more about the way we
      deployed it in the prior chapter.


Methods
Because you already know about functions, you also know about methods in classes. Methods
    are just function objects created by def statements nested in a class statement’s body. From an abstract
    perspective, methods provide behavior for instance objects to inherit.
    From a programming perspective, methods work in exactly the same way as
    simple functions, with one crucial exception: a method’s first argument
    always receives the instance object that is the implied subject of the
    method call.
In other words, Python automatically maps instance method calls to a
    class’s method functions as follows. Method calls made through an
    instance, like this:
instance.method(args...)
are automatically translated to class method function calls of this
    form:
class.method(instance, args...)
where Python determines the class by locating the method name using
    the inheritance search procedure. In fact, both call forms are valid in
    Python.
Besides the normal inheritance of method attribute names, the
    special first argument is the only real magic behind method calls. In a
    class’s method, the first argument is usually called self by convention (technically, only its
    position is significant, not its name). This argument provides methods
    with a hook back to the instance that is the subject of the call—because
    classes generate many instance objects, they need to use this argument to
    manage data that varies per instance.
C++ programmers may recognize Python’s self argument as being similar to C++’s this pointer. In Python, though, self is always explicit in your code: methods
    must always go through self to fetch or
    change attributes of the instance being processed by the current method
    call. This explicit nature of self is
    by design—the presence of this name makes it obvious that you are using
    instance attribute names in your script, not names in the local or global
    scope.
Method Example
To clarify these concepts, let’s turn to an example. Suppose we define the
      following class:
class NextClass:                            # Define class
    def printer(self, text):                # Define method
        self.message = text                 # Change instance
        print(self.message)                 # Access instance
The name printer references a
      function object; because it’s assigned in the class statement’s scope, it becomes a class
      object attribute and is inherited by every instance made from the class.
      Normally, because methods like printer are designed to process instances, we
      call them through instances:
>>> x = NextClass()                         # Make instance
>>> x.printer('instance call')              # Call its method
instance call
>>> x.message                               # Instance changed
'instance call'
When we call the method by qualifying an instance like this,
      printer is first located by
      inheritance, and then its self
      argument is automatically assigned the instance object (x); the text argument gets the string passed at the
      call ('instance call'). Notice that
      because Python automatically passes the first argument to self for us, we only actually have to pass in
      one argument. Inside printer, the
      name self is used to access or set
      per-instance data because it refers back to the instance currently being
      processed.
As we’ve seen, though, methods may be called in one of two
      ways—through an instance, or through the class itself. For example, we
      can also call printer by going
      through the class name, provided we pass an instance to the self argument explicitly:
>>> NextClass.printer(x, 'class call')      # Direct class call
class call
>>> x.message                               # Instance changed again
'class call'
Calls routed through the instance and the class have the exact
      same effect, as long as we pass the same instance object ourselves in
      the class form. By default, in fact, you get an error message if you try
      to call a method without any instance:
>>> NextClass.printer('bad call')
TypeError: unbound method printer() must be called with NextClass instance...

Calling Superclass Constructors
Methods are normally called through instances. Calls to methods through a
      class, though, do show up in a variety of special roles. One common
      scenario involves the constructor method. The __init__ method, like all attributes, is looked up by inheritance. This
      means that at construction time, Python locates and calls just
      one __init__. If
      subclass constructors need to guarantee that superclass
      construction-time logic runs, too, they generally must call the
      superclass’s __init__ method
      explicitly through the class:
class Super:
    def __init__(self, x):
        ...default code...

class Sub(Super):
    def __init__(self, x, y):
        Super.__init__(self, x)             # Run superclass __init__
        ...custom code...                   # Do my init actions

I = Sub(1, 2)
This is one of the few contexts in which your code is likely to
      call an operator overloading method directly. Naturally, you should call
      the superclass constructor this way only if you really
      want it to run—without the call, the subclass
      replaces it completely. For a more realistic illustration of this
      technique in action, see the Manager
      class example in the prior chapter’s tutorial.3

Other Method Call Possibilities
This pattern of calling methods through a class is the general
      basis of extending—instead of completely replacing—inherited method
      behavior. It requires an explicit instance to be passed because all
      methods do by default. Technically, this is because methods are instance methods in the
      absence of any special code.
In Chapter 32, we’ll also meet a
      newer option added in Python 2.2, static methods, that
      allow you to code methods that do not expect instance objects in their
      first arguments. Such methods can act like simple instanceless
      functions, with names that are local to the classes in which they are
      coded, and may be used to manage class data. A related concept we’ll
      meet in the same chapter, the class method,
      receives a class when called instead of an instance and can be used to
      manage per-class data, and is implied in metaclasses.
These are both advanced and usually optional extensions, though.
      Normally, an instance must always be passed to a method—whether
      automatically when it is called through an instance, or manually when
      you call through a class.
Note
Per the sidebar “What About super?” in
        Chapter 28, Python also has a
        super built-in function that allows
        calling back to a superclass’s methods more generically, but we’ll
        defer its presentation until Chapter 32
        due to its downsides and complexities. See the aforementioned sidebar
        for more details; this call has well-known tradeoffs in basic usage,
        and an esoteric advanced use case that requires universal deployment
        to be most effective. Because of these issues, this book prefers to
        call superclasses by explicit name instead of super as a policy; if you’re new to Python,
        I recommend the same approach for now, especially for your first pass
        over OOP. Learn the simple way now, so you can compare it to others
        later.



Inheritance
Of course, the whole point of the namespace created by the class statement is to support name inheritance.
    This section expands on some of the mechanisms and roles of attribute
    inheritance in Python.
As we’ve seen, in Python, inheritance happens when an object is
    qualified, and it involves searching an attribute definition tree—one or
    more namespaces. Every time you use an expression of the form
    object.attr where
    object is an instance or class object, Python
    searches the namespace tree from bottom to top, beginning with
    object, looking for the first
    attr it can find. This includes references to
    self attributes in your methods.
    Because lower definitions in the tree override higher ones, inheritance
    forms the basis of specialization.
Attribute Tree Construction
Figure 29-1
      summarizes the way namespace trees are constructed and populated with names.
      Generally:
	Instance attributes are generated by assignments to self attributes in methods.

	Class attributes are created by statements (assignments) in class statements.

	Superclass links are made by listing classes in parentheses in
          a class statement header.


Figure 29-1. Program code creates a tree of objects in memory to be searched
        by attribute inheritance. Calling a class creates a new instance that
        remembers its class, running a class statement creates a new class,
        and superclasses are listed in parentheses in the class statement
        header. Each attribute reference triggers a new bottom-up tree
        search—even references to self attributes within a class’s
        methods.

The net result is a tree of attribute namespaces that leads from
      an instance, to the class it was generated from, to all the superclasses
      listed in the class header. Python
      searches upward in this tree, from instances to superclasses, each time
      you use qualification to fetch an attribute name from an instance
      object.4

Specializing Inherited Methods
The tree-searching model of inheritance just described turns out to be a
      great way to specialize systems. Because inheritance finds names in
      subclasses before it checks superclasses, subclasses can
      replace default behavior by redefining their superclasses’ attributes.
      In fact, you can build entire systems as hierarchies of classes, which
      you extend by adding new external subclasses rather than changing
      existing logic in place.
The idea of redefining inherited names leads to a variety of
      specialization techniques. For instance, subclasses may
      replace inherited attributes completely,
      provide attributes that a superclass expects to
      find, and extend superclass methods by calling back
      to the superclass from an overridden method. We’ve already seen some of
      these patterns in action; here’s a self-contained example of extension
      at work:
>>> class Super:
        def method(self):
            print('in Super.method')

>>> class Sub(Super):
        def method(self):                    # Override method
            print('starting Sub.method')     # Add actions here
            Super.method(self)               # Run default action
            print('ending Sub.method')
Direct superclass method calls are the crux of the matter here.
      The Sub class replaces Super’s method function with its own specialized
      version, but within the replacement, Sub calls back to the version exported by
      Super to carry out the default
      behavior. In other words, Sub.method
      just extends Super.method’s behavior,
      rather than replacing it completely:
>>> x = Super()                              # Make a Super instance
>>> x.method()                               # Runs Super.method
in Super.method

>>> x = Sub()                                # Make a Sub instance
>>> x.method()                               # Runs Sub.method, calls Super.method
starting Sub.method
in Super.method
ending Sub.method
This extension coding pattern is also commonly used with
      constructors; see the section “Methods” for an
      example.

Class Interface Techniques
Extension is only one way to interface with a superclass. The file shown in
      this section, specialize.py,
      defines multiple classes that illustrate a variety of common
      techniques:
	Super
	Defines a method function
            and a delegate that expects an
            action in a subclass.

	Inheritor
	Doesn’t provide any new names, so it gets everything defined
            in Super.

	Replacer
	Overrides Super’s
            method with a version of its
            own.

	Extender
	Customizes Super’s
            method by overriding and
            calling back to run the default.

	Provider
	Implements the action
            method expected by Super’s
            delegate method.


Study each of these subclasses to get a feel for the various ways
      they customize their common superclass. Here’s the file:
class Super:
    def method(self):
        print('in Super.method')           # Default behavior
    def delegate(self):
        self.action()                      # Expected to be defined

class Inheritor(Super):                    # Inherit method verbatim
    pass

class Replacer(Super):                     # Replace method completely
    def method(self):
        print('in Replacer.method')

class Extender(Super):                     # Extend method behavior
    def method(self):
        print('starting Extender.method')
        Super.method(self)
        print('ending Extender.method')

class Provider(Super):                     # Fill in a required method
    def action(self):
        print('in Provider.action')

if __name__ == '__main__':
    for klass in (Inheritor, Replacer, Extender):
        print('\n' + klass.__name__ + '...')
        klass().method()
    print('\nProvider...')
    x = Provider()
    x.delegate()
A few things are worth pointing out here. First, notice how the
      self-test code at the end of this example creates instances of three
      different classes in a for loop.
      Because classes are objects, you can store them in a tuple and create
      instances generically with no extra syntax (more on this idea later).
      Classes also have the special __name__
      attribute, like modules; it’s preset to a string containing the name in
      the class header. Here’s what happens when we run the file:
% python specialize.py

Inheritor...
in Super.method

Replacer...
in Replacer.method

Extender...
starting Extender.method
in Super.method
ending Extender.method

Provider...
in Provider.action

Abstract Superclasses
Of the prior example’s classes, Provider may be the most crucial to
      understand. When we call the delegate
      method through a Provider instance,
      two independent inheritance searches occur:
	On the initial x.delegate
          call, Python finds the delegate
          method in Super by searching the
          Provider instance and above. The
          instance x is passed into the
          method’s self argument as
          usual.

	Inside the Super.delegate
          method, self.action invokes a
          new, independent inheritance search of self and above. Because self references a Provider instance, the action method is located in the Provider subclass.


This “filling in the blanks” sort of coding structure is typical
      of OOP frameworks. In a more realistic context, the method filled in
      this way might handle an event in a GUI, provide data to be rendered as
      part of a web page, process a tag’s text in an XML file, and so on—your
      subclass provides specific actions, but the framework handles the rest
      of the overall job.
At least in terms of the delegate method, the superclass in this
      example is what is sometimes called an abstract
      superclass—a class that expects parts of its behavior to be
      provided by its subclasses. If an expected method is not defined in a
      subclass, Python raises an undefined name exception when the inheritance
      search fails.
Class coders sometimes make such subclass requirements more
      obvious with assert statements, or by
      raising the built-in NotImplementedError exception with raise statements.
      We’ll study statements that may trigger exceptions in depth in the next
      part of this book; as a quick preview, here’s the assert scheme in action:
class Super:
    def delegate(self):
        self.action()
    def action(self):
        assert False, 'action must be defined!'      # If this version is called

>>> X = Super()
>>> X.delegate()
AssertionError: action must be defined!
We’ll meet assert in Chapter 33 and Chapter 34; in short, if its first expression
      evaluates to false, it raises an exception with the provided error
      message. Here, the expression is always false so as to trigger an error
      message if a method is not redefined, and inheritance locates the
      version here. Alternatively, some classes simply raise a NotImplementedError exception directly in such
      method stubs to signal the mistake:
class Super:
    def delegate(self):
        self.action()
    def action(self):
        raise NotImplementedError('action must be defined!')

>>> X = Super()
>>> X.delegate()
NotImplementedError: action must be defined!
For instances of subclasses, we still get the exception unless the
      subclass provides the expected method to replace the default in the
      superclass:
>>> class Sub(Super): pass

>>> X = Sub()
>>> X.delegate()
NotImplementedError: action must be defined!

>>> class Sub(Super):
        def action(self): print('spam')

>>> X = Sub()
>>> X.delegate()
spam
For a somewhat more realistic example of this section’s concepts
      in action, see the “Zoo animal hierarchy” exercise (Exercise 8) at the
      end of Chapter 32, and its solution in
      “Part VI, Classes and OOP” in Appendix D. Such taxonomies are a
      traditional way to introduce OOP, but they’re a bit removed from most
      developers’ job descriptions (with apologies to any readers who happen
      to work at the zoo!).
Abstract superclasses in Python 3.X and 2.6+: Preview
As of Python 2.6 and 3.0, the prior section’s abstract superclasses (a.k.a.
        “abstract base classes”), which require methods to be filled in by
        subclasses, may also be implemented with special class syntax. The way
        we code this varies slightly depending on the version. In Python 3.X,
        we use a keyword argument in a class header, along with special @ decorator
        syntax, both of which we’ll study in detail later in this book:
from abc import ABCMeta, abstractmethod

class Super(metaclass=ABCMeta):
    @abstractmethod
    def method(self, ...):
        pass
But in Python 2.6 and 2.7, we use a class attribute instead:
class Super:
    __metaclass__ = ABCMeta
    @abstractmethod
    def method(self, ...):
        pass
Either way, the effect is the same—we can’t make an instance
        unless the method is defined lower in the class tree. In 3.X, for
        example, here is the special syntax equivalent of the prior section’s
        example:
>>> from abc import ABCMeta, abstractmethod
>>>
>>> class Super(metaclass=ABCMeta):
        def delegate(self):
            self.action()
        @abstractmethod
        def action(self):
            pass

>>> X = Super()
TypeError: Can't instantiate abstract class Super with abstract methods action

>>> class Sub(Super): pass

>>> X = Sub()
TypeError: Can't instantiate abstract class Sub with abstract methods action

>>> class Sub(Super):
        def action(self): print('spam')

>>> X = Sub()
>>> X.delegate()
spam
Coded this way, a class with an abstract method cannot be
        instantiated (that is, we cannot create an instance by calling it)
        unless all of its abstract methods have been defined in subclasses.
        Although this requires more code and extra knowledge, the potential
        advantage of this approach is that errors for missing methods are
        issued when we attempt to make an instance of the class, not later
        when we try to call a missing method. This feature may also be used to
        define an expected interface, automatically verified in client
        classes.
Unfortunately, this scheme also relies on two advanced language
        tools we have not met yet—function decorators,
        introduced in Chapter 32 and covered in
        depth in Chapter 39, as well as metaclass
        declarations, mentioned in Chapter 32 and covered in Chapter 40—so we will finesse other facets of this
        option here. See Python’s standard manuals for more on this, as well
        as precoded abstract superclasses Python provides.



Namespaces: The Conclusion
Now that we’ve examined class and instance objects, the Python namespace story is complete.
    For reference, I’ll quickly summarize all the rules used to resolve names
    here. The first things you need to remember are that qualified and
    unqualified names are treated differently, and that some scopes serve to
    initialize object namespaces:
	Unqualified names (e.g., X)
        deal with scopes.

	Qualified attribute names (e.g.,
        object.X) use object namespaces.

	Some scopes initialize object namespaces (for modules and
        classes).


These concepts sometimes interact—in
    object.X,
    for example, object is looked up per
    scopes, and then X is looked up in the
    result objects. Since scopes and namespaces are essential to understanding
    Python code, let’s summarize the rules in more detail.
Simple Names: Global Unless Assigned
As we’ve learned, unqualified simple names follow the LEGB lexical scoping rule outlined when we explored
      functions in Chapter 17:
	Assignment (X =
          value)
	Makes names local by default: creates or changes the name
            X in the current local scope,
            unless declared global (or nonlocal in 3.X).

	Reference (X)
	Looks for the name X in
            the current local scope, then any and all enclosing functions,
            then the current global scope, then the built-in scope, per the
            LEGB rule. Enclosing classes are not searched: class names are
            fetched as object attributes instead.


Also per Chapter 17, some special-case constructs
      localize names further (e.g., variables in some comprehensions and
      try statement clauses), but the vast
      majority of names follow the LEGB rule.

Attribute Names: Object Namespaces
We’ve also seen that qualified attribute names refer to attributes of specific objects
      and obey the rules for modules and classes. For class and instance
      objects, the reference rules are augmented to include the inheritance
      search procedure:
	Assignment (object.X =
          value)
	Creates or alters the attribute name X in the namespace of the
            object being qualified, and none other.
            Inheritance-tree climbing happens only on attribute reference, not
            on attribute assignment.

	Reference (object.X)
	For class-based objects, searches for the attribute name
            X in
            object, then in all accessible classes
            above it, using the inheritance search procedure. For nonclass
            objects such as modules, fetches X from object
            directly.


As noted earlier, the preceding captures the normal and typical
      case. These attribute rules can vary in classes that utilize more
      advanced tools, especially for new-style classes—an option in 2.X and
      the standard in 3.X, which we’ll explore in Chapter 32. For example, reference inheritance
      can be richer than implied here when metaclasses are deployed, and
      classes which leverage attribute management tools such as properties,
      descriptors, and __setattr__ can intercept and route
      attribute assignments arbitrarily.
In fact, some inheritance is run on
      assignment too, to locate descriptors with a __set__
      method in new-style classes; such tools override the normal rules for
      both reference and assignment. We’ll explore attribute management tools
      in depth in Chapter 38, and formalize
      inheritance and its use of descriptors in Chapter 40. For now, most readers should focus on the
      normal rules given here, which cover most Python application
      code.

The “Zen” of Namespaces: Assignments Classify Names
With distinct search procedures for qualified and unqualified names, and
      multiple lookup layers for both, it can sometimes be difficult to tell
      where a name will wind up going. In Python, the place where you
      assign a name is crucial—it fully determines the
      scope or object in which a name will reside. The file manynames.py illustrates how this principle
      translates to code and summarizes the namespace ideas we have seen
      throughout this book (sans obscure special-case scopes like
      comprehensions):
# File manynames.py

X = 11                       # Global (module) name/attribute (X, or manynames.X)

def f():
    print(X)                 # Access global X (11)

def g():
    X = 22                   # Local (function) variable (X, hides module X)
    print(X)

class C:
    X = 33                   # Class attribute (C.X)
    def m(self):
        X = 44               # Local variable in method (X)
        self.X = 55          # Instance attribute (instance.X)
This file assigns the same name, X, five times—illustrative, though not exactly
      best practice! Because this name is assigned in five different
      locations, though, all five Xs in
      this program are completely different variables. From top to bottom, the
      assignments to X here generate: a
      module attribute (11), a local
      variable in a function (22), a class
      attribute (33), a local variable in a
      method (44), and an instance
      attribute (55). Although all five are
      named X, the fact that they are all
      assigned at different places in the source code or to different objects
      makes all of these unique variables.
You should take the time to study this example carefully because
      it collects ideas we’ve been exploring throughout the last few parts of
      this book. When it makes sense to you, you will have achieved Python
      namespace enlightenment. Or, you can run the code and see what
      happens—here’s the remainder of this source file, which makes an
      instance and prints all the Xs that
      it can fetch:
# manynames.py, continued

if __name__ == '__main__':
    print(X)                 # 11: module (a.k.a. manynames.X outside file)
    f()                      # 11: global
    g()                      # 22: local
    print(X)                 # 11: module name unchanged

    obj = C()                # Make instance
    print(obj.X)             # 33: class name inherited by instance

    obj.m()                  # Attach attribute name X to instance now
    print(obj.X)             # 55: instance
    print(C.X)               # 33: class (a.k.a. obj.X if no X in instance)

    #print(C.m.X)            # FAILS: only visible in method
    #print(g.X)              # FAILS: only visible in function
The outputs that are printed when the file is run are noted in the
      comments in the code; trace through them to see which variable named
      X is being accessed each time. Notice
      in particular that we can go through the class to fetch its attribute
      (C.X), but we can never fetch local
      variables in functions or methods from outside their def statements. Locals are visible only to
      other code within the def, and in
      fact only live in memory while a call to the function or method is
      executing.
Some of the names defined by this file are visible
      outside the file to other modules too, but recall
      that we must always import before we can access names in another
      file—name segregation is the main point of modules, after all:
# otherfile.py

import manynames

X = 66
print(X)                     # 66: the global here
print(manynames.X)           # 11: globals become attributes after imports

manynames.f()                # 11: manynames's X, not the one here!
manynames.g()                # 22: local in other file's function

print(manynames.C.X)         # 33: attribute of class in other module
I = manynames.C()
print(I.X)                   # 33: still from class here
I.m()
print(I.X)                   # 55: now from instance!
Notice here how manynames.f()
      prints the X in manynames, not the X assigned in this file—scopes are always
      determined by the position of assignments in your source code (i.e.,
      lexically) and are never influenced by what imports what or who imports
      whom. Also, notice that the instance’s own X is not created until we call I.m()—attributes, like all variables, spring
      into existence when assigned, and not before. Normally we create
      instance attributes by assigning them in class __init__ constructor methods, but this isn’t
      the only option.
Finally, as we learned in Chapter 17, it’s also
      possible for a function to change names outside
      itself, with global and (in Python
      3.X) nonlocal statements—these
      statements provide write access, but also modify assignment’s namespace
      binding rules:
X = 11                       # Global in module

def g1():
    print(X)                 # Reference global in module (11)

def g2():
    global X
    X = 22                   # Change global in module

def h1():
    X = 33                   # Local in function
    def nested():
        print(X)             # Reference local in enclosing scope (33)

def h2():
    X = 33                   # Local in function
    def nested():
        nonlocal X           # Python 3.X statement
        X = 44               # Change local in enclosing scope
Of course, you generally shouldn’t use the same name for every
      variable in your script—but as this example demonstrates, even if you
      do, Python’s namespaces will work to keep names used in one context from
      accidentally clashing with those used in another.

Nested Classes: The LEGB Scopes Rule Revisited
The preceding example summarized the effect of nested functions on
      scopes, which we studied in Chapter 17. It turns out that
      classes can be nested too—a useful coding pattern in some types of
      programs, with scope implications that follow naturally from what you
      already know, but that may not be obvious on first encounter. This
      section illustrates the concept by example.
Though they are normally coded at the top level of a module,
      classes also sometimes appear nested in functions that generate them—a
      variation on the “factory function” (a.k.a.
      closure) theme in Chapter 17, with
      similar state retention roles. There we noted that class statements introduce new local scopes
      much like function def statements,
      which follow the same LEGB scope lookup rule as function
      definitions.
This rule applies both to the top level of the class itself, as
      well as to the top level of method functions nested within it. Both form
      the L layer in this rule—they are normal local
      scopes, with access to their names, names in any enclosing functions,
      globals in the enclosing module, and built-ins. Like modules, the
      class’s local scope morphs into an attribute
      namespace after the class statement
      is run.
Although classes have access to enclosing functions’ scopes,
      though, they do not act as enclosing scopes to code nested within the
      class: Python searches enclosing functions for referenced names, but
      never any enclosing classes. That is, a class
      is a local scope and has access
      to enclosing local scopes, but it does not
      serve as an enclosing local scope to further nested
      code. Because the search for names used in method functions skips the
      enclosing class, class attributes must be fetched as object attributes
      using inheritance.
For example, in the following nester function, all references to X are routed to the global scope except the
      last, which picks up a local scope redefinition (the section’s code is
      in file classscope.py, and the
      output of each example is described in its last two comments):
X = 1

def nester():
   print(X)                 # Global: 1
   class C:
       print(X)             # Global: 1
       def method1(self):
           print(X)         # Global: 1
       def method2(self):
           X = 3            # Hides global
           print(X)         # Local: 3
   I = C()
   I.method1()
   I.method2()

print(X)                    # Global: 1
nester()                    # Rest: 1, 1, 1, 3
print('-'*40)
Watch what happens, though, when we reassign the same name in
      nested function layers: the redefinitions of X create locals that hide those in enclosing
      scopes, just as for simple nested functions; the enclosing class layer
      does not change this rule, and in fact is irrelevant to it:
X = 1

def nester():
   X = 2                    # Hides global
   print(X)                 # Local: 2
   class C:
       print(X)             # In enclosing def (nester): 2
       def method1(self):
           print(X)         # In enclosing def (nester): 2
       def method2(self):
           X = 3            # Hides enclosing (nester)
           print(X)         # Local: 3
   I = C()
   I.method1()
   I.method2()

print(X)                    # Global: 1
nester()                    # Rest: 2, 2, 2, 3
print('-'*40)
And here’s what happens when we reassign the same name at multiple
      stops along the way: assignments in the local scopes of both functions
      and classes hide globals or enclosing function locals of the same name,
      regardless of the nesting involved:
X = 1

def nester():
   X = 2                    # Hides global
   print(X)                 # Local: 2
   class C:
       X = 3                # Class local hides nester's: C.X or I.X (not scoped)
       print(X)             # Local: 3
       def method1(self):
           print(X)         # In enclosing def (not 3 in class!): 2
           print(self.X)    # Inherited class local: 3
       def method2(self):
           X = 4            # Hides enclosing (nester, not class)
           print(X)         # Local: 4
           self.X = 5       # Hides class
           print(self.X)    # Located in instance: 5
   I = C()
   I.method1()
   I.method2()

print(X)                    # Global: 1
nester()                    # Rest: 2, 3, 2, 3, 4, 5
print('-'*40)
Most importantly, the lookup rules for simple names like X never search enclosing class statements—just defs, modules, and built-ins (it’s the LEGB
      rule, not CLEGB!). In method1, for
      example, X is found in a def outside the enclosing class that has the
      same name in its local scope. To get to names assigned in the class
      (e.g., methods), we must fetch them as class or instance object
      attributes, via self.X in this
      case.
Believe it or not, we’ll see use cases for this nested classes
      coding pattern later in this book, especially in some of Chapter 39’s decorators. In this role,
      the enclosing function usually both serves as a class factory and
      provides retained state for later use in the enclosed class or its methods.

Namespace Dictionaries: Review
In Chapter 23, we learned that module
      namespaces have a concrete implementation as dictionaries, exposed
      with the built-in __dict__ attribute.
      In Chapter 27 and Chapter 28, we learned that the same holds
      true for class and instance objects—attribute qualification is mostly a
      dictionary indexing operation internally, and attribute inheritance is
      largely a matter of searching linked dictionaries. In fact, within
      Python, instance and class objects are mostly just dictionaries with
      links between them. Python exposes these dictionaries, as well as their
      links, for use in advanced roles (e.g., for coding tools).
We put some of these tools to work in the prior chapter, but to
      summarize and help you better understand how attributes work internally,
      let’s work through an interactive session that traces the way namespace
      dictionaries grow when classes are involved. Now that we know more about
      methods and superclasses, we can also embellish the coverage here for a
      better look. First, let’s define a superclass and a subclass with
      methods that will store data in their instances:
>>> class Super:
        def hello(self):
            self.data1 = 'spam'

>>> class Sub(Super):
        def hola(self):
            self.data2 = 'eggs'
When we make an instance of the subclass, the instance starts out with an
      empty namespace dictionary, but it has links back to the class for the
      inheritance search to follow. In fact, the inheritance tree is
      explicitly available in special attributes, which you can inspect.
      Instances have a __class__ attribute
      that links to their class, and classes have a __bases__
      attribute that is a tuple containing links to higher superclasses (I’m
      running this on Python 3.3; your name formats, internal attributes, and
      key orders may vary):
>>> X = Sub()
>>> X.__dict__                            # Instance namespace dict
{}
>>> X.__class__                           # Class of instance
<class '__main__.Sub'>
>>> Sub.__bases__                         # Superclasses of class
(<class '__main__.Super'>,)
>>> Super.__bases__                       # () empty tuple in Python 2.X
(<class 'object'>,)
As classes assign to self
      attributes, they populate the instance objects—that is, attributes wind
      up in the instances’ attribute namespace dictionaries, not in the
      classes’. An instance object’s namespace records data that can vary from
      instance to instance, and self is a
      hook into that namespace:
>>> Y = Sub()

>>> X.hello()
>>> X.__dict__
{'data1': 'spam'}

>>> X.hola()
>>> X.__dict__
{'data2': 'eggs', 'data1': 'spam'}

>>> list(Sub.__dict__.keys())
['__qualname__', '__module__', '__doc__', 'hola']
>>> list(Super.__dict__.keys())
['__module__', 'hello', '__dict__', '__qualname__', '__doc__', '__weakref__']

>>> Y.__dict__
{}
Notice the extra underscore names in the class dictionaries;
      Python sets these automatically, and we can filter them out with the
      generator expressions we saw in Chapter 27
      and Chapter 28 that we won’t repeat
      here. Most are not used in typical programs, but there are tools that
      use some of them (e.g., __doc__
      holds the docstrings discussed in Chapter 15).
Also, observe that Y, a second
      instance made at the start of this series, still has an empty namespace
      dictionary at the end, even though X’s dictionary has been populated by
      assignments in methods. Again, each instance has an independent
      namespace dictionary, which starts out empty and can record completely
      different attributes than those recorded by the namespace dictionaries
      of other instances of the same class.
Because attributes are actually dictionary keys inside Python,
      there are really two ways to fetch and assign their values—by
      qualification, or by key indexing:
>>> X.data1, X.__dict__['data1']
('spam', 'spam')

>>> X.data3 = 'toast'
>>> X.__dict__
{'data2': 'eggs', 'data3': 'toast', 'data1': 'spam'}

>>> X.__dict__['data3'] = 'ham'
>>> X.data3
'ham'
This equivalence applies only to attributes actually attached to
      the instance, though. Because attribute fetch
      qualification also performs an inheritance search, it can access
      inherited attributes that namespace dictionary
      indexing cannot. The inherited attribute X.hello, for instance, cannot be accessed by
      X.__dict__['hello'].
Experiment with these special attributes on your own to get a
      better feel for how namespaces actually do their attribute business.
      Also try running these objects through the dir function we met in the prior two
      chapters—dir(X) is similar to
      X.__dict__.keys(), but dir sorts its list and includes some inherited
      and built-in attributes. Even if you will never use these in the kinds
      of programs you write, seeing that they are just normal dictionaries can
      help solidify namespaces in general.
Note
In Chapter 32, we’ll learn also
        about slots, a somewhat advanced new-style class
        feature that stores attributes in instances, but not in their
        namespace dictionaries. It’s tempting to treat these as class
        attributes, and indeed, they appear in class namespaces where they
        manage the per-instance values. As we’ll see, though, slots may
        prevent a __dict__ from being
        created in the instance entirely—a potential that generic tools must
        sometimes account for by using storage-neutral tools such as dir and getattr.


Namespace Links: A Tree Climber
The prior section demonstrated the special __class__ and __bases__ instance and class attributes,
      without really explaining why you might care about them. In short, these
      attributes allow you to inspect inheritance hierarchies within your own
      code. For example, they can be used to display a class tree, as in the
      following Python 3.X and 2.X example:
#!python
"""
classtree.py: Climb inheritance trees using namespace links,
displaying higher superclasses with indentation for height
"""

def classtree(cls, indent):
    print('.' * indent + cls.__name__)    # Print class name here
    for supercls in cls.__bases__:        # Recur to all superclasses
        classtree(supercls, indent+3)     # May visit super > once

def instancetree(inst):
    print('Tree of %s' % inst)            # Show instance
    classtree(inst.__class__, 3)          # Climb to its class

def selftest():
    class A:      pass
    class B(A):   pass
    class C(A):   pass
    class D(B,C): pass
    class E:      pass
    class F(D,E): pass
    instancetree(B())
    instancetree(F())

if __name__ == '__main__': selftest()
The classtree function in
      this script is recursive—it prints a
      class’s name using __name__, then
      climbs up to the superclasses by calling itself. This
      allows the function to traverse arbitrarily shaped class trees; the
      recursion climbs to the top, and stops at root superclasses that have
      empty __bases__ attributes. When
      using recursion, each active level of a function gets its own copy of
      the local scope; here, this means that cls and indent are different at each classtree level.
Most of this file is self-test code. When run standalone in Python
      2.X, it builds an empty class tree, makes two instances from it, and
      prints their class tree structures:
C:\code> c:\python27\python classtree.py
Tree of <__main__.B instance at 0x00000000022C3A88>
...B
......A
Tree of <__main__.F instance at 0x00000000022C3A88>
...F
......D
.........B
............A
.........C
............A
......E
When run by Python 3.X, the tree includes the implied object
      superclass that is automatically added above standalone root (i.e.,
      topmost) classes, because all classes are “new style” in 3.X—more on
      this change in Chapter 32:
C:\code> c:\python33\python classtree.py
Tree of <__main__.selftest.<locals>.B object at 0x00000000029216A0>
...B
......A
.........object
Tree of <__main__.selftest.<locals>.F object at 0x00000000029216A0>
...F
......D
.........B
............A
...............object
.........C
............A
...............object
......E
.........object
Here, indentation marked by periods is used to denote class tree
      height. Of course, we could improve on this output format, and perhaps
      even sketch it in a GUI display. Even as is, though, we can import these
      functions anywhere we want a quick display of a physical class
      tree:
C:\code> c:\python33\python
>>> class Emp: pass

>>> class Person(Emp): pass

>>> bob = Person()

>>> import classtree
>>> classtree.instancetree(bob)
Tree of <__main__.Person object at 0x000000000298B6D8>
...Person
......Emp
.........object
Regardless of whether you will ever code or use such tools, this
      example demonstrates one of the many ways that you can make use of
      special attributes that expose interpreter internals. You’ll see another
      when we code the lister.py
      general-purpose class display tools in Chapter 31’s section “Multiple Inheritance: “Mix-in” Classes”—there, we will
      extend this technique to also display attributes in each object in a
      class tree and function as a common superclass.
In the last part of this book, we’ll revisit such tools in the
      context of Python tool building at large, to code tools that implement
      attribute privacy, argument validation, and more. While not in every
      Python programmer’s job description, access to internals enables
      powerful development tools.


Documentation Strings Revisited
The last section’s example includes a docstring for its module, but
    remember that docstrings can be used for class components as well.
    Docstrings, which we covered in detail in Chapter 15, are string literals that show up
    at the top of various structures and are automatically saved by Python in
    the corresponding objects’ __doc__
    attributes. This works for module files, function defs, and classes and methods.
Now that we know more about classes and methods, the following file,
    docstr.py, provides a quick but
    comprehensive example that summarizes the places where docstrings can show
    up in your code. All of these can be triple-quoted blocks or simpler
    one-liner literals like those here:
"I am: docstr.__doc__"

def func(args):
    "I am: docstr.func.__doc__"
    pass

class spam:
    "I am: spam.__doc__ or docstr.spam.__doc__ or self.__doc__"
    def method(self):
        "I am: spam.method.__doc__ or self.method.__doc__"
        print(self.__doc__)
        print(self.method.__doc__)
The main advantage of documentation strings is that they stick
    around at runtime. Thus, if it’s been coded as a docstring, you can
    qualify an object with its __doc__
    attribute to fetch its documentation (printing the result interprets line
    breaks if it’s a multiline string):
>>> import docstr
>>> docstr.__doc__
'I am: docstr.__doc__'
>>> docstr.func.__doc__
'I am: docstr.func.__doc__'
>>> docstr.spam.__doc__
'I am: spam.__doc__ or docstr.spam.__doc__ or self.__doc__'
>>> docstr.spam.method.__doc__
'I am: spam.method.__doc__ or self.method.__doc__'

>>> x = docstr.spam()
>>> x.method()
I am: spam.__doc__ or docstr.spam.__doc__ or self.__doc__
I am: spam.method.__doc__ or self.method.__doc__
A discussion of the PyDoc tool, which knows how to format all these strings in reports and
    web pages, appears in Chapter 15. Here
    it is running its help function on our
    code under Python 2.X (Python 3.X shows additional attributes inherited
    from the implied object superclass in
    the new-style class model—run this on your own to see the 3.X extras, and
    watch for more about this difference in Chapter 32):
>>> help(docstr)
Help on module docstr:

NAME
    docstr - I am: docstr.__doc__

FILE
    c:\code\docstr.py

CLASSES
    spam

    class spam
     |  I am: spam.__doc__ or docstr.spam.__doc__ or self.__doc__
     |
     |  Methods defined here:
     |
     |  method(self)
     |      I am: spam.method.__doc__ or self.method.__doc__

FUNCTIONS
    func(args)
        I am: docstr.func.__doc__
Documentation strings are available at runtime, but they are less
    flexible syntactically than # comments,
    which can appear anywhere in a program. Both forms are useful tools, and
    any program documentation is good (as long as it’s accurate, of course!).
    As stated before, the Python “best practice” rule of thumb is to use
    docstrings for functional documentation (what your objects do) and
    hash-mark comments for more micro-level documentation (how arcane bits of
    code work).

Classes Versus Modules
Finally, let’s wrap up this chapter by briefly comparing the topics of this
    book’s last two parts: modules and classes. Because they’re both about
    namespaces, the distinction can be confusing. In short:
	Modules
	Implement data/logic packages

	Are created with Python files or other-language
            extensions

	Are used by being imported

	Form the top-level in Python program structure



	Classes
	Implement new full-featured objects

	Are created with class
            statements

	Are used by being called

	Always live within a module




Classes also support extra features that modules don’t, such as
    operator overloading, multiple instance generation, and inheritance.
    Although both classes and modules are namespaces, you should be able to
    tell by now that they are very different things. We need to move ahead to
    see just how different classes can be.

Chapter Summary
This chapter took us on a second, more in-depth tour of the OOP
    mechanisms of the Python language. We learned more about classes, methods,
    and inheritance, and we wrapped up the namespaces and scopes story in
    Python by extending it to cover its application to classes. Along the way,
    we looked at some more advanced concepts, such as abstract superclasses,
    class data attributes, namespace dictionaries and links, and manual calls
    to superclass methods and constructors.
Now that we’ve learned all about the mechanics of coding classes in
    Python, Chapter 30 turns to a specific
    facet of those mechanics: operator overloading. After
    that we’ll explore common design patterns, looking at some of the ways
    that classes are commonly used and combined to optimize code reuse. Before
    you read ahead, though, be sure to work through the usual chapter quiz to
    review what we’ve covered here.

Test Your Knowledge: Quiz
	What is an abstract superclass?

	What happens when a simple assignment statement appears at the
        top level of a class
        statement?

	Why might a class need to manually call the __init__ method in a superclass?

	How can you augment, instead of completely replacing, an
        inherited method?

	How does a class’s local scope differ from that of a
        function?

	What...was the capital of Assyria?



Test Your Knowledge: Answers
	An abstract superclass is a class that calls a method, but does
        not inherit or define it—it expects the method to be filled in by a
        subclass. This is often used as a way to generalize classes when
        behavior cannot be predicted until a more specific subclass is coded.
        OOP frameworks also use this as a way to dispatch to client-defined,
        customizable operations.

	When a simple assignment statement (X =
        Y) appears at the top level of a class statement, it attaches a data
        attribute to the class (Class.X). Like all class attributes, this will be
        shared by all instances; data attributes are not callable method
        functions, though.

	A class must manually call the __init__ method in a superclass if it
        defines an __init__ constructor of
        its own and still wants the superclass’s construction code to run.
        Python itself automatically runs just one
        constructor—the lowest one in the tree. Superclass constructors are
        usually called through the class name, passing in the self instance manually:
        Superclass.__init__(self, ...).

	To augment instead of completely replacing an inherited method,
        redefine it in a subclass, but call back to the superclass’s version
        of the method manually from the new version of the method in the
        subclass. That is, pass the self
        instance to the superclass’s version of the method manually:
        Superclass.method(self, ...).

	A class is a local scope and has access to enclosing local
        scopes, but it does not serve as an enclosing local scope to further
        nested code. Like modules, the class local scope morphs into an
        attribute namespace after the class
        statement is run.

	Ashur (or Qalat Sherqat), Calah (or Nimrud), the short-lived Dur
        Sharrukin (or Khorsabad), and finally Nineveh.



1 If you’ve used C++ you may recognize this as similar to the
          notion of C++’s “static” data members—members that are stored in the
          class, independent of instances. In Python, it’s nothing special:
          all class attributes are just names assigned in the class statement, whether they happen to
          reference functions (C++’s
          “methods”) or something else (C++’s “members”). In Chapter 32, we’ll also meet Python static
          methods (akin to those in C++), which are just self-less functions that usually process
          class attributes.
2 Unless the class has redefined the attribute assignment
          operation to do something unique with the __setattr__ operator overloading method
          (discussed in Chapter 30), or uses
          advanced attribute tools such as properties and
          descriptors (discussed in Chapter 32 and Chapter 38). Much of this chapter presents the
          normal case, which suffices at this point in the book, but as we’ll
          see later, Python hooks allow programs to deviate from the norm
          often.
3 On a related note, you can also code multiple __init__ methods within the same class,
          but only the last definition will be used; see Chapter 31 for more details on multiple
          method definitions.
4 Two fine points here: first, this description isn’t 100%
          complete, because we can also create instance and class attributes
          by assigning them to objects outside class statements—but that’s a much less
          common and sometimes more error-prone approach (changes aren’t
          isolated to class statements). In
          Python, all attributes are always accessible by default. We’ll talk
          more about attribute name privacy in Chapter 30 when we study __setattr__, in Chapter 31 when we meet __X names, and
          again in Chapter 39, where we’ll implement it
          with a class decorator.

Second, as also noted in Chapter 27, the full
          inheritance story grows more convoluted when
          advanced topics such as metaclasses and
          descriptors are added to the mix—and we’re
          deferring a formal definition until Chapter 40
          for this reason. In common usage, though, it’s simply a way to
          redefine, and hence customize, behavior coded in classes.








Chapter 30. Operator Overloading
This chapter continues our in-depth survey of class mechanics by focusing on operator overloading. We looked
  briefly at operator overloading in prior chapters; here, we’ll fill in more
  details and look at a handful of commonly used overloading methods. Although
  we won’t demonstrate each of the many operator overloading methods
  available, those we will code here are a representative sample large enough
  to uncover the possibilities of this Python class feature.
The Basics
Really “operator overloading” simply means
    intercepting built-in operations in a class’s methods—Python automatically invokes
    your methods when instances of the class appear in built-in operations,
    and your method’s return value becomes the result of the corresponding
    operation. Here’s a review of the key ideas behind overloading:
	Operator overloading lets classes intercept normal Python
        operations.

	Classes can overload all Python expression operators.

	Classes can also overload built-in operations such as printing,
        function calls, attribute access, etc.

	Overloading makes class instances act more like built-in
        types.

	Overloading is implemented by providing specially named methods
        in a class.


In other words, when certain specially named methods are provided in
    a class, Python automatically calls them when instances of the class
    appear in their associated expressions. Your class provides the behavior
    of the corresponding operation for instance objects created from
    it.
As we’ve learned, operator overloading methods are never required
    and generally don’t have defaults (apart from a handful that some classes
    get from object); if you don’t code or
    inherit one, it just means that your class does not support the
    corresponding operation. When used, though, these methods allow classes to
    emulate the interfaces of built-in objects, and so appear more
    consistent.
Constructors and Expressions: __init__ and __sub__
As a review, consider the following simple example: its Number class, coded in the file number.py, provides a method to intercept
      instance construction (__init__), as
      well as one for catching subtraction expressions (__sub__).
      Special methods such as these are the hooks that let you tie into
      built-in operations:
# File number.py

class Number:
    def __init__(self, start):                  # On Number(start)
        self.data = start
    def __sub__(self, other):                   # On instance - other
        return Number(self.data - other)        # Result is a new instance

>>> from number import Number                   # Fetch class from module
>>> X = Number(5)                               # Number.__init__(X, 5)
>>> Y = X - 2                                   # Number.__sub__(X, 2)
>>> Y.data                                      # Y is new Number instance
3
As we’ve already learned, the __init__ constructor method seen in this code
      is the most commonly used operator overloading method in Python; it’s
      present in most classes, and used to initialize the newly created
      instance object using any arguments passed to the class name. The
      __sub__ method plays the binary
      operator role that __add__ did in
      Chapter 27’s introduction, intercepting
      subtraction expressions and returning a new instance of the class as its
      result (and running __init__ along
      the way).
Note
Technically, instance creation first triggers the __new__ method, which creates and returns
        the new instance object, which is then passed into __init__ for initialization. Since __new__ has a built-in implementation and is
        redefined in only very limited roles, though, nearly all Python
        classes initialize by defining an __init__ method. We’ll see one use case for
        __new__ when we study
        metaclasses in Chapter 40;
        though rare, it is sometimes also used to customize creation of
        instances of immutable types.

We’ve already studied __init__
      and basic binary operators like __sub__ in some depth, so we won’t rehash
      their usage further here. In this chapter, we will tour some of the
      other tools available in this domain and look at example code that
      applies them in common use cases.

Common Operator Overloading Methods
Just about everything you can do to built-in objects such as integers and lists
      has a corresponding specially named method for overloading in classes.
      Table 30-1 lists a few
      of the most common; there are many more. In fact, many overloading
      methods come in multiple versions (e.g., __add__, __radd__, and __iadd__ for addition), which is one reason
      there are so many. See other Python books, or the Python language
      reference manual, for an exhaustive list of the special method names
      available.
Table 30-1. Common operator overloading methods	Method	Implements	Called
              for
	__init__
	Constructor
	Object creation: X = Class(args)

	__del__
	Destructor
	Object reclamation of X

	__add__
	Operator +
	X + Y, X += Y if no __iadd__

	__or__
	Operator | (bitwise OR)
	X | Y, X |= Y if no __ior__

	__repr__, __str__
	Printing, conversions
	print(X), repr(X), str(X)

	__call__
	Function calls
	X(*args, **kargs)

	__getattr__
	Attribute fetch
	X.undefined

	__setattr__
	Attribute assignment
	X.any = value

	__delattr__
	Attribute deletion
	del X.any

	__getattribute__
	Attribute fetch
	X.any

	__getitem__
	Indexing, slicing, iteration
	X[key], X[i:j], for loops and other iterations if no
              __iter__

	__setitem__
	Index and slice assignment
	X[key] = value, X[i:j] = iterable

	__delitem__
	Index and slice deletion
	del X[key], del X[i:j]

	__len__
	Length
	len(X), truth tests if no __bool__

	__bool__
	Boolean tests
	bool(X), truth tests (named __nonzero__ in 2.X)

	__lt__, __gt__,
__le__, __ge__,
__eq__, __ne__
	Comparisons
	X < Y, X > Y, X <= Y, X >= Y, X == Y,
X != Y (or else __cmp__ in 2.X only)

	__radd__
	Right-side operators
	Other + X

	__iadd__
	In-place augmented operators
	X += Y (or else __add__)

	__iter__, __next__
	Iteration contexts
	I=iter(X), next(I); for loops, in if no __contains__, all comprehensions,
              map(F,X), others (__next__ is named next in 2.X)

	__contains__
	Membership test
	item in X (any
              iterable)

	__index__
	Integer value
	hex(X), bin(X), oct(X), O[X], O[X:] (replaces 2.X __oct__, __hex__)

	__enter__, __exit__
	Context manager (Chapter 34)
	with obj as var:

	__get__, __set__, __delete__
	Descriptor attributes (Chapter 38)
	X.attr, X.attr = value, del X.attr

	__new__
	Creation (Chapter 40)
	Object creation, before
              __init__


All overloading methods have names that start and end with two
      underscores to keep them distinct from other names you define in your
      classes. The mappings from special method names to expressions or
      operations are predefined by the Python language, and documented in full
      in the standard language manual and other reference resources. For
      example, the name __add__ always maps
      to + expressions by Python language
      definition, regardless of what an __add__ method’s code actually does.
Note
Although expressions trigger operator methods, be careful not to
        assume that there is a speed advantage to cutting out the middleman
        and calling the operator method directly. In fact, calling the
        operator method directly might be twice as slow,
        presumably because of the overhead of a function call, which Python
        avoids or optimizes in built-in cases.
Here’s the story for len and
        __len__ using Appendix B’s Windows launcher and
        Chapter 21’s timing techniques on
        Python 3.3 and 2.7: in both, calling __len__ directly takes twice as long:
c:\code> py −3 -m timeit -n 1000 -r 5
                  -s "L = list(range(100))" "x = L.__len__()"
1000 loops, best of 5: 0.134 usec per loop

c:\code> py −3 -m timeit -n 1000 -r 5
                  -s "L = list(range(100))" "x = len(L)"
1000 loops, best of 5: 0.063 usec per loop

c:\code> py −2 -m timeit -n 1000 -r 5
                  -s "L = list(range(100))" "x = L.__len__()"
1000 loops, best of 5: 0.117 usec per loop

c:\code> py −2 -m timeit -n 1000 -r 5
                  -s "L = list(range(100))" "x = len(L)"
1000 loops, best of 5: 0.0596 usec per loop
This is not as artificial as it may seem—I’ve actually come
        across recommendations for using the slower alternative in the name of
        speed at a noted research institution!

Operator overloading methods may be inherited from superclasses if
      not defined, just like any other methods. Operator overloading methods
      are also all optional—if you don’t code or inherit one, that operation
      is simply unsupported by your class, and attempting it will raise an
      exception. Some built-in operations, like printing, have defaults
      (inherited from the implied object
      class in Python 3.X), but most built-ins fail for class instances if no
      corresponding operator overloading method is present.
Most overloading methods are used only in advanced programs that
      require objects to behave like built-ins, though the __init__ constructor we’ve already met tends
      to appear in most classes. Let’s explore some of the additional methods
      in Table 30-1 by example.


Indexing and Slicing: __getitem__ and __setitem__
Our first method set allows your classes to mimic some of the behaviors of
    sequences and mappings. If defined in a class (or inherited by it), the
    __getitem__ method is called
    automatically for instance-indexing operations. When an instance X appears in an indexing expression like
    X[i], Python calls the __getitem__ method inherited by the instance,
    passing X to the first argument and the
    index in brackets to the second argument.
For example, the following class returns the square of an index
    value—atypical perhaps, but illustrative of the mechanism in
    general:
>>> class Indexer:
        def __getitem__(self, index):
            return index ** 2

>>> X = Indexer()
>>> X[2]                                # X[i] calls X.__getitem__(i)
4

>>> for i in range(5):
        print(X[i], end=' ')            # Runs __getitem__(X, i) each time

0 1 4 9 16
Intercepting Slices
Interestingly, in addition to indexing, __getitem__
      is also called for slice expressions—always in 3.X,
      and conditionally in 2.X if you don’t provide more specific slicing
      methods. Formally speaking, built-in types handle slicing the same way.
      Here, for example, is slicing at work on a built-in list, using upper
      and lower bounds and a stride (see Chapter 7 if you need a refresher on
      slicing):
>>> L = [5, 6, 7, 8, 9]
>>> L[2:4]                              # Slice with slice syntax: 2..(4-1)
[7, 8]
>>> L[1:]
[6, 7, 8, 9]
>>> L[:-1]
[5, 6, 7, 8]
>>> L[::2]
[5, 7, 9]
Really, though, slicing bounds are bundled up into a slice object and passed to the
      list’s implementation of indexing. In fact, you can always pass a slice
      object manually—slice syntax is mostly syntactic sugar for indexing with
      a slice object:
>>> L[slice(2, 4)]                      # Slice with slice objects
[7, 8]
>>> L[slice(1, None)]
[6, 7, 8, 9]
>>> L[slice(None, −1)]
[5, 6, 7, 8]
>>> L[slice(None, None, 2)]
[5, 7, 9]
This matters in classes with a __getitem__ method—in 3.X, the method will be
      called both for basic indexing (with an index) and for slicing (with a
      slice object). Our previous class won’t handle slicing because its math
      assumes integer indexes are passed, but the following class will. When
      called for indexing, the argument is an integer as
      before:
>>> class Indexer:
        data = [5, 6, 7, 8, 9]
        def __getitem__(self, index):   # Called for index or slice
            print('getitem:', index)
            return self.data[index]     # Perform index or slice

>>> X = Indexer()
>>> X[0]                                # Indexing sends __getitem__ an integer
getitem: 0
5
>>> X[1]
getitem: 1
6
>>> X[-1]
getitem: −1
9
When called for slicing, though, the method
      receives a slice object, which is simply passed along to the embedded
      list indexer in a new index expression:
>>> X[2:4]                              # Slicing sends __getitem__ a slice object
getitem: slice(2, 4, None)
[7, 8]
>>> X[1:]
getitem: slice(1, None, None)
[6, 7, 8, 9]
>>> X[:-1]
getitem: slice(None, −1, None)
[5, 6, 7, 8]
>>> X[::2]
getitem: slice(None, None, 2)
[5, 7, 9]
Where needed, __getitem__ can
      test the type of its argument, and extract slice object bounds—slice
      objects have attributes start,
      stop, and step, any of which can be None if omitted:
>>> class Indexer:
        def __getitem__(self, index):
            if isinstance(index, int):               # Test usage mode
                print('indexing', index)
            else:
                print('slicing', index.start, index.stop, index.step)

>>> X = Indexer()
>>> X[99]
indexing 99
>>> X[1:99:2]
slicing 1 99 2
>>> X[1:]
slicing 1 None None
If used, the __setitem__ index
      assignment method similarly intercepts both index and slice
      assignments—in 3.X (and usually in 2.X) it receives a slice object for
      the latter, which may be passed along in another index assignment or
      used directly in the same way:
class IndexSetter:
    def __setitem__(self, index, value):    # Intercept index or slice assignment
        ...
        self.data[index] = value            # Assign index or slice
In fact, __getitem__ may be
      called automatically in even more contexts than indexing and
      slicing—it’s also an iteration fallback option, as
      we’ll see in a moment. First, though, let’s take a quick look at 2.X’s
      flavor of these operations for 2.X readers, and clarify a potential
      point of confusion in this category.

Slicing and Indexing in Python 2.X
In Python 2.X only, classes can also define __getslice__ and __setslice__ methods to intercept slice
      fetches and assignments specifically. If defined, these methods are
      passed the bounds of the slice expression, and are preferred over
      __getitem__ and __setitem__ for two-limit slices. In all other
      cases, though, this context works the same as in 3.X; for example, a
      slice object is still created and passed to __getitem__ if no __getslice__ is found or a three-limit
      extended slice form is used:
C:\code> c:\python27\python
>>> class Slicer:
        def __getitem__(self, index):     print index
        def __getslice__(self, i, j):     print i, j
        def __setslice__(self, i, j,seq): print i, j,seq

>>> Slicer()[1]        # Runs __getitem__ with int, like 3.X
1
>>> Slicer()[1:9]      # Runs __getslice__ if present, else __getitem__
1 9
>>> Slicer()[1:9:2]    # Runs __getitem__ with slice(), like 3.X!
slice(1, 9, 2)
These slice-specific methods are removed in
      3.X, so even in 2.X you should generally use __getitem__ and __setitem__ instead and allow for both indexes
      and slice objects as arguments—both for forward compatibility, and to
      avoid having to handle two- and three-limit slices differently. In most
      classes, this works without any special code, because indexing methods
      can manually pass along the slice object in the square brackets of
      another index expression, as in the prior section’s example. See the
      section “Membership: __contains__, __iter__, and __getitem__” for
      another example of slice interception at work.

But 3.X’s __index__ Is Not Indexing!
On a related note, don’t confuse the (perhaps unfortunately named) __index__ method in Python 3.X for index
      interception—this method returns an integer value
      for an instance when needed and is used by built-ins that convert to
      digit strings (and in retrospect, might have been better named
      __asindex__):
>>> class C:
        def __index__(self):
            return 255

>>> X = C()
>>> hex(X)               # Integer value
'0xff'
>>> bin(X)
'0b11111111'
>>> oct(X)
'0o377'
Although this method does not intercept instance indexing like
      __getitem__, it is also used in
      contexts that require an integer—including
      indexing:
>>> ('C' * 256)[255]
'C'
>>> ('C' * 256)[X]       # As index (not X[i])
'C'
>>> ('C' * 256)[X:]      # As index (not X[i:])
'C'
This method works the same way in Python 2.X, except that it is
      not called for the hex and oct built-in functions; use __hex__ and
      __oct__ in 2.X (only) instead to
      intercept these calls.


Index Iteration: __getitem__
Here’s a hook that isn’t always obvious to beginners, but turns out to be
    surprisingly useful. In the absence of more-specific iteration methods
    we’ll get to in the next section, the for statement works by repeatedly indexing a
    sequence from zero to higher indexes, until an out-of-bounds IndexError exception is detected. Because of
    that, __getitem__ also turns out to be
    one way to overload iteration in Python—if this method is defined,
    for loops call the class’s __getitem__ each time through, with successively
    higher offsets.
It’s a case of “code one, get one free”—any built-in or user-defined
    object that responds to indexing also responds to for loop iteration:
>>> class StepperIndex:
        def __getitem__(self, i):
            return self.data[i]

>>> X = StepperIndex()                # X is a StepperIndex object
>>> X.data = "Spam"
>>>
>>> X[1]                              # Indexing calls __getitem__
'p'
>>> for item in X:                    # for loops call __getitem__
        print(item, end=' ')          # for indexes items 0..N

S p a m
In fact, it’s really a case of “code one, get a bunch free.” Any
    class that supports for loops
    automatically supports all iteration contexts in
    Python, many of which we’ve seen in earlier chapters (iteration contexts
    were presented in Chapter 14). For
    example, the in membership test, list
    comprehensions, the map built-in, list
    and tuple assignments, and type constructors will also call __getitem__ automatically, if it’s
    defined:
>>> 'p' in X                          # All call __getitem__ too
True

>>> [c for c in X]                    # List comprehension
['S', 'p', 'a', 'm']

>>> list(map(str.upper, X))           # map calls (use list() in 3.X)
['S', 'P', 'A', 'M']

>>> (a, b, c, d) = X                  # Sequence assignments
>>> a, c, d
('S', 'a', 'm')

>>> list(X), tuple(X), ''.join(X)     # And so on...
(['S', 'p', 'a', 'm'], ('S', 'p', 'a', 'm'), 'Spam')

>>> X
<__main__.StepperIndex object at 0x000000000297B630>
In practice, this technique can be used to create objects that
    provide a sequence interface and to add logic to built-in sequence type
    operations; we’ll revisit this idea when extending built-in types in Chapter 32.

Iterable Objects: __iter__ and __next__
Although the __getitem__
    technique of the prior section works, it’s really just a fallback for
    iteration. Today, all iteration contexts in Python will try the __iter__ method first, before trying __getitem__. That is, they prefer the
    iteration protocol we learned about in Chapter 14 to repeatedly indexing an
    object; only if the object does not support the iteration protocol is
    indexing attempted instead. Generally speaking, you should prefer __iter__ too—it supports general iteration
    contexts better than __getitem__
    can.
Technically, iteration contexts work by passing an iterable object
    to the iter built-in function to invoke
    an __iter__ method, which is expected
    to return an iterator object. If it’s provided, Python then repeatedly
    calls this iterator object’s __next__
    method to produce items until a StopIteration exception is raised. A next built-in function is also available as a
    convenience for manual iterations—next(I) is the same as I.__next__(). For a review of this model’s
    essentials, see Figure 14-1 in Chapter 14.
This iterable object interface is given priority and attempted
    first. Only if no such __iter__ method
    is found, Python falls back on the __getitem__ scheme and repeatedly indexes by
    offsets as before, until an IndexError exception
    is raised.
Note
Version skew note: As described in Chapter 14, if you are using Python 2.X,
      the I.__next__() iterator method just
      described is named I.next() in your
      Python, and the next(I) built-in is
      present for portability—it calls I.next() in 2.X and I.__next__() in 3.X. Iteration works the same
      in 2.X in all other respects.

User-Defined Iterables
In the __iter__ scheme, classes
      implement user-defined iterables by simply implementing the iteration
      protocol introduced in Chapter 14
      and elaborated in Chapter 20. For
      example, the following file uses a class to define a user-defined
      iterable that generates squares on demand, instead of all at once (per
      the preceding note, in Python 2.X define next instead of __next__, and print with a trailing comma as
      usual):
# File squares.py

class Squares:
    def __init__(self, start, stop):    # Save state when created
        self.value = start - 1
        self.stop  = stop
    def __iter__(self):                 # Get iterator object on iter
        return self
    def __next__(self):                 # Return a square on each iteration
        if self.value == self.stop:     # Also called by next built-in
            raise StopIteration
        self.value += 1
        return self.value ** 2
When imported, its instances can appear in iteration contexts just
      like built-ins:
% python
>>> from squares import Squares
>>> for i in Squares(1, 5):             # for calls iter, which calls __iter__
        print(i, end=' ')               # Each iteration calls __next__

1 4 9 16 25
Here, the iterator object returned by __iter__ is simply the instance self, because the __next__ method is part of this class itself.
      In more complex scenarios, the iterator object may be defined as a
      separate class and object with its own state information to support
      multiple active iterations over the same data (we’ll see an example of
      this in a moment). The end of the iteration is signaled with a
      Python raise
      statement—introduced in Chapter 29 and
      covered in full in the next part of this book, but which simply raises
      an exception as if Python itself had done so. Manual iterations work the
      same on user-defined iterables as they do on built-in types as
      well:
>>> X = Squares(1, 5)                   # Iterate manually: what loops do
>>> I = iter(X)                         # iter calls __iter__
>>> next(I)                             # next calls __next__ (in 3.X)
1
>>> next(I)
4
...more omitted...
>>> next(I)
25
>>> next(I)                             # Can catch this in try statement
StopIteration
An equivalent coding of this iterable with __getitem__ might be less natural, because the
      for would then iterate through all
      offsets zero and higher; the offsets passed in would be only indirectly
      related to the range of values produced (0..N would need to map to start..stop). Because __iter__ objects retain explicitly managed
      state between next calls, they can be
      more general than __getitem__.
On the other hand, iterables based on __iter__ can sometimes be more complex and
      less functional than those based on __getitem__. They are really designed for
      iteration, not random indexing—in fact, they don’t overload the indexing
      expression at all, though you can collect their items in a sequence such
      as a list to enable other operations:
>>> X = Squares(1, 5)
>>> X[1]
TypeError: 'Squares' object does not support indexing
>>> list(X)[1]
4
Single versus multiple scans
The __iter__ scheme is also
        the implementation for all the other iteration contexts we saw in
        action for the __getitem__
        method—membership tests, type constructors, sequence assignment, and
        so on. Unlike our prior __getitem__
        example, though, we also need to be aware that a class’s __iter__ may be designed for a
        single traversal only, not many. Classes choose
        scan behavior explicitly in their code.
For example, because the current Squares class’s __iter__ always returns self with just one copy of iteration state,
        it is a one-shot iteration; once you’ve iterated over an instance of
        that class, it’s empty. Calling __iter__ again on the same instance returns
        self again, in whatever state it
        may have been left. You generally need to make a new iterable instance
        object for each new iteration:
>>> X = Squares(1, 5)                   # Make an iterable with state
>>> [n for n in X]                      # Exhausts items: __iter__ returns self
[1, 4, 9, 16, 25]
>>> [n for n in X]                      # Now it's empty: __iter__ returns same self
[]

>>> [n for n in Squares(1, 5)]          # Make a new iterable object
[1, 4, 9, 16, 25]
>>> list(Squares(1, 3))                 # A new object for each new __iter__ call
[1, 4, 9]
To support multiple iterations more directly, we could also
        recode this example with an extra class or other technique, as we will
        in a moment. As is, though, by creating a new
        instance for each iteration, you get a fresh copy of
        iteration state:
>>> 36 in Squares(1, 10)                # Other iteration contexts
True
>>> a, b, c = Squares(1, 3)             # Each calls __iter__ and then __next__
>>> a, b, c
(1, 4, 9)
>>> ':'.join(map(str, Squares(1, 5)))
'1:4:9:16:25'
Just like single-scan built-ins such as map, converting to a
        list supports multiple scans as well, but adds
        time and space performance costs, which may or may not be significant
        to a given program:
>>> X = Squares(1, 5)
>>> tuple(X), tuple(X)                  # Iterator exhausted in second tuple()
((1, 4, 9, 16, 25), ())

>>> X = list(Squares(1, 5))
>>> tuple(X), tuple(X)
((1, 4, 9, 16, 25), (1, 4, 9, 16, 25))
We’ll improve this to support multiple scans more directly
        ahead, after a bit of compare-and-contrast.

Classes versus generators
Notice that the preceding example would probably be simpler if it was coded with
        generator functions or expressions—tools
        introduced in Chapter 20 that
        automatically produce iterable objects and retain local variable state
        between iterations:
>>> def gsquares(start, stop):
        for i in range(start, stop + 1):
            yield i ** 2

>>> for i in gsquares(1, 5):
        print(i, end=' ')

1 4 9 16 25

>>> for i in (x ** 2 for x in range(1, 6)):
        print(i, end=' ')

1 4 9 16 25
Unlike classes, generator functions and expressions implicitly
        save their state and create the methods required to conform to the
        iteration protocol—with obvious advantages in code conciseness for
        simpler examples like these. On the other hand, the class’s more
        explicit attributes and methods, extra structure, inheritance
        hierarchies, and support for multiple behaviors may be better suited
        for richer use cases.
Of course, for this artificial example, you could in fact skip
        both techniques and simply use a for loop, map, or a list comprehension to build the
        list all at once. Barring performance data to the contrary, the best
        and fastest way to accomplish a task in Python is often also the
        simplest:
>>> [x ** 2 for x in range(1, 6)]
[1, 4, 9, 16, 25]
However, classes may be better at modeling more complex
        iterations, especially when they can benefit from the assets of
        classes in general. An iterable that produces items in a complex
        database or web service result, for example, might be able to take
        fuller advantage of classes. The next section explores another use
        case for classes in user-defined iterables.


Multiple Iterators on One Object
Earlier, I mentioned that the iterator object (with a __next__) produced by an iterable may be
      defined as a separate class with its own state information to more
      directly support multiple active iterations over the same data. Consider
      what happens when we step across a built-in type like a string:
>>> S = 'ace'
>>> for x in S:
        for y in S:
            print(x + y, end=' ')

aa ac ae ca cc ce ea ec ee
Here, the outer loop grabs an iterator from the string by calling
      iter, and each nested loop does the
      same to get an independent iterator. Because each active iterator has
      its own state information, each loop can maintain its own position in
      the string, regardless of any other active loops. Moreover, we’re not
      required to make a new string or convert to a list each time; the single
      string object itself supports multiple scans.
We saw related examples earlier, in Chapter 14 and Chapter 20. For instance, generator
      functions and expressions, as well as built-ins like map and zip, proved to be single-iterator objects,
      thus supporting a single active scan. By contrast, the range built-in, and other built-in types like
      lists, support multiple active iterators with independent
      positions.
When we code user-defined iterables with classes, it’s up to us to
      decide whether we will support a single active iteration or many. To
      achieve the multiple-iterator effect, __iter__ simply needs to define a new stateful
      object for the iterator, instead of returning self for each iterator request.
The following SkipObject class,
      for example, defines an iterable object that skips every other item on
      iterations. Because its iterator object is created anew from a
      supplemental class for each iteration, it supports multiple active loops
      directly (this is file skipper.py
      in the book’s examples):
#!python3
# File skipper.py

class SkipObject:
    def __init__(self, wrapped):                  # Save item to be used
        self.wrapped = wrapped
    def __iter__(self):
        return SkipIterator(self.wrapped)         # New iterator each time

class SkipIterator:
    def __init__(self, wrapped):
        self.wrapped = wrapped                    # Iterator state information
        self.offset  = 0
    def __next__(self):
        if self.offset >= len(self.wrapped):      # Terminate iterations
            raise StopIteration
        else:
            item = self.wrapped[self.offset]      # else return and skip
            self.offset += 2
            return item

if __name__ == '__main__':
    alpha = 'abcdef'
    skipper = SkipObject(alpha)                   # Make container object
    I = iter(skipper)                             # Make an iterator on it
    print(next(I), next(I), next(I))              # Visit offsets 0, 2, 4

    for x in skipper:               # for calls __iter__ automatically
        for y in skipper:           # Nested fors call __iter__ again each time
            print(x + y, end=' ')   # Each iterator has its own state, offset
A quick portability note: as is, this is 3.X-only code. To make it
      2.X compatible, import the 3.X print
      function, and either use next instead
      of __next__ for 2.X-only use, or
      alias the two names in the class’s scope for dual 2.X/3.X usage (file
      skipper_2x.py in the book’s
      examples does):
#!python
from __future__ import print_function             # 2.X/3.X compatibility
...
class SkipIterator:
    ...
    def __next__(self):
        ...
    next = __next__                               # 2.X/3.X compatibility
When the appropriate version is run in either Python, this example
      works like the nested loops with built-in strings. Each active loop has
      its own position in the string because each obtains an independent
      iterator object that records its own state information:
% python skipper.py
a c e
aa ac ae ca cc ce ea ec ee
By contrast, our earlier Squares example supports just one active
      iteration, unless we call Squares
      again in nested loops to obtain new objects. Here, there is just one
      SkipObject iterable, with multiple
      iterator objects created from it.
Classes versus slices
As before, we could achieve similar results with built-in
        tools—for example, slicing with a third bound to skip items:
>>> S = 'abcdef'
>>> for x in S[::2]:
        for y in S[::2]:            # New objects on each iteration
            print(x + y, end=' ')

aa ac ae ca cc ce ea ec ee
This isn’t quite the same, though, for two reasons. First, each
        slice expression here will physically store the
        result list all at once in memory; iterables, on the other hand,
        produce just one value at a time, which can save substantial space for
        large result lists. Second, slices produce new
        objects, so we’re not really iterating over the same object
        in multiple places here. To be closer to the class, we would need to
        make a single object to step across by slicing ahead of time:
>>> S = 'abcdef'
>>> S = S[::2]
>>> S
'ace'
>>> for x in S:
        for y in S:                 # Same object, new iterators
            print(x + y, end=' ')

aa ac ae ca cc ce ea ec ee
This is more similar to our class-based solution, but it still
        stores the slice result in memory all at once (there is no generator
        form of built-in slicing today), and it’s only equivalent for this
        particular case of skipping every other item.
Because user-defined iterables coded with classes can do
        anything a class can do, they are much more general than this example
        may imply. Though such generality is not required in all applications,
        user-defined iterables are a powerful tool—they allow us to make
        arbitrary objects look and feel like the other sequences and iterables
        we have met in this book. We could use this technique with a database
        object, for example, to support iterations over large database
        fetches, with multiple cursors into the same query result.


Coding Alternative: __iter__ plus yield
And now, for something completely
      implicit—but potentially useful nonetheless. In some applications, it’s
      possible to minimize coding requirements for user-defined iterables by
      combining the __iter__ method we’re exploring here and the
      yield generator function statement we
      studied in Chapter 20. Because
      generator functions automatically save local
      variable state and create required iterator methods, they fit this role
      well, and complement the state retention and other utility we get from
      classes.
As a review, recall that any function that contains a yield statement is turned into a generator
      function. When called, it returns a new generator
      object with automatic retention of local scope and code
      position, an automatically created __iter__ method that simply returns itself,
      and an automatically created __next__
      method (next in 2.X) that starts the
      function or resumes it where it last left off:
>>> def gen(x):
       for i in range(x): yield i ** 2

>>> G = gen(5)               # Create a generator with __iter__ and __next__
>>> G.__iter__() == G        # Both methods exist on the same object
True
>>> I = iter(G)              # Runs __iter__: generator returns itself
>>> next(I), next(I)         # Runs __next__ (next in 2.X)
(0, 1)
>>> list(gen(5))             # Iteration contexts automatically run iter and next
[0, 1, 4, 9, 16]
This is still true even if the generator function with a yield happens to be a method named __iter__: whenever invoked by an iteration
      context tool, such a method will return a new generator object with the
      requisite __next__. As an added
      bonus, generator functions coded as methods in classes have access to
      saved state in both instance attributes and local
      scope variables.
For example, the following class is equivalent to the initial
      Squares user-defined iterable we
      coded earlier in squares.py.
# File squares_yield.py

class Squares:                                   # __iter__ + yield generator
    def __init__(self, start, stop):             # __next__ is automatic/implied
        self.start = start
        self.stop  = stop
    def __iter__(self):
        for value in range(self.start, self.stop + 1):
            yield value ** 2
There’s no need to alias next
      to __next__ for 2.X compatibility
      here, because this method is now automated and implied by the use of
      yield. As before, for loops and other iteration tools iterate
      through instances of this class automatically:
% python
>>> from squares_yield import Squares
>>> for i in Squares(1, 5): print(i, end=' ')

1 4 9 16 25
And as usual, we can look under the hood to see how this actually
      works in iteration contexts. Running our class instance through iter obtains the result of calling __iter__ as usual, but in this case the result
      is a generator object with an automatically created __next__ of the same sort we always get when
      calling a generator function that contains a yield. The only difference here is that the
      generator function is automatically called on iter. Invoking the result object’s next interface produces results on
      demand:
>>> S = Squares(1, 5)          # Runs __init__: class saves instance state
>>> S
<squares_yield.Squares object at 0x000000000294B630>

>>> I = iter(S)                # Runs __iter__: returns a generator
>>> I
<generator object __iter__ at 0x00000000029A8CF0>
>>> next(I)
1
>>> next(I)                    # Runs generator's __next__
4
...etc...
>>> next(I)                    # Generator has both instance and local scope state
StopIteration
It may also help to notice that we could name the generator method
      something other than __iter__ and
      call manually to iterate—Squares(1,5).gen(), for example. Using the
      __iter__ name invoked automatically
      by iteration tools simply skips a manual attribute fetch and call
      step:
class Squares:                 # Non __iter__ equivalent (squares_manual.py)
    def __init__(...):
        ...
    def gen(self):
        for value in range(self.start, self.stop + 1):
            yield value ** 2

% python
>>> from squares_manual import Squares
>>> for i in Squares(1, 5).gen(): print(i, end=' ')
...same results...

>>> S = Squares(1, 5)
>>> I = iter(S.gen())          # Call generator manually for iterable/iterator
>>> next(I)
...same results...
Coding the generator as __iter__ instead cuts out the middleman in
      your code, though both schemes ultimately wind up creating a new
      generator object for each iteration:
	With __iter__, iteration
          triggers __iter__, which returns
          a new generator with __next__.

	Without __iter__, your code
          calls to make a generator, which returns itself for __iter__.


See Chapter 20 for more on
      yield and generators if this is
      puzzling, and compare it with the more explicit __next__ version in squares.py earlier. You’ll notice that this
      new squares_yield.py version is 4
      lines shorter (7 versus 11). In a sense, this scheme reduces class
      coding requirements much like the closure functions of Chapter 17, but in this case does so with a
      combination of functional and OOP techniques,
      instead of an alternative to classes. For example, the generator method
      still leverages self
      attributes.
This may also very well seem like one too many levels of
      magic to some observers—it relies on both the
      iteration protocol and the object creation of generators, both of which
      are highly implicit (in contradiction of longstanding Python themes: see
      import this). Opinions aside, it’s
      important to understand the non-yield
      flavor of class iterables too, because it’s explicit, general, and
      sometimes broader in scope.
Still, the __iter__/yield technique may prove effective in cases
      where it applies. It also comes with a substantial advantage—as the next
      section explains.
Multiple iterators with yield
Besides its code conciseness, the user-defined class iterable of
        the prior section based upon the __iter__/yield combination has an important added
        bonus—it also supports multiple active iterators
        automatically. This naturally follows from the fact that each call to
        __iter__ is a call to a generator
        function, which returns a new generator with its own copy of the local
        scope for state retention:
% python
>>> from squares_yield import Squares   # Using the __iter__/yield Squares
>>> S = Squares(1, 5)
>>> I = iter(S)
>>> next(I); next(I)
1
4
>>> J = iter(S)                         # With yield, multiple iterators automatic
>>> next(J)
1
>>> next(I)                             # I is independent of J: own local state
9
Although generator functions are single-scan iterables, the
        implicit calls to __iter__ in
        iteration contexts make new generators supporting new independent
        scans:
>>> S = Squares(1, 3)
>>> for i in S:                         # Each for calls __iter__
        for j in S:
            print('%s:%s' % (i, j), end=' ')

1:1 1:4 1:9 4:1 4:4 4:9 9:1 9:4 9:9
To do the same without yield
        requires a supplemental class that stores iterator state explicitly
        and manually, using techniques of the preceding section (and grows to
        15 lines: 8 more than with yield):
# File squares_nonyield.py

class Squares:
    def __init__(self, start, stop):                 # Non-yield generator
        self.start = start                           # Multiscans: extra object
        self.stop  = stop
    def __iter__(self):
        return SquaresIter(self.start, self.stop)

class SquaresIter:
    def __init__(self, start, stop):
        self.value = start - 1
        self.stop  = stop
    def __next__(self):
        if self.value == self.stop:
            raise StopIteration
        self.value += 1
        return self.value ** 2
This works the same as the yield multiscan version, but with more, and
        more explicit, code:
% python
>>> from squares_nonyield import Squares
>>> for i in Squares(1, 5): print(i, end=' ')

1 4 9 16 25
>>>
>>> S = Squares(1, 5)
>>> I = iter(S)
>>> next(I); next(I)
1
4
>>> J = iter(S)                         # Multiple iterators without yield
>>> next(J)
1
>>> next(I)
9

>>> S = Squares(1, 3)
>>> for i in S:                         # Each for calls __iter__
        for j in S:
            print('%s:%s' % (i, j), end=' ')

1:1 1:4 1:9 4:1 4:4 4:9 9:1 9:4 9:9
Finally, the generator-based approach could similarly remove the
        need for an extra iterator class in the prior item-skipper example of
        file skipper.py, thanks to its
        automatic methods and local variable state retention (and checks in at
        9 lines versus the original’s 16):
# File skipper_yield.py

class SkipObject:                           # Another __iter__ + yield generator
    def __init__(self, wrapped):            # Instance scope retained normally
        self.wrapped = wrapped              # Local scope state saved auto
    def __iter__(self):
        offset = 0
        while offset < len(self.wrapped):
            item = self.wrapped[offset]
            offset += 2
            yield item
This works the same as the non-yield multiscan version, but with less, and
        less explicit, code:
% python
>>> from skipper_yield import SkipObject
>>> skipper = SkipObject('abcdef')
>>> I = iter(skipper)
>>> next(I); next(I); next(I)
'a'
'c'
'e'
>>> for x in skipper:                 # Each for calls __iter__: new auto generator
        for y in skipper:
            print(x + y, end=' ')

aa ac ae ca cc ce ea ec ee
Of course, these are all artificial examples that could be
        replaced with simpler tools like comprehensions, and their code may or
        may not scale up in kind to more realistic tasks. Study these
        alternatives to see how they compare. As so often in programming, the
        best tool for the job will likely be the best tool for your job!



Membership: __contains__, __iter__, and __getitem__
The iteration story is even richer than we’ve seen thus far. Operator overloading is
    often layered: classes may provide specific methods,
    or more general alternatives used as fallback options. For example:
	Comparisons in Python 2.X use specific methods such as __lt__ for “less than” if present, or else
        the general __cmp__. Python 3.X
        uses only specific methods, not __cmp__, as discussed later in this
        chapter.

	Boolean tests similarly try a specific __bool__ first (to give an explicit True/False result), and if it’s absent fall back
        on the more general __len__ (a
        nonzero length means True). As
        we’ll also see later in this chapter, Python 2.X works the same but
        uses the name __nonzero__ instead
        of __bool__.


In the iterations domain, classes can implement the in membership operator as an iteration, using
    either the __iter__ or __getitem__ methods. To support more specific
    membership, though, classes may code a __contains__ method—when present, this method is
    preferred over __iter__, which is
    preferred over __getitem__. The
    __contains__ method should define
    membership as applying to keys for a mapping (and can
    use quick lookups), and as a search for
    sequences.
Consider the following class, whose file has been instrumented for
    dual 2.X/3.X usage using the techniques described earlier. It codes all
    three methods and tests membership and various iteration contexts applied
    to an instance. Its methods print trace messages when called:
# File contains.py
from __future__ import print_function         # 2.X/3.X compatibility

class Iters:
    def __init__(self, value):
        self.data = value
    
    def __getitem__(self, i):                 # Fallback for iteration
        print('get[%s]:' % i, end='')         # Also for index, slice
        return self.data[i]
    
    def __iter__(self):                       # Preferred for iteration
        print('iter=> ', end='')              # Allows only one active iterator
        self.ix = 0
        return self
    
    def __next__(self):
        print('next:', end='')
        if self.ix == len(self.data): raise StopIteration
        item = self.data[self.ix]
        self.ix += 1
        return item
    
    def __contains__(self, x):                # Preferred for 'in'
        print('contains: ', end='')
        return x in self.data
    next = __next__                           # 2.X/3.X compatibility

if __name__ == '__main__':
    X = Iters([1, 2, 3, 4, 5])        # Make instance
    print(3 in X)                     # Membership
    for i in X:                       # for loops
        print(i, end=' | ')

    print()
    print([i ** 2 for i in X])        # Other iteration contexts
    print( list(map(bin, X)) )

    I = iter(X)                       # Manual iteration (what other contexts do)
    while True:
        try:
            print(next(I), end=' @ ')
        except StopIteration:
            break
As is, the class in this file has an __iter__ that supports multiple scans, but only
    a single scan can be active at any point in time (e.g., nested loops won’t
    work), because each iteration attempt resets the scan cursor to the front.
    Now that you know about yield in
    iteration methods, you should be able to tell that the following is
    equivalent but allows multiple active scans—and judge for yourself whether
    its more implicit nature is worth the nested-scan support and six lines
    shaved (this is in file contains_yield.py):
class Iters:
    def __init__(self, value):
        self.data = value
    
    def __getitem__(self, i):                 # Fallback for iteration
        print('get[%s]:' % i, end='')         # Also for index, slice
        return self.data[i]
    
    def __iter__(self):                       # Preferred for iteration
        print('iter=> next:', end='')         # Allows multiple active iterators
        for x in self.data:                   # no __next__ to alias to next
            yield x
            print('next:', end='')
    
    def __contains__(self, x):                # Preferred for 'in'
        print('contains: ', end='')
        return x in self.data
On both Python 3.X and 2.X, when either version of this file runs
    its output is as follows—the specific __contains__ intercepts membership, the general
    __iter__ catches other iteration
    contexts such that __next__ (whether
    explicitly coded or implied by yield)
    is called repeatedly, and __getitem__
    is never called:
contains: True
iter=> next:1 | next:2 | next:3 | next:4 | next:5 | next:
iter=> next:next:next:next:next:next:[1, 4, 9, 16, 25]
iter=> next:next:next:next:next:next:['0b1', '0b10', '0b11', '0b100', '0b101']
iter=> next:1 @ next:2 @ next:3 @ next:4 @ next:5 @ next:
Watch what happens to this code’s output if we comment out its
    __contains__ method, though—membership
    is now routed to the general __iter__
    instead:
iter=> next:next:next:True
iter=> next:1 | next:2 | next:3 | next:4 | next:5 | next:
iter=> next:next:next:next:next:next:[1, 4, 9, 16, 25]
iter=> next:next:next:next:next:next:['0b1', '0b10', '0b11', '0b100', '0b101']
iter=> next:1 @ next:2 @ next:3 @ next:4 @ next:5 @ next:
And finally, here is the output if both __contains__ and __iter__ are commented out—the indexing __getitem__ fallback is called with successively
    higher indexes until it raises IndexError, for membership and other iteration
    contexts:
get[0]:get[1]:get[2]:True
get[0]:1 | get[1]:2 | get[2]:3 | get[3]:4 | get[4]:5 | get[5]:
get[0]:get[1]:get[2]:get[3]:get[4]:get[5]:[1, 4, 9, 16, 25]
get[0]:get[1]:get[2]:get[3]:get[4]:get[5]:['0b1', '0b10', '0b11', '0b100','0b101']
get[0]:1 @ get[1]:2 @ get[2]:3 @ get[3]:4 @ get[4]:5 @ get[5]:
As we’ve seen, the __getitem__
    method is even more general: besides iterations, it also intercepts
    explicit indexing as well as slicing. Slice expressions trigger __getitem__ with a slice object containing
    bounds, both for built-in types and user-defined classes, so slicing is
    automatic in our class:
>>> from contains import Iters
>>> X = Iters('spam')               # Indexing
>>> X[0]                            # __getitem__(0)
get[0]:'s'

>>> 'spam'[1:]                      # Slice syntax
'pam'
>>> 'spam'[slice(1, None)]          # Slice object
'pam'

>>> X[1:]                           # __getitem__(slice(..))
get[slice(1, None, None)]:'pam'
>>> X[:-1]
get[slice(None, −1, None)]:'spa'

>>> list(X)                         # And iteration too!
iter=> next:next:next:next:next:['s', 'p', 'a', 'm']
In more realistic iteration use cases that are not
    sequence-oriented, though, the __iter__
    method may be easier to write since it must not manage an integer index,
    and __contains__ allows for membership
    optimization as a special case.

Attribute Access: __getattr__ and __setattr__
In Python, classes can also intercept basic attribute access (a.k.a.
    qualification) when needed or useful. Specifically, for an
    object created from a class, the dot operator
    expression object.attribute can be
    implemented by your code too, for reference, assignment, and deletion
    contexts. We saw a limited example in this category in Chapter 28, but will review and expand on the
    topic here.
Attribute Reference
The __getattr__ method
      intercepts attribute references. It’s called with the attribute name
      as a string whenever you try to qualify an instance with an
      undefined (nonexistent) attribute name. It is
      not called if Python can find the attribute using
      its inheritance tree search procedure.
Because of its behavior, __getattr__ is useful as a hook for responding
      to attribute requests in a generic fashion. It’s commonly used to
      delegate calls to embedded (or “wrapped”) objects from a proxy
      controller object—of the sort introduced in Chapter 28’s introduction to
      delegation. This method can also be used to adapt
      classes to an interface, or add accessors for data
      attributes after the fact—logic in a method that validates or computes
      an attribute after it’s already being used with simple dot
      notation.
The basic mechanism underlying these goals is straightforward—the
      following class catches attribute references, computing the value for
      one dynamically, and triggering an error for others unsupported with the
      raise statement described earlier in
      this chapter for iterators (and fully covered in Part VII):
>>> class Empty:
        def __getattr__(self, attrname):           # On self.undefined
            if attrname == 'age':
                return 40
            else:
                raise AttributeError(attrname)

>>> X = Empty()
>>> X.age
40
>>> X.name
...error text omitted...
AttributeError: name
Here, the Empty class and its
      instance X have no real attributes of
      their own, so the access to X.age
      gets routed to the __getattr__
      method; self is assigned the instance
      (X), and attrname is assigned the undefined attribute
      name string ('age'). The class makes
      age look like a real attribute by
      returning a real value as the result of the X.age qualification expression (40). In effect, age becomes a dynamically
      computed attribute—its value is formed by running code, not
      fetching an object.
For attributes that the class doesn’t know how to handle, __getattr__ raises the built-in AttributeError
      exception to tell Python that these are bona fide undefined names;
      asking for X.name triggers the error.
      You’ll see __getattr__ again when we
      see delegation and properties at work in the next two chapters; let’s
      move on to related tools here.

Attribute Assignment and Deletion
In the same department, the __setattr__ intercepts
      all attribute assignments. If this method is
      defined or inherited, self.attr = value becomes
      self.__setattr__('attr', value). Like __getattr__, this allows your class to catch
      attribute changes, and validate or transform as desired.
This method is a bit trickier to use, though, because assigning to
      any self attributes within __setattr__ calls __setattr__ again, potentially causing an
      infinite recursion loop (and a fairly quick stack
      overflow exception!). In fact, this applies to all self attribute assignments anywhere in the
      class—all are routed to __setattr__,
      even those in other methods, and those to names other than that which
      may have triggered __setattr__ in the
      first place. Remember, this catches all attribute
      assignments.
If you wish to use this method, you can avoid loops by coding
      instance attribute assignments as assignments to attribute dictionary
      keys. That is, use self.__dict__['name'] =
      x, not self.name = x;
      because you’re not assigning to __dict__ itself, this avoids the loop:
>>> class Accesscontrol:
        def __setattr__(self, attr, value):
            if attr == 'age':
                self.__dict__[attr] = value + 10      # Not self.name=val or setattr
            else:
                raise AttributeError(attr + ' not allowed')

>>> X = Accesscontrol()
>>> X.age = 40                                        # Calls __setattr__
>>> X.age
50
>>> X.name = 'Bob'
...text omitted...
AttributeError: name not allowed
If you change the __dict__
      assignment in this to either of the following, it triggers the infinite
      recursion loop and exception—both dot notation and its setattr built-in function equivalent (the
      assignment analog of getattr) fail
      when age is assigned outside the
      class:
self.age = value + 10                            # Loops
setattr(self, attr, value + 10)                  # Loops (attr is 'age')
An assignment to another name within the class triggers a
      recursive __setattr__ call too,
      though in this class ends less dramatically in the manual AttributeError exception:
self.other = 99                                  # Recurs but doesn't loop: fails
It’s also possible to avoid recursive loops in a class that uses
      __setattr__ by routing any attribute
      assignments to a higher superclass with a call, instead of assigning
      keys in __dict__:
self.__dict__[attr] = value + 10                 # OK: doesn't loop
object.__setattr__(self, attr, value + 10)       # OK: doesn't loop (new-style only)
Because the object form
      requires use of new-style classes in 2.X, though, we’ll postpone details
      on this form until Chapter 38’s deeper look
      at attribute management at large.
A third attribute management method, __delattr__, is passed the attribute name
      string and invoked on all attribute deletions (i.e., del object.attr). Like __setattr__, it must avoid recursive loops by
      routing attribute deletions with the using class through __dict__ or a superclass.
Note
As we’ll learn in Chapter 32,
        attributes implemented with new-style class features such as
        slots and properties are not
        physically stored in the instance’s __dict__ namespace dictionary (and slots may
        even preclude its existence entirely!). Because of this, code that
        wishes to support such attributes should code __setattr__ to assign with the object.__setattr__ scheme shown here, not by
        self.__dict__ indexing unless it’s
        known that subject classes store all their data in the instance
        itself. In Chapter 38 we’ll also see that
        the new-style __getattribute__ has
        similar requirements. This change is mandated in Python 3.X, but also
        applies to 2.X if new-style classes are used.


Other Attribute Management Tools
These three attribute-access overloading methods allow you to control or specialize
      access to attributes in your objects. They tend to play highly
      specialized roles, some of which we’ll explore later in this book. For
      another example of __getattr__ at
      work, see Chapter 28’s person-composite.py. And for future
      reference, keep in mind that there are other ways to manage attribute
      access in Python:
	The __getattribute__ method
          intercepts all attribute fetches,
          not just those that are undefined, but when using it you must be
          more cautious than with __getattr__ to avoid loops.

	The property built-in
          function allows us to associate methods with fetch and set
          operations on a specific class
          attribute.

	Descriptors provide a protocol for
          associating __get__
          and __set__ methods of a class with accesses to a
          specific class attribute.

	Slots attributes are declared in classes but create implicit storage in
          each instance.


Because these are somewhat advanced tools not of interest to every
      Python programmer, we’ll defer a look at properties until Chapter 32 and detailed coverage of all the
      attribute management techniques until Chapter 38.

Emulating Privacy for Instance Attributes: Part 1
As another use case for such tools, the following code—file private0.py—generalizes the previous example,
      to allow each subclass to have its own list of private names that cannot
      be assigned to its instances (and uses a
      user-defined exception class, which you’ll have to take on faith until
      Part VII):
class PrivateExc(Exception): pass                   # More on exceptions in Part VII

class Privacy:
    def __setattr__(self, attrname, value):         # On self.attrname = value
        if attrname in self.privates:
            raise PrivateExc(attrname, self)        # Make, raise user-define except
        else:
            self.__dict__[attrname] = value         # Avoid loops by using dict key

class Test1(Privacy):
    privates = ['age']

class Test2(Privacy):
    privates = ['name', 'pay']
    def __init__(self):
        self.__dict__['name'] = 'Tom'               # To do better, see Chapter 39!

if __name__ == '__main__':
    x = Test1()
    y = Test2()

    x.name = 'Bob'      # Works
   #y.name = 'Sue'      # Fails
    print(x.name)

    y.age  = 30         # Works
   #x.age  = 40         # Fails
    print(y.age)
In fact, this is a first-cut solution for an implementation
      of attribute privacy in
      Python—disallowing changes to attribute names outside a class. Although
      Python doesn’t support private declarations per se, techniques like this
      can emulate much of their purpose.
This is a partial—and even clumsy—solution, though; to make it
      more effective, we must augment it to allow classes to set their private
      attributes more naturally, without having to go through __dict__ each time, as the constructor must do
      here to avoid triggering __setattr__
      and an exception. A better and more complete approach might require a
      wrapper (“proxy”) class to check for private attribute accesses made
      outside the class only, and a __getattr__ to validate attribute fetches
      too.
We’ll postpone a more complete solution to attribute privacy until
      Chapter 39, where we’ll use class
      decorators to intercept and validate attributes more
      generally. Even though privacy can be emulated this way, though, it
      almost never is in practice. Python programmers are able to write large
      OOP frameworks and applications without private declarations—an
      interesting finding about access controls in general that is beyond the
      scope of our purposes here.
Still, catching attribute references and assignments is generally
      a useful technique; it supports delegation, a
      design technique that allows controller objects to wrap up embedded
      objects, add new behaviors, and route other operations back to the
      wrapped objects. Because they involve design topics, we’ll revisit
      delegation and wrapper classes in the next chapter.


String Representation: __repr__ and __str__
Our next methods deal with display formats—a topic we’ve already explored in
    prior chapters, but will summarize and formalize here. As a review, the
    following code exercises the __init__
    constructor and the __add__ overload
    method, both of which we’ve already seen (+ is an in-place operation here, just to show
    that it can be; per Chapter 27, a named method
    may be preferred). As we’ve learned, the default display of instance
    objects for a class like this is neither generally useful nor
    aesthetically pretty:
>>> class adder:
        def __init__(self, value=0):
            self.data = value                    # Initialize data
        def __add__(self, other):
            self.data += other                   # Add other in place (bad form?)

>>> x = adder()                                  # Default displays
>>> print(x)
<__main__.adder object at 0x00000000029736D8>
>>> x
<__main__.adder object at 0x00000000029736D8>
But coding or inheriting string representation methods allows us to
    customize the display—as in the following, which defines a __repr__ method in a subclass that returns a
    string representation for its instances.
>>> class addrepr(adder):                        # Inherit __init__, __add__
        def __repr__(self):                      # Add string representation
            return 'addrepr(%s)' % self.data     # Convert to as-code string

>>> x = addrepr(2)                               # Runs __init__
>>> x + 1                                        # Runs __add__ (x.add() better?)
>>> x                                            # Runs __repr__
addrepr(3)
>>> print(x)                                     # Runs __repr__
addrepr(3)
>>> str(x), repr(x)                              # Runs __repr__ for both
('addrepr(3)', 'addrepr(3)')
If defined, __repr__ (or its
    close relative, __str__) is called
    automatically when class instances are printed or converted to strings.
    These methods allow you to define a better display format for your objects
    than the default instance display. Here, __repr__ uses basic string formatting to convert
    the managed self.data object to a more
    human-friendly string for display.
Why Two Display Methods?
So far, what we’ve seen is largely review. But while these methods
      are generally straightforward to use, their roles and behavior have some
      subtle implications both for design and coding. In particular, Python
      provides two display methods to support alternative displays for
      different audiences:
	__str__ is tried first for
          the print operation and the
          str built-in function (the
          internal equivalent of which print runs). It generally should return a
          user-friendly display.

	__repr__ is used in all
          other contexts: for interactive echoes, the repr function, and nested appearances, as
          well as by print and str if no __str__ is present. It should generally
          return an as-code string that could be used to re-create the object,
          or a detailed display for developers.


That is, __repr__ is used
      everywhere, except by print and
      str when a __str__ is defined. This means you can code a
      __repr__ to define a single display
      format used everywhere, and may code a __str__ to either support print and str exclusively, or to provide an alternative
      display for them.
As noted in Chapter 28, general
      tools may also prefer __str__ to
      leave other classes the option of adding an alternative __repr__ display for use in other contexts, as
      long as print and str displays suffice for the tool. Conversely,
      a general tool that codes a __repr__
      still leaves clients the option of adding alternative displays with a
      __str__ for print and str. In other words, if you code either, the
      other is available for an additional display. In cases where the choice
      isn’t clear, __str__ is generally
      preferred for larger user-friendly displays, and __repr__ for lower-level or as-code displays
      and all-inclusive roles.
Let’s write some code to illustrate these two methods’
      distinctions in more concrete terms. The prior example in this section
      showed how __repr__ is used as the
      fallback option in many contexts. However, while printing falls back on
      __repr__ if no __str__ is defined, the inverse is not
      true—other contexts, such as interactive echoes, use __repr__ only and don’t try __str__ at all:
>>> class addstr(adder):
        def __str__(self):                       # __str__ but no __repr__
            return '[Value: %s]' % self.data     # Convert to nice string

>>> x = addstr(3)
>>> x + 1
>>> x                                            # Default __repr__
<__main__.addstr object at 0x00000000029738D0>
>>> print(x)                                     # Runs __str__
[Value: 4]
>>> str(x), repr(x)
('[Value: 4]', '<__main__.addstr object at 0x00000000029738D0>')
Because of this, __repr__ may
      be best if you want a single display for all
      contexts. By defining both methods, though, you can support different
      displays in different contexts—for example, an end-user display with
      __str__, and a low-level display for
      programmers to use during development with __repr__. In effect, __str__ simply overrides __repr__ for more user-friendly display
      contexts:
>>> class addboth(adder):
        def __str__(self):
            return '[Value: %s]' % self.data     # User-friendly string
        def __repr__(self):
            return 'addboth(%s)' % self.data     # As-code string

>>> x = addboth(4)
>>> x + 1
>>> x                                            # Runs __repr__
addboth(5)
>>> print(x)                                     # Runs __str__
[Value: 5]
>>> str(x), repr(x)
('[Value: 5]', 'addboth(5)')

Display Usage Notes
Though generally simple to use, I should mention three usage notes
      regarding these methods here. First, keep in mind that __str__ and __repr__ must both return
      strings; other result types are not converted and
      raise errors, so be sure to run them through a to-string converter
      (e.g., str or %) if needed.
Second, depending on a container’s string-conversion logic, the
      user-friendly display of __str__
      might only apply when objects appear at the top level of a print
      operation; objects nested in larger objects might
      still print with their __repr__ or
      its default. The following illustrates both of these points:
>>> class Printer:
        def __init__(self, val):
            self.val = val
        def __str__(self):                  # Used for instance itself
            return str(self.val)            # Convert to a string result

>>> objs = [Printer(2), Printer(3)]
>>> for x in objs: print(x)                 # __str__ run when instance printed
                                            # But not when instance is in a list!
2
3
>>> print(objs)
[<__main__.Printer object at 0x000000000297AB38>, <__main__.Printer obj...etc...>]
>>> objs
[<__main__.Printer object at 0x000000000297AB38>, <__main__.Printer obj...etc...>]
To ensure that a custom display is run in all contexts regardless
      of the container, code __repr__, not
      __str__; the former is run in all
      cases if the latter doesn’t apply, including nested appearances:
>>> class Printer:
        def __init__(self, val):
            self.val = val
        def __repr__(self):                 # __repr__ used by print if no __str__
            return str(self.val)            # __repr__ used if echoed or nested

>>> objs = [Printer(2), Printer(3)]
>>> for x in objs: print(x)                 # No __str__: runs __repr__

2
3
>>> print(objs)                             # Runs __repr__, not __str__
[2, 3]
>>> objs
[2, 3]
Third, and perhaps most subtle, the display methods also have the
      potential to trigger infinite recursion loops in
      rare contexts—because some objects’ displays include displays of other
      objects, it’s not impossible that a display may trigger a display of an
      object being displayed, and thus loop. This is rare and obscure enough
      to skip here, but watch for an example of this looping potential to
      appear for these methods in a note near the end of the next chapter in
      its listinherited.py example’s
      class, where __repr__ can
      loop.
In practice, __str__, and its
      more inclusive relative __repr__,
      seem to be the second most commonly used operator overloading methods in
      Python scripts, behind __init__.
      Anytime you can print an object and see a custom display, one of these
      two tools is probably in use. For additional examples of these tools at
      work and the design tradeoffs they imply, see Chapter 28’s case study and Chapter 31’s class lister mix-ins, as well as
      their role in Chapter 35’s exception classes,
      where __str__ is required over __repr__.


Right-Side and In-Place Uses: __radd__ and __iadd__
Our next group of overloading methods extends the functionality of binary
    operator methods such as __add__ and
    __sub__ (called for + and -),
    which we’ve already seen. As mentioned earlier, part of the reason there
    are so many operator overloading methods is because they come in multiple
    flavors—for every binary expression, we can implement a
    left, right, and
    in-place variant. Though defaults are also applied if
    you don’t code all three, your objects’ roles dictate how many variants
    you’ll need to code.
Right-Side Addition
For instance, the __add__
      methods coded so far technically do not support the use of instance
      objects on the right side of the +
      operator:
>>> class Adder:
       def __init__(self, value=0):
           self.data = value
       def __add__(self, other):
           return self.data + other

>>> x = Adder(5)
>>> x + 2
7
>>> 2 + x
TypeError: unsupported operand type(s) for +: 'int' and 'Adder'
To implement more general expressions, and hence support
      commutative-style operators, code the __radd__ method as well. Python calls __radd__ only when the object on the right
      side of the + is your class instance,
      but the object on the left is not an instance of your class. The
      __add__ method for the object on the
      left is called instead in all other cases (all of this section’s five
      Commuter classes are coded in file
      commuter.py in the book’s examples, along with a
      self-test):
class Commuter1:
    def __init__(self, val):
        self.val = val
    def __add__(self, other):
        print('add', self.val, other)
        return self.val + other
    def __radd__(self, other):
        print('radd', self.val, other)
        return other + self.val

>>> from commuter import Commuter1
>>> x = Commuter1(88)
>>> y = Commuter1(99)

>>> x + 1                      # __add__: instance + noninstance
add 88 1
89
>>> 1 + y                      # __radd__: noninstance + instance
radd 99 1
100
>>> x + y                      # __add__: instance + instance, triggers __radd__
add 88 <commuter.Commuter1 object at 0x00000000029B39E8>
radd 99 88
187
Notice how the order is reversed in __radd__: self is really on the right of the +, and other is on the left. Also note that x and y are
      instances of the same class here; when instances of different classes
      appear mixed in an expression, Python prefers the class of the one on
      the left. When we add the two instances together, Python runs __add__, which in turn triggers __radd__ by simplifying the left
      operand.
Reusing __add__ in __radd__
For truly commutative operations that do not require special-casing by
        position, it is also sometimes sufficient to reuse __add__ for __radd__: either by calling __add__ directly; by swapping order and
        re-adding to trigger __add__
        indirectly; or by simply assigning __radd__ to be an alias for __add__ at the top level of the class statement (i.e., in the class’s
        scope). The following alternatives implement all three of these
        schemes, and return the same results as the original—though the last
        saves an extra call or dispatch and hence may be quicker (in all,
        __radd__ is run when self is on the right side of a +):
class Commuter2:
    def __init__(self, val):
        self.val = val
    def __add__(self, other):
        print('add', self.val, other)
        return self.val + other
    def __radd__(self, other):
        return self.__add__(other)              # Call __add__ explicitly

class Commuter3:
    def __init__(self, val):
        self.val = val
    def __add__(self, other):
        print('add', self.val, other)
        return self.val + other
    def __radd__(self, other):
        return self + other                     # Swap order and re-add

class Commuter4:
    def __init__(self, val):
        self.val = val
    def __add__(self, other):
        print('add', self.val, other)
        return self.val + other
    __radd__ = __add__                          # Alias: cut out the middleman
In all these, right-side instance appearances trigger the
        single, shared __add__ method,
        passing the right operand to self,
        to be treated the same as a left-side appearance. Run these on your
        own for more insight; their returned values are the same as the
        original.

Propagating class type
In more realistic classes where the class type may need to be
        propagated in results, things can become trickier: type testing may be
        required to tell whether it’s safe to convert and thus avoid nesting.
        For instance, without the isinstance test in the following, we could
        wind up with a Commuter5 whose
        val is another Commuter5 when two instances are added and
        __add__ triggers __radd__:
class Commuter5:                                # Propagate class type in results
    def __init__(self, val):
        self.val = val
    def __add__(self, other):
        if isinstance(other, Commuter5):        # Type test to avoid object nesting
            other = other.val
        return Commuter5(self.val + other)      # Else + result is another Commuter
    def __radd__(self, other):
        return Commuter5(other + self.val)
    def __str__(self):
        return '<Commuter5: %s>' % self.val

>>> from commuter import Commuter5
>>> x = Commuter5(88)
>>> y = Commuter5(99)
>>> print(x + 10)                      # Result is another Commuter instance
<Commuter5: 98>
>>> print(10 + y)
<Commuter5: 109>

>>> z = x + y                          # Not nested: doesn't recur to __radd__
>>> print(z)
<Commuter5: 187>
>>> print(z + 10)
<Commuter5: 197>
>>> print(z + z)
<Commuter5: 374>
>>> print(z + z + 1)
<Commuter5: 375>
The need for the isinstance
        type test here is very subtle—uncomment, run, and trace to see why
        it’s required. If you do, you’ll see that the last part of the
        preceding test winds up differing and nesting objects—which still do
        the math correctly, but kick off pointless recursive calls to simplify
        their values, and extra constructor calls build results:
>>> z = x + y                          # With isinstance test commented-out
>>> print(z)
<Commuter5: <Commuter5: 187>>
>>> print(z + 10)
<Commuter5: <Commuter5: 197>>
>>> print(z + z)
<Commuter5: <Commuter5: <Commuter5: <Commuter5: 374>>>>
>>> print(z + z + 1)
<Commuter5: <Commuter5: <Commuter5: <Commuter5: 375>>>>
To test, the rest of commuter.py looks and runs like
        this—classes can appear in tuples naturally:
#!python
from __future__ import print_function           # 2.X/3.X compatibility
...classes defined here...

if __name__ == '__main__':
    for klass in (Commuter1, Commuter2, Commuter3, Commuter4, Commuter5):
        print('-' * 60)
        x = klass(88)
        y = klass(99)
        print(x + 1)
        print(1 + y)
        print(x + y)

c:\code> commuter.py
------------------------------------------------------------
add 88 1
89
radd 99 1
100
add 88 <__main__.Commuter1 object at 0x000000000297F2B0>
radd 99 88
187
------------------------------------------------------------
...etc...
There are too many coding variations to explore here, so
        experiment with these classes on your own for more insight; aliasing
        __radd__ to __add__ in Commuter5, for example, saves a line, but
        doesn’t prevent object nesting without isinstance. See also Python’s manuals for a
        discussion of other options in this domain; for example, classes may
        also return the special NotImplemented object for unsupported
        operands to influence method selection (this is treated as though the
        method were not defined).


In-Place Addition
To also implement += in-place
      augmented addition, code either an __iadd__ or an __add__. The latter is used if the former is
      absent. In fact, the prior section’s Commuter classes already support += for this reason—Python runs __add__ and assigns the result manually. The
      __iadd__ method, though, allows for
      more efficient in-place changes to be coded where applicable:
>>> class Number:
        def __init__(self, val):
            self.val = val
        def __iadd__(self, other):             # __iadd__ explicit: x += y
            self.val += other                  # Usually returns self
            return self

>>> x = Number(5)
>>> x += 1
>>> x += 1
>>> x.val
7
For mutable objects, this method can often specialize for quicker
      in-place changes:
>>> y = Number([1])                            # In-place change faster than +
>>> y += [2]
>>> y += [3]
>>> y.val
[1, 2, 3]
The normal __add__ method is
      run as a fallback, but may not be able optimize in-place cases:
>>> class Number:
        def __init__(self, val):
            self.val = val
        def __add__(self, other):              # __add__ fallback: x = (x + y)
            return Number(self.val + other)    # Propagates class type

>>> x = Number(5)
>>> x += 1
>>> x += 1                                     # And += does concatenation here
>>> x.val
7
Though we’ve focused on + here,
      keep in mind that every binary operator has similar
      right-side and in-place overloading methods that work the same (e.g.,
      __mul__, __rmul__, and __imul__). Still, right-side methods are an
      advanced topic and tend to be fairly uncommon in practice; you only code
      them when you need operators to be commutative, and then only if you
      need to support such operators at all. For instance, a Vector class may use these tools, but an
      Employee or Button class probably would not.


Call Expressions: __call__
On to our next overloading method: the __call__ method is called when your instance is
    called. No, this isn’t a circular definition—if defined, Python runs a
    __call__ method for function call
    expressions applied to your instances, passing along whatever positional
    or keyword arguments were sent. This allows instances to conform to a
    function-based API:
>>> class Callee:
        def __call__(self, *pargs, **kargs):       # Intercept instance calls
            print('Called:', pargs, kargs)         # Accept arbitrary arguments

>>> C = Callee()
>>> C(1, 2, 3)                                     # C is a callable object
Called: (1, 2, 3) {}
>>> C(1, 2, 3, x=4, y=5)
Called: (1, 2, 3) {'y': 5, 'x': 4}
More formally, all the argument-passing modes we explored in Chapter 18 are supported by the __call__ method—whatever is passed to the
    instance is passed to this method, along with the usual implied instance
    argument. For example, the method definitions:
class C:
    def __call__(self, a, b, c=5, d=6): ...        # Normals and defaults

class C:
    def __call__(self, *pargs, **kargs): ...       # Collect arbitrary arguments

class C:
    def __call__(self, *pargs, d=6, **kargs): ...  # 3.X keyword-only argument
all match all the following instance calls:
X = C()
X(1, 2)                                            # Omit defaults
X(1, 2, 3, 4)                                      # Positionals
X(a=1, b=2, d=4)                                   # Keywords
X(*[1, 2], **dict(c=3, d=4))                       # Unpack arbitrary arguments
X(1, *(2,), c=3, **dict(d=4))                      # Mixed modes
See Chapter 18 for a refresher on function
    arguments. The net effect is that classes and instances with a __call__ support the exact same argument syntax
    and semantics as normal functions and methods.
Intercepting call expression like this allows class instances to
    emulate the look and feel of things like functions, but also retain state
    information for use during calls. We saw an example similar to the
    following while exploring scopes in Chapter 17, but you
    should now be familiar enough with operator overloading to understand this
    pattern better:
>>> class Prod:
        def __init__(self, value):                 # Accept just one argument
            self.value = value
        def __call__(self, other):
            return self.value * other

>>> x = Prod(2)                                    # "Remembers" 2 in state
>>> x(3)                                           # 3 (passed) * 2 (state)
6
>>> x(4)
8
In this example, the __call__ may
    seem a bit gratuitous at first glance. A simple method can provide similar
    utility:
>>> class Prod:
        def __init__(self, value):
            self.value = value
        def comp(self, other):
            return self.value * other

>>> x = Prod(3)
>>> x.comp(3)
9
>>> x.comp(4)
12
However, __call__ can become more
    useful when interfacing with APIs (i.e., libraries) that expect
    functions—it allows us to code objects that conform to an expected
    function call interface, but also retain state information, and other
    class assets such as inheritance. In fact, it may be the third most
    commonly used operator overloading method, behind the __init__ constructor and the __str__ and __repr__ display-format alternatives.
Function Interfaces and Callback-Based Code
As an example, the tkinter GUI toolkit
      (named Tkinter in Python 2.X) allows
      you to register functions as event handlers (a.k.a.
      callbacks)—when events occur, tkinter calls the registered objects. If you
      want an event handler to retain state between events, you can register
      either a class’s bound method, or an
      instance that conforms to the expected interface
      with __call__.
In the prior section’s code, for example, both x.comp from the second example and x from the first can pass as function-like
      objects this way. Chapter 17’s closure
      functions with state in enclosing scopes can achieve similar
      effects, but don’t provide as much support for multiple operations or
      customization.
I’ll have more to say about bound methods in the next chapter, but
      for now, here’s a hypothetical example of __call__ applied to the GUI domain. The
      following class defines an object that supports a function-call
      interface, but also has state information that remembers the color a
      button should change to when it is later pressed:
class Callback:
    def __init__(self, color):               # Function + state information
        self.color = color
    def __call__(self):                      # Support calls with no arguments
        print('turn', self.color)
Now, in the context of a GUI, we can register instances of this
      class as event handlers for buttons, even though the GUI expects to be
      able to invoke event handlers as simple functions with no
      arguments:
# Handlers
cb1 = Callback('blue')                       # Remember blue
cb2 = Callback('green')                      # Remember green

B1 = Button(command=cb1)                     # Register handlers
B2 = Button(command=cb2)
When the button is later pressed, the instance object is called as
      a simple function with no arguments, exactly like in the following
      calls. Because it retains state as instance attributes, though, it
      remembers what to do—it becomes a stateful function
      object:
# Events
cb1()                                        # Prints 'turn blue'
cb2()                                        # Prints 'turn green'
In fact, many consider such classes to be the best way to retain
      state information in the Python language (per generally accepted
      Pythonic principles, at least). With OOP, the state remembered is made
      explicit with attribute assignments. This is different than other state
      retention techniques (e.g., global variables, enclosing function scope
      references, and default mutable arguments), which rely on more limited
      or implicit behavior. Moreover, the added structure and customization in
      classes goes beyond state retention.
On the other hand, tools such as closure functions are useful in
      basic state retention roles too, and 3.X’s nonlocal statement makes enclosing scopes a viable alternative in more
      programs. We’ll revisit such tradeoffs when we start coding substantial
      decorators in Chapter 39, but here’s a quick
      closure equivalent:
def callback(color):                         # Enclosing scope versus attrs
    def oncall():
        print('turn', color)
    return oncall

cb3 = callback('yellow')                     # Handler to be registered
cb3()                                        # On event: prints 'turn yellow'
Before we move on, there are two other ways that Python
      programmers sometimes tie information to a callback function like this.
      One option is to use default arguments in lambda
      functions:
cb4 = (lambda color='red': 'turn ' + color)  # Defaults retain state too
print(cb4())
The other is to use bound methods of a class—
      a bit of a preview, but simple enough to introduce here. A bound method
      object is a kind of object that remembers both the self instance and the referenced function.
      This object may therefore be called later as a simple function without
      an instance:
class Callback:
    def __init__(self, color):               # Class with state information
        self.color = color
    def changeColor(self):                   # A normal named method
        print('turn', self.color)

cb1 = Callback('blue')
cb2 = Callback('yellow')

B1 = Button(command=cb1.changeColor)         # Bound method: reference, don't call
B2 = Button(command=cb2.changeColor)         # Remembers function + self pair
In this case, when this button is later pressed it’s as if the GUI
      does this, which invokes the instance’s changeColor method to process the object’s
      state information, instead of the instance itself:
cb1 = Callback('blue')
obj = cb1.changeColor                        # Registered event handler
obj()                                        # On event prints 'turn blue'
Note that a lambda is not
      required here, because a bound method reference by itself already defers
      a call until later. This technique is simpler, but perhaps less general
      than overloading calls with __call__.
      Again, watch for more about bound methods in the next chapter.
You’ll also see another __call__ example in Chapter 32, where we will use it to implement
      something known as a function decorator—a callable
      object often used to add a layer of logic on top of an embedded
      function. Because __call__ allows us
      to attach state information to a callable object, it’s a natural
      implementation technique for a function that must remember to call
      another function when called itself. For more __call__ examples, see the state retention
      preview examples in Chapter 17, and the more advanced
      decorators and metaclasses of Chapter 39 and Chapter 40.


Comparisons: __lt__, __gt__, and Others
Our next batch of overloading methods supports comparisons. As suggested in
    Table 30-1, classes can
    define methods to catch all six comparison operators: <, >,
    <=, >=, ==,
    and !=. These methods are generally
    straightforward to use, but keep the following qualifications in
    mind:
	Unlike the __add__/__radd__ pairings discussed earlier, there
        are no right-side variants of comparison methods. Instead, reflective
        methods are used when only one operand supports comparison (e.g., __lt__ and __gt__ are each other’s reflection).

	There are no implicit relationships among the comparison
        operators. The truth of == does not
        imply that != is false, for
        example, so both __eq__ and
        __ne__ should be defined to ensure
        that both operators behave correctly.

	In Python 2.X, a __cmp__
        method is used by all comparisons if no more specific
        comparison methods are defined; it returns a number that is less than,
        equal to, or greater than zero, to signal less than, equal, and
        greater than results for the comparison of its two arguments (self and another operand). This method often
        uses the cmp(x, y) built-in to
        compute its result. Both the __cmp__ method and the cmp built-in function are removed in Python
        3.X: use the more specific methods instead.


We don’t have space for an in-depth exploration of comparison
    methods, but as a quick introduction, consider the following class and
    test code:
class C:
    data = 'spam'
    def __gt__(self, other):               # 3.X and 2.X version
        return self.data > other
    def __lt__(self, other):
        return self.data < other

X = C()
print(X > 'ham')                           # True  (runs __gt__)
print(X < 'ham')                           # False (runs __lt__)
When run under Python 3.X or 2.X, the prints at the end display the
    expected results noted in their comments, because the class’s methods
    intercept and implement comparison expressions. Consult Python’s manuals
    and other reference resources for more details in this category; for
    example, __lt__ is used for sorts in
    Python3.X, and as for binary expression operators, these methods can also
    return NotImplemented for unsupported
    arguments.
The __cmp__ Method in Python 2.X
In Python 2.X only, the __cmp__
      method is used as a fallback if more specific methods are not defined:
      its integer result is used to evaluate the operator being run. The
      following produces the same result as the prior section’s code under
      2.X, for example, but fails in 3.X because __cmp__ is no longer used:
class C:
    data = 'spam'                          # 2.X only
    def __cmp__(self, other):              # __cmp__ not used in 3.X
        return cmp(self.data, other)       # cmp not defined in 3.X

X = C()
print(X > 'ham')                           # True  (runs __cmp__)
print(X < 'ham')                           # False (runs __cmp__)
Notice that this fails in 3.X because __cmp__ is no longer special, not because the
      cmp built-in function is no longer
      present. If we change the prior class to the following to try to
      simulate the cmp call, the code still
      works in 2.X but fails in 3.X:
class C:
    data = 'spam'
    def __cmp__(self, other):
        return (self.data > other) - (self.data < other)
So why, you might be asking, did I just show you a comparison
      method that is no longer supported in 3.X? While it would be easier to
      erase history entirely, this book is designed to support both 2.X and
      3.X readers. Because __cmp__ may
      appear in code 2.X readers must reuse or maintain, it’s fair game in
      this book. Moreover, __cmp__ was
      removed more abruptly than the __getslice__ method described earlier, and so may endure longer. If you use
      3.X, though, or care about running your code under 3.X in the future,
      don’t use __cmp__ anymore: use the
      more specific comparison methods instead.


Boolean Tests: __bool__ and __len__
The next set of methods is truly useful (yes, pun intended!). As we’ve
    learned, every object is inherently true or false in Python. When you code
    classes, you can define what this means for your objects by coding methods
    that give the True or False values of instances on request. The names
    of these methods differ per Python line; this section starts with the 3.X
    story, then shows 2.X’s equivalent.
As mentioned briefly earlier, in Boolean contexts, Python first
    tries __bool__ to obtain a direct
    Boolean value; if that method is missing, Python tries __len__ to infer a truth value from the object’s
    length. The first of these generally uses object state or other
    information to produce a Boolean result. In 3.X:
>>> class Truth:
       def __bool__(self): return True

>>> X = Truth()
>>> if X: print('yes!')

yes!

>>> class Truth:
       def __bool__(self): return False

>>> X = Truth()
>>> bool(X)
False
If this method is missing, Python falls back on length because a
    nonempty object is considered true (i.e., a nonzero length is taken to
    mean the object is true, and a zero length means it is false):
>>> class Truth:
       def __len__(self): return 0

>>> X = Truth()
>>> if not X: print('no!')

no!
If both methods are present Python prefers
    __bool__ over __len__, because it is more specific:
>>> class Truth:
       def __bool__(self): return True            # 3.X tries __bool__ first
       def __len__(self): return 0                # 2.X tries __len__ first

>>> X = Truth()
>>> if X: print('yes!')

yes!
If neither truth method is defined, the object is vacuously
    considered true (though any potential implications for more metaphysically
    inclined readers are strictly coincidental):
>>> class Truth:
        pass

>>> X = Truth()
>>> bool(X)
True
At least that’s the Truth in 3.X.
    These examples won’t generate exceptions in 2.X, but some of their results
    there may look a bit odd (and trigger an existential crisis or two) unless
    you read the next section.
Boolean Methods in Python 2.X
Alas, it’s not nearly as dramatic as billed—Python 2.X users simply use __nonzero__ instead of __bool__ in all of the preceding section’s
      code. Python 3.X renamed the 2.X __nonzero__ method to __bool__, but Boolean tests work the same
      otherwise; both 3.X and 2.X use __len__ as a fallback.
Subtly, if you don’t use the 2.X name, the first test in the prior
      section will work the same for you anyhow, but only because __bool__ is not recognized as a special method
      name in 2.X, and objects are considered true by default! To witness this
      version difference live, you need to return False:
C:\code> c:\python33\python
>>> class C:
        def __bool__(self):
            print('in bool')
            return False

>>> X = C()
>>> bool(X)
in bool
False
>>> if X: print(99)

in bool
This works as advertised in 3.X. In 2.X, though, __bool__ is ignored and the object is always
      considered true by default:
C:\code> c:\python27\python
>>> class C:
        def __bool__(self):
            print('in bool')
            return False

>>> X = C()
>>> bool(X)
True
>>> if X: print(99)

99
The short story here: in 2.X, use __nonzero__ for Boolean values, or return
      0 from the __len__ fallback method to designate
      false:
C:\code> c:\python27\python
>>> class C:
        def __nonzero__(self):
            print('in nonzero')
            return False                 # Returns int (or True/False, same as 1/0)

>>> X = C()
>>> bool(X)
in nonzero
False
>>> if X: print(99)

in nonzero
But keep in mind that __nonzero__ works in 2.X only; if used in 3.X
      it will be silently ignored and the object will be classified as true by
      default—just like using 3.X’s __bool__ in 2.X!
And now that we’ve managed to cross over into the realm of
      philosophy, let’s move on to look at one last overloading context: object demise.


Object Destruction: __del__
It’s time to close out this chapter—and learn how to do the same for our
    class objects. We’ve seen how the __init__ constructor is
    called whenever an instance is generated (and noted how __new__ is run first to make the object). Its counterpart, the
    destructor method __del__, is run automatically when an instance’s
    space is being reclaimed (i.e., at “garbage collection” time):
>>> class Life:
        def __init__(self, name='unknown'):
            print('Hello ' + name)
            self.name = name
        def live(self):
            print(self.name)
        def __del__(self):
            print('Goodbye ' + self.name)

>>> brian = Life('Brian')
Hello Brian
>>> brian.live()
Brian
>>> brian = 'loretta'
Goodbye Brian
Here, when brian is assigned a
    string, we lose the last reference to the Life instance and so trigger its destructor
    method. This works, and it may be useful for implementing some cleanup
    activities, such as terminating a server connection. However, destructors
    are not as commonly used in Python as in some OOP languages, for a number
    of reasons that the next section describes.
Destructor Usage Notes
The destructor method works as documented, but it has some
      well-known caveats and a few outright dark corners that make it somewhat
      rare to see in Python code:
	Need: For one thing, destructors may not
          be as useful in Python as they are in some other OOP languages.
          Because Python automatically reclaims all memory
          space held by an instance when the instance is reclaimed,
          destructors are not necessary for space management. In the current
          CPython implementation of Python, you also don’t need to close
          file objects held by the instance in
          destructors because they are automatically closed when reclaimed. As
          mentioned in Chapter 9, though, it’s
          still sometimes best to run file close methods anyhow, because this
          autoclose behavior may vary in alternative Python implementations
          (e.g., Jython).

	Predictability: For another, you cannot
          always easily predict when an instance will be reclaimed. In some
          cases, there may be lingering references to your objects in system
          tables that prevent destructors from running when your program
          expects them to be triggered. Python also does not guarantee that
          destructor methods will be called for objects that still exist when
          the interpreter exits.

	Exceptions: In fact, __del__ can be tricky to use for even more
          subtle reasons. Exceptions raised within it, for example, simply
          print a warning message to sys.stderr (the
          standard error stream) rather than triggering an exception event, because of
          the unpredictable context under which it is run by the garbage
          collector—it’s not always possible to know where such an exception
          should be delivered.

	Cycles: In addition, cyclic (a.k.a.
          circular) references among objects may prevent garbage collection
          from happening when you expect it to. An optional cycle detector,
          enabled by default, can automatically collect such objects
          eventually, but only if they do not have __del__ methods. Since this is relatively
          obscure, we’ll ignore further details here; see Python’s standard
          manuals’ coverage of both __del__
          and the gc garbage collector
          module for more information.


Because of these downsides, it’s often better to code termination
      activities in an explicitly called method (e.g., shutdown). As described in the next part of
      the book, the try/finally statement also supports termination
      actions, as does the with statement
      for objects that support its context manager model.


Chapter Summary
That’s as many overloading examples as we have space for here. Most
    of the other operator overloading methods work similarly to the ones we’ve
    explored, and all are just hooks for intercepting built-in type
    operations. Some overloading methods, for example, have unique argument
    lists or return values, but the general usage pattern is the same. We’ll
    see a few others in action later in the book:
	Chapter 34 uses __enter__ and __exit__ in with statement context managers.

	Chapter 38 uses the __get__ and __set__ class descriptor fetch/set
        methods.

	Chapter 40 uses the __new__ object creation method in the
        context of metaclasses.


In addition, some of the methods we’ve studied here, such as
    __call__ and __str__, will be employed by later examples in
    this book. For complete coverage, though, I’ll defer to other
    documentation sources—see Python’s standard language manual or reference
    books for details on additional overloading methods.
In the next chapter, we leave the realm of class mechanics behind to
    explore common design patterns—the ways that classes are commonly used and
    combined to optimize code reuse. After that, we’ll survey a handful of
    advanced topics and move on to exceptions, the last core subject of this
    book. Before you read on, though, take a moment to work through the
    chapter quiz below to review the concepts we’ve covered.

Test Your Knowledge: Quiz
	What two operator overloading methods can you use to support
        iteration in your classes?

	What two operator overloading methods handle printing, and in
        what contexts?

	How can you intercept slice operations in a class?

	How can you catch in-place addition in a class?

	When should you provide operator overloading?



Test Your Knowledge: Answers
	Classes can support iteration by defining (or inheriting)
        __getitem__ or __iter__. In all iteration contexts, Python
        tries to use __iter__ first, which
        returns an object that supports the iteration protocol with a __next__ method: if no __iter__ is found by inheritance search,
        Python falls back on the __getitem__ indexing method, which is called
        repeatedly, with successively higher indexes. If used, the yield statement can create the __next__ method automatically.

	The __str__ and __repr__ methods implement object print
        displays. The former is called by the print and str built-in functions; the latter is called
        by print and str if there is no __str__, and always by the repr built-in, interactive echoes, and
        nested appearances. That is, __repr__ is used everywhere, except by
        print and str when a __str__ is defined. A __str__ is usually used for user-friendly
        displays; __repr__ gives extra
        details or the object’s as-code form.

	Slicing is caught by the __getitem__ indexing method: it is called
        with a slice object, instead of a simple integer index, and slice
        objects may be passed on or inspected as needed. In Python 2.X,
        __getslice__ (defunct in 3.X) may
        be used for two-limit slices as well.

	In-place addition tries __iadd__ first, and __add__ with an assignment second. The same
        pattern holds true for all binary operators. The __radd__ method is also available for
        right-side addition.

	When a class naturally matches, or needs to emulate, a built-in
        type’s interfaces. For example, collections might imitate sequence or
        mapping interfaces, and callables might be coded for use with an API
        that expects a function. You generally shouldn’t implement expression
        operators if they don’t naturally map to your objects naturally and
        logically, though—use normally named methods instead.










Chapter 31. Designing with Classes
So far in this part of the book, we’ve concentrated on using Python’s
  OOP tool, the class. But OOP is also about design
  issues—that is, how to use classes to model useful objects. This
  chapter will touch on a few core OOP ideas and present some additional
  examples that are more realistic than many shown so far.
Along the way, we’ll code some common OOP design patterns in Python,
  such as inheritance, composition, delegation, and factories. We’ll also
  investigate some design-focused class concepts, such as pseudoprivate
  attributes, multiple inheritance, and bound methods.
One note up front: some of the design terms mentioned here require
  more explanation than I can provide in this book. If this material sparks
  your curiosity, I suggest exploring a text on OOP design or design patterns
  as a next step. As we’ll see, the good news is that Python makes many
  traditional design patterns trivial.
Python and OOP
Let’s begin with a review—Python’s implementation of OOP can be summarized by three
    ideas:
	Inheritance
	Inheritance is based on attribute lookup in Python (in X.name expressions).

	Polymorphism
	In X.method, the meaning of method
          depends on the type (class) of subject object X.

	Encapsulation
	Methods and operators implement behavior, though data hiding is a convention
          by default.


By now, you should have a good feel for what inheritance is all
    about in Python. We’ve also talked about Python’s polymorphism a few times
    already; it flows from Python’s lack of type declarations. Because
    attributes are always resolved at runtime, objects that implement the same
    interfaces are automatically interchangeable; clients don’t need to know
    what sorts of objects are implementing the methods they call.
Encapsulation means packaging in Python—that is, hiding
    implementation details behind an object’s interface. It does not mean
    enforced privacy, though that can be implemented with code, as we’ll see
    in Chapter 39. Encapsulation is available and useful in
    Python nonetheless: it allows the implementation of an object’s interface
    to be changed without impacting the users of that object.
Polymorphism Means Interfaces, Not Call Signatures
Some OOP languages also define polymorphism to mean overloading functions
      based on the type signatures of their arguments—the number passed and/or
      their types. Because there are no type declarations in Python, this
      concept doesn’t really apply; as we’ve seen, polymorphism in Python is
      based on object interfaces, not types.
If you’re pining for your C++ days, you can try to overload
      methods by their argument lists, like this:
class C:
    def meth(self, x):
        ...
    def meth(self, x, y, z):
        ...
This code will run, but because the def simply assigns an object to a name in the
      class’s scope, the last definition of the method
      function is the only one that will be retained. Put another way, it’s
      just as if you say X = 1 and then
      X = 2; X will be 2. Hence, there can be only one definition of
      a method name.
If they are truly required, you can always code type-based
      selections using the type-testing ideas we met in Chapter 4 and Chapter 9, or the argument
      list tools introduced in Chapter 18:
class C:
    def meth(self, *args):
        if len(args) == 1:              # Branch on number arguments
            ...
        elif type(arg[0]) == int:       # Branch on argument types (or isinstance())
            ...
You normally shouldn’t do this, though—it’s not the Python way. As
      described in Chapter 16, you should write your
      code to expect only an object interface, not a
      specific data type. That way, it will be useful for
      a broader category of types and applications, both now and in the
      future:
class C:
    def meth(self, x):
        x.operation()                   # Assume x does the right thing
It’s also generally considered better to use distinct method
      names for distinct operations, rather than relying
      on call signatures (no matter what language you code in).
Although Python’s object model is straightforward, much of the art
      in OOP is in the way we combine classes to achieve a program’s goals.
      The next section begins a tour of some of the ways larger programs use
      classes to their advantage.


OOP and Inheritance: “Is-a” Relationships
We’ve explored the mechanics of inheritance in depth already, but I’d now like
    to show you an example of how it can be used to model real-world
    relationships. From a programmer’s point of view,
    inheritance is kicked off by attribute qualifications, which trigger
    searches for names in instances, their classes, and then any superclasses.
    From a designer’s point of view, inheritance is a way
    to specify set membership: a class defines a set of properties that may be
    inherited and customized by more specific sets (i.e., subclasses).
To illustrate, let’s put that pizza-making robot we talked about at
    the start of this part of the book to work. Suppose we’ve decided to
    explore alternative career paths and open a pizza restaurant (not bad, as
    career paths go). One of the first things we’ll need to do is hire
    employees to serve customers, prepare the food, and so on. Being engineers
    at heart, we’ve decided to build a robot to make the pizzas; but being
    politically and cybernetically correct, we’ve also decided to make our
    robot a full-fledged employee with a salary.
Our pizza shop team can be defined by the four classes in the
    following Python 3.X and 2.X example file, employees.py. The most general class, Employee, provides common behavior such as
    bumping up salaries (giveRaise) and
    printing (__repr__). There are two
    kinds of employees, and so two subclasses of Employee—Chef
    and Server. Both override the inherited
    work method to print more specific
    messages. Finally, our pizza robot is modeled by an even more specific
    class—PizzaRobot is a kind of Chef, which is a kind of Employee. In OOP terms, we call these
    relationships “is-a” links: a robot is a chef, which is an employee.
    Here’s the employees.py file:
# File employees.py (2.X + 3.X)
from __future__ import print_function

class Employee:
    def __init__(self, name, salary=0):
        self.name   = name
        self.salary = salary
    def giveRaise(self, percent):
        self.salary = self.salary + (self.salary * percent)
    def work(self):
        print(self.name, "does stuff")
    def __repr__(self):
        return "<Employee: name=%s, salary=%s>" % (self.name, self.salary)

class Chef(Employee):
    def __init__(self, name):
        Employee.__init__(self, name, 50000)
    def work(self):
        print(self.name, "makes food")

class Server(Employee):
    def __init__(self, name):
        Employee.__init__(self, name, 40000)
    def work(self):
        print(self.name, "interfaces with customer")

class PizzaRobot(Chef):
    def __init__(self, name):
        Chef.__init__(self, name)
    def work(self):
        print(self.name, "makes pizza")

if __name__ == "__main__":
    bob = PizzaRobot('bob')       # Make a robot named bob
    print(bob)                    # Run inherited __repr__
    bob.work()                    # Run type-specific action
    bob.giveRaise(0.20)           # Give bob a 20% raise
    print(bob); print()

    for klass in Employee, Chef, Server, PizzaRobot:
        obj = klass(klass.__name__)
        obj.work()
When we run the self-test code included in this module, we create a
    pizza-making robot named bob, which
    inherits names from three classes: PizzaRobot, Chef, and Employee. For instance, printing bob runs the Employee.__repr__ method, and giving bob a raise invokes Employee.giveRaise because that’s where the
    inheritance search finds that method:
c:\code> python employees.py
<Employee: name=bob, salary=50000>
bob makes pizza
<Employee: name=bob, salary=60000.0>

Employee does stuff
Chef makes food
Server interfaces with customer
PizzaRobot makes pizza
In a class hierarchy like this, you can usually make instances of
    any of the classes, not just the ones at the bottom. For instance, the
    for loop in this module’s self-test
    code creates instances of all four classes; each responds differently when
    asked to work because the work method
    is different in each. bob the robot,
    for example, gets work from the most
    specific (i.e., lowest) PizzaRobot
    class.
Of course, these classes just simulate
    real-world objects; work prints a
    message for the time being, but it could be expanded to do real work later
    (see Python’s interfaces to devices such as serial ports, Arduino boards,
    and the Raspberry Pi if you’re taking this section much too literally!).

OOP and Composition: “Has-a” Relationships
The notion of composition was introduced in Chapter 26
    and Chapter 28. From a
    programmer’s point of view, composition involves
    embedding other objects in a container object, and activating them to
    implement container methods. To a designer,
    composition is another way to represent relationships in a problem domain.
    But, rather than set membership, composition has to do with
    components—parts of a whole.
Composition also reflects the relationships between parts, called
    “has-a” relationships. Some OOP design texts refer to composition as
    aggregation, or distinguish between the two terms by
    using aggregation to describe a weaker dependency between container and
    contained. In this text, a “composition” simply refers to a collection of
    embedded objects. The composite class generally provides an interface all
    its own and implements it by directing the embedded objects.
Now that we’ve implemented our employees, let’s put them in the
    pizza shop and let them get busy. Our pizza shop is a composite object: it
    has an oven, and it has employees like servers and chefs. When a customer
    enters and places an order, the components of the shop spring into
    action—the server takes the order, the chef makes the pizza, and so on.
    The following example—file pizzashop.py—runs the same on Python 3.X and
    2.X and simulates all the objects and relationships in this
    scenario:
# File pizzashop.py (2.X + 3.X)
from __future__ import print_function
from employees import PizzaRobot, Server

class Customer:
    def __init__(self, name):
        self.name = name
    def order(self, server):
        print(self.name, "orders from", server)
    def pay(self, server):
        print(self.name, "pays for item to", server)

class Oven:
    def bake(self):
        print("oven bakes")


class PizzaShop:
    def __init__(self):
        self.server = Server('Pat')         # Embed other objects
        self.chef   = PizzaRobot('Bob')     # A robot named bob
        self.oven   = Oven()

    def order(self, name):
        customer = Customer(name)           # Activate other objects
        customer.order(self.server)         # Customer orders from server
        self.chef.work()
        self.oven.bake()
        customer.pay(self.server)

if __name__ == "__main__":
    scene = PizzaShop()                     # Make the composite
    scene.order('Homer')                    # Simulate Homer's order
    print('...')
    scene.order('Shaggy')                   # Simulate Shaggy's order
The PizzaShop class is a
    container and controller; its constructor makes and embeds instances of
    the employee classes we wrote in the prior section, as well as an Oven class defined here. When this module’s
    self-test code calls the PizzaShop
    order method, the embedded objects are asked to carry out their
    actions in turn. Notice that we make a new Customer object for each order, and we pass on
    the embedded Server object to Customer methods; customers come and go, but the
    server is part of the pizza shop composite. Also notice that employees are
    still involved in an inheritance relationship; composition and inheritance
    are complementary tools.
When we run this module, our pizza shop handles two orders—one from
    Homer, and then one from Shaggy:
c:\code> python pizzashop.py
Homer orders from <Employee: name=Pat, salary=40000>
Bob makes pizza
oven bakes
Homer pays for item to <Employee: name=Pat, salary=40000>
...
Shaggy orders from <Employee: name=Pat, salary=40000>
Bob makes pizza
oven bakes
Shaggy pays for item to <Employee: name=Pat, salary=40000>
Again, this is mostly just a toy simulation, but the objects and
    interactions are representative of composites at work. As a rule of thumb,
    classes can represent just about any objects and relationships you can
    express in a sentence; just replace nouns with
    classes (e.g., Oven), and
    verbs with methods (e.g., bake), and you’ll have a first cut at a
    design.
Stream Processors Revisited
For a composition example that may be a bit more tangible than
      pizza-making robots, recall the generic data stream processor function
      we partially coded in the introduction to OOP in Chapter 26:
def processor(reader, converter, writer):
    while True:
        data = reader.read()
        if not data: break
        data = converter(data)
        writer.write(data)
Rather than using a simple function here, we might code this as a
      class that uses composition to do its work in order to provide more
      structure and support inheritance. The following 3.X/2.X file, streams.py, demonstrates one way to code the
      class (it also mutates one method name because we’ll actually run this
      code):
class Processor:
    def __init__(self, reader, writer):
        self.reader = reader
        self.writer = writer

    def process(self):
        while True:
            data = self.reader.readline()
            if not data: break
            data = self.converter(data)
            self.writer.write(data)

    def converter(self, data):
        assert False, 'converter must be defined'       # Or raise exception
This class defines a converter
      method that it expects subclasses to fill in; it’s an example of
      the abstract superclass model we
      outlined in Chapter 29 (more on assert in Part VII—it simply raises an exception if its
      test is false). Coded this way, reader and writer objects are embedded within the class
      instance (composition), and we supply the
      conversion logic in a subclass rather than passing in a converter
      function (inheritance). The file converters.py shows how:
from streams import Processor

class Uppercase(Processor):
    def converter(self, data):
        return data.upper()

if __name__ == '__main__':
    import sys
    obj = Uppercase(open('trispam.txt'), sys.stdout)
    obj.process()
Here, the Uppercase class
      inherits the stream-processing loop logic (and anything else that may be
      coded in its superclasses). It needs to define only what is unique about
      it—the data conversion logic. When this file is run, it makes and runs
      an instance that reads from the file trispam.txt and writes the uppercase
      equivalent of that file to the stdout
      stream:
c:\code> type trispam.txt
spam
Spam
SPAM!

c:\code> python converters.py
SPAM
SPAM
SPAM!
To process different sorts of streams, pass in different sorts of
      objects to the class construction call. Here, we use an output file
      instead of a stream:
C:\code> python
>>> import converters
>>> prog = converters.Uppercase(open('trispam.txt'), open('trispamup.txt', 'w'))
>>> prog.process()

C:\code> type trispamup.txt
SPAM
SPAM
SPAM!
But, as suggested earlier, we could also pass in arbitrary objects
      coded as classes that define the required input and output method
      interfaces. Here’s a simple example that passes in a writer class that
      wraps up the text inside HTML tags:
C:\code> python
>>> from converters import Uppercase
>>>
>>> class HTMLize:
         def write(self, line):
            print('<PRE>%s</PRE>' % line.rstrip())

>>> Uppercase(open('trispam.txt'), HTMLize()).process()
<PRE>SPAM</PRE>
<PRE>SPAM</PRE>
<PRE>SPAM!</PRE>
If you trace through this example’s control flow, you’ll see that
      we get both uppercase conversion (by inheritance)
      and HTML formatting (by composition), even though the core processing
      logic in the original Processor
      superclass knows nothing about either step. The processing code only
      cares that writers have a write
      method and that a method named converter is defined; it doesn’t care what those
      methods do when they are called. Such polymorphism and encapsulation of
      logic is behind much of the power of classes in Python.
As is, the Processor superclass
      only provides a file-scanning loop. In more realistic work, we might
      extend it to support additional programming tools for its subclasses,
      and, in the process, turn it into a full-blown application
      framework. Coding such a tool once in a superclass
      enables you to reuse it in all of your programs. Even in this simple
      example, because so much is packaged and inherited with classes, all we
      had to code was the HTML formatting step; the rest was free.
For another example of composition at work, see exercise 9 at the
      end of Chapter 32 and its solution in
      “Part VI, Classes and OOP” in Appendix D; it’s similar to the
      pizza shop example. We’ve focused on inheritance in this book because
      that is the main tool that the Python language itself provides for OOP.
      But, in practice, composition may be used as much as inheritance as a
      way to structure classes, especially in larger systems. As we’ve seen,
      inheritance and composition are often complementary (and sometimes
      alternative) techniques. Because composition is a design issue outside
      the scope of the Python language and this book, though, I’ll defer to
      other resources for more on this topic.
Why You Will Care: Classes and Persistence
I’ve mentioned Python’s pickle and shelve object persistence support a few times in this part of the book
        because it works especially well with class instances. In fact, these
        tools are often compelling enough to motivate the use of classes in
        general—by pickling or shelving a class instance, we get data storage
        that contains both data and logic combined.
For example, besides allowing us to simulate real-world
        interactions, the pizza shop classes developed in this chapter could
        also be used as the basis of a persistent restaurant database.
        Instances of classes can be stored away on disk in a single step using
        Python’s pickle or shelve modules. We used shelves to store
        instances of classes in the OOP tutorial in Chapter 28, but the object pickling
        interface is remarkably easy to use as well:
import pickle
object = SomeClass()
file   = open(filename, 'wb')     # Create external file
pickle.dump(object, file)         # Save object in file

import pickle
file   = open(filename, 'rb')
object = pickle.load(file)        # Fetch it back later
Pickling converts in-memory objects to serialized byte streams
        (in Python, strings), which may be stored in files, sent across a
        network, and so on; unpickling converts back from byte streams to
        identical in-memory objects. Shelves are similar, but they
        automatically pickle objects to an access-by-key database, which
        exports a dictionary-like interface:
import shelve
object = SomeClass()
dbase  = shelve.open(filename)
dbase['key'] = object             # Save under key

import shelve
dbase  = shelve.open(filename)
object = dbase['key']             # Fetch it back later
In our pizza shop example, using classes to model employees
        means we can get a simple database of employees and shops with little
        extra work—pickling such instance objects to a file makes them
        persistent across Python program executions:
>>> from pizzashop import PizzaShop
>>> shop = PizzaShop()
>>> shop.server, shop.chef
(<Employee: name=Pat, salary=40000>, <Employee: name=Bob, salary=50000>)
>>> import pickle
>>> pickle.dump(shop, open('shopfile.pkl', 'wb'))
This stores an entire composite shop object in a file all at once. To bring
        it back later in another session or program, a single step suffices as
        well. In fact, objects restored this way retain both state and
        behavior:
>>> import pickle
>>> obj = pickle.load(open('shopfile.pkl', 'rb'))
>>> obj.server, obj.chef
(<Employee: name=Pat, salary=40000>, <Employee: name=Bob, salary=50000>)

>>> obj.order('LSP')
LSP orders from <Employee: name=Pat, salary=40000>
Bob makes pizza
oven bakes
LSP pays for item to <Employee: name=Pat, salary=40000>
This just runs a simulation as is, but we might extend the shop
        to keep track of inventory, revenue, and so on—saving it to its file
        after changes would retain its updated state. See the standard library
        manual and related coverage in Chapter 9, Chapter 28, and Chapter 37 for more on pickles and
        shelves.



OOP and Delegation: “Wrapper” Proxy Objects
Beside inheritance and composition, object-oriented programmers often speak of
    delegation, which usually implies controller objects
    that embed other objects to which they pass off operation requests. The
    controllers can take care of administrative activities, such as logging or
    validating accesses, adding extra steps to interface components, or
    monitoring active instances.
In a sense, delegation is a special form of composition, with a
    single embedded object managed by a wrapper (sometimes called a
    proxy) class that retains most or all of the embedded
    object’s interface. The notion of proxies sometimes applies to other
    mechanisms too, such as function calls; in delegation, we’re concerned
    with proxies for all of an object’s behavior,
    including method calls and other operations.
This concept was introduced by example in Chapter 28, and in Python is often implemented with the __getattr__ method hook we studied in Chapter 30. Because this operator overloading
    method intercepts accesses to nonexistent attributes, a wrapper class can
    use __getattr__ to route arbitrary
    accesses to a wrapped object. Because this method allows attribute
    requests to be routed generically, the wrapper class retains the interface
    of the wrapped object and may add additional operations of its own.
By way of review, consider the file trace.py (which runs the same in 2.X and
    3.X):
class Wrapper:
    def __init__(self, object):
        self.wrapped = object                    # Save object
    def __getattr__(self, attrname):
        print('Trace: ' + attrname)              # Trace fetch
        return getattr(self.wrapped, attrname)   # Delegate fetch
Recall from Chapter 30 that
    __getattr__ gets the attribute name as
    a string. This code makes use of the getattr built-in
    function to fetch an attribute from the wrapped object by name
    string—getattr(X,N) is like X.N, except that N is an expression that evaluates to a string at
    runtime, not a variable. In fact, getattr(X,N) is similar to X.__dict__[N], but the former also performs an
    inheritance search, like X.N, while the
    latter does not (see Chapter 22 and
    Chapter 29 for more on the __dict__
    attribute).
You can use the approach of this module’s wrapper class to manage
    access to any object with attributes—lists, dictionaries, and even classes
    and instances. Here, the Wrapper class
    simply prints a trace message on each attribute access and delegates the
    attribute request to the embedded wrapped object:
>>> from trace import Wrapper
>>> x = Wrapper([1, 2, 3])                       # Wrap a list
>>> x.append(4)                                  # Delegate to list method
Trace: append
>>> x.wrapped                                    # Print my member
[1, 2, 3, 4]

>>> x = Wrapper({'a': 1, 'b': 2})                # Wrap a dictionary
>>> list(x.keys())                               # Delegate to dictionary method
Trace: keys
['a', 'b']
The net effect is to augment the entire interface of the wrapped object, with additional code in the
    Wrapper class. We can use this to log
    our method calls, route method calls to extra or custom logic, adapt a
    class to a new interface, and so on.
We’ll revive the notions of wrapped objects and delegated operations
    as one way to extend built-in types in the next chapter. If you are
    interested in the delegation design pattern, also watch for the
    discussions in Chapter 32 and Chapter 39 of function decorators,
    a strongly related concept designed to augment a specific
    function or method call rather than the entire interface of an object,
    and class decorators, which serve as a
    way to automatically add such delegation-based wrappers to all instances
    of a class.
Note
Version skew note: As we saw by example in
      Chapter 28, delegation of object
      interfaces by general proxies has changed
      substantially in 3.X when wrapped objects implement operator overloading
      methods. Technically, this is a new-style class
      difference, and can appear in 2.X code too if it enables this option;
      per the next chapter, it’s mandatory in 3.X and thus often considered a
      3.X change.
In Python 2.X’s default classes, operator overloading methods run
      by built-in operations are routed through generic attribute interception
      methods like __getattr__. Printing a
      wrapped object directly, for example, calls this method for __repr__ or __str__, which then passes the call on to the
      wrapped object. This pattern holds for __iter__, __add__, and the other operator methods of the
      prior chapter.
In Python 3.X, this no longer happens: printing does not trigger
      __getattr__ (or its __getattribute__ cousin we’ll study in the
      next chapter) and a default display is used instead. In 3.X, new-style
      classes look up methods invoked implicitly by built-in operations in
      classes and skip the normal instance lookup entirely. Explicit name
      attribute fetches are routed to __getattr__ the same way in both 2.X and 3.X,
      but built-in operation method lookup differs in ways that may impact
      some delegation-based tools.
We’ll return to this issue in the next chapter as a new-style
      class change, and see it live in Chapter 38
      and Chapter 39, in the context of managed attributes
      and decorators. For now, keep in mind that for delegation coding
      patterns, you may need to redefine operator overloading methods in
      wrapper classes (either by hand, by tools, or by superclasses) if they
      are used by embedded objects and you want them to be intercepted in
      new-style classes.


Pseudoprivate Class Attributes
Besides larger structuring goals, class designs often must address name
    usage too. In Chapter 28’s case study,
    for example, we noted that methods defined within a general tool class
    might be modified by subclasses if exposed, and noted the tradeoffs of
    this policy—while it supports method customization and direct calls, it’s
    also open to accidental replacements.
In Part V, we learned that every
    name assigned at the top level of a module file is exported. By default,
    the same holds for classes—data hiding is a convention, and clients may
    fetch or change attributes in any class or instance to which they have a
    reference. In fact, attributes are all “public” and “virtual,” in C++
    terms; they’re all accessible everywhere and are looked up
    dynamically at runtime.1
That said, Python today does support the notion of name “mangling” (i.e., expansion) to localize some names in
    classes. Mangled names are sometimes misleadingly called “private
    attributes,” but really this is just a way to
    localize a name to the class that created it—name
    mangling does not prevent access by code outside the class. This feature
    is mostly intended to avoid namespace collisions in instances, not to
    restrict access to names in general; mangled names are therefore better
    called “pseudoprivate” than “private.”
Pseudoprivate names are an advanced and entirely optional feature,
    and you probably won’t find them very useful until you start writing
    general tools or larger class hierarchies for use in multiprogrammer
    projects. In fact, they are not always used even when they probably should
    be—more commonly, Python programmers code internal names with a single
    underscore (e.g., _X), which is just an
    informal convention to let you know that a name shouldn’t generally be
    changed (it means nothing to Python itself).
Because you may see this feature in other people’s code, though, you
    need to be somewhat aware of it, even if you don’t use it yourself. And
    once you learn its advantages and contexts of use, you may find this
    feature to be more useful in your own code than some programmers
    realize.
Name Mangling Overview
Here’s how name mangling works: within a class statement only, any names that
      start with two underscores but don’t end with two
      underscores are automatically expanded to include the name of the
      enclosing class at their front. For instance, a name like __X within a class named Spam is changed to _Spam__X automatically: the original name is
      prefixed with a single underscore and the enclosing class’s name.
      Because the modified name contains the name of the enclosing class, it’s
      generally unique; it won’t clash with similar names created by other
      classes in a hierarchy.
Name mangling happens only for names that appear inside a class statement’s code, and then only for
      names that begin with two leading underscores. It works for
      every name preceded with double underscores,
      though—both class attributes (including method names) and instance
      attribute names assigned to self. For
      example, in a class named Spam, a
      method named __meth is mangled to
      _Spam__meth, and an instance
      attribute reference self.__X is
      transformed to self._Spam__X.
Despite the mangling, as long as the class uses the double
      underscore version everywhere it refers to the name, all its references
      will still work. Because more than one class may add attributes to an
      instance, though, this mangling helps avoid clashes—but we need to move
      on to an example to see how.

Why Use Pseudoprivate Attributes?
One of the main issues that the pseudoprivate attribute feature is
      meant to alleviate has to do with the way instance attributes are
      stored. In Python, all instance attributes wind up in the
      single instance object at the bottom of the class
      tree, and are shared by all class-level method functions the instance is
      passed into. This is different from the C++ model, where each class gets its own
      space for data members it defines.
Within a class’s method in Python, whenever a method assigns to a
      self attribute (e.g., self.attr = value), it
      changes or creates an attribute in the instance (recall that inheritance
      searches happen only on reference, not on assignment). Because this is
      true even if multiple classes in a hierarchy assign to the same
      attribute, collisions are possible.
For example, suppose that when a programmer codes a class, it is
      assumed that the class owns the attribute name X in the instance. In this class’s methods,
      the name is set, and later fetched:
class C1:
    def meth1(self): self.X = 88         # I assume X is mine
    def meth2(self): print(self.X)
Suppose further that another programmer, working in isolation,
      makes the same assumption in another class:
class C2:
    def metha(self): self.X = 99         # Me too
    def methb(self): print(self.X)
Both of these classes work by themselves. The problem arises if
      the two classes are ever mixed together in the same class tree:
class C3(C1, C2): ...
I = C3()                                 # Only 1 X in I!
Now, the value that each class gets back when it says self.X will depend on which class assigned it
      last. Because all assignments to self.X refer to the same single instance,
      there is only one X
      attribute—I.X—no matter how many
      classes use that attribute name.
This isn’t a problem if it’s expected, and indeed, this is how
      classes communicate—the instance is shared memory. To guarantee that an
      attribute belongs to the class that uses it, though, prefix the name
      with double underscores everywhere it is used in the class, as in this
      2.X/3.X file, pseudoprivate.py:
class C1:
    def meth1(self): self.__X = 88       # Now X is mine
    def meth2(self): print(self.__X)     # Becomes _C1__X in I
class C2:
    def metha(self): self.__X = 99       # Me too
    def methb(self): print(self.__X)     # Becomes _C2__X in I

class C3(C1, C2): pass
I = C3()                                 # Two X names in I

I.meth1(); I.metha()
print(I.__dict__)
I.meth2(); I.methb()
When thus prefixed, the X
      attributes will be expanded to include the names of their classes before
      being added to the instance. If you run a dir call on I or inspect its namespace dictionary after
      the attributes have been assigned, you’ll see the expanded names,
      _C1__X and _C2__X, but not X. Because the expansion makes the names more
      unique within the instance, the class coders can be fairly safe in
      assuming that they truly own any names that they prefix with two
      underscores:
% python pseudoprivate.py
{'_C2__X': 99, '_C1__X': 88}
88
99
This trick can avoid potential name collisions in the instance,
      but note that it does not amount to true privacy. If you know the name
      of the enclosing class, you can still access either of these attributes
      anywhere you have a reference to the instance by using the fully
      expanded name (e.g., I._C1__X = 77).
      Moreover, names could still collide if unknowing programmers use the
      expanded naming pattern explicitly (unlikely, but not impossible). On
      the other hand, this feature makes it less likely that you will
      accidentally step on a class’s names.
Pseudoprivate attributes are also useful in larger frameworks or
      tools, both to avoid introducing new method names that might
      accidentally hide definitions elsewhere in the class tree and to reduce
      the chance of internal methods being replaced by names defined lower in
      the tree. If a method is intended for use only within a class that may
      be mixed into other classes, the double underscore prefix virtually
      ensures that the method won’t interfere with other names in the tree,
      especially in multiple-inheritance scenarios:
class Super:
    def method(self): ...                  # A real application method

class Tool:
    def __method(self): ...                # Becomes _Tool__method
    def other(self): self.__method()       # Use my internal method

class Sub1(Tool, Super): ...
    def actions(self): self.method()       # Runs Super.method as expected

class Sub2(Tool):
    def __init__(self): self.method = 99   # Doesn't break Tool.__method
We met multiple inheritance briefly in Chapter 26 and will explore it in more
      detail later in this chapter. Recall that superclasses are searched
      according to their left-to-right order in class header lines. Here, this means Sub1 prefers Tool attributes to those in Super. Although in this example we could force
      Python to pick the application class’s methods first by switching the
      order of the superclasses listed in the Sub1 class header, pseudoprivate attributes
      resolve the issue altogether. Pseudoprivate names also prevent
      subclasses from accidentally redefining the internal method’s names, as
      in Sub2.
Again, I should note that this feature tends to be of use
      primarily for larger, multiprogrammer projects, and then only for
      selected names. Don’t be tempted to clutter your code unnecessarily;
      only use this feature for names that truly need to be controlled by a
      single class. Although useful in some general class-based tools, for
      simpler programs, it’s probably overkill.
For more examples that make use of the __X naming feature, see the lister.py mix-in classes introduced later in
      this chapter in the multiple inheritance section, as well as the
      discussion of Private class
      decorators in Chapter 39.
If you care about privacy in general, you might want to review the
      emulation of private instance attributes sketched in the section “Attribute Access: __getattr__ and __setattr__” in Chapter 30, and watch for the more complete
      Private class decorator we’ll build
      with delegation in Chapter 39. Although it’s possible
      to emulate true access controls in Python classes, this is rarely done
      in practice, even for large systems.


Methods Are Objects: Bound or Unbound
Methods in general, and bound methods in particular, simplify the
    implementation of many design goals in Python. We met bound methods
    briefly while studying __call__ in
    Chapter 30. The full story, which we’ll
    flesh out here, turns out to be more general and flexible than you might
    expect.
In Chapter 19, we learned how
    functions can be processed as normal objects. Methods are a kind of object
    too, and can be used generically in much the same way as other
    objects—they can be assigned to names, passed to functions, stored in data
    structures, and so on—and like simple functions, qualify as “first class”
    objects. Because a class’s methods can be accessed from an instance or a
    class, though, they actually come in two flavors in Python:
	Unbound (class) method objects: no self
	Accessing a function attribute of a class by qualifying the
          class returns an unbound method object. To call
          the method, you must provide an instance object explicitly as the
          first argument. In Python 3.X, an unbound method is the same as a
          simple function and can be called through the class’s name; in 2.X
          it’s a distinct type and cannot be called without providing an
          instance.

	Bound (instance) method objects: self + function pairs
	Accessing a function attribute of a class by qualifying an
          instance returns a bound method object. Python
          automatically packages the instance with the function in the bound
          method object, so you don’t need to pass an instance to call the
          method.


Both kinds of methods are full-fledged objects; they can be
    transferred around a program at will, just like strings and numbers. Both
    also require an instance in their first argument when run (i.e., a value
    for self). This is why we’ve had to
    pass in an instance explicitly when calling superclass methods from
    subclass methods in previous examples (including this chapter’s employees.py); technically, such calls produce
    unbound method objects along the way.
When calling a bound method object, Python
    provides an instance for you automatically—the instance used to create the
    bound method object. This means that bound method objects are usually
    interchangeable with simple function objects, and makes them especially
    useful for interfaces originally written for functions (see the sidebar
    “Why You Will Care: Bound Method Callbacks” for a
    realistic use case in GUIs).
To illustrate in simple terms, suppose we define the following
    class:
class Spam:
    def doit(self, message):
        print(message)
Now, in normal operation, we make an instance and call its method in
    a single step to print the passed-in argument:
object1 = Spam()
object1.doit('hello world')
Really, though, a bound method object is
    generated along the way, just before the method call’s parentheses. In
    fact, we can fetch a bound method without actually calling it. An
    object.name expression
    evaluates to an object as all expressions do. In the following, it returns
    a bound method object that packages the instance (object1) with the method function (Spam.doit). We can assign this bound method pair
    to another name and then call it as though it were a simple
    function:
object1 = Spam()
x = object1.doit        # Bound method object: instance+function
x('hello world')        # Same effect as object1.doit('...')
On the other hand, if we qualify the class to get to doit, we get back an
    unbound method object, which is simply a reference to
    the function object. To call this type of method, we must pass in an
    instance as the leftmost argument—there isn’t one in the expression
    otherwise, and the method expects it:
object1 = Spam()
t = Spam.doit           # Unbound method object (a function in 3.X: see ahead)
t(object1, 'howdy')     # Pass in instance (if the method expects one in 3.X)
By extension, the same rules apply within a class’s method if we
    reference self attributes that refer to
    functions in the class. A self.method
    expression is a bound method object because self is an instance object:
class Eggs:
    def m1(self, n):
        print(n)
    def m2(self):
        x = self.m1     # Another bound method object
        x(42)           # Looks like a simple function

Eggs().m2()             # Prints 42
Most of the time, you call methods immediately after fetching them
    with attribute qualification, so you don’t always notice the method
    objects generated along the way. But if you start writing code that calls
    objects generically, you need to be careful to treat unbound methods
    specially—they normally require an explicit instance object to be passed
    in.
Note
For an optional exception to this rule, see the discussion of
      static and class methods in the next chapter, and
      the brief mention of one in the next section. Like bound methods, static
      methods can masquerade as basic functions because they do not expect
      instances when called. Formally speaking, Python supports three kinds of
      class-level methods—instance, static, and class—and 3.X allows simple
      functions in classes, too. Chapter 40’s metaclass
      methods are distinct too, but they are essentially class methods with
      less scope.

Unbound Methods Are Functions in 3.X
In Python 3.X, the language has dropped the notion of unbound
      methods. What we describe as an unbound method here is
      treated as a simple function in 3.X. For most
      purposes, this makes no difference to your code; either way, an instance
      will be passed to a method’s first argument when it’s called through an
      instance.
Programs that do explicit type testing might be impacted,
      though—if you print the type of an instance-less class-level method, it
      displays “unbound method” in 2.X, and “function” in 3.X.
Moreover, in 3.X it is OK to call a method without an instance, as
      long as the method does not expect one and you call it only through the
      class and never through an instance. That is,
      Python 3.X will pass along an instance to methods only for
      through-instance calls. When calling through a class, you must pass an
      instance manually only if the method expects one:
C:\code> c:\python33\python
>>> class Selfless:
        def __init__(self, data):
            self.data = data
        def selfless(arg1, arg2):               # A simple function in 3.X
            return arg1 + arg2
        def normal(self, arg1, arg2):           # Instance expected when called
            return self.data + arg1 + arg2

>>> X = Selfless(2)
>>> X.normal(3, 4)                  # Instance passed to self automatically: 2+(3+4)
9
>>> Selfless.normal(X, 3, 4)        # self expected by method: pass manually
9
>>> Selfless.selfless(3, 4)         # No instance: works in 3.X, fails in 2.X!
7
The last test in this fails in 2.X, because unbound methods
      require an instance to be passed by default; it works in 3.X because
      such methods are treated as simple functions not requiring an instance.
      Although this removes some potential error trapping in 3.X (what if a
      programmer accidentally forgets to pass an instance?), it allows a
      class’s methods to be used as simple functions as long as they are not
      passed and do not expect a “self” instance argument.
The following two calls still fail in both 3.X and 2.X, though—the
      first (calling through an instance) automatically passes an instance to
      a method that does not expect one, while the second (calling through a
      class) does not pass an instance to a method that does expect one (error
      message text here is per 3.3):
>>> X.selfless(3, 4)
TypeError: selfless() takes 2 positional arguments but 3 were given

>>> Selfless.normal(3, 4)
TypeError: normal() missing 1 required positional argument: 'arg2'
Because of this change, the staticmethod
      built-in function and decorator described in the next chapter is not
      needed in 3.X for methods without a self argument that are called only through the
      class name, and never through an instance—such
      methods are run as simple functions, without receiving an instance
      argument. In 2.X, such calls are errors unless an instance is passed
      manually or the method is marked as being static (more on static methods
      in the next chapter).
It’s important to be aware of the differences in behavior in 3.X,
      but bound methods are generally more important from a practical
      perspective anyway. Because they pair together the instance and function
      in a single object, they can be treated as callables generically. The
      next section demonstrates what this means in code.
Note
For a more visual illustration of unbound method treatment in
        Python 3.X and 2.X, see also the lister.py example in the multiple
        inheritance section later in this chapter. Its classes print the value
        of methods fetched from both instances and classes, in both versions
        of Python—as unbound methods in 2.X and simple functions in 3.X. Also
        note that this change is inherent in 3.X itself, not the new-style
        class model it mandates.


Bound Methods and Other Callable Objects
As mentioned earlier, bound methods can be processed as generic
      objects, just like simple functions—they can be passed around a program
      arbitrarily. Moreover, because bound methods combine both a function and
      an instance in a single package, they can be treated like any other
      callable object and require no special syntax when invoked. The
      following, for example, stores four bound method objects in a list and
      calls them later with normal call expressions:
>>> class Number:
        def __init__(self, base):
            self.base = base
        def double(self):
            return self.base * 2
        def triple(self):
            return self.base * 3

>>> x = Number(2)                                       # Class instance objects
>>> y = Number(3)                                       # State + methods
>>> z = Number(4)
>>> x.double()                                          # Normal immediate calls
4

>>> acts = [x.double, y.double, y.triple, z.double]     # List of bound methods
>>> for act in acts:                                    # Calls are deferred
        print(act())                                    # Call as though functions

4
6
9
8
Like simple functions, bound method objects have introspection
      information of their own, including attributes that give access to the
      instance object and method function they pair. Calling the bound method
      simply dispatches the pair:
>>> bound = x.double
>>> bound.__self__, bound.__func__
(<__main__.Number object at 0x...etc...>, <function Number.double at 0x...etc...>)
>>> bound.__self__.base
2
>>> bound()                   # Calls bound.__func__(bound.__self__, ...)
4
Other callables
In fact, bound methods are just one of a handful of callable
        object types in Python. As the following demonstrates, simple
        functions coded with a def or
        lambda, instances that inherit a __call__,
        and bound instance methods can all be treated and called the same
        way:
>>> def square(arg):
        return arg ** 2                          # Simple functions (def or lambda)

>>> class Sum:
        def __init__(self, val):                 # Callable instances
            self.val = val
        def __call__(self, arg):
            return self.val + arg

>>> class Product:
        def __init__(self, val):                 # Bound methods
            self.val = val
        def method(self, arg):
            return self.val * arg

>>> sobject = Sum(2)
>>> pobject = Product(3)
>>> actions = [square, sobject, pobject.method]  # Function, instance, method

>>> for act in actions:                          # All three called same way
        print(act(5))                            # Call any one-arg callable

25
7
15
>>> actions[-1](5)                               # Index, comprehensions, maps
15
>>> [act(5) for act in actions]
[25, 7, 15]
>>> list(map(lambda act: act(5), actions))
[25, 7, 15]
Technically speaking, classes belong in the callable objects
        category too, but we normally call them to generate instances rather
        than to do actual work—a single action is better coded as a simple
        function than a class with a constructor, but the class here serves to
        illustrate its callable nature:
>>> class Negate:
        def __init__(self, val):                 # Classes are callables too
            self.val = -val                      # But called for object, not work
        def __repr__(self):                      # Instance print format
            return str(self.val)

>>> actions = [square, sobject, pobject.method, Negate]     # Call a class too
>>> for act in actions:
        print(act(5))

25
7
15
-5
>>> [act(5) for act in actions]                     # Runs __repr__ not __str__!
[25, 7, 15, −5]

>>> table = {act(5): act for act in actions}        # 3.X/2.7 dict comprehension
>>> for (key, value) in table.items():
        print('{0:2} => {1}'.format(key, value))    # 2.6+/3.X str.format

25 => <function square at 0x0000000002987400>
15 => <bound method Product.method of <__main__.Product object at ...etc...>>
-5 => <class '__main__.Negate'>
 7 => <__main__.Sum object at 0x000000000298BE48>
As you can see, bound methods, and Python’s callable objects
        model in general, are some of the many ways that Python’s design makes
        for an incredibly flexible language.
You should now understand the method object model. For other
        examples of bound methods at work, see the upcoming sidebar “Why You Will Care: Bound Method Callbacks” as well as the
        prior chapter’s discussion of callback handlers in the section on the
        method __call__.
Why You Will Care: Bound Method Callbacks
Because bound methods automatically pair an instance with a
          class’s method function, you can use them anywhere a simple function
          is expected. One of the most common places you’ll see this idea put
          to work is in code that registers methods as event callback handlers
          in the tkinter GUI
          interface (named Tkinter in
          Python 2.X) we’ve met before. As review, here’s the simple
          case:
def handler():
    ...use globals or closure scopes for state...
...
widget = Button(text='spam', command=handler)
To register a handler for button click events, we usually pass
          a callable object that takes no arguments to the command keyword argument. Function names
          (and lambdas) work here, and so
          do class-level methods—though they must be bound methods if they
          expect an instance when called:
class MyGui:
    def handler(self):
        ...use self.attr for state...
    def makewidgets(self):
        b = Button(text='spam', command=self.handler)
Here, the event handler is self.handler—a bound method object that
          remembers both self and MyGui.handler. Because self will refer to the original instance
          when handler is later invoked on
          events, the method will have access to instance attributes that can
          retain state between events, as well as class-level methods. With
          simple functions, state normally must be retained in global
          variables or enclosing function scopes instead.
See also the discussion of __call__ operator overloading in Chapter 30 for another way to make
          classes compatible with function-based APIs, and lambda in Chapter 19 for another tool often used in
          callback roles. As noted in the former of these, you don’t generally
          need to wrap a bound method in a lambda; the bound method in the preceding
          example already defers the call (note that there are no parentheses
          to trigger one), so adding a lambda here would be pointless!




Classes Are Objects: Generic Object Factories
Sometimes, class-based designs require objects to be created in
    response to conditions that can’t be predicted when a program is written.
    The factory design pattern allows such a deferred approach. Due in large
    part to Python’s flexibility, factories can take multiple forms, some of
    which don’t seem special at all.
Because classes are also “first class” objects, it’s easy to pass
    them around a program, store them in data structures, and so on. You can
    also pass classes to functions that generate arbitrary kinds of objects;
    such functions are sometimes called factories in OOP design circles.
    Factories can be a major undertaking in a statically typed language such as
    C++ but are almost trivial to implement in Python.
For example, the call syntax we met in Chapter 18
    can call any class with any number of positional or keyword constructor
    arguments in one step to generate any sort of instance:2
def factory(aClass, *pargs, **kargs):        # Varargs tuple, dict
    return aClass(*pargs, **kargs)           # Call aClass (or apply in 2.X only)

class Spam:
    def doit(self, message):
        print(message)

class Person:
    def __init__(self, name, job=None):
        self.name = name
        self.job  = job

object1 = factory(Spam)                      # Make a Spam object
object2 = factory(Person, "Arthur", "King")  # Make a Person object
object3 = factory(Person, name='Brian')      # Ditto, with keywords and default
In this code, we define an object generator function called factory. It expects to be passed a class object
    (any class will do) along with zero or more arguments for the class’s
    constructor. The function uses special “varargs” call syntax to call the
    function and return an instance.
The rest of the example simply defines two classes and generates
    instances of both by passing them to the factory function. And that’s the only factory
    function you’ll ever need to write in Python; it works for any class and
    any constructor arguments. If you run this live (factory.py), your objects will look like
    this:
>>> object1.doit(99)
99
>>> object2.name, object2.job
('Arthur', 'King')
>>> object3.name, object3.job
('Brian', None)
By now, you should know that everything is a “first class” object in
    Python—including classes, which are usually just compiler input in
    languages like C++. It’s natural to pass them around this way. As
    mentioned at the start of this part of the book, though, only objects
    derived from classes do full OOP in Python.
Why Factories?
So what good is the factory
      function (besides providing an excuse to illustrate first-class class
      objects in this book)? Unfortunately, it’s difficult to show
      applications of this design pattern without listing much more code than
      we have space for here. In general, though, such a factory might allow
      code to be insulated from the details of dynamically configured object
      construction.
For instance, recall the processor example presented in the abstract in
      Chapter 26, and then again as a
      composition example earlier in this chapter. It accepts reader and
      writer objects for processing arbitrary data streams. The original
      version of this example manually passed in instances of specialized
      classes like FileWriter and SocketReader to customize the data streams
      being processed; later, we passed in hardcoded file, stream, and
      formatter objects. In a more dynamic scenario, external devices such as
      configuration files or GUIs might be used to configure the
      streams.
In such a dynamic world, we might not be able to hardcode the
      creation of stream interface objects in our scripts, but might instead
      create them at runtime according to the contents of a configuration
      file.
Such a file might simply give the string name of a stream class to
      be imported from a module, plus an optional constructor call argument.
      Factory-style functions or code might come in handy here because they
      would allow us to fetch and pass in classes that are not hardcoded in
      our program ahead of time. Indeed, those classes might not even have
      existed at all when we wrote our code:
classname = ...parse from config file...
classarg  = ...parse from config file...

import streamtypes                           # Customizable code
aclass = getattr(streamtypes, classname)     # Fetch from module
reader = factory(aclass, classarg)           # Or aclass(classarg)
processor(reader, ...)
Here, the getattr built-in is
      again used to fetch a module attribute given a string name (it’s like
      saying obj.attr, but
      attr is a string). Because this code snippet
      assumes a single constructor argument, it doesn’t strictly need factory—we could make an instance with just
      aclass(classarg). The factory
      function may prove more useful in the presence of unknown argument
      lists, however, and the general factory coding pattern can improve the code’s flexibility.


Multiple Inheritance: “Mix-in” Classes
Our last design pattern is one of the most useful, and will serve as a
    subject for a more realistic example to wrap up this chapter and point
    toward the next. As a bonus, the code we’ll write here may be a useful
    tool.
Many class-based designs call for combining disparate sets of
    methods. As we’ve seen, in a class
    statement, more than one superclass can be listed in parentheses in the
    header line. When you do this, you leverage multiple
    inheritance—the class and its instances inherit names from
    all the listed superclasses.
When searching for an attribute, Python’s inheritance search
    traverses all superclasses in the class header from left to
    right until a match is found. Technically, because any of the superclasses
    may have superclasses of its own, this search can be a bit more complex
    for larger class trees:
	In classic classes (the default until
        Python 3.0), the attribute search in all cases proceeds depth-first
        all the way to the top of the inheritance tree, and then from left to
        right. This order is usually called DFLR, for its depth-first,
        left-to-right path.

	In new-style classes (optional in 2.X and
        standard in 3.X), the attribute search is usually as before, but in
        diamond patterns proceeds across by tree levels before
        moving up, in a more breadth-first fashion. This order is usually
        called the new-style MRO, for method resolution order, though it’s used for all
        attributes, not just methods.


The second of these search rules is explained fully in the new-style
    class discussion in the next chapter. Though difficult to understand
    without the next chapter’s code (and somewhat rare to create yourself),
    diamond patterns appear when multiple classes in a tree share a common
    superclass; the new-style search order is designed to visit such a shared
    superclass just once, and after all its subclasses. In either model,
    though, when a class has multiple superclasses, they are searched from
    left to right according to the order listed in the class statement header lines.
In general, multiple inheritance is good for modeling objects that
    belong to more than one set. For instance, a person may be an engineer, a
    writer, a musician, and so on, and inherit properties from all such sets.
    With multiple inheritance, objects obtain the union of the behavior in all
    their superclasses. As we’ll see ahead, multiple inheritance also allows
    classes to function as general packages of mixable attributes.
Though a useful pattern, multiple inheritance’s chief downside is
    that it can pose a conflict when the same method (or
    other attribute) name is defined in more than one superclass. When this
    occurs, the conflict is resolved either automatically by the inheritance
    search order, or manually in your code:
	Default: By default, inheritance chooses
        the first occurrence of an attribute it finds
        when an attribute is referenced normally—by self.method(), for example. In this mode,
        Python chooses the lowest and leftmost in classic classes, and in
        nondiamond patterns in all classes; new-style classes may choose an
        option to the right before one above in diamonds.

	Explicit: In some class models, you may
        sometimes need to select an attribute explicitly
        by referencing it through its class name—with superclass.method(self), for instance. Your
        code breaks the conflict and overrides the search’s default—to select
        an option to the right of or above the inheritance search’s
        default.


This is an issue only when the same name
    appears in multiple superclasses, and you do not wish to use the first one
    inherited. Because this isn’t as common an issue in typical Python code as
    it may sound, we’ll defer details on this topic until we study new-style
    classes and their MRO and super tools
    in the next chapter, and revisit this as a “gotcha” at the end of that
    chapter. First, though, the next section demonstrates a practical use case
    for multiple inheritance-based tools.
Coding Mix-in Display Classes
Perhaps the most common way multiple inheritance is used is to
      “mix in” general-purpose methods from superclasses. Such superclasses
      are usually called mix-in classes—they provide
      methods you add to application classes by inheritance. In a sense,
      mix-in classes are similar to modules: they provide packages of methods
      for use in their client subclasses. Unlike simple functions in modules,
      though, methods in mix-in classes also can participate in inheritance
      hierarchies, and have access to the self instance for using state information and
      other methods in their trees.
For example, as we’ve seen, Python’s default way to print a class
      instance object isn’t incredibly useful:
>>> class Spam:
        def __init__(self):                     # No __repr__ or __str__
            self.data1 = "food"

>>> X = Spam()
>>> print(X)                                    # Default: class name + address (id)
<__main__.Spam object at 0x00000000029CA908>    # Same in 2.X, but says "instance"
As you saw in both Chapter 28’s
      case study and Chapter 30’s operator
      overloading coverage, you can provide a __str__ or __repr__ method to implement a custom string
      representation of your own. But, rather than coding one of these in each
      and every class you wish to print, why not code it once in a
      general-purpose tool class and inherit it in all your classes?
That’s what mix-ins are for. Defining a display method in a mix-in
      superclass once enables us to reuse it anywhere we want to see a custom
      display format—even in classes that may already have another superclass.
      We’ve already seen tools that do related work:
	Chapter 28’s AttrDisplay class formatted instance
          attributes in a generic __repr__
          method, but it did not climb class trees and was utilized in
          single-inheritance mode only.

	Chapter 29’s classtree.py module defined functions for
          climbing and sketching class trees, but it did not display object
          attributes along the way and was not architected as an inheritable
          class.


Here, we’re going to revisit these examples’ techniques and expand
      upon them to code a set of three mix-in classes that serve as generic
      display tools for listing instance attributes, inherited attributes, and
      attributes on all objects in a class tree. We’ll also use our tools in
      multiple-inheritance mode and deploy coding techniques that make classes
      better suited to use as generic tools.
Unlike Chapter 28, we’ll also
      code this with a __str__ instead of a
      __repr__. This is partially a style
      issue and limits their role to print
      and str, but the displays we’ll be
      developing will be rich enough to be categorized as more user-friendly
      than as-code. This policy also leaves client classes the option of
      coding an alternative lower-level display for interactive echoes and
      nested appearances with a __repr__.
      Using __repr__ here would still allow
      an alternative __str__, but the
      nature of the displays we’ll be implementing more
      strongly suggests a __str__ role. See
      Chapter 30 for a review of these
      distinctions.
Listing instance attributes with __dict__
Let’s get started with the simple case—listing attributes attached to an instance.
        The following class, coded in the file listinstance.py, defines a mix-in called
        ListInstance that overloads the
        __str__ method for all classes that
        include it in their header lines. Because this is coded as a class,
        ListInstance is a generic tool
        whose formatting logic can be used for instances of any subclass
        client:
#!python
# File listinstance.py (2.X + 3.X)

class ListInstance:
    """
    Mix-in class that provides a formatted print() or str() of instances via
    inheritance of __str__ coded here;  displays instance attrs only;  self is
    instance of lowest class; __X names avoid clashing with client's attrs
    """
    def __attrnames(self):
        result = ''
        for attr in sorted(self.__dict__):
            result += '\t%s=%s\n' % (attr, self.__dict__[attr])
        return result

    def __str__(self):
        return '<Instance of %s, address %s:\n%s>' % (
                           self.__class__.__name__,         # My class's name
                           id(self),                        # My address
                           self.__attrnames())              # name=value list

if __name__ == '__main__':
    import testmixin
    testmixin.tester(ListInstance)
All the code in this section runs in both Python 2.X and 3.X. A
        coding note: this code exhibits a classic comprehension pattern, and
        you could save some program real estate by implementing the __attrnames method here more concisely with
        a generator expression that is triggered by the
        string join method, but it’s
        arguably less clear—expressions that wrap lines like this should
        generally make you consider simpler coding alternatives:
    def __attrnames(self):
        return ''.join('\t%s=%s\n' % (attr, self.__dict__ [attr])
                          for attr in sorted(self.__dict__))
ListInstance uses some
        previously explored tricks to extract the instance’s class name and
        attributes:
	Each instance has a built-in __class__ attribute that references the
            class from which it was created, and each class has a __name__
            attribute that references the name in the header, so the
            expression self.__class__.__name__ fetches the name
            of an instance’s class.

	This class does most of its work by simply scanning the
            instance’s attribute dictionary (remember, it’s exported in
            __dict__) to build up a string
            showing the names and values of all instance attributes. The
            dictionary’s keys are sorted to finesse any ordering differences
            across Python releases.


In these respects, ListInstance is similar to Chapter 28’s attribute display; in fact,
        it’s largely just a variation on a theme. Our class here uses two
        additional techniques, though:
	It displays the instance’s memory address by calling
            the id built-in
            function, which returns any object’s address (by definition, a
            unique object identifier, which will be useful in later mutations
            of this code).

	It uses the pseudoprivate naming
            pattern for its worker method: __attrnames. As we learned earlier in
            this chapter, Python automatically localizes any such name to its
            enclosing class by expanding the attribute name to include the
            class name (in this case, it becomes _ListInstance__attrnames). This holds
            true for both class attributes (like methods) and instance
            attributes attached to self. As
            noted in Chapter 28’s first-cut
            version, this behavior is useful in a general tool like this, as
            it ensures that its names don’t clash with any names used in its
            client subclasses.


Because ListInstance defines
        a __str__ operator overloading
        method, instances derived from this class display their attributes
        automatically when printed, giving a bit more information than a
        simple address. Here is the class in action, in single-inheritance
        mode, mixed in to the previous section’s class (this code works the
        same in both Python 3.X and 2.X, though 2.X default repr displays use the label “instance”
        instead of “object”):
>>> from listinstance import ListInstance
>>> class Spam(ListInstance):                    # Inherit a __str__ method
        def __init__(self):
            self.data1 = 'food'

>>> x = Spam()
>>> print(x)                                     # print() and str() run __str__
<Instance of Spam, address 43034496:
        data1=food
>
You can also fetch and save the listing output as a string
        without printing it with str, and
        interactive echoes still use the default format because we’ve left
        __repr__ as an option for
        clients:
>>> display = str(x)                             # Print this to interpret escapes
>>> display
'<Instance of Spam, address 43034496:\n\tdata1=food\n>'

>>> x                                            # The __repr__ still is a default
<__main__.Spam object at 0x000000000290A780>
The ListInstance class is
        useful for any classes you write—even classes that already have one or
        more superclasses. This is where multiple
        inheritance comes in handy: by adding ListInstance to the list of superclasses in
        a class header (i.e., mixing it in), you get its __str__ “for free” while still inheriting
        from the existing superclass(es). The file testmixin0.py demonstrates with a first-cut
        testing script:
# File testmixin0.py
from listinstance import ListInstance # Get lister tool class

class Super:
    def __init__(self):               # Superclass __init__
        self.data1 = 'spam'           # Create instance attrs
    def ham(self):
        pass

class Sub(Super, ListInstance):       # Mix in ham and a __str__
    def __init__(self):               # Listers have access to self
        Super.__init__(self)
        self.data2 = 'eggs'           # More instance attrs
        self.data3 = 42
    def spam(self):                   # Define another method here
        pass

if __name__ == '__main__':
    X = Sub()
    print(X)                          # Run mixed-in __str__
Here, Sub inherits names from
        both Super and ListInstance; it’s a composite of its own
        names and names in both its superclasses. When you make a Sub instance and print it, you automatically
        get the custom representation mixed in from ListInstance (in this case, this script’s
        output is the same under both Python 3.X and 2.X, except for object
        addresses, which can naturally vary per process):
c:\code> python testmixin0.py
<Instance of Sub, address 44304144:
        data1=spam
        data2=eggs
        data3=42
>
This testmixin0 testing
        script works, but it hardcodes the tested class’s name in the code,
        and makes it difficult to experiment with alternatives—as we will in a
        moment. To be more flexible, we can borrow a page from Chapter 25’s module reloaders, and pass in
        the object to be tested, as in the following improved test script,
        testmixin—the one actually used
        by all the lister class modules’ self-test code. In this context the
        object passed in to the tester is a mix-in class
        instead of a function, but the principle is similar: everything
        qualifies as a passable “first class” object in Python:
#!python
# File testmixin.py (2.X + 3.X)
"""
Generic lister mixin tester: similar to transitive reloader in
Chapter 25, but passes a class object to tester (not function),
and testByNames adds loading of both module and class by name
strings here, in keeping with Chapter 31's factories pattern.
"""
import importlib

def tester(listerclass, sept=False):

    class Super:
        def __init__(self):            # Superclass __init__
            self.data1 = 'spam'        # Create instance attrs
        def ham(self):
            pass

    class Sub(Super, listerclass):     # Mix in ham and a __str__
        def __init__(self):            # Listers have access to self
            Super.__init__(self)
            self.data2 = 'eggs'        # More instance attrs
            self.data3 = 42
        def spam(self):                # Define another method here
            pass

    instance = Sub()                   # Return instance with lister's __str__
    print(instance)                    # Run mixed-in __str__ (or via str(x))
    if sept: print('-' * 80)

def testByNames(modname, classname, sept=False):
    modobject   = importlib.import_module(modname)  # Import by namestring
    listerclass = getattr(modobject, classname)     # Fetch attr by namestring
    tester(listerclass, sept)

if __name__ == '__main__':
    testByNames('listinstance',  'ListInstance',  True)      # Test all three here
    testByNames('listinherited', 'ListInherited', True)
    testByNames('listtree',      'ListTree',      False)
While it’s at it, this script also adds the ability to specify
        test module and class by name string, and
        leverages this in its self-test code—an application of the factory
        pattern’s mechanics described earlier. Here is the new script in
        action, being run by the lister module that imports it to test its own
        class (with the same results in 2.X and 3.X again); we can run the
        test script itself too, but that mode tests the two lister variants,
        which we have yet to see (or code!):
c:\code> python listinstance.py
<Instance of Sub, address 43256968:
        data1=spam
        data2=eggs
        data3=42
>

c:\code> python testmixin.py
<Instance of Sub, address 43977584:
        data1=spam
        data2=eggs
        data3=42
>
...and tests of two other lister classes coming up...
The ListInstance class we’ve
        coded so far works in any class it’s mixed into because self refers to an instance of the subclass
        that pulls this class in, whatever that may be. Again, in a sense,
        mix-in classes are the class equivalent of modules—packages of methods
        useful in a variety of clients. For example, here is ListInstance working again in
        single-inheritance mode on a different class’s instances, loaded with
        import, and displaying attributes
        assigned outside the class:
>>> import listinstance
>>> class C(listinstance.ListInstance): pass

>>> x = C()
>>> x.a, x.b, x.c = 1, 2, 3
>>> print(x)
<Instance of C, address 43230824:
        a=1
        b=2
        c=3
>
Besides the utility they provide, mix-ins optimize code
        maintenance, like all classes do. For example, if you later decide to
        extend ListInstance’s __str__ to also print all the class
        attributes that an instance inherits, you’re safe; because it’s an
        inherited method, changing __str__
        automatically updates the display of each subclass that imports the
        class and mixes it in. And since it’s now officially “later,” let’s
        move on to the next section to see what such an extension might look
        like.

Listing inherited attributes with dir
As it is, our ListInstance
        mix-in displays instance attributes only (i.e., names attached to the instance
        object itself). It’s trivial to extend the class to display all the
        attributes accessible from an instance, though—both its own and those
        it inherits from its classes. The trick is to use the dir built-in function instead of scanning
        the instance’s __dict__ dictionary;
        the latter holds instance attributes only, but the former also
        collects all inherited attributes in Python 2.2 and later.
The following mutation codes this scheme; I’ve coded this in its
        own module to facilitate simple testing, but if existing clients were
        to use this version instead they would pick up the new display
        automatically (and recall from Chapter 25 that an import’s as clause can rename a new version to a
        prior name being used):
#!python
# File listinherited.py (2.X + 3.X)

class ListInherited:
    """
    Use dir() to collect both instance attrs and names inherited from
    its classes;  Python 3.X shows more names than 2.X because of the
    implied object superclass in the new-style class model;  getattr()
    fetches inherited names not in self.__dict__;  use __str__, not
    __repr__, or else this loops when printing bound methods!
    """
    def __attrnames(self):
        result = ''
        for attr in dir(self):                              # Instance dir()
            if attr[:2] == '__' and attr[-2:] == '__':      # Skip internals
                result += '\t%s\n' % attr
            else:
                result += '\t%s=%s\n' % (attr, getattr(self, attr))
        return result

    def __str__(self):
        return '<Instance of %s, address %s:\n%s>' % (
                           self.__class__.__name__,         # My class's name
                           id(self),                        # My address
                           self.__attrnames())              # name=value list

if __name__ == '__main__':
    import testmixin
    testmixin.tester(ListInherited)
Notice that this code skips __X__ names’ values; most of these are internal
        names that we don’t generally care about in a generic listing like
        this. This version also must use the getattr built-in function to fetch
        attributes by name string instead of using instance attribute
        dictionary indexing—getattr employs
        the inheritance search protocol, and some of the names we’re listing
        here are not stored on the instance itself.
To test the new version, run its file directly—it passes the
        class it defines to the testmixin.py file’s test function to be
        used as a mix-in in a subclass. This output of this test and lister
        class varies per release, though, because dir results differ. In Python 2.X, we get
        the following; notice the name mangling at work in the lister’s method
        name (I truncated some of the full value displays to fit on this
        page):
c:\code> c:\python27\python listinherited.py
<Instance of Sub, address 35161352:
        _ListInherited__attrnames=<bound method Sub.__attrnames of <test...more...>>
        __doc__
        __init__
        __module__
        __str__
        data1=spam
        data2=eggs
        data3=42
        ham=<bound method Sub.ham of <testmixin.Sub instance at 0x00000...more...>>
        spam=<bound method Sub.spam of <testmixin.Sub instance at 0x00000...more...>>
>
In Python 3.X, more attributes are displayed because all classes
        are “new style” and inherit names from the implied object superclass; more on this in Chapter 32. Because so many names are
        inherited from the default superclass, I’ve omitted many here—there
        are 32 in total in 3.3. Run this on your own for the full
        listing:
c:\code> c:\python33\python listinherited.py
<Instance of Sub, address 43253152:
        _ListInherited__attrnames=<bound method Sub.__attrnames of <test...more...>>
        __class__
        __delattr__
        __dict__
        __dir__
        __doc__
        __eq__
        ...more names omitted 32 total...
        __repr__
        __setattr__
        __sizeof__
        __str__
        __subclasshook__
        __weakref__
        data1=spam
        data2=eggs
        data3=42
        ham=<bound method Sub.ham of <testmixin.tester.<locals>.Sub ...more...>>
        spam=<bound method Sub.spam of <testmixin.tester.<locals>.Sub ...more...>>
>
As one possible improvement to address the proliferation of
        inherited built-in names and long values here, the following
        alternative for __attrnames in file
        listinherited2.py of the book
        example’s package groups the double-underscore names separately, and
        minimizes line wrapping for large attribute values; notice how it
        escapes a % with %% so that just one remains for the final
        formatting operation at the end:
    def __attrnames(self, indent=' '*4):
        result  = 'Unders%s\n%s%%s\nOthers%s\n' % ('-'*77, indent, '-'*77)
        unders = []
        for attr in dir(self):                              # Instance dir()
            if attr[:2] == '__' and attr[-2:] == '__':      # Skip internals
                unders.append(attr)
            else:
                display = str(getattr(self, attr))[:82-(len(indent) + len(attr))]
                result += '%s%s=%s\n' % (indent, attr, display)
        return result % ', '.join(unders)
With this change, the class’s test output is a bit more
        sophisticated, but also more concise and usable:
c:\code> c:\python27\python listinherited2.py
<Instance of Sub, address 36299208:
Unders-----------------------------------------------------------------------------
    __doc__, __init__, __module__, __str__
Others-----------------------------------------------------------------------------
    _ListInherited__attrnames=<bound method Sub.__attrnames of <testmixin.Sub insta
    data1=spam
    data2=eggs
    data3=42
    ham=<bound method Sub.ham of <testmixin.Sub instance at 0x000000000229E1C8>>
    spam=<bound method Sub.spam of <testmixin.Sub instance at 0x000000000229E1C8>>
>

c:\code> c:\python33\python listinherited2.py
<Instance of Sub, address 43318912:
Unders-----------------------------------------------------------------------------
    __class__, __delattr__, __dict__, __dir__, __doc__, __eq__, __format__, __ge__,
__getattribute__, __gt__, __hash__, __init__, __le__, __lt__, __module__, __ne__,
__new__, __qualname__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__,
__str__, __subclasshook__, __weakref__
Others-----------------------------------------------------------------------------
    _ListInherited__attrnames=<bound method Sub.__attrnames of <testmixin.tester.<l
    data1=spam
    data2=eggs
    data3=42
    ham=<bound method Sub.ham of <testmixin.tester.<locals>.Sub object at 0x0000000
    spam=<bound method Sub.spam of <testmixin.tester.<locals>.Sub object at 0x00000
>
Display format is an open-ended problem (e.g., Python’s standard
        pprint “pretty printer” module may
        offer options here too), so we’ll leave further polishing as a
        suggested exercise. The tree lister of the next section may be more
        useful in any event.
Note
Looping in
          __repr__: One caution here—now that we’re
          displaying inherited methods too, we have to use __str__ instead of __repr__ to overload printing. With
          __repr__, this code will fall
          into recursive loops—displaying the value of a
          method triggers the __repr__ of
          the method’s class, in order to display the class. That is, if the
          lister’s __repr__ tries to
          display a method, displaying the method’s class will trigger the
          lister’s __repr__ again. Subtle,
          but true! Change __str__ to
          __repr__ here to see this for
          yourself. If you must use __repr__ in such a context, you can avoid
          the loops by using isinstance to
          compare the type of attribute values against types.MethodType in the standard library,
          to know which items to skip.


Listing attributes per object in class trees
Let’s code one last extension. As it is, our latest lister includes inherited names, but doesn’t
        give any sort of designation of the classes from which the names are
        acquired. As we saw in the classtree.py example near the end of Chapter 29, though, it’s straightforward to
        climb class inheritance trees in code. The following mix-in class,
        coded in the file listtree.py,
        makes use of this same technique to display attributes grouped by the
        classes they live in—it sketches the full physical class
        tree, displaying attributes attached to each object along
        the way. The reader must still infer attribute inheritance, but this
        gives substantially more detail than a simple flat list:
#!python
# File listtree.py (2.X + 3.X)

class ListTree:
    """
    Mix-in that returns an __str__ trace of the entire class tree and all
    its objects' attrs at and above self;  run by print(), str() returns
    constructed string;  uses __X attr names to avoid impacting clients;
    recurses to superclasses explicitly, uses str.format() for clarity;
    """
    def __attrnames(self, obj, indent):
        spaces = ' ' * (indent + 1)
        result = ''
        for attr in sorted(obj.__dict__):
            if attr.startswith('__') and attr.endswith('__'):
                result += spaces + '{0}\n'.format(attr)
            else:
                result += spaces + '{0}={1}\n'.format(attr, getattr(obj, attr))
        return result

    def __listclass(self, aClass, indent):
        dots = '.' * indent
        if aClass in self.__visited:
            return '\n{0}<Class {1}:, address {2}: (see above)>\n'.format(
                           dots,
                           aClass.__name__,
                           id(aClass))
        else:
            self.__visited[aClass] = True
            here  = self.__attrnames(aClass, indent)
            above = ''
            for super in aClass.__bases__:
                above += self.__listclass(super, indent+4)
            return '\n{0}<Class {1}, address {2}:\n{3}{4}{5}>\n'.format(
                           dots,
                           aClass.__name__,
                           id(aClass),
                           here, above,
                           dots)

    def __str__(self):
        self.__visited = {}
        here  = self.__attrnames(self, 0)
        above = self.__listclass(self.__class__, 4)
        return '<Instance of {0}, address {1}:\n{2}{3}>'.format(
                           self.__class__.__name__,
                           id(self),
                           here, above)

if __name__ == '__main__':
    import testmixin
    testmixin.tester(ListTree)
This class achieves its goal by traversing the inheritance
        tree—from an instance’s __class__
        to its class, and then from the class’s __bases__ to
        all superclasses recursively, scanning each object’s attribute __dict__
        along the way. Ultimately, it concatenates each tree portion’s string
        as the recursion unwinds.
It can take a while to understand recursive programs like this,
        but given the arbitrary shape and depth of class trees, we really have
        no choice here (apart from explicit stack equivalents of the sorts we
        met in Chapter 19 and Chapter 25, which tend to be no simpler, and
        which we’ll omit here for space and time). This class is coded to keep
        its business as explicit as possible, though, to maximize
        clarity.
For example, you could replace the __listclass method’s loop statement in the
        first of the following with the implicitly run generator expression in
        the second, but the second seems unnecessarily convoluted in this
        context—recursive calls embedded in a generator expression—and has
        no obvious performance advantage, especially given this program’s
        limited scope (neither alternative makes a temporary list, though the
        first may create more temporary results depending on the internal
        implementation of strings, concatenation, and join—something you’d need to time with Chapter 21’s tools to determine):
            above = ''
            for super in aClass.__bases__:
                above += self.__listclass(super, indent+4)
...or...
            above = ''.join(
                    self.__listclass(super, indent+4) for super in aClass.__bases__)
You could also code the else
        clause in __listclass like the
        following, as in the prior edition of this book—an alternative that
        embeds everything in the format
        arguments list; relies on the fact that the join call kicks off the generator expression
        and its recursive calls before the format
        operation even begins building up the result text; and seems more
        difficult to understand, despite the fact that I wrote it (never a
        good sign!):
            self.__visited[aClass] = True
            genabove = (self.__listclass(c, indent+4) for c in aClass.__bases__)
            return '\n{0}<Class {1}, address {2}:\n{3}{4}{5}>\n'.format(
                           dots,
                           aClass.__name__,
                           id(aClass),
                           self.__attrnames(aClass, indent),   # Runs before format!
                           ''.join(genabove),
                           dots)
As always, explicit is better than implicit, and your code can
        be as big a factor in this as the tools it uses.
Also notice how this version uses the Python 3.X and 2.6/2.7
        string format method
        instead of % formatting
        expressions, in an effort to make substitutions arguably clearer; when
        many substitutions are applied like this, explicit argument numbers
        may make the code easier to decipher. In short, in this version we
        exchange the first of the following lines for the second:
        return '<Instance of %s, address %s:\n%s%s>' % (...)          # Expression
        return '<Instance of {0}, address {1}:\n{2}{3}>'.format(...)  # Method
This policy has an unfortunate downside in 3.2 and 3.3 too, but
        we have to run the code to see why.

Running the tree lister
Now, to test, run this class’s module file as before; it passes
        the ListTree class to testmixin.py to be mixed in with a subclass
        in the test function. The file’s tree-sketcher output in Python 2.X is
        as follows:
c:\code> c:\python27\python listtree.py
<Instance of Sub, address 36690632:
 _ListTree__visited={}
 data1=spam
 data2=eggs
 data3=42

....<Class Sub, address 36652616:
     __doc__
     __init__
     __module__
     spam=<unbound method Sub.spam>

........<Class Super, address 36652712:
         __doc__
         __init__
         __module__
         ham=<unbound method Super.ham>
........>

........<Class ListTree, address 30795816:
         _ListTree__attrnames=<unbound method ListTree.__attrnames>
         _ListTree__listclass=<unbound method ListTree.__listclass>
         __doc__
         __module__
         __str__
........>
....>
>
Notice in this output how methods are
        unbound now under 2.X, because we fetch them from
        classes directly. In the previous section’s
        version they displayed as bound methods, because
        ListInherited fetched these from
        instances with getattr instead (the first version indexed
        the instance __dict__ and did not
        display inherited methods on classes at all). Also observe how the
        lister’s __visited table has its
        name mangled in the instance’s attribute dictionary; unless we’re very
        unlucky, this won’t clash with other data there. Some of the lister
        class’s methods are mangled for pseudoprivacy as well.
Under Python 3.X in the following, we again get extra attributes
        which may vary within the 3.X line, and extra superclasses—as we’ll
        learn in the next chapter, all top-level classes inherit from the
        built-in object class automatically
        in 3.X; Python 2.X classes do so manually if they desire new-style
        class behavior. Also notice that the attributes that were unbound
        methods in 2.X are simple functions in 3.X, as
        described earlier in this chapter (and that again, I’ve deleted most
        built-in attributes in object to
        save space here; run this on your own for the complete
        listing):
c:\code> c:\python33\python listtree.py
<Instance of Sub, address 44277488:
 _ListTree__visited={}
 data1=spam
 data2=eggs
 data3=42

....<Class Sub, address 36990264:
     __doc__
     __init__
     __module__
     __qualname__
     spam=<function tester.<locals>.Sub.spam at 0x0000000002A3C840>

........<Class Super, address 36989352:
         __dict__
         __doc__
         __init__
         __module__
         __qualname__
         __weakref__
         ham=<function tester.<locals>.Super.ham at 0x0000000002A3C730>

............<Class object, address 506770624:
             __class__
             __delattr__
             __dir__
             __doc__
             __eq__
             ...more omitted: 22 total...
             __repr__
             __setattr__
             __sizeof__
             __str__
             __subclasshook__
............>
........>

........<Class ListTree, address 36988440:
         _ListTree__attrnames=<function ListTree.__attrnames at 0x0000000002A3C158>
         _ListTree__listclass=<function ListTree.__listclass at 0x0000000002A3C1E0>
         __dict__
         __doc__
         __module__
         __qualname__
         __str__
         __weakref__

............<Class object:, address 506770624: (see above)>
........>
....>
>
This version avoids listing the same class object twice by
        keeping a table of classes visited so far (this
        is why an object’s id is
        included—to serve as a key for a previously displayed item in the
        report). Like the transitive module reloader of Chapter 25, a dictionary works to avoid
        repeats in the output because class objects are hashable and thus may
        be dictionary keys; a set would provide similar functionality.
Technically, cycles are not generally
        possible in class inheritance trees—a class must already have been
        defined to be named as a superclass, and Python raises an exception as
        it should if you attempt to create a cycle later by __bases__ changes—but the visited mechanism
        here avoids relisting a class twice:
>>> class C: pass
>>> class B(C): pass
>>> C.__bases__ = (B,)        # Deep, dark magic!
TypeError: a __bases__ item causes an inheritance cycle

Usage variation: Showing underscore name values
This version also takes care to avoid displaying large
        internal objects by skipping __X__ names again. If you comment out the code
        that treats these names specially:
        for attr in sorted(obj.__dict__):
#            if attr.startswith('__') and attr.endswith('__'):
#                result += spaces + '{0}\n'.format(attr)
#            else:
                result += spaces + '{0}={1}\n'.format(attr, getattr(obj, attr))
then their values will display normally. Here’s the output in
        2.X with this temporary change made, giving the values of every
        attribute in the class tree:
c:\code> c:\python27\python listtree.py
<Instance of Sub, address 35750408:
 _ListTree__visited={}
 data1=spam
 data2=eggs
 data3=42

....<Class Sub, address 36353608:
     __doc__=None
     __init__=<unbound method Sub.__init__>
     __module__=testmixin
     spam=<unbound method Sub.spam>

........<Class Super, address 36353704:
         __doc__=None
         __init__=<unbound method Super.__init__>
         __module__=testmixin
         ham=<unbound method Super.ham>
........>

........<Class ListTree, address 31254568:
         _ListTree__attrnames=<unbound method ListTree.__attrnames>
         _ListTree__listclass=<unbound method ListTree.__listclass>
         __doc__=
    Mix-in that returns an __str__ trace of the entire class tree and all
    its objects' attrs at and above self;  run by print(), str() returns
    constructed string;  uses __X attr names to avoid impacting clients;
    recurses to superclasses explicitly, uses str.format() for clarity;

         __module__=__main__
         __str__=<unbound method ListTree.__str__>
........>
....>
>
This test’s output is much larger in 3.X and may justify
        isolating underscore names in general as we did earlier. In fact, this
        test may not even work in some currently recent 3.X releases as
        is:
c:\code> c:\python33\python listtree.py
   ...etc...
   File "listtree.py", line 18, in __attrnames
    result += spaces + '{0}={1}\n'.format(attr, getattr(obj, attr))
TypeError: Type method_descriptor doesn't define __format__
I debated recoding to work around this issue, but it serves as a
        fair example of debugging requirements and techniques in a dynamic
        open source project like Python. Per the following note, the str.format call no longer supports certain
        object types that are the values of built-in attribute names—yet
        another reason these names are probably better skipped.
Note
Debugging a str.format issue: In 3.X,
          running the commented-out version works in 3.0 and 3.1, but there
          seems to be a bug, or at least a regression, here in 3.2 and
          3.3—these Pythons fail with an exception because five built-in
          methods in object do not define a
          __format__ expected by str.format, and the default in object is apparently no longer applied
          correctly in such cases with empty and generic formatting targets.
          To see this live, it’s enough to run simplified code that isolates
          the problem:
 c:\code> py −3.1
>>> '{0}'.format(object.__reduce__)
"<method '__reduce__' of 'object' objects>"
c:\code> py −3.3
>>> '{0}'.format(object.__reduce__)
TypeError: Type method_descriptor doesn't define __format__
Per both prior behavior and current Python documentation,
          empty targets like this are supposed to convert the object to its
          str print string (see both the
          original PEP 3101 and the 3.3 language reference manual). Oddly, the
          {0} and {0:s} string targets both now fail, but
          the {0!s} forced str conversion target works, as does
          manual str
          preconversion—apparently reflecting a change for a type-specific
          case that neglected perhaps more common generic usage modes:
c:\code> py −3.3
>>> '{0:s}'.format(object.__reduce__)
TypeError: Type method_descriptor doesn't define __format__
>>> '{0!s}'.format(object.__reduce__)
"<method '__reduce__' of 'object' objects>"
>>> '{0}'.format(str(object.__reduce__))
"<method '__reduce__' of 'object' objects>"
To fix, wrap the format call in a try statement to catch the exception; use
          % formatting expressions instead
          of the str.format method; use one
          of the aforementioned still-working str.format usage modes and hope it does
          not change too; or wait for a repair of this in a later 3.X release.
          Here’s the recommended workaround using the tried-and-true % (it’s also noticeably shorter, but I
          won’t repeat Chapter 7’s comparisons
          here):
c:\code> py −3.3
>>> '%s' % object.__reduce__
"<method '__reduce__' of 'object' objects>"
To apply this in the tree lister’s code, change the first of
          these to its follower:
result += spaces + '{0}={1}\n'.format(attr, getattr(obj, attr))
result += spaces + '%s=%s\n' % (attr, getattr(obj, attr))
Python 2.X has the same regression in 2.7 but not
          2.6—inherited from the 3.2 change, apparently—but does not show
          object methods in this chapter’s
          example. Since this example generates too much output in 3.X anyhow,
          it’s a moot point here, but is a decent example of real-world
          coding. Unfortunately, using newer features like str.format sometimes puts your code in the
          awkward position of beta tester in the current
          3.X line!


Usage variation: Running on larger modules
For more fun, uncomment the underscore handler lines to enable them again, and try mixing this
        class into something more substantial, like the Button class of Python’s tkinter GUI toolkit module. In general,
        you’ll want to name ListTree first
        (leftmost) in a class header, so
        its __str__ is picked up; Button has one, too, and the leftmost
        superclass is always searched first in multiple inheritance.
The output of the following is fairly massive (20K characters
        and 330 lines in 3.X—and 38K if you forget to uncomment the underscore
        detection!), so run this code on your own to see the full listing.
        Notice how our lister’s __visited
        dictionary attribute mixes harmlessly with those created by tkinter itself. If you’re using Python 2.X,
        also recall that you should use Tkinter for the module name instead of
        tkinter:
>>> from listtree import ListTree
>>> from tkinter import Button                  # Both classes have a __str__
>>> class MyButton(ListTree, Button): pass      # ListTree first: use its __str__

>>> B = MyButton(text='spam')
>>> open('savetree.txt', 'w').write(str(B))     # Save to a file for later viewing
20513
>>> len(open('savetree.txt').readlines())       # Lines in the file
330
>>> print(B)                                    # Print the display here
<Instance of MyButton, address 43363688:
 _ListTree__visited={}
 _name=43363688
 _tclCommands=[]
 _w=.43363688
 children={}
 master=.
 ...much more omitted...
>
>>> S = str(B)                                  # Or print just the first part
>>> print(S[:1000])
Experiment arbitrarily on your own. The main point here is that
        OOP is all about code reuse, and mix-in classes are a powerful
        example. Like almost everything else in programming, multiple
        inheritance can be a useful device when applied well. In practice,
        though, it is an advanced feature and can become complicated if used
        carelessly or excessively. We’ll revisit this topic as a gotcha at the
        end of the next chapter.

Collector module
Finally, to make importing our tools even easier, we can provide
        a collector module that combines them in a single namespace—importing
        just the following gives access to all three lister mix-ins at
        once:
# File lister.py
# Collect all three listers in one module for convenience

from listinstance  import ListInstance
from listinherited import ListInherited
from listtree      import ListTree

Lister = ListTree  # Choose a default lister
Importers can use the individual class names as is, or alias
        them to a common name used in subclasses that can be modified in the
        import statement:
>>> import lister
>>> lister.ListInstance                          # Use a specific lister
<class 'listinstance.ListInstance'>
>>> lister.Lister                                # Use Lister default
<class 'listtree.ListTree'>

>>> from lister import Lister                    # Use Lister default
>>> Lister
<class 'listtree.ListTree'>

>>> from lister import ListInstance as Lister    # Use Lister alias
>>> Lister
<class 'listinstance.ListInstance'>
Python often makes flexible tool APIs nearly automatic.

Room for improvement: MRO, slots, GUIs
Like most software, there’s much more we could do here. The following gives
        some pointers on extensions you may wish to explore. Some are
        interesting projects, and two serve as segue to the next chapter, but
        for space will have to remain in the suggested exercise category
        here.
	General ideas: GUIs, built-ins
	Grouping double-underscore names as we did earlier may
              help reduce the size of the tree display, though some like
              __init__ are user-defined and
              may merit special treatment. Sketching the tree in a GUI might
              be a natural next step too—the tkinter toolkit that we utilized in
              the prior section’s lister examples ships with Python and
              provides basic but easy support, and others offer richer but
              more complex alternatives. See the notes at the end of Chapter 28’s case study for more
              pointers in this department.

	Physical trees versus inheritance: using the MRO
            (preview)
	In the next chapter, we’ll also meet the new-style class model, which modifies the search
              order for one special multiple inheritance case (diamonds).
              There, we’ll also study the class.__mro__ new-style class object
              attribute—a tuple giving the class tree search order used by
              inheritance, known as the new-style MRO.
As is, our ListTree
              tree lister sketches the physical shape of
              the inheritance tree, and expects the viewer to infer from this
              where an attribute is inherited from. This was its goal, but a
              general object viewer might also use the MRO tuple to
              automatically associate an attribute with the class from which
              it is inherited—by scanning the new-style
              MRO (or the classic classes’ DFLR ordering) for each inherited
              attribute in a dir result, we
              can simulate Python’s inheritance search, and map attributes to
              their source objects in the physical class tree
              displayed.
In fact, we will write code that
              comes very close to this idea in the next chapter’s mapattrs module, and reuse this
              example’s test classes there to demonstrate the idea, so stay
              tuned for an epilogue to this story. This might be used instead
              of or in addition to displaying attribute physical locations in
              __attrnames here; both forms
              might be useful data for programmers to see. This approach is
              also one way to deal with slots, the topic of the next
              note.

	Virtual data: slots, properties, and more (preview)
	Because they scan instance __dict__ namespace dictionaries, the
              ListInstance and ListTree classes presented here raise
              some subtle design issues. In Python classes, some names
              associated with instance data may not be stored at the instance
              itself. This includes topics presented in the next chapter such
              as new-style properties, slots, and descriptors, but also
              attributes dynamically computed in all classes with tools like
              __getattr__. None of these
              “virtual” attributes’ names are stored in an instance’s
              namespace dictionary, so none will be displayed as part of an
              instance’s own data.
Of these, slots seem the most
              strongly associated with an instance; they store data on
              instances, even though their names don’t appear in instance
              namespace dictionaries. Properties and descriptors are
              associated with instances too, but they don’t reserve space in
              the instance, their computed nature is much more explicit, and
              they may seem closer to class-level methods than instance
              data.
As we’ll see in the next chapter, slots function like
              instance attributes, but are created and managed by
              automatically created items in classes. They are a relatively
              infrequently used new-style class option, where instance
              attributes are declared in a __slots__ class attribute, and not
              physically stored in an instance’s __dict__; in fact, slots may suppress
              a __dict__ entirely. Because
              of this, tools that display instances by scanning their
              namespaces alone won’t directly associate the instance with
              attributes stored in slots. As is, ListTree displays slots as class
              attributes wherever they appear (though not at the instance),
              and ListInstance doesn’t
              display them at all.
Though this will make more sense after we study this
              feature in the next chapter, it impacts code here and similar
              tools. For example, if in textmixin.py we assign __slots__=['data1'] in Super and __slots__=['data3'] in Sub, only the data2 attribute is displayed in the
              instance by these two lister classes. ListTree also displays data1 and data3, but as attributes of the
              Super and Sub class objects
              and with a special format for their values (technically, they
              are class-level descriptors, another new-style tool introduced
              in the next chapter).
As the next chapter will explain, to show slot attributes
              as instance names, tools generally need to use dir to get a list of all
              attributes—both physically present and inherited—and then use
              either getattr to fetch their
              values from the instance, or fetch values from their inheritance
              source via __dict__ in tree
              scans and accept the display of the implementations of some at
              classes. Because dir includes
              the names of inherited “virtual” attributes—including both slots
              and properties—they would be included in the instance set. As
              we’ll also find, the MRO might assist here to map dir attribute to their sources, or
              restrict instance displays to names coded in user-defined
              classes by filtering out names inherited from the built-in
              object.
ListInherited is immune
              to most of this, because it already displays the full dir results set, which include both
              __dict__ names and all
              classes’ __slots__ names,
              though its display is of marginal use as is. A ListTree variant using the dir technique along with the MRO
              sequence to map attributes to classes would apply to slots too,
              because slots-based names appear in class’s __dict__ results individually as slot
              management tools, though not in the instance __dict__.
Alternatively, as a policy we could simply let our code
              handle slot-based attributes as it currently does, rather than
              complicating it for a rarely used, advanced feature that’s even
              questionable practice today. Slots and normal instance
              attributes are different kinds of names. In fact, displaying
              slots names as attributes of classes instead of instances is
              technically more accurate—as we’ll see in the next chapter their
              implementation is at classes, though their space is at
              instances.
Ultimately, attempting to collect all the “virtual”
              attributes associated with a class may be a bit of a pipe dream
              anyhow. Techniques like those outlined here may address slots
              and properties, but some attributes are
              entirely dynamic, with no physical basis at
              all: those computed on fetch by generic method such as __getattr__ are not data in the
              classic sense. Tools that attempt to display data in a wildly
              dynamic language like Python must come with the caveat that some
              data is ethereal at best!3


We’ll also make a minor extension to this section’s code in the
        exercises at the end of this part of the book, to list superclass
        names in parentheses at the start of instance displays, so keep it
        filed for future reference for now. To better understand the last of
        the preceding two points, we need to wrap up this chapter and move on
        to the next and last in this part of the book.



Other Design-Related Topics
In this chapter, we’ve studied inheritance, composition, delegation,
    multiple inheritance, bound methods, and factories—all common patterns
    used to combine classes in Python programs. We’ve really only scratched
    the surface here in the design patterns domain, though. Elsewhere in this
    book you’ll find coverage of other design-related topics, such as:
	Abstract superclasses (Chapter 29)

	Decorators (Chapter 32 and Chapter 39)

	Type subclasses (Chapter 32)

	Static and class methods (Chapter 32)

	Managed attributes (Chapter 32 and Chapter 38)

	Metaclasses (Chapter 32 and Chapter 40)


For more details on design patterns, though, we’ll delegate to other
    resources on OOP at large. Although patterns are important in OOP work and
    are often more natural in Python than other languages, they are not
    specific to Python itself, and a subject that’s often best acquired by
    experience.

Chapter Summary
In this chapter, we sampled common ways to use and combine classes
    to optimize their reusability and factoring benefits—what are usually
    considered design issues that are often independent of any particular
    programming language (though Python can make them easier to implement). We
    studied delegation (wrapping objects in proxy
    classes), composition (controlling embedded objects),
    and inheritance (acquiring behavior from other
    classes), as well as some more esoteric concepts such as pseudoprivate
    attributes, multiple inheritance, bound methods, and factories.
The next chapter ends our look at classes and OOP by surveying more
    advanced class-related topics. Some of its material may be of more
    interest to tool writers than application programmers, but it still merits
    a review by most people who will do OOP in Python—if not for your code,
    then for the code of others you may need to understand. First, though,
    here’s another quick chapter quiz to review.

Test Your Knowledge: Quiz
	What is multiple inheritance?

	What is delegation?

	What is composition?

	What are bound methods?

	What are pseudoprivate attributes used for?



Test Your Knowledge: Answers
	Multiple inheritance occurs when a class inherits from more than
        one superclass; it’s useful for mixing together multiple packages of
        class-based code. The left-to-right order in class statement headers determines the
        general order of attribute searches.

	Delegation involves wrapping an object in a proxy class, which
        adds extra behavior and passes other operations to the wrapped object.
        The proxy retains the interface of the wrapped object.

	Composition is a technique whereby a controller class embeds and
        directs a number of objects, and provides an interface all its own;
        it’s a way to build up larger structures with classes.

	Bound methods combine an instance and a method function; you can
        call them without passing in an instance object explicitly because the
        original instance is still available.

	Pseudoprivate attributes (whose names begin but do not end with
        two leading underscores: __X) are used to
        localize names to the enclosing class. This includes both class
        attributes like methods defined inside the class, and self instance attributes assigned inside the
        class’s methods. Such names are expanded to include the class name,
        which makes them generally unique.



1 This tends to scare people with a C++ background
        disproportionately. In Python, it’s even possible to change or
        completely delete a class’s method at runtime. On the other hand,
        almost nobody ever does this in practical programs. As a scripting
        language, Python is more about enabling than restricting. Also, recall
        from our discussion of operator overloading in Chapter 30 that __getattr__ and __setattr__ can be used to emulate privacy,
        but are generally not used for this purpose in practice. More on this
        when we code a more realistic privacy decorator in Chapter 39.
2 Actually, this syntax can invoke any callable object, including
        functions, classes, and methods. Hence, the factory function here can also run any
        callable object, not just a class (despite the argument name). Also,
        as we learned in Chapter 18, Python 2.X has an
        alternative to aClass(*pargs,
        **kargs): the apply(aClass, pargs,
        kargs) built-in call, which has been removed in Python 3.X
        because of its redundancy and limitations.
3 Some dynamic and proxy objects based on
                  __getattr__ and the like can also use the
                  __dir__ operator overloading method to
                  manually publish an attributes list for
                  dir calls. Because this is optional,
                  though, general tools cannot rely on their client classes to
                  do so. See Python
                  Pocket Reference, 5th Edition for more on the
                  __dir__ method.








Chapter 32. Advanced Class Topics
This chapter concludes our look at OOP in Python by presenting a few
  more advanced class-related topics: we will survey subclassing built-in
  types, “new style” class changes and extensions, static and class methods,
  slots and properties, function and class decorators, the MRO and the
  super call, and more.
As we’ve seen, Python’s OOP model is, at its core, relatively simple,
  and some of the topics presented in this chapter are so advanced and
  optional that you may not encounter them very often in your Python
  applications-programming career. In the interest of completeness, though—and
  because you never know when an “advanced” topic may crop up in code you
  use—we’ll round out our discussion of classes with a brief look at these
  advanced tools for OOP work.
As usual, because this is the last chapter in this part of the book,
  it ends with a section on class-related “gotchas,” and the set of lab
  exercises for this part. I encourage you to work through the exercises to
  help cement the ideas we’ve studied here. I also suggest working on or
  studying larger OOP Python projects as a supplement to this book. As with
  much in computing, the benefits of OOP tend to become more apparent with
  practice.
Note
Content notes: This chapter collects advanced
    class topics, but some are too large for this chapter to cover well.
    Topics such as properties, descriptors, decorators, and metaclasses are
    mentioned only briefly here, and given a fuller treatment in the
    final part of this book, after exceptions. Be sure to
    look ahead for more complete examples and extended coverage of some of the
    subjects that fall into this chapter’s category.
You’ll also notice that this is the largest
    chapter in this book—I’m assuming that readers courageous enough to take
    on this chapter’s topics are ready to roll up their sleeves and explore
    its in-depth coverage. If you’re not looking for advanced OOP topics, you
    may wish to skip ahead to chapter-end materials, and come back here when
    you confront these tools in the code of your programming future.

Extending Built-in Types
Besides implementing new kinds of objects, classes are sometimes used to extend
    the functionality of Python’s built-in types to support more exotic data
    structures. For instance, to add queue insert and delete methods to lists,
    you can code classes that wrap (embed) a list object and export insert and
    delete methods that process the list specially, like the delegation
    technique we studied in Chapter 31. As of
    Python 2.2, you can also use inheritance to specialize built-in types. The
    next two sections show both techniques in action.
Extending Types by Embedding
Do you remember those set functions we wrote in Chapter 16
      and Chapter 18? Here’s what they look like brought
      back to life as a Python class. The following example (the file
      setwrapper.py) implements a new set
      object type by moving some of the set functions to methods and adding
      some basic operator overloading. For the most part, this class just
      wraps a Python list with extra set operations. But because it’s a class,
      it also supports multiple instances and customization by inheritance in
      subclasses. Unlike our earlier functions, using classes here allows us
      to make multiple self-contained set objects with preset data and
      behavior, rather than passing lists into functions manually:
class Set:
   def __init__(self, value = []):    # Constructor
       self.data = []                 # Manages a list
       self.concat(value)

   def intersect(self, other):        # other is any sequence
       res = []                       # self is the subject
       for x in self.data:
           if x in other:             # Pick common items
               res.append(x)
       return Set(res)                # Return a new Set

   def union(self, other):            # other is any sequence
       res = self.data[:]             # Copy of my list
       for x in other:                # Add items in other
           if not x in res:
               res.append(x)
       return Set(res)

   def concat(self, value):           # value: list, Set...
       for x in value:                # Removes duplicates
          if not x in self.data:
               self.data.append(x)

   def __len__(self):          return len(self.data)            # len(self), if self
   def __getitem__(self, key): return self.data[key]            # self[i], self[i:j]
   def __and__(self, other):   return self.intersect(other)     # self & other
   def __or__(self, other):    return self.union(other)         # self | other
   def __repr__(self):         return 'Set:' + repr(self.data)  # print(self),...
   def __iter__(self):         return iter(self.data)           # for x in self,...
To use this class, we make instances, call methods, and run
      defined operators as usual:
from setwrapper import Set
x = Set([1, 3, 5, 7])
print(x.union(Set([1, 4, 7])))       # prints Set:[1, 3, 5, 7, 4]
print(x | Set([1, 4, 6]))            # prints Set:[1, 3, 5, 7, 4, 6]
Overloading operations such as indexing and iteration also enables
      instances of our Set class to often
      masquerade as real lists. Because you will interact with and extend this
      class in an exercise at the end of this chapter, I won’t say much more
      about this code until Appendix D.

Extending Types by Subclassing
Beginning with Python 2.2, all the built-in types in the language can now be subclassed
      directly. Type-conversion functions such as list, str,
      dict, and tuple have become built-in type names—although
      transparent to your script, a type-conversion call (e.g., list('spam')) is now really an invocation of a
      type’s object constructor.
This change allows you to customize or extend the behavior of
      built-in types with user-defined class statements: simply subclass the new type
      names to customize them. Instances of your type subclasses can generally
      be used anywhere that the original built-in type can appear. For
      example, suppose you have trouble getting used to the fact that Python
      list offsets begin at 0 instead of 1. Not to worry—you can always code
      your own subclass that customizes this core behavior of lists. The file
      typesubclass.py shows how:
# Subclass built-in list type/class
# Map 1..N to 0..N-1; call back to built-in version.

class MyList(list):
    def __getitem__(self, offset):
        print('(indexing %s at %s)' % (self, offset))
        return list.__getitem__(self, offset - 1)

if __name__ == '__main__':
    print(list('abc'))
    x = MyList('abc')               # __init__ inherited from list
    print(x)                        # __repr__ inherited from list

    print(x[1])                     # MyList.__getitem__
    print(x[3])                     # Customizes list superclass method

    x.append('spam'); print(x)      # Attributes from list superclass
    x.reverse();      print(x)
In this file, the MyList
      subclass extends the built-in list’s __getitem__ indexing method only, to map
      indexes 1 to N back to the required 0 to N−1. All it really does is
      decrement the submitted index and call back to the superclass’s version
      of indexing, but it’s enough to do the trick:
% python typesubclass.py
['a', 'b', 'c']
['a', 'b', 'c']
(indexing ['a', 'b', 'c'] at 1)
a
(indexing ['a', 'b', 'c'] at 3)
c
['a', 'b', 'c', 'spam']
['spam', 'c', 'b', 'a']
This output also includes tracing text the class prints on
      indexing. Of course, whether changing indexing this way is a good idea
      in general is another issue—users of your MyList class may very well be confused by such
      a core departure from Python sequence behavior! The ability to customize
      built-in types this way can be a powerful asset, though.
For instance, this coding pattern gives rise to an alternative way
      to code a set—as a subclass of the built-in list type, rather than a
      standalone class that manages an embedded list object as shown in the
      prior section. As we learned in Chapter 5, Python
      today comes with a powerful built-in set object, along with literal and
      comprehension syntax for making new sets. Coding one yourself, though,
      is still a great way to learn about type subclassing in general.
The following class, coded in the file setsubclass.py, customizes lists to add just
      methods and operators related to set processing. Because all other
      behavior is inherited from the built-in list superclass, this makes for a shorter and
      simpler alternative—everything not defined here is routed to list directly:
from __future__ import print_function    # 2.X compatibility

class Set(list):
    def __init__(self, value = []):      # Constructor
        list.__init__(self)              # Customizes list
        self.concat(value)               # Copies mutable defaults

    def intersect(self, other):          # other is any sequence
        res = []                         # self is the subject
        for x in self:
            if x in other:               # Pick common items
                res.append(x)
        return Set(res)                  # Return a new Set

    def union(self, other):              # other is any sequence
        res = Set(self)                  # Copy me and my list
        res.concat(other)
        return res

    def concat(self, value):             # value: list, Set, etc.
        for x in value:                  # Removes duplicates
            if not x in self:
                self.append(x)

    def __and__(self, other): return self.intersect(other)
    def __or__(self, other):  return self.union(other)
    def __repr__(self):       return 'Set:' + list.__repr__(self)

if __name__ == '__main__':
    x = Set([1,3,5,7])
    y = Set([2,1,4,5,6])
    print(x, y, len(x))
    print(x.intersect(y), y.union(x))
    print(x & y, x | y)
    x.reverse(); print(x)
Here is the output of the self-test code at the end of this file.
      Because subclassing core types is a somewhat advanced feature with a
      limited target audience, I’ll omit further details here, but I invite
      you to trace through these results in the code to study its behavior
      (which is the same on Python 3.X and 2.X):
% python setsubclass.py
Set:[1, 3, 5, 7] Set:[2, 1, 4, 5, 6] 4
Set:[1, 5] Set:[2, 1, 4, 5, 6, 3, 7]
Set:[1, 5] Set:[1, 3, 5, 7, 2, 4, 6]
Set:[7, 5, 3, 1]
There are more efficient ways to implement sets with dictionaries
      in Python, which replace the nested linear search scans in the set
      implementations shown here with more direct dictionary index operations
      (hashing) and so run much quicker. For more details, see the
      continuation of this thread in the follow-up book Programming
      Python. Again, if you’re interested in sets, also take another
      look at the set object type we
      explored in Chapter 5; this type provides
      extensive set operations as built-in tools. Set implementations are fun
      to experiment with, but they are no longer strictly required in Python
      today.
For another type subclassing example, explore the implementation
      of the bool type in Python 2.3 and
      later. As mentioned earlier in the book, bool is a subclass of int with two instances (True and False) that behave like the integers 1 and 0 but
      inherit custom string-representation methods that display their names.


The “New Style” Class Model
In release 2.2, Python introduced a new flavor of classes, known as
    new-style classes; classes following the original and
    traditional model became known as classic classes
    when compared to the new kind. In 3.X the class story has merged, but it
    remains split for Python 2.X users and code:
	In Python 3.X, all classes are automatically what were formerly called “new style,”
        whether they explicitly inherit from object
        or not. Coding the object
        superclass is optional and implied.

	In Python 2.X, classes must explicitly
        inherit from object (or another
        built-in type) to be considered “new style” and enable and obtain all
        new-style behavior. Classes without this are “classic.”


Because all classes are automatically new-style in 3.X, the features
    of new-style classes are simply normal class features in that line. I’ve
    opted to keep their descriptions in this section separate, however, in
    deference to users of Python 2.X code—classes in such code acquire
    new-style features and behavior only when they are derived from object.
In other words, when Python 3.X users see descriptions of “new
    style” topics in this book, they should take them to be descriptions of
    existing properties of their classes. For 2.X readers, these are a set of
    optional changes and extensions that you may choose to enable or not,
    unless the code you must use already employs them.
In Python 2.X, the identifying syntactic
    difference for new-style classes is that they are derived from either a
    built-in type, such as list, or a
    special built-in class known as object.
    The built-in name object is provided to
    serve as a superclass for new-style classes if no other built-in type is
    appropriate to use:
class newstyle(object):                    # 2.X explicit new-style derivation
    ...normal class code...                # Not required in 3.X: automatic
Any class derived from object, or
    any other built-in type, is automatically treated as a new-style class.
    That is, as long as a built-in type is somewhere in its superclass tree, a
    2.X class acquires new-style class behavior and extensions. Classes not
    derived from built-ins such as object
    are considered classic.
Just How New Is New-Style?
As we’ll see, new-style classes come with profound differences
      that impact programs broadly, especially when code leverages their added
      advanced features. In fact, at least in terms of its OOP support, these
      changes on some levels transform Python into a different
      language altogether—one that’s mandated in the 3.X line, one
      that’s optional in 2.X only if ignored by every programmer, and one that
      borrows much more from (and is often as complex as) other languages in
      this domain.
New-style classes stem in part from an attempt to merge the notion
      of class with that of type
      around the time of Python 2.2, though they went unnoticed by many until
      they were escalated to required knowledge in 3.X. You’ll need to judge
      the success of that merging for yourself, but as we’ll see, there are
      still distinctions in the model—now between class
      and metaclass—and one of its side effects is to
      make normal classes more powerful but also substantially more complex.
      The new-style inheritance algorithm formalized in Chapter 40, for example, grows in complexity by at least a
      factor of 2.
Still, some programmers using straightforward application code may
      notice only slight divergence from traditional “classic” classes. After
      all, we’ve managed to get to this point in this book writing substantial
      class examples, with mostly just passing mentions of this change.
      Moreover, the classic class model still available in 2.X works exactly
      as it has for some two decades.1
However, because they modify core class behaviors, new-style
      classes had to be introduced in Python 2.X as a distinct tool so as to
      avoid impacting any existing code that depends on the prior model. For
      example, some subtle differences, such as diamond pattern inheritance
      search and the interaction of built-in operations and managed attribute
      methods such as __getattr__ can cause
      some existing code to fail if left unchanged. Using optional extensions
      in the new model such as slots can have the same effect.
The class model split is removed in Python 3.X, which
      mandates new-style classes, but it still exists for
      readers using 2.X, or reusing the vast amount of existing 2.X code in
      production use. Because this has been an optional extension in 2.X, code
      written for that line may use either class model.
The next two top-level sections provide overviews of the ways in
      which new-style classes differ and the new tools they provide. These
      topics represent potential changes to some Python 2.X readers, but
      simply additional advanced class topics to many Python 3.X readers. If
      you’re in the latter group, you’ll find full coverage here, though some
      of it is presented in the context of changes—which you can accept as
      features, but only if you never must deal with any of the millions of
      lines of existing 2.X code.


New-Style Class Changes
New-style classes differ from classic classes in a number of ways, some of
    which are subtle but can impact both existing 2.X code and common coding
    styles. As preview and summary, here are some of the most prominent ways
    they differ:
	Attribute fetch for built-ins: instance skipped
	The __getattr__ and
          __getattribute__ generic
          attribute interception methods are still run for attributes
          accessed by explicit name, but no longer for attributes implicitly
          fetched by built-in operations. They are not called for __X__ operator overloading method names in
          built-in contexts only—the search for such names begins at classes,
          not instances. This breaks or complicates objects that serve as
          proxies for another object’s interface, if
          wrapped objects implement operator overloading. Such methods must be
          redefined for the sake of differing built-ins dispatch in new-style
          classes.

	Classes and types merged: type testing
	Classes are now types, and types are now classes. In fact, the two are essentially synonyms, though the
          metaclasses that now subsume types are still
          somewhat distinct from normal classes. The type(I) built-in returns the class an instance
          is made from, instead of a generic instance type, and is normally
          the same as I.__class__. Moreover, classes are
          instances of the type class, and
          type may be subclassed to
          customize class creation with metaclasses coded with class statements. This can impact code
          that tests types or otherwise relies on the prior type model.

	Automatic object root class:
        defaults
	All new-style classes (and hence types) inherit from object, which comes with a small set of default operator overloading
          methods (e.g., __repr__). In 3.X,
          this class is added automatically above the user-defined root (i.e.,
          topmost) classes in a tree, and need not be
          listed as a superclass explicitly. This can affect code that assumes
          the absence of method defaults and root classes.

	Inheritance search order: MRO and diamonds
	Diamond patterns of multiple inheritance have a slightly different search order—roughly, at
          diamonds they are searched across before up, and more breadth-first
          than depth-first. This attribute search order, known as the MRO, can
          be traced with a new __mro__
          attribute available on new-style classes. The new search order
          largely applies only to diamond class trees, though the new model’s
          implied object root itself forms
          a diamond in all multiple inheritance trees. Code that relies on the
          prior order will not work the same.

	Inheritance algorithm: Chapter 40
	The algorithm used for inheritance in new-style classes is
          substantially more complex than the depth-first model of classic
          classes, incorporating special cases for descriptors, metaclasses,
          and built-ins. We won’t be able to formalize this until Chapter 40 after we’ve studied metaclasses and
          descriptors in more depth, but it can impact code that does not
          anticipate its extra convolutions.

	New advanced tools: code impacts
	New-style classes have a set of new class tools, including slots,
          properties, descriptors,
          super, and the __getattribute__ method. Most of these
          have very specific tool-building purposes. Their use can also impact
          or break existing code, though; slots, for example, sometimes
          prevent creation of an instance namespace dictionary altogether, and
          generic attribute handlers may require different coding.


We’ll explore the extensions noted in the last
    of these items in a later top-level section of its own, and will defer
    formal inheritance algorithm coverage until Chapter 40
    as noted. Because the other items on this list have the potential to break
    traditional Python code, though, let’s take a closer look at each in turn
    here.
Note
Content note: Keep in mind that
      new-style class changes apply to
      both 3.X and 2.X, even though they are an option in
      the latter. This chapter and book sometimes label features as
      3.X changes to contrast with traditional 2.X code,
      but some are technically introduced by new-style classes—which are
      mandated in 3.X, but can show up in 2.X code too.
      For space, this distinction is called out often but not dogmatically
      here. Complicating this distinction, some 3.X class-related changes owe
      to new-style classes (e.g., skipping __getattr__ for operator methods) but some do
      not (e.g., replacing unbound methods with functions). Moreover, many 2.X
      programmers stick to classic classes, ignoring what they view as a 3.X
      feature. New-style classes are not new, though, and apply to both
      Pythons—if they appear in 2.X code, they’re required reading for 2.X
      users too.

Attribute Fetch for Built-ins Skips Instances
We introduced this new-style class change in sidebars in both Chapter 28 and Chapter 31 because of their impact on prior
      examples and topics. In new-style classes (and hence all classes in
      3.X), the generic instance attribute interception methods __getattr__ and
      __getattribute__ are no longer called
      by built-in operations for __X__ operator overloading method names—the
      search for such names begins at classes, not instances. Attributes
      accessed by explicit name, however, are routed through these methods,
      even if they are __X__ names. Hence,
      this is primarily a change to the behavior of built-in
      operations.
More formally, if a class defines a __getitem__ index overload method and X is an instance of this class, then an index
      expression like X[I] is roughly
      equivalent to X.__getitem__(I) for
      classic classes, but type(X).__getitem__(X,
      I) for new-style classes—the latter beginning its search in
      the class, and thus skipping a __getattr__ step from the instance for an
      undefined name.
Technically, this method search for built-in operations like
      X[I] uses normal inheritance
      beginning at the class level, and inspects only the namespace
      dictionaries of all the classes from which X derives—a distinction that can matter in the
      metaclass model we’ll meet later in this chapter
      and focus on in Chapter 40, where classes may
      acquire behavior differently. The instance, however, is omitted by
      built-ins’ search.
Why the lookup change?
You can find formal rationales for this change elsewhere; this
        book is disinclined to parrot justifications for a change that breaks
        many working programs. But this is imagined as both an
        optimization path and a solution to a seemingly
        obscure call pattern issue. The former rationale
        is supported by the frequency of built-in operations. If every
        +, for example, requires extra
        steps at the instance, it can degrade program speed—especially so
        given the new-style model’s many attribute-level extensions.
The latter rationale is more obscure, and is described in Python
        manuals; in short, it reflects a conundrum introduced by the
        metaclass model. Because classes are now
        instances of metaclasses, and because metaclasses can define built-in
        operator methods to process the classes they generate, a method call
        run for a class must skip the class itself and look one level higher
        to pick up a method that processes the class, rather than selecting
        the class’s own version. Its own version would result in an unbound
        method call, because the class’s own method processes lower instances.
        This is just the usual unbound method model we discussed in the prior
        chapter, but is potentially aggravated by the fact that classes can
        acquire type behavior from metaclasses too.
As a result, because classes are both types and instances in
        their own right, all instances are skipped for built-in operation
        method lookup. This is supposedly applied to normal instances for
        uniformity and consistency, but both non-built-in names and direct and
        explicit calls to built-in names still check the instance anyhow.
        Though perhaps a consequence of the new-style class model, to some
        this may seem a solution arrived at for the sake of a usage pattern
        that was more artificial and obscure than the widely used one it
        broke. Its role as optimization path seems more defensible, but also
        not without repercussions.
In particular, this has potentially broad implications for the
        delegation-based classes, often known as proxy classes, when
        embedded objects implement operator overloading. In new-style classes,
        such a proxy object’s class must generally
        redefine any such names to catch and delegate,
        either manually or with tools. The net effect is to either
        significantly complicate or wholly obviate an entire
        category of programs. We explored delegation in Chapter 28 and Chapter 31; it’s a common pattern used to
        augment or adapt another class’s interface—to add validation, tracing,
        timing, and many other sorts of logic. Though proxies may be more the
        exception than the rule in typical Python code, many Python programs
        depend upon them.

Implications for attribute interception
In simple terms, and run in Python 2.X to show how
        new-style classes differ, indexing and prints are routed to __getattr__ in traditional classes, but not
        for new-style classes, where printing uses a default:2
>>> class C:
        data = 'spam'
        def __getattr__(self, name):             # Classic in 2.X: catches built-ins
            print(name)
            return getattr(self.data, name)

>>> X = C()
>>> X[0]
__getitem__
's'
>>> print(X)                                     # Classic doesn't inherit default
__str__
spam

>>> class C(object):                             # New-style in 2.X and 3.X
        ...rest of class unchanged...

>>> X = C()                                      # Built-ins not routed to getattr
>>> X[0]
TypeError: 'C' object does not support indexing
>>> print(X)
<__main__.C object at 0x02205780>
Though apparently rationalized in the name of class metaclass
        methods and optimizing built-in operations, this divergence is not
        addressed by special-casing normal instances having a __getattr__, and applies only to built-in
        operations—not to normally named methods, or explicit calls to
        built-in methods by name:
>>> class C: pass                                # 2.X classic class
>>> X = C()
>>> X.normal = lambda: 99
>>> X.normal()
99
>>> X.__add__ = lambda(y): 88 + y
>>> X.__add__(1)
89
>>> X + 1
89

>>> class C(object): pass                        # 2.X/3.X new-style class
>>> X = C()
>>> X.normal = lambda: 99
>>> X.normal()                                   # Normals still from instance
99
>>> X.__add__ = lambda(y): 88 + y
>>> X.__add__(1)                                 # Ditto for explicit built-in names
89
>>> X + 1
TypeError: unsupported operand type(s) for +: 'C' and 'int'
This behavior winds up being inherited by the __getattr__ attribute interception
        method:
>>> class C(object):
        def __getattr__(self, name): print(name)

>>> X = C()
>>> X.normal             # Normal names are still routed to getattr
normal
>>> X.__add__            # Direct calls by name are too, but expressions are not!
__add__
>>> X + 1
TypeError: unsupported operand type(s) for +: 'C' and 'int'

Proxy coding requirements
In a more realistic delegation scenario, this means that
        built-in operations like expressions no longer work the same as their
        traditional direct-call equivalents. Asymmetrically, direct calls to
        built-in method names still work, but equivalent expressions do not
        because through-type calls fail for names not at the class level and
        above. In other words, this distinction arises in built-in
        operations only; explicit fetches run correctly:
>>> class C(object):
        data = 'spam'
        def __getattr__(self, name):
            print('getattr: ' + name)
            return getattr(self.data, name)

>>> X = C()
>>> X.__getitem__(1)           # Traditional mapping works but new-style's does not
getattr: __getitem__
'p'

>>> X[1]
TypeError: 'C' object does not support indexing
>>> type(X).__getitem__(X, 1)
AttributeError: type object 'C' has no attribute '__getitem__'

>>> X.__add__('eggs')          # Ditto for +: instance skipped for expression only
getattr: __add__
'spameggs'

>>> X + 'eggs'
TypeError: unsupported operand type(s) for +: 'C' and 'str'
>>> type(X).__add__(X, 'eggs')
AttributeError: type object 'C' has no attribute '__add__'
The net effect: to code a proxy of an object whose interface may
        in part be invoked by built-in operations, new-style classes require
        both __getattr__ for normal names,
        as well as method redefinitions for all names
        accessed by built-in operations—whether coded manually, obtained from
        superclasses, or generated by tools. When redefinitions are so
        incorporated, calls through both instances and
        types are equivalent to built-in operations, though redefined names
        are no longer routed to the generic __getattr__ undefined name handler, even for
        explicit name calls:
>>> class C(object):                                    # New-style: 3.X and 2.X
        data = 'spam'
        def __getattr__(self, name):                    # Catch normal names
            print('getattr: ' + name)
            return getattr(self.data, name)
        def __getitem__(self, i):                       # Redefine built-ins
            print('getitem: ' + str(i))
            return self.data[i]                         # Run expr or getattr
        def __add__(self, other):
            print('add: ' +  other)
            return getattr(self.data, '__add__')(other)

>>> X = C()
>>> X.upper
getattr: upper
<built-in method upper of str object at 0x0233D670>
>>> X.upper()
getattr: upper
'SPAM'

>>> X[1]                            # Built-in operation (implicit)
getitem: 1
'p'
>>> X.__getitem__(1)                # Traditional equivalence (explicit)
getitem: 1
'p'
>>> type(X).__getitem__(X, 1)       # New-style equivalence
getitem: 1
'p'

>>> X + 'eggs'                      # Ditto for + and others
add: eggs
'spameggs'
>>> X.__add__('eggs')
add: eggs
'spameggs'
>>> type(X).__add__(X, 'eggs')
add: eggs
'spameggs'

For more details
We will revisit this change in Chapter 40 on
        metaclasses, and by example in the contexts of attribute management in
        Chapter 38 and privacy decorators in Chapter 39. In the latter of these, we’ll also explore
        coding structures for providing proxies with the required operator
        methods generically—it’s not an impossible task, and may need to be
        coded just once if done well. For more of the sort of code influenced
        by this issue, see those later chapters, as well as the earlier
        examples in Chapter 28 and Chapter 31.
Because we’ll expand on this issue later in the book, we’ll cut
        the coverage short here. For external links and pointers on this
        issue, though, see the following (along with your local search
        engine):
	Python Issue 643841: this issue has
            been discussed widely, but its most official history seems to be
            documented at http://bugs.python.org/issue643841. There, it was
            raised as a concern for real programs and escalated to be
            addressed, but a proposed library remedy or broader change in
            Python was struck down in favor of a simple documentation change
            to describe the new mandated behavior.

	Tool recipes: also see http://code.activestate.com/recipes/252151, an
            Active State Python recipe that describes a tool that
            automatically fills in special method names as generic call
            dispatchers in a proxy class created with metaclass techniques
            introduced later in this chapter. This tool still must ask you to
            pass in the operator method names that a wrapped object may
            implement, though (it must, as interface components of a wrapped
            object may be inherited from arbitrary sources).

	Other approaches: a web search today
            will uncover numerous additional tools that similarly populate
            proxy classes with overloading methods; it’s a widespread concern!
            Again, in Chapter 39, we’ll also see how to
            code straightforward and general superclasses once that provide
            the required methods or attributes as
            mix-ins, without metaclasses, redundant code
            generation, or similarly complex techniques.


This story may evolve over time, of course, but has been an
        issue for many years. As this stands today, classic class proxies for
        objects that do any operator overloading are effectively broken as
        new-style classes. Such classes in both 2.X and 3.X require coding or
        generating wrappers for all the implicitly invoked operator methods a
        wrapped object may support. This is not ideal for such programs—some
        proxies may require dozens of wrapper methods (potentially over
        50!)—but reflects, or is at least an artifact of, the design goals of
        new-style class developers.
Note
Be sure to see Chapter 40’s
          metaclass coverage for an additional
          illustration of this issue and its rationale. We’ll also see there
          that this behavior of built-ins qualifies as a special case in
          new-style inheritance. Understanding this well
          requires more background on metaclasses than the current chapter can
          provide, a regrettable byproduct of metaclasses in general—they’ve
          become prerequisite to more usage than their originators may have
          foreseen.



Type Model Changes
On to our next new-style change: depending on your assessment, in new-style classes the
      distinction between type and
      class has either been greatly muted or has vanished
      entirely. Specifically:
	Classes are types
	The type object generates
            classes as its instances, and classes generate instances of
            themselves. Both are considered types, because they generate
            instances. In fact, there is no real difference between built-in
            types like lists and strings and user-defined types coded as
            classes. This is why we can subclass built-in types, as shown
            earlier in this chapter—a subclass of a built-in type such as
            list qualifies as a new-style
            class and becomes a new user-defined type.

	Types are classes
	New class-generating types may be coded in Python as the
            metaclasses we’ll meet later in this
            chapter—user-defined type
            subclasses that are coded with normal class statements, and control creation
            of the classes that are their instances. As we’ll see, metaclasses
            are both class and type, though they are distinct enough to
            support a reasonable argument that the prior type/class dichotomy
            has become one of metaclass/class, perhaps at the cost of added
            complexity in normal classes.


Besides allowing us to subclass built-in types and code
      metaclasses, one of the most practical contexts where this type/class
      merging becomes most obvious is when we do explicit type testing. With
      Python 2.X’s classic classes, the type of a class instance is a generic
      “instance,” but the types of built-in objects are more specific:
C:\code> c:\python27\python
>>> class C: pass                       # Classic classes in 2.X

>>> I = C()                             # Instances are made from classes
>>> type(I), I.__class__
(<type 'instance'>, <class __main__.C at 0x02399768>)

>>> type(C)                             # But classes are not the same as types
<type 'classobj'>
>>> C.__class__
AttributeError: class C has no attribute '__class__'

>>> type([1, 2, 3]), [1, 2, 3].__class__
(<type 'list'>, <type 'list'>)

>>> type(list), list.__class__
(<type 'type'>, <type 'type'>)
But with new-style classes in 2.X, the type of a class instance is
      the class it’s created from, since classes are simply user-defined
      types—the type of an instance is its class, and the type of a
      user-defined class is the same as the type of a built-in object type.
      Classes have a __class__
      attribute now, too, because they are instances of type:
C:\code> c:\python27\python
>>> class C(object): pass               # New-style classes in 2.X

>>> I = C()                             # Type of instance is class it's made from
>>> type(I), I.__class__
(<class '__main__.C'>, <class '__main__.C'>)

>>> type(C), C.__class__                # Classes are user-defined types
(<type 'type'>, <type 'type'>)
The same is true for all classes in Python 3.X, since all classes
      are automatically new-style, even if they have no explicit superclasses.
      In fact, the distinction between built-in types and user-defined class
      types seems to melt away altogether in 3.X:
C:\code> c:\python33\python
>>> class C: pass

>>> I = C()                             # All classes are new-style in 3.X
>>> type(I), I.__class__                # Type of instance is class it's made from
(<class '__main__.C'>, <class '__main__.C'>)

>>> type(C), C.__class__                # Class is a type, and type is a class
(<class 'type'>, <class 'type'>)

>>> type([1, 2, 3]), [1, 2, 3].__class__
(<class 'list'>, <class 'list'>)

>>> type(list), list.__class__          # Classes and built-in types work the same
(<class 'type'>, <class 'type'>)
As you can see, in 3.X classes are types, but types are also
      classes. Technically, each class is generated by a
      metaclass—a class that is normally either type itself, or a subclass of it customized to
      augment or manage generated classes. Besides impacting code that does
      type testing, this turns out to be an important hook for tool
      developers. We’ll talk more about metaclasses later in this chapter, and
      again in more detail in Chapter 40.
Implications for type testing
Besides providing for built-in type customization and metaclass
        hooks, the merging of classes and types in the new-style class model
        can impact code that does type testing. In Python 3.X, for example,
        the types of class instances compare directly and meaningfully, and in
        the same way as built-in type objects. This follows from the fact that
        classes are now types, and an instance’s type is the instance’s
        class:
C:\code> c:\python33\python
>>> class C: pass
>>> class D: pass

>>> c, d = C(), D()
>>> type(c) == type(d)                 # 3.X: compares the instances' classes
False

>>> type(c), type(d)
(<class '__main__.C'>, <class '__main__.D'>)
>>> c.__class__, d.__class__
(<class '__main__.C'>, <class '__main__.D'>)

>>> c1, c2 = C(), C()
>>> type(c1) == type(c2)
True
With classic classes in 2.X, though, comparing instance types is
        almost useless, because all instances have the same “instance” type.
        To truly compare types, the instance __class__ attributes must be compared (if
        you care about portability, this works in 3.X, too, but it’s not
        required there):
C:\code> c:\python27\python
>>> class C: pass
>>> class D: pass

>>> c, d = C(), D()
>>> type(c) == type(d)                 # 2.X: all instances are same type!
True
>>> c.__class__ == d.__class__         # Compare classes explicitly if needed
False

>>> type(c), type(d)
(<type 'instance'>, <type 'instance'>)
>>> c.__class__, d.__class__
(<class __main__.C at 0x024585A0>, <class __main__.D at 0x024588D0>)
And as you should expect by now, new-style classes in 2.X work
        the same as all classes in 3.X in this regard—comparing instance types
        compares the instances’ classes automatically:
C:\code> c:\python27\python
>>> class C(object): pass
>>> class D(object): pass

>>> c, d = C(), D()
>>> type(c) == type(d)                 # 2.X new-style: same as all in 3.X
False

>>> type(c), type(d)
(<class '__main__.C'>, <class '__main__.D'>)
>>> c.__class__, d.__class__
(<class '__main__.C'>, <class '__main__.D'>)
Of course, as I’ve pointed out numerous times in this book, type
        checking is usually the wrong thing to do in Python programs (we code
        to object interfaces, not object types), and the more general isinstance built-in is more likely what
        you’ll want to use in the rare cases where instance class types must
        be queried. However, knowledge of Python’s type model can help clarify
        the class model in general.


All Classes Derive from “object”
Another ramification of the type change in the new-style class model is that because all
      classes derive (inherit) from the class object either implicitly or explicitly, and
      because all types are now classes, every object derives from the
      object built-in class, whether
      directly or through a superclass. Consider the following interaction in
      Python 3.X:
>>> class C: pass                     # For new-style classes
>>> X = C()
>>> type(X), type(C)                  # Type is class instance was created from
(<class '__main__.C'>, <class 'type'>)
As before, the type of a class instance is
      the class it was made from, and the type of a class
      is the type class because classes and
      types have merged. It is also true, though, that the instance and class
      are both derived from the built-in object class and type, an implicit or explicit
      superclass of every class:
>>> isinstance(X, object)
True
>>> isinstance(C, object)             # Classes always inherit from object
True
The preceding returns the same results for both new-style and
      classic classes in 2.X today, though 2.X type results differ. More importantly, as
      we’ll see ahead, object is not added
      to or present in a 2.X classic class’s __bases__ tuple, and so is not a true
      superclass.
The same relationship holds true for built-in types like lists and
      strings, because types are classes in the new-style model—built-in types
      are now classes, and their instances derive from object, too:
>>> type('spam'), type(str)
(<class 'str'>, <class 'type'>)

>>> isinstance('spam', object)        # Same for  built-in types (classes)
True
>>> isinstance(str, object)
True
In fact, type itself derives
      from object, and object derives from type, even though the two are different
      objects—a circular relationship that caps the object model and stems
      from the fact that types are classes that generate classes:
>>> type(type)                        # All classes are types, and vice versa
<class 'type'>
>>> type(object)
<class 'type'>

>>> isinstance(type, object)          # All classes derive from object, even type
True
>>> isinstance(object, type)          # Types make classes, and type is a class
True
>>> type is object
False
Implications for defaults
The preceding may seem obscure, but this model has a number of
        practical implications. For one thing, it means that we sometimes must
        be aware of the method defaults that come with the explicit or
        implicit object root class in
        new-style classes only:
c:\code> py −2
>>> dir(object)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__'
, '__init__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '
__sizeof__', '__str__', '__subclasshook__']

>>> class C: pass
>>> C.__bases__                       # Classic classes do not inherit from object
()
>>> X = C()
>>> X.__repr__
AttributeError: C instance has no attribute '__repr__'

>>> class C(object): pass             # New-style classes inherit object defaults
>>> C.__bases__
(<type 'object'>,)
>>> X = C()
>>> X.__repr__
<method-wrapper '__repr__' of C object at 0x00000000020B5978>

c:\code> py −3
>>> class C: pass                     # This means all classes get defaults in 3.X
>>> C.__bases__
(<class 'object'>,)
>>> C().__repr__
<method-wrapper '__repr__' of C object at 0x0000000002955630>
This model also makes for fewer special cases than the prior
        type/class distinction of classic classes, and it allows us to write
        code that can safely assume and use an object superclass (e.g., by assuming it as
        an “anchor” in some super built-in
        roles described ahead, and by passing it method calls to invoke
        default behavior). We’ll see examples of the latter later in the book;
        for now, let’s move on to explore the last major new-style change.


Diamond Inheritance Change
Our final new-style class model change is also one of its most visible: its slightly different
      inheritance search order for so-called diamond
      pattern multiple inheritance trees—a tree pattern in which more than one
      superclass leads to the same higher superclass further above (and whose
      name comes from the diamond shape of the tree if you sketch it out—a
      square resting on one of its corners).
The diamond pattern is a fairly advanced design concept, only
      occurs in multiple inheritance trees, and tends to be coded rarely in
      Python practice, so we won’t cover this topic in full depth. In short,
      though, the differing search orders were introduced briefly in the prior
      chapter’s multiple inheritance coverage:
	For classic classes (the default in 2.X):
          DFLR
	The inheritance search path is strictly depth first, and
            then left to right—Python climbs all the way to the
            top, hugging the left side of the tree, before it backs up and
            begins to look further to the right. This search order is known as
            DFLR for the first letters in its path’s
            directions.

	For new-style classes (optional in 2.X
          and automatic in 3.X): MRO
	The inheritance search path is more breadth-first in diamond
            cases—Python first looks in any superclasses to the right of the
            one just searched before ascending to the common superclass at the
            top. In other words, this search proceeds across by levels before
            moving up. This search order is called the new-style
            MRO for “method resolution order” (and often
            just MRO for short when used in contrast with the DFLR order).
            Despite the name, this is used for all attributes in Python, not
            just methods.


The new-style MRO algorithm is a bit more complex than just
      described—and we’ll expand on it a bit more formally later—but this is
      as much as many programmers need to know. Still, it has both important
      benefits for new-style class code, as well as program-breaking potential
      for existing classic class code.
For example, the new-style MRO allows lower superclasses to
      overload attributes of higher superclasses, regardless of the sort of
      multiple inheritance trees they are mixed into. Moreover, the new-style
      search rule avoids visiting the same superclass more than once when it
      is accessible from multiple subclasses. It’s arguably better than DFLR,
      but applies to a small subset of Python user code; as we’ll see, though,
      the new-style class model itself makes diamonds
      much more common, and the MRO more important.
At the same time, the new MRO will locate attributes differently,
      creating a potential incompatibility for 2.X classic classes. Let’s move
      on to some code to see how its differences pan out in practice.
Implications for diamond inheritance trees
To illustrate how the new-style MRO search differs, consider
        this simplistic incarnation of the diamond multiple inheritance
        pattern for classic classes. Here, D’s superclasses B and C
        both lead to the same common ancestor, A:
>>> class A:       attr = 1           # Classic (Python 2.X)
>>> class B(A):    pass               # B and C both lead to A
>>> class C(A):    attr = 2
>>> class D(B, C): pass               # Tries A before C

>>> x = D()
>>> x.attr                            # Searches x, D, B, A
1
The attribute x.attr here is
        found in superclass A, because with
        classic classes, the inheritance search climbs as high as it can
        before backing up and moving right. The full DFLR search order would
        visit x, D, B,
        A, C, and then A. For this attribute, the search stops as
        soon as attr is found in A, above B.
However, with new-style classes derived
        from a built-in like object (and
        all classes in 3.X), the search order is different: Python looks in
        C to the right of B, before trying A above B. The full MRO search order would visit
        x, D, B,
        C, and then A. For this attribute, the search stops as
        soon as attr is found in C:
>>> class A(object): attr = 1         # New-style ("object" not required in 3.X)
>>> class B(A):      pass
>>> class C(A):      attr = 2
>>> class D(B, C):   pass             # Tries C before A

>>> x = D()
>>> x.attr                            # Searches x, D, B, C
2
This change in the inheritance search procedure is based upon
        the assumption that if you mix in C
        lower in the tree, you probably intend to grab its attributes in
        preference to A’s. It also assumes
        that C is always intended to
        override A’s attributes in all
        contexts, which is probably true when it’s used standalone but may not
        be when it’s mixed into a diamond with classic classes—you might not
        even know that C may be mixed in
        like this when you code it.
Since it is most likely that the programmer meant that C should override A in this case, though, new-style classes
        visit C first. Otherwise, C could be essentially pointless in a
        diamond context for any names in A
        too—it could not customize A and
        would be used only for names unique to C.

Explicit conflict resolution
Of course, the problem with assumptions is that they assume things! If this
        search order deviation seems too subtle to remember, or if you want
        more control over the search process, you can always force the
        selection of an attribute from anywhere in the tree by assigning or
        otherwise naming the one you want at the place where the classes are
        mixed together. The following, for example, chooses new-style order in
        a classic class by resolving the choice explicitly:
>>> class A:       attr = 1           # Classic
>>> class B(A):    pass
>>> class C(A):    attr = 2
>>> class D(B, C): attr = C.attr      # <== Choose C, to the right

>>> x = D()
>>> x.attr                            # Works like new-style (all 3.X)
2
Here, a tree of classic classes is emulating the search order of
        new-style classes for a specific attribute: the assignment to the
        attribute in D picks the version in
        C, thereby subverting the normal
        inheritance search path (D.attr
        will be lowest in the tree). New-style classes can similarly emulate
        classic classes by choosing the higher version of the target attribute
        at the place where the classes are mixed together:
>>> class A(object): attr = 1         # New-style
>>> class B(A):      pass
>>> class C(A):      attr = 2
>>> class D(B, C):   attr = B.attr    # <== Choose A.attr, above

>>> x = D()
>>> x.attr                            # Works like classic (default 2.X)
1
If you are willing to always resolve conflicts like this, you
        may be able to largely ignore the search order difference and not rely
        on assumptions about what you meant when you coded your
        classes.
Naturally, attributes picked this way can also be method
        functions—methods are normal, assignable attributes that happen to
        reference callable function objects:
>>> class A:
        def meth(s): print('A.meth')

>>> class C(A):
        def meth(s): print('C.meth')

>>> class B(A):
        pass

>>> class D(B, C): pass               # Use default search order
>>> x = D()                           # Will vary per class type
>>> x.meth()                          # Defaults to classic order in 2.X
A.meth

>>> class D(B, C): meth = C.meth      # <== Pick C's method: new-style (and 3.X)
>>> x = D()
>>> x.meth()
C.meth

>>> class D(B, C): meth = B.meth      # <== Pick B's method: classic
>>> x = D()
>>> x.meth()
A.meth
Here, we select methods by explicitly assigning to names lower
        in the tree. We might also simply call the desired class explicitly;
        in practice, this pattern might be more common, especially for things
        like constructors:
class D(B, C):
    def meth(self):                   # Redefine lower
        ...
        C.meth(self)                  # <== Pick C's method by calling
Such selections by assignment or call at mix-in points can
        effectively insulate your code from this difference in class flavors.
        This applies only to the attributes you handle this way, of course,
        but explicitly resolving the conflicts ensures that your code won’t
        vary per Python version, at least in terms of attribute conflict
        selection. In other words, this can serve as a
        portability technique for classes that may need
        to be run under both the new-style and classic class models.
Note
Explicit is better than
          implicit—for method resolution too:
          Even without the classic/new-style class divergence, the explicit
          method resolution technique shown here may come in handy in multiple
          inheritance scenarios in general. For instance, if you want part of
          a superclass on the left and part of a superclass on the right, you
          might need to tell Python which same-named attributes to choose by
          using explicit assignments or calls in subclasses. We’ll revisit
          this notion in a “gotcha” at the end of this chapter.
Also note that diamond inheritance patterns might be more
          problematic in some cases than I’ve implied here (e.g., what if
          B and C both have required constructors that
          call to the constructor in A?).
          Since such contexts are rare in real-world Python, we’ll defer this
          topic until we explore the super
          built-in function near the end of this chapter; besides providing
          generic access to superclasses in single inheritance trees, super supports a cooperative mode for
          resolving conflicts in multiple inheritance trees by ordering method
          calls per the MRO—assuming this order makes sense in this context
          too!


Scope of search order change
In sum, by default, the diamond pattern is searched differently
        for classic and new-style classes, and this is a
        non-backward-compatible change. Keep in mind, though, that this change
        primarily affects diamond pattern cases of multiple inheritance;
        new-style class inheritance works the same for most other inheritance
        tree structures. Further, it’s not impossible that this entire issue
        may be of more theoretical than practical importance—because the
        new-style search wasn’t significant enough to address until Python 2.2
        and didn’t become standard until 3.0, it seems unlikely to impact most
        Python code.
Having said that, I should also note that even though you might
        not code diamond patterns in classes you write yourself, because the
        implied object superclass is above
        every root class in 3.X as we saw earlier, every
        case of multiple inheritance exhibits the diamond pattern today. That
        is, in new-style classes, object
        automatically plays the role that the class A does in the example we just considered.
        Hence the new-style MRO search rule not only modifies logical
        semantics, but is also an important performance
        optimization—it avoids visiting and searching the same
        class more than once, even the automatic object.
Just as important, we’ve also seen that the implied object superclass in the new-style model
        provides default methods for a variety of
        built-in operations, including the __str__ and __repr__ display format methods. Run a
        dir(object) to see which methods
        are provided. Without the new-style MRO search order, in multiple
        inheritance cases the defaults in object would always override redefinitions
        in user-coded classes, unless they were always made in the leftmost
        superclass. In other words, the new-style class model itself makes
        using the new-style search order more critical!
For a more visual example of the implied object superclass in 3.X, and other examples
        of diamond patterns created by it, see the ListTree class’s output in the lister.py example in the preceding chapter,
        as well as the classtree.py tree
        walker example in Chapter 29—and the next
        section.


More on the MRO: Method Resolution Order
To trace how new-style inheritance works by default, we can also use the new
      class.__mro__ attribute mentioned in the preceding
      chapter’s class lister examples—technically a new-style extension, but
      useful here to explore a change. This attribute returns a class’s
      MRO—the order in which inheritance searches classes
      in a new-style class tree. This MRO is based on the C3 superclass
      linearization algorithm initially developed in the Dylan programming
      language, but later adopted by other languages including Python 2.3 and
      Perl 6.
The MRO algorithm
This book avoids a full description of the MRO algorithm
        deliberately, because many Python programmers don’t need to care (this
        only impacts diamonds, which are relatively rare in real-world code);
        because it differs between 2.X and 3.X; and because the details of the
        MRO are a bit too arcane and academic for this text. As a rule, this
        book avoids formal algorithms and prefers to teach informally by
        example.
On the other hand, some readers may still have an interest in
        the formal theory behind new-style MRO. If this set includes you, it’s
        described in full detail online; search Python’s manuals and the Web
        for current MRO links. In short, though, the MRO essentially works
        like this:
	List all the classes that an instance inherits from using
            the classic class’s DFLR lookup rule, and
            include a class multiple times if it’s visited more than
            once.

	Scan the resulting list for duplicate classes, removing all
            but the last occurrence of duplicates in the
            list.


The resulting MRO list for a given class includes the class, its
        superclasses, and all higher superclasses up to the object root class at the top of the tree.
        It’s ordered such that each class appears before its parents, and
        multiple parents retain the order in which they appear in the __bases__ superclass tuple.
Crucially, though, because common parents in
        diamonds appear only at the position of their
        last visitation, lower classes are searched first
        when the MRO list is later used by attribute inheritance. Moreover,
        each class is included and thus visited just once, no matter how many
        classes lead to it.
We’ll see applications of this algorithm later in this chapter,
        including that in super—a built-in
        that elevates the MRO to required reading if you wish to fully
        understand how methods are dispatched by this call, should you choose
        to use it. As we’ll see, despite its name, this call invokes the next
        class on the MRO, which might not be a superclass at all.

Tracing the MRO
If you just want to see how Python’s new-style inheritance
        orders superclasses in general, though, new-style classes (and hence
        all classes in 3.X) have a class.__mro__ attribute, which is a tuple giving
        the linear search order Python uses to look up attributes in
        superclasses. Really, this attribute is the
        inheritance order in new-style classes, and is often as much MRO
        detail as many Python users need.
Here are some illustrative examples, run in 3.X; for
        diamond inheritance patterns only, the search is
        the new order we’ve been studying—across before
        up, per the MRO for new-style classes always used in 3.X, and
        available as an option in 2.X:
>>> class A: pass
>>> class B(A): pass         # Diamonds: order differs for newstyle
>>> class C(A): pass         # Breadth-first across lower levels
>>> class D(B, C): pass
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>,
<class '__main__.A'>, <class 'object'>)
For nondiamonds, though, the search is
        still as it has always been (albeit with an extra object root)—to the top, and then to the
        right (a.k.a. DFLR, depth first and left to
        right, the model used for all classic classes in 2.X):
>>> class A: pass
>>> class B(A): pass         # Nondiamonds: order same as classic
>>> class C: pass            # Depth first, then left to right
>>> class D(B, C): pass
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.A'>,
<class '__main__.C'>, <class 'object'>)
The MRO of the following tree, for example, is the same as the
        earlier diamond, per DFLR:
>>> class A: pass
>>> class B: pass            # Another nondiamond: DFLR
>>> class C(A): pass
>>> class D(B, C): pass
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>,
<class '__main__.A'>, <class 'object'>)
Notice how the implied object superclass always shows up at the
        end of the MRO; as we’ve seen, it’s added
        automatically above root (topmost) classes in
        new-style class trees in 3.X (and optionally in 2.X):
>>> A.__bases__              # Superclass links: object at two roots
(<class 'object'>,)
>>> B.__bases__
(<class 'object'>,)
>>> C.__bases__
(<class '__main__.A'>,)
>>> D.__bases__
(<class '__main__.B'>, <class '__main__.C'>)
Technically, the implied object superclass always creates a diamond
        in multiple inheritance even if your classes do not—your classes are
        searched as before, but the new-style MRO ensures that object is visited last, so your classes can
        override its defaults:
>>> class X: pass
>>> class Y: pass
>>> class A(X): pass         # Nondiamond: depth first then left to right
>>> class B(Y): pass         # Though implied "object" always forms a diamond
>>> class D(A, B): pass
>>> D.mro()
[<class '__main__.D'>, <class '__main__.A'>, <class '__main__.X'>,
<class '__main__.B'>, <class '__main__.Y'>, <class 'object'>]

>>> X.__bases__, Y.__bases__
((<class 'object'>,), (<class 'object'>,))
>>> A.__bases__, B.__bases__
((<class '__main__.X'>,), (<class '__main__.Y'>,))
The class.__mro__ attribute is available only on
        new-style classes; it’s not present in 2.X unless classes derive from
        object. Strictly speaking,
        new-style classes also have a class.mro() method used in the prior example for
        variety; it’s called at class instantiation time and its return value
        is a list used to initialize the __mro__ attribute when the class is created
        (the method is available for customization in metaclasses, described
        later). You can also select MRO names if classes’ object displays are
        too detailed, though this book usually shows the
        objects to remind you of their true form:
>>> D.mro() == list(D.__mro__)
True
>>> [cls.__name__ for cls in D.__mro__]
['D', 'A', 'X', 'B', 'Y', 'object']
However you access or display them, class MRO paths might be
        useful to resolve confusion, and in tools that must imitate Python’s
        inheritance search order. The next section shows the latter role
        in action.


Example: Mapping Attributes to Inheritance Sources
As a prime MRO use case, we noted at the end of the prior chapter that class tree
      climbers—such as the class tree lister mix-in we wrote there—might
      benefit from the MRO. As coded, the tree lister gave the
      physical locations of attributes in a class tree.
      However, by mapping the list of inherited attributes in a dir result to the linear MRO sequence (or DFLR
      order for classic classes), such tools can more directly associate
      attributes with the classes from which they are
      inherited—also a useful relationship for
      programmers.
We won’t recode our tree lister here, but as a first major step,
      the following file, mapattrs.py,
      implements tools that can be used to associate attributes with their
      inheritance source; as an added bonus, its mapattrs function demonstrates how inheritance
      actually searches for attributes in class tree objects, though the
      new-style MRO is largely automated for us:
"""
File mapattrs.py (3.X + 2.X)

Main tool: mapattrs() maps all attributes on or inherited by an
instance to the instance or class from which they are inherited.

Assumes dir() gives all attributes of an instance.  To simulate
inheritance, uses either the class's MRO tuple, which gives the
search order for new-style classes (and all in 3.X), or a recursive
traversal to infer the DFLR order of classic classes in 2.X.

Also here: inheritance() gives version-neutral class ordering;
assorted dictionary tools using 3.X/2.7 comprehensions.
"""

import pprint
def trace(X, label='', end='\n'):
    print(label + pprint.pformat(X) + end)  # Print nicely

def filterdictvals(D, V):
    """
    dict D with entries for value V removed.
    filterdictvals(dict(a=1, b=2, c=1), 1) => {'b': 2}
    """
    return {K: V2 for (K, V2) in D.items() if V2 != V}

def invertdict(D):
    """
    dict D with values changed to keys (grouped by values).
    Values must all be hashable to work as dict/set keys.
    invertdict(dict(a=1, b=2, c=1)) => {1: ['a', 'c'], 2: ['b']}
    """
    def keysof(V):
        return sorted(K for K in D.keys() if D[K] == V)
    return {V: keysof(V) for V in set(D.values())}

def dflr(cls):
    """
    Classic depth-first left-to-right order of class tree at cls.
    Cycles not possible: Python disallows on __bases__ changes.
    """
    here = [cls]
    for sup in cls.__bases__:
        here += dflr(sup)
    return here

def inheritance(instance):
    """
    Inheritance order sequence: new-style (MRO) or classic (DFLR)
    """
    if hasattr(instance.__class__, '__mro__'):
        return (instance,) + instance.__class__.__mro__
    else:
        return [instance] + dflr(instance.__class__)

def mapattrs(instance, withobject=False, bysource=False):
    """
    dict with keys giving all inherited attributes of instance,
    with values giving the object that each is inherited from.
    withobject: False=remove object built-in class attributes.
    bysource:   True=group result by objects instead of attributes.
    Supports classes with slots that preclude __dict__ in instances.
    """
    attr2obj = {}
    inherits = inheritance(instance)
    for attr in dir(instance):
        for obj in inherits:
             if hasattr(obj, '__dict__') and attr in obj.__dict__:      # See slots
               attr2obj[attr] = obj
               break

    if not withobject:
        attr2obj = filterdictvals(attr2obj, object)
    return attr2obj if not bysource else invertdict(attr2obj)

if __name__ == '__main__':
    print('Classic classes in 2.X, new-style in 3.X')
    class A:         attr1 = 1
    class B(A):      attr2 = 2
    class C(A):      attr1 = 3
    class D(B, C):   pass
    I = D()
    print('Py=>%s' % I.attr1)                        # Python's search == ours?
    trace(inheritance(I),             'INH\n')       # [Inheritance order]
    trace(mapattrs(I),                'ATTRS\n')     # Attrs  => Source
    trace(mapattrs(I, bysource=True), 'OBJS\n')      # Source => [Attrs]

    print('New-style classes in 2.X and 3.X')
    class A(object): attr1 = 1                       # "(object)" optional in 3.X
    class B(A):      attr2 = 2
    class C(A):      attr1 = 3
    class D(B, C):   pass
    I = D()
    print('Py=>%s' % I.attr1)
    trace(inheritance(I),             'INH\n')
    trace(mapattrs(I),                'ATTRS\n')
    trace(mapattrs(I, bysource=True), 'OBJS\n')
This file assumes dir gives all
      an instance’s attributes. It maps each attribute in a dir result to its source by scanning either
      the MRO order for new-style classes, or the DFLR order for classic
      classes, searching each object’s namespace __dict__ along the way. For classic classes,
      the DFLR order is computed with a simple recursive scan. The net effect
      is to simulate Python’s inheritance search in both class models.
This file’s self-test code applies its tools to the diamond
      multiple-inheritance trees we saw earlier. It uses Python’s pprint library module to display lists and dictionaries nicely—pprint.pprint is
      its basic call, and its pformat
      returns a print string. Run this on Python 2.7 to see both classic DFLR
      and new-style MRO search orders; on Python 3.3, the object derivation is unnecessary, and both
      tests give the same, new-style results. Importantly, attr1, whose value is labeled with “Py=>”
      and whose name appears in the results lists, is inherited from class
      A in classic search, but from class
      C in new-style search:
c:\code> py −2 mapattrs.py
Classic classes in 2.X, new-style in 3.X
Py=>1
INH
[<__main__.D instance at 0x000000000225A688>,
 <class __main__.D at 0x0000000002248828>,
 <class __main__.B at 0x0000000002248768>,
 <class __main__.A at 0x0000000002248708>,
 <class __main__.C at 0x00000000022487C8>,
 <class __main__.A at 0x0000000002248708>]

ATTRS
{'__doc__': <class __main__.D at 0x0000000002248828>,
 '__module__': <class __main__.D at 0x0000000002248828>,
 'attr1': <class __main__.A at 0x0000000002248708>,
 'attr2': <class __main__.B at 0x0000000002248768>}

OBJS
{<class __main__.A at 0x0000000002248708>: ['attr1'],
 <class __main__.B at 0x0000000002248768>: ['attr2'],
 <class __main__.D at 0x0000000002248828>: ['__doc__', '__module__']}

New-style classes in 2.X and 3.X
Py=>3
INH
(<__main__.D object at 0x0000000002257B38>,
 <class '__main__.D'>,
 <class '__main__.B'>,
 <class '__main__.C'>,
 <class '__main__.A'>,
 <type 'object'>)

ATTRS
{'__dict__': <class '__main__.A'>,
 '__doc__': <class '__main__.D'>,
 '__module__': <class '__main__.D'>,
 '__weakref__': <class '__main__.A'>,
 'attr1': <class '__main__.C'>,
 'attr2': <class '__main__.B'>}

OBJS
{<class '__main__.A'>: ['__dict__', '__weakref__'],
 <class '__main__.B'>: ['attr2'],
 <class '__main__.C'>: ['attr1'],
 <class '__main__.D'>: ['__doc__', '__module__']}
As a larger application of these tools, the following is our
      inheritance simulator at work in 3.3 on the preceding chapter’s
      testmixin0.py file’s test classes
      (I’ve deleted some built-in names here for space; as usual, run live for
      the whole list). Notice how __X
      pseudoprivate names are mapped to their defining classes, and how
      ListInstance appears in the MRO
      before object,
      which has a __str__ that would
      otherwise be chosen first—as you’ll recall, mixing this method in was
      the whole point of the lister classes!
c:\code> py −3
>>> from mapattrs import trace, dflr, inheritance, mapattrs
>>> from testmixin0 import Sub
>>> I = Sub()                      # Sub inherits from Super and ListInstance roots
>>> trace(dflr(I.__class__))       # 2.X search order: implied object before lister!
[<class 'testmixin0.Sub'>,
 <class 'testmixin0.Super'>,
 <class 'object'>,
 <class 'listinstance.ListInstance'>,
 <class 'object'>]

>>> trace(inheritance(I))          # 3.X (+ 2.X newstyle) search order: lister first
(<testmixin0.Sub object at 0x0000000002974630>,
 <class 'testmixin0.Sub'>,
 <class 'testmixin0.Super'>,
 <class 'listinstance.ListInstance'>,
 <class 'object'>)

>>> trace(mapattrs(I))
{'_ListInstance__attrnames': <class 'listinstance.ListInstance'>,
 '__init__': <class 'testmixin0.Sub'>,
 '__str__': <class 'listinstance.ListInstance'>,
 ...etc...
 'data1': <testmixin0.Sub object at 0x0000000002974630>,
 'data2': <testmixin0.Sub object at 0x0000000002974630>,
 'data3': <testmixin0.Sub object at 0x0000000002974630>,
 'ham': <class 'testmixin0.Super'>,
 'spam': <class 'testmixin0.Sub'>}

>>> trace(mapattrs(I, bysource=True))
{<testmixin0.Sub object at 0x0000000002974630>: ['data1', 'data2', 'data3'],
 <class 'listinstance.ListInstance'>: ['_ListInstance__attrnames', '__str__'],
 <class 'testmixin0.Super'>: ['__dict__', '__weakref__', 'ham'],
 <class 'testmixin0.Sub'>: ['__doc__',
                            '__init__',
                            '__module__',
                            '__qualname__',
                            'spam']}

>>> trace(mapattrs(I, withobject=True))
{'_ListInstance__attrnames': <class 'listinstance.ListInstance'>,
 '__class__': <class 'object'>,
 '__delattr__': <class 'object'>,
 ...etc...
Here’s the bit you might run if you want to label class objects
      with names inherited by an instance, though you may want to filter out
      some built-in double-underscore names for the sake of users’
      eyesight!
>>> amap = mapattrs(I, withobject=True, bysource=True)
>>> trace(amap)
{<testmixin0.Sub object at 0x0000000002974630>: ['data1', 'data2', 'data3'],
 <class 'listinstance.ListInstance'>: ['_ListInstance__attrnames', '__str__'],
 <class 'testmixin0.Super'>: ['__dict__', '__weakref__', 'ham'],
 <class 'testmixin0.Sub'>: ['__doc__',
                            '__init__',
                            '__module__',
                            '__qualname__',
                            'spam'],
 <class 'object'>: ['__class__',
                    '__delattr__',
                    ...etc...
                    '__sizeof__',
                    '__subclasshook__']}
Finally, and as both a follow-up to the prior chapter’s
      ruminations and segue to the next section here, the following shows how
      this scheme works for class-based slots attributes too.
      Because a class’s __dict__ includes
      both normal class attributes and individual entries for the instance
      attributes defined by its __slots__
      list, the slots attributes inherited by an instance will be correctly
      associated with the implementing class from which they are acquired,
      even though they are not physically stored in the instance’s __dict__ itself:
# mapattrs-slots.py: test __slots__ attribute inheritance
from mapattrs import mapattrs, trace

class A(object): __slots__ = ['a', 'b']; x = 1; y = 2
class B(A):      __slots__ = ['b', 'c']
class C(A):      x = 2
class D(B, C):
    z = 3
    def __init__(self): self.name = 'Bob';

I = D()
trace(mapattrs(I, bysource=True))     # Also: trace(mapattrs(I))
For explicitly new-style classes like those in this file, the
      results are the same under both 2.7 and 3.3, though 3.3 adds an extra
      built-in name to the set. The attribute names here reflect all those
      inherited by the instance from user-defined classes, even those
      implemented by slots defined at classes and stored in space allocated in
      the instance:
c:\code> py −3 mapattrs-slots.py
{<__main__.D object at 0x00000000028988E0>: ['name'],
 <class '__main__.C'>: ['x'],
 <class '__main__.D'>: ['__dict__',
                        '__doc__',
                        '__init__',
                        '__module__',
                        '__qualname__',
                        '__weakref__',
                        'z'],
 <class '__main__.A'>: ['a', 'y'],
 <class '__main__.B'>: ['__slots__', 'b', 'c']}
But we need to move ahead to understand the role of slots
      better—and understand why mapattrs
      must be careful to check to see if a __dict__ is present before fetching it!
Study this code for more insight. For the prior chapter’s tree
      lister, your next step might be to index the mapattrs function’s bysource=True dictionary result to obtain an
      object’s attributes during the tree sketch traversal, instead of (or
      perhaps in addition to?) its current physical __dict__ scan. You’ll probably need to use
      getattr on the instance to fetch
      attribute values, because some may be implemented as slots or other
      “virtual” attributes at their source classes, and fetching these at the
      class directly won’t return the instance’s value. If I code anymore
      here, though, I’ll deprive readers of the remaining fun, and the next
      section of its subject matter.
Note
Python’s pprint module used
        in this example works as shown in Pythons 3.3 and 2.7, but appears to
        have an issue in Pythons 3.2 and 3.1 where it raises a
        wrong-number-arguments exception internally for the objects displayed
        here. Since I’ve already devoted too much space to covering transitory
        Python defects, and since this has been repaired in the versions of
        Python used in this edition, we’ll leave working around this in the
        suggested exercises column for readers running this on the infected
        Pythons; change trace to simple
        prints as needed, and mind the note on battery
        dependence in Chapter 1!



New-Style Class Extensions
Beyond the changes described in the prior section (some of which, frankly, may
    seem too academic and obscure to matter to many readers of this book),
    new-style classes provide a handful of more advanced class tools that have
    more direct and practical application—slots,
    properties, descriptors, and
    more. The following sections provide an overview of each of these
    additional features, available for new-style class in Python 2.X and all
    classes in Python 3.X. Also in this extensions category are the __mro__ attribute and the super call, both covered elsewhere—the former in
    the previous section to explore a change, and the latter postponed until
    chapter end to serve as a larger case study.
Slots: Attribute Declarations
By assigning a sequence of string attribute names to a special __slots__ class attribute, we can enable a
      new-style class to both limit the set of legal attributes that instances
      of the class will have, and optimize memory usage and possibly program
      speed. As we’ll find, though, slots should be used only in applications
      that clearly warrant the added complexity. They will complicate your
      code, may complicate or break code you may use, and require universal
      deployment to be effective.
Slot basics
To use slots, assign a sequence of string names to the special
        __slots__ variable and attribute at
        the top level of a class statement:
        only those names in the __slots__
        list can be assigned as instance attributes. However, like all names
        in Python, instance attribute names must still be assigned before they
        can be referenced, even if they’re listed in __slots__:
>>> class limiter(object):
        __slots__ = ['age', 'name', 'job']

>>> x = limiter()
>>> x.age                                           # Must assign before use
AttributeError: age

>>> x.age = 40                                      # Looks like instance data
>>> x.age
40
>>> x.ape = 1000                                    # Illegal: not in __slots__
AttributeError: 'limiter' object has no attribute 'ape'
This feature is envisioned as both a way to catch typo errors
        like this (assignments to illegal attribute names not in __slots__ are detected) as well as an
        optimization mechanism.
Allocating a namespace dictionary for every instance object can
        be expensive in terms of memory if many instances are created and only
        a few attributes are required. To save space, instead of allocating a
        dictionary for each instance, Python reserves just enough space in
        each instance to hold a value for each slot
        attribute, along with inherited attributes in the common
        class to manage slot access. This might
        additionally speed execution, though this benefit is less clear and
        might vary per program, platform, and Python.
Slots are also something of a major break with Python’s core
        dynamic nature, which dictates that any name may be created by
        assignment. In fact, they imitate C++ for efficiency at the expense of
        flexibility, and even have the potential to break
        some programs. As we’ll see, slots also come with a plethora of
        special-case usage rules. Per Python’s own manual, they should
        not be used except in clearly warranted
        cases—they are difficult to use correctly, and are, to quote the
        manual:
best reserved for rare cases where there are large numbers of
          instances in a memory-critical application.

In other words, this is yet another feature that should be used
        only if clearly warranted. Unfortunately, slots seem to be showing up
        in Python code much more often than they should; their obscurity seems
        to be a draw in itself. As usual, knowledge is your best ally in such
        things, so let’s take a quick look here.
Note
In Python 3.3, non-slots attribute space
          requirements have been reduced with a key-sharing
          dictionary model, where the __dict__ dictionaries used for objects’
          attributes may share part of their internal storage, including that
          of their keys. This may lessen some of the value of __slots__ as an optimization tool; per
          benchmark reports, this change reduces memory use by 10% to 20% for
          object-oriented programs, gives a small improvement in speed for
          programs that create many similar objects, and may be optimized
          further in the future. On the other hand, this won’t negate the
          presence of __slots__ in existing
          code you may need to understand!


Slots and namespace dictionaries
Potential benefits aside, slots can complicate the class model—and code
        that relies on it—substantially. In fact, some instances with slots
        may not have a __dict__ attribute
        namespace dictionary at all, and others will have data attributes that
        this dictionary does not include. To be clear: this is a
        major incompatibility with the traditional class
        model—one that can complicate any code that accesses attributes
        generically, and may even cause some programs to fail
        altogether.
For instance, programs that list or access instance attributes
        by name string may need to use more storage-neutral interfaces than
        __dict__ if slots may be used.
        Because an instance’s data may include class-level names such as
        slots—either in addition to or instead of namespace dictionary
        storage—both attribute sources may need to be queried for
        completeness.
Let’s see what this means in terms of code, and explore more
        about slots along the way. First off, when slots are used, instances
        do not normally have an attribute dictionary—instead, Python uses the
        class descriptors feature introduced ahead to
        allocate and manage space reserved for slot attributes in the
        instance. In Python 3.X, and in 2.X for new-style classes derived from
        object:
>>> class C:                             # Requires "(object)" in 2.X only
        __slots__ = ['a', 'b']           # __slots__ means no __dict__ by default

>>> X = C()
>>> X.a = 1
>>> X.a
1
>>> X.__dict__
AttributeError: 'C' object has no attribute '__dict__'
However, we can still fetch and set slot-based attributes by
        name string using storage-neutral tools such as getattr and setattr (which look beyond the instance
        __dict__ and thus include
        class-level names like slots) and dir (which collects all inherited names
        throughout a class tree):
>>> getattr(X, 'a')
1
>>> setattr(X, 'b', 2)                   # But getattr() and setattr() still work
>>> X.b
2
>>> 'a' in dir(X)                        # And dir() finds slot attributes too
True
>>> 'b' in dir(X)
True
Also keep in mind that without an attribute namespace
        dictionary, it’s not possible to assign new names to instances that
        are not names in the slots list:
>>> class D:                             # Use D(object) for same result in 2.X
        __slots__ = ['a', 'b']
        def __init__(self):
            self.d = 4                   # Cannot add new names if no __dict__

>>> X = D()
AttributeError: 'D' object has no attribute 'd'
We can still accommodate extra attributes, though, by including
        __dict__ explicitly in __slots__, in order to create an attribute
        namespace dictionary too:
>>> class D:
        __slots__ = ['a', 'b', '__dict__']    # Name __dict__ to include one too
        c = 3                                 # Class attrs work normally
        def __init__(self):
            self.d = 4                        # d stored in __dict__, a is a slot

>>> X = D()
>>> X.d
4
>>> X.c
3
>>> X.a                          # All instance attrs undefined until assigned
AttributeError: a
>>> X.a = 1
>>> X.b = 2
In this case, both storage mechanisms are
        used. This renders __dict__ too
        limited for code that wishes to treat slots as instance data, but
        generic tools such as getattr still
        allow us to process both storage forms as a single set of
        attributes:
>>> X.__dict__                   # Some objects have both __dict__ and slot names
{'d': 4}                         # getattr() can fetch either type of attr
>>> X.__slots__
['a', 'b', '__dict__']
>>> getattr(X, 'a'), getattr(X, 'c'), getattr(X, 'd')    # Fetches all 3 forms
(1, 3, 4)
Because dir also returns all
        inherited attributes, though, it might be too
        broad in some contexts; it also includes class-level methods, and even
        all object defaults. Code that
        wishes to list just instance attributes may in
        principle still need to allow for both storage forms explicitly. We
        might at first naively code this as follows:
>>> for attr in list(X.__dict__) + X.__slots__:          # Wrong...
        print(attr, '=>', getattr(X, attr))
Since either can be omitted, we may more correctly code this as
        follows, using getattr to allow for
        defaults—a noble but nonetheless inaccurate approach, as the next
        section will explain:
>>> for attr in list(getattr(X, '__dict__', [])) + getattr(X, '__slots__', []):
        print(attr, '=>', getattr(X, attr))

d => 4
a => 1                                                   # Less wrong...
b => 2
__dict__ => {'d': 4}

Multiple __slot__ lists in superclasses
The preceding code works in this specific case, but in general it’s
        not entirely accurate. Specifically, this code
        addresses only slot names in the lowest __slots__ attribute inherited by an
        instance, but slot lists may appear more than once in a class tree.
        That is, a name’s absence in the lowest __slots__ list does not preclude its
        existence in a higher __slots__.
        Because slot names become class-level attributes, instances acquire
        the union of all slot names anywhere in the tree, by the normal
        inheritance rule:
>>> class E:
        __slots__ = ['c', 'd']            # Superclass has slots
>>> class D(E):
        __slots__ = ['a', '__dict__']     # But so does its subclass

>>> X = D()
>>> X.a = 1; X.b = 2; X.c = 3             # The instance is the union (slots: a, c)
>>> X.a, X.c
(1, 3)
Inspecting just the inherited slots list won’t pick up slots
        defined higher in a class tree:
>>> E.__slots__                           # But slots are not concatenated
['c', 'd']
>>> D.__slots__
['a', '__dict__']
>>> X.__slots__                           # Instance inherits *lowest* __slots__
['a', '__dict__']
>>> X.__dict__                            # And has its own an attr dict
{'b': 2}

>>> for attr in list(getattr(X, '__dict__', [])) + getattr(X, '__slots__', []):
        print(attr, '=>', getattr(X, attr))

b => 2                                    # Other superclass slots missed!
a => 1
__dict__ => {'b': 2}

>>> dir(X)                                # But dir() includes all slot names
[...many names omitted... 'a', 'b', 'c', 'd']
In other words, in terms of listing instance attributes
        generically, one __slots__ isn’t
        always enough—they are potentially subject to the full inheritance
        search procedure. See the earlier mapattrs-slots.py for another example of
        slots appearing in multiple superclasses. If multiple classes in a
        class tree have their own __slots__
        attributes, generic programs must develop other policies for listing
        attributes—as the next section explains.

Handling slots and other “virtual” attributes
        generically
At this point, you may wish to review the discussion of slots policy
        options at the coverage of the lister.py display mix-in classes near the
        end of the preceding chapter—a prime example of why generic programs
        may need to care about slots. Such tools that attempt to list instance
        data attributes generically must account for slots, and perhaps other
        such “virtual” instance attributes like
        properties and descriptors
        discussed ahead—names that similarly reside in classes but may provide
        attribute values for instances on request. Slots are the most
        data-centric of these, but are representative of a larger
        category.
Such attributes require inclusive approaches, special handling,
        or general avoidance—the latter of which becomes unsatisfactory as
        soon as any programmer uses slots in subject code. Really, class-level
        instance attributes like slots probably necessitate a redefinition of
        the term instance data—as locally stored
        attributes, the union of all inherited attributes, or some subset
        thereof.
For example, some programs might classify slot names as
        attributes of classes instead of instances; these
        attributes do not exist in instance namespace dictionaries, after all.
        Alternatively, as shown earlier, programs can be more inclusive by
        relying on dir to fetch all
        inherited attribute names and getattr to fetch their corresponding values
        for the instance—without regard to their physical location or
        implementation. If you must support slots as instance data, this is
        likely the most robust way to proceed:
>>> class Slotful:
        __slots__ = ['a', 'b', '__dict__']
        def __init__(self, data):
            self.c = data

>>> I = Slotful(3)
>>> I.a, I.b = 1, 2
>>> I.a, I.b, I.c                            # Normal attribute fetch
(1, 2, 3)

>>> I.__dict__                               # Both __dict__ and slots storage
{'c': 3}
>>> [x for x in dir(I) if not x.startswith('__')]
['a', 'b', 'c']

>>> I.__dict__['c']                          # __dict__ is only one attr source
3
>>> getattr(I, 'c'), getattr(I, 'a')         # dir+getattr is broader than __dict__
(3, 1)                                       # applies to slots, properties, descrip

>>> for a in (x for x in dir(I) if not x.startswith('__')):
        print(a, getattr(I, a))

a 1
b 2
c 3
Under this dir/getattr model, you can still map attributes
        to their inheritance sources, and filter them more selectively by
        source or type if needed, by scanning the MRO—as
        we did earlier in both mapattrs.py and its application to slots in
        mapattrs-slots.py. As an added
        bonus, such tools and policies for handling slots will potentially
        apply automatically to properties and
        descriptors too, though these attributes are more
        explicitly computed values, and less obviously instance-related data
        than slots.
Also keep in mind that this is not just a tools issue.
        Class-based instance attributes like slots also impact the traditional
        coding of the __setattr__ operator
        overloading method we met in Chapter 30. Because slots and some other
        attributes are not stored in the instance __dict__, and may even imply its
        absence, new-style classes must instead generally
        run attribute assignments by routing them to the object superclass. In practice, this may
        make this method fundamentally different in some classic and new-style
        classes.

Slot usage rules
Slot declarations can appear in multiple classes in a class tree, but when
        they do they are subject to a number of constraints that are somewhat
        difficult to rationalize unless you understand the implementation of
        slots as class-level descriptors for each slot
        name that are inherited by the instances where the managed space is
        reserved (descriptors are an advanced tool we’ll study in detail in
        the last part of this book):
	Slots in subs are pointless when absent in
            supers: If a subclass inherits from a superclass
            without a __slots__, the
            instance __dict__ attribute
            created for the superclass will always be accessible, making a
            __slots__ in the subclass
            largely pointless. The subclass still manages its slots, but
            doesn’t compute their values in any way, and doesn’t avoid a
            dictionary—the main reason to use slots.

	Slots in supers are pointless when absent in
            subs: Similarly, because the meaning of a __slots__ declaration is limited to the
            class in which it appears, subclasses will produce an instance
            __dict__ if they do not define
            a __slots__, rendering a
            __slots__ in a superclass
            largely pointless.

	Redefinition renders super slots
            pointless: If a class defines the same slot name as a
            superclass, its redefinition hides the slot in the superclass per
            normal inheritance. You can access the version of the name defined
            by the superclass slot only by fetching its descriptor directly
            from the superclass.

	Slots prevent class-level defaults:
            Because slots are implemented as class-level descriptors (along
            with per-instance space), you cannot use class attributes of the
            same name to provide defaults as you can for normal instance
            attributes: assigning the same name in the class overwrites the
            slot descriptor.

	Slots and __dict__: As shown earlier,
            __slots__ preclude both an
            instance __dict__ and assigning
            names not listed, unless __dict__ is listed explicitly
            too.


We’ve already seen the last of these in action, and the earlier
        mapattrs-slots.py illustrates the
        third. It’s easy to demonstrate how the new rules here translate to
        actual code—most crucially, a namespace dictionary is created when any
        class in a tree omits slots, thereby negating the memory optimization
        benefit:
>>> class C: pass                        # Bullet 1: slots in sub but not super
>>> class D(C): __slots__ = ['a']        # Makes instance dict for nonslots
>>> X = D()                              # But slot name still managed in class
>>> X.a = 1; X.b = 2
>>> X.__dict__
{'b': 2}
>>> D.__dict__.keys()
dict_keys([... 'a', '__slots__', ...])

>>> class C: __slots__ = ['a']           # Bullet 2: slots in super but not sub
>>> class D(C): pass                     # Makes instance dict for nonslots
>>> X = D()                              # But slot name still managed in class
>>> X.a = 1; X.b = 2
>>> X.__dict__
{'b': 2}
>>> C.__dict__.keys()
dict_keys([... 'a', '__slots__', ...])

>>> class C: __slots__ = ['a']           # Bullet 3: only lowest slot accessible
>>> class D(C): __slots__ = ['a']

>>> class C: __slots__ = ['a']; a = 99   # Bullet 4: no class-level defaults
ValueError: 'a' in __slots__ conflicts with class variable
In other words, besides their program-breaking potential, slots
        essentially require both universal and careful
        deployment to be effective—because slots do not compute
        values dynamically like properties (coming up in the next section),
        they are largely pointless unless each class in a tree uses them and
        is cautious to define only new slot names not defined by other
        classes. It’s an all-or-nothing feature—an
        unfortunate property shared by the super call discussed ahead:
>>> class C: __slots__ = ['a']           # Assumes universal use, differing names
>>> class D(C): __slots__ = ['b']
>>> X = D()
>>> X.a = 1; X.b = 2
>>> X.__dict__
AttributeError: 'D' object has no attribute '__dict__'
>>> C.__dict__.keys(), D.__dict__.keys()
(dict_keys([... 'a', '__slots__', ...]), dict_keys([... 'b', '__slots__', ...]))
Such rules—among others regarding weak
        references omitted here for space—are part of the reason
        slots are not generally recommended, except in pathological cases
        where their space reduction is significant. Even then, their potential
        to complicate or break code should be ample cause to carefully
        consider the tradeoffs. Not only must they be spread almost
        neurotically throughout a framework, they may
        also break tools you rely on.

Example impacts of slots: ListTree and mapattrs
As a more realistic example of slots’ effects, due to the first bullet in
        the prior section, Chapter 31’s
        ListTree class does not
        fail when mixed in to a class that defines __slots__, even though it scans instance
        namespace dictionaries. The lister class’s own lack of slots is enough
        to ensure that the instance will still have a __dict__, and hence not trigger an exception
        when fetched or indexed. For example, both of the following display
        without error—the second also allows names not in the slots list to be
        assigned as instances attributes, including any required by the
        superclass:
class C(ListTree): pass
X = C()                                        # OK: no __slots__ used
print(X)

class C(ListTree): __slots__ = ['a', 'b']      # OK: superclass produces __dict__
X = C()
X.c = 3
print(X)                                       # Displays c at X, a and b at C
The following classes display correctly as
        well—any nonslot class like ListTree generates an instance __dict__, and can thus safely assume its
        presence:
class A: __slots__ = ['a']                     # Both OK by bullet 1 above
class B(A, ListTree): pass

class A: __slots__ = ['a']
class B(A, ListTree): __slots__ = ['b']        # Displays b at B, a at A
Although it renders subclass slots pointless, this is a positive
        side effect for tools classes like ListTree (and its Chapter 28 predecessor). In general,
        though, some tools might need to catch exceptions when __dict__ is absent or use a hasattr or getattr to test or provide defaults if slot
        usage may preclude a namespace dictionary in instance objects
        inspected.
For example, you should now be able to understand why the
        mapattrs.py program earlier in
        this chapter must check for the presence of a __dict__ before fetching it—instance objects
        created from classes with __slots__
        won’t have one. In fact, if we use the highlighted alternative line in
        the following, the mapattrs
        function fails with an exception when attempting to look for an
        attribute name in the instance at the front of the inheritance path
        sequence:
def mapattrs(instance, withobject=False, bysource=False):
    for attr in dir(instance):
        for obj in inherits:
            if attr in obj.__dict__:           # May fail if __slots__ used

>>> class C: __slots__ = ['a']
>>> X = C()
>>> mapattrs(X)
AttributeError: 'C' object has no attribute '__dict__'
Either of the following works around the issue, and allows the
        tool to support slots—the first provides a default, and the second is
        more verbose but seems marginally more explicit in its intent:
            if attr in getattr(obj, '__dict__', {}):

            if hasattr(obj, '__dict__') and attr in obj.__dict__:
As mentioned earlier, some tools may benefit from mapping
        dir results to objects in the MRO
        this way, instead of scanning an instance __dict__ in general—without this more
        inclusive approach, attributes implemented by class-level tools like
        slots won’t be reported as instance data. Even so, this doesn’t
        necessarily excuse such tools from allowing for a missing __dict__ in the instance too!

What about slots speed?
Finally, while slots primarily optimize memory use, their speed impact
        is less clear-cut. Here’s a simple test script using the timeit techniques we studied in Chapter 21. For both the slots and
        nonslots (instance dictionary) storage models, it makes 1,000
        instances, assigns and fetches 4 attributes on each, and repeats 1,000
        times—for both models taking the best of 3 runs that each exercise a
        total of 8M attribute operations:
# File slots-test.py
from __future__ import print_function
import timeit
base = """
Is = []
for i in range(1000):
    X = C()
    X.a = 1; X.b = 2; X.c = 3; X.d = 4
    t = X.a + X.b + X.c + X.d
    Is.append(X)
"""

stmt = """
class C(object):
    __slots__ = ['a', 'b', 'c', 'd']
""" + base
print('Slots   =>', end=' ')
print(min(timeit.repeat(stmt, number=1000, repeat=3)))

stmt = """
class C(object):
    pass
""" + base
print('Nonslots=>', end=' ')
print(min(timeit.repeat(stmt, number=1000, repeat=3)))
At least on this code, on my laptop, and in my installed
        versions (Python 3.3 and 2.7), the best times imply that slots are
        slightly quicker in both 3.X and 2.X, though this says little
        about memory space, and is prone to change arbitrarily in the
        future:
c:\code> py −3 slots-test.py
Slots   => 0.7780903942045899
Nonslots=> 0.9888108080898417

C:\code> py -2  slots-test.py
Slots   => 0.615521153591
Nonslots=> 0.766582559582
For more on slots in general, see the Python standard manual
        set. Also watch for the Private
        decorator case study of Chapter 39—an example that
        naturally allows for attributes based on both __slots__ and __dict__ storage, by using delegation and
        storage-neutral accessor tools like getattr.


Properties: Attribute Accessors
Our next new-style extension is properties—a mechanism
      that provides another way for new-style classes to define methods called
      automatically for access or assignment to instance attributes. This
      feature is similar to properties (a.k.a. “getters” and “setters”) in
      languages like Java and C#, but in Python is generally best used
      sparingly, as a way to add accessors to attributes after the
      fact as needs evolve and warrant. Where needed, though,
      properties allow attribute values to be computed dynamically without
      requiring method calls at the point of access.
Though properties cannot support generic attribute routing goals,
      at least for specific attributes they are an alternative to some
      traditional uses of the __getattr__
      and __setattr__ overloading methods
      we first studied in Chapter 30.
      Properties have a similar effect to these two methods, but by contrast
      incur an extra method call only for accesses to names that require
      dynamic computation—other nonproperty names are accessed normally with
      no extra calls. Although __getattr__
      is invoked only for undefined names, the __setattr__ method is instead called for
      assignment to every attribute.
Properties and slots are related too, but serve different goals.
      Both implement instance attributes that are not physically stored in
      instance namespace dictionaries—a sort of “virtual” attribute—and both
      are based on the notion of class-level attribute
      descriptors. In contrast, slots manage instance
      storage, while properties intercept access and compute values
      arbitrarily. Because their underlying descriptor implementation tool is
      too advanced for us to cover here, properties and descriptors both get
      full treatment in Chapter 38.
Property basics
As a brief introduction, though, a property is a type of object assigned to a
        class attribute name. You generate a property by calling the property built-in function, passing in up to
        three accessor methods—handlers for get, set, and delete operations—as
        well as an optional docstring for the property. If any argument is
        passed as None or omitted, that
        operation is not supported.
The resulting property object is typically assigned to a name at
        the top level of a class statement
        (e.g., name=property()), and a special @ syntax we’ll meet later is available to
        automate this step. When thus assigned, later accesses to the class
        property name itself as an object attribute (e.g., obj.name) are
        automatically routed to one of the accessor methods passed into the
        property call.
For example, we’ve seen how the __getattr__ operator overloading method
        allows classes to intercept undefined attribute references in both
        classic and new-style classes:
>>> class operators:
        def __getattr__(self, name):
            if name == 'age':
                return 40
            else:
                raise AttributeError(name)

>>> x = operators()
>>> x.age                                         # Runs __getattr__
40
>>> x.name                                        # Runs __getattr__
AttributeError: name
Here is the same example, coded with properties instead; note
        that properties are available for all classes but require the
        new-style object derivation in 2.X
        to work properly for intercepting attribute
        assignments (and won’t complain if you forget
        this—but will silently overwrite your property with the new
        data!):
>>> class properties(object):                     # Need object in 2.X for setters
        def getage(self):
            return 40
        age = property(getage, None, None, None)  # (get, set, del, docs), or use @

>>> x = properties()
>>> x.age                                         # Runs getage
40
>>> x.name                                        # Normal fetch
AttributeError: 'properties' object has no attribute 'name'
For some coding tasks, properties can be less complex and
        quicker to run than the traditional techniques. For example, when we
        add attribute assignment support, properties
        become more attractive—there’s less code to type, and no extra method
        calls are incurred for assignments to attributes we don’t wish to
        compute dynamically:
>>> class properties(object):                     # Need object in 2.X for setters
        def getage(self):
            return 40
        def setage(self, value):
            print('set age: %s' % value)
            self._age = value
        age = property(getage, setage, None, None)

>>> x = properties()
>>> x.age                                         # Runs getage
40
>>> x.age = 42                                    # Runs setage
set age: 42
>>> x._age                                        # Normal fetch:  no getage call
42
>>> x.age                                         # Runs getage
40
>>> x.job = 'trainer'                             # Normal assign: no setage call
>>> x.job                                         # Normal fetch:  no getage call
'trainer'
The equivalent class based on operator overloading incurs extra
        method calls for assignments to attributes not being managed and needs
        to route attribute assignments through the attribute dictionary to
        avoid loops (or, for new-style classes, to the object superclass’s __setattr__ to better support “virtual”
        attributes such as slots and properties coded in other
        classes):
>>> class operators:
        def __getattr__(self, name):              # On undefined reference
            if name == 'age':
                return 40
            else:
                raise AttributeError(name)
        def __setattr__(self, name, value):       # On all assignments
            print('set: %s %s' % (name, value))
            if name == 'age':
                self.__dict__['_age'] = value     # Or object.__setattr__()
            else:
                self.__dict__[name] = value

>>> x = operators()
>>> x.age                                         # Runs __getattr__
40
>>> x.age = 41                                    # Runs __setattr__
set: age 41
>>> x._age                                        # Defined: no __getattr__ call
41
>>> x.age                                         # Runs __getattr__
40
>>> x.job = 'trainer'                             # Runs __setattr__ again
set: job trainer
>>> x.job                                         # Defined: no __getattr__ call
'trainer'
Properties seem like a win for this simple example. However,
        some applications of __getattr__
        and __setattr__ still require more
        dynamic or generic interfaces than properties directly provide.
For example, in many cases the set of attributes to be supported
        cannot be determined when the class is coded, and may not even exist
        in any tangible form (e.g., when delegating
        arbitrary attribute references to a wrapped/embedded object
        generically). In such contexts, a generic __getattr__ or a __setattr__ attribute handler with a
        passed-in attribute name is usually preferable. Because such generic
        handlers can also support simpler cases, properties are often an
        optional and redundant extension—albeit one that may avoid extra calls
        on assignments, and one that some programmers may prefer when
        applicable.
For more details on both options, stay tuned for Chapter 38 in the final part of this book. As
        we’ll see there, it’s also possible to code properties using
        the @ symbol
        function decorator syntax—a topic introduced
        later in this chapter, and an equivalent and automatic alternative to
        manual assignment in the class scope:
class properties(object):
    @property                          # Coding properties with decorators: ahead
    def age(self):
        ...
    @age.setter
    def age(self, value):
        ...
To make sense of this decorator syntax, though, we must
        move ahead.


__getattribute__ and Descriptors: Attribute Tools
Also in the class extensions department, the __getattribute__ operator overloading method,
      available for new-style classes only, allows a class to intercept
      all attribute references, not just undefined
      references. This makes it more potent than its __getattr__ cousin we used in the prior
      section, but also trickier to use—it’s prone to loops much like __setattr__, but in different ways.
For more specialized attribute interception goals, in addition to
      properties and operator overloading methods, Python supports the notion
      of attribute descriptors—classes with __get__ and __set__ methods, assigned to class attributes
      and inherited by instances, that intercept read and write accesses to
      specific attributes. As a preview, here’s one of the simplest
      descriptors you’re likely to encounter:
>>> class AgeDesc(object):
        def __get__(self, instance, owner): return 40
        def __set__(self, instance, value): instance._age = value

>>> class descriptors(object):
        age = AgeDesc()

>>> x = descriptors()
>>> x.age                                         # Runs AgeDesc.__get__
40
>>> x.age = 42                                    # Runs AgeDesc.__set__
>>> x._age                                        # Normal fetch: no AgeDesc call
42
Descriptors have access to state in instances of themselves as
      well as their client class, and are in a sense a more general form of
      properties; in fact, properties are a simplified way to define a
      specific type of descriptor—one that runs functions on access.
      Descriptors are also used to implement the slots feature we met earlier,
      and other Python tools.
Because __getattribute__ and
      descriptors are too substantial to cover well here, we’ll defer the rest
      of their coverage, as well as much more on properties, to Chapter 38 in the final part of this book. We’ll
      also employ them in examples in Chapter 39 and study
      how they factor into inheritance in Chapter 40.

Other Class Changes and Extensions
As mentioned, we’re also postponing coverage of the super built-in—an additional major new-style
      class extension that relies on its MRO—until the end of this chapter.
      Before we get there, though, we’re going to explore additional
      class-related changes and extensions that are not necessarily bound to
      new-style classes, but were introduced at roughly the same time: static
      and class methods, decorators, and more.
Many of the changes and feature additions of new-style classes
      integrate with the notion of subclassable types mentioned earlier in
      this chapter, because subclassable types and new-style classes were
      introduced in conjunction with a merging of the type/class dichotomy in
      Python 2.2 and beyond. As we’ve seen, in 3.X, this merging is complete:
      classes are now types, and types are classes, and Python classes today
      still reflect both that conceptual merging and its
      implementation.
Along with these changes, Python also grew a more coherent and
      generalized protocol for coding metaclasses—classes
      that subclass the type object,
      intercept class creation calls, and may provide behavior acquired by
      classes. Accordingly, they provide a well-defined hook for management
      and augmentation of class objects. They are also an advanced topic that
      is optional for most Python programmers, so we’ll postpone further
      details here. We’ll glimpse metaclasses again later in this chapter in
      conjunction with class decorators—a feature whose roles often
      overlap—but we’ll postpone their full coverage until Chapter 40, in the final part of this book. For our
      purpose here, let’s move on to a handful of additional class-related
      extensions.


Static and Class Methods
As of Python 2.2, it is possible to define two kinds of methods within a class that
    can be called without an instance: static methods
    work roughly like simple instance-less functions inside a class, and
    class methods are passed a class instead of an
    instance. Both are similar to tools in other languages (e.g., C++ static
    methods). Although this feature was added in conjunction with the
    new-style classes discussed in the prior sections, static and class
    methods work for classic classes too.
To enable these method modes, you must call special built-in
    functions named staticmethod
    and classmethod within the class, or
    invoke them with the special @name decoration
    syntax we’ll meet later in this chapter. These functions are required to
    enable these special method modes in Python 2.X, and are generally needed
    in 3.X. In Python 3.X, a staticmethod
    declaration is not required for instance-less methods called only through
    a class name, but is still required if such methods are called through
    instances.
Why the Special Methods?
As we’ve learned, a class’s method is normally passed an instance
      object in its first argument, to serve as the implied subject of the
      method call—that’s the “object” in “object-oriented programming.” Today,
      though, there are two ways to modify this model. Before I explain what
      they are, I should explain why this might matter to you.
Sometimes, programs need to process data associated with classes
      instead of instances. Consider keeping track of the number of instances
      created from a class, or maintaining a list of all of a class’s
      instances that are currently in memory. This type of information and its
      processing are associated with the class rather than its instances. That
      is, the information is usually stored on the class itself and processed
      apart from any instance.
For such tasks, simple functions coded outside a class can often
      suffice—because they can access class attributes through the class name,
      they have access to class data and never require access to an instance.
      However, to better associate such code with a class, and to allow such
      processing to be customized with inheritance as usual, it would be
      better to code these types of functions inside the
      class itself. To make this work, we need methods in a class that are not
      passed, and do not expect, a self
      instance argument.
Python supports such goals with the notion of static
      methods—simple functions with no self argument that
      are nested in a class and are designed to work on class attributes
      instead of instance attributes. Static methods never receive an
      automatic self argument, whether
      called through a class or an instance. They usually keep track of
      information that spans all instances, rather than providing behavior for
      instances.
Although less commonly used, Python also supports the notion of
      class methods—methods of a class that are passed a
      class object in their first argument instead of an instance, regardless
      of whether they are called through an instance or a class. Such methods
      can access class data through their class argument—what we’ve called
      self thus far—even if called through
      an instance. Normal methods, now known in formal circles as
      instance methods, still receive a subject instance
      when called; static and class methods do not.

Static Methods in 2.X and 3.X
The concept of static methods is the same in both Python 2.X and 3.X, but its
      implementation requirements have evolved somewhat in Python 3.X. Since
      this book covers both versions, I need to explain the differences in the
      two underlying models before we get to the code.
Really, we already began this story in the preceding chapter, when
      we explored the notion of unbound methods. Recall that both Python 2.X
      and 3.X always pass an instance to a method that is called through an
      instance. However, Python 3.X treats methods fetched directly from a
      class differently than 2.X—a difference in Python lines that has nothing
      to do with new-style classes:
	Both Python 2.X and 3.X produce a bound
          method when a method is fetched through an instance.

	In Python 2.X, fetching a method from a class produces an
          unbound method, which cannot be called without manually passing an
          instance.

	In Python 3.X, fetching a method from a class produces a
          simple function, which can be called normally
          with no instance present.


In other words, Python 2.X class methods always require an
      instance to be passed in, whether they are called through an instance or
      a class. By contrast, in Python 3.X we are required to pass an instance
      to a method only if the method expects one—methods that do not include
      an instance argument can be called through the class without passing an
      instance. That is, 3.X allows simple functions in a class, as long as
      they do not expect and are not passed an instance argument. The net
      effect is that:
	In Python 2.X, we must always declare a method as static in
          order to call it without an instance, whether it is called through a
          class or an instance.

	In Python 3.X, we need not declare such methods as static if
          they will be called through a class only, but we must do so in order
          to call them through an instance.


To illustrate, suppose we want to use class attributes to count
      how many instances are generated from a class. The following file,
      spam.py, makes a first attempt—its
      class has a counter stored as a class attribute, a constructor that
      bumps up the counter by one each time a new instance is created, and a
      method that displays the counter’s value. Remember, class attributes are
      shared by all instances. Therefore, storing the counter in the class
      object itself ensures that it effectively spans all instances:
class Spam:
    numInstances = 0
    def __init__(self):
        Spam.numInstances = Spam.numInstances + 1
    def printNumInstances():
        print("Number of instances created: %s" % Spam.numInstances)
The printNumInstances method is
      designed to process class data, not instance data—it’s about
      all the instances, not any one in particular.
      Because of that, we want to be able to call it without having to pass an
      instance. Indeed, we don’t want to make an instance to fetch the number
      of instances, because this would change the number of instances we’re
      trying to fetch! In other words, we want a self-less “static” method.
Whether this code’s printNumInstances works or not, though,
      depends on which Python you use, and which way you call the
      method—through the class or through an instance. In 2.X, calls to a
      self-less method function through
      both the class and instances fail (as usual, I’ve omitted some error
      text here for space):
C:\code> c:\python27\python
>>> from spam import Spam
>>> a = Spam()                       # Cannot call unbound class methods in 2.X
>>> b = Spam()                       # Methods expect a self object by default
>>> c = Spam()

>>> Spam.printNumInstances()
TypeError: unbound method printNumInstances() must be called with Spam instance
as first argument (got nothing instead)
>>> a.printNumInstances()
TypeError: printNumInstances() takes no arguments (1 given)
The problem here is that unbound instance methods aren’t exactly
      the same as simple functions in 2.X. Even though there are no arguments
      in the def header, the method still
      expects an instance to be passed in when it’s called, because the
      function is associated with a class. In Python 3.X, calls to self-less methods made through classes work,
      but calls from instances fail:
C:\code> c:\python33\python
>>> from spam import Spam
>>> a = Spam()                       # Can call functions in class in 3.X
>>> b = Spam()                       # Calls through instances still pass a self
>>> c = Spam()

>>> Spam.printNumInstances()         # Differs in 3.X
Number of instances created: 3
>>> a.printNumInstances()
TypeError: printNumInstances() takes 0 positional arguments but 1 was given
That is, calls to instance-less methods like printNumInstances made through the
      class fail in Python 2.X but work in Python 3.X. On
      the other hand, calls made through an instance fail
      in both Pythons, because an instance is automatically passed to a method
      that does not have an argument to receive it:
Spam.printNumInstances()             # Fails in 2.X, works in 3.X
instance.printNumInstances()         # Fails in both 2.X and 3.X (unless static)
If you’re able to use 3.X and stick with calling self-less methods through classes only, you
      already have a static method feature. However, to allow self-less methods to be called through classes
      in 2.X and through instances in both 2.X and 3.X, you need to either
      adopt other designs or be able to somehow mark such methods as special.
      Let’s look at both options in turn.

Static Method Alternatives
Short of marking a self-less
      method as special, you can sometimes achieve similar
      results with different coding structures. For example, if you just want
      to call functions that access class members without an instance, perhaps
      the simplest idea is to use normal functions outside the class, not
      class methods. This way, an instance isn’t expected in the call. The
      following mutation of spam.py
      illustrates, and works the same in Python 3.X and 2.X:
def printNumInstances():
    print("Number of instances created: %s" % Spam.numInstances)

class Spam:
    numInstances = 0
    def __init__(self):
        Spam.numInstances = Spam.numInstances + 1

C:\code> c:\python33\python
>>> import spam
>>> a = spam.Spam()
>>> b = spam.Spam()
>>> c = spam.Spam()
>>> spam.printNumInstances()           # But function may be too far removed
Number of instances created: 3         # And cannot be changed via inheritance
>>> spam.Spam.numInstances
3
Because the class name is accessible to the simple function as a
      global variable, this works fine. Also, note that the name of the
      function becomes global, but only to this single module; it will not
      clash with names in other files of the program.
Prior to static methods in Python, this structure was the general
      prescription. Because Python already provides modules as a
      namespace-partitioning tool, one could argue that there’s not typically
      any need to package functions in classes unless they implement object
      behavior. Simple functions within modules like the one here do much of
      what instance-less class methods could, and are already associated with
      the class because they live in the same module.
Unfortunately, this approach is still less than ideal. For one
      thing, it adds to this file’s scope an extra name that is used only for
      processing a single class. For another, the function is much less
      directly associated with the class by structure; in fact, its definition
      could be hundreds of lines away. Perhaps worse, simple functions like
      this cannot be customized by inheritance, since they live outside a
      class’s namespace: subclasses cannot directly replace or extend such a
      function by redefining it.
We might try to make this example work in a version-neutral way by
      using a normal method and always calling it through (or with) an
      instance, as usual:
class Spam:
    numInstances = 0
    def __init__(self):
        Spam.numInstances = Spam.numInstances + 1
    def printNumInstances(self):
        print("Number of instances created: %s" % Spam.numInstances)

C:\code> c:\python33\python
>>> from spam import Spam
>>> a, b, c = Spam(), Spam(), Spam()
>>> a.printNumInstances()
Number of instances created: 3
>>> Spam.printNumInstances(a)
Number of instances created: 3
>>> Spam().printNumInstances()         # But fetching counter changes counter!
Number of instances created: 4
Unfortunately, as mentioned earlier, such an approach is
      completely unworkable if we don’t have an instance available, and making
      an instance changes the class data, as illustrated in the last line
      here. A better solution would be to somehow mark a method inside a class
      as never requiring an instance. The next section shows how.

Using Static and Class Methods
Today, there is another option for coding simple functions associated with a class
      that may be called through either the class or its instances. As of
      Python 2.2, we can code classes with static and class methods, neither
      of which requires an instance argument to be passed in when invoked. To
      designate such methods, classes call the built-in functions staticmethod and classmethod, as hinted in the earlier discussion of new-style classes.
      Both mark a function object as special—that is, as requiring no instance
      if static and requiring a class argument if a class method. For example,
      in the file bothmethods.py (which
      unifies 2.X and 3.X printing with lists, though displays still vary
      slightly for 2.X classic classes):
# File bothmethods.py

class Methods:
    def imeth(self, x):            # Normal instance method: passed a self
        print([self, x])

    def smeth(x):                  # Static: no instance passed
        print([x])

    def cmeth(cls, x):             # Class: gets class, not instance
        print([cls, x])

    smeth = staticmethod(smeth)    # Make smeth a static method (or @: ahead)
    cmeth = classmethod(cmeth)     # Make cmeth a class method (or @: ahead)
Notice how the last two assignments in this code simply
      reassign (a.k.a. rebind) the method names smeth and cmeth. Attributes are created and changed by
      any assignment in a class statement,
      so these final assignments simply overwrite the assignments made earlier
      by the defs. As we’ll see in a few
      moments, the special @ syntax works here as
      an alternative to this just as it does for properties—but makes little
      sense unless you first understand the assignment form here that it
      automates.
Technically, Python now supports three kinds of class-related
      methods, with differing argument protocols:
	Instance methods, passed a self instance object (the default)

	Static methods, passed no extra object
          (via staticmethod)

	Class methods, passed a class object (via
          classmethod, and inherent in
          metaclasses)


Moreover, Python 3.X extends this model by also allowing simple
      functions in a class to serve the role of static methods without extra
      protocol, when called through a class object only. Despite its name, the
      bothmethods.py module illustrates
      all three method types, so let’s expand on these in turn.
Instance methods are the normal and default
      case that we’ve seen in this book. An instance method must always be
      called with an instance object. When you call it through an
      instance, Python passes the instance to the first
      (leftmost) argument automatically; when you call it through a
      class, you must pass along the instance
      manually:
>>> from bothmethods import Methods    # Normal instance methods
>>> obj = Methods()                    # Callable through instance or class
>>> obj.imeth(1)
[<bothmethods.Methods object at 0x0000000002A15710>, 1]
>>> Methods.imeth(obj, 2)
[<bothmethods.Methods object at 0x0000000002A15710>, 2]
Static methods, by contrast, are called
      without an instance argument. Unlike simple functions outside a class,
      their names are local to the scopes of the classes in which they are
      defined, and they may be looked up by inheritance. Instance-less
      functions can be called through a class normally in Python 3.X, but
      never by default in 2.X. Using the staticmethod built-in allows such methods to
      also be called through an instance in 3.X and through both a class and
      an instance in Python 2.X (that is, the first of the following works in
      3.X without staticmethod, but the
      second does not):
>>> Methods.smeth(3)                   # Static method: call through class
[3]                                    # No instance passed or expected
>>> obj.smeth(4)                       # Static method: call through instance
[4]                                    # Instance not passed
Class methods are similar, but Python
      automatically passes the class (not an instance) in to a class method’s
      first (leftmost) argument, whether it is called through a class or an
      instance:
>>> Methods.cmeth(5)                   # Class method: call through class
[<class 'bothmethods.Methods'>, 5]     # Becomes cmeth(Methods, 5)
>>> obj.cmeth(6)                       # Class method: call through instance
[<class 'bothmethods.Methods'>, 6]     # Becomes cmeth(Methods, 6)
In Chapter 40, we’ll also find that
      metaclass methods—a unique, advanced, and
      technically distinct method type—behave similarly to the
      explicitly-declared class methods we’re exploring here.

Counting Instances with Static Methods
Now, given these built-ins, here is the static method equivalent of this section’s
      instance-counting example—it marks the method as special, so it will
      never be passed an instance automatically:
class Spam:
    numInstances = 0                         # Use static method for class data
    def __init__(self):
        Spam.numInstances += 1
    def printNumInstances():
        print("Number of instances: %s" % Spam.numInstances)
    printNumInstances = staticmethod(printNumInstances)
Using the static method built-in, our code now allows the self-less method to be called through the
      class or any instance of it, in both Python 2.X and 3.X:
>>> from spam_static import Spam
>>> a = Spam()
>>> b = Spam()
>>> c = Spam()
>>> Spam.printNumInstances()                 # Call as simple function
Number of instances: 3
>>> a.printNumInstances()                    # Instance argument not passed
Number of instances: 3
Compared to simply moving printNumInstances outside the class, as
      prescribed earlier, this version requires an extra staticmethod call (or an @ line we’ll see ahead). However, it also
      localizes the function name in the class scope (so it won’t clash with
      other names in the module); moves the function code closer to where it
      is used (inside the class statement);
      and allows subclasses to customize the static
      method with inheritance—a more convenient and powerful approach than
      importing functions from the files in which superclasses are coded. The
      following subclass and new testing session illustrate (be sure to start
      a new session after changing files, so that your from imports load the latest version of the
      file):
class Sub(Spam):
    def printNumInstances():                 # Override a static method
        print("Extra stuff...")              # But call back to original
        Spam.printNumInstances()
    printNumInstances = staticmethod(printNumInstances)

>>> from spam_static import Spam, Sub
>>> a = Sub()
>>> b = Sub()
>>> a.printNumInstances()                    # Call from subclass instance
Extra stuff...
Number of instances: 2
>>> Sub.printNumInstances()                  # Call from subclass itself
Extra stuff...
Number of instances: 2
>>> Spam.printNumInstances()                 # Call original version
Number of instances: 2
Moreover, classes can inherit the static method without redefining
      it—it is run without an instance, regardless of where it is defined in a
      class tree:
>>> class Other(Spam): pass                  # Inherit static method verbatim

>>> c = Other()
>>> c.printNumInstances()
Number of instances: 3
Notice how this also bumps up the
      superclass’s instance counter, because its
      constructor is inherited and run—a behavior that begins to encroach on
      the next section’s subject.

Counting Instances with Class Methods
Interestingly, a class method can do similar work here—the following has the same behavior
      as the static method version listed earlier, but it uses a class method
      that receives the instance’s class in its first argument. Rather than
      hardcoding the class name, the class method uses the automatically
      passed class object generically:
class Spam:
    numInstances = 0                         # Use class method instead of static
    def __init__(self):
        Spam.numInstances += 1
    def printNumInstances(cls):
        print("Number of instances: %s" % cls.numInstances)
    printNumInstances = classmethod(printNumInstances)
This class is used in the same way as the prior versions, but its
      printNumInstances method receives the
      Spam class, not the instance, when
      called from both the class and an instance:
>>> from spam_class import Spam
>>> a, b = Spam(), Spam()
>>> a.printNumInstances()                    # Passes class to first argument
Number of instances: 2
>>> Spam.printNumInstances()                 # Also passes class to first argument
Number of instances: 2
When using class methods, though, keep in mind that they receive
      the most specific (i.e., lowest) class of the
      call’s subject. This has some subtle implications when trying to update
      class data through the passed-in class. For example, if in module
      spam_class.py we subclass to
      customize as before, augment Spam.printNumInstances to also display its
      cls argument, and start a new testing
      session:
class Spam:
    numInstances = 0                         # Trace class passed in
    def __init__(self):
        Spam.numInstances += 1
    def printNumInstances(cls):
        print("Number of instances: %s %s" % (cls.numInstances, cls))
    printNumInstances = classmethod(printNumInstances)

class Sub(Spam):
    def printNumInstances(cls):              # Override a class method
        print("Extra stuff...", cls)         # But call back to original
        Spam.printNumInstances()
    printNumInstances = classmethod(printNumInstances)

class Other(Spam): pass                      # Inherit class method verbatim
The lowest class is passed in whenever a class method is run, even
      for subclasses that have no class methods of their own:
>>> from spam_class import Spam, Sub, Other
>>> x = Sub()
>>> y = Spam()
>>> x.printNumInstances()                           # Call from subclass instance
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> Sub.printNumInstances()                         # Call from subclass itself
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> y.printNumInstances()                           # Call from superclass instance
Number of instances: 2 <class 'spam_class.Spam'>
In the first call here, a class method call is made through an
      instance of the Sub subclass, and
      Python passes the lowest class, Sub,
      to the class method. All is well in this case—since Sub’s redefinition of the method calls the
      Spam superclass’s version explicitly,
      the superclass method in Spam
      receives its own class in its first argument. But watch what happens for
      an object that inherits the class method verbatim:
>>> z = Other()                                     # Call from lower sub's instance
>>> z.printNumInstances()
Number of instances: 3 <class 'spam_class.Other'>
This last call here passes Other to Spam’s class method. This works in this
      example because fetching the counter finds it in
      Spam by inheritance. If this method
      tried to assign to the passed class’s data, though,
      it would update Other, not Spam! In this specific case, Spam is probably better off hardcoding its own
      class name to update its data if it means to count instances of all its
      subclasses too, rather than relying on the passed-in class
      argument.
Counting instances per class with class methods
In fact, because class methods always receive the
        lowest class in an instance’s tree:
	Static methods and explicit class names
            may be a better solution for processing data local to a
            class.

	Class methods may be better suited to
            processing data that may differ for each class in a
            hierarchy.


Code that needs to manage per-class
        instance counters, for example, might be best off leveraging class
        methods. In the following, the top-level superclass uses a class
        method to manage state information that varies for and is stored on
        each class in the tree—similar in spirit to the way instance methods
        manage state information that varies per class instance:
class Spam:
    numInstances = 0
    def count(cls):                    # Per-class instance counters
        cls.numInstances += 1          # cls is lowest class above instance
    def __init__(self):
        self.count()                   # Passes self.__class__ to count
    count = classmethod(count)

class Sub(Spam):
    numInstances = 0
    def __init__(self):                # Redefines __init__
        Spam.__init__(self)

class Other(Spam):                     # Inherits __init__
    numInstances = 0

>>> from spam_class2 import Spam, Sub, Other
>>> x = Spam()
>>> y1, y2 = Sub(), Sub()
>>> z1, z2, z3 = Other(), Other(), Other()
>>> x.numInstances, y1.numInstances, z1.numInstances             # Per-class data!
(1, 2, 3)
>>> Spam.numInstances, Sub.numInstances, Other.numInstances
(1, 2, 3)
Static and class methods have additional advanced roles, which
        we will finesse here; see other resources for more use cases. In
        recent Python versions, though, the static and class method
        designations have become even simpler with the advent of
        function decoration syntax—a way to apply one
        function to another that has roles well beyond the static method use
        case that was its initial motivation. This syntax also allows us to
        augment classes in Python 2.X and 3.X—to
        initialize data like the numInstances counter in the last example,
        for instance. The next section explains how.
Note
For a postscript on Python’s method types, be sure to watch
          for coverage of metaclass methods in Chapter 40—because these are designed to process a
          class that is an instance of a metaclass, they
          turn out to be very similar to the class methods defined here, but
          require no classmethod
          declaration, and apply only to the shadowy metaclass realm.




Decorators and Metaclasses: Part 1
Because the staticmethod and
    classmethod call technique described in the prior section initially seemed obscure to
    some observers, a device was eventually added to make the operation
    simpler. Python decorators—similar to the notion and
    syntax of annotations in Java—both addressed this specific need and
    provided a general tool for adding logic that manages both functions and
    classes, or later calls to them.
This is called a “decoration,” but in more concrete terms is really
    just a way to run extra processing steps at function and class definition
    time with explicit syntax. It comes in two flavors:
	Function decorators—the initial entry in this set, added in Python 2.4—augment function
        definitions. They specify special operation modes for both simple
        functions and classes’ methods by wrapping them in an extra layer of
        logic implemented as another function, usually called a metafunction.

	Class decorators—a later extension, added
        in Python 2.6 and 3.0—augment class definitions. They do the same for classes, adding
        support for management of whole objects and their interfaces. Though
        perhaps simpler, they often overlap in roles with metaclasses.


Function decorators turn out to be very general
    tools: they are useful for adding many types of logic to functions besides
    the static and class method use cases. For instance, they may be used to
    augment functions with code that logs calls made to them, checks the types
    of passed arguments during debugging, and so on. Function decorators can
    be used to manage either functions themselves or later calls to them. In
    the latter mode, function decorators are similar to the
    delegation design pattern we explored in Chapter 31, but they are designed to augment a
    specific function or method call, not an entire object interface.
Python provides a few built-in function decorators for operations
    such as marking static and class methods and defining properties (as
    sketched earlier, the property built-in
    works as a decorator automatically), but programmers can also code
    arbitrary decorators of their own. Although they are not strictly tied to
    classes, user-defined function decorators often are coded as classes to
    save the original functions for later dispatch, along with other data as
    state information.
This proved such a useful hook that it was extended in Python 2.6,
    2.7, and 3.X—class decorators bring augmentation to
    classes too, and are more directly tied to the class model. Like their
    function cohorts, class decorators may manage classes themselves or later
    instance creation calls, and often employ delegation
    in the latter mode. As we’ll find, their roles also often overlap with
    metaclasses; when they do, the newer class decorators
    may offer a more lightweight way to achieve the same goals.
Function Decorator Basics
Syntactically, a function decorator is a sort of runtime
      declaration about the function that follows. A function decorator is
      coded on a line by itself just before the def statement that defines a function or
      method. It consists of the @ symbol,
      followed by what we call a
      metafunction—a function (or other callable object)
      that manages another function. Static methods since Python 2.4, for
      example, may be coded with decorator syntax like this:
class C:
   @staticmethod                    # Function decoration syntax
   def meth():
       ...
Internally, this syntax has the same effect as the
      following—passing the function through the decorator and assigning the
      result back to the original name:
class C:
   def meth():
       ...
   meth = staticmethod(meth)        # Name rebinding equivalent
Decoration rebinds the method name to the
      decorator’s result. The net effect is that calling the method function’s
      name later actually triggers the result of its staticmethod decorator first. Because a
      decorator can return any sort of object, this allows the decorator to
      insert a layer of logic to be run on every call. The decorator function
      is free to return either the original function itself, or a new
      proxy object that saves the original function
      passed to the decorator to be invoked indirectly after the extra logic
      layer runs.
With this addition, here’s a better way to code our static method
      example from the prior section in either Python 2.X or 3.X:
class Spam:
    numInstances = 0
    def __init__(self):
        Spam.numInstances = Spam.numInstances + 1

    @staticmethod
    def printNumInstances():
        print("Number of instances created: %s" % Spam.numInstances)

>>> from spam_static_deco import Spam
>>> a = Spam()
>>> b = Spam()
>>> c = Spam()
>>> Spam.printNumInstances()            # Calls from classes and instances work
Number of instances created: 3
>>> a.printNumInstances()
Number of instances created: 3
Because they also accept and return functions, the classmethod and property built-in functions may be used as decorators in the same way—as in the
      following mutation of the prior bothmethods.py:
# File bothmethods_decorators.py

class Methods(object):             # object needed in 2.X for property setters
    def imeth(self, x):            # Normal instance method: passed a self
        print([self, x])

    @staticmethod
    def smeth(x):                  # Static: no instance passed
        print([x])

    @classmethod
    def cmeth(cls, x):             # Class: gets class, not instance
        print([cls, x])

    @property                      # Property: computed on fetch
    def name(self):
        return 'Bob ' + self.__class__.__name__

>>> from bothmethods_decorators import Methods
>>> obj = Methods()
>>> obj.imeth(1)
[<bothmethods_decorators.Methods object at 0x0000000002A256A0>, 1]
>>> obj.smeth(2)
[2]
>>> obj.cmeth(3)
[<class 'bothmethods_decorators.Methods'>, 3]
>>> obj.name
'Bob Methods'
Keep in mind that staticmethod
      and its kin here are still built-in functions; they may be used in
      decoration syntax, just because they take a function as an argument and
      return a callable to which the original function name can be rebound. In
      fact, any such function can be used in this way—even user-defined
      functions we code ourselves, as the next section explains.

A First Look at User-Defined Function Decorators
Although Python provides a handful of built-in functions that can be used as decorators, we can also
      write custom decorators of our own. Because of their wide utility, we’re
      going to devote an entire chapter to coding decorators in the final part
      of this book. As a quick example, though, let’s look at a simple
      user-defined decorator at work.
Recall from Chapter 30 that the
      __call__ operator overloading method implements a function-call interface
      for class instances. The following code uses this to define a call
      proxy class that saves the decorated function in
      the instance and catches calls to the original name. Because this is a
      class, it also has state information—a counter of calls made:
class tracer:
    def __init__(self, func):          # Remember original, init counter
        self.calls = 0
        self.func  = func
    def __call__(self, *args):         # On later calls: add logic, run original
        self.calls += 1
        print('call %s to %s' % (self.calls, self.func.__name__))
        return self.func(*args)

@tracer                                # Same as spam = tracer(spam)
def spam(a, b, c):                     # Wrap spam in a decorator object
    return a + b + c

print(spam(1, 2, 3))                   # Really calls the tracer wrapper object
print(spam('a', 'b', 'c'))             # Invokes __call__ in class
Because the spam function is
      run through the tracer decorator,
      when the original spam name is called
      it actually triggers the __call__
      method in the class. This method counts and logs the call, and then
      dispatches it to the original wrapped function. Note how the *name argument syntax is used to pack and
      unpack the passed-in arguments; because of this, this decorator can be
      used to wrap any function with any number of positional
      arguments.
The net effect, again, is to add a layer of logic to the original
      spam function. Here is the script’s
      3.X and 2.X output—the first line comes from the tracer class, and the second gives the return
      value of the spam function
      itself:
c:\code> python tracer1.py
call 1 to spam
6
call 2 to spam
abc
Trace through this example’s code for more insight. As it is, this
      decorator works for any function that takes positional arguments, but it
      does not handle keyword arguments, and cannot
      decorate class-level method functions (in short,
      for methods its __call__ would be
      passed a tracer instance only). As
      we’ll see in Part VIII, there are a variety of
      ways to code function decorators, including nested def statements; some of the alternatives are
      better suited to methods than the version shown here.
For example, by using nested functions with enclosing scopes for
      state, instead of callable class instances with attributes, function
      decorators often become more broadly applicable to class-level methods
      too. We’ll postpone the full details on this, but here’s a brief look at
      this closure based coding model; it uses function
      attributes for counter state for portability, but could leverage
      variables and nonlocal instead in 3.X
      only:
def tracer(func):                      # Remember original
    def oncall(*args):                 # On later calls
        oncall.calls += 1
        print('call %s to %s' % (oncall.calls, func.__name__))
        return func(*args)
    oncall.calls = 0
    return oncall

class C:
    @tracer
    def spam(self,a, b, c): return a + b + c

x = C()
print(x.spam(1, 2, 3))
print(x.spam('a', 'b', 'c'))           # Same output as tracer1 (in tracer2.py)

A First Look at Class Decorators and Metaclasses
Function decorators turned out to be so useful that Python 2.6 and 3.0 expanded the model,
      allowing decorators to be applied to classes as well as functions. In
      short, class decorators are similar to function
      decorators, but they are run at the end of a class statement to rebind a class name to a
      callable. As such, they can be used to either manage classes just after
      they are created, or insert a layer of wrapper logic to manage instances
      when they are later created. Symbolically, the code structure:
def decorator(aClass): ...

@decorator                             # Class decoration syntax
class C: ...
is mapped to the following equivalent:
def decorator(aClass): ...

class C: ...                           # Name rebinding equivalent
C = decorator(C)
The class decorator is free to augment the class itself, or return
      a proxy object that intercepts later instance
      construction calls. For example, in the code of the section “Counting instances per class with class methods”, we could use this
      hook to automatically augment the classes with instance counters and any
      other data required:
def count(aClass):
    aClass.numInstances = 0
    return aClass                 # Return class itself, instead of a wrapper

@count
class Spam: ...                   # Same as Spam = count(Spam)

@count
class Sub(Spam): ...              # numInstances = 0 not needed here

@count
class Other(Spam): ...
In fact, as coded, this decorator can be applied to classes
      or functions—it happily returns the object being
      defined in either context after initializing the object’s
      attribute:
@count
def spam(): pass        # Like spam = count(spam)

@count
class Other: pass       # Like Other = count(Other)

spam.numInstances       # Both are set to zero
Other.numInstances
Though this decorator manages a function or class itself, as we’ll
      see later in this book, class decorators can also manage an object’s
      entire interface by intercepting construction
      calls, and wrapping the new instance object in a
      proxy that deploys attribute accessor tools to
      intercept later requests—a multilevel coding technique we’ll use to
      implement class attribute privacy in Chapter 39.
      Here’s a preview of the model:
def decorator(cls):                             # On @ decoration
    class Proxy:
        def __init__(self, *args):              # On instance creation: make a cls
            self.wrapped = cls(*args)
        def __getattr__(self, name):            # On attribute fetch: extra ops here
            return getattr(self.wrapped, name)
    return Proxy

@decorator
class C: ...        # Like C = decorator(C)
X = C()             # Makes a Proxy that wraps a C, and catches later X.attr
Metaclasses, mentioned briefly earlier, are a
      similarly advanced class-based tool whose roles often intersect with
      those of class decorators. They provide an alternate model, which routes
      the creation of a class object to a subclass of the top-level type class, at the conclusion of a class statement:
class Meta(type):
    def __new__(meta, classname, supers, classdict):
        ...extra logic + class creation via type call...

class C(metaclass=Meta):
    ...my creation routed to Meta...            # Like C = Meta('C', (), {...})
In Python 2.X, the effect is the same, but the coding differs—use
      a class attribute instead of a keyword argument in the class header:
class C:
    __metaclass__ = Meta
    ... my creation routed to Meta...
In either line, Python calls a class’s metaclass to create the new
      class object, passing in the data defined during the class statement’s run; in 2.X, the metaclass
      simply defaults to the classic class creator:
 classname = Meta(classname, superclasses, attributedict)
To assume control of the creation or initialization of a new class
      object, a metaclass generally redefines the __new__ or __init__ method of the type class that normally intercepts this call.
      The net effect, as with class decorators, is to define code to be run
      automatically at class creation time. Here, this step binds the class
      name to the result of a call to a user-defined metaclass. In fact, a
      metaclass need not be a class at all—a possibility we’ll explore later
      that blurs some of the distinction between this tool and decorators, and
      may even qualify the two as functionally equivalent in many
      roles.
Both schemes, class decorators and metaclasses, are free to
      augment a class or return an arbitrary object to replace it—a protocol
      with almost limitless class-based customization possibilities. As we’ll
      see later, metaclasses may also define methods that
      process their instance classes, rather than normal instances of them—a
      technique that’s similar to class methods, and might be emulated in
      spirit by methods and data in class decorator proxies, or even a class
      decorator that returns a metaclass instance. Such mind-bending concepts
      will require Chapter 40’s conceptual groundwork (and
      quite possibly sedation!).

For More Details
Naturally, there’s much more to the decorator and metaclass
      stories than I’ve shown here. Although they are a general mechanism
      whose usage may be required by some packages, coding
      new user-defined decorators and metaclasses is an
      advanced topic of interest primarily to tool writers, not application
      programmers. Because of this, we’ll defer additional coverage until the
      final and optional part of this book:
	Chapter 38 shows how to code
          properties using function decorator syntax in more depth.

	Chapter 39 has much more on decorators,
          including more comprehensive examples.

	Chapter 40 covers metaclasses, and more on
          the class and instance management story.


Although these chapters cover advanced topics, they’ll also
      provide us with a chance to see Python at work in more substantial
      examples than much of the rest of the book was able to provide. For now,
      let’s move on to our final class-related topic.


The super Built-in Function: For Better or Worse?
So far, I’ve mentioned Python’s super built-in function only briefly in passing because it is relatively uncommon
    and may even be controversial to use. Given this call’s increased
    visibility in recent years, though, it merits some further elaboration in
    this edition. Besides introducing super, this section also serves as a language
    design case study to close out a chapter on so many tools whose presence
    may to some seem curious in a scripting language like Python.
Some of this section calls this proliferation of tools into
    question, and I encourage you to judge any subjective content here for
    yourself (and we’ll return to such things at the end of this book after
    we’ve expanded on other advanced tools such as metaclasses and
    descriptors). Still, Python’s rapid growth rate in recent years represents
    a strategic decision point for its community going forward, and super seems as good a representative example as
    any.
The Great super Debate
As noted in Chapter 28 and
      Chapter 29, Python has a super built-in function that can be used to
      invoke superclass methods generically, but was deferred until this point
      of the book. This was deliberate—because super has substantial downsides in typical
      code, and a sole use case that seems obscure and complex to many
      observers, most beginners are better served by the traditional
      explicit-name call scheme used so far. See the sidebar “What About super?” in Chapter 28 for a brief summary of the
      rationale for this policy.
The Python community itself seems split on this subject, with
      online articles about it running the gamut from “Python’s Super
      Considered Harmful” to “Python’s super() considered super!”3 Frankly, in my live classes this call seems to be most
      often of interest to Java programmers starting to use Python anew,
      because of its conceptual similarity to a tool in that language (many a
      new Python feature ultimately owes its existence to programmers of other
      languages bringing their old habits to a new model). Python’s super is not Java’s—it translates differently
      to Python’s multiple inheritance, and has a use case beyond Java’s—but
      it has managed to generate both controversy and misunderstanding since
      its conception.
This book postponed the super
      call until now (and omitted it almost entirely in prior editions)
      because it has significant issues—it’s prohibitively cumbersome to use
      in 2.X, differs in form between 2.X and 3.X, is based upon unusual
      semantics in 3.X, and mixes poorly with Python’s multiple inheritance
      and operator overloading in typical Python code. In fact, as we’ll see,
      in some code super can actually mask
      problems, and discourage a more explicit coding style that offers better
      control.
In its defense, this call does have a valid use case
      too—cooperative same-named method dispatch in diamond multiple
      inheritance trees—but it seems to ask a lot of newcomers. It requires
      that super be used universally and
      consistently (if not neurotically), much like __slots__ discussed earlier; relies on the
      arguably obscure MRO algorithm to order calls; and addresses a use case
      that seems far more the exception than the norm in Python programs. In
      this role, super seems an advanced
      tool based upon esoteric principles, which may be beyond much of
      Python’s audience, and seems artificial to real program goals. That
      aside, its expectation of universal use seems unrealistic for the vast
      amount of existing Python code.
Because of all these factors, this introductory-level book has
      preferred the traditional explicit-name call scheme thus far and
      recommends the same for newcomers. You’re better off learning the
      traditional scheme first, and might be better off sticking with that in
      general, rather than using an extra special-case tool that may not work
      in some contexts, and relies on arcane magic in the valid but atypical
      use case it addresses. This is not just your author’s opinion; despite
      its advocate’s best intentions, super
      is not widely recognized as “best practice” in Python today, for
      completely valid reasons.
On the other hand, just as for other tools the increasing use of
      this call in Python code in recent years makes it no longer optional for
      many Python programmers—the first time you see it, it’s officially
      mandatory! For readers who may wish to experiment with super, and for other readers who may have it
      imposed upon them, this section provides a brief look at this tool and
      its rationale—beginning with alternatives to it.

Traditional Superclass Call Form: Portable, General
In general, this book’s examples prefer to call back to superclass methods when needed by
      naming the superclass explicitly, because this technique is traditional
      in Python, because it works the same in both Python 2.X and 3.X, and
      because it sidesteps limitations and complexities related to this call
      in both 2.X and 3.X. As shown earlier, the traditional superclass method
      call scheme to augment a superclass method works as follows:
>>> class C:                    # In Python 2.X and 3.X
        def act(self):
            print('spam')

>>> class D(C):
        def act(self):
            C.act(self)         # Name superclass explicitly, pass self
            print('eggs')

>>> X = D()
>>> X.act()
spam
eggs
This form works the same in 2.X and 3.X, follows Python’s normal
      method call mapping model, applies to all inheritance tree forms, and
      does not lead to confusing behavior when operator overloading is used.
      To see why these distinctions matter, let’s see how super compares.

Basic super Usage and Its Tradeoffs
In this section, we’ll both introduce super in
      basic, single-inheritance mode, and look at its
      perceived downsides in this role. As we’ll find, in this context
      super does work as advertised, but is
      not much different from traditional calls, relies on unusual semantics,
      and is cumbersome to deploy in 2.X. More critically, as soon as your
      classes grow to use multiple inheritance, this super usage mode can both mask problems in
      your code and route calls in ways you may not expect.
Odd semantics: A magic proxy in Python 3.X
The super built-in actually
        has two intended roles. The more esoteric of these—cooperative
        multiple inheritance dispatch protocols in diamond
        multiple-inheritance trees (yes, a mouthful!)—relies on the 3.X MRO,
        was borrowed from the Dylan language, and will be covered later in
        this section.
The role we’re interested in here is more commonly used, and
        more frequently requested by people with Java backgrounds—to allow
        superclasses to be named generically in
        inheritance trees. This is intended to promote simpler code
        maintenance, and to avoid having to type long superclass reference
        paths in calls. In Python 3.X, this call seems at least at first
        glance to achieve this purpose well:
>>> class C:                    # In Python 3.X (only: see 2.X super form ahead)
        def act(self):
            print('spam')

>>> class D(C):
        def act(self):
            super().act()       # Reference superclass generically, omit self
            print('eggs')

>>> X = D()
>>> X.act()
spam
eggs
This works, and minimizes code changes—you don’t need to update
        the call if D’s superclass changes
        in the future. One of the biggest downsides of this call in 3.X,
        though, is its reliance on deep magic: though
        prone to change, it operates today by inspecting the call stack in
        order to automatically locate the self argument and find the superclass, and
        pairs the two in a special proxy object that
        routes the later call to the superclass version of the method. If that
        sounds complicated and strange, it’s because it is. In fact, this call
        form doesn’t work at all outside the context of a class’s
        method:
>>> super                       # A "magic" proxy object that routes later calls
<class 'super'>
>>> super()
SystemError: super(): no arguments

>>> class E(C):
        def method(self):       # self is implicit in super...only!
            proxy = super()     # This form has no meaning outside a method
            print(proxy)        # Show the normally hidden proxy object
            proxy.act()         # No arguments: implicitly calls superclass method!

>>> E().method()
<super: <class 'E'>, <E object>>
spam
Really, this call’s semantics resembles nothing else in
        Python—it’s neither a bound nor unbound method, and somehow finds a
        self even though you omit one in
        the call. In single inheritance trees, a superclass is available from
        self via the path self.__class__.__bases__[0], but the heavily
        implicit nature of this call makes this difficult to see, and even
        flies in the face of Python’s explicit self policy that holds true
        everywhere else. That is, this call violates a
        fundamental Python idiom for a single use case. It also soundly
        contradicts Python’s longstanding EIBTI design rule (run an “import
        this” for more on this rule).

Pitfall: Adding multiple inheritance naively
Besides its unusual semantics, even in 3.X this super role applies most directly to single
        inheritance trees, and can become problematic as soon as classes
        employ multiple inheritance with traditionally coded classes. This
        seems a major limitation of scope; due to the utility of
        mix-in classes in Python, multiple inheritance
        from disjoint and independent superclasses is probably more the norm
        than the exception in realistic code. The super call seems a recipe for disaster in
        classes coded to naively use its basic mode, without allowing for its
        much more subtle implications in multiple inheritance trees.
The following illustrates the trap. This code begins its life
        happily deploying super in
        single-inheritance mode to invoke a method one level up from C:
>>> class A:                      # In Python 3.X
        def act(self): print('A')
>>> class B:
        def act(self): print('B')

>>> class C(A):
        def act(self):
            super().act()         # super applied to a single-inheritance tree
>>> X = C()
>>> X.act()
A
If such classes later grow to use more than one superclass,
        though, super can become
        error-prone, and even unusable—it does not raise an exception for
        multiple inheritance trees, but will naively pick just the
        leftmost superclass having the method being run
        (technically, the first per the MRO), which may or may not be the one
        that you want:
>>> class C(A, B):                # Add a B mix-in class with the same method
        def act(self):
            super().act()         # Doesn't fail on multi-inher, but picks just one!
>>> X = C()
>>> X.act()
A

>>> class C(B, A):
        def act(self):
            super().act()         # If B is listed first, A.act() is no longer run!
>>> X = C()
>>> X.act()
B
Perhaps worse, this silently masks the fact
        that you should probably be selecting superclasses
        explicitly in this case, as we learned earlier in
        both this chapter and its predecessor. In other words, super usage may obscure a common source of
        errors in Python—one so common that it shows up again in this part’s
        “Gotchas.” If you may need to use direct calls later, why not use them
        earlier too?
>>> class C(A, B):                # Traditional form
        def act(self):            # You probably need to be more explicit here
            A.act(self)           # This form handles both single and multiple inher
            B.act(self)           # And works the same in both Python 3.X and 2.X
>>> X = C()                       # So why use the super() special case at all?
>>> X.act()
A
B
As we’ll see in a few moments, you might also be able to address
        such cases by deploying super calls
        in every class of the tree. But that’s also one
        of the biggest downsides of super—why code it in every class, when it’s
        usually not needed, and when using the preceding simpler traditional
        form in a single class will usually suffice? Especially in existing
        code—and new code that uses existing code—this super requirement seems harsh, if not
        unrealistic.
Much more subtly, as we’ll also see ahead, once you step up to
        multiple inheritance calls this way, the super calls in your code might not invoke
        the class you expect them to. They’ll be routed per the MRO order,
        which, depending on where else super might be used, may invoke a method in
        a class that is not the caller’s superclass at
        all—an implicit ordering that might make for interesting
        debugging sessions! Unless you completely understand what super means once multiple inheritance is
        introduced, you may be better off not deploying it in
        single-inheritance mode either.
This coding situation isn’t nearly as abstract as it may seem.
        Here’s a real-world example of such a case, taken from the
        PyMailGUI case study in Programming
        Python—the following very typical Python classes use multiple
        inheritance to mix in both application logic and window tools from
        independent, standalone classes, and hence must invoke
        both superclass constructors explicitly with
        direct calls by name. As coded, a super().__init__() here would run only one
        constructor, and adding super
        throughout this example’s disjoint class trees would be more work,
        would be no simpler, and wouldn’t make sense in tools meant for
        arbitrary deployment in clients that may use super or not:
class PyMailServerWindow(PyMailServer, windows.MainWindow):
    "a Tk, with extra protocol and mixed-in methods"
    def __init__(self):
        windows.MainWindow.__init__(self, appname, srvrname)
        PyMailServer.__init__(self)

class PyMailFileWindow(PyMailFile, windows.PopupWindow):
    "a Toplevel, with extra protocol and mixed-in methods"
    def __init__(self, filename):
        windows.PopupWindow.__init__(self, appname, filename)
        PyMailFile.__init__(self, filename)
The crucial point here is that using super for just the single inheritance cases
        where it applies most clearly is a potential source of error and
        confusion, and means that programmers must remember two ways to
        accomplish the same goal, when just one—explicit direct calls—could
        suffice for all cases.
In other words, unless you can be sure that you will never add a
        second superclass to a class in a tree over your software’s entire
        lifespan, you cannot use super in
        single-inheritance mode without understanding and allowing for its
        much more sophisticated role in multiple-inheritance trees. We’ll
        discuss the latter ahead, but it’s not optional if you deploy super at all.
From a more practical view, it’s also not clear that the trivial
        amount of code maintenance that this super role is envisioned to avoid fully
        justifies its presence. In Python practice, superclass names in
        headers are rarely changed; when they are, there are usually at most a
        very small number of superclass calls to update within the class. And
        consider this: if you add a new superclass in the future that doesn’t
        use super (as in the preceding
        example), you’ll have to either wrap it in an adaptor proxy or augment
        all the super calls in your class
        to use the traditional explicit-name call scheme anyhow—a maintenance
        task that seems just as likely, but perhaps more error-prone if you’ve
        grown to rely on super
        magic.

Limitation: Operator overloading
As briefly noted in Python’s library manual, super
        also doesn’t fully work in the presence of __X__ operator overloading methods. If you
        study the following code, you’ll see that direct named calls to
        overload methods in the superclass operate normally, but using the
        super result in an expression fails
        to dispatch to the superclass’s overload method:
>>> class C:                            # In Python 3.X
        def __getitem__(self, ix):      # Indexing overload method
            print('C index')

>>> class D(C):
        def __getitem__(self, ix):      # Redefine to extend here
            print('D index')
            C.__getitem__(self, ix)     # Traditional call form works
            super().__getitem__(ix)     # Direct name calls work too
            super()[ix]                 # But operators do not! (__getattribute__)

>>> X = C()
>>> X[99]
C index
>>> X = D()
>>> X[99]
D index
C index
C index
Traceback (most recent call last):
  File "", line 1, in
  File "", line 6, in __getitem__
TypeError: 'super' object is not subscriptable
This behavior is due to the very same new-style (and 3.X) class
        change described earlier in this chapter (see “Attribute Fetch for Built-ins Skips Instances”)—because the
        proxy object returned by super uses
        __getattribute__ to catch and
        dispatch later method calls, it fails to intercept the automatic
        __X__ method invocations run by built-in
        operations including expressions, as these begin their search in the
        class instead of the instance. This may seem less severe than the
        multiple-inheritance limitation, but operators should generally work
        the same as the equivalent method call, especially for a built-in like
        this. Not supporting this adds another exception for super users to confront and remember.
Other languages’ mileage may vary, but in Python, self is explicit, multiple-inheritance
        mix-ins and operator overloading are common, and superclass name
        updates are rare. Because super
        adds an odd special case to the language—one with strange semantics,
        limited scope, rigid requirements, and questionable reward—most Python
        programmers may be better served by the more broadly applicable
        traditional call scheme. While super has some advanced applications too
        that we’ll study ahead, they may be too obscure to warrant making it a
        mandatory part of every Python programmer’s toolbox.

Use differs in Python 2.X: Verbose calls
If you are a Python 2.X user reading this dual-version book, you should also know that the
        super technique is not portable
        between Python lines. Its form differs between 2.X and 3.X—and not
        just between classic and new-style classes. It’s really a different
        tool in 2.X, which cannot run 3.X’s simpler form.
To make this call work in Python 2.X, you must first use
        new-style classes. Even then, you must also
        explicitly pass in the immediate class name and self to super, making this call so complex and
        verbose that in most cases it’s probably easier to avoid it
        completely, and simply name the superclass explicitly per the previous
        traditional code pattern (for brevity, I’ll leave it to readers to
        consider what changing a class’s own name means for code maintenance
        when using the 2.X super
        form!):
>>> class C(object):                # In Python 2.X: for new-style classes only
        def act(self):
            print('spam')

>>> class D(C):
        def act(self):
            super(D, self).act()    # 2.X: different call format - seems too complex
            print('eggs')           # "D" may be just as much to type/change as "C"!

>>> X = D()
>>> X.act()
spam
eggs
Although you can use the 2.X call form in 3.X for backward
        compatibility, it’s too cumbersome to deploy in 3.X-only code, and the
        more reasonable 3.X form is not usable in 2.X:
>>> class D(C):
        def act(self):
            super().act()           # Simpler 3.X call format fails in 2.X
            print('eggs')

>>> X = D()
>>> X.act()
TypeError: super() takes at least 1 argument (0 given)
On the other hand, the traditional call form with explicit class
        names works in 2.X in both classic and new-style classes, and exactly
        as it does in 3.X:
>>> class D(C):
        def act(self):
            C.act(self)             # But traditional pattern works portably
            print('eggs')           # And may often be simpler in 2.X code

>>> X = D()
>>> X.act()
spam
eggs
So why use a technique that works in only limited contexts
        instead of one that works in many more? Though its basis is complex,
        the next sections attempt to rally support for the super cause.


The super Upsides: Tree Changes and Dispatch
Having just shown you the downsides of super, I should also confess that I’ve been
      tempted to use this call in code that would only ever run on 3.X, and
      which used a very long superclass reference path through a module
      package (that is, mostly for laziness, but coding brevity can matter
      too). To be fair, super may still be
      useful in some use cases, the chief among which merit a brief
      introduction here:
	Changing class trees at runtime: When a
          superclass may be changed at runtime, it’s not possible to hardcode
          its name in a call expression, but it is possible to dispatch calls
          via super.
On the other hand, this case is extremely rare in Python
          programming, and other techniques can often be used in this context
          as well.

	Cooperative multiple inheritance method
          dispatch: When multiple inheritance trees must dispatch
          to the same-named method in multiple classes, super can provide a protocol for orderly
          call routing.
On the other hand, the class tree must rely upon the ordering
          of classes by the MRO—a complex tool in its own right that is
          artificial to the problem a program is meant to address—and must be
          coded or augmented to use super
          in each version of the method in the tree to be effective. Such
          dispatch can also often be implemented in other ways (e.g., via
          instance state).


As discussed earlier, super can
      also be used to select a superclass generically as long as the MRO’s
      default makes sense, though in traditional code naming a superclass
      explicitly is often preferable, and may even be required. Moreover, even
      valid super use cases tend to be
      uncommon in many Python programs—to the point of seeming academic
      curiosity to some. The two cases just listed, however, are most often
      cited as super rationales, so let’s
      take a quick look at each.

Runtime Class Changes and super
Superclasses that might be changed at runtime dynamically preclude hardcoding
      their names in a subclass’s methods, while super will happily look up the current
      superclass dynamically. Still, this case may be too rare in practice to
      warrant the super model by itself,
      and can often be implemented in other ways in the exceptional cases
      where it is needed. To illustrate, the following changes the superclass
      of C dynamically by changing the
      subclass’s __bases__ tuple in
      3.X:
>>> class X:
        def m(self): print('X.m')
>>> class Y:
        def m(self): print('Y.m')
>>> class C(X):                                 # Start out inheriting from X
        def m(self): super().m()                # Can't hardcode class name here

>>> i = C()
>>> i.m()
X.m
>>> C.__bases__ = (Y,)                          # Change superclass at runtime!
>>> i.m()
Y.m
This works (and shares behavior-morphing goals with other deep
      magic, such as changing an instance’s __class__), but seems rare in the extreme.
      Moreover, there may be other ways to achieve the same effect—perhaps
      most simply, calling through the current superclass tuple’s value
      indirectly: special code to be sure, but only for a very special case
      (and perhaps not any more special than implicit routing by MROs):
>>> class C(X):
        def m(self): C.__bases__[0].m(self)     # Special code for a special case

>>> i = C()
>>> i.m()
X.m
>>> C.__bases__ = (Y,)                          # Same effect, without super()
>>> i.m()
Y.m
Given the preexisting alternatives, this case alone doesn’t seem
      to justify super, though in more
      complex trees, the next rationale—based on the tree’s MRO order instead
      of physical superclass links—may apply here as well.

Cooperative Multiple Inheritance Method Dispatch
The second of the use cases listed earlier is the main rationale commonly given
      for super, and also borrows from
      other programming languages (most notably, Dylan), where its use case
      may be more common than it is in typical Python code. It generally
      applies to diamond pattern multiple inheritance trees, discussed earlier
      in this chapter, and allows for cooperative and conformant classes to
      route calls to a same-named method coherently among
      multiple class implementations. Especially for constructors, which have
      multiple implementations normally, this can simplify call routing
      protocol when used consistently.
In this mode, each super call
      selects the method from a next class following it
      in the MRO ordering of the class of the self subject of a method call. This selection
      process chooses the first class following the calling class having a
      requested attribute. The MRO was introduced earlier; it’s the path
      Python follows for inheritance in new-style classes. Because the MRO’s
      linear ordering depends on which class self was made from, the order of method
      dispatch orchestrated by super can
      vary per class tree, and visits each class just once as long as all
      classes use super to dispatch.
Since every class participates in a diamond under object in 3.X (and 2.X new-style classes), the
      applications are broader than you might expect. In fact, some of the
      earlier examples that demonstrated super shortcomings in multiple inheritance
      trees could use this call to achieve their dispatch goals. To do so,
      however, super must be used
      universally in the class tree to ensure that method
      call chains are passed on—a fairly major requirement that may be
      difficult to enforce in much existing and new code.
The basics: Cooperative super call in action
Let’s take a look at what this role means in code. In this and
        the following sections, we’ll both learn how super works, and explore the tradeoffs it
        implies along the way. To get started, consider the following
        traditionally coded Python classes (condensed
        somewhat here as usual for space):
>>> class B:
        def __init__(self): print('B.__init__')      # Disjoint class tree branches
>>> class C:
        def __init__(self): print('C.__init__')
>>> class D(B, C): pass

>>> x = D()                                          # Runs leftmost only by default
B.__init__
In this case, superclass tree branches are
        disjoint (they don’t share a common explicit
        ancestor), so subclasses that combine them must call through each
        superclass by name—a common situation in much existing Python code
        that super cannot address directly
        without code changes:
>>> class D(B, C):
        def __init__(self):                          # Traditional form
            B.__init__(self)                         # Invoke supers by name
            C.__init__(self)

>>> x = D()
B.__init__
C.__init__
In diamond class tree patterns, though,
        explicit-name calls may by default trigger the
        top-level class’s method more than once, though this might be
        subverted with additional protocols (e.g., status markers in the
        instance):
>>> class A:
        def __init__(self): print('A.__init__')
>>> class B(A):
        def __init__(self): print('B.__init__'); A.__init__(self)
>>> class C(A):
        def __init__(self): print('C.__init__'); A.__init__(self)

>>> x = B()
B.__init__
A.__init__
>>> x = C()                                # Each super works by itself
C.__init__
A.__init__

>>> class D(B, C): pass                    # Still runs leftmost only
>>> x = D()
B.__init__
A.__init__

>>> class D(B, C):
        def __init__(self):                # Traditional form
            B.__init__(self)               # Invoke both supers by name
            C.__init__(self)

>>> x = D()                                # But this now invokes A twice!
B.__init__
A.__init__
C.__init__
A.__init__
By contrast, if all classes use super, or are appropriately coerced by
        proxies to behave as if they do, the method calls are dispatched
        according to class order in the MRO, such that the top-level class’s
        method is run just once:
>>> class A:
        def __init__(self): print('A.__init__')
>>> class B(A):
        def __init__(self): print('B.__init__'); super().__init__()
>>> class C(A):
        def __init__(self): print('C.__init__'); super().__init__()

>>> x = B()                   # Runs B.__init__, A is next super in self's B MRO
B.__init__
A.__init__
>>> x = C()
C.__init__
A.__init__

>>> class D(B, C): pass
>>> x = D()                   # Runs B.__init__, C is next super in self's D MRO!
B.__init__
C.__init__
A.__init__
The real magic behind this is the linear MRO list constructed
        for the class of self—because each
        class appears just once on this list, and because super dispatches to the
        next class on this list, it ensures an orderly
        invocation chain that visits each class just once. Crucially, the
        next class following B in the MRO differs depending on the class
        of self—it’s A for a B
        instance, but C for a D instance, accounting for the order of
        constructors run:
>>> B.__mro__
(<class '__main__.B'>, <class '__main__.A'>, <class 'object'>)

>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>,
<class '__main__.A'>, <class 'object'>)
The MRO and its algorithm were presented earlier in this
        chapter. By selecting a next class in the MRO sequence, a super call in a class’s method
        propagates the call through the tree, so long as
        all classes do the same. In this mode super does not necessarily choose a
        superclass at all; it picks the next in the linearized MRO, which
        might be a sibling—or even a
        lower relative—in the class tree of a given
        instance. See “Tracing the MRO” for other examples of
        the path super dispatch would
        follow, especially for nondiamonds.
The preceding works—and may even seem clever at first glance—but
        its scope may also appear limited to some. Most Python programs do not
        rely on the nuances of diamond pattern multiple inheritance trees (in
        fact, many Python programmers I’ve met do not know what the term
        means!). Moreover, super applies
        most directly to single inheritance and cooperative diamond cases, and
        may seem superfluous for disjoint nondiamond cases, where we might
        want to invoke superclass methods selectively or independently. Even
        cooperative diamonds can be managed in other ways that may afford
        programmers more control than an automatic MRO ordering can. To
        evaluate this tool objectively, though, we need to look deeper.

Constraint: Call chain anchor requirement
The super call comes with
        complexities that may not be apparent on first encounter, and may even
        seem initially like features. For example, because
        all classes inherit from object in 3.X automatically (and explicitly
        in 2.X new-style classes), the MRO ordering can be used even in cases
        where the diamond is only implicit—in the following, triggering
        constructors in independent classes automatically:
>>> class B:
        def __init__(self): print('B.__init__'); super().__init__()
>>> class C:
        def __init__(self): print('C.__init__'); super().__init__()

>>> x = B()                   # object is an implied super at the end of MRO
B.__init__
>>> x = C()
C.__init__

>>> class D(B, C): pass       # Inherits B.__init__ but B's MRO differs for D
>>> x = D()                   # Runs B.__init__, C is next super in self's D MRO!
B.__init__
C.__init__
Technically, this dispatch model generally requires that the
        method being called by super must
        exist, and must have the same argument signature across the class
        tree, and every appearance of the method but the last must use
        super itself. This prior example
        works only because the implied object superclass at the end of the MRO of
        all three classes happens to have a compatible __init__ that satisfies these rules:
>>> B.__mro__
(<class '__main__.B'>, <class 'object'>)
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class 'object'>)
Here, for a D instance, the
        next class in the MRO after B is
        C, which is followed by object whose __init__ silently accepts the call from
        C and ends the chain. Thus,
        B’s method calls C’s, which ends in object’s version, even though C is not a superclass to B.
Really, though, this example is atypical—and perhaps even
        lucky. In most cases, no such suitable default
        will exist in object, and it may be
        less trivial to satisfy this model’s expectations. Most trees will
        require an explicit—and possibly extra—superclass
        to serve the anchoring role that object does here, to accept but not forward
        the call. Other trees may require careful design to adhere to this
        requirement. Moreover, unless Python optimizes it away, the call to
        object (or other anchor) defaults
        at the end of the chain may also add extra performance
        costs.
By contrast, in such cases direct calls incur neither extra
        coding requirements nor added performance cost, and make dispatch more
        explicit and direct:
>>> class B:
        def __init__(self): print('B.__init__')
>>> class C:
        def __init__(self): print('C.__init__')
>>> class D(B, C):
        def __init__(self): B.__init__(self); C.__init__(self)

>>> x = D()
B.__init__
C.__init__

Scope: An all-or-nothing model
Also keep in mind that traditional classes that were not written
        to use super in this role cannot be
        directly used in such cooperative dispatch trees, as they will not
        forward calls along the MRO chain. It’s possible to incorporate such
        classes with proxies that wrap the original
        object and add the requisite super
        calls, but this imposes both additional coding requirements and
        performance costs on the model. Given that there are many millions of
        lines of existing Python code that do not use
        super, this seems a major
        detriment.
Watch what happens, for example, if any one class fails to pass
        along the call chain by omitting a super, ending the call chain
        prematurely—like __slots__,
        super is generally an
        all-or-nothing feature:
>>> class B:
        def __init__(self): print('B.__init__'); super().__init__()
>>> class C:
        def __init__(self): print('C.__init__'); super().__init__()
>>> class D(B, C):
        def __init__(self): print('D.__init__'); super().__init__()
>>> X = D()
D.__init__
B.__init__
C.__init__
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class 'object'>)

# What if you must use a class that doesn't call super?

>>> class B:
        def __init__(self): print('B.__init__')
>>> class D(B, C):
        def __init__(self): print('D.__init__'); super().__init__()
>>> X = D()
D.__init__
B.__init__             # It's an all-or-nothing tool...
Satisfying this mandatory propagation requirement may be no
        simpler than direct by-name calls—which you might still forget, but
        which you won’t need to require of all the code your classes employ.
        As mentioned, it’s possible to adapt a class like B by inheriting from a
        proxy class that embeds B instances, but that seems artificial to
        program goals, adds an extra call to each wrapped method, is subject
        to the new-style class problems we met earlier regarding interface
        proxies and built-ins, and seems an extraordinary and even stunning
        added coding requirement inherent in a model
        intended to simplify code.

Flexibility: Call ordering assumptions
Routing with super also
        assumes that you really mean to pass method calls throughout all your
        classes per the MRO, which may or may not match your call
        ordering requirements. For example, imagine
        that—irrespective of other inheritance ordering needs—the following
        requires that the class C’s version
        of a given method be run before B’s
        in some contexts. If the MRO says otherwise, you’re back to
        traditional calls, which may conflict with super usage—in the following, invoking
        C’s method twice:
# What if method call ordering needs differ from the MRO?

>>> class B:
        def __init__(self): print('B.__init__'); super().__init__()
>>> class C:
        def __init__(self): print('C.__init__'); super().__init__()
>>> class D(B, C):
        def __init__(self): print('D.__init__'); C.__init__(self); B.__init__(self)
>>> X = D()
D.__init__
C.__init__
B.__init__
C.__init__             # It's the MRO xor explicit calls...
Similarly, if you want some methods to not run at
        all, the super automatic
        path won’t apply as directly as explicit calls may, and will make it
        difficult to take more explicit control of the dispatch process. In
        realistic programs with many methods, resources, and state variables,
        these seem entirely plausible scenarios. While you could reorder
        superclasses in D for this method,
        that may break other expectations.

Customization: Method replacement
On a related note, the universal deployment expectations of
        super may make it difficult for a
        single class to replace (override) an inherited
        method altogether. Not passing the call higher with super—intentionally in this case—works fine
        for the class itself, but may break the call chain of trees it’s mixed
        into, thereby preventing methods elsewhere in the tree from running.
        Consider the following tree:
>>> class A:
        def method(self): print('A.method'); super().method()
>>> class B(A):
        def method(self): print('B.method'); super().method()
>>> class C:
        def method(self): print('C.method')       # No super: must anchor the chain!
>>> class D(B, C):
        def method(self): print('D.method'); super().method()
>>> X = D()
>>> X.method()
D.method
B.method
A.method               # Dispatch to all per the MRO automatically
C.method
Method replacement here breaks the super model, and probably leads us back to
        the traditional form:
# What if a class needs to replace a super's default entirely?

>>> class B(A):
        def method(self): print('B.method')       # Drop super to replace A's method
>>> class D(B, C):
        def method(self): print('D.method'); super().method()
>>> X = D()
>>> X.method()
D.method
B.method               #  But replacement also breaks the call chain...

>>> class D(B, C):
        def method(self): print('D.method'); B.method(self); C.method(self)
>>> D().method()
D.method
B.method
C.method               # It's back to explicit calls...
Once again, the problem with assumptions is that they assume
        things! Although the assumption of universal routing might be
        reasonable for constructors, it would also seem to conflict with one
        of the core tenets of OOP—unrestricted subclass
        customization. This might suggest restricting super usage to constructors, but even these
        might sometimes warrant replacement, and this adds an odd special-case
        requirement for one specific context. A tool that can be used only for
        certain categories of methods might be seen by some as redundant—and
        even spurious, given the extra complexity it implies.

Coupling: Application to mix-in classes
Subtly, when we say super
        selects the next class in the MRO, we
        really mean the next class in the MRO that implements the
        requested method—it technically skips ahead until it finds
        a class with the requested name. This matters for independent mix-in
        classes, which might be added to arbitrary client trees. Without this
        skipping-ahead behavior, such mix-ins wouldn’t work at all—they would
        otherwise drop the call chain of their clients’ arbitrary methods, and
        couldn’t rely on their own super
        calls to work as expected.
In the following independent branches, for example, C’s call to method is passed on, even though Mixin, the next class in the C instance’s MRO, doesn’t define that
        method’s name. As long as method name sets are disjoint, this just
        works—the call chains of each branch can exist independently:
# Mix-ins work for disjoint method sets

>>> class A:
        def other(self): print('A.other')
>>> class Mixin(A):
        def other(self): print('Mixin.other'); super().other()

>>> class B:
        def method(self): print('B.method')
>>> class C(Mixin, B):
        def method(self): print('C.method'); super().other(); super().method()

>>> C().method()
C.method
Mixin.other
A.other
B.method

>>> C.__mro__
(<class '__main__.C'>, <class '__main__.Mixin'>, <class '__main__.A'>,
<class '__main__.B'>, <class 'object'>)
Similarly, mixing the other way doesn’t break call chains of the
        mix-in either. For instance, in the following, even though B doesn’t define other when called in C, classes do later in the MRO. In fact, the
        call chains work even if one of the branches doesn’t use super at all—as long as a method is defined
        somewhere ahead on the MRO, its call works:
>>> class C(B, Mixin):
        def method(self): print('C.method'); super().other(); super().method()

>>> C().method()
C.method
Mixin.other
A.other
B.method

>>> C.__mro__
(<class '__main__.C'>, <class '__main__.B'>, <class '__main__.Mixin'>,
<class '__main__.A'>, <class 'object'>)
This is also true in the presence of
        diamonds—disjoint method sets are dispatched as
        expected, even if not implemented by each disjoint branch, because we
        select the next on the MRO with the method. Really, because the MRO
        contains the same classes in these cases, and because a subclass
        always appears before its superclass in the MRO, they are equivalent
        contexts. For example, the call in Mixin to other in the following still finds it in
        A, even though the next class after
        Mixin on the MRO is B (the call to method in C works again for similar reasons):
# Explicit diamonds work too

>>> class A:
        def other(self): print('A.other')
>>> class Mixin(A):
        def other(self): print('Mixin.other'); super().other()

>>> class B(A):
        def method(self): print('B.method')
>>> class C(Mixin, B):
        def method(self): print('C.method'); super().other(); super().method()

>>> C().method()
C.method
Mixin.other
A.other
B.method

>>> C.__mro__
(<class '__main__.C'>, <class '__main__.Mixin'>, <class '__main__.B'>,
<class '__main__.A'>, <class 'object'>)

# Other mix-in orderings work too

>>> class C(B, Mixin):
        def method(self): print('C.method'); super().other(); super().method()

>>> C().method()
C.method
Mixin.other
A.other
B.method

>>> C.__mro__
(<class '__main__.C'>, <class '__main__.B'>, <class '__main__.Mixin'>,
<class '__main__.A'>, <class 'object'>)
Still, this has an effect that is no different—but may seem
        wildly more implicit—than direct by-name calls,
        which also work the same in this case regardless of superclass
        ordering, and whether there is a diamond or not. In this case, the
        motivation for relying on MRO ordering seems on shaky ground, if the
        traditional form is both simpler and more explicit, and offers more
        control and flexibility:
# But direct calls work here too: explicit is better than implicit

>>> class C(Mixin, B):
       def method(self): print('C.method'); Mixin.other(self); B.method(self)

>>> X = C()
>>> X.method()
C.method
Mixin.other
A.other
B.method
More crucially, this example so far assumes that method names
        are disjoint in its branches; the dispatch order for
        same-named methods in diamonds like this may be
        much less fortuitous. In a diamond like the preceding, for example,
        it’s not impossible that a client class could invalidate a super call’s intent—the call to method in Mixin in the following works to run A’s version as expected,
        unless it’s mixed into a tree that drops the call
        chain:
# But for nondisjoint methods: super creates overly strong coupling

>>> class A:
        def method(self): print('A.method')
>>> class Mixin(A):
        def method(self): print('Mixin.method'); super().method()
>>> Mixin().method()
Mixin.method
A.method

>>> class B(A):
        def method(self): print('B.method')      # super here would invoke A after B
>>> class C(Mixin, B):
        def method(self): print('C.method'); super().method()
>>> C().method()
C.method
Mixin.method
B.method                                         # We miss A in this context only!
It may be that B shouldn’t
        redefine this method anyhow (and frankly, we may be encroaching on
        problems inherent in multiple inheritance in general), but this need
        not also break the mix-in—direct
        calls give you more control in such cases, and allow mix-in
        classes to be much more independent of usage contexts:
# And direct calls do not: they are immune to context of use

>>> class A:
        def method(self): print('A.method')
>>> class Mixin(A):
        def method(self): print('Mixin.method'); A.method(self)       # C irrelevant

>>> class C(Mixin, B):
        def method(self): print('C.method'); Mixin.method(self)
>>> C().method()
C.method
Mixin.method
A.method
More to the point, by making mix-ins more
        self-contained, direct calls minimize
        component coupling that always skews program complexity higher—a fundamental software
        principle that seems neglected by super’s variable and context-specific
        dispatch model.

Customization: Same-argument constraints
As a final note, you should also consider the consequences of
        using super when method
        arguments differ per class—because a class coder
        can’t be sure which version of a method super might invoke (indeed, this may vary
        per tree!), every version of the method must generally accept the same
        arguments list, or choose its inputs with analysis of generic argument
        lists—either of which imposes additional requirements on your code. In
        realistic programs, this constraint may in fact be a true
        showstopper for many potential super applications, precluding its use
        entirely.
To illustrate why this can matter, recall the pizza shop
        employee classes we wrote in Chapter 31. As coded there, both subclasses
        use direct by-name calls to invoke the superclass
        constructor, filling in an expected salary argument automatically—the logic
        being that the subclass implies the pay grade:
>>> class Employee:
        def __init__(self, name, salary):                  # Common superclass
            self.name = name
            self.salary = salary

>>> class Chef1(Employee):
        def __init__(self, name):                          # Differing arguments
            Employee.__init__(self, name, 50000)           # Dispatch by direct call

>>> class Server1(Employee):
        def __init__(self, name):
            Employee.__init__(self, name, 40000)

>>> bob = Chef1('Bob')
>>> sue = Server1('Sue')
>>> bob.salary, sue.salary
(50000, 40000)
This works, but since this is a single-inheritance tree, we
        might be tempted to deploy super
        here to route the constructor calls generically. Doing so works for
        either subclass in isolation, since its MRO includes just itself and
        its actual superclass:
>>> class Chef2(Employee):
        def __init__(self, name):
            super().__init__(name, 50000)                  # Dispatch by super()

>>> class Server2(Employee):
        def __init__(self, name):
            super().__init__(name, 40000)

>>> bob = Chef2('Bob')
>>> sue = Server2('Sue')
>>> bob.salary, sue.salary
(50000, 40000)
Watch what happens, though, when an employee is a member of
        both categories. Because the constructors in the
        tree have differing argument lists, we’re in trouble:
>>> class TwoJobs(Chef2, Server2): pass

>>> tom = TwoJobs('Tom')
TypeError: __init__() takes 2 positional arguments but 3 were given
The problem here is that the super call in Chef2 no longer invokes its Employee superclass, but instead invokes its
        sibling class and follower on the MRO, Server2. Since this sibling has a differing
        argument list than the true superclass—expecting just self and name—the code breaks. This is inherent in
        super use: because the MRO can
        differ per tree, it might call different versions of a method in
        different trees—even some you may not be able to anticipate when
        coding a class by itself:
>>> TwoJobs.__mro__
(<class '__main__.TwoJobs'>, <class '__main__.Chef2'>, <class '__main__.Server2'>
<class '__main__.Employee'>, <class 'object'>)

>>> Chef2.__mro__
(<class '__main__.Chef2'>, <class '__main__.Employee'>, <class 'object'>)
By contrast, the direct by-name call scheme still works when the
        classes are mixed, though the results are a bit dubious—the combined
        category gets the pay of the leftmost superclass:
>>> class TwoJobs(Chef1, Server1): pass

>>> tom = TwoJobs('Tom')
>>> tom.salary
50000
Really, we probably want to route the call to the top-level
        class in this event with a new salary—a model that is possible with
        direct calls but not with super
        alone. Moreover, calling Employee
        directly in this one class means our code uses
        two dispatch techniques when just one—direct
        calls—would suffice:
>>> class TwoJobs(Chef1, Server1):
        def __init__(self, name): Employee.__init__(self, name, 70000)

>>> tom = TwoJobs('Tom')
>>> tom.salary
70000

>>> class TwoJobs(Chef2, Server2):
        def __init__(self, name): super().__init__(name, 70000)

>>> tom = TwoJobs('Tom')
TypeError: __init__() takes 2 positional arguments but 3 were given
This example may warrant redesign in general—splitting off
        shareable parts of Chef and
        Server to mix-in classes without a
        constructor, for example. It’s also true that polymorphism in general
        assumes that the methods in an object’s external
        interface have the same argument signature, though this doesn’t quite
        apply to customization of superclass methods—an
        internal implementation technique that should by
        nature support variation, especially in constructors.
But the crucial point here is that because direct calls do not
        make code dependent on a magic ordering that can vary per tree, they
        more directly support argument list flexibility. More broadly, the
        questionable (or weak) performances super turns in on method replacement, mix-in
        coupling, call ordering, and argument constraints should make you
        evaluate its deployment carefully. Even in single-inheritance mode,
        its potential for later impacts as trees grow is
        considerable.
In sum, the three requirements of super in this role are also the source of
        most of its usability issues:
	The method called by super must exist—which requires extra
            code if no anchor is present.

	The method called by super must have the same argument
            signature across the class tree—which impairs flexibility,
            especially for implementation-level methods like
            constructors.

	Every appearance of the method called by super but the last must use super itself—which makes it difficult to
            use existing code, change call ordering, override methods, and
            code self-contained classes.


Taken together, these seem to make for a tool with both
        substantial complexity and significant tradeoffs—downsides that will
        assert themselves the moment the code grows to incorporate multiple
        inheritance.
Naturally, there may be creative workarounds for the super dilemmas just posed, but additional
        coding steps would further dilute the call’s benefits—and we’ve run
        out of space here in any event. There are also alternative
        non-super
        solutions to some diamond method dispatch problems, but these will
        have to be left as a user exercise for space reasons too. In general,
        when superclass methods are called by explicit name, root classes of
        diamonds might check state in instances to avoid firing twice—a
        similarly complex coding pattern, but required rarely in most code,
        and which to some may seem no more difficult than using super
        itself.


The super Summary
So there it is—the bad and the good. As with all Python extensions, you should be the
      judge on this one too. I’ve tried to give both sides of the debate a
      fair shake here to help you decide. But because the super call:
	Differs in form between 2.X and 3.X

	In 3.X, relies on arguably non-Pythonic magic, and does not
          fully apply to operator overloading or traditionally coded
          multiple-inheritance trees

	In 2.X, seems so verbose in this intended role that it may
          make code more complex instead of less

	Claims code maintenance benefits that may be more hypothetical
          than real in Python practice


even ex–Java programmers should also consider this book’s
      preferred traditional technique of explicit-name superclass calls to be
      at least as valid a solution as Python’s super—a call that on some levels seems an
      unusual and limited answer to a question that was not being asked by
      most Python programmers, and was not deemed important for much of
      Python’s history.
At the same time, the super call offers one solution to the
      difficult problem of same-named method dispatch in multiple inheritance
      trees, for programs that choose to use it
      universally and consistently. But therein lies one
      of its largest obstacles: it requires universal deployment to address a
      problem most programmers probably do not have. Moreover, at this point
      in Python’s history, asking programmers to change their existing code to
      use this call widely enough to make it reliable seems highly
      unrealistic.
Perhaps the chief problem of this role, though, is the
      role itself—same-named method dispatch in multiple
      inheritance trees is relatively rare in real Python programs, and
      obscure enough to have generated both much controversy and much
      misunderstanding surrounding this role. People don’t use Python the same
      way they use C++, Java, or Dylan, and lessons from other such languages
      do not necessarily apply.
Also keep in mind that using super makes your program’s behavior dependent
      on the MRO algorithm—a procedure that we’ve covered only informally here
      due to its complexity, that is artificial to your
      program’s purpose, and that seems tersely documented and understood in
      the Python world. As we’ve seen, even if you understand the MRO, its
      implications on customization,
      coupling, and flexibility are
      remarkably subtle. If you don’t completely understand this algorithm—or
      have goals that its application does not address—you may be better
      served not relying on it to implicitly trigger actions in your
      code.
Or, to quote a Python motto from its import this creed:
If the implementation is hard to explain, it’s a bad
        idea.

The super call seems firmly in
      this category. Most programmers won’t use an arcane tool aimed at a rare
      use case, no matter how clever it may be. This is especially true in a
      scripting language that bills itself as friendly to nonspecialists.
      Regrettably, use by any programmer can impose such a tool on others
      anyhow—the real reason I’ve covered it here, and a theme we’ll revisit
      at the end of this book.
As usual, time and user base will tell if this call’s tradeoffs or
      momentum lead to broader adoption or not. At the least, it behooves you
      to also know about the traditional explicit-name superclass call
      technique, as it is still commonly used and often either simpler or
      required in today’s real-world Python programming. If you do choose to
      use this tool, my own advice to readers is to remember that using
      super:
	In single-inheritance mode can mask later
          problems and lead to unexpected behavior as trees grow

	In multiple-inheritance mode brings with
          it substantial complexity for an atypical Python use case


For other opinions on Python’s super that go into further details both good
      and bad, search the Web for related articles. You can find plenty of
      additional positions, though in the end, Python’s future relies as much
      on yours as any other.
Note
Also watch for Chapter 40’s formal
        description of full inheritance—a procedure which
        super objects eschew for a custom scan of a
        context-specific MRO tail, looking for the first appearance of an
        attribute (descriptor or value) along the way. Full inheritance is
        used on the super object itself only if this scan
        fails. The net effect is a special case for basic name resolution,
        imposed on both the language and your code for the sake of a
        relatively rare use case.



Class Gotchas
We’ve reached the end of the primary OOP coverage in this book. After
    exceptions, we’ll explore additional class-related examples and topics in
    the last part of the book, but that part mostly just gives expanded
    coverage to concepts introduced here. As usual, let’s wrap up this part
    with the standard warnings about pitfalls to avoid.
Most class issues can be boiled down to namespace issues—which makes
    sense, given that classes are just namespaces with a handful of extra
    tricks. Some of the items in this section are more like class usage
    pointers than problems, but even experienced class coders have been known
    to stumble on a few.
Changing Class Attributes Can Have Side Effects
Theoretically speaking, classes (and class instances) are
      mutable objects. As with built-in lists and
      dictionaries, you can change them in place by assigning to their
      attributes—and as with lists and dictionaries, this means that changing
      a class or instance object may impact multiple references to it.
That’s usually what we want, and is how objects change their state
      in general, but awareness of this issue becomes especially critical when
      changing class attributes. Because all instances generated from a class
      share the class’s namespace, any changes at the class level are
      reflected in all instances, unless they have their own versions of the
      changed class attributes.
Because classes, modules, and instances are all just objects with
      attribute namespaces, you can normally change their attributes at
      runtime by assignments. Consider the following class. Inside the class
      body, the assignment to the name a
      generates an attribute X.a, which
      lives in the class object at runtime and will be inherited by all of
      X’s instances:
>>> class X:
        a = 1       # Class attribute

>>> I = X()
>>> I.a             # Inherited by instance
1
>>> X.a
1
So far, so good—this is the normal case. But notice what happens
      when we change the class attribute dynamically outside the class statement: it also changes the attribute
      in every object that inherits from the class. Moreover, new instances
      created from the class during this session or program run also get the
      dynamically set value, regardless of what the class’s source code
      says:
>>> X.a = 2         # May change more than X
>>> I.a             # I changes too
2
>>> J = X()         # J inherits from X's runtime values
>>> J.a             # (but assigning to J.a changes a in J, not X or I)
2
Is this a useful feature or a dangerous trap? You be the judge. As
      we learned in Chapter 27, you can actually
      get work done by changing class attributes without ever making a single
      instance—a technique that can simulate the use of “records” or “structs”
      in other languages. As a refresher, consider the following unusual but
      legal Python program:
class X: pass                       # Make a few attribute namespaces
class Y: pass

X.a = 1                             # Use class attributes as variables
X.b = 2                             # No instances anywhere to be found
X.c = 3
Y.a = X.a + X.b + X.c

for X.i in range(Y.a): print(X.i)   # Prints 0..5
Here, the classes X and
      Y work like “fileless”
      modules—namespaces for storing variables we don’t want to clash. This is
      a perfectly legal Python programming trick, but it’s less appropriate
      when applied to classes written by others; you can’t always be sure that
      class attributes you change aren’t critical to the class’s internal
      behavior. If you’re out to simulate a C struct, you may be better off changing
      instances than classes, as that way only one object is affected:
class Record: pass
X = Record()
X.name = 'bob'
X.job  = 'Pizza maker'

Changing Mutable Class Attributes Can Have Side Effects,
      Too
This gotcha is really an extension of the prior. Because class
      attributes are shared by all instances, if a class attribute references
      a mutable object, changing that object in place from any instance
      impacts all instances at once:
>>> class C:
        shared = []                 # Class attribute
        def __init__(self):
            self.perobj = []        # Instance attribute

>>> x = C()                         # Two instances
>>> y = C()                         # Implicitly share class attrs
>>> y.shared, y.perobj
([], [])

>>> x.shared.append('spam')         # Impacts y's view too!
>>> x.perobj.append('spam')         # Impacts x's data only
>>> x.shared, x.perobj
(['spam'], ['spam'])

>>> y.shared, y.perobj              # y sees change made through x
(['spam'], [])
>>> C.shared                        # Stored on class and shared
['spam']
This effect is no different than many we’ve seen in this book
      already: mutable objects are shared by simple variables, globals are
      shared by functions, module-level objects are shared by multiple
      importers, and mutable function arguments are shared by the caller and
      the callee. All of these are cases of general behavior—multiple
      references to a mutable object—and all are impacted if the shared object
      is changed in place from any reference. Here, this occurs in class
      attributes shared by all instances via inheritance, but it’s the same
      phenomenon at work. It may be made more subtle by the different behavior
      of assignments to instance attributes themselves:
x.shared.append('spam')    # Changes shared object attached to class in place
x.shared = 'spam'          # Changed or creates instance attribute attached to x
But again, this is not a problem, it’s just something to be aware
      of; shared mutable class attributes can have many valid uses in
      Python programs.

Multiple Inheritance: Order Matters
This may be obvious by now, but it’s worth underscoring: if you use multiple
      inheritance, the order in which superclasses are listed in the class statement header can be critical. Python
      always searches superclasses from left to right, according to their
      order in the header line.
For instance, in the multiple inheritance example we studied in
      Chapter 31, suppose that the Super class implemented a __str__ method, too:
class ListTree:
    def __str__(self): ...

class Super:
    def __str__(self): ...

class Sub(ListTree, Super):    # Get ListTree's __str__ by listing it first

x = Sub()                      # Inheritance searches ListTree before Super
Which class would we inherit it from—ListTree or Super? As inheritance searches proceed from
      left to right, we would get the method from whichever class is listed
      first (leftmost) in Sub’s class header. Presumably, we would list
      ListTree first because its whole
      purpose is its custom __str__
      (indeed, we had to do this in Chapter 31
      when mixing this class with a tkinter.Button that had a __str__ of its own).
But now suppose Super and
      ListTree have their own versions of
      other same-named attributes, too. If we want one name from Super and another from ListTree, the order in which we list them in
      the class header won’t help—we will
      have to override inheritance by manually assigning to the attribute name
      in the Sub class:
class ListTree:
    def __str__(self): ...
    def other(self): ...

class Super:
    def __str__(self): ...
    def other(self): ...

class Sub(ListTree, Super):    # Get ListTree's __str__ by listing it first
    other = Super.other        # But explicitly pick Super's version of other
    def __init__(self):
        ...

x = Sub()                      # Inheritance searches Sub before ListTree/Super
Here, the assignment to other
      within the Sub class creates Sub.other—a reference back to the Super.other object. Because it is lower in the
      tree, Sub.other effectively hides
      ListTree.other, the attribute that
      the inheritance search would normally find. Similarly, if we listed
      Super first in the class header to pick up its other, we would need to select ListTree’s method explicitly:
class Sub(Super, ListTree):               # Get Super's other by order
    __str__ = ListTree.__str__            # Explicitly pick ListTree.__str__
Multiple inheritance is an advanced tool. Even if you understood
      the last paragraph, it’s still a good idea to use it sparingly and
      carefully. Otherwise, the meaning of a name may come to depend on the
      order in which classes are mixed in an arbitrarily far-removed subclass.
      (For another example of the technique shown here in action, see the
      discussion of explicit conflict resolution in “The ‘New-Style’ Class
      Model”, as well as the earlier super
      coverage.)
As a rule of thumb, multiple inheritance works best when your
      mix-in classes are as self-contained as possible—because they may be
      used in a variety of contexts, they should not make assumptions about
      names related to other classes in a tree. The pseudoprivate __X attributes
      feature we studied in Chapter 31 can help
      by localizing names that a class relies on owning and limiting the names
      that your mix-in classes add to the mix. In this example, for instance,
      if ListTree only means to export its
      custom __str__, it can name its
      other method __other to avoid clashing with like-named
      classes in the tree.

Scopes in Methods and Classes
When working out the meaning of names in class-based code, it helps to remember
      that classes introduce local scopes, just as functions do, and methods
      are simply further nested functions. In the following example, the
      generate function returns an instance
      of the nested Spam class. Within its
      code, the class name Spam is assigned
      in the generate function’s local
      scope, and hence is visible to any further nested functions, including
      code inside method; it’s the
      E in the “LEGB” scope lookup rule:
def generate():
    class Spam:                  # Spam is a name in generate's local scope
        count = 1
        def method(self):
            print(Spam.count)    # Visible in generate's scope, per LEGB rule (E)
    return Spam()

generate().method()
This example works in Python since version 2.2 because the local
      scopes of all enclosing function defs
      are automatically visible to nested defs (including nested method defs, as in this example).
Even so, keep in mind that method defs cannot see the local scope of the
      enclosing class; they can see only the local scopes
      of enclosing defs. That’s why methods
      must go through the self instance or
      the class name to reference methods and other attributes defined in the
      enclosing class statement. For
      example, code in the method must use self.count or Spam.count, not just count.
To avoid nesting, we could restructure this code such that the
      class Spam is defined at the top
      level of the module: the nested method function and the top-level generate will then both find Spam in their global scopes; it’s not
      localized to a function’s scope, but is still local to a single
      module:
def generate():
    return Spam()

class Spam:                    # Define at top level of module
    count = 1
    def method(self):
        print(Spam.count)      # Works: in global (enclosing module)

generate().method()
In fact, this approach is recommended for all Python releases—code
      tends to be simpler in general if you avoid nesting classes and
      functions. On the other hand, class nesting is useful in
      closure contexts, where the enclosing function’s
      scope retains state used by the class or its
      methods. In the following, the nested method has access to its own scope, the
      enclosing function’s scope (for label), the enclosing module’s global scope,
      anything saved in the self instance
      by the class, and the class itself via its nonlocal name:
>>> def generate(label):       # Returns a class instead of an instance
        class Spam:
            count = 1
            def method(self):
                print("%s=%s" % (label, Spam.count))
        return Spam

>>> aclass = generate('Gotchas')
>>> I = aclass()
>>> I.method()
Gotchas=1

Miscellaneous Class Gotchas
Here’s a handful of additional class-related warnings, mostly as
      review.
Choose per-instance or class storage wisely
On a similar note, be careful when you decide whether an attribute should be
        stored on a class or its instances: the former is shared by all
        instances, and the latter will differ per instance. This can be a
        crucial design issue in practice. In a GUI program, for instance, if
        you want information to be shared by all of the window class objects
        your application will create (e.g., the last directory used for a Save
        operation, or an already entered password), it must be stored as
        class-level data; if stored in the instance as self attributes, it will vary per window or
        be missing entirely when looked up by inheritance.

You usually want to call superclass constructors
Remember that Python runs only one __init__ constructor method when an instance
        is made—the lowest in the class inheritance tree. It does not
        automatically run the constructors of all superclasses higher up.
        Because constructors normally perform required startup work, you’ll
        usually need to run a superclass constructor from a subclass
        constructor—using a manual call through the superclass’s name (or
        super), passing along whatever
        arguments are required—unless you mean to replace the super’s
        constructor altogether, or the superclass doesn’t have or inherit a
        constructor at all.

Delegation-based classes in 3.X: __getattr__ and
        built-ins
Another reminder: as described earlier in this chapter and elsewhere, classes
        that use the __getattr__ operator
        overloading method to delegate attribute fetches to wrapped objects
        may fail in Python 3.X (and 2.X when new-style classes are used)
        unless operator overloading methods are redefined in the wrapper
        class. The names of operator overloading methods implicitly fetched by
        built-in operations are not routed through generic
        attribute-interception methods. To work around this, you must redefine
        such methods in wrapper classes, either manually, with tools, or by
        definition in superclasses; we’ll see how in Chapter 40.


KISS Revisited: “Overwrapping-itis”
When used well, the code reuse features of OOP make it excel at cutting development time.
      Sometimes, though, OOP’s abstraction potential can be abused to the
      point of making code difficult to understand. If classes are layered too
      deeply, code can become obscure; you may have to search through many
      classes to discover what an operation does.
For example, I once worked in a C++ shop with thousands of classes
      (some machine-generated), and up to 15 levels of inheritance.
      Deciphering method calls in such a complex system was often a monumental
      task: multiple classes had to be consulted for even the most basic of
      operations. In fact, the logic of the system was so deeply wrapped that
      understanding a piece of code in some cases required days of wading
      through related files. This obviously isn’t ideal for programmer
      productivity!
The most general rule of thumb of Python programming applies here,
      too: don’t make things complicated unless they truly must
      be. Wrapping your code in multiple layers of classes to the
      point of incomprehensibility is always a bad idea. Abstraction is the
      basis of polymorphism and encapsulation, and it can be a very effective
      tool when used well. However, you’ll simplify debugging and aid
      maintainability if you make your class interfaces intuitive, avoid
      making your code overly abstract, and keep your class hierarchies short
      and flat unless there is a good reason to do otherwise. Remember: code
      you write is generally code that others must read. See Chapter 20 for more on KISS.


Chapter Summary
This chapter presented an assortment of advanced class-related
    topics, including subclassing built-in types, new-style classes, static
    methods, and decorators. Most of these are optional extensions to the OOP
    model in Python, but they may become more useful as you start writing
    larger object-oriented programs, and are fair game if they appear in code
    you must understand. As mentioned earlier, our discussion of some of the
    more advanced class tools continues in the final part of this book; be
    sure to look ahead if you need more details on properties, descriptors,
    decorators, and metaclasses.
This is the end of the class part of this book, so you’ll find the
    usual lab exercises at the end of the chapter: be sure to work through
    them to get some practice coding real classes. In the next chapter, we’ll
    begin our look at our last core language topic,
    exceptions—Python’s mechanism for communicating
    errors and other conditions to your code. This is a relatively lightweight
    topic, but I’ve saved it for last because new exceptions are supposed to
    be coded as classes today. Before we tackle that final core subject,
    though, take a look at this chapter’s quiz and the lab exercises.

Test Your Knowledge: Quiz
	Name two ways to extend a built-in object type.

	What are function and class decorators used for?

	How do you code a new-style class?

	How are new-style and classic classes different?

	How are normal and static methods different?

	Are tools like __slots__ and
        super valid to use in your
        code?

	How long should you wait before lobbing a “Holy Hand
        Grenade”?



Test Your Knowledge: Answers
	You can embed a built-in object in a wrapper class, or subclass
        the built-in type directly. The latter approach tends to be simpler,
        as most original behavior is automatically inherited.

	Function decorators are generally used to manage a function or
        method, or add to it a layer of logic that is run each time the
        function or method is called. They can be used to log or count calls
        to a function, check its argument types, and so on. They are also used
        to “declare” static methods (simple functions in a class that are not
        passed an instance when called), as well as class methods and
        properties. Class decorators are similar, but manage whole objects and
        their interfaces instead of a function call.

	New-style classes are coded by inheriting from the object built-in class (or any other built-in
        type). In Python 3.X, all classes are new-style automatically, so this
        derivation is not required (but doesn’t hurt); in 2.X, classes with
        this explicit derivation are new-style and those without it are
        “classic.”

	New-style classes search the diamond pattern of multiple
        inheritance trees differently—they essentially search breadth-first
        (across), instead of depth-first (up) in diamond trees. New-style
        classes also change the result of the type built-in for instances and classes, do
        not run generic attribute fetch methods such as __getattr__ for built-in operation methods,
        and support a set of advanced extra tools including properties,
        descriptors, super, and __slots__ instance attribute lists.

	Normal (instance) methods receive a self argument (the implied instance), but
        static methods do not. Static methods are simple functions nested in
        class objects. To make a method static, it must either be run through
        a special built-in function or be decorated with decorator syntax.
        Python 3.X allows simple functions in a class to be called through the
        class without this step, but calls through instances still require
        static method declaration.

	Of course, but you shouldn’t use advanced tools automatically
        without carefully considering their implications. Slots, for example,
        can break code; super can mask
        later problems when used for single inheritance, and in multiple
        inheritance brings with it substantial complexity for an isolated use
        case; and both require universal deployment to be most useful.
        Evaluating new or advanced tools is a primary task of any engineer,
        and is why we explored tradeoffs so carefully in this chapter. This
        book’s goal is not to tell you which tools to use, but to underscore
        the importance of objectively analyzing them—a task often given too
        low a priority in the software field.

	Three seconds. (Or, more accurately: “And the Lord spake,
        saying, ‘First shalt thou take out the Holy Pin. Then, shalt thou
        count to three, no more, no less. Three shalt be the number thou shalt
        count, and the number of the counting shall be three. Four shalt thou
        not count, nor either count thou two, excepting that thou then proceed
        to three. Five is right out. Once the number three, being the third
        number, be reached, then lobbest thou thy Holy Hand Grenade of Antioch
        towards thy foe, who, being naughty in my sight, shall snuff
        it.’”)4



Test Your Knowledge: Part VI Exercises
These exercises ask you to write a few classes and experiment with some existing
    code. Of course, the problem with existing code is that it must be
    existing. To work with the set class in exercise 5, either pull the class
    source code off this book’s website (see the preface for a pointer) or
    type it up by hand (it’s fairly brief). These programs are starting to get
    more sophisticated, so be sure to check the solutions at the end of the
    book for pointers. You’ll find them in Appendix D, under “Part VI, Classes and OOP”.
	Inheritance. Write a class called Adder that exports a method add(self, x, y) that prints a “Not
        Implemented” message. Then, define two subclasses of Adder that implement the add method:
	ListAdder
	With an add method that
              returns the concatenation of its two list arguments

	DictAdder
	With an add method that
              returns a new dictionary containing the items in both its two
              dictionary arguments (any definition of dictionary addition will
              do)


Experiment by making instances of all three of your classes
        interactively and calling their add
        methods.
Now, extend your Adder
        superclass to save an object in the instance with a constructor (e.g.,
        assign self.data a list or a
        dictionary), and overload the +
        operator with an __add__ method to
        automatically dispatch to your add
        methods (e.g., X + Y triggers
        X.add(X.data,Y)). Where is the best
        place to put the constructors and operator overloading methods (i.e.,
        in which classes)? What sorts of objects can you add to your class
        instances?
In practice, you might find it easier to code your add methods to accept just one real argument
        (e.g., add(self,y)), and add that
        one argument to the instance’s current data (e.g., self.data + y). Does this make more sense
        than passing two arguments to add?
        Would you say this makes your classes more “object-oriented”?

	Operator overloading. Write a class called
        MyList that shadows (“wraps”) a
        Python list: it should overload most list operators and operations,
        including +, indexing, iteration,
        slicing, and list methods such as append and sort. See the Python reference manual or
        other documentation for a list of all possible methods to support.
        Also, provide a constructor for your class that takes an existing list
        (or a MyList instance) and copies
        its components into an instance attribute. Experiment with your class
        interactively. Things to explore:
	Why is copying the initial value important here?

	Can you use an empty slice (e.g., start[:]) to copy the initial value if
            it’s a MyList instance?

	Is there a general way to route list method calls to the
            wrapped list?

	Can you add a MyList and
            a regular list? How about a list and a MyList instance?

	What type of object should operations like + and slicing return? What about
            indexing operations?

	If you are working with a reasonably recent Python release
            (version 2.2 or later), you may implement this sort of wrapper
            class by embedding a real list in a standalone class, or by
            extending the built-in list type with a subclass. Which is easier,
            and why?



	Subclassing. Make a subclass of MyList from exercise 2 called MyListSub, which extends MyList to print a message to stdout before each call to the + overloaded operation and counts the number
        of such calls. MyListSub should
        inherit basic method behavior from MyList. Adding a sequence to a MyListSub should print a message, increment
        the counter for + calls, and
        perform the superclass’s method. Also, introduce a new method that
        prints the operation counters to stdout, and experiment with your class
        interactively. Do your counters count calls per instance, or per class
        (for all instances of the class)? How would you program the other
        option? (Hint: it depends on which object the count members are
        assigned to: class members are shared by instances, but self members are per-instance data.)

	Attribute methods. Write a class called
        Attrs with methods that intercept
        every attribute qualification (both fetches and assignments), and
        print messages listing their arguments to stdout. Create an Attrs instance, and experiment with
        qualifying it interactively. What happens when you try to use the
        instance in expressions? Try adding, indexing, and slicing the
        instance of your class. (Note: a fully generic approach based upon
        __getattr__ will work in 2.X’s
        classic classes but not in 3.X’s new-style classes—which are optional
        in 2.X—for reasons noted in Chapter 28, Chapter 31, and Chapter 32, and summarized in the solution to
        this exercise.)

	Set objects. Experiment with the set class
        described in “Extending Types by Embedding”. Run commands to do the
        following sorts of operations:
	Create two sets of integers, and compute their intersection
            and union by using & and
            | operator expressions.

	Create a set from a string, and experiment with indexing
            your set. Which methods in the class are called?

	Try iterating through the items in your string set using a
            for loop. Which methods run
            this time?

	Try computing the intersection and union of your string set
            and a simple Python string. Does it work?

	Now, extend your set by subclassing to handle arbitrarily
            many operands using the *args
            argument form. (Hint: see the function versions of these
            algorithms in Chapter 18.) Compute intersections
            and unions of multiple operands with your set subclass. How can
            you intersect three or more sets, given that & has only two sides?

	How would you go about emulating other list operations in
            the set class? (Hint: __add__
            can catch concatenation, and __getattr__ can pass most named list
            method calls like append to the
            wrapped list.)



	Class tree links. In “Namespaces: The Whole
        Story” in Chapter 29 and in “Multiple
        Inheritance: ‘Mix-in’ Classes” in Chapter 31, we learned that classes have a
        __bases__ attribute that returns a
        tuple of their superclass objects (the ones listed in parentheses in
        the class header). Use __bases__ to
        extend the lister.py mix-in
        classes we wrote in Chapter 31 so that
        they print the names of the immediate superclasses of the instance’s
        class. When you’re done, the first line of the string representation
        should look like this (your address will almost certainly
        vary):
<Instance of Sub(Super, Lister), address 7841200:

	Composition. Simulate a fast-food ordering
        scenario by defining four classes:
	Lunch
	A container and controller class

	Customer
	The actor who buys food

	Employee
	The actor from whom a customer orders

	Food
	What the customer buys


To get you started, here are the classes and methods you’ll be
        defining:
class Lunch:
    def __init__(self)               # Make/embed Customer and Employee
    def order(self, foodName)        # Start a Customer order simulation
    def result(self)                 # Ask the Customer what Food it has

class Customer:
    def __init__(self)                        # Initialize my food to None
    def placeOrder(self, foodName, employee)  # Place order with an Employee
    def printFood(self)                       # Print the name of my food

class Employee:
    def takeOrder(self, foodName)    # Return a Food, with requested name

class Food:
    def __init__(self, name)         # Store food name
The order simulation should work as follows:
	The Lunch class’s
            constructor should make and embed an instance of Customer and an instance of Employee, and it should export a method
            called order. When called, this
            order method should ask the
            Customer to place an order by
            calling its placeOrder method.
            The Customer’s placeOrder method should in turn ask the
            Employee object for a new
            Food object by calling Employee’s takeOrder method.

	Food objects should store
            a food name string (e.g., “burritos”), passed down from Lunch.order, to Customer.placeOrder, to Employee.takeOrder, and finally to
            Food’s constructor. The
            top-level Lunch class should
            also export a method called result, which asks the customer to print
            the name of the food it received from the Employee via the order (this can be used
            to test your simulation).


Note that Lunch needs to pass
        either the Employee or itself to
        the Customer to allow the Customer to call Employee methods.
Experiment with your classes interactively by importing the
        Lunch class, calling its order method to run an interaction, and then
        calling its result method to verify
        that the Customer got what he or
        she ordered. If you prefer, you can also simply code test cases as
        self-test code in the file where your classes are defined, using the
        module __name__ trick of Chapter 25. In this simulation, the Customer is the active agent; how would your
        classes change if Employee were the
        object that initiated customer/employee interaction instead?

	Zoo animal hierarchy. Consider the class
        tree shown in Figure 32-1.
Figure 32-1. A zoo hierarchy composed of classes linked into a tree to be
          searched by attribute inheritance. Animal has a common “reply”
          method, but each class may have its own custom “speak” method called
          by “reply”.

Code a set of six class
        statements to model this taxonomy with Python
        inheritance. Then, add a speak method to each of your classes that
        prints a unique message, and a reply method in your top-level Animal superclass that simply calls self.speak to invoke the category-specific
        message printer in a subclass below (this will kick off an independent
        inheritance search from self).
        Finally, remove the speak method
        from your Hacker class so that it
        picks up the default above it. When you’re finished, your classes
        should work this way:
% python
>>> from zoo import Cat, Hacker
>>> spot = Cat()
>>> spot.reply()                   # Animal.reply: calls Cat.speak
meow
>>> data = Hacker()                # Animal.reply: calls Primate.speak
>>> data.reply()
Hello world!

	The Dead Parrot Sketch. Consider the object
        embedding structure captured in Figure 32-2.
Figure 32-2. A scene composite with a controller class (Scene) that embeds and
      directs instances of three other classes (Customer, Clerk, Parrot). The
      embedded instance’s classes may also participate in an inheritance
      hierarchy; composition and inheritance are often equally useful ways to
      structure classes for code reuse.

Code a set of Python classes to implement this structure with
        composition. Code your Scene object to define an action method, and embed instances of the
        Customer, Clerk, and Parrot classes (each of which should define
        a line method that prints a unique
        message). The embedded objects may either inherit from a common
        superclass that defines line and
        simply provide message text, or define line themselves. In the end, your classes
        should operate like this:
% python
>>> import parrot
>>> parrot.Scene().action()        # Activate nested objects
customer: "that's one ex-bird!"
clerk: "no it isn't..."
parrot: None


Why You Will Care: OOP by the Masters
When I teach Python classes, I invariably find that about halfway
      through the class, people who have used OOP in the past are following
      along intensely, while people who have not are beginning to glaze over
      (or nod off completely). The point behind the technology just isn’t
      apparent.
In a book like this, I have the luxury of including material like
      the new Big Picture overview in Chapter 26, and the gradual tutorial of
      Chapter 28—in fact, you should probably
      review that section if you’re starting to feel like OOP is just some
      computer science mumbo-jumbo. Though it adds much more structure than
      the generators we met earlier, OOP similarly relies on some magic
      (inheritance search and a special first argument) that beginners can
      find difficult to rationalize.
In real classes, however, to help get the newcomers on board (and
      keep them awake), I have been known to stop and ask the experts in the
      audience why they use OOP. The answers they’ve given might help shed
      some light on the purpose of OOP, if you’re new to the subject.
Here, then, with only a few embellishments, are the most common
      reasons to use OOP, as cited by my students over the years:
	Code reuse
	This one’s easy (and is the main reason for using OOP). By
            supporting inheritance, classes allow you to program by
            customization instead of starting each project from
            scratch.

	Encapsulation
	Wrapping up implementation details behind object interfaces
            insulates users of a class from code changes.

	Structure
	Classes provide new local scopes, which minimizes name
            clashes. They also provide a natural place to write and look for
            implementation code, and to manage object state.

	Maintenance
	Classes naturally promote code factoring, which allows us to
            minimize redundancy. Thanks both to the structure and code reuse
            support of classes, usually only one copy of the code needs to be
            changed.

	Consistency
	Classes and inheritance allow you to implement common
            interfaces, and hence create a common look and feel in your code;
            this eases debugging, comprehension, and maintenance.

	Polymorphism
	This is more a property of OOP than a reason for using it,
            but by supporting code generality, polymorphism makes code more
            flexible and widely applicable, and hence more reusable.

	Other
	And, of course, the number one reason students gave for
            using OOP: it looks good on a résumé! (OK, I threw this one in as
            a joke, but it is important to be familiar with OOP if you plan to
            work in the software field today.)


Finally, keep in mind what I said at the beginning of this part of
      the book: you won’t fully appreciate OOP until you’ve used it for a
      while. Pick a project, study larger examples, work through the
      exercises—do whatever it takes to get your feet wet with OO code; it’s
      worth the effort.


1 As a data point, the book Programming
          Python, a 1,600-page applications programming follow-up to
          this book that uses 3.X exclusively, neither uses nor needs to
          accommodate any of the new-style class tools of this chapter, and
          still manages to build significant programs for GUIs, websites,
          systems programming, databases, and text. It’s mostly
          straightforward code that leverages built-in types and libraries to
          do its work, not obscure and esoteric OOP extensions. When it does
          use classes, they are relatively simple, providing structure and
          code factoring. That book’s code is also probably more
          representative of real-world programming than some in this language
          tutorial text—which suggests that many of Python’s advanced OOP
          tools may be artificial, having more to do with language design than
          practical program goals. Then again, that book has the luxury of
          restricting its toolset to such code; as soon as your coworker finds
          a way to use an arcane language feature, all bets are off!
2 As of this chapter’s interaction listings, I’ve started
            omitting some blank lines and shortening some hex addresses to 32
            bits in object displays, to reduce size and clutter. I’m going to
            assume that by this point in the book, you’ll find such small
            details irrelevant.
3 Both are opinion pieces in part, but are suggested reading.
          The first was eventually retitled “Python’s Super is nifty, but you
          can’t use it,” and is today at https://fuhm.net/super-harmful.
          Oddly—and despite its subjective tone—the second article (“Python’s
          super() considered super!”) alone somehow found its way into
          Python’s official library manual; see its link in the manual’s
          super section...and consider
          demanding that differing opinions be represented more evenly in your
          tools’ documentation, or omitted altogether. Python’s manuals are
          not the place for personal opinion and one-sided propaganda!
4 This quote is from Monty Python and the Holy
            Grail (and if you didn’t know that, it may be time to
            find a copy!).








Part VII. Exceptions and Tools








Chapter 33. Exception Basics
This part of the book deals with exceptions,
  which are events that can modify the flow of control through a
  program. In Python, exceptions are triggered automatically on errors, and
  they can be triggered and intercepted by your code. They are processed by
  four statements we’ll study in this part, the first of which has two
  variations (listed separately here) and the last of which was an optional
  extension until Python 2.6 and 3.0:
	try/except
	Catch and recover from exceptions raised by Python, or by
        you.

	try/finally
	Perform cleanup actions, whether exceptions occur or not.

	raise
	Trigger an exception manually in your code.

	assert
	Conditionally trigger an exception in your code.

	with/as
	Implement context managers in Python 2.6, 3.0, and later (optional in
        2.5).


This topic was saved until nearly the end of the book because you need
  to know about classes to code exceptions of your own. With a few exceptions
  (pun intended), though, you’ll find that exception handling is simple in
  Python because it’s integrated into the language itself as another
  high-level tool.
Why Use Exceptions?
In a nutshell, exceptions let us jump out of arbitrarily large chunks of a program.
    Consider the hypothetical pizza-making robot we discussed earlier in the
    book. Suppose we took the idea seriously and actually built such a
    machine. To make a pizza, our culinary automaton would need to execute a
    plan, which we would implement as a Python program: it would take an
    order, prepare the dough, add toppings, bake the pie, and so on.
Now, suppose that something goes very wrong during the “bake the
    pie” step. Perhaps the oven is broken, or perhaps our robot miscalculates
    its reach and spontaneously combusts. Clearly, we want to be able to jump
    to code that handles such states quickly. As we have no hope of finishing
    the pizza task in such unusual cases, we might as well abandon the entire
    plan.
That’s exactly what exceptions let you do: you can jump to an
    exception handler in a single step, abandoning all function calls begun
    since the exception handler was entered. Code in the exception handler can
    then respond to the raised exception as appropriate (by calling the fire
    department, for instance!).
One way to think of an exception is as a sort of structured “super
    go to.” An exception handler (try statement) leaves a marker and executes some code. Somewhere further
    ahead in the program, an exception is raised that makes Python jump back
    to that marker, abandoning any active functions that were called after the
    marker was left. This protocol provides a coherent way to respond to
    unusual events. Moreover, because Python jumps to the handler statement
    immediately, your code is simpler—there is usually no need to check status
    codes after every call to a function that could possibly fail.
Exception Roles
In Python programs, exceptions are typically used for a variety of purposes.
      Here are some of their most common roles:
	Error handling
	Python raises exceptions whenever it detects errors in programs at
            runtime. You can catch and respond to the errors in your code, or
            ignore the exceptions that are raised. If an error is ignored,
            Python’s default exception-handling behavior kicks in: it stops
            the program and prints an error message. If you don’t want this
            default behavior, code a try
            statement to catch and recover from the exception—Python will jump
            to your try handler when the
            error is detected, and your program will resume execution after
            the try.

	Event notification
	Exceptions can also be used to signal valid conditions without you having
            to pass result flags around a program or test them explicitly. For
            instance, a search routine might raise an exception on failure,
            rather than returning an integer result code—and hoping that the
            code will never be a valid result!

	Special-case handling
	Sometimes a condition may occur so rarely that it’s hard to
            justify convoluting your code to handle it in multiple places. You
            can often eliminate special-case code by handling unusual cases in
            exception handlers in higher levels of your program. An assert can similarly be used to check that conditions are as expected
            during development.

	Termination actions
	As you’ll see, the try/finally statement allows you to guarantee that required closing-time
            operations will be performed, regardless of the presence or
            absence of exceptions in your programs. The newer with statement offers an alternative in
            this department for objects that support it.

	Unusual control flows
	Finally, because exceptions are a sort of high-level and structured “go to,” you can
            use them as the basis for implementing exotic control flows. For
            instance, although the language does not explicitly support backtracking, you can implement it in Python
            by using exceptions and a bit of support logic to unwind
            assignments.1 There is no “go to” statement in Python
            (thankfully!), but exceptions can sometimes serve similar roles; a
            raise, for instance, can be
            used to jump out of multiple loops.


We saw some of these roles briefly earlier, and will study typical
      exception use cases in action later in this part of the book. For now,
      let’s get started with a look at Python’s exception-processing
      tools.


Exceptions: The Short Story
Compared to some other core language topics we’ve met in this book,
    exceptions are a fairly lightweight tool in Python. Because they are so
    simple, let’s jump right into some code.
Default Exception Handler
Suppose we write the following function:
>>> def fetcher(obj, index):
        return obj[index]
There’s not much to this function—it simply indexes an object on a
      passed-in index. In normal operation, it returns the result of a legal
      index:
>>> x = 'spam'
>>> fetcher(x, 3)                           # Like x[3]
'm'
However, if we ask this function to index off the end of the
      string, an exception will be triggered when the function tries to run
      obj[index]. Python detects
      out-of-bounds indexing for sequences and reports it by
      raising (triggering) the built-in IndexError
      exception:
>>> fetcher(x, 4)                           # Default handler - shell interface
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in fetcher
IndexError: string index out of range
Because our code does not explicitly catch this exception, it
      filters back up to the top level of the program and invokes the
      default exception handler, which simply prints the
      standard error message. By this point in the book, you’ve probably seen
      your share of standard error messages. They include the exception that
      was raised, along with a stack trace—a list of all the lines
      and functions that were active when the exception occurred.
The error message text here was printed by Python 3.3; it can vary
      slightly per release, and even per interactive shell, so you shouldn’t
      rely upon its exact form—in either this book or your code. When you’re
      coding interactively in the basic shell interface, the filename is just
      “<stdin>,” meaning the standard input stream.
When working in the IDLE GUI’s interactive shell, the filename is
      “<pyshell>,” and source lines are displayed, too. Either way, file
      line numbers are not very meaningful when there is no file (we’ll see
      more interesting error messages later in this part of the book):
>>> fetcher(x, 4)                           # Default handler - IDLE GUI interface
Traceback (most recent call last):
  File "<pyshell#6>", line 1, in <module>
    fetcher(x, 4)
  File "<pyshell#3>", line 2, in fetcher
    return obj[index]
IndexError: string index out of range
In a more realistic program launched outside the interactive
      prompt, after printing an error message the default handler at the top
      also terminates the program
      immediately. That course of action makes sense for simple scripts;
      errors often should be fatal, and the best you can do when they occur is
      inspect the standard error message.

Catching Exceptions
Sometimes, this isn’t what you want, though. Server programs, for instance,
      typically need to remain active even after internal errors. If you don’t
      want the default exception behavior, wrap the call in a try statement
      to catch exceptions yourself:
>>> try:
...     fetcher(x, 4)
... except IndexError:                      # Catch and recover
...     print('got exception')
...
got exception
>>>
Now, Python jumps to your handler—the block
      under the except clause that names
      the exception raised—automatically when an exception is triggered while
      the try block is running. The net
      effect is to wrap a nested block of code in an error handler that
      intercepts the block’s exceptions.
When working interactively like this, after the except clause runs, we wind up back at the
      Python prompt. In a more realistic program, try statements not only catch exceptions, but
      also recover from them:
>>> def catcher():
        try:
            fetcher(x, 4)
        except IndexError:
            print('got exception')
        print('continuing')

>>> catcher()
got exception
continuing
>>>
This time, after the exception is caught and handled, the program
      resumes execution after the entire try statement that caught it—which is why we
      get the “continuing” message here. We don’t see the standard error
      message, and the program continues on its way normally.
Notice that there’s no way in Python to go
      back to the code that triggered the exception (short of
      rerunning the code that reached that point all over again, of course).
      Once you’ve caught the exception, control continues after the entire
      try that caught the exception, not
      after the statement that kicked it off. In fact, Python clears the
      memory of any functions that were exited as a result of the exception,
      like fetcher in our example; they’re
      not resumable. The try both catches
      exceptions, and is where the program resumes.
Note
Presentation note: The interactive prompt’s
        “...” reappears in this part for some top-level try statements, because their code won’t
        work if cut and pasted unless nested in a function or class (the
        except and other lines must align
        with the try, and not have extra
        preceding spaces that are needed to illustrate their indentation
        structure). To run, simply type or paste statements with “...” prompts
        one line at a time.


Raising Exceptions
So far, we’ve been letting Python raise exceptions for us by making mistakes
      (on purpose this time!), but our scripts can raise exceptions too—that
      is, exceptions can be raised by Python or by your program, and can be
      caught or not. To trigger an exception manually, simply run a raise statement. User-triggered exceptions are caught the same way as those Python raises.
      The following may not be the most useful Python code ever penned, but it
      makes the point—raising the built-in IndexError
      exception:
>>> try:
...     raise IndexError                    # Trigger exception manually
... except IndexError:
...     print('got exception')
...
got exception
As usual, if they’re not caught, user-triggered exceptions are
      propagated up to the top-level default exception handler and terminate
      the program with a standard error message:
>>> raise IndexError
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError
As we’ll see in the next chapter, the assert statement can be used to trigger exceptions, too—it’s a conditional
      raise, used mostly for debugging
      purposes during development:
>>> assert False, 'Nobody expects the Spanish Inquisition!'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AssertionError: Nobody expects the Spanish Inquisition!

User-Defined Exceptions
The raise statement introduced
      in the prior section raises a built-in
      exception defined in Python’s built-in scope. As you’ll learn later in
      this part of the book, you can also define new exceptions of your own
      that are specific to your programs. User-defined exceptions are coded
      with classes, which inherit from a built-in
      exception class: usually the class named Exception:
>>> class AlreadyGotOne(Exception): pass    # User-defined exception

>>> def grail():
        raise AlreadyGotOne()               # Raise an instance

>>> try:
...     grail()
... except AlreadyGotOne:                   # Catch class name
...     print('got exception')
...
got exception
>>>
As we’ll see in the next chapter, an as clause on an except can gain access to the exception object
      itself. Class-based exceptions allow scripts to build exception
      categories, which can inherit behavior, and have attached state
      information and methods. They can also customize their error message
      text displayed if they’re not caught:
>>> class Career(Exception):
        def __str__(self): return 'So I became a waiter...'

>>> raise Career()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
__main__.Career: So I became a waiter...
>>>

Termination Actions
Finally, try statements can
      say “finally”—that is, they may include finally blocks. These look like except handlers for exceptions, but the
      try/finally combination specifies termination
      actions that always execute “on the way out,” regardless of whether an
      exception occurs in the try block or
      not;
>>> try:
...     fetcher(x, 3)
... finally:                                # Termination actions
...     print('after fetch')
...
'm'
after fetch
>>>
Here, if the try block finishes
      without an exception, the finally
      block will run, and the program will resume after the entire try. In this case, this statement seems a bit
      silly—we might as well have simply typed the print right after a call to the function, and
      skipped the try altogether:
fetcher(x, 3)
print('after fetch')
There is a problem with coding this way, though: if the function
      call raises an exception, the print
      will never be reached. The try/finally
      combination avoids this pitfall—when an exception does occur in a
      try block, finally blocks are executed while the program
      is being unwound:
>>> def after():
        try:
            fetcher(x, 4)
        finally:
            print('after fetch')
        print('after try?')

>>> after()
after fetch
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 3, in after
  File "<stdin>", line 2, in fetcher
IndexError: string index out of range
>>>
Here, we don’t get the “after try?” message because control does
      not resume after the try/finally block when an exception occurs.
      Instead, Python jumps back to run the finally action, and then
      propagates the exception up to a prior handler (in
      this case, to the default handler at the top). If we change the call
      inside this function so as not to trigger an exception, the finally code still runs, but the program
      continues after the try:
>>> def after():
        try:
            fetcher(x, 3)
        finally:
            print('after fetch')
        print('after try?')

>>> after()
after fetch
after try?
>>>
In practice, try/except combinations are useful for catching and recovering from exceptions, and try/finally
      combinations come in handy to guarantee that termination actions will fire regardless of any exceptions
      that may occur in the try block’s
      code. For instance, you might use try/except
      to catch errors raised by code that you import from a third-party
      library, and try/finally to ensure that calls to close files or
      terminate server connections are always run. We’ll see some such
      practical examples later in this part of the book.
Although they serve conceptually distinct purposes, as of Python
      2.5, we can mix except and finally clauses in the same try statement—the finally is run on the way out regardless of
      whether an exception was raised, and regardless of whether the exception
      was caught by an except
      clause.
As we’ll learn in the next chapter, Python 2.X and 3.X both
      provide an alternative to try/finally
      when using some types of objects. The with/as statement runs an object’s context management logic to
      guarantee that termination actions occur, irrespective of any exceptions
      in its nested block:
>>> with open('lumberjack.txt', 'w') as file:        # Always close file on exit
        file.write('The larch!\n')
Although this option requires fewer lines of code, it’s applicable
      only when processing certain object types, so try/finally
      is a more general termination structure, and is often simpler than
      coding a class in cases where with is
      not already supported. On the other hand, with/as may
      also run startup actions too, and supports user-defined context
      management code with access to Python’s full OOP toolset.
Why You Will Care: Error Checks
One way to see how exceptions are useful is to compare coding styles in Python and
        languages without exceptions. For instance, if you want to write
        robust programs in the C language, you generally have to test return values or
        status codes after every operation that could possibly go astray, and
        propagate the results of the tests as your programs run:
doStuff()
{                                 # C program
    if (doFirstThing() == ERROR)  # Detect errors everywhere
        return ERROR;             # even if not handled here
    if (doNextThing() == ERROR)
        return ERROR;
    ...
    return doLastThing();
}

main()
{
    if (doStuff() == ERROR)
        badEnding();
    else
        goodEnding();
}
In fact, realistic C programs often have as much code devoted to
        error detection as to doing actual work. But in Python, you don’t have
        to be so methodical (and neurotic!). You can instead wrap arbitrarily
        vast pieces of a program in exception handlers and simply write the
        parts that do the actual work, assuming all is normally well:
def doStuff():        # Python code
    doFirstThing()    # We don't care about exceptions here,
    doNextThing()     # so we don't need to detect them
    ...
    doLastThing()

if __name__ == '__main__':
    try:
        doStuff()     # This is where we care about results,
    except:           # so it's the only place we must check
        badEnding()
    else:
        goodEnding()
Because control jumps immediately to a handler when an exception
        occurs, there’s no need to instrument all your code to guard for
        errors, and there’s no extra performance overhead to run all the
        tests. Moreover, because Python detects errors automatically, your
        code often doesn’t need to check for errors in the first place. The
        upshot is that exceptions let you largely ignore the unusual cases and
        avoid error-checking code that can distract from your program’s
        goals.



Chapter Summary
And that is the majority of the exception story; exceptions really
    are a simple tool.
To summarize, Python exceptions are a high-level control flow
    device. They may be raised by Python, or by your own programs. In both
    cases, they may be ignored (to trigger the default error message), or
    caught by try statements (to be
    processed by your code). The try
    statement comes in two logical formats that, as of Python 2.5, can be
    combined—one that handles exceptions, and one that executes finalization
    code regardless of whether exceptions occur or not. Python’s raise and assert statements trigger exceptions on
    demand—both built-ins and new exceptions we define with classes—and the
    with/as statement is an alternative way to ensure
    that termination actions are carried out for objects that support
    it.
In the rest of this part of the book, we’ll fill in some of the
    details about the statements involved, examine the other sorts of clauses
    that can appear under a try, and
    discuss class-based exception objects. The next chapter begins our tour by
    taking a closer look at the statements we introduced here. Before you turn
    the page, though, here are a few quiz questions to review.

Test Your Knowledge: Quiz
	Name three things that exception processing is good
        for.

	What happens to an exception if you don’t do anything special to
        handle it?

	How can your script recover from an exception?

	Name two ways to trigger exceptions in your script.

	Name two ways to specify actions to be run at termination time,
        whether an exception occurs or not.



Test Your Knowledge: Answers
	Exception processing is useful for error handling, termination
        actions, and event notification. It can also simplify the handling of
        special cases and can be used to implement alternative control flows
        as a sort of structured “go to” operation. In general, exception
        processing also cuts down on the amount of error-checking code your
        program may require—because all errors filter up to handlers, you may
        not need to test the outcome of every operation.

	Any uncaught exception eventually filters up to the default
        exception handler Python provides at the top of your program. This
        handler prints the familiar error message and shuts down your
        program.

	If you don’t want the default message and shutdown, you can code
        try/except statements to catch and recover from
        exceptions that are raised within its nested code block. Once an
        exception is caught, the exception is terminated and your program
        continues after the try.

	The raise and assert statements can be used to trigger an
        exception, exactly as if it had been raised by Python itself. In
        principle, you can also raise an exception by making a programming
        mistake, but that’s not usually an explicit goal!

	The try/finally statement can be used to ensure
        actions are run after a block of code exits, regardless of whether the
        block raises an exception or not. The with/as
        statement can also be used to ensure termination actions are run, but
        only when processing object types that support it.



1 But true backtracking is not part of the Python
                language. Backtracking undoes all computations before it
                jumps, but Python exceptions do not: variables assigned
                between the time a try
                statement is entered and the time an exception is raised are
                not reset to their prior values. Even the generator functions
                and expressions we met in Chapter 20 don’t do full
                backtracking—they simply respond to next(G) requests by restoring state
                and resuming. For more on backtracking, see books on
                artificial intelligence or the Prolog or Icon programming
                languages.








Chapter 34. Exception Coding Details
In the prior chapter we took a quick look at exception-related statements in action. Here,
  we’re going to dig a bit deeper—this chapter provides a more formal
  introduction to exception processing syntax in Python. Specifically, we’ll
  explore the details behind the try,
  raise, assert, and with statements. As we’ll see, although these
  statements are mostly straightforward, they offer powerful tools for dealing
  with exceptional conditions in Python code.
Note
One procedural note up front: The exception story has changed in
    major ways in recent years. As of Python 2.5, the finally clause can appear in the same try statement as except and else clauses (previously, they could not be
    combined). Also, as of Python 3.0 and 2.6, the new with context manager statement has become
    official, and user-defined exceptions must now be coded as class
    instances, which should inherit from a built-in exception superclass.
    Moreover, 3.X sports slightly modified syntax for the raise statement and except clauses, some of which is available in
    2.6 and 2.7.
I will focus on the state of exceptions in recent Python 2.X and 3.X
    releases in this edition, but because you are still very likely to see the
    original techniques in code for some time to come, along the way I’ll
    point out how things have evolved in this domain.

The try/except/else Statement
Now that we’ve seen the basics, it’s time for the details. In the following
    discussion, I’ll first present try/except/else
    and try/finally as separate statements, because in
    versions of Python prior to 2.5 they serve distinct roles and cannot be
    combined, and still are at least logically distinct today. Per the
    preceding note, in Python 2.5 and later except and finally can be mixed in a single try statement; we’ll see the implications of
    that merging after we’ve explored the two original forms in
    isolation.
Syntactically, the try is a compound, multipart statement. It starts with a try header line, followed by a block of
    (usually) indented statements; then one or more except clauses that identify exceptions to be
    caught and blocks to process them; and an optional else clause and block at the end. You associate
    the words try, except, and else by indenting them to the same level (i.e.,
    lining them up vertically). For reference, here’s the general and most
    complete format in Python 3.X:
try:
    statements              # Run this main action first
except name1:
    statements              # Run if name1 is raised during try block
except (name2, name3):
    statements              # Run if any of these exceptions occur
except name4 as var:
    statements              # Run if name4 is raised, assign instance raised to var
except:
    statements              # Run for all other exceptions raised
else:
    statements              # Run if no exception was raised during try block
Semantically, the block under the try header in this statement represents the
    main action of the statement—the code you’re trying
    to run and wrap in error processing logic. The except clauses define
    handlers for exceptions raised during the try block, and the else clause (if coded) provides a handler to be
    run if no exceptions occur. The
    var entry here has to do with a feature of
    raise statements and exception classes,
    which we will discuss in full later in this chapter.
How try Statements Work
Operationally, here’s how try statements are run. When a try statement is entered, Python marks the
      current program context so it can return to it if an exception occurs.
      The statements nested under the try
      header are run first. What happens next depends on whether exceptions
      are raised while the try block’s
      statements are running, and whether they match those that the try is watching for:
	If an exception occurs while the try block’s statements are running, and
          the exception matches one that the statement
          names, Python jumps back to the try and runs the statements under the
          first except clause that matches
          the raised exception, after assigning the raised exception object to
          the variable named after the as
          keyword in the clause (if present). After the except block runs, control then resumes
          below the entire try statement
          (unless the except block itself
          raises another exception, in which case the process is started anew
          from this point in the code).

	If an exception occurs while the try block’s statements are running, but
          the exception does not match one that the
          statement names, the exception is propagated up to the next most
          recently entered try statement
          that matches the exception; if no such matching try statement can be found and the search
          reaches the top level of the process, Python kills the program and
          prints a default error message.

	If an exception does not occur while the
          try block’s statements are
          running, Python runs the statements under the else line (if present), and control then
          resumes below the entire try
          statement.


In other words, except clauses
      catch any matching exceptions that happen while the try block is running, and the else clause runs only if no exceptions happen
      while the try block runs. Exceptions
      raised are matched to exceptions named in except clauses by superclass relationships
      we’ll explore in the next chapter, and the empty except clause (with no exception name)
      matches all (or all other) exceptions.
The except clauses are
      focused exception handlers—they catch exceptions
      that occur only within the statements in the associated try block. However, as the try block’s statements can call functions
      coded elsewhere in a program, the source of an exception may be outside
      the try statement itself.
In fact, a try block might
      invoke arbitrarily large amounts of program code—including code that may
      have try statements of its own, which
      will be searched first when exceptions occur. That is, try statements can nest at
      runtime, a topic I’ll have more to say about in Chapter 36.

try Statement Clauses
When you write a try statement,
      a variety of clauses can appear after the try header. Table 34-1 summarizes all the possible
      forms—you must use at least one. We’ve already met some of these: as you
      know, except clauses catch
      exceptions, finally clauses run on
      the way out, and else clauses run if
      no exceptions are encountered.
Formally, there may be any number of except clauses, but you can code else only if there is at least one except, and there can be only one else and one finally. Through Python 2.4, the finally clause must appear alone (without
      else or except); the try/finally
      is really a different statement. As of Python 2.5, however, a finally can appear in the same statement as
      except and else (more on the ordering rules later in this
      chapter when we meet the unified try
      statement).
Table 34-1. try statement clause forms	Clause
              form	Interpretation
	except:
	Catch all (or all other)
              exception types.

	except
              name:
	Catch a specific
              exception only.

	except name
              as
              value:
	Catch the listed
              exception and assign its instance.

	except (name1, name2):
	Catch any of the listed
              exceptions.

	except (name1, name2) as value:
	Catch any listed
              exception and assign its instance.

	else:
	Run if no exceptions are
              raised in the try
              block.

	finally:
	Always perform this block
              on exit.


We’ll explore the entries with the extra as value part in
      more detail when we meet the raise
      statement later in this chapter. They provide access to the objects that
      are raised as exceptions.
Catching any and all exceptions
The first and fourth entries in Table 34-1 are new here:
	except clauses that list
            no exception name (except:)
            catch all exceptions not previously listed in
            the try statement.

	except clauses that list
            a set of exceptions in parentheses (except (e1, e2, e3):) catch
            any of the listed exceptions.


Because Python looks for a match within a given try by inspecting the except clauses from top to
        bottom, the parenthesized version has the same effect as
        listing each exception in its own except clause, but you have to code the
        statement body associated with each only once. Here’s an example of
        multiple except clauses at work,
        which demonstrates just how specific your handlers can be:
try:
    action()
except NameError:
    ...
except IndexError:
    ...
except KeyError:
    ...
except (AttributeError, TypeError, SyntaxError):
    ...
else:
    ...
In this example, if an exception is raised while the call to the
        action function is running, Python
        returns to the try and searches for
        the first except that names the
        exception raised. It inspects the except clauses from top to bottom and left
        to right, and runs the statements under the first one that matches. If
        none match, the exception is propagated past this try. Note that the else runs only when no
        exception occurs in action—it does
        not run when an exception without a matching except is raised.

Catching all: The empty except and Exception
If you really want a general “catchall” clause, an empty
        except does the trick:
try:
    action()
except NameError:
    ...                   # Handle NameError
except IndexError:
    ...                   # Handle IndexError
except:
    ...                   # Handle all other exceptions
else:
    ...                   # Handle the no-exception case
The empty except clause is a
        sort of wildcard feature—because it catches
        everything, it allows your handlers to be as general or specific as
        you like. In some scenarios, this form may be more convenient than
        listing all possible exceptions in a try. For example, the following catches
        everything without listing anything:
try:
    action()
except:
    ...                   # Catch all possible exceptions
Empty excepts also raise some
        design issues, though. Although convenient, they may catch unexpected
        system exceptions unrelated to your code, and they may inadvertently
        intercept exceptions meant for another handler. For example, even
        system exit calls and Ctrl-C key combinations in Python trigger
        exceptions, and you usually want these to pass. Even worse, the empty
        except may also catch genuine
        programming mistakes for which you probably want to see an error
        message. We’ll revisit this as a gotcha at the end of this part of the
        book. For now, I’ll just say, “use with care.”
Python 3.X more strongly supports an alternative that solves one
        of these problems—catching an exception named Exception has almost the same effect as an
        empty except, but ignores
        exceptions related to system exits:
try:
    action()
except Exception:
    ...                   # Catch all possible exceptions, except exits
We’ll explore how this form works its voodoo formally in the
        next chapter when we study exception classes. In short, it works
        because exceptions match if they are a subclass of one named in an
        except clause, and Exception is a superclass of all the exceptions you should generally catch this way.
        This form has most of the same convenience of the empty except, without the risk of catching exit
        events. Though better, it also has some of the same dangers—especially
        with regard to masking programming errors.
Note
Version skew note: See also the raise statement ahead for more on the
          as portion of except clauses in try. Syntactically, Python 3.X requires
          the except E as V: handler clause
          form listed in Table 34-1 and
          used in this book, rather than the older except E, V: form. The latter form is
          still available (but not recommended) in Python 2.6 and 2.7: if
          used, it’s converted to the former.
The change was made to eliminate confusion regarding the dual
          role of commas in the older form. In this form, two alternate
          exceptions are properly coded as except
          (E1, E2):. Because 3.X supports the as form only, commas in a handler clause
          are always taken to mean a tuple, regardless of whether parentheses
          are used or not, and the values are interpreted as alternative
          exceptions to be caught.
As we’ll see ahead, though, this option does not modify the
          scoping rules in 2.X: even with the new as syntax, the variable V is still available after the except block in 2.X. In 3.X, V is not available later, and is in fact
          forcibly deleted.



The try else Clause
The purpose of the else clause
      is not always immediately obvious to Python newcomers. Without it,
      though, there is no direct way to tell (without setting and checking
      Boolean flags) whether the flow of control has proceeded past a try statement because no exception was raised,
      or because an exception occurred and was handled. Either way, we wind up
      after the try:
try:
    ...run code...
except IndexError:
    ...handle exception...
# Did we get here because the try failed or not?
Much like the way else clauses
      in loops make the exit cause more apparent, the else clause provides syntax in a try that makes what has happened obvious and
      unambiguous:
try:
    ...run code...
except IndexError:
    ...handle exception...
else:
    ...no exception occurred...
You can almost emulate an else clause by moving its code into the
      try block:
try:
    ...run code...
    ...no exception occurred...
except IndexError:
    ...handle exception...
This can lead to incorrect exception classifications, though. If
      the “no exception occurred” action triggers an IndexError, it will register as a failure of
      the try block and erroneously trigger
      the exception handler below the try
      (subtle, but true!). By using an explicit else clause instead, you make the logic more
      obvious and guarantee that except
      handlers will run only for real failures in the code you’re wrapping in
      a try, not for failures in the
      else no-exception case’s action.

Example: Default Behavior
Because the control flow through a program is easier to capture in Python than
      in English, let’s run some examples that further illustrate exception
      basics in the context of larger code samples in files.
I’ve mentioned that exceptions not caught by try statements percolate up to the top level
      of the Python process and run Python’s default exception-handling logic
      (i.e., Python terminates the running program and prints a standard error
      message). To illustrate, running the following module file, bad.py, generates a divide-by-zero
      exception:
def gobad(x, y):
    return x / y

def gosouth(x):
    print(gobad(x, 0))

gosouth(1)
Because the program ignores the exception it triggers, Python
      kills the program and prints a message:
% python bad.py
Traceback (most recent call last):
  File "bad.py", line 7, in <module>
    gosouth(1)
  File "bad.py", line 5, in gosouth
    print(gobad(x, 0))
  File "bad.py", line 2, in gobad
    return x / y
ZeroDivisionError: division by zero
I ran this in a shell window with Python 3.X. The message consists
      of a stack trace (“Traceback”) and the name of and details about the
      exception that was raised. The stack trace lists all lines active when
      the exception occurred, from oldest to newest. Note that because we’re
      not working at the interactive prompt, in this case the file and line
      number information is more useful. For example, here we can see that the bad
      divide happens at the last entry in the trace—line 2 of the file
      bad.py, a return statement.1
Because Python detects and reports all errors at runtime by
      raising exceptions, exceptions are intimately bound up with the ideas of
      error handling and debugging in general. If you’ve worked through this
      book’s examples, you’ve undoubtedly seen an exception or two along the
      way—even typos usually generate a SyntaxError or other exception when a file is
      imported or executed (that’s when the compiler is run). By default, you
      get a useful error display like the one just shown, which helps you
      track down the problem.
Often, this standard error message is all you need to resolve
      problems in your code. For more heavy-duty debugging jobs, you can catch
      exceptions with try statements, or
      use one of the debugging tools that I introduced in Chapter 3 and will summarize again in Chapter 36, such as the pdb standard library module.

Example: Catching Built-in Exceptions
Python’s default exception handling is often exactly what you want—especially for
      code in a top-level script file, an error often should terminate your
      program immediately. For many programs, there is no need to be more
      specific about errors in your code.
Sometimes, though, you’ll want to catch errors and recover from
      them instead. If you don’t want your program terminated when Python
      raises an exception, simply catch it by wrapping the program logic in a
      try. This is an important capability
      for programs such as network servers, which must keep running
      persistently. For example, the following code, in the file kaboom.py, catches and recovers from the TypeError
      Python raises immediately when you try to concatenate a list and a
      string (remember, the + operator
      expects the same sequence type on both sides):
def kaboom(x, y):
    print(x + y)               # Trigger TypeError

try:
    kaboom([0, 1, 2], 'spam')
except TypeError:              # Catch and recover here
    print('Hello world!')
print('resuming here')         # Continue here if exception or not
When the exception occurs in the function kaboom, control jumps to the try statement’s except clause, which prints a message. Since
      an exception is “dead” after it’s been caught like this, the program
      continues executing below the try
      rather than being terminated by Python. In effect, the code processes
      and clears the error, and your script recovers:
% python kaboom.py
Hello world!
resuming here
Keep in mind that once you’ve caught an error, control resumes at
      the place where you caught it (i.e., after the try); there is no direct way to go back to the
      place where the exception occurred (here, in the function kaboom). In a sense, this makes exceptions
      more like simple jumps than function calls—there is no way to return to
      the code that triggered the error.


The try/finally Statement
The other flavor of the try
    statement is a specialization that has to do with finalization (a.k.a.
    termination) actions. If a finally
    clause is included in a try, Python
    will always run its block of statements “on the way out” of the try statement, whether an exception occurred
    while the try block was running or not.
    Its general form is:
try:
    statements                 # Run this action first
finally:
    statements                 # Always run this code on the way out
With this variant, Python begins by running the statement block
    associated with the try header line as
    usual. What happens next depends on whether an exception occurs during the
    try block:
	If an exception does not occur while the
        try block is running, Python
        continues on to run the finally
        block, and then continues execution past the try statement.

	If an exception does occur during the
        try block’s run, Python still comes
        back and runs the finally block,
        but it then propagates the exception up to a previously entered
        try or the top-level default
        handler; the program does not resume execution below the finally clause’s try statement. That is, the finally block is run even if an exception is
        raised, but unlike an except, the
        finally does not terminate the
        exception—it continues being raised after the finally block runs.


The try/finally form is useful when you want to be
    completely sure that an action will happen after some code runs,
    regardless of the exception behavior of the program. In practice, it
    allows you to specify cleanup actions that always must occur, such as file
    closes and server disconnects where required.
Note that the finally clause
    cannot be used in the same try
    statement as except and else in Python 2.4 and earlier, so the try/finally
    is best thought of as a distinct statement form if you are using an older
    release. In Python 2.5, and later, however, finally can appear in the same statement as
    except and else, so today there is really a single try statement with many optional clauses (more
    about this shortly). Whichever version you use, though, the finally clause still serves the same purpose—to
    specify “cleanup” actions that must always be run, regardless of any
    exceptions.
Note
As we’ll also see later in this chapter, as of Python 2.6 and 3.0,
      the new with statement and its
      context managers provide an object-based way to do similar work for exit
      actions. Unlike finally, this new
      statement also supports entry actions, but it is limited in scope to
      objects that implement the context manager protocol it leverages.

Example: Coding Termination Actions with try/finally
We saw some simple try/finally examples in the prior chapter. Here’s
      a more realistic example that illustrates a typical role for this
      statement:
class MyError(Exception): pass

def stuff(file):
    raise MyError()

file = open('data', 'w')     # Open an output file (this can fail too)
try:
    stuff(file)              # Raises exception
finally:
    file.close()             # Always close file to flush output buffers
print('not reached')         # Continue here only if no exception
When the function in this code raises its exception, the control
      flow jumps back and runs the finally
      block to close the file. The exception is then propagated on to either
      another try or the default top-level
      handler, which prints the standard error message and shuts down the
      program. Hence, the statement after this try is never reached. If the function here did
      not raise an exception, the program would still
      execute the finally block to close
      the file, but it would then continue below the entire try statement.
In this specific case, we’ve wrapped a call to a file-processing
      function in a try with a finally clause to make sure that the file is
      always closed, and thus finalized, whether the function triggers an
      exception or not. This way, later code can be sure that the file’s
      output buffer’s content has been flushed from memory to disk. A similar
      code structure can guarantee that server connections are closed, and so
      on.
As we learned in Chapter 9, file objects are
      automatically closed on garbage collection in standard Python (CPython);
      this is especially useful for temporary files that we don’t assign to
      variables. However, it’s not always easy to predict when garbage
      collection will occur, especially in larger programs or alternative
      Python implementations with differing garbage collection policies (e.g.,
      Jython, PyPy). The try statement
      makes file closes more explicit and predictable and pertains to a
      specific block of code. It ensures that the file will be closed on block
      exit, regardless of whether an exception occurs or not.
This particular example’s function isn’t all that useful (it just
      raises an exception), but wrapping calls in try/finally
      statements is a good way to ensure that your closing-time termination
      activities always run. Again, Python always runs the code in your
      finally blocks, regardless of whether
      an exception happens in the try
      block.2
Notice how the user-defined exception here is again defined with a
      class—as we’ll see more formally in the next
      chapter, exceptions today must all be class instances in 2.6, 3.0, and
      later releases in both lines.


Unified try/except/finally
In all versions of Python prior to release 2.5 (for its first 15 years of life,
    more or less), the try statement came
    in two flavors and was really two separate statements—we could either use
    a finally to ensure that cleanup code
    was always run, or write except blocks
    to catch and recover from specific exceptions and optionally specify an
    else clause to be run if no exceptions
    occurred.
That is, the finally clause could
    not be mixed with except and else. This was partly because of implementation
    issues, and partly because the meaning of mixing the two seemed
    obscure—catching and recovering from exceptions seemed a disjoint concept
    from performing cleanup actions.
In Python 2.5 and later, though, the two statements have merged.
    Today, we can mix finally, except, and else clauses in the same statement—in part
    because of similar utility in the Java language. That is, we can now write
    a statement of this form:
try:                               # Merged form
    main-action
except Exception1:
    handler1
except Exception2:                 # Catch exceptions
    handler2
...
else:                              # No-exception handler
    else-block
finally:                           # The finally encloses all else
    finally-block
The code in this statement’s main-action
    block is executed first, as usual. If that code raises an exception, all
    the except blocks are tested, one after
    another, looking for a match to the exception raised. If the exception
    raised is Exception1, the
    handler1 block is executed; if it’s Exception2, handler2
    is run, and so on. If no exception is raised, the
    else-block is executed.
No matter what’s happened previously, the
    finally-block is executed once the main action
    block is complete and any raised exceptions have been handled. In fact,
    the code in the finally-block will be run even
    if there is an error in an exception handler or the
    else-block and a new exception is
    raised.
As always, the finally clause
    does not end the exception—if an exception is active when the
    finally-block is executed, it continues to be
    propagated after the finally-block runs, and
    control jumps somewhere else in the program (to another try, or to the default top-level handler). If no
    exception is active when the finally is
    run, control resumes after the entire try statement.
The net effect is that the finally is always run, regardless of
    whether:
	An exception occurred in the main action and was handled.

	An exception occurred in the main action and was not
        handled.

	No exceptions occurred in the main action.

	A new exception was triggered in one of the handlers.


Again, the finally serves to
    specify cleanup actions that must always occur on the way out of the
    try, regardless of what exceptions have
    been raised or handled.
Unified try Statement Syntax
When combined like this, the try statement must have either an except or a finally, and the order of its parts must be
      like this:
try -> except -> else -> finally
where the else and finally are optional, and there may be zero or
      more excepts, but there must be at
      least one except if an else appears. Really, the try statement consists of two parts: excepts with an optional else, and/or the finally.
In fact, it’s more accurate to describe the merged statement’s
      syntactic form this way (square brackets mean optional and star means
      zero-or-more here):
try:                               # Format 1
    statements
except [type [as value]]:          # [type [, value]] in Python 2.X
    statements
[except [type [as value]]:
    statements]*
[else:
    statements]
[finally:
    statements]

try:                               # Format 2
    statements
finally:
    statements
Because of these rules, the else can appear only if there is at least one
      except, and it’s always possible to
      mix except and finally, regardless of whether an else appears or not. It’s also possible to mix
      finally and else, but only if an except appears too (though the except can omit an exception name to catch
      everything and run a raise statement,
      described later, to reraise the current exception). If you violate any
      of these ordering rules, Python will raise a syntax error exception
      before your code runs.

Combining finally and except by Nesting
Prior to Python 2.5, it is actually possible to combine finally and except clauses in a try by syntactically nesting a try/except
      in the try block of a try/finally
      statement. We’ll explore this technique more fully in Chapter 36, but the basics may help clarify
      the meaning of a combined try—the
      following has the same effect as the new merged form shown at the start
      of this section:
try:                               # Nested equivalent to merged form
    try:
        main-action
    except Exception1:
        handler1
    except Exception2:
        handler2
    ...
    else:
        no-error
finally:
    cleanup
Again, the finally block is
      always run on the way out, regardless of what happened in the main
      action and regardless of any exception handlers run in the nested
      try (trace through the four cases
      listed previously to see how this works the same). Since an else always requires an except, this nested form even sports the same
      mixing constraints of the unified statement form outlined in the
      preceding section.
However, this nested equivalent seems more obscure to some, and
      requires more code than the new merged form—though just one
      four-character line plus extra indentation. Mixing finally into the same statement makes your
      code arguably easier to write and read, and is a generally preferred
      technique today.

Unified try Example
Here’s a demonstration of the merged try statement form at work. The following
      file, mergedexc.py, codes four
      common scenarios, with print
      statements that describe the meaning of each:
# File mergedexc.py (Python 3.X + 2.X)
sep = '-' * 45 + '\n'


print(sep + 'EXCEPTION RAISED AND CAUGHT')
try:
    x = 'spam'[99]
except IndexError:
    print('except run')
finally:
    print('finally run')
print('after run')


print(sep + 'NO EXCEPTION RAISED')
try:
    x = 'spam'[3]
except IndexError:
    print('except run')
finally:
    print('finally run')
print('after run')


print(sep + 'NO EXCEPTION RAISED, WITH ELSE')
try:
    x = 'spam'[3]
except IndexError:
    print('except run')
else:
    print('else run')
finally:
    print('finally run')
print('after run')


print(sep + 'EXCEPTION RAISED BUT NOT CAUGHT')
try:
    x = 1 / 0
except IndexError:
    print('except run')
finally:
    print('finally run')
print('after run')
When this code is run, the following output is produced in Python
      3.3; in 2.X, its behavior and output are the same because the print calls each print a single item, though
      the error message text varies slightly. Trace through the code to see
      how exception handling produces the output of each of the four tests
      here:
c:\code> py −3 mergedexc.py
---------------------------------------------
EXCEPTION RAISED AND CAUGHT
except run
finally run
after run
---------------------------------------------
NO EXCEPTION RAISED
finally run
after run
---------------------------------------------
NO EXCEPTION RAISED, WITH ELSE
else run
finally run
after run
---------------------------------------------
EXCEPTION RAISED BUT NOT CAUGHT
finally run
Traceback (most recent call last):
  File "mergedexc.py", line 39, in <module>
    x = 1 / 0
ZeroDivisionError: division by zero
This example uses built-in operations in the main action to
      trigger exceptions (or not), and it relies on the fact that Python
      always checks for errors as code is running. The next section shows how
      to raise exceptions manually instead.


The raise Statement
To trigger exceptions explicitly, you can code raise statements. Their general form is simple—a
    raise statement consists of the word
    raise, optionally followed by the class
    to be raised or an instance of it:
raise instance               # Raise instance of class
raise class                  # Make and raise instance of class: makes an instance
raise                        # Reraise the most recent exception
As mentioned earlier, exceptions are always instances of classes in
    Python 2.6, 3.0, and later. Hence, the first raise form here is the most common—we provide an
    instance directly, either created before the raise or within the raise statement itself. If we pass a
    class instead, Python calls the class with no
    constructor arguments, to create an instance to be raised; this form is
    equivalent to adding parentheses after the class reference. The last form
    reraises the most recently raised exception; it’s commonly used
    in exception handlers to propagate exceptions that have been
    caught.
Note
Version skew note: Python 3.X no longer
      supports the raise
      Exc,
      Args form that is still available in Python
      2.X. In 3.X, use the raise
      Exc(Args) instance-creation call form described in
      this book instead. The equivalent comma form in 2.X is legacy syntax
      provided for compatibility with the now-defunct string-based exceptions
      model, and it’s deprecated in 2.X. If used, it is converted to the 3.X
      call form.
As in earlier releases, a raise
      Exc form is also allowed to name a class—it
      is converted to raise
      Exc() in
      both versions, calling the class constructor with no arguments. Besides
      its defunct comma syntax, Python 2.X’s raise also allowed for either string or class
      exceptions, but the former is removed in 2.6, deprecated in 2.5, and not
      covered here except for a brief mention in the next chapter. Use classes
      for new exceptions today.

Raising Exceptions
To make this clearer, let’s look at some examples. With built-in exceptions, the
      following two forms are equivalent—both raise an instance of the
      exception class named, but the first creates the instance
      implicitly:
raise IndexError             # Class (instance created)
raise IndexError()           # Instance (created in statement)
We can also create the instance ahead of time—because the raise statement accepts any kind of object
      reference, the following two examples raise IndexError just like the prior two:
exc = IndexError()           # Create instance ahead of time
raise exc

excs = [IndexError, TypeError]
raise excs[0]
When an exception is raised, Python sends the raised instance
      along with the exception. If a try
      includes an except
      name as
      X: clause,
      the variable X will be assigned the instance
      provided in the raise:
try:
    ...
except IndexError as X:      # X assigned the raised instance object
    ...
The as is optional in a
      try handler (if it’s omitted, the
      instance is simply not assigned to a name), but including it allows the
      handler to access both data in the instance and methods in the exception
      class.
This model works the same for user-defined exceptions we code with
      classes—the following, for example, passes to the exception class
      constructor arguments that become available in the handler through the
      assigned instance:
class MyExc(Exception): pass
...
raise MyExc('spam')          # Exception class with constructor args
...
try:
    ...
except MyExc as X:           # Instance attributes available in handler
    print(X.args)
Because this encroaches on the next chapter’s topic, though, I’ll
      defer further details until then.
Regardless of how you name them, exceptions are always identified
      by class instance objects, and at most one is
      active at any given time. Once caught by an except clause anywhere in the program, an
      exception dies (i.e., won’t propagate to another try), unless it’s reraised by another raise statement or error.

Scopes and try except Variables
We’ll study exception objects in more detail in the next chapter. Now
      that we’ve seen the as variable in
      action, though, we can finally clarify the related version-specific
      scope issue summarized in Chapter 17. In Python
      2.X, the exception reference variable name in an except clause is not
      localized to the clause itself, and is available after the associated
      block runs:
c:\code> py −2
>>> try:
...     1 / 0
... except Exception as X:               # 2.X does not localize X either way
...     print X
...
integer division or modulo by zero
>>> X
ZeroDivisionError('integer division or modulo by zero',)
This is true in 2.X whether we use the 3.X-style as or the earlier comma syntax:
>>> try:
...     1 / 0
... except Exception, X:
...     print X
...
integer division or modulo by zero
>>> X
ZeroDivisionError('integer division or modulo by zero',)
By contrast, Python 3.X localizes the
      exception reference name to the except block—the variable is not available
      after the block exits, much like a temporary loop variable in 3.X
      comprehension expressions (3.X also doesn’t accept 2.X’s except comma syntax, as noted earlier):
c:\code> py −3
>>> try:
...     1 / 0
... except Exception, X:
SyntaxError: invalid syntax

>>> try:
...     1 / 0
... except Exception as X:               # 3.X localizes 'as' names to except block
...     print(X)
...
division by zero
>>> X
NameError: name 'X' is not defined
Unlike comprehension loop variables, though, this variable is
      removed after the except block exits in 3.X. It does so because
      it would otherwise retain a reference to the runtime call stack, which
      would defer garbage collection and thus retain excess memory space. This
      removal occurs, though, even if you’re using the name elsewhere, and is
      more extreme policy than that used for comprehensions:
>>> X = 99
>>> try:
...     1 / 0
... except Exception as X:               # 3.X localizes _and_ removes on exit!
...     print(X)
...
division by zero
>>> X
NameError: name 'X' is not defined

>>> X = 99
>>> {X for X in 'spam'}                  # 2.X/3.X localizes only: not removed
{'s', 'a', 'p', 'm'}
>>> X
99
Because of this, you should generally use unique variable names in
      your try statement’s except clauses, even if they are localized by
      scope. If you do need to reference the exception instance after the
      try statement, simply assign it to
      another name that won’t be automatically removed:
>>> try:
...     1 / 0
... except Exception as X:               # Python removes this reference
...     print(X)
...     Saveit = X                       # Assign exc to retain exc if needed
...
division by zero
>>> X
NameError: name 'X' is not defined
>>> Saveit
ZeroDivisionError('division by zero',)

Propagating Exceptions with raise
The raise statement is a
      bit more feature-rich than we’ve seen thus far. For
      example, a raise that does not
      include an exception name or extra data value simply reraises the
      current exception. This form is typically used if you need to catch and
      handle an exception but don’t want the exception to die in your
      code:
>>> try:
...     raise IndexError('spam')         # Exceptions remember arguments
... except IndexError:
...     print('propagating')
...     raise                            # Reraise most recent exception
...
propagating
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
IndexError: spam
Running a raise this way
      reraises the exception and propagates it to a higher handler (or the
      default handler at the top, which stops the program with a standard
      error message). Notice how the argument we passed to the exception class
      shows up in the error messages; you’ll learn why this happens in the
      next chapter.

Python 3.X Exception Chaining: raise from
Exceptions can sometimes be triggered in response to other
      exceptions—both deliberately and by new program errors. To support full
      disclosure in such cases, Python 3.X (but not 2.X) also allows raise statements to have an optional from clause:
raise newexception from otherexception
When the from is used in an
      explicit raise request, the
      expression following from specifies
      another exception class or instance to attach to the __cause__ attribute of the new exception being
      raised. If the raised exception is not caught, Python prints both
      exceptions as part of the standard error message:
>>> try:
...     1 / 0
... except Exception as E:
...     raise TypeError('Bad') from E              # Explicitly chained exceptions
...
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "<stdin>", line 4, in <module>
TypeError: Bad
When an exception is raised implicitly by a program error inside
      an exception handler, a similar procedure is followed automatically: the
      previous exception is attached to the new exception’s __context__ attribute and is again displayed in the standard error message if
      the exception goes uncaught:
>>> try:
...     1 / 0
... except:
...     badname                                    # Implicitly chained exceptions
...
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<stdin>", line 4, in <module>
NameError: name 'badname' is not defined
In both cases, because the original exception objects thus
      attached to new exception objects may themselves
      have attached causes, the causality chain can be arbitrarily
      long, and is displayed in full in error messages. That is,
      error messages might give more than two exceptions. The net effect in
      both explicit and implicit contexts is to allow programmers to know all
      exceptions involved, when one exception triggers another:
>>> try:
...     try:
...         raise IndexError()
...     except Exception as E:
...         raise TypeError() from E
... except Exception as E:
...     raise SyntaxError() from E
...
Traceback (most recent call last):
  File "<stdin>", line 3, in <module>
IndexError

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "<stdin>", line 5, in <module>
TypeError

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "<stdin>", line 7, in <module>
SyntaxError: None
Code like the following would similarly display three exceptions,
      though implicitly triggered here:
try:
    try:
        1 / 0
    except:
        badname
except:
    open('nonesuch')
Like the unified try, chained
      exceptions are similar to utility in other languages (including Java and
      C#) though it’s not clear which languages were borrowers. In Python,
      it’s a still somewhat obscure extension, so we’ll defer to Python’s
      manuals for more details. In fact, Python 3.3 adds a way to
      stop exceptions from chaining, per the following
      note.
Note
Python 3.3 chained exception suppression:
        raise from None. Python 3.3
        introduces a new syntax form—using None as the exception name in the raise from statement:
raise newexception from None
This allows the display of the chained exception context
        described in the preceding section to be disabled. This makes for less
        cluttered error messages in applications that convert between
        exception types while processing exception chains.



The assert Statement
As a somewhat special case for debugging purposes, Python includes the
    assert statement. It is mostly just
    syntactic shorthand for a common raise
    usage pattern, and an assert can be
    thought of as a conditional raise statement. A statement of the form:
assert test, data              # The data part is optional
works like the following code:
if __debug__:
    if not test:
        raise AssertionError(data)
In other words, if the test evaluates to
    false, Python raises an exception: the data
    item (if it’s provided) is used as the exception’s constructor argument.
    Like all exceptions, the AssertionError
    exception will kill your program if it’s not caught with a try, in which case the
    data item shows up as part of the standard
    error message.
As an added feature, assert
    statements may be removed from a compiled program’s byte code if the
    -O Python command-line flag is used,
    thereby optimizing the program. AssertionError is a built-in exception, and
    the __debug__ flag is a
    built-in name that is automatically set to True unless the -O flag is used. Use a command line like
    python –O main.py to run in optimized
    mode and disable (and hence skip) asserts.
Example: Trapping Constraints (but Not Errors!)
Assertions are typically used to verify program conditions during development. When
      displayed, their error message text automatically includes source code
      line information and the value listed in the assert statement. Consider the file asserter.py:
def f(x):
    assert x < 0, 'x must be negative'
    return x ** 2

% python
>>> import asserter
>>> asserter.f(1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File ".\asserter.py", line 2, in f
    assert x < 0, 'x must be negative'
AssertionError: x must be negative
It’s important to keep in mind that assert is mostly intended for trapping
      user-defined constraints, not for catching genuine programming errors.
      Because Python traps programming errors itself, there is usually no need
      to code assert to catch things like
      out-of-bounds indexes, type mismatches, and zero divides:
def reciprocal(x):
    assert x != 0              # A generally useless assert!
    return 1 / x               # Python checks for zero automatically
Such assert use cases are
      usually superfluous—because Python raises exceptions on errors
      automatically, you might as well let it do the job for you. As a rule,
      you don’t need to do error checking explicitly in your own code.
Of course, there are exceptions to most rules—as suggested earlier
      in the book, if a function has to perform long-running or unrecoverable
      actions before it reaches the place where an exception will be
      triggered, you still might want to test for errors. Even in this case,
      though, be careful not to make your tests overly specific or
      restrictive, or you will limit your code’s utility.
For another example of common assert usage, see the abstract superclass
      example in Chapter 29; there, we used
      assert to make calls to undefined
      methods fail with a message. It’s a rare but useful tool.


with/as Context Managers
Python 2.6 and 3.0 introduced a new exception-related statement—the with, and its optional as clause. This statement is designed to work
    with context manager objects, which support a new
    method-based protocol, similar in spirit to the way that iteration tools
    work with methods of the iteration protocol. This feature is also
    available as an option in 2.5, but must be enabled there with an import of this
    form:
from __future__ import with_statement
The with statement is also
    similar to a “using” statement in the C# language. Although a somewhat
    optional and advanced tools-oriented topic (and once a candidate for the
    next part of the book), context managers are lightweight and useful enough
    to group with the rest of the exception toolset here.
In short, the with/as statement is designed to be an alternative to
    a common try/finally usage idiom; like that statement,
    with is in large part intended for
    specifying termination-time or “cleanup” activities that must run
    regardless of whether an exception occurs during a processing step.
Unlike try/finally, the with statement is based upon an object protocol
    for specifying actions to be run around a block of code. This makes
    with less general, qualifies it as
    redundant in termination roles, and requires coding classes for objects
    that do not support its protocol. On the other hand, with also handles entry actions, can reduce code
    size, and allows code contexts to be managed with full OOP.
Python enhances some built-in tools with context managers, such as
    files that automatically close themselves and thread locks that
    automatically lock and unlock, but programmers can code context managers
    of their own with classes, too. Let’s take a brief look at the statement
    and its implicit protocol.
Basic Usage
The basic format of the with
      statement looks like this, with an optional part in square brackets
      here:
with expression [as variable]:
    with-block
The expression here is assumed to
      return an object that supports the context management protocol (more on
      this protocol in a moment). This object may also return a value that
      will be assigned to the name variable if the
      optional as clause is present.
Note that the variable is not
      necessarily assigned the result of the
      expression; the result of the
      expression is the object that supports the
      context protocol, and the variable may be
      assigned something else intended to be used inside the statement. The
      object returned by the expression may then
      run startup code before the with-block is
      started, as well as termination code after the block is done, regardless
      of whether the block raised an exception or not.
Some built-in Python objects have been augmented to support the
      context management protocol, and so can be used with the with statement. For example, file objects
      (covered in Chapter 9)
      have a context manager that automatically closes the file after the
      with block regardless of whether an
      exception is raised, and regardless of if or when the version of Python
      running the code may close automatically:
with open(r'C:\misc\data') as myfile:
    for line in myfile:
        print(line)
        ...more code here...
Here, the call to open returns
      a simple file object that is assigned to the name myfile. We can use myfile with the usual file tools—in this case,
      the file iterator reads line by line in the for loop.
However, this object also supports the context management protocol
      used by the with statement. After
      this with statement has run, the
      context management machinery guarantees that the file object referenced
      by myfile is automatically closed,
      even if the for loop raised an
      exception while processing the file.
Although file objects may be automatically closed on garbage
      collection, it’s not always straightforward to know when that will
      occur, especially when using alternative Python implementations. The
      with statement in this role is an
      alternative that allows us to be sure that the close will occur after
      execution of a specific block of code.
As we saw earlier, we can achieve a similar effect with the more
      general and explicit try/finally
      statement, but it requires three more lines of administrative code in
      this case (four instead of just one):
myfile = open(r'C:\misc\data')
try:
    for line in myfile:
        print(line)
        ...more code here...
finally:
    myfile.close()
We won’t cover Python’s multithreading modules in this book (for
      more on that topic, see follow-up application-level texts such as Programming
      Python) but the lock and condition synchronization objects they
      define may also be used with the with
      statement, because they support the context management protocol—in this
      case adding both entry and exit actions around a block:
lock = threading.Lock()                        # After: import threading
with lock:
    # critical section of code
    ...access shared resources...
Here, the context management machinery guarantees that the lock is
      automatically acquired before the block is executed and released once
      the block is complete, regardless of exception outcomes.
As introduced in Chapter 5, the decimal module also uses context managers to
      simplify saving and restoring the current decimal context, which
      specifies the precision and rounding characteristics for
      calculations:
with decimal.localcontext() as ctx:            # After: import decimal
    ctx.prec = 2
    x = decimal.Decimal('1.00') / decimal.Decimal('3.00')
After this statement runs, the current thread’s context manager
      state is automatically restored to what it was before the statement
      began. To do the same with a try/finally, we would need to save the context
      before and restore it manually after the nested block.

The Context Management Protocol
Although some built-in types come with context managers, we can
      also write new ones of our own. To implement context managers, classes
      use special methods that fall into the operator overloading category to
      tap into the with statement. The
      interface expected of objects used in with statements is somewhat complex, and most
      programmers only need to know how to use existing context managers. For
      tool builders who might want to write new application-specific context
      managers, though, let’s take a quick look at what’s involved.
Here’s how the with statement
      actually works:
	The expression is evaluated, resulting in an object known as a
          context manager that must have __enter__ and __exit__ methods.

	The context manager’s __enter__ method is called. The value it returns is assigned to the
          variable in the as clause if
          present, or simply discarded otherwise.

	The code in the nested with
          block is executed.

	If the with block raises an
          exception, the __exit__(type, value,
          traceback) method is called with the exception
          details. These are the same three values returned by sys.exc_info, described in the Python
          manuals and later in this part of the book. If this method returns a
          false value, the exception is reraised; otherwise, the exception is
          terminated. The exception should normally be reraised so that it is
          propagated outside the with
          statement.

	If the with block does not
          raise an exception, the __exit__
          method is still called, but its type,
          value, and
          traceback arguments are all passed in as
          None.


Let’s look at a quick demo of the protocol in action. The
      following, file withas.py, defines
      a context manager object that traces the entry and exit of the with block in any with statement it is used for:
class TraceBlock:
    def message(self, arg):
        print('running ' + arg)
    def __enter__(self):
        print('starting with block')
        return self
    def __exit__(self, exc_type, exc_value, exc_tb):
        if exc_type is None:
            print('exited normally\n')
        else:
            print('raise an exception! ' + str(exc_type))
            return False    # Propagate

if __name__ == '__main__':
    with TraceBlock() as action:
        action.message('test 1')
        print('reached')

    with TraceBlock() as action:
        action.message('test 2')
        raise TypeError
        print('not reached')
Notice that this class’s __exit__ method returns False to propagate the exception; deleting the
      return statement would have the same
      effect, as the default None return
      value of functions is False by
      definition. Also notice that the __enter__ method returns self as the object to assign to the as variable; in other use cases, this might
      return a completely different object instead.
When run, the context manager traces the entry and exit of the
      with statement block with its
      __enter__ and __exit__ methods. Here’s the script in action
      being run under either Python 3.X or 2.X (as usual, mileage varies
      slightly in some 2.X displays, and this runs on 2.6, 2.7, and 2.5 if
      enabled):
c:\code> py −3 withas.py
starting with block
running test 1
reached
exited normally

starting with block
running test 2
raise an exception! <class 'TypeError'>
Traceback (most recent call last):
  File "withas.py", line 22, in <module>
    raise TypeError
TypeError
Context managers can also utilize OOP state information and
      inheritance, but are somewhat advanced devices for tool builders, so
      we’ll skip additional details here (see Python’s standard manuals for
      the full story—for example, there’s a new contextlib standard module that provides additional tools for coding context
      managers). For simpler purposes, the try/finally
      statement provides sufficient support for termination-time activities
      without coding classes.

Multiple Context Managers in 3.1, 2.7, and Later
Python 3.1 introduced a with
      extension that eventually appeared in Python 2.7 as well. In these and
      later Pythons, the with statement may
      also specify multiple (sometimes referred to as “nested”) context
      managers with new comma syntax. In the following, for example, both
      files’ exit actions are automatically run when the statement block
      exits, regardless of exception outcomes:
with open('data') as fin, open('res', 'w') as fout:
    for line in fin:
        if 'some key' in line:
            fout.write(line)
Any number of context manager items may be listed, and multiple
      items work the same as nested with
      statements. In Pythons that support this, the following code:
with A() as a, B() as b:
    ...statements...
is equivalent to the following, which also works in 3.0 and
      2.6:
with A() as a:
    with B() as b:
        ...statements...
Python 3.1’s release notes have additional details, but here’s a
      quick look at the extension in action—to implement a parallel lines scan
      of two files, the following uses with
      to open two files at once and zip together their lines, without having
      to manually close when finished (assuming manual closes are
      required):
>>> with open('script1.py') as f1, open('script2.py') as f2:
...     for pair in zip(f1, f2):
...         print(pair)
...
('# A first Python script\n', 'import sys\n')
('import sys                  # Load a library module\n', 'print(sys.path)\n')
('print(sys.platform)\n', 'x = 2\n')
('print(2 ** 32)              # Raise 2 to a power\n', 'print(x ** 32)\n')
You might use this coding structure to do a line-by-line
      comparison of two text files, for example—replace
      the print with an if for a simple file comparison operation, and
      use enumerate for line
      numbers:
with open('script1.py') as f1, open('script2.py') as f2:
    for (linenum, (line1, line2)) in enumerate(zip(f1, f2)):
        if line1 != line2:
            print('%s\n%r\n%r' % (linenum, line1, line2))
Still, the preceding technique isn’t all that useful in CPython,
      because input file objects don’t require a buffer flush, and file
      objects are closed automatically when reclaimed if still open. In
      CPython, the files would be reclaimed immediately if the parallel scan
      were coded the following simpler way:
for pair in zip(open('script1.py'), open('script2.py')):   # Same effect, auto close
    print(pair)
On the other hand, alternative implementations such as PyPy and
      Jython may require more direct closure inside loops to avoid taxing
      system resources, due to differing garbage collectors. Even more
      usefully, the following automatically closes the output file on
      statement exit, to ensure that any buffered text is transferred to disk
      immediately:
>>> with open('script2.py') as fin, open('upper.py', 'w') as fout:
...     for line in fin:
...         fout.write(line.upper())
...
>>> print(open('upper.py').read())
IMPORT SYS
PRINT(SYS.PATH)
X = 2
PRINT(X ** 32)
In both cases, we can instead simply open files in individual
      statements and close after processing if needed, and in some scripts we
      probably should—there’s no point in using statements that catch an
      exception if it means your program is out of business anyhow!
fin  = open('script2.py')
fout = open('upper.py', 'w')
for line in fin:                        # Same effect as preceding code, auto close
    fout.write(line.upper())
However, in cases where programs must continue after exceptions,
      the with forms also implicitly catch
      exceptions, and thereby also avoid a try/finally
      in cases where close is required. The equivalent without with is more explicit, but requires noticeably
      more code:
fin  = open('script2.py')
fout = open('upper.py', 'w')
try:                                    # Same effect but explicit close on error
    for line in fin:
        fout.write(line.upper())
finally:
    fin.close()
    fout.close()
On the other hand, the try/finally
      is a single tool that applies to all finalization cases, whereas the
      with adds a second tool that can be
      more concise, but applies to only certain objects types, and doubles the
      required knowledge base of programmers. As usual, you’ll have to weigh
      the tradeoffs for yourself.


Chapter Summary
In this chapter, we took a more detailed look at exception
    processing by exploring the statements related to exceptions in Python:
    try to catch them, raise to trigger them, assert to raise them conditionally, and with to wrap code blocks in context managers
    that specify entry and exit actions.
Up to this point, exceptions probably seem like a fairly lightweight
    tool, and in fact, they are; the only substantially complex thing about
    them is how they are identified. The next chapter continues our
    exploration by describing how to implement exception objects of your own;
    as you’ll see, classes allow you to code new exceptions specific to your
    programs. Before we move ahead, though, let’s work through the following
    short quiz on the basics covered here.

Test Your Knowledge: Quiz
	What is the try statement
        for?

	What are the two common variations of the try statement?

	What is the raise statement
        for?

	What is the assert statement
        designed to do, and what other statement is it like?

	What is the with/as statement designed to do, and what other
        statement is it like?



Test Your Knowledge: Answers
	The try statement catches and
        recovers from exceptions—it specifies a block of code to run, and one
        or more handlers for exceptions that may be raised during the block’s
        execution.

	The two common variations on the try statement are try/except/else (for catching exceptions) and try/finally (for specifying cleanup actions that
        must occur whether an exception is raised or not). Through Python 2.4,
        these were separate statements that could be combined by syntactic
        nesting; in 2.5 and later, except
        and finally blocks may be mixed in
        the same statement, so the two statement forms are merged. In the
        merged form, the finally is still
        run on the way out of the try,
        regardless of what exceptions may have been raised or handled. In
        fact, the merged form is equivalent to nesting a try/except/else in a try/finally, and the two still have logically
        distinct roles.

	The raise statement raises
        (triggers) an exception. Python raises built-in exceptions on errors
        internally, but your scripts can trigger built-in or user-defined
        exceptions with raise, too.

	The assert statement raises
        an AssertionError exception if a
        condition is false. It works like a conditional raise statement wrapped up in an if statement, and can be disabled with a
        –O switch.

	The with/as statement is designed to automate startup
        and termination activities that must occur around a block of code. It
        is roughly like a try/finally statement in that its exit actions
        run whether an exception occurred or not, but it allows a richer
        object-based protocol for specifying entry and
        exit actions, and may reduce code size. Still, it’s not quite as
        general, as it applies only to objects that support its protocol; try
        handles many more use cases.



1 As mentioned in the prior chapter, the text of error messages
          and stack traces tends to vary slightly over time and shells. Don’t
          be alarmed if your error messages don’t exactly match mine. When I
          ran this example in Python 3.3’s IDLE GUI, for instance, its error
          message text showed filenames with full absolute directory
          paths.
2 Unless Python crashes completely, of course. It does a good
          job of avoiding this, though, by checking all possible errors as a
          program runs. When a program does crash hard, it is usually due to a
          bug in linked-in C extension code, outside of Python’s scope.








Chapter 35. Exception Objects
So far, I’ve been deliberately vague about what an exception actually
  is. As suggested in the prior chapter, as of Python 2.6
  and 3.0 both built-in and user-defined exceptions are identified by class instance objects.
  This is what is raised and propagated along by exception processing, and the
  source of the class matched against exceptions named in try statements.
Although this means you must use object-oriented programming to define new
  exceptions in your programs—and introduces a knowledge dependency that
  deferred full exception coverage to this part of the book—basing exceptions
  on classes and OOP offers a number of benefits. Among them, class-based
  exceptions:
	Can be organized into
      categories. Exceptions coded as classes support future
      changes by providing categories—adding new exceptions in the future
      won’t generally require changes in try statements.

	Have state information and
      behavior. Exception classes provide a natural place for us to
      store context information and tools for use in the try handler—instances have access to both
      attached state information and callable methods.

	Support inheritance.
      Class-based exceptions can participate in inheritance hierarchies to
      obtain and customize common behavior—inherited display methods, for
      example, can provide a common look and feel for error messages.


Because of these advantages, class-based exceptions support program
  evolution and larger systems well. As we’ll find, all built-in exceptions
  are identified by classes and are organized into an inheritance tree, for
  the reasons just listed. You can do the same with user-defined exceptions of
  your own.
In fact, in Python 3.X the built-in exceptions we’ll study here turn
  out to be integral to new exceptions you define. Because 3.X requires
  user-defined exceptions to inherit from built-in exception superclasses that
  provide useful defaults for printing and state retention, the task of coding
  user-defined exceptions also involves understanding the roles of these built-ins.
Note
Version skew note: Python 2.6, 3.0, and later
    require exceptions to be defined by classes. In addition, 3.X requires
    exception classes to be derived from the BaseException built-in exception superclass,
    either directly or indirectly. As we’ll see, most programs inherit from
    this class’s Exception subclass, to
    support catchall handlers for normal exception types—naming it in a
    handler will thus catch everything most programs should. Python 2.X allows
    standalone classic classes to serve as exceptions, too, but it requires
    new-style classes to be derived from built-in exception classes, the same
    as 3.X.

Exceptions: Back to the Future
Once upon a time (well, prior to Python 2.6 and 3.0), it was
    possible to define exceptions in two different ways. This complicated
    try statements, raise statements, and Python in general. Today,
    there is only one way to do it. This is a good thing: it removes from the
    language substantial cruft accumulated for the sake of backward
    compatibility. Because the old way helps explain why exceptions are as
    they are today, though, and because it’s not really possible to completely
    erase the history of something that has been used by on the order of a
    million people over the course of nearly two decades, let’s begin our
    exploration of the present with a brief look at the past.
String Exceptions Are Right Out!
Prior to Python 2.6 and 3.0, it was possible to define exceptions
      with both class instances and string objects. String-based exceptions began issuing deprecation warnings in 2.5 and
      were removed in 2.6 and 3.0, so today you should use class-based
      exceptions, as shown in this book. If you work with legacy code, though,
      you might still come across string exceptions. They might also appear in
      books, tutorials, and web resources written a few years ago (which
      qualifies as an eternity in Python years!).
String exceptions were straightforward to use—any string would do,
      and they matched by object identity, not value (that is, using is, not ==):
C:\code> C:\Python25\python
>>> myexc = "My exception string"                 # Were we ever this young?...
>>> try:
...     raise myexc
... except myexc:
...     print('caught')
...
caught
This form of exception was removed because it was not as good as
      classes for larger programs and code maintenance. In modern Pythons,
      string exceptions trigger exceptions instead:
C:\code> py −3
>>> raise 'spam'
TypeError: exceptions must derive from BaseException

C:\code> py −2
>>> raise 'spam'
TypeError: exceptions must be old-style classes or derived from BaseException, ...etc
Although you can’t use string exceptions today, they actually
      provide a natural vehicle for introducing the class-based exceptions
      model.

Class-Based Exceptions
Strings were a simple way to define exceptions. As described
      earlier, however, classes have some added advantages that merit a quick
      look. Most prominently, they allow us to identify exception
      categories that are more flexible to use and
      maintain than simple strings. Moreover, classes naturally allow for
      attached exception details and support inheritance. Because they are
      seen by many as the better approach, they are now required.
Coding details aside, the chief difference between string and
      class exceptions has to do with the way that exceptions raised are
      matched against except clauses in
      try statements:
	String exceptions were matched by simple object
          identity: the raised exception was matched to except clauses by Python’s is test.

	Class exceptions are matched by superclass
          relationships: the raised exception matches an except clause if that except clause names the exception
          instance’s class or any superclass of it.


That is, when a try statement’s
      except clause lists a superclass, it
      catches instances of that superclass, as well as instances of all its
      subclasses lower in the class tree. The net effect is that class
      exceptions naturally support the construction of exception
      hierarchies: superclasses become category names,
      and subclasses become specific kinds of exceptions within a category. By
      naming a general exception superclass, an except clause can catch an entire category of
      exceptions—any more specific subclass will match.
String exceptions had no such concept: because they were matched
      by simple object identity, there was no direct way to organize
      exceptions into more flexible categories or groups. The net result was
      that exception handlers were coupled with exception sets in a way that
      made changes difficult.
In addition to this category idea, class-based exceptions better
      support exception state information (attached to
      instances) and allow exceptions to participate in inheritance
      hierarchies (to obtain common behaviors). Because they offer
      all the benefits of classes and OOP in general, they provide a more
      powerful alternative to the now-defunct string-based exceptions model in
      exchange for a small amount of additional code.

Coding Exceptions Classes
Let’s look at an example to see how class exceptions translate to code. In
      the following file, classexc.py, we
      define a superclass called General
      and two subclasses called Specific1
      and Specific2. This example
      illustrates the notion of exception categories—General is a category name, and its two
      subclasses are specific types of exceptions within the category.
      Handlers that catch General will also
      catch any subclasses of it, including Specific1 and Specific2:
class General(Exception): pass
class Specific1(General): pass
class Specific2(General): pass

def raiser0():
    X = General()          # Raise superclass instance
    raise X

def raiser1():
    X = Specific1()        # Raise subclass instance
    raise X

def raiser2():
    X = Specific2()        # Raise different subclass instance
    raise X

for func in (raiser0, raiser1, raiser2):
    try:
        func()
    except General:        # Match General or any subclass of it
        import sys
        print('caught: %s' % sys.exc_info()[0])

C:\code> python classexc.py
caught: <class '__main__.General'>
caught: <class '__main__.Specific1'>
caught: <class '__main__.Specific2'>
This code is mostly straightforward, but here are a few points to
      notice:
	Exception superclass
	Classes used to build exception category trees have very few
            requirements—in fact, in this example they are mostly empty, with
            bodies that do nothing but pass. Notice, though, how the top-level
            class here inherits from the built-in Exception class. This is required in
            Python 3.X; Python 2.X allows standalone classic classes to serve
            as exceptions too, but it requires new-style classes to be derived
            from built-in exception classes just as in 3.X. Although we don’t
            employ it here, because Exception provides some useful behavior
            we’ll meet later, it’s a good idea to inherit from it in either
            Python.

	Raising instances
	In this code, we call classes to make instances for the raise statements. In the class exception
            model, we always raise and catch a class instance object. If we
            list a class name without parentheses in a raise, Python calls the class with no
            constructor argument to make an instance for us. Exception
            instances can be created before the raise, as done here, or within the
            raise statement itself.

	Catching categories
	This code includes functions that raise instances of all
            three of our classes as exceptions, as well as a top-level
            try that calls the functions
            and catches General exceptions.
            The same try also catches the
            two specific exceptions, because they are subclasses of General—members of its category.

	Exception details
	The exception handler here uses the sys.exc_info call—as we’ll see in more
            detail in the next chapter, it’s how we can grab hold of the most
            recently raised exception in a generic fashion. Briefly, the first
            item in its result is the class of the exception raised, and the
            second is the actual instance raised. In a general except clause like the one here that
            catches all classes in a category, sys.exc_info is one way to determine
            exactly what’s occurred. In this particular case, it’s equivalent
            to fetching the instance’s __class__ attribute. As we’ll see in the
            next chapter, the sys.exc_info
            scheme is also commonly used with empty except clauses that catch
            everything.


The last point merits further explanation. When an exception is
      caught, we can be sure that the instance raised is an instance of the
      class listed in the except, or one of
      its more specific subclasses. Because of this, the __class__ attribute of the instance also gives
      the exception type. The following variant in classexc2.py, for example, works the same as
      the prior example—it uses the as
      extension in its except clause to
      assign a variable to the instance actually raised:
class General(Exception): pass
class Specific1(General): pass
class Specific2(General): pass

def raiser0(): raise General()
def raiser1(): raise Specific1()
def raiser2(): raise Specific2()

for func in (raiser0, raiser1, raiser2):
    try:
        func()
    except General as X:                     # X is the raised instance
        print('caught: %s' % X.__class__)    # Same as sys.exc_info()[0]
Because __class__ can be used
      like this to determine the specific type of exception raised, sys.exc_info is more useful for empty except clauses that do not otherwise have a
      way to access the instance or its class. Furthermore, more realistic
      programs usually should not have to care about
      which specific exception was raised at all—by calling methods of the
      exception class instance generically, we automatically dispatch to
      behavior tailored for the exception raised.
More on this and sys.exc_info
      in the next chapter; also see Chapter 29
      and Part VI at large if you’ve forgotten what
      __class__ means in an instance, and
      the prior chapter for a review of the as used here.


Why Exception Hierarchies?
Because there are only three possible exceptions in the prior section’s
    example, it doesn’t really do justice to the utility of class exceptions.
    In fact, we could achieve the same effects by coding a list of exception
    names in parentheses within the except
    clause:
try:
    func()
except (General, Specific1, Specific2):     # Catch any of these
    ...
This approach worked for the defunct string exception model too. For
    large or high exception hierarchies, however, it may be easier to catch
    categories using class-based categories than to list every member of a
    category in a single except clause.
    Perhaps more importantly, you can extend exception hierarchies as software
    needs evolve by adding new subclasses without breaking existing
    code.
Suppose, for example, you code a numeric programming library in
    Python, to be used by a large number of people. While you are writing your
    library, you identify two things that can go wrong with numbers in your
    code—division by zero, and numeric overflow. You document these as the two
    standalone exceptions that your library may raise:
# mathlib.py

class Divzero(Exception): pass
class Oflow(Exception): pass

def func():
    ...
    raise Divzero()

...and so on...
Now, when people use your library, they typically wrap calls to your
    functions or classes in try statements
    that catch your two exceptions; after all, if they do not catch your
    exceptions, exceptions from your library will kill their code:
# client.py

import mathlib

try:
    mathlib.func(...)
except (mathlib.Divzero, mathlib.Oflow):
    ...handle and recover...
This works fine, and lots of people start using your library. Six
    months down the road, though, you revise it (as programmers are prone to
    do!). Along the way, you identify a new thing that can go wrong—underflow,
    perhaps—and add that as a new exception:
# mathlib.py

class Divzero(Exception): pass
class Oflow(Exception): pass
class Uflow(Exception): pass
Unfortunately, when you re-release your code, you create a
    maintenance problem for your users. If they’ve listed your exceptions
    explicitly, they now have to go back and change every place they call your
    library to include the newly added exception name:
# client.py

try:
    mathlib.func(...)
except (mathlib.Divzero, mathlib.Oflow, mathlib.Uflow):
    ...handle and recover...
This may not be the end of the world. If your library is used only
    in-house, you can make the changes yourself. You might also ship a Python
    script that tries to fix such code automatically (it would probably be
    only a few dozen lines, and it would guess right at least some of the
    time). If many people have to change all their try statements each time you alter your
    exception set, though, this is not exactly the most polite of upgrade
    policies.
Your users might try to avoid this pitfall by coding empty except clauses to catch all
    possible exceptions:
# client.py

try:
    mathlib.func(...)
except:                           # Catch everything here (or catch Exception super)
    ...handle and recover...
But this workaround might catch more than they bargained for—things
    like running out of memory, keyboard interrupts (Ctrl-C), system exits,
    and even typos in their own try block’s
    code will all trigger exceptions, and such things should pass, not be
    caught and erroneously classified as library errors. Catching the Exception super class improves on this, but
    still intercepts—and thus may mask—program errors.
And really, in this scenario users want to catch and recover from
    only the specific exceptions the library is defined
    and documented to raise. If any other exception occurs during a library
    call, it’s likely a genuine bug in the library (and probably time to
    contact the vendor!). As a rule of thumb, it’s usually better to be
    specific than general in exception handlers—an idea we’ll revisit as a
    “gotcha” in the next chapter.1
So what to do, then? Class exception hierarchies fix this dilemma
    completely. Rather than defining your library’s exceptions as a set of
    autonomous classes, arrange them into a class tree with a common
    superclass to encompass the entire category:
# mathlib.py

class NumErr(Exception): pass
class Divzero(NumErr): pass
class Oflow(NumErr): pass

def func():
    ...
    raise DivZero()

...and so on...
This way, users of your library simply need to list the common
    superclass (i.e., category) to catch all of your library’s exceptions,
    both now and in the future:
# client.py

import mathlib

try:
    mathlib.func(...)
except mathlib.NumErr:
    ...report and recover...
When you go back and hack (update) your code again, you can add new
    exceptions as new subclasses of the common superclass:
# mathlib.py

...
class Uflow(NumErr): pass
The end result is that user code that catches your library’s
    exceptions will keep working, unchanged. In fact, you
    are free to add, delete, and change exceptions arbitrarily in the
    future—as long as clients name the superclass, and that superclass remains
    intact, they are insulated from changes in your exceptions set. In other
    words, class exceptions provide a better answer to maintenance issues than
    strings could.
Class-based exception hierarchies also support state retention and
    inheritance in ways that make them ideal in larger programs. To understand
    these roles, though, we first need to see how user-defined exception
    classes relate to the built-in exceptions from which they inherit.

Built-in Exception Classes
I didn’t really pull the prior section’s examples out of thin air. All built-in
    exceptions that Python itself may raise are predefined class objects.
    Moreover, they are organized into a shallow hierarchy with general
    superclass categories and specific subclass types, much like the prior
    section’s exceptions class tree.
In Python 3.X, all the familiar exceptions you’ve seen (e.g.,
    SyntaxError) are really just predefined
    classes, available as built-in names in the module named builtins; in Python 2.X, they instead live in
    __builtin__ and are also attributes of
    the standard library module exceptions.
    In addition, Python organizes the built-in exceptions into a hierarchy, to
    support a variety of catching modes. For example:
	BaseException: topmost root,
        printing and constructor defaults
	The top-level root superclass of exceptions. This class is not supposed
          to be directly inherited by user-defined classes (use Exception instead). It provides default
          printing and state retention behavior inherited by subclasses. If
          the str built-in is called on an
          instance of this class (e.g., by print), the class returns the display
          strings of the constructor arguments passed when the instance was
          created (or an empty string if there were no arguments). In
          addition, unless subclasses replace this class’s constructor, all of
          the arguments passed to this class at instance construction time are
          stored in its args attribute as a
          tuple.

	Exception: root of
        user-defined exceptions
	The top-level root superclass of application-related exceptions.
          This is an immediate subclass of BaseException and is a superclass to every
          other built-in exception, except the system exit event classes
          (SystemExit, KeyboardInterrupt, and GeneratorExit). Nearly all user-defined
          classes should inherit from this class, not BaseException. When this convention is
          followed, naming Exception in a
          try statement’s handler ensures
          that your program will catch everything but system exit events,
          which should normally be allowed to pass. In effect, Exception becomes a catchall in try statements and is more accurate than
          an empty except.

	ArithmeticError: root of
        numeric errors
	A subclass of Exception,
          and the superclass of all numeric errors. Its subclasses
          identify specific numeric errors: OverflowError, ZeroDivisionError, and FloatingPointError.

	LookupError: root of indexing
        errors
	A subclass of Exception,
          and the superclass category for indexing errors for both
          sequences and mappings—IndexError
          and KeyError—as well as some
          Unicode lookup errors.


And so on—because the built-in exception set is prone to frequent
    changes, this book doesn’t document it exhaustively. You can read further
    about this structure in reference texts such as Python Pocket
    Reference or the Python library manual. In fact, the exceptions
    class tree differs slightly between Python 3.X and 2.X in ways we’ll omit
    here, because they are not relevant to examples.
You can also see the built-in exceptions class tree in the help
    text of the exceptions
    module in Python 2.X only (see Chapter 4 and Chapter 15 for help on help):
>>> import exceptions
>>> help(exceptions)
...lots of text omitted...
This module is removed in 3.X, where you’ll find up-to-date help in
    the other resources mentioned.
Built-in Exception Categories
The built-in class tree allows you to choose how specific or general your handlers
      will be. For example, because the built-in exception ArithmeticError is a superclass for more specific exceptions such as OverflowError
      and ZeroDivisionError:
	By listing ArithmeticError
          in a try, you will catch
          any kind of numeric error raised.

	By listing ZeroDivisionError, you will intercept just that specific type
          of error, and no others.


Similarly, because Exception is
      the superclass of all application-level exceptions in Python 3.X, you
      can generally use it as a catchall—the effect is
      much like an empty except, but it
      allows system exit exceptions to pass and propagate as they usually
      should:
try:
    action()
except Exception:                                       # Exits not caught here
    ...handle all application exceptions...
else:
    ...handle no-exception case...
This doesn’t quite work universally in Python 2.X, however,
      because standalone user-defined exceptions coded as classic classes are
      not required to be subclasses of the Exception root class. This technique is more
      reliable in Python 3.X, since it requires all classes to derive from
      built-in exceptions. Even in Python 3.X, though, this scheme suffers
      most of the same potential pitfalls as the empty except, as described in the prior chapter—it
      might intercept exceptions intended for elsewhere, and it might mask
      genuine programming errors. Since this is such a common issue, we’ll
      revisit it as a “gotcha” in the next chapter.
Whether or not you will leverage the categories in the built-in
      class tree, it serves as a good example; by using similar techniques for
      class exceptions in your own code, you can provide exception sets that
      are flexible and easily modified.
Note
Python 3.3 reworks the built-in
        IO and OS exception hierarchies. It adds new
        specific exception classes corresponding to common file and system
        error numbers, and groups these and others related to operating system
        calls under the OSError category
        superclass. Former exception names are retained for backward
        compatibility.
Prior to this, programs inspect the data attached to the
        exception instance to see what specific error occurred, and possibly
        reraise others to be propagated (the errno module has names preset to the error
        codes for convenience, and the error number is available in both the
        generic tuple as V.args[0] and
        attribute V.errno):
c:\temp> py −3.2
>>> try:
...     f = open('nonesuch.txt')
... except IOError as V:
...     if V.errno == 2:                # Or errno.N, V.args[0]
...         print('No such file')
...     else:
...         raise                       # Propagate others
...
No such file
This code still works in 3.3, but with the new classes, programs
        in 3.3 and later can be more specific about the exceptions they mean
        to process, and ignore others:
c:\temp> py −3.3
>>> try:
...     f = open('nonesuch.txt')
... except FileNotFoundError:
...     print('No such file')
...
No such file
For full details on this extension and its classes, see the
        other resources listed earlier.


Default Printing and State
Built-in exceptions also provide default print displays and state retention, which
      is often as much logic as user-defined classes require. Unless you
      redefine the constructors your classes inherit from them, any
      constructor arguments you pass to these classes are automatically saved
      in the instance’s args tuple
      attribute, and are automatically displayed when the instance is printed.
      An empty tuple and display string are used if no constructor arguments
      are passed, and a single argument displays as itself (not as a
      tuple).
This explains why arguments passed to
      built-in exception classes show up in error
      messages—any constructor arguments are attached to the instance and
      displayed when the instance is printed:
>>> raise IndexError                    # Same as IndexError(): no arguments
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError

>>> raise IndexError('spam')            # Constructor argument attached, printed
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: spam

>>> I = IndexError('spam')              # Available in object attribute
>>> I.args
('spam',)
>>> print(I)                            # Displays args when printed manually
spam
The same holds true for user-defined exceptions in Python
      3.X (and for new-style classes in 2.X), because they inherit the
      constructor and display methods present in their built-in
      superclasses:
>>> class E(Exception): pass
...
>>> raise E
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
__main__.E

>>> raise E('spam')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
__main__.E: spam

>>> I = E('spam')
>>> I.args
('spam',)
>>> print(I)
spam
When intercepted in a try
      statement, the exception instance object gives access to both the
      original constructor arguments and the display method:
>>> try:
...     raise E('spam')
... except E as X:
...     print(X)                        # Displays and saves constructor arguments
...     print(X.args)
...     print(repr(X))
...
spam
('spam',)
E('spam',)

>>> try:                                # Multiple arguments save/display a tuple
...     raise E('spam', 'eggs', 'ham')
... except E as X:
...     print('%s %s' % (X, X.args))
...
('spam', 'eggs', 'ham') ('spam', 'eggs', 'ham')
Note that exception instance objects are not strings themselves,
      but use the __str__ operator
      overloading protocol we studied in Chapter 30 to provide display strings when
      printed; to concatenate with real strings, perform manual conversions:
      str(X) + 'astr', '%s' % X, and the like.
Although this automatic state and display support is useful by
      itself, for more specific display and state retention needs you can
      always redefine inherited methods such as __str__ and __init__ in Exception subclasses—as the next section shows.


Custom Print Displays
As we saw in the preceding section, by default, instances of class-based
    exceptions display whatever you passed to the class constructor when they
    are caught and printed:
>>> class MyBad(Exception): pass
...
>>> try:
...     raise MyBad('Sorry--my mistake!')
... except MyBad as X:
...     print(X)
...
Sorry--my mistake!
This inherited default display model is also used if the exception
    is displayed as part of an error message when the exception is not
    caught:
>>> raise MyBad('Sorry--my mistake!')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
__main__.MyBad: Sorry--my mistake!
For many roles, this is sufficient. To provide a more custom
    display, though, you can define one of two string-representation
    overloading methods in your class (__repr__ or __str__) to return the string you want to display for your exception.
    The string the method returns will be displayed if the exception either is
    caught and printed or reaches the default handler:
>>> class MyBad(Exception):
...     def __str__(self):
...         return 'Always look on the bright side of life...'
...
>>> try:
...     raise MyBad()
... except MyBad as X:
...     print(X)
...
Always look on the bright side of life...

>>> raise MyBad()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
__main__.MyBad: Always look on the bright side of life...
Whatever your method returns is included in error messages for
    uncaught exceptions and used when exceptions are printed explicitly. The
    method returns a hardcoded string here to illustrate, but it can also
    perform arbitrary text processing, possibly using state information
    attached to the instance object. The next section looks at state
    information options.
Note
A subtle point here: you generally must redefine __str__ for exception display purposes,
      because the built-in exception superclasses already have a __str__ method, and __str__ is preferred to __repr__ in some contexts—including error
      message displays. If you define a __repr__, printing will happily call the
      built-in superclass’s __str__
      instead!
>>> class E(Exception):
        def __repr__(self): return 'Not called!'
>>> raise E('spam')
...
__main__.E: spam

>>> class E(Exception):
        def __str__(self): return 'Called!'
>>> raise E('spam')
...
__main__.E: Called!
See Chapter 30 for more details
      on these special operator overloading methods.


Custom Data and Behavior
Besides supporting flexible hierarchies, exception classes also provide storage
    for extra state information as instance attributes. As we saw earlier,
    built-in exception superclasses provide a default constructor that
    automatically saves constructor arguments in an instance tuple attribute
    named args. Although the default
    constructor is adequate for many cases, for more custom needs we can
    provide a constructor of our own. In addition, classes may define methods
    for use in handlers that provide precoded exception processing
    logic.
Providing Exception Details
When an exception is raised, it may cross arbitrary file
      boundaries—the raise statement that
      triggers an exception and the try
      statement that catches it may be in completely different module files.
      It is not generally feasible to store extra details in global variables
      because the try statement might not
      know which file the globals reside in. Passing extra state information
      along in the exception itself allows the try statement to access it more
      reliably.
With classes, this is nearly automatic. As we’ve seen, when an
      exception is raised, Python passes the class instance object along with
      the exception. Code in try statements
      can access the raised instance by listing an extra variable after the
      as keyword in an except handler. This provides a natural hook
      for supplying data and behavior to the handler.
For example, a program that parses data files might signal a
      formatting error by raising an exception instance that is filled out
      with extra details about the error:
>>> class FormatError(Exception):
        def __init__(self, line, file):
            self.line = line
            self.file = file

>>> def parser():
        raise FormatError(42, file='spam.txt')     # When error  found

>>> try:
...     parser()
... except FormatError as X:
...     print('Error at: %s %s' % (X.file, X.line))
...
Error at: spam.txt 42
In the except clause here, the
      variable X is assigned a reference to
      the instance that was generated when the exception was raised. This
      gives access to the attributes attached to the instance by the custom
      constructor. Although we could rely on the default state retention of
      built-in superclasses, it’s less relevant to our application (and
      doesn’t support the keyword arguments used in the prior example):
>>> class FormatError(Exception): pass             # Inherited constructor

>>> def parser():
        raise FormatError(42, 'spam.txt')          # No keywords allowed!

>>> try:
...     parser()
... except FormatError as X:
...     print('Error at:', X.args[0], X.args[1])   # Not specific to this app
...
Error at: 42 spam.txt

Providing Exception Methods
Besides enabling application-specific state information, custom
      constructors also better support extra behavior for exception objects.
      That is, the exception class can also define
      methods to be called in the handler. The following
      code in excparse.py, for example,
      adds a method that uses exception state information to log errors to a
      file automatically:
from __future__ import print_function  # 2.X compatibility

class FormatError(Exception):
    logfile = 'formaterror.txt'
    def __init__(self, line, file):
        self.line = line
        self.file = file
    def logerror(self):
        log = open(self.logfile, 'a')
        print('Error at:', self.file, self.line, file=log)

def parser():
    raise FormatError(40, 'spam.txt')

if __name__ == '__main__':
    try:
        parser()
    except FormatError as exc:
        exc.logerror()
When run, this script writes its error message to a file in
      response to method calls in the exception handler:
c:\code> del formaterror.txt
c:\code> py −3 excparse.py
c:\code> py −2 excparse.py
c:\code> type formaterror.txt
Error at: spam.txt 40
Error at: spam.txt 40
In such a class, methods (like logerror) may also be inherited from
      superclasses, and instance attributes (like line and file) provide a place to save state
      information that provides extra context for use in later method calls.
      Moreover, exception classes are free to customize and extend inherited
      behavior:
class CustomFormatError(FormatError):
    def logerror(self):
        ...something unique here...

raise CustomFormatError(...)
In other words, because they are defined with classes, all the
      benefits of OOP that we studied in Part VI
      are available for use with exceptions in Python.
Two final notes here: first, the raised instance object assigned
      to exc in this code is also available
      generically as the second item in the result tuple of the sys.exc_info() call—a tool that returns information about the most recently raised
      exception. This interface must be used if you do not list an exception
      name in an except clause but still
      need access to the exception that occurred, or to any of its attached
      state information or methods. Second, although our class’s logerror method appends a custom message to a
      logfile, it could also generate Python’s standard error message with
      stack trace using tools in the traceback standard library module, which uses
      traceback objects.
To learn more about sys.exc_info and tracebacks, though, we need
      to move ahead to the next chapter.


Chapter Summary
In this chapter, we explored coding user-defined exceptions. As we
    learned, exceptions are implemented as class instance objects as of Python
    2.6 and 3.0 (an earlier string-based exception model alternative was
    available in earlier releases but has now been deprecated). Exception
    classes support the concept of exception hierarchies that ease
    maintenance, allow data and behavior to be attached to exceptions as
    instance attributes and methods, and allow exceptions to inherit data and
    behavior from superclasses.
We saw that in a try statement,
    catching a superclass catches that class as well as all subclasses below
    it in the class tree—superclasses become exception category names, and
    subclasses become more specific exception types within those categories.
    We also saw that the built-in exception superclasses we must inherit from
    provide usable defaults for printing and state retention, which we can
    override if desired.
The next chapter wraps up this part of the book by exploring some
    common use cases for exceptions and surveying tools commonly used by
    Python programmers. Before we get there, though, here’s this chapter’s
    quiz.

Test Your Knowledge: Quiz
	What are the two new constraints on user-defined exceptions in Python
        3.X?

	How are raised class-based exceptions matched to
        handlers?

	Name two ways that you can attach context information to
        exception objects.

	Name two ways that you can specify the error message text for
        exception objects.

	Why should you not use string-based exceptions anymore
        today?



Test Your Knowledge: Answers
	In 3.X, exceptions must be defined by classes (that is, a class
        instance object is raised and caught). In addition, exception classes
        must be derived from the built-in class BaseException; most programs inherit from
        its Exception subclass, to support
        catchall handlers for normal kinds of exceptions.

	Class-based exceptions match by superclass relationships: naming
        a superclass in an exception handler will catch instances of that
        class, as well as instances of any of its subclasses lower in the
        class tree. Because of this, you can think of superclasses as general
        exception categories and subclasses as more specific types of
        exceptions within those categories.

	You can attach context information to class-based exceptions by
        filling out instance attributes in the instance object raised, usually
        in a custom class constructor. For simpler needs, built-in exception
        superclasses provide a constructor that stores its arguments on the
        instance automatically (as a tuple in the attribute args). In exception handlers, you list a
        variable to be assigned to the raised instance, then go through this
        name to access attached state information and call any methods defined
        in the class.

	The error message text in class-based exceptions can be
        specified with a custom __str__
        operator overloading method. For simpler needs, built-in exception
        superclasses automatically display anything you pass to the class
        constructor. Operations like print
        and str automatically fetch the
        display string of an exception object when it is printed either
        explicitly or as part of an error message.

	Because Guido said so—they have been removed as of both Python 2.6 and 3.0. There are
          arguably good reasons for this: string-based exceptions did not support categories, state
          information, or behavior inheritance in the way class-based exceptions do. In practice,
          this made string-based exceptions easier to use at first when programs were small, but
          more complex to use as programs grew larger.
The downsides of requiring exceptions to be classes are to break
          existing code, and create a forward knowledge dependency—beginners
          must first learn classes and OOP before they can code new exceptions, or even truly
          understand exceptions at all. In fact, this is why this relatively straightforward topic
          was largely postponed until this point in the book. For better or worse, such dependencies
          are not uncommon in Python today (see the preface and conclusion for more on such
            things).



1 As a clever student of mine suggested, the library module could
        also provide a tuple object that contains all the exceptions the
        library can possibly raise—the client could then import the tuple and
        name it in an except clause to
        catch all the library’s exceptions (recall that including a tuple in
        an except means catch
        any of its exceptions). When new exceptions are
        added later, the library can just expand the exported tuple. This
        would work, but you’d still need to keep the tuple up-to-date with
        raised exceptions inside the library module. Also, class hierarchies
        offer more benefits than just categories—they also support inherited
        state and methods and a customization model that individual exceptions
        do not.








Chapter 36. Designing with Exceptions
This chapter rounds out this part of the book with a collection of exception design topics
  and common use case examples, followed by this part’s gotchas and exercises.
  Because this chapter also closes out the fundamentals portion of the book at
  large, it includes a brief overview of development tools as well to help you
  as you make the migration from Python beginner to Python application
  developer.
Nesting Exception Handlers
Most of our examples so far have used only a single try to catch exceptions, but what happens if one
    try is physically nested inside
    another? For that matter, what does it mean if a try calls a function that runs another try? Technically, try statements can nest, in terms of both syntax
    and the runtime control flow through your code. I’ve mentioned this
    briefly, but let’s clarify the idea here.
Both of these cases can be understood if you realize that Python
    stacks try
    statements at runtime. When an exception is raised, Python returns to the
    most recently entered try statement
    with a matching except clause. Because
    each try statement leaves a marker,
    Python can jump back to earlier trys by
    inspecting the stacked markers. This nesting of active handlers is what we
    mean when we talk about propagating exceptions up to “higher”
    handlers—such handlers are simply try
    statements entered earlier in the program’s execution
    flow.
Figure 36-1
    illustrates what occurs when try
    statements with except clauses nest at
    runtime. The amount of code that goes into a try block can be substantial, and it may contain
    function calls that invoke other code watching for the same exceptions.
    When an exception is eventually raised, Python jumps back to the most
    recently entered try statement that
    names that exception, runs that statement’s except clause, and then resumes execution after
    that try.
Figure 36-1. Nested try/except statements: when an exception is raised (by you
      or by Python), control jumps back to the most recently entered try
      statement with a matching except clause, and the program resumes after
      that try statement. except clauses intercept and stop the exception—they
      are where you process and recover from exceptions.

Once the exception is caught, its life is over—control does not jump
    back to all matching trys that name the exception; only the first
    (i.e., most recent) one is given the opportunity to handle it. In Figure 36-1, for instance, the
    raise statement in the function
    func2 sends control back to the handler
    in func1, and then the program
    continues within func1.
By contrast, when try statements
    that contain only finally clauses are
    nested, each finally block is run in turn when an exception
    occurs—Python continues propagating the exception up to other trys, and eventually perhaps to the top-level
    default handler (the standard error message printer). As Figure 36-2 illustrates, the
    finally clauses do not kill the
    exception—they just specify code to be run on the way out of each try during the exception propagation process. If
    there are many try/finally clauses active when an exception occurs,
    they will all be run, unless a try/except
    catches the exception somewhere along the way.
Figure 36-2. Nested try/finally statements: when an exception is raised here,
      control returns to the most recently entered try to run its finally
      statement, but then the exception keeps propagating to all finallys in
      all active try statements and eventually reaches the default top-level
      handler, where an error message is printed. finally clauses intercept
      (but do not stop) an exception—they are for actions to be performed “on
      the way out.”

In other words, where the program goes when an exception is raised
    depends entirely upon where it has been—it’s a
    function of the runtime flow of control through the script, not just its
    syntax. The propagation of an exception essentially proceeds backward
    through time to try statements that
    have been entered but not yet exited. This propagation stops as soon as
    control is unwound to a matching except
    clause, but not as it passes through finally clauses on the way.
Example: Control-Flow Nesting
Let’s turn to an example to make this nesting concept more concrete. The following module file,
      nestexc.py, defines two functions.
      action2 is coded to trigger an
      exception (you can’t add numbers and sequences), and action1 wraps a call to action2 in a try handler, to catch the exception:
def action2():
    print(1 + [])            # Generate TypeError

def action1():
    try:
        action2()
    except TypeError:        # Most recent matching try
        print('inner try')

try:
    action1()
except TypeError:            # Here, only if action1 re-raises
    print('outer try')

% python nestexc.py
inner try
Notice, though, that the top-level module code at the bottom of
      the file wraps a call to action1 in a
      try handler, too. When action2 triggers the TypeError exception, there will be two active
      try statements—the one in action1, and the one at the top level of the
      module file. Python picks and runs just the most recent try with a matching except—which in this case is the try inside action1.
Again, the place where an exception winds up jumping to depends on
      the control flow through the program at runtime. Because of this, to
      know where you will go, you need to know where you’ve been. In this
      case, where exceptions are handled is more a function of control flow
      than of statement syntax. However, we can also nest exception handlers
      syntactically—an equivalent case we turn to next.

Example: Syntactic Nesting
As I mentioned when we looked at the new unified try/except/finally statement in Chapter 34, it is possible to nest try statements syntactically by their position
      in your source code:
try:
    try:
        action2()
    except TypeError:        # Most recent matching try
        print('inner try')
except TypeError:            # Here, only if nested handler re-raises
    print('outer try')
Really, though, this code just sets up the same handler-nesting
      structure as (and behaves identically to) the prior example. In fact,
      syntactic nesting works just like the cases sketched in Figure 36-1 and Figure 36-2. The only
      difference is that the nested handlers are physically embedded in a
      try block, not coded elsewhere in
      functions that are called from the try block. For example, nested finally handlers all fire on an exception,
      whether they are nested syntactically or by means of the runtime flow
      through physically separated parts of your code:
>>> try:
...     try:
...         raise IndexError
...     finally:
...         print('spam')
... finally:
...     print('SPAM')
...
spam
SPAM
Traceback (most recent call last):
  File "<stdin>", line 3, in <module>
IndexError
See Figure 36-2
      for a graphic illustration of this code’s operation; the effect is the
      same, but the function logic has been inlined as nested statements here.
      For a more useful example of syntactic nesting at work, consider the
      following file, except-finally.py:
def raise1():  raise IndexError
def noraise(): return
def raise2():  raise SyntaxError

for func in (raise1, noraise, raise2):
    print('<%s>' % func.__name__)
    try:
        try:
            func()
        except IndexError:
            print('caught IndexError')
    finally:
        print('finally run')
    print('...')
This code catches an exception if one is raised and performs a
      finally termination-time action
      regardless of whether an exception occurs. This may take a few moments
      to digest, but the effect is the same as combining an except and a finally clause in a single try statement in Python 2.5 and later:
% python except-finally.py
<raise1>
caught IndexError
finally run
...
<noraise>
finally run
...
<raise2>
finally run
Traceback (most recent call last):
  File "except-finally.py", line 9, in <module>
    func()
  File "except-finally.py", line 3, in raise2
    def raise2():  raise SyntaxError
SyntaxError: None
As we saw in Chapter 34, as of
      Python 2.5, except and finally clauses can be mixed in the same
      try statement. This, along with
      multiple except clause support, makes
      some of the syntactic nesting described in this section unnecessary,
      though the equivalent runtime nesting is common in larger Python
      programs. Moreover, syntactic nesting still works today, may still
      appear in code written prior to Python 2.5 that you may encounter, can
      make the disjoint roles of except and
      finally more explicit, and can be
      used as a technique for implementing alternative exception-handling
      behaviors in general.


Exception Idioms
We’ve seen the mechanics behind exceptions. Now let’s take a look at some
    of the other ways they are typically used.
Breaking Out of Multiple Nested Loops: “go to”
As mentioned at the start of this part of the book, exceptions can often be used to
      serve the same roles as other languages’ “go to” statements to implement
      more arbitrary control transfers. Exceptions, however, provide a more
      structured option that localizes the jump to a specific block of nested
      code.
In this role, raise is like “go
      to,” and except clauses and exception
      names take the place of program labels. You can jump only out of code
      wrapped in a try this way, but that’s
      a crucial feature—truly arbitrary “go to” statements can make code
      extraordinarily difficult to understand and maintain.
For example, Python’s break
      statement exits just the single closest enclosing loop, but we can always
      use exceptions to break out of more than one loop level if
      needed:
>>> class Exitloop(Exception): pass
...
>>> try:
...     while True:
...         while True:
...             for i in range(10):
...                  if i > 3: raise Exitloop          # break exits just one level
...                  print('loop3: %s' % i)
...             print('loop2')
...         print('loop1')
... except Exitloop:
...     print('continuing')                            # Or just pass, to move on 
...
loop3: 0
loop3: 1
loop3: 2
loop3: 3
continuing
>>> i
4
If you change the raise in this
      to break, you’ll get an infinite
      loop, because you’ll break only out of the most deeply nested for loop, and wind up in the second-level loop
      nesting. The code would then print “loop2” and start the for again.
Also notice that variable i is
      still what it was after the try
      statement exits. Variable assignments made in a try are not undone in general, though as we’ve
      seen, exception instance variables listed in except clause headers are localized to that
      clause, and the local variables of any functions that are exited as a
      result of a raise are discarded.
      Technically, active functions’ local variables are popped off the call
      stack and the objects they reference may be garbage-collected as a
      result, but this is an automatic step.

Exceptions Aren’t Always Errors
In Python, all errors are exceptions, but not all exceptions are errors. For
      instance, we saw in Chapter 9 that file object
      read methods return an empty string at the end of a file. In contrast,
      the built-in input function—which we
      first met in Chapter 3, deployed in an
      interactive loop in Chapter 10,
      and learned is named raw_input in
      2.X—reads a line of text from the standard input stream, sys.stdin, at each call and raises the
      built-in EOFError at
      end-of-file.
Unlike file methods, this function does not return an empty
      string—an empty string from input
      means an empty line. Despite its name, though, the EOFError exception is just a signal in this
      context, not an error. Because of this behavior, unless the end-of-file
      should terminate a script, input
      often appears wrapped in a try
      handler and nested in a loop, as in the following code:
while True:
    try:
        line = input()           # Read line from stdin (raw_input in 2.X)
    except EOFError:
        break                    # Exit loop at end-of-file
    else:
        ...process next line here...
Several other built-in exceptions are similarly signals, not
      errors—for example, calling sys.exit() and
      pressing Ctrl-C on your keyboard raise SystemExit and
      KeyboardInterrupt,
      respectively.
Python also has a set of built-in exceptions that represent
      warnings rather than errors; some of these are used
      to signal use of deprecated (phased out) language features. See the
      standard library manual’s description of built-in exceptions for more
      information, and consult the warnings module’s
      documentation for more on exceptions raised as warnings.

Functions Can Signal Conditions with raise
User-defined exceptions can also signal nonerror conditions. For instance, a
      search routine can be coded to raise an exception when a match is found
      instead of returning a status flag for the caller to interpret. In the
      following, the try/except/else
      exception handler does the work of an if/else
      return-value tester:
class Found(Exception): pass

def searcher():
    if ...success...:
        raise Found()            # Raise exceptions instead of returning flags
    else:
        return

try:
    searcher()
except Found:                    # Exception if item was found
    ...success...
else:                            # else returned: not found
    ...failure...
More generally, such a coding structure may also be useful for any
      function that cannot return a sentinel value to designate
      success or failure. In a widely applicable function, for instance, if
      all objects are potentially valid return values, it’s impossible for any
      return value to signal a failure condition. Exceptions provide a way to
      signal results without a return value:
class Failure(Exception): pass

def searcher():
    if ...success...:
        return ...founditem...
        
    else:
        raise Failure()

try:
    item = searcher()
except Failure:
    ...not found...
else:
    ...use item here...
Because Python is dynamically typed and polymorphic to the core,
      exceptions, rather than sentinel return values, are the generally
      preferred way to signal such conditions.

Closing Files and Server Connections
We encountered examples in this category in Chapter 34. As a summary, though, exception
      processing tools are also commonly used to ensure that system resources
      are finalized, regardless of whether an error occurs during processing
      or not.
For example, some servers require connections to be closed in
      order to terminate a session. Similarly, output files may require close
      calls to flush their buffers to disk for waiting consumers, and input
      files may consume file descriptors if not closed; although file objects
      are automatically closed when garbage-collected if still open, in some
      Pythons it may be difficult to be sure when that will occur.
As we saw in Chapter 34, the most
      general and explicit way to guarantee termination actions for a specific
      block of code is the try/finally statement:
myfile = open(r'C:\code\textdata', 'w')
try:
    ...process myfile...
finally:
    myfile.close()
As we also saw, some objects make this potentially easier in
      Python 2.6, 3.0, and later by providing context managers that
      terminate or close the objects for us automatically when run by the
      with/as statement:
with open(r'C:\code\textdata', 'w') as myfile:
    ...process myfile...
So which option is better here? As usual, it depends on your
      programs. Compared to the traditional try/finally, context managers are more
      implicit, which runs contrary to Python’s general design
      philosophy. Context managers are also arguably less
      general—they are available only for select objects, and
      writing user-defined context managers to handle general termination
      requirements is more complex than coding a try/finally.
On the other hand, using existing context managers requires
      less code than using try/finally, as shown by the preceding examples.
      Moreover, the context manager protocol supports
      entry actions in addition to exit actions. In fact,
      it can save a line of code when no exceptions are expected at all
      (albeit at the expense of further nesting and indenting file processing
      logic):
myfile = open(filename, 'w')      # Traditional form
...process myfile...
myfile.close()

with open(filename) as myfile:    # Context manager form
    ...process myfile...
Still, the implicit exception processing of with makes it more directly comparable to the
      explicit exception handling of try/finally. Although try/finally
      is the more widely applicable technique, context managers may be
      preferable where they are already available, or where their extra
      complexity is warranted.

Debugging with Outer try Statements
You can also make use of exception handlers to replace Python’s default
      top-level exception-handling behavior. By wrapping an entire program (or
      a call to it) in an outer try in your
      top-level code, you can catch any exception that may occur while your
      program runs, thereby subverting the default program termination.
In the following, the empty except clause catches any uncaught exception
      raised while the program runs. To get hold of the actual exception that
      occurred in this mode, fetch the sys.exc_info function call result from the
      built-in sys module; it returns a
      tuple whose first two items contain the current exception’s class and
      the instance object raised (more on sys.exc_info in a
      moment):
try:
    ...run program...
except:                         # All uncaught exceptions come here
    import sys
    print('uncaught!', sys.exc_info()[0], sys.exc_info()[1])
This structure is commonly used during development, to keep
      programs active even after errors occur—within a loop, it allows you to
      run additional tests without having to restart. It’s also used when
      testing other program code, as described in the next section.
Note
On a related note, for more about handling program shutdowns
        without recovery from them, see also Python’s
        atexit standard library module.
        It’s also possible to customize what the top-level exception handler
        does with sys.excepthook. These and
        other related tools are described in Python’s library manual.


Running In-Process Tests
Some of the coding patterns we’ve just looked at can be combined in a
      test-driver application that tests other code within the same process.
      The following partial code sketches the general model:
import sys
log = open('testlog', 'a')
from testapi import moreTests, runNextTest, testName
def testdriver():
    while moreTests():
        try:
            runNextTest()
        except:
            print('FAILED', testName(), sys.exc_info()[:2], file=log)
        else:
            print('PASSED', testName(), file=log)
testdriver()
The testdriver function here
      cycles through a series of test calls (the module testapi is left abstract in this example).
      Because an uncaught exception in a test case would normally kill this
      test driver, you need to wrap test case calls in a try if you want to continue the testing
      process after a test fails. The empty except catches any uncaught exception
      generated by a test case as usual, and it uses sys.exc_info to
      log the exception to a file. The else
      clause is run when no exception occurs—the test success case.
Such boilerplate code is typical of systems that test functions, modules, and classes by
      running them in the same process as the test
      driver. In practice, however, testing can be much more sophisticated
      than this. For instance, to test external programs,
      you could instead check status codes or outputs generated by
      program-launching tools such as os.system and
      os.popen, used earlier in this book
      and covered in the standard library manual. Such tools do not generally
      raise exceptions for errors in the external programs—in fact, the test
      cases may run in parallel with the test driver.
At the end of this chapter, we’ll also briefly meet more complete
      testing frameworks provided by Python, such as doctest and PyUnit, which provide tools for
      comparing expected outputs with actual results.

More on sys.exc_info
The sys.exc_info result used in
      the last two sections allows an exception handler to gain access to the
      most recently raised exception generically. This is especially useful
      when using the empty except clause to
      catch everything blindly, to determine what was raised:
try:
    ...
except:
    # sys.exc_info()[0:2] are the exception class and instance
If no exception is being handled, this call returns a tuple
      containing three None values.
      Otherwise, the values returned are (type, value, traceback), where:
	type is the exception class of the
          exception being handled.

	value is the exception class
          instance that was raised.

	traceback is a traceback
          object that represents the call stack at the point where the
          exception originally occurred, and used by the traceback module to generate error
          messages.


As we saw in the prior chapter, sys.exc_info can also sometimes be useful to
      determine the specific exception type when catching exception category
      superclasses. As we’ve also learned, though, because in this case you
      can also get the exception type by fetching the __class__
      attribute of the instance obtained with the as clause, sys.exc_info is often redundant apart from the
      empty except:
try:
    ...
except General as instance:
    # instance.__class__ is the exception class
As we’ve seen, using Exception for the
      General exception name here would catch all
      nonexit exceptions, similar to an empty except but less extreme, and still giving
      access to the exception instance and its class. Even so, using the
      instance object’s interfaces and polymorphism is
      often a better approach than testing exception types—exception
      methods can be defined per class and run generically:
try:
    ...
except General as instance:
    # instance.method() does the right thing for this instance
As usual, being too specific in Python can limit your code’s
      flexibility. A polymorphic approach like the last example here generally
      supports future evolution better than explicitly type-specific tests or
      actions.

Displaying Errors and Tracebacks
Finally, the exception traceback object available in the prior section’s sys.exc_info result is also used by the
      standard library’s traceback module
      to generate the standard error message and stack display
      manually. This file has a handful of interfaces that support wide
      customization, which we don’t have space to cover usefully here, but the
      basics are simple. Consider the following aptly named file, badly.py:
import traceback

def inverse(x):
    return 1 / x


try:
    inverse(0)
except Exception:
    traceback.print_exc(file=open('badly.exc', 'w'))
print('Bye')
This code uses the print_exc
      convenience function in the traceback
      module, which uses sys.exc_info data
      by default; when run, the script prints the error message to a
      file—handy in testing programs that need to catch errors but still
      record them in full:
c:\code> python badly.py
Bye

c:\code> type badly.exc
Traceback (most recent call last):
  File "badly.py", line 7, in <module>
    inverse(0)
  File "badly.py", line 4, in inverse
    return 1 / x
ZeroDivisionError: division by zero
For much more on traceback objects, the traceback module that uses them, and related
      topics, consult other reference resources and manuals.
Note
Version skew note: In Python 2.X, the older
        tools sys.exc_type and sys.exc_value still work to fetch the most
        recent exception type and value, but they can manage only a single,
        global exception for the entire process. These two names have been
        removed in Python 3.X. The newer and preferred sys.exc_info() call available in both 2.X
        and 3.X instead keeps track of each thread’s exception information,
        and so is thread-specific. Of course, this distinction matters only
        when using multiple threads in Python programs (a subject beyond this
        book’s scope), but 3.X forces the issue. See other resources for more
        details.



Exception Design Tips and Gotchas
I’m lumping design tips and gotchas together in this chapter, because it
    turns out that the most common gotchas largely stem from design issues. By
    and large, exceptions are easy to use in Python. The real art behind them
    is in deciding how specific or general your except clauses should be and how much code to
    wrap up in try statements. Let’s
    address the second of these concerns first.
What Should Be Wrapped
In principle, you could wrap every statement in your script in its own try, but that would just be silly (the
      try statements would then need to be
      wrapped in try statements!). What to
      wrap is really a design issue that goes beyond the language itself, and
      it will become more apparent with use. But for now, here are a few rules
      of thumb:
	Operations that commonly fail should generally be wrapped in
          try statements. For example,
          operations that interface with system state (file opens, socket
          calls, and the like) are prime candidates for try.

	However, there are exceptions to the prior rule—in a simple
          script, you may want failures of such
          operations to kill your program instead of being caught and ignored.
          This is especially true if the failure is a showstopper. Failures in
          Python typically result in useful error messages (not hard crashes),
          and this is the best outcome some programs could hope for.

	You should implement termination actions in try/finally statements to guarantee their
          execution, unless a context manager is available as a with/as
          option. The try/finally statement form allows you to run
          code whether exceptions occur or not in arbitrary scenarios.

	It is sometimes more convenient to wrap the call to a large
          function in a single try
          statement, rather than littering the function itself with many
          try statements. That way, all
          exceptions in the function percolate up to the try around the call, and you reduce the
          amount of code within the function.


The types of programs you write will probably influence the amount
      of exception handling you code as well. Servers,
      for instance, must generally keep running persistently and so will
      likely require try statements to
      catch and recover from exceptions. In-process
      testing programs of the kind we saw in this chapter
      will probably handle exceptions as well. Simpler one-shot scripts,
      though, will often ignore exception handling completely because failure
      at any step requires script shutdown.

Catching Too Much: Avoid Empty except and Exception
As mentioned, exception handler generality is a key design choice. Python lets you
      pick and choose which exceptions to catch, but you sometimes have to be
      careful to not be too inclusive. For example, you’ve seen that an empty
      except clause catches
      every exception that might be raised while the code
      in the try block runs.
That’s easy to code, and sometimes desirable, but you may also
      wind up intercepting an error that’s expected by a try handler higher up in the exception nesting
      structure. For example, an exception handler such as the following
      catches and stops every exception that reaches it,
      regardless of whether another handler is waiting for it:
def func():
    try:
        ...                      # IndexError is raised in here
    except:
        ...                      # But everything comes here and dies!
try:
    func()
except IndexError:               # Exception should be processed here
    ...
Perhaps worse, such code might also catch unrelated system
      exceptions. Even things like memory errors, genuine programming
      mistakes, iteration stops, keyboard interrupts, and system exits raise
      exceptions in Python. Unless you’re writing a debugger or similar tool,
      such exceptions should not usually be intercepted in your code.
For example, scripts normally exit when control falls off the end
      of the top-level file. However, Python also provides a built-in sys.exit(statuscode) call to allow early terminations. This
      actually works by raising a built-in SystemExit
      exception to end the program, so that try/finally
      handlers run on the way out and special types of programs can intercept
      the event.1 Because of this, a try
      with an empty except might
      unknowingly prevent a crucial exit, as in the following file (exiter.py):
import sys
def bye():
    sys.exit(40)                 # Crucial error: abort now!
try:
    bye()
except:
    print('got it')              # Oops--we ignored the exit
print('continuing...')

% python exiter.py
got it
continuing...
You simply might not expect all the kinds of exceptions that could
      occur during an operation. Using the built-in exception classes of the
      prior chapter can help in this particular case, because the Exception superclass is not a superclass of
      SystemExit:
try:
    bye()
except Exception:                # Won't catch exits, but _will_ catch many others
    ...
In other cases, though, this scheme is no better than an empty
      except clause—because Exception is a superclass above all built-in
      exceptions except system-exit events, it still has the potential to
      catch exceptions meant for elsewhere in the program.
Probably worst of all, both using an empty
      except and catching the Exception superclass will also catch genuine
      programming errors, which should be allowed to pass most of the time. In
      fact, these two techniques can effectively turn off
      Python’s error-reporting machinery, making it difficult to notice
      mistakes in your code. Consider this code, for example:
mydictionary = {...}
...
try:
    x = myditctionary['spam']    # Oops: misspelled
except:
    x = None                     # Assume we got KeyError
...continue here with x...
The coder here assumes that the only sort of error that can happen
      when indexing a dictionary is a missing key error. But because the name
      myditctionary is misspelled (it
      should say mydictionary), Python
      raises a NameError instead for the
      undefined name reference, which the handler will silently catch and
      ignore. The event handler will incorrectly fill in a None default for the dictionary access,
      masking the program error.
Moreover, catching Exception
      here will not help—it would have the exact same effect as an empty
      except, happily and silently filling
      in a default and masking a genuine program error you will probably want
      to know about. If this happens in code that is far removed from the
      place where the fetched values are used, it might make for a very
      interesting debugging task!
As a rule of thumb, be as specific in your
      handlers as you can be—empty except
      clauses and Exception catchers are
      handy, but potentially error-prone. In the last example, for instance,
      you would be better off saying except
      KeyError: to make your intentions explicit and avoid
      intercepting unrelated events. In simpler scripts, the potential for
      problems might not be significant enough to outweigh the convenience of
      a catchall, but in general, general handlers are generally trouble.

Catching Too Little: Use Class-Based Categories
On the other hand, neither should handlers be too specific. When you list
      specific exceptions in a try, you
      catch only what you actually list. This isn’t necessarily a bad thing,
      but if a system evolves to raise other exceptions in the future, you may
      need to go back and add them to exception lists elsewhere in your
      code.
We saw this phenomenon at work in the prior chapter. For instance,
      the following handler is written to treat MyExcept1 and MyExcept2 as normal cases and everything else
      as an error. If you add a MyExcept3
      in the future, though, it will be processed as an error unless you
      update the exception list:
try:
    ...
except (MyExcept1, MyExcept2):   # Breaks if you add a MyExcept3 later
    ...                          # Nonerrors
else:
    ...                          # Assumed to be an error
Luckily, careful use of the class-based exceptions we discussed in
      Chapter 34 can make this code
      maintenance trap go away completely. As we saw, if you catch a general
      superclass, you can add and raise more specific subclasses in the future
      without having to extend except
      clause lists manually—the superclass becomes an extendible exceptions
      category:
try:
    ...
except SuccessCategoryName:      # OK if you add a MyExcept3 subclass later
    ...                          # Nonerrors
else:
    ...                          # Assumed to be an error
In other words, a little design goes a long way. The moral of the
      story is to be careful to be neither too general nor too specific in
      exception handlers, and to pick the granularity of your try statement wrappings wisely. Especially in
      larger systems, exception policies should be a part of the overall
      design.


Core Language Summary
Congratulations! This concludes your look at the fundamentals of the
    Python programming language. If you’ve gotten this far, you’ve become a
    fully operational Python programmer. There’s more optional reading in the
    advanced topics part ahead that I’ll describe in a moment. In terms of the
    essentials, though, the Python story—and this book’s main journey—is now
    complete.
Along the way, you’ve seen just about everything there is to see in
    the language itself, and in enough depth to apply to most of the code you
    are likely to encounter in the open source “wild.” You’ve studied built-in
    types, statements, and exceptions, as well as tools used to build up the
    larger program units of functions, modules, and classes. You’ve also
    explored important software design issues, the complete OOP paradigm,
    functional programming tools, program architecture concepts, alternative
    tool tradeoffs, and more—compiling a skill set now qualified to be turned
    loose on the task of developing real applications.
The Python Toolset
From this point forward, your future Python career will largely consist of
      becoming proficient with the toolset available for application-level
      Python programming. You’ll find this to be an ongoing task. The standard
      library, for example, contains hundreds of modules, and the public
      domain offers still more tools. It’s possible to spend decades seeking
      proficiency with all these tools, especially as new ones are constantly
      appearing to address new technologies (trust me on this—I’m at 20 years
      and counting!).
Speaking generally, Python provides a hierarchy of
      toolsets:
	Built-ins
	Built-in types like strings, lists, and dictionaries make it
            easy to write simple programs fast.

	Python extensions
	For more demanding tasks, you can extend Python by writing
            your own functions, modules, and classes.

	Compiled extensions
	Although we don’t cover this topic in this book, Python can
            also be extended with modules written in an external language like
            C or C++.


Because Python layers its toolsets, you can decide how deeply your
      programs need to delve into this hierarchy for any given task—you can
      use built-ins for simple scripts, add Python-coded extensions for larger
      systems, and code compiled extensions for advanced work. We’ve only
      covered the first two of these categories in this book, and that’s
      plenty to get you started doing substantial programming in
      Python.
Beyond this, there are tools, resources, or precedents for using
      Python in nearly any computer domain you can imagine. For pointers on
      where to go next, see Chapter 1’s overview
      of Python applications and users. You’ll likely find that with a
      powerful open source language like Python, common tasks are often much
      easier, and even enjoyable, than you might expect.

Development Tools for Larger Projects
Most of the examples in this book have been fairly small and self-contained.
      They were written that way on purpose, to help you master the basics.
      But now that you know all about the core language, it’s time to start
      learning how to use Python’s built-in and third-party interfaces to do
      real work.
In practice, Python programs can become substantially larger than
      the examples you’ve experimented with so far in this book. Even in
      Python, thousands of lines of code are not uncommon
      for nontrivial and useful programs, once you add up all the individual
      modules in the system. Though Python basic program structuring tools
      such as modules and classes help much to manage this complexity, other
      tools can sometimes offer additional support.
For developing larger systems, you’ll find such support available
      in both Python and the public domain. You’ve seen some of these in
      action, and I’ve mentioned a few others. To help you on your next steps,
      here is a quick tour and summary of some of the most commonly used tools
      in this domain:
	PyDoc and docstrings
	PyDoc’s help function and
            HTML interfaces were introduced in Chapter 15. PyDoc provides a
            documentation system for your modules and objects, integrates with
            Python’s docstrings syntax, and is a standard part
            of the Python system. See Chapter 15 and Chapter 4 for more
            documentation source hints.

	PyChecker and PyLint
	Because Python is such a dynamic language, some programming
            errors are not reported until your program runs (even syntax
            errors are not caught until a file is run or imported). This isn’t
            a big drawback—as with most languages, it just means that you have
            to test your Python code before shipping it. At worst, with Python
            you essentially trade a compile phase for an initial testing
            phase. Furthermore, Python’s dynamic nature, automatic error
            messages, and exception model make it easier and quicker to find
            and fix errors than it is in some other languages. Unlike C, for
            example, Python does not crash completely on errors.
Still, tools can help here too. The PyChecker and PyLint
            systems provide support for catching common errors ahead of time,
            before your script runs. They serve similar roles to the
            lint program in C development. Some Python
            developers run their code through PyChecker prior to testing or
            delivery, to catch any lurking potential problems. In fact, it’s
            not a bad idea to try this when you’re first starting out—some of
            these tools’ warnings may help you learn to spot and avoid common
            Python mistakes. PyChecker and PyLint are third-party open source
            packages, available at the PyPI website or your friendly
            neighborhood web search engine. They may appear in IDE GUIs as
            well.

	PyUnit (a.k.a. unittest)
	In Chapter 25, we learned how to add self-test code to a Python file
            by using the __name__ ==
            '__main__' trick at the bottom of the file—a simple
            unit-testing protocol. For more advanced testing purposes, Python
            comes with two testing support tools. The first, PyUnit (called
            unittest in the library manual), provides an object-oriented class
            framework for specifying and customizing test cases and expected
            results. It mimics the JUnit framework for Java. This is a
            sophisticated class-based unit testing system; see the Python
            library manual for details.

	doctest
	The doctest standard
            library module provides a second and simpler approach to
            regression testing, based upon Python’s docstrings feature.
            Roughly, to use doctest, you
            cut and paste a log of an interactive testing session into the
            docstrings of your source files. doctest then extracts your docstrings,
            parses out the test cases and results, and reruns the tests to
            verify the expected results. doctest’s operation can be tailored in a
            variety of ways; see the library manual for more details.

	IDEs
	We discussed IDEs for Python in Chapter 3. IDEs such as IDLE provide a
            graphical environment for editing, running, debugging, and
            browsing your Python programs. Some advanced IDEs—such as Eclipse,
            Komodo, NetBeans, and others listed in Chapter 3—may support additional
            development tasks, including source control integration, code
            refactoring, project management tools, and more. See Chapter 3, the text editors page at http://www.python.org, and your favorite web search
            engine for more on available IDEs and GUI builders for
            Python.

	Profilers
	Because Python is so high-level and dynamic, intuitions about performance gleaned from
            experience with other languages usually don’t apply to Python
            code. To truly isolate performance bottlenecks in your code, you
            need to add timing logic with clock tools in the time or timeit modules, or run your code under
            the profile module. We saw an
            example of the timing modules at work when comparing the speed of
            iteration tools and Pythons in Chapter 21.
Profiling is usually your first optimization step—code for
            clarity, then profile to isolate bottlenecks, and then time
            alternative codings of the slow parts of your program. For the
            second of these steps, profile
            is a standard library module that implements a source code
            profiler for Python. It runs a string of code you provide (e.g., a
            script file import, or a call to a function) and then, by default,
            prints a report to the standard output stream that gives
            performance statistics—number of calls to each function, time
            spent in each function, and more.
The profile module can be
            run as a script or imported, and it may be customized in various
            ways; for example, it can save run statistics to a file to be
            analyzed later with the pstats
            module. To profile interactively, import the profile module and call profile.run('code'), passing in the code
            you wish to profile as a string (e.g., a call to a function, an
            import of a file, or code read from a file). To profile from a
            system shell command line, use a command of the form python -m profile main.py
            args (see Appendix A for more on this
            format). Also see Python’s standard library manuals for other
            profiling options; the cProfile
            module, for example, has identical interfaces to profile but runs with less overhead, so
            it may be better suited to profiling long-running programs.

	Debuggers
	We also discussed debugging options in Chapter 3 (see its sidebar “Debugging Python Code”). As a review, most development
            IDEs for Python support GUI-based debugging, and the Python
            standard library also includes a source code debugger module
            called pdb. This module
            provides a command-line interface and works much like common C
            language debuggers (e.g., dbx,
            gdb).
Much like the profiler, the pdb
            debugger can be run either interactively or from a command
            line and can be imported and called from a Python program. To use
            it interactively, import the module, start running code by calling
            a pdb function (e.g., pdb.run('main()')), and then type
            debugging commands from pdb’s interactive
            prompt. To launch pdb from a system shell
            command line, use a command of the form python -m pdb main.py
            args. pdb also
            includes a useful postmortem analysis call, pdb.pm(), which starts the debugger
            after an exception has been encountered, possibly in conjunction
            with Python’s -i flag. See
            Appendix A for more on
            these tools.
Because IDEs such as IDLE also include point-and-click
            debugging interfaces, pdb isn’t as critical a
            tool today, except when a GUI isn’t available or when more control
            is desired. See Chapter 3 for tips
            on using IDLE’s debugging GUI interfaces. Really, neither
            pdb nor IDEs seem to be used much in
            practice—as noted in Chapter 3, most
            programmers either insert print
            statements or simply read Python’s error messages: perhaps not the
            most high-tech of approaches, but the practical tends to win the
            day in the Python world!

	Shipping options
	In Chapter 2, we
            introduced common tools for packaging Python programs. py2exe,
            PyInstaller, and others listed in that chapter can package byte code
            and the Python Virtual Machine into “frozen binary” standalone
            executables, which don’t require that Python be installed on the
            target machine and hide your system’s code. In addition, we
            learned in Chapter 2 that Python
            programs may be shipped in their source (.py) or byte code (.pyc) forms, and that import hooks
            support special packaging techniques such as automatic extraction
            of .zip files and byte code
            encryption.
We also briefly met the standard library’s distutils modules, which provide
            packaging options for Python modules and packages, and C-coded
            extensions; see the Python manuals for more details. The emerging
            Python “eggs” third-party packaging system provides another
            alternative that also accounts for dependencies; search the Web
            for more details.

	Optimization options
	When speed counts, there are a handful of options for optimizing your programs. The
            PyPy system described in Chapter 2 provides a just-in-time
            compiler for translating Python byte code to binary machine code,
            and Shed Skin offers a Python-to-C++ translator. You may also
            occasionally see .pyo
            optimized byte code files, generated and run with the -O Python command-line flag discussed in
            Chapter 22 and Chapter 34, and to be deployed in Chapter 39; because this provides a very modest
            performance boost, however, it is not commonly used except to
            remove debugging code.
As a last resort, you can also move parts of your program to
            a compiled language such as C to boost performance. See the book
            Programming
            Python and the Python standard manuals for more on C
            extensions. In general, Python’s speed tends to also improve over
            time, so upgrading to later releases may improve speed too—once
            you verify that they are faster for your code, that is (though
            largely repaired since, Python 3.0’s initial release was up to
            1000X slower than 2.X on some IO operations!).

	Other hints for larger projects
	We’ve met a variety of core language features in this text
            that will also tend to become more useful once you start coding
            larger projects. These include module packages (Chapter 24), class-based exceptions (Chapter 34), class pseudoprivate attributes (Chapter 31), documentation strings (Chapter 15), module path
            configuration files (Chapter 22), hiding names from
            from * with __all__ lists and _X-style names (Chapter 25), adding self-test code with
            the __name__ == '__main__'
            trick (Chapter 25), using common
            design rules for functions and modules (Chapter 17,
            Chapter 19, and Chapter 25), using object-oriented design
            patterns (Chapter 31 and others),
            and so on.


To learn about other large-scale Python development tools
      available in the public domain, be sure to browse the pages at the PyPI
      website at http://www.python.org, and the Web at large. Applying
      Python is actually a larger topic than learning Python, and one we’ll
      have to delegate to follow-up resources here.


Chapter Summary
This chapter wrapped up the exceptions part of the book with a
    survey of design concepts, a look at common exception use cases, and a
    brief summary of commonly used development tools.
This chapter also wrapped up the core material of this book. At this
    point, you’ve been exposed to the full subset of Python that most
    programmers use—and probably more. In fact, if you have read this far, you
    should feel free to consider yourself an official Python
    programmer. Be sure to pick up a t-shirt or laptop sticker the
    next time you’re online (and don’t forget to add Python to your résumé the
    next time you dig it out).
The next and final part of this book is a collection of chapters
    dealing with topics that are advanced, but still in the core language
    category. These chapters are all optional reading, or
    at least deferrable reading, because not every Python
    programmer must delve into their subjects, and others can postpone these
    chapters’ topics until they are needed. Indeed, many of you can stop here
    and begin exploring Python’s roles in your application domains. Frankly,
    application libraries tend to be more important in practice than
    advanced—and to some, esoteric—language features.
On the other hand, if you do need to care about things like Unicode
    or binary data, have to deal with API-building tools such as descriptors,
    decorators, and metaclasses, or just want to dig a bit further in general,
    the next part of the book will help you get started. The larger examples
    in the final part will also give you a chance to see the concepts you’ve
    already learned being applied in more realistic ways.
As this is the end of the core material of this book, though, you
    get a break on the chapter quiz—just one question this time. As always, be
    sure to work through this part’s closing exercises to cement what you’ve
    learned in the past few chapters; because the next part is optional
    reading, this is the final end-of-part exercises session. If you want to
    see some examples of how what you’ve learned comes together in real
    scripts drawn from common applications, be sure to check out the
    “solution” to exercise 4 in Appendix D.
And if this is the end of your journey in this book, be sure to also
    see the “Encore” section at the end of Chapter 41,
    the very last chapter in this book (for the sake of readers continuing on
    to the Advanced Topics part, I won’t spill the beans here).

Test Your Knowledge: Quiz
	(This question is a repeat from the first quiz in Chapter 1—see, I told you it would be easy!
        :-) Why does “spam” show up in so many Python examples in books and on
        the Web?



Test Your Knowledge: Answers
	Because Python is named after the British comedy group Monty
        Python (based on surveys I’ve conducted in classes, this is a
        much-too-well-kept secret in the Python world!). The spam reference
        comes from a Monty Python skit, set in a cafeteria whose menu items
        all seem to come with Spam. A couple trying to order food there keeps
        getting drowned out by a chorus of Vikings singing a song about Spam.
        No, really. And if I could insert an audio clip of that song here, I
        would...



Test Your Knowledge: Part VII Exercises
As we’ve reached the end of this part of the book, it’s time for a few
    exception exercises to give you a chance to practice the basics.
    Exceptions really are simple tools; if you get these, you’ve probably
    mastered the exceptions domain. See “Part VII, Exceptions and Tools” in Appendix D for the solutions.
	try/except. Write a function called oops that explicitly raises an IndexError exception when called. Then write
        another function that calls oops
        inside a try/except statement to catch the error. What
        happens if you change oops to raise
        a KeyError
        instead of an IndexError? Where do
        the names KeyError and IndexError come from? (Hint: recall that all
        unqualified names generally come from one of four scopes.)

	Exception objects and lists. Change the
        oops function you just wrote to
        raise an exception you define yourself, called MyError. Identify your exception with a
        class (unless you’re using Python 2.5 or earlier, you must). Then,
        extend the try statement in the
        catcher function to catch this exception and its instance in addition
        to IndexError, and print the
        instance you catch.

	Error handling. Write a function called
        safe(func, *pargs, **kargs) that
        runs any function with any number of positional and/or keyword
        arguments by using the * arbitrary
        arguments header and call syntax, catches any exception raised while
        the function runs, and prints the exception using the exc_info call in the sys module. Then use your safe function to run your oops function from exercise 1 or 2. Put
        safe in a module file called
        exctools.py, and pass it the
        oops function interactively. What
        kind of error messages do you get? Finally, expand safe to also print a Python stack trace when
        an error occurs by calling the built-in print_exc function in the standard traceback module; see earlier in this
        chapter, and consult the Python library reference manual for usage
        details. We could probably code safe as a function
        decorator using Chapter 32
        techniques, but we’ll have to move on to the next part of the book to
        learn fully how (see the solutions for a preview).

	Self-study examples. At the end of Appendix D, I’ve included a
        handful of example scripts developed as group exercises in live Python
        classes for you to study and run on your own in conjunction with
        Python’s standard manual set. These are not described, and they use
        tools in the Python standard library that you’ll have to research on
        your own. Still, for many readers, it helps to see how the concepts
        we’ve discussed in this book come together in real programs. If these
        whet your appetite for more, you can find a wealth of larger and more
        realistic application-level Python program examples in follow-up books
        like Programming
        Python and on the Web.



1 A related call, os._exit,
          also ends a program, but via an immediate termination—it skips
          cleanup actions, including any registered with the atexit module noted earlier, and cannot be
          intercepted with try/except or try/finally blocks. It is usually used only in
          spawned child processes, a topic beyond this book’s scope. See the
          library manual or follow-up texts for details.








Part VIII. Advanced Topics








Chapter 37. Unicode and Byte Strings
So far, our exploration of strings in this book has been deliberately
  incomplete. Chapter 4’s types
  preview briefly introduced Python’s Unicode strings and files without giving
  many details, and the strings chapter in the core types
  part of this book (Chapter 7) deliberately
  limited its scope to the subset of string topics that most Python
  programmers need to know about.
This was by design: because many programmers, including most
  beginners, deal with simple forms of text like ASCII, they can happily work
  with Python’s basic str string type and
  its associated operations and don’t need to come to grips with more advanced
  string concepts. In fact, such programmers can often ignore the string
  changes in Python 3.X and continue to use strings as they may have in the
  past.
On the other hand, many other programmers deal with more specialized
  types of data: non-ASCII character sets, image file contents, and so on. For
  those programmers, and others who may someday join them, in this chapter
  we’re going to fill in the rest of the Python string story and look at some
  more advanced concepts in Python’s string model.
Specifically, we’ll explore the basics of Python’s support for
  Unicode text—rich character strings used in
  internationalized applications—as well as binary
  data—strings that represent absolute byte values. As we’ll see,
  the advanced string representation story has diverged in
  recent versions of Python:
	Python 3.X provides an alternative string
      type for binary data, and supports Unicode text (including ASCII) in its
      normal string type.

	Python 2.X provides an alternative string
      type for non-ASCII Unicode text, and supports both simple text and
      binary data in its normal string type.


In addition, because Python’s string model has a direct impact on how
  you process non-ASCII files, we’ll explore the
  fundamentals of that related topic here as well. Finally, we’ll take a brief
  look at some advanced string and binary tools, such as
  pattern matching, object pickling, binary data packing, and XML parsing, and
  the ways in which they are impacted by 3.X’s string changes.
This is officially an advanced topics chapter, because not all
  programmers will need to delve into the worlds of Unicode encodings or
  binary data. For some readers, Chapter 4’s preview may suffice, and
  others may wish to file this chapter away for future reference. If you ever
  need to care about processing either of these, though, you’ll find that
  Python’s string models provide the support you need.
String Changes in 3.X
One of the most noticeable changes in the Python 3.X line is the
    mutation of string object types. In a nutshell, 2.X’s str and unicode types have morphed into 3.X’s bytes and str
    types, and a new mutable bytearray type
    has been added. The bytearray type is technically available in
    Python 2.6 and 2.7 too (though not earlier), but it’s a back-port from 3.X
    and does not as clearly distinguish between text and binary content in
    2.X.
Especially if you process data that is either Unicode or binary in
    nature, these changes can have substantial impacts on your code. As a
    general rule of thumb, how much you need to care about this topic depends
    in large part upon which of the following categories you fall into:
	If you deal with non-ASCII Unicode text—for
        instance, in the context of internationalized domains like the Web, or
        the results of some XML and JSON parsers and databases—you will find
        support for text encodings to be different in 3.X, but also probably
        more direct, accessible, and seamless than in 2.X.

	If you deal with binary data—for example,
        in the form of image or audio files or packed data processed with the
        struct module—you will need to
        understand 3.X’s new bytes object
        and 3.X’s different and sharper distinction between text and binary
        data and files.

	If you fall into neither of the prior two
        categories, you can generally use strings in 3.X much as you would in
        2.X, with the general str string
        type, text files, and all the familiar string operations we studied
        earlier. Your strings will be encoded and decoded by 3.X using your
        platform’s default encoding (e.g., ASCII, UTF-8, or Latin-1—locale.getpreferredencoding(False) gives
        your open default if you care to check), but you probably won’t
        notice.


In other words, if your text is always ASCII, you can get by with
    normal string objects and text files and can avoid most of the following
    story for now. As we’ll see in a moment, ASCII is a simple kind of Unicode
    and a subset of other encodings, so string operations and files generally
    “just work” if your programs process only ASCII text.
Even if you fall into the last of the three categories just
    mentioned, though, a basic understanding of Unicode and 3.X’s string model
    can help both to demystify some of the underlying behavior now, and to
    make mastering Unicode or binary data issues easier if they impact you
    later.
To put that more strongly: like it or not, Unicode will be part of
    most software development in the interconnected future we’ve sown, and
    will probably impact you eventually. Though applications are beyond our
    scope here, if you work with the Internet, files, directories, network
    interfaces, databases, pipes, JSON, XML, and even GUIs, Unicode may no
    longer be an optional topic for you in Python 3.X.
Python 3.X’s support for Unicode and binary data is also available
    in 2.X, albeit in different forms. Although our main focus in this chapter
    is on string types in 3.X, we’ll also explore how 2.X’s equivalent support
    differs along the way for readers using 2.X. Regardless of which version
    you use, the tools we’ll explore here can become important in many types
    of programs.

String Basics
Before we look at any code, let’s begin with a general overview of Python’s
    string model. To understand why 3.X changed the way it did on this front,
    we have to start with a brief look at how characters are actually
    represented in computers—both when encoded in files and when stored in
    memory.
Character Encoding Schemes
Most programmers think of strings as series of characters used to represent textual
      data. While that’s accurate, the way characters are stored can vary,
      depending on what sort of character set must be recorded. When text is
      stored on files, for example, its character set determines its
      format.
Character sets are standards that assign integer codes to individual characters so they
      can be represented in computer memory. The ASCII
      standard, for example, was created in the U.S., and it
      defines many U.S. programmers’ notion of text strings. ASCII defines
      character codes from 0 through 127 and allows each character to be
      stored in one 8-bit byte, only 7 bits of which are actually used.
For example, the ASCII standard maps the character 'a' to the integer value 97 (0x61 in hex), which can be stored in a
      single byte in memory and files. If you wish to see how this works,
      Python’s ord built-in function gives
      the binary identifying value for a character, and chr returns the character for a given integer
      code value:
>>> ord('a')          # 'a' is a byte coded as value 97 in ASCII (and others)
97
>>> hex(97)
'0x61'
>>> chr(97)           # Code value 97 stands for character 'a' in ASCII
'a'
Sometimes one byte per character isn’t enough, though. Various
      symbols and accented characters, for instance, do not fit into the range
      of possible characters defined by ASCII. To accommodate special
      characters, some standards use all the possible values in an 8-bit byte,
      0 through 255, to represent characters, and assign the values 128
      through 255 (outside ASCII’s range) to special characters.
One such standard, known as the Latin-1 character set, is widely
      used in Western Europe. In Latin-1, character codes above 127 are
      assigned to accented and otherwise special characters. The character
      assigned to byte value 196, for example, is a specially marked non-ASCII
      character:
>>> 0xC4
196
>>> chr(196)         # Python 3.X result form shown
'Ä'
This standard allows for a wide array of extra special characters,
      but still supports ASCII as a 7-bit subset of its 8-bit
      representation.
Still, some alphabets define so many characters that it is
      impossible to represent each of them as one byte.
      Unicode allows more flexibility. Unicode text is
      sometimes referred to as “wide-character” strings, because characters
      may be represented with multiple bytes if needed. Unicode is typically
      used in internationalized programs, to represent
      European, Asian, and other non-English character sets that have more
      characters than 8-bit bytes can represent.
To store such rich text in computer memory, we say that characters
      are translated to and from raw bytes using an
      encoding—the rules for translating a string of
      Unicode characters to a sequence of bytes, and extracting a string from
      a sequence of bytes. More procedurally, this translation back and forth
      between bytes and strings is defined by two terms:
	Encoding is the process of translating a
          string of characters into its raw bytes form, according to a desired
          encoding name.

	Decoding is the process of translating a
          raw string of bytes into its character string form, according to its
          encoding name.


That is, we encode from string to raw bytes,
      and decode from raw bytes to string. To scripts,
      decoded strings are just characters in memory, but may be encoded into a
      variety of byte string representations when stored on files, transferred
      over networks, embedded in documents and databases, and so on.
For some encodings, the translation process is trivial—ASCII and
      Latin-1, for instance, map each character to a
      fixed-size single byte, so no translation work is
      required. For other encodings, the mapping can be more complex and yield
      multiple bytes per character, even for simple 8-bit forms of
      text.
The widely used UTF-8 encoding, for example,
      allows a wide range of characters to be represented by employing a
      variable-sized number of bytes scheme. Character
      codes less than 128 are represented as a single byte; codes between 128
      and 0x7ff (2047) are turned into 2 bytes, where each byte has a value
      between 128 and 255; and codes above 0x7ff are turned into 3- or 4-byte
      sequences having values between 128 and 255. This keeps simple ASCII
      strings compact, sidesteps byte ordering issues, and avoids null (zero
      value) bytes that can cause problems for C libraries and
      networking.
Because their encodings’ character maps assign characters to the
      same codes for compatibility, ASCII is a subset of
      both Latin-1 and UTF-8. That is, a valid ASCII character string is also
      a valid Latin-1- and UTF-8-encoded string. For example, every ASCII file
      is a valid UTF-8 file, because the ASCII character set is a 7-bit subset
      of UTF-8.
Conversely, the UTF-8 encoding is binary compatible with ASCII,
      but only for character codes less than 128. Latin-1 and UTF-8 simply
      allow for additional characters: Latin-1 for characters mapped to values
      128 through 255 within a byte, and UTF-8 for characters that may be
      represented with multiple bytes.
Other encodings allow for richer character sets in different ways.
      UTF-16 and UTF-32, for
      example, format text with a fixed-size 2 and 4 bytes per each character
      scheme, respectively, even for characters that could otherwise fit in a
      single byte. Some encodings may also insert prefixes that identify byte
      ordering.
To see this for yourself, run a string’s encode method, which gives its encoded byte-string format under a named
      scheme—a two-character ASCII string is 2 bytes in ASCII, Latin-1, and
      UTF-8, but it’s much wider in UTF-16 and UTF-32, and includes header
      bytes:
>>> S = 'ni'
>>> S.encode('ascii'), S.encode('latin1'), S.encode('utf8')
(b'ni', b'ni', b'ni')

>>> S.encode('utf16'), len(S.encode('utf16'))
(b'\xff\xfen\x00i\x00', 6)

>>> S.encode('utf32'), len(S.encode('utf32'))
(b'\xff\xfe\x00\x00n\x00\x00\x00i\x00\x00\x00', 12)
These results differ slightly in Python 2.X (you won’t get the
      leading b for byte strings). But all
      of these encoding schemes—ASCII, Latin-1, UTF-8, and many others—are
      considered to be Unicode.
To Python programmers, encodings are specified as strings
      containing the encoding’s name. Python comes with roughly 100 different
      encodings; see the Python library reference for a complete list.
      Importing the module encodings and
      running help(encodings) shows you
      many encoding names as well; some are implemented in Python, and some in
      C. Some encodings have multiple names, too; for example,
      latin-1, iso_8859_1, and
      8859 are all synonyms for the same encoding,
      Latin-1. We’ll revisit encodings later in this chapter, when we study
      techniques for writing Unicode strings in a script.
For more on the underlying Unicode story, see the Python standard
      manual set. It includes a “Unicode HOWTO” in its “Python HOWTOs”
      section, which provides additional background that we will skip here in
      the interest of space.

How Python Stores Strings in Memory
The prior section’s encodings really only apply when text is stored or
      transferred externally, in files and other mediums. In memory, Python
      always stores decoded text strings in an
      encoding-neutral format, which may or may not use
      multiple bytes for each character. All text processing occurs in this
      uniform internal format. Text is translated to and from an
      encoding-specific format only when it is transferred to or from external
      text files, byte strings, or APIs with specific encoding requirements.
      Once in memory, though, strings have no encoding. They are just the
      string object presented in this book.
Though irrelevant to your code, it may help some readers to make
      this more tangible. The way Python actually stores text in memory is
      prone to change over time, and in fact mutated substantially as of 3.3:
	Python 3.2 and earlier
	Through Python 3.2, strings are stored internally in fixed-length
            UTF-16 (roughly, UCS-2) format with 2 bytes per character, unless
            Python is configured to use 4 bytes per character (UCS-4).

	Python 3.3 and later
	Python 3.3 and later instead use a
            variable-length scheme with 1, 2, or 4 bytes
            per character, depending on a string’s content. The size is chosen
            based upon the character with the largest Unicode ordinal value in
            the represented string. This scheme allows a space-efficient
            representation in common cases, but also allows for full UCS-4 on
            all platforms.


Python 3.3’s new scheme is an optimization, especially compared to
      former wide Unicode builds. Per Python documentation: memory footprint
      is divided by 2 to 4 depending on the text; encoding an ASCII string to
      UTF-8 doesn’t need to encode characters anymore, because its ASCII and
      UTF-8 representations are the same; repeating a single ASCII letter and
      getting a substring of an ASCII string is 4 times faster; UTF-8 is 2 to
      4 times faster; and UTF-16 encoding is up to 10 times faster. On some
      benchmarks, Python 3.3’s overall memory usage is 2 to 3 times smaller
      than 3.2, and similar to the less Unicode-centric 2.7.
Regardless of the storage scheme used, as noted in Chapter 6 Unicode clearly requires us to
      think of strings in terms of characters, instead of
      bytes. This may be a bigger hurdle for programmers
      accustomed to the simpler ASCII-only world where each character mapped
      to a single byte, but that idea no longer applies, in terms of both the
      results of text string tools and physical character size:
	Text tools
	Today, both string content and length really correspond to
            Unicode code points—identifying ordinal numbers for characters. For instance, the
            built-in ord function now
            returns a character’s Unicode code point ordinal, which is not
            necessarily an ASCII code, and which may or may not fit in a
            single 8-bit byte’s value. Similarly, len returns the number of characters, not bytes; the string is
            probably larger in memory, and its characters may not fit in bytes
            anyhow.

	Text size
	As we saw by example in Chapter 4, under Unicode a
            single character does not necessarily map directly to a single
            byte, either when encoded in a file or when stored in memory. Even
            characters in simple 7-bit ASCII text may not map to bytes—UTF-16
            uses multiple bytes per character in files, and Python may
            allocate 1, 2, or 4 bytes per character in memory. Thinking in
            terms of characters allows us to abstract away the details of
            external and internal storage.


The key point here, though, is that encoding
      pertains mostly to files and transfers. Once loaded into a Python
      string, text in memory has no notion of an “encoding,” and is simply a
      sequence of Unicode characters (a.k.a. code points) stored generically.
      In your script, that string is accessed as a Python string object—the
      next section’s topic.

Python’s String Types
At a more concrete level, the Python language provides string data
      types to represent character text in your scripts. The string types you
      will use in your scripts depend upon the version of Python you’re using.
      Python 2.X has a general string type for
      representing binary data and simple 8-bit text like ASCII, along with a
      specific type for representing richer Unicode text:
	str for representing 8-bit
          text and binary data

	unicode for representing
          decoded Unicode text


Python 2.X’s two string types are different (unicode allows for the extra size of some
      Unicode characters and has extra support for encoding and decoding), but
      their operation sets largely overlap. The str string type in 2.X is used for text that
      can be represented with 8-bit bytes (including ASCII and Latin-1), as
      well as binary data that represents absolute byte values.
By contrast, Python 3.X comes with three
      string object types—one for textual data and two for binary data:
	str for representing
          decoded Unicode text (including ASCII)

	bytes for representing
          binary data (including encoded text)

	bytearray, a mutable
          flavor of the bytes
          type


As mentioned earlier, bytearray
      is also available in Python 2.6 and 2.7, but it’s simply a back-port
      from 3.X with less content-specific behavior and is generally considered
      a 3.X type.
Why the different string types?
All three string types in 3.X support similar operation sets,
        but they have different roles. The main goal behind this change in 3.X
        was to merge the normal and Unicode string types
        of 2.X into a single string type that supports both simple and Unicode
        text: developers wanted to remove the 2.X string dichotomy and make
        Unicode processing more natural. Given that ASCII and other 8-bit text
        is really a simple kind of Unicode, this convergence seems logically
        sound.
To achieve this, 3.X stores text in a redefined str type—an immutable sequence of
        characters (not necessarily bytes), which may contain
        either simple text such as ASCII whose character values fit in single
        bytes, or richer character set text such as UTF-8 whose character
        values may require multiple bytes. Strings processed by your script
        with this type are stored generically in memory, and are encoded to
        and decoded from byte strings per either the platform Unicode default
        or an explicit encoding name. This allows scripts to translate text to
        different encoding schemes, both in memory and when transferring to
        and from files.
While 3.X’s new str type does
        achieve the desired string/unicode
        merging, many programs still need to process raw binary data that is
        not encoded per any text format. Image and audio files, as well as
        packed data used to interface with devices or C programs you might
        process with Python’s struct
        module, fall into this category. Because Unicode strings are decoded
        from bytes, they cannot be used to represent
        bytes.
To support processing of such truly binary data, a new string
        type, bytes, also was
        introduced—an immutable sequence of 8-bit
        integers representing absolute byte values, which prints as
        ASCII characters when possible. Though a distinct object type,
        bytes supports almost all the same
        operations that the str type does;
        this includes string methods, sequence operations, and even re module pattern matching, but not string
        formatting. In 2.X, the general str
        type fills this binary data role, because its strings are just
        sequences of bytes; the separate unicode type handles richer text
        strings.
In more detail, a 3.X bytes
        object really is a sequence of small integers, each of which is in the
        range 0 through 255; indexing a bytes returns an int, slicing one returns another bytes, and running the list built-in on one returns a list of
        integers, not characters. When processed with operations that assume
        characters, though, the contents of bytes objects are assumed to be
        ASCII-encoded bytes (e.g., the isalpha method assumes each byte is an ASCII
        character code). Further, bytes
        objects are printed as character strings instead of integers for
        convenience.
While they were at it, Python developers also added a bytearray type in 3.X. bytearray is a variant of bytes that is mutable
        and so supports in-place changes. It supports the usual string
        operations that str and bytes do, as well as many of the same
        in-place change operations as lists (e.g., the append and extend methods, and assignment to indexes).
        This can be useful both for truly binary data and simple types of
        text. Assuming your text strings can be treated as raw 8-bit bytes
        (e.g., ASCII or Latin-1 text), bytearray finally adds direct in-place
        mutability for text data—something not possible without conversion to
        a mutable type in Python 2.X, and not supported by Python 3.X’s
        str or bytes.
Although Python 2.X and 3.X offer much the same functionality,
        they package it differently. In fact, the mapping from 2.X to 3.X
        string types is not completely direct—2.X’s str equates to both str and bytes in 3.X, and 3.X’s str equates to both str and unicode in 2.X. Moreover, the mutability of
        3.X’s bytearray is unique.
In practice, though, this asymmetry is not as daunting as it
        might sound. It boils down to the following: in 2.X, you will use
        str for simple text and binary data
        and unicode for advanced forms of
        text whose character sets don’t map to 8-bit bytes; in 3.X, you’ll use
        str for any kind of text (ASCII,
        Latin-1, and all other kinds of Unicode) and bytes or bytearray for binary data. In practice, the
        choice is often made for you by the tools you use—especially in the
        case of file processing tools, the topic of the next section.


Text and Binary Files
File I/O (input and output) was also revamped in 3.X to reflect
      the str/bytes distinction and automatically support
      encoding Unicode text on transfers. Python now makes a sharp
      platform-independent distinction between text files and binary files; in
      3.X:
	Text files
	When a file is opened in text mode, reading
            its data automatically decodes its content and returns it as a
            str; writing takes a str and automatically encodes it before
            transferring it to the file. Both reads and writes translate per a
            platform default or a provided encoding name. Text-mode files also
            support universal end-of-line translation and additional encoding
            specification arguments. Depending on the encoding name, text
            files may also automatically process the byte order mark sequence
            at the start of a file (more on this momentarily).

	Binary files
	When a file is opened in binary mode by adding
            a b (lowercase only) to the
            mode-string argument in the built-in open call, reading its data does not
            decode it in any way but simply returns its content raw and
            unchanged, as a bytes object;
            writing similarly takes a bytes
            object and transfers it to the file unchanged. Binary-mode files
            also accept a bytearray object
            for the content to be written to the file.


Because the language sharply differentiates between str and bytes, you must decide whether your data is
      text or binary in nature and use either str or bytes objects to represent its content in your
      script, as appropriate. Ultimately, the mode in which you open a file
      will dictate which type of object your script will use to represent its
      content:
	If you are processing image files, data transferred over
          networks, packed binary data whose content you must extract, or some
          device data streams, chances are good that you will want to deal
          with it using bytes and
          binary-mode files. You might also opt for
          bytearray if you wish to update
          the data without making copies of it in memory.

	If instead you are processing something that is textual in
          nature, such as program output, HTML, email content, or CSV or XML
          files, you’ll probably want to use str and text-mode
          files.


Notice that the mode string argument to
      built-in function open (its second
      argument) becomes fairly crucial in Python 3.X—its content not only
      specifies a file processing mode, but also implies
      a Python object type. By adding a b to the mode string, you specify binary mode
      and will receive, or must provide, a bytes object to represent the file’s content
      when reading or writing. Without the b, your file is processed in text mode, and
      you’ll use str objects to represent
      its content in your script. For example, the modes rb, wb, and
      rb+ imply bytes; r,
      w+, and rt (the default) imply str.
Text-mode files also handle the byte order mark (BOM) sequence
      that may appear at the start of files under some encoding schemes. In
      the UTF-16 and UTF-32 encodings, for example, the BOM specifies big- or
      little-endian format (essentially, which end of a bit-string is most
      significant)—see the leading bytes in the results of the UTF-16 and
      UTF-32 encoding calls we ran earlier for examples. A UTF-8 text file
      might also include a BOM to declare that it is UTF-8 in general. When
      reading and writing data using these encoding schemes, Python skips or
      writes the BOM according to rules we’ll study later in this
      chapter.
In Python 2.X, the same behavior is supported, but normal files
      created by open are used to access
      bytes-based data, and Unicode files opened with the codecs.open call are used to process Unicode
      text data. The latter of these also encode and decode on transfer, as
      we’ll see later in this chapter. First, let’s explore Python’s Unicode
      string model live.


Coding Basic Strings
Let’s step through a few examples that demonstrate how the 3.X string types are
    used. One note up front: the code in this section was run with and applies
    to 3.X only. Still, basic string operations are generally portable across
    Python versions. Simple ASCII strings represented with the str type work the same in 2.X and 3.X (and
    exactly as we saw in Chapter 7 of this
    book).
Moreover, although there is no bytes type in Python 2.X (it has just the
    general str), it can usually run code
    that thinks there is—in 2.6 and 2.7, the call bytes(X) is present as a synonym for str(X), and the new literal form b'...' is taken to be the same as the normal
    string literal '...'. You may still run
    into version skew in some isolated cases, though; the 2.6/2.7 bytes call, for instance, does not require or
    allow the second argument (encoding name) that is required by 3.X’s
    bytes.
Python 3.X String Literals
Python 3.X string objects originate when you call a built-in function such as
      str or bytes, read a file created by calling open (described in the next section), or code
      literal syntax in your script. For the latter, a new literal form,
      b'xxx' (and equivalently, B'xxx') is used to create bytes objects in 3.X, and you may create
      bytearray objects by calling the
      bytearray function, with a variety of
      possible arguments.
More formally, in 3.X all the current string literal
      forms—'xxx', "xxx", and triple-quoted blocks—generate a
      str; adding a b or B just
      before any of them creates a bytes
      instead. This new b'...' bytes
      literal is similar in form to the r'...' raw string used to suppress backslash
      escapes. Consider the following, run in 3.X:
C:\code> C:\python33\python
>>> B = b'spam'               # 3.X bytes literal make a bytes object (8-bit bytes)
>>> S = 'eggs'                # 3.X str literal makes a Unicode text string

>>> type(B), type(S)
(<class 'bytes'>, <class 'str'>)

>>> B                         # bytes: sequence of int, prints as character string
b'spam'
>>> S
'eggs'
The 3.X bytes object is
      actually a sequence of short integers, though it prints its content as
      characters whenever possible:
>>> B[0], S[0]                # Indexing returns an int for bytes, str for str
(115, 'e')
>>> B[1:], S[1:]              # Slicing makes another bytes or str object
(b'pam', 'ggs')
>>> list(B), list(S)
([115, 112, 97, 109], ['e', 'g', 'g', 's'])     # bytes is really 8-bit small ints
The bytes object is also
      immutable, just like str (though
      bytearray, described later, is not);
      you cannot assign a str, bytes, or integer to an offset of a bytes object.
>>> B[0] = 'x'                                  # Both are immutable
TypeError: 'bytes' object does not support item assignment
>>> S[0] = 'x'
TypeError: 'str' object does not support item assignment
Finally, note that the bytes
      literal’s b or B prefix also works for any string literal
      form, including triple-quoted blocks, though you get back a string of
      raw bytes that may or may not map to characters:
>>> # bytes prefix works on single, double, triple quotes, raw
>>> B = B"""
... xxxx
... yyyy
... """
>>> B
b'\nxxxx\nyyyy\n'
Python 2.X Unicode literals in Python 3.3
Python 2.X’s u'xxx' and
        U'xxx' Unicode string literal forms were removed in Python 3.0 because they
        were deemed redundant—normal strings are Unicode in 3.X. To aid both
        forward and backward compatibility, though, they are available again
        as of 3.3, where they are treated as normal str strings:
C:\code> C:\python33\python
>>> U = u'spam'                   # 2.X Unicode literal accepted in 3.3+
>>> type(U)                       # It is just str, but is backward compatible
<class 'str'>
>>> U
'spam'
>>> U[0]
's'
>>> list(U)
['s', 'p', 'a', 'm']
These literals are gone in 3.0 through 3.2, where you must use
        'xxx' instead. You should generally
        use 3.X 'xxx' text literals in new
        3.X-only code, because the 2.X form is superfluous. However, in 3.3
        and later, using the 2.X literal form can ease the task of porting 2.X
        code, and boost 2.X code compatibility (for a case in point, see Chapter 25’s currency
        example, described in an upcoming note). Regardless of how text
        strings are coded in 3.X, though, they are all Unicode, even if they
        contain only ASCII characters (more on writing non-ASCII Unicode text
        in the section “Coding Non-ASCII Text”).


Python 2.X String Literals
All three of the 3.X string forms of the prior section can be
      coded in 2.X, but their meaning differs. As mentioned earlier, in Python
      2.6 and 2.7 the b'xxx' bytes literal
      is present for forward compatibility with 3.X, but is the same as
      'xxx' and makes a str (the b
      is ignored), and bytes is just a
      synonym for str; as you’ve seen, in
      3.X both of these address the distinct bytes type:
C:\code> C:\python27\python
>>> B = b'spam'                  # 3.X bytes literal is just str in 2.6/2.7
>>> S = 'eggs'                   # str is a bytes/character sequence

>>> type(B), type(S)
(<type 'str'>, <type 'str'>)
>>> B, S
('spam', 'eggs')
>>> B[0], S[0]
('s', 'e')
>>> list(B), list(S)
(['s', 'p', 'a', 'm'], ['e', 'g', 'g', 's'])
In 2.X the special Unicode literal and type accommodates richer
      forms of text:
>>> U = u'spam'                  # 2.X Unicode literal makes a distinct type
>>> type(U)                      # Works in 3.3 too, but is just a str there
<type 'unicode'>
>>> U
u'spam'
>>> U[0]
u's'
>>> list(U)
[u's', u'p', u'a', u'm']
As we saw, for compatibility this form works in 3.3 and later too,
      but it simply makes a normal str there (the
      u is ignored).

String Type Conversions
Although Python 2.X allowed str
      and unicode type objects to be mixed
      in expressions (when the str
      contained only 7-bit ASCII text), 3.X draws a much sharper
      distinction—str and bytes type objects never
      mix automatically in expressions and never are
      converted to one another automatically when passed to functions. A
      function that expects an argument to be a str object won’t generally accept a bytes, and vice versa.
Because of this, Python 3.X basically requires that you commit to
      one type or the other, or perform manual, explicit conversions when
      needed:
	str.encode() and bytes(S, encoding) translate a string to its raw bytes form and create an encoded
          bytes from a decoded str in the process.

	bytes.decode() and str(B, encoding) translate raw bytes into its string form and create a decoded
          str from an encoded bytes in the process.


Both these encode and decode methods and the file open calls we’ll explore ahead use either an explicitly passed-in encoding name or a default. In Python 3.X, the methods’ default is always UTF-8, but open uses a value in the locale module that may vary per platform. In 2.X both defaults are usually ASCII, as exposed in the sys module (which allows changes at start-up). For example, in 3.X:
>>> S = 'eggs'
>>> S.encode()                          # str->bytes: encode text into raw bytes
b'eggs'
>>> bytes(S, encoding='ascii')          # str->bytes, alternative
b'eggs'

>>> B = b'spam'
>>> B.decode()                          # bytes->str: decode raw bytes into text
'spam'
>>> str(B, encoding='ascii')            # bytes->str, alternative
'spam'
Two cautions here. First of all, your platform’s various default encodings are available in the sys and locale modules, but
      the encoding argument to bytes is not
      optional, even though it is in str.encode (and bytes.decode).
Second, although calls to str
      do not require the encoding argument like bytes does, leaving it off in str calls does not mean that it
      defaults—instead, a str call without
      an encoding returns the bytes
      object’s print string, not its str converted form (this is usually not what
      you’ll want!). Assuming B and
      S are still as in the prior
      listing:
>>> import sys, locale                  # Windows open() uses cp1252 (a Latin-1 superset)
>>> sys.platform                        # But str() never uses a default...
'win32'
>>> locale.getpreferredencoding(False), sys.getdefaultencoding()            
('cp1252', 'utf-8')

>>> bytes(S)
TypeError: string argument without an encoding

>>> str(B)                              # str without encoding
"b'spam'"                               # A print string, not conversion!
>>> len(str(B))
7
>>> len(str(B, encoding='ascii'))       # Use encoding to convert to str
4
When in doubt, pass in an encoding name argument in 3.X, even if
      it may have a default. Conversions are similar in Python
      2.X, though 2.X’s support for mixing string types in
      expressions makes conversions optional for ASCII text, and the tool
      names differ for the different string type model—conversions in 2.X
      occur between encoded str and decoded
      unicode, rather than 3.X’s encoded
      bytes and decoded str:
>>> S, U = 'spam', u'eggs'              # 2.X type string conversion tools
>>> S, U
('spam', u'eggs')
>>> unicode(S), str(U)                  # 2.X converts str->uni, uni->str
(u'spam', 'eggs')
>>> S.decode(), U.encode()              # versus 3.X byte->str, str->bytes
(u'spam', 'eggs')


Coding Unicode Strings
Encoding and decoding become more meaningful when you start dealing with
    non-ASCII Unicode text. To code arbitrary Unicode characters in your
    strings, some of which you might not even be able to type on your
    keyboard, Python string literals support both "\xNN" hex byte value escapes and "\uNNNN" and "\UNNNNNNNN" Unicode escapes in string literals.
    In Unicode escapes, the first form gives four hex digits to encode a
    2-byte (16-bit) character code point, and the second gives eight hex
    digits for a 4-byte (32-bit) code point. Byte strings support only hex
    escapes for encoded text and other forms of byte-based data.
Coding ASCII Text
Let’s step through some examples that demonstrate text coding basics. As we’ve
      seen, ASCII text is a simple type of Unicode, stored as a sequence of
      byte values that represent characters:
C:\code> C:\python33\python
>>> ord('X')             # 'X' is binary code point value 88 in the default encoding
88
>>> chr(88)              # 88 stands for character 'X'
'X'

>>> S = 'XYZ'            # A Unicode string of ASCII text
>>> S
'XYZ'
>>> len(S)               # Three characters long
3
>>> [ord(c) for c in S]  # Three characters with integer ordinal values
[88, 89, 90]
Normal 7-bit ASCII text like this is represented with one
      character per byte under each of the Unicode encoding schemes described
      earlier in this chapter:
>>> S.encode('ascii')    # Values 0..127 in 1 byte (7 bits) each
b'XYZ'
>>> S.encode('latin-1')  # Values 0..255 in 1 byte (8 bits) each
b'XYZ'
>>> S.encode('utf-8')    # Values 0..127 in 1 byte, 128..2047 in 2, others 3 or 4
b'XYZ'
In fact, the bytes objects
      returned by encoding ASCII text this way are really a sequence of short
      integers, which just happen to print as ASCII characters when
      possible:
>>> S.encode('latin-1')
b'XYZ'
>>> S.encode('latin-1')[0]
88
>>> list(S.encode('latin-1'))
[88, 89, 90]

Coding Non-ASCII Text
Formally, to code non-ASCII characters, we can use:
	Hex or Unicode
          escapes to embed Unicode code point ordinal values in text
          strings—normal string literals in 3.X, and Unicode string
          literals in 2.X (and in 3.3 for compatibility).

	Hex escapes to embed the encoded
          representation of characters in byte
          strings—normal string literals in 2.X, and bytes string
          literals in 3.X (and in 2.X for compatibility).


Note that text strings embed actual code point values, while byte
      strings embed their encoded form. The value of a character’s encoded
      representation in a byte string is the same as its decoded Unicode code
      point value in a text string for only certain characters and encodings.
      In any event, hex escapes are limited to coding a single byte’s value,
      but Unicode escapes can name characters with values 2 and 4 bytes wide.
      The chr function can also be used to create a single non-ASCII character
      from its code point value, and as we’ll see later, source code
      declarations apply to such characters embedded in your script.
For instance, the hex values 0xC4 and 0xE8 are codes for two special accented
      characters outside the 7-bit range of ASCII, but we can embed them in
      3.X str objects because str supports Unicode:
>>> chr(0xc4)              # 0xC4, 0xE8: characters outside ASCII's range
'Ä'
>>> chr(0xe8)
'è'

>>> S = '\xc4\xe8'         # Single 8-bit value hex escapes: two digits
>>> S
'Äè'

>>> S = '\u00c4\u00e8'     # 16-bit Unicode escapes: four digits each
>>> S
'Äè'
>>> len(S)                 # Two characters long (not number of bytes!)
2
Note that in Unicode text string literals like these, hex and
      Unicode escapes denote a Unicode code point value, not byte values. The
      x hex escapes require exactly two
      digits (for 8-bit code point values), and u and U
      Unicode escapes require exactly four and eight hexadecimal digits,
      respectively, for denoting code point values that can be as big as 16
      and 32 bits will allow:
>>> S = '\U000000c4\U000000e8'       # 32-bit Unicode escapes: eight digits each
>>> S
'Äè'
As shown later, Python 2.X works similarly in this regard, but
      Unicode escapes are allowed only in its Unicode literal form. They work
      in normal string literals in 3.X here simply because its normal strings
      are always Unicode.

Encoding and Decoding Non-ASCII text
Now, if we try to encode the prior section’s
      non-ASCII text string into raw bytes as
      ASCII, we’ll get an error, because its characters
      are outside ASCII’s 7-bit code point value range:
>>> S = '\u00c4\u00e8'               # Non-ASCII text string, two characters long
>>> S
'Äè'
>>> len(S)
2

>>> S.encode('ascii')
UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-1:
ordinal not in range(128)
Encoding this as Latin-1 works, though,
      because each character falls into that encoding’s 8-bit range, and we
      get 1 byte per character allocated in the encoded byte string. Encoding
      as UTF-8 also works: this encoding supports a wide
      range of Unicode code points, but allocates 2 bytes per non-ASCII
      character instead. If these encoded strings are written to a file, the
      raw bytes shown here for encoding
      results are what is actually stored on the file for the encoding types
      given:
>>> S.encode('latin-1')              # 1 byte per character when encoded
b'\xc4\xe8'

>>> S.encode('utf-8')                # 2 bytes per character when encoded
b'\xc3\x84\xc3\xa8'

>>> len(S.encode('latin-1'))         # 2 bytes in latin-1, 4 in utf-8
2
>>> len(S.encode('utf-8'))
4
Note that you can also go the other way, reading raw bytes from a
      file and decoding them back to a Unicode string.
      However, as we’ll see later, the encoding mode you give to the open call causes this decoding to be done for
      you automatically on input (and avoids issues that may arise from
      reading partial character sequences when reading by blocks of bytes):
>>> B = b'\xc4\xe8'                  # Text encoded per Latin-1
>>> B
b'\xc4\xe8'
>>> len(B)                           # 2 raw bytes, two encoded characters
2
>>> B.decode('latin-1')              # Decode to text per Latin-1
'Äè'

>>> B = b'\xc3\x84\xc3\xa8'          # Text encoded per UTF-8
>>> len(B)                           # 4 raw bytes, two encoded characters
4
>>> B.decode('utf-8')                # Decode to text per UTF-8
'Äè'
>>> len(B.decode('utf-8'))           # Two Unicode characters in memory
2

Other Encoding Schemes
Some encodings use even larger byte sequences to represent characters.
      When needed, you can specify both 16- and 32-bit Unicode code point
      values for characters in your strings—as shown earlier, we can use
      "\u..." with four hex digits for the
      former, and "\U..." with eight hex
      digits for the latter, and can mix these in literals with simpler ASCII
      characters freely:
>>> S = 'A\u00c4B\U000000e8C'
>>> S                                # A, B, C, and 2 non-ASCII characters
'AÄBèC'
>>> len(S)                           # Five characters long
5

>>> S.encode('latin-1')
b'A\xc4B\xe8C'
>>> len(S.encode('latin-1'))         # 5 bytes when encoded per latin-1
5

>>> S.encode('utf-8')
b'A\xc3\x84B\xc3\xa8C'
>>> len(S.encode('utf-8'))           # 7 bytes when encoded per utf-8
7
Technically speaking, you can also build Unicode strings piecemeal
      using chr instead of Unicode or hex
      escapes, but this might become tedious for large strings:
>>> S = 'A' + chr(0xC4) + 'B' + chr(0xE8) + 'C'
>>> S
'AÄBèC'
Some other encodings may use very different byte formats,
      though. The cp500
      EBCDIC encoding, for example, doesn’t even encode ASCII the same way as
      the encodings we’ve been using so far; since Python encodes and decodes
      for us, we only generally need to care about this when providing
      encoding names for data sources:
>>> S
'AÄBèC'
>>> S.encode('cp500')                # Two other Western European encodings
b'\xc1c\xc2T\xc3'
>>> S.encode('cp850')                # 5 bytes each, different encoded values
b'A\x8eB\x8aC'

>>> S = 'spam'                       # ASCII text is the same in most
>>> S.encode('latin-1')
b'spam'
>>> S.encode('utf-8')
b'spam'
>>> S.encode('cp500')                # But not in cp500: IBM EBCDIC!
b'\xa2\x97\x81\x94'
>>> S.encode('cp850')
b'spam'
The same holds true for the UTF-16 and UTF-32 encodings, which use
      fixed 2- and 4-byte-per-character schemes with same-sized
      headers—non-ASCII encodes differently, and ASCII is not 1 byte per
      character:
>>> S = 'A\u00c4B\U000000e8C'
>>> S.encode('utf-16')
b'\xff\xfeA\x00\xc4\x00B\x00\xe8\x00C\x00'

>>> S = 'spam'
>>> S.encode('utf-16')
b'\xff\xfes\x00p\x00a\x00m\x00'
>>> S.encode('utf-32')
b'\xff\xfe\x00\x00s\x00\x00\x00p\x00\x00\x00a\x00\x00\x00m\x00\x00\x00'

Byte String Literals: Encoded Text
Two cautions here too. First, Python 3.X allows special characters to
      be coded with both hex and Unicode escapes in str strings, but only with hex escapes in
      bytes strings—Unicode escape
      sequences are silently taken verbatim in bytes literals, not as escapes. In fact,
      bytes must be decoded to str strings to print their non-ASCII
      characters properly:
>>> S = 'A\xC4B\xE8C'                # 3.X: str recognizes hex and Unicode escapes
>>> S
'AÄBèC'
>>> S = 'A\u00C4B\U000000E8C'
>>> S
'AÄBèC'

>>> B = b'A\xC4B\xE8C'               # bytes recognizes hex but not Unicode
>>> B
b'A\xc4B\xe8C'
>>> B = b'A\u00C4B\U000000E8C'       # Escape sequences taken literally!
>>> B
b'A\\u00C4B\\U000000E8C'

>>> B = b'A\xC4B\xE8C'               # Use hex escapes for bytes
>>> B                                # Prints non-ASCII as hex
b'A\xc4B\xe8C'
>>> print(B)
b'A\xc4B\xe8C'
>>> B.decode('latin-1')              # Decode as latin-1 to interpret as text
'AÄBèC'
Second, bytes literals require
      characters either to be ASCII characters or, if their values are greater
      than 127, to be escaped; str strings,
      on the other hand, allow literals containing any character in the source
      character set—which, as discussed later, defaults to UTF-8 in 3.X (and ASCII in 2.X) unless an
      encoding declaration is given in the source file:
>>> S = 'AÄBèC'                      # Chars from UTF-8 if no encoding declaration
>>> S
'AÄBèC'

>>> B = b'AÄBèC'
SyntaxError: bytes can only contain ASCII literal characters.

>>> B = b'A\xC4B\xE8C'               # Chars must be ASCII, or escapes
>>> B
b'A\xc4B\xe8C'
>>> B.decode('latin-1')
'AÄBèC'

>>> S.encode()                       # Source code encoded per UTF-8 by default
b'A\xc3\x84B\xc3\xa8C'               # Uses system default to encode, unless passed
>>> S.encode('utf-8')
b'A\xc3\x84B\xc3\xa8C'

>>> B.decode()                       # Raw bytes do not correspond to utf-8
UnicodeDecodeError: 'utf8' codec can't decode bytes in position 1-2: ...
Both these constraints make sense if you remember that byte
      strings hold bytes-based data, not decoded Unicode code point ordinals;
      while they may contain the encoded form of text, decoded code point
      values don’t quite apply to byte strings unless the characters are first
      encoded.

Converting Encodings
So far, we’ve been encoding and decoding strings to inspect their structure.
      It’s also possible to convert a string to a
      different encoding than its original, but we must provide an explicit
      encoding name to encode to and decode from. This is true whether the
      original text string originated in a file or a literal.
The term conversion may be a misnomer here—it
      really just means encoding a text string to raw bytes per a different
      encoding scheme than the one it was decoded from. As stressed earlier,
      decoded text in memory has no encoding type, and is simply a string of
      Unicode code points (a.k.a. characters); there is no concept of changing
      its encoding in this form. Still, this scheme allows scripts to read
      data in one encoding and store it in another, to support multiple
      clients of the same data:
>>> B = b'A\xc3\x84B\xc3\xa8C'       # Text encoded in UTF-8 format originally
>>> S = B.decode('utf-8')            # Decode to Unicode text per UTF-8
>>> S
'AÄBèC'

>>> T = S.encode('cp500')            # Convert to encoded bytes per EBCDIC
>>> T
b'\xc1c\xc2T\xc3'

>>> U = T.decode('cp500')            # Convert back to Unicode per EBCDIC
>>> U
'AÄBèC'

>>> U.encode()                       # Per default utf-8 encoding again
b'A\xc3\x84B\xc3\xa8C'
Keep in mind that the special Unicode and hex character escapes
      are only necessary when you code non-ASCII Unicode strings manually. In
      practice, you’ll often load such text from files instead. As we’ll see
      later in this chapter, 3.X’s file object (created with the open built-in function) automatically decodes
      text strings as they are read and encodes them when they are written;
      because of this, your script can often deal with strings generically,
      without having to code special characters directly.
Later in this chapter we’ll also see that it’s possible to convert
      between encodings when transferring strings to and from files, using a
      technique very similar to that in the last example; although you’ll
      still need to provide explicit encoding names when opening a file, the
      file interface does most of the conversion work for you
      automatically.

Coding Unicode Strings in Python 2.X
I stress Python 3.X Unicode support in this chapter because it’s new. But now
      that I’ve shown you the basics of Unicode strings in 3.X, I need to
      explain more fully how you can do much the same in 2.X, though the tools
      differ. unicode is available in
      Python 2.X, but is a distinct type from str, supports most of the same operations, and
      allows mixing of normal and Unicode strings when the str is all ASCII.
In fact, you can essentially pretend 2.X’s str is 3.X’s bytes when it comes to decoding raw bytes into
      a Unicode string, as long as it’s in the proper form. Here is 2.X in
      action; Unicode characters display in hex in 2.X unless you explicitly
      print, and non-ASCII displays can vary per shell (most of this section
      ran outside IDLE, which sometimes detects and prints Latin-1 characters
      in encoded byte strings—see ahead for more on PYTHONIOENCODING and Windows Command Prompt
      display issues):
C:\code> C:\python27\python
>>> S = 'A\xC4B\xE8C'                # String of 8-bit bytes
>>> S                                # Text encoded per Latin-1, some non-ASCII
'A\xc4B\xe8C'
>>> print S                          # Nonprintable characters (IDLE may differ)
A─BΦC


>>> U = S.decode('latin1')           # Decode bytes to Unicode text per latin-1
>>> U
u'A\xc4B\xe8C'
>>> print U
AÄBèC

>>> S.decode('utf-8')                # Encoded form not compatible with utf-8
UnicodeDecodeError: 'utf8' codec can't decode byte 0xc4 in position 1: invalid c
ontinuation byte

>>> S.decode('ascii')                # Encoded bytes are also outside ASCII range
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc4 in position 1: ordinal
not in range(128)
To code Unicode text, make a unicode object with the u'xxx' literal form (as mentioned, this
      literal is available again in 3.3, but superfluous in 3.X in general,
      since its normal strings support Unicode):
>>> U = u'A\xC4B\xE8C'               # Make Unicode string, hex escapes
>>> U
u'A\xc4B\xe8C'
>>> print U
AÄBèC
Once you’ve created it, you can convert Unicode text to different
      raw byte encodings, similar to encoding str objects into bytes objects in 3.X:
>>> U.encode('latin-1')              # Encode per latin-1: 8-bit bytes
'A\xc4B\xe8C'
>>> U.encode('utf-8')                # Encode per utf-8: multibyte
'A\xc3\x84B\xc3\xa8C'
Non-ASCII characters can be coded with hex or Unicode escapes in
      string literals in 2.X, just as in 3.X. However, as with bytes in 3.X, the "\u..." and "\U..." escapes are recognized only for
      unicode strings in 2.X, not 8-bit
      str strings—again, these are used to
      give the values of decoded Unicode ordinal integers, which don’t make
      sense in a raw byte string:
C:\code> C:\python27\python
>>> U = u'A\xC4B\xE8C'               # Hex escapes for non-ASCII
>>> U
u'A\xc4B\xe8C'
>>> print U
AÄBèC

>>> U = u'A\u00C4B\U000000E8C'       # Unicode escapes for non-ASCII
>>> U                                # u'' = 16 bits, U'' = 32 bits
u'A\xc4B\xe8C'
>>> print U
AÄBèC

>>> S = 'A\xC4B\xE8C'                # Hex escapes work
>>> S
'A\xc4B\xe8C'
>>> print S                          # But some may print oddly, unless decoded
A─BΦC
>>> print S.decode('latin-1')
AÄBèC

>>> S = 'A\u00C4B\U000000E8C'        # Not Unicode escapes: taken literally!
>>> S
'A\\u00C4B\\U000000E8C'
>>> print S
A\u00C4B\U000000E8C
>>> len(S)
19
Mixing string types in 2.X
Like 3.X’s str and bytes, 2.X’s unicode and str share nearly identical operation sets,
        so unless you need to convert to other encodings you can often treat
        unicode as though it were str. One of the primary differences between
        2.X and 3.X, though, is that unicode and non-Unicode str objects can be freely
        mixed in 2.X expressions—as long as the str is compatible with the unicode object, Python will automatically
        convert it up to unicode:
>>> u'ab' + 'cd'                     # Can mix if compatible in 2.X
u'abcd'                              # But 'ab' + b'cd' not allowed in 3.X
However, this liberal approach to mixing string types in 2.X
        works only if the 8-bit string happens to contain
        only 7-bit (ASCII) bytes:
>>> S =  'A\xC4B\xE8C'               # Can't mix in 2.X if str is non-ASCII!
>>> U = u'A\xC4B\xE8C'
>>> S + U
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc4 in position 1: ordinal
not in range(128)

>>> 'abc' + U                        # Can mix only if str is all 7-bit ASCII
u'abcA\xc4B\xe8C'
>>> print 'abc' + U                  # Use print to display characters
abcAÄBèC

>>> S.decode('latin-1') + U          # Manual conversion may be required in 2.X too
u'A\xc4B\xe8CA\xc4B\xe8C'
>>> print S.decode('latin-1') + U
AÄBèCAÄBèC

>>> print u'\xA3' + '999.99'         # Also see Chapter 25's currency example
£999.99
By contrast, in 3.X, str and
        bytes never
        mix automatically and require manual conversions—the preceding code
        actually runs in 3.3, but only because 2.X’s Unicode literal is taken
        to be the same as a normal string by 3.X (the u is ignored); the 3.X equivalent would be a
        str added to a bytes (i.e., 'ab' +
        b'cd') which fails in 3.X, unless objects are converted to a
        common type.
In 2.X, though, the difference in types is often trivial to your
        code. Like normal strings, Unicode strings may be concatenated,
        indexed, sliced, matched with the re module, and so on, and they cannot be
        changed in place. If you ever need to convert between the two types
        explicitly, you can use the built-in str and unicode functions as shown earlier:
>>> str(u'spam')                     # Unicode to normal
'spam'
>>> unicode('spam')                  # Normal to Unicode
u'spam'
If you are using Python 2.X, also watch for an example of your
        different file interface later in this chapter. Your open call supports only files of 8-bit
        bytes, returning their contents as str strings, and it’s up to you to interpret
        the contents as text or binary data and decode if needed. To read and
        write Unicode files and encode or decode their content automatically,
        use 2.X’s codecs.open call we’ll
        see in action later in this chapter. This call provides much the same
        functionality as 3.X’s open and
        uses 2.X unicode objects to
        represent file content—reading a file translates encoded bytes into
        decoded Unicode characters, and writing translates strings to the
        desired encoding specified when the file is opened.


Source File Character Set Encoding Declarations
Finally, Unicode escape codes are fine for the occasional Unicode character in
      string literals, but they can become tedious if you need to embed
      non-ASCII text in your strings frequently. To interpret the content of
      strings you code and hence embed within the text of your script files,
      Python uses UTF-8 in 3.X (and ASCII in 2.X) as its default encoding, but allows you to use arbitrary encodings and the character sets they support by including a comment that names your desired encoding. The comment is usually of this form and must appear as either the first or second line in your script in either Python 2.X or 3.X:
# -*- coding: latin-1 -*-
When a comment of this form is present, Python will recognize
      strings represented natively in the given encoding. This means you can
      edit your script file in a text editor that accepts and displays
      accented and other non-ASCII characters correctly, and Python will
      decode them correctly in your string literals. For example, notice how
      the comment at the top of the following file, text.py, allows Latin-1 characters to be
      embedded in strings, which are themselves embedded in the script file’s
      text:
# -*- coding: latin-1 -*-
# Any of the following string literal forms work in latin-1.
# Changing the encoding above to either ascii or utf-8 fails,
# because the 0xc4 and 0xe8 in myStr1 are not valid in either.

myStr1 = 'aÄBèC'

myStr2 = 'A\u00c4B\U000000e8C'

myStr3 = 'A' + chr(0xC4) + 'B' + chr(0xE8) + 'C'

import sys
print('Default encoding:', sys.getdefaultencoding())

for aStr in myStr1, myStr2, myStr3:
    print('{0}, strlen={1}, '.format(aStr, len(aStr)), end='')

    bytes1 = aStr.encode()              # Per default utf-8: 2 bytes for non-ASCII
    bytes2 = aStr.encode('latin-1')     # One byte per char
   #bytes3 = aStr.encode('ascii')       # ASCII fails: outside 0..127 range

    print('byteslen1={0}, byteslen2={1}'.format(len(bytes1), len(bytes2)))
When run, this script produces the following output, giving, for
      each of three coding techniques, the string, its length, and the lengths
      of its UTF-8 and Latin-1 encoded byte string forms.
C:\code> C:\python33\python text.py
Default encoding: utf-8
aÄBèC, strlen=5, byteslen1=7, byteslen2=5
AÄBèC, strlen=5, byteslen1=7, byteslen2=5
AÄBèC, strlen=5, byteslen1=7, byteslen2=5
Since many programmers are likely to fall back on the default
      source encodings, I’ll defer to Python’s standard manual set for more
      details on this option and other advanced Unicode support topics, such
      as properties and character name escapes in strings I’m omitting here.
      For this chapter, let’s take a quick look at the new byte string object
      types in Python 3.X, before moving on to its file and tool changes.
Note
For an additional example of non-ASCII character coding and
        source file declarations, see the currency symbols used in the money
        formatting example of Chapter 25, as
        well as its associated file in this book’s examples package, formats_currency2.py. The latter requires a
        source-file declaration to be usable by Python, because it embeds
        non-ASCII currency symbol characters. This example also illustrates
        the portability gains possible when using 2.X’s Unicode literal in 3.X
        code in 3.3 and later.



Using 3.X bytes Objects
We studied a wide variety of operations available for Python 3.X’s general
    str string type in Chapter 7; the basic string type works identically
    in 2.X and 3.X, so we won’t rehash this topic. Instead, let’s dig a bit
    deeper into the operation sets provided by the new bytes type in 3.X.
As mentioned previously, the 3.X bytes object is a sequence of small integers,
    each of which is in the range 0 through 255, that happens to print as
    ASCII characters when displayed. It supports sequence operations and most
    of the same methods available on str
    objects (and present in 2.X’s str
    type). However, bytes does
    not support the format method or the % formatting expression, and you cannot mix and
    match bytes and str type objects without explicit
    conversions—you generally will use all str type objects and text files for
    text data, and all bytes type objects and binary files for
    binary data.
Method Calls
If you really want to see what attributes str has
      that bytes doesn’t, you can always
      check their dir built-in function
      results. The output can also tell you something about the expression
      operators they support (e.g., __mod__
      and __rmod__ implement the % operator):
C:\code> C:\python33\python

# Attributes in str but not bytes
>>> set(dir('abc')) - set(dir(b'abc'))
{'isdecimal', '__mod__', '__rmod__', 'format_map', 'isprintable',
'casefold', 'format', 'isnumeric', 'isidentifier', 'encode'}

# Attributes in bytes but not str
>>> set(dir(b'abc')) - set(dir('abc'))
{'decode', 'fromhex'}
As you can see, str and
      bytes have almost identical
      functionality. Their unique attributes are generally methods that don’t
      apply to the other; for instance, decode translates a raw bytes into its str representation, and encode translates a string into its raw
      bytes representation. Most of the
      methods are the same, though bytes
      methods require bytes arguments
      (again, 3.X string types don’t mix). Also recall that bytes objects are immutable, just like
      str objects in both 2.X and 3.X
      (error messages here have been shortened for brevity):
>>> B = b'spam'                    # b'...' bytes literal
>>> B.find(b'pa')
1

>>> B.replace(b'pa', b'XY')        # bytes methods expect bytes arguments
b'sXYm'

>>> B.split(b'pa')                 # bytes methods return bytes results
[b's', b'm']

>>> B
b'spam'
>>> B[0] = 'x'
TypeError: 'bytes' object does not support item assignment
One notable difference is that string formatting works only
      on str objects in 3.X, not on
      bytes objects (see Chapter 7 for more on string formatting
      expressions and methods):
>>> '%s' % 99
'99'
>>> b'%s' % 99
TypeError: unsupported operand type(s) for %: 'bytes' and 'int'

>>> '{0}'.format(99)
'99'
>>> b'{0}'.format(99)
AttributeError: 'bytes' object has no attribute 'format'

Sequence Operations
Besides method calls, all the usual generic sequence operations you know (and
      possibly love) from Python 2.X strings and lists work as expected on
      both str and bytes in 3.X; this includes indexing, slicing,
      concatenation, and so on. Notice in the following that indexing a
      bytes object returns an integer
      giving the byte’s binary value; bytes
      really is a sequence of 8-bit integers, but for
      convenience prints as a string of ASCII-coded characters where possible
      when displayed as a whole. To check a given byte’s value, use the
      chr built-in to convert it back to
      its character, as in the following:
>>> B = b'spam'                  # A sequence of small ints
>>> B                            # Prints as ASCII characters (and/or hex escapes)
b'spam'

>>> B[0]                         # Indexing yields an int
115
>>> B[-1]
109

>>> chr(B[0])                    # Show character for int
's'
>>> list(B)                      # Show all the byte's int values
[115, 112, 97, 109]

>>> B[1:], B[:-1]
(b'pam', b'spa')
>>> len(B)
4
>>> B + b'lmn'
b'spamlmn'
>>> B * 4
b'spamspamspamspam'

Other Ways to Make bytes Objects
So far, we’ve been mostly making bytes
      objects with the b'...' literal
      syntax. We can also create them by calling the bytes constructor with a str and an encoding name, calling the bytes constructor with an iterable of integers
      representing byte values, or encoding a str object per the default (or passed-in)
      encoding. As we’ve seen, encoding takes a text str and returns the raw encoded byte values of
      the string per the encoding specified; conversely, decoding takes a raw
      bytes sequence and translates it to
      its str text string representation—a
      series of Unicode characters. Both operations create new string
      objects:
>>> B = b'abc'                   # Literal
>>> B
b'abc'

>>> B = bytes('abc', 'ascii')    # Constructor with encoding name
>>> B
b'abc'

>>> ord('a')
97
>>> B = bytes([97, 98, 99])      # Integer iterable
>>> B
b'abc'

>>> B = 'spam'.encode()          # str.encode() (or bytes())
>>> B
b'spam'
>>>
>>> S = B.decode()               # bytes.decode() (or str())
>>> S
'spam'
From a functional perspective, the last two of these operations
      are really tools for converting between str and bytes, a topic introduced earlier and expanded
      upon in the next section.

Mixing String Types
In the replace call of the
      section “Method Calls”, we had to
      pass in two bytes objects—str types won’t work there. Although Python
      2.X automatically converts str to and
      from unicode when possible (i.e.,
      when the str is 7-bit ASCII text),
      Python 3.X requires specific string types in some contexts and expects
      manual conversions if needed:
# Must pass expected types to function and method calls

>>> B = b'spam'

>>> B.replace('pa', 'XY')
TypeError: expected an object with the buffer interface

>>> B.replace(b'pa', b'XY')
b'sXYm'

>>> B = B'spam'
>>> B.replace(bytes('pa'), bytes('xy'))
TypeError: string argument without an encoding

>>> B.replace(bytes('pa', 'ascii'), bytes('xy', 'utf-8'))
b'sxym'

# Must convert manually in 3.X mixed-type expressions

>>> b'ab' + 'cd'
TypeError: can't concat bytes to str

>>> b'ab'.decode() + 'cd'                   # bytes to str
'abcd'
>>> b'ab' + 'cd'.encode()                   # str to bytes
b'abcd'
>>> b'ab' + bytes('cd', 'ascii')            # str to bytes
b'abcd'
Although you can create bytes
      objects yourself to represent packed binary data, they can also be made
      automatically by reading files opened in binary mode, as we’ll see in
      more detail later in this chapter. First, though, let’s introduce
      bytes’s very close, and mutable,
      cousin.


Using 3.X/2.6+ bytearray Objects
So far we’ve focused on str and bytes, because they subsume Python 2’s unicode and str. Python 3.X grew a third string type,
    though—bytearray, a mutable sequence of
    integers in the range 0 through 255, which is a mutable variant of
    bytes. As such, it supports the same
    string methods and sequence operations as bytes, as well as many of the mutable
    in-place-change operations supported by lists.
Bytearrays support in-place changes to both truly binary data as
    well as simple forms of text such as ASCII, which can be represented with
    1 byte per character (richer Unicode text generally requires Unicode
    strings, which are still immutable). The bytearray type is also available in Python 2.6
    and 2.7 as a back-port from 3.X, but it does not enforce the strict
    text/binary distinction there that it does in 3.X.
bytearrays in Action
Let’s take a quick tour. We can create bytearray objects by calling the bytearray built-in. In Python 2.X, any string
      may be used to initialize:
# Creation in 2.6/2.7: a mutable sequence of small (0..255) ints

>>> S = 'spam'
>>> C = bytearray(S)                      # A back-port from 3.X in 2.6+
>>> C                                     # b'..' == '..' in 2.6+ (str)
bytearray(b'spam')
In Python 3.X, an encoding name or byte string is required,
      because text and binary strings do not mix (though byte strings may
      reflect encoded Unicode text):
# Creation in 3.X: text/binary do not mix

>>> S = 'spam'
>>> C = bytearray(S)
TypeError: string argument without an encoding

>>> C = bytearray(S, 'latin1')            # A content-specific type in 3.X
>>> C
bytearray(b'spam')

>>> B = b'spam'                           # b'..' != '..' in 3.X (bytes/str)
>>> C = bytearray(B)
>>> C
bytearray(b'spam')
Once created, bytearray objects
      are sequences of small integers like bytes and are mutable like lists, though they
      require an integer for index assignments, not a string (all of the
      following is a continuation of this session and is run under Python 3.X
      unless otherwise noted—see comments for 2.X usage notes):
# Mutable, but must assign ints, not strings

>>> C[0]
115

>>> C[0] = 'x'                            # This and the next work in 2.6/2.7
TypeError: an integer is required
>>> C[0] = b'x'
TypeError: an integer is required

>>> C[0] = ord('x')                       # Use ord() to get a character's ordinal
>>> C
bytearray(b'xpam')

>>> C[1] = b'Y'[0]                        # Or index a byte string
>>> C
bytearray(b'xYam')
Processing bytearray objects
      borrows from both strings and lists, since they are mutable byte
      strings. While the byterrray’s
      methods overlap with both str and
      bytes, it also has many of the
      list’s mutable methods. Besides named
      methods, the __iadd__ and
      __setitem__ methods in bytearray implement
      += in-place concatenation and index assignment, respectively:
# in bytes but not bytearray
>>> set(dir(b'abc')) - set(dir(bytearray(b'abc')))
{'__getnewargs__'}

# in bytearray but not bytes
>>> set(dir(bytearray(b'abc'))) - set(dir(b'abc'))
{'__iadd__', 'reverse', '__setitem__', 'extend', 'copy', '__alloc__',
'__delitem__', '__imul__', 'remove', 'clear', 'insert', 'append', 'pop'}
You can change a bytearray in
      place with both index assignment, as you’ve just seen, and list-like
      methods like those shown here (to change text in place prior to 2.6, you
      would need to convert to and then from a list, with list(str) and ''.join(list)—see Chapter 4 and Chapter 6 for examples):
# Mutable method calls

>>> C
bytearray(b'xYam')

>>> C.append(b'LMN')                      # 2.X requires string of size 1
TypeError: an integer is required

>>> C.append(ord('L'))
>>> C
bytearray(b'xYamL')

>>> C.extend(b'MNO')
>>> C
bytearray(b'xYamLMNO')
All the usual sequence operations and string methods work on
      bytearrays, as you would expect
      (notice that like bytes objects,
      their expressions and methods expect bytes arguments, not str arguments):
# Sequence operations and string methods

>>> C
bytearray(b'xYamLMNO')

>>> C + b'!#'
bytearray(b'xYamLMNO!#')
>>> C[0]
120
>>> C[1:]
bytearray(b'YamLMNO')
>>> len(C)
8

>>> C.replace('xY', 'sp')                 # This works in 2.X
TypeError: Type str doesn't support the buffer API
>>> C.replace(b'xY', b'sp')
bytearray(b'spamLMNO')

>>> C
bytearray(b'xYamLMNO')
>>> C * 4
bytearray(b'xYamLMNOxYamLMNOxYamLMNOxYamLMNO')

Python 3.X String Types Summary
Finally, by way of summary, the following examples demonstrate how
      bytes and bytearray objects are sequences of ints, and str objects are sequences of
      characters:
# Binary versus text

>>> B                                     # B is same as S in 2.6/2.7
b'spam'
>>> list(B)
[115, 112, 97, 109]

>>> C
bytearray(b'xYamLMNO')
>>> list(C)
[120, 89, 97, 109, 76, 77, 78, 79]

>>> S
'spam'
>>> list(S)
['s', 'p', 'a', 'm']
Although all three Python 3.X string types can contain character
      values and support many of the same operations, again, you should
      always:
	Use str for textual
          data.

	Use bytes for binary
          data.

	Use bytearray for binary
          data you wish to change in place.


Related tools such as files, the next section’s topic, often make
      the choice for you.


Using Text and Binary Files
This section expands on the impact of Python 3.X’s string model on
    the file processing basics introduced earlier in the book. As mentioned
    earlier, the mode in which you open a file is crucial—it determines which
    object type you will use to represent the file’s content in your script.
    Text mode implies str objects, and
    binary mode implies bytes
    objects:
	Text-mode files interpret file contents according to a Unicode
        encoding—either the default for your platform, or
        one whose name you pass in. By passing in an encoding name to open, you can force conversions for various
        types of Unicode files. Text-mode files also perform universal
        line-end translations: by default, all line-end
        forms map to the single '\n'
        character in your script, regardless of the platform on which you run
        it. As described earlier, text files also handle reading and writing
        the byte order mark (BOM) stored at the
        start-of-file in some Unicode encoding schemes.

	Binary-mode files instead return file content to you raw, as a
        sequence of integers representing byte values, with no encoding or
        decoding and no line-end translations.


The second argument to open
    determines whether you want text or binary processing, just as it does in
    2.X Python—adding a b to this string
    implies binary mode (e.g., "rb" to read
    binary data files). The default mode is "rt"; this is the same as "r", which means text input (just as in
    2.X).
In 3.X, though, this mode argument to open also implies an object
    type for file content representation, regardless of the
    underlying platform—text files return a str for reads and expect one for writes, but
    binary files return a bytes for reads
    and expect one (or a bytearray) for
    writes.
Text File Basics
To demonstrate, let’s begin with basic file I/O. As long as you’re
      processing basic text files (e.g., ASCII) and don’t care about
      circumventing the platform-default encoding of strings, files in 3.X
      look and feel much as they do in 2.X (for that matter, so do strings in
      general). The following, for instance, writes one line of text to a file
      and reads it back in 3.X, exactly as it would in 2.X (note that file is no longer a built-in name in 3.X, so
      it’s perfectly OK to use it as a variable here):
C:\code> C:\python33\python
# Basic text files (and strings) work the same as in 2.X

>>> file = open('temp', 'w')
>>> size = file.write('abc\n')       # Returns number of characters written
>>> file.close()                     # Manual close to flush output buffer

>>> file = open('temp')              # Default mode is "r" (== "rt"): text input
>>> text = file.read()
>>> text
'abc\n'
>>> print(text)
abc

Text and Binary Modes in 2.X and 3.X
In Python 2.X, there is no major distinction between text and binary files—both
      accept and return content as str
      strings. The only major difference is that text files automatically map
      \n end-of-line characters to and from
      \r\n on Windows, while binary files
      do not (I’m stringing operations together into one-liners here just for
      brevity):
C:\code> C:\python27\python
>>> open('temp', 'w').write('abd\n')         # Write in text mode: adds \r
>>> open('temp', 'r').read()                 # Read in text mode: drops \r
'abd\n'
>>> open('temp', 'rb').read()                # Read in binary mode: verbatim
'abd\r\n'

>>> open('temp', 'wb').write('abc\n')        # Write in binary mode
>>> open('temp', 'r').read()                 # \n not expanded to \r\n
'abc\n'
>>> open('temp', 'rb').read()
'abc\n'
In Python 3.X, things are a bit more complex because of the
      distinction between str for text data
      and bytes for binary data. To
      demonstrate, let’s write a text file and read it
      back in both modes in 3.X. Notice that we are required to provide a
      str for writing, but reading gives us
      a str or a bytes, depending on the open mode:
C:\code> C:\python33\python
# Write and read a text file
>>> open('temp', 'w').write('abc\n')         # Text mode output, provide a str
4
>>> open('temp', 'r').read()                 # Text mode input, returns a str
'abc\n'
>>> open('temp', 'rb').read()                # Binary mode input, returns a bytes
b'abc\r\n'
Notice how on Windows text-mode files translate the \n end-of-line character
      to \r\n on output; on input, text
      mode translates the \r\n back to
      \n, but binary-mode files do not.
      This is the same in 2.X, and it’s normally what we want—text files
      should for portability map end-of-line markers to and from \n (which is what is actually present in files
      in Linux, where no mapping occurs), and such translations should never
      occur for binary data (where end-of-line bytes are irrelevant). Although
      you can control this behavior with extra open arguments in 3.X if desired, the default
      usually works well.
Now let’s do the same again, but with a binary
      file. We provide a bytes
      to write in this case, and we still get back a str or a bytes, depending on the input mode:
# Write and read a binary file
>>> open('temp', 'wb').write(b'abc\n')       # Binary mode output, provide a bytes
4
>>> open('temp', 'r').read()                 # Text mode input, returns a str
'abc\n'
>>> open('temp', 'rb').read()                # Binary mode input, returns a bytes
b'abc\n'
Note that the \n end-of-line
      character is not expanded to \r\n in
      binary-mode output—again, a desired result for binary data. Type
      requirements and file behavior are the same even if the data we’re
      writing to the binary file is truly binary in nature. In the following,
      for example, the "\x00" is a binary
      zero byte and not a printable character:
# Write and read truly binary data
>>> open('temp', 'wb').write(b'a\x00c')      # Provide a bytes
3
>>> open('temp', 'r').read()                 # Receive a str
'a\x00c'
>>> open('temp', 'rb').read()                # Receive a bytes
b'a\x00c'
Binary-mode files always return contents as a bytes object, but accept either a bytes or bytearray object for writing; this naturally
      follows, given that bytearray is
      basically just a mutable variant of bytes. In fact, most APIs in Python 3.X that
      accept a bytes also allow a bytearray:
# bytearrays work too
>>> BA = bytearray(b'\x01\x02\x03')

>>> open('temp', 'wb').write(BA)
3
>>> open('temp', 'r').read()
'\x01\x02\x03'
>>> open('temp', 'rb').read()
b'\x01\x02\x03'

Type and Content Mismatches in 3.X
Notice that you cannot get away with violating Python’s str/bytes
      type distinction when it comes to files. As the following examples
      illustrate, we get errors (shortened here) if we try to write a bytes to a text file or a str to a binary file (the exact text of the
      error messages here is prone to change):
# Types are not flexible for file content
>>> open('temp', 'w').write('abc\n')         # Text mode makes and requires str
4
>>> open('temp', 'w').write(b'abc\n')
TypeError: must be str, not bytes

>>> open('temp', 'wb').write(b'abc\n')       # Binary mode makes and requires bytes
4
>>> open('temp', 'wb').write('abc\n')
TypeError: 'str' does not support the buffer interface
This makes sense: text has no meaning in binary terms, before it
      is encoded. Although it is often possible to convert between the types
      by encoding str and decoding bytes, as described earlier in this chapter,
      you will usually want to stick to either str for text data or bytes for binary data. Because the str and bytes operation sets largely intersect, the
      choice won’t be much of a dilemma for most programs (see the string
      tools coverage in the final section of this chapter for some prime
      examples of this).
In addition to type constraints, file content
      can matter in 3.X. Text-mode output files require a str instead of a bytes for content, so there is no way in 3.X
      to write truly binary data to a text-mode file. Depending on the
      encoding rules, bytes outside the default character set can sometimes be
      embedded in a normal string, and they can always be written in binary
      mode (some of the following raise errors when displaying their string
      results in Pythons prior to 3.3, but the file operations work
      successfully):
# Can't read truly binary data in text mode
>>> chr(0xFF)                                   # FF is a valid char, FE is not
'ÿ'
>>> chr(0xFE)                                   # An error in some Pythons
'\xfe'

>>> open('temp', 'w').write(b'\xFF\xFE\xFD')    # Can't use arbitrary bytes!
TypeError: must be str, not bytes

>>> open('temp', 'w').write('\xFF\xFE\xFD')     # Can write if embeddable in str
3
>>> open('temp', 'wb').write(b'\xFF\xFE\xFD')   # Can also write in binary mode
3

>>> open('temp', 'rb').read()                   # Can always read as binary bytes
b'\xff\xfe\xfd'

>>> open('temp', 'r').read()                    # Can't read text unless decodable!
'ÿ\xfe\xfd'                                     # An error in some Pythons
In general, however, because text-mode input files in 3.X must be
      able to decode content per a Unicode encoding, there is no way to read
      truly binary data in text mode, as the next section explains.


Using Unicode Files
So far, we’ve been reading and writing basic text and binary files. It turns
    out to be easy to read and write Unicode text stored in files too, because
    the 3.X open call accepts an encoding
    for text files, and arranges to run the required encoding and decoding for
    us automatically as data is transferred. This allows us to process a
    variety of Unicode text created with different encodings than the default
    for the platform, and store the same text in different encodings for
    different purposes.
Reading and Writing Unicode in 3.X
In fact, we can effectively convert a string
      to different encoded forms both manually with method calls as we did
      earlier, and automatically on file input and output. We’ll use the
      following Unicode string in this section to demonstrate:
C:\code> C:\python33\python
>>> S = 'A\xc4B\xe8C'           # Five-character decoded string, non-ASCII
>>> S
'AÄBèC'
>>> len(S)
5
Manual encoding
As we’ve already learned, we can always encode such a string to
        raw bytes according to the target encoding name:
# Encode manually with methods
>>> L = S.encode('latin-1')     # 5 bytes when encoded as latin-1
>>> L
b'A\xc4B\xe8C'
>>> len(L)
5

>>> U = S.encode('utf-8')       # 7 bytes when encoded as utf-8
>>> U
b'A\xc3\x84B\xc3\xa8C'
>>> len(U)
7

File output encoding
Now, to write our string to a text file in a particular
        encoding, we can simply pass the desired encoding name to open—although we could manually encode first
        and write in binary mode, there’s no need to:
# Encoding automatically when written
>>> open('latindata', 'w', encoding='latin-1').write(S)    # Write as latin-1
5
>>> open('utf8data', 'w', encoding='utf-8').write(S)       # Write as utf-8
5

>>> open('latindata', 'rb').read()                         # Read raw bytes
b'A\xc4B\xe8C'

>>> open('utf8data', 'rb').read()                          # Different in files
b'A\xc3\x84B\xc3\xa8C'

File input decoding
Similarly, to read arbitrary Unicode data, we simply pass in the
        file’s encoding type name to open,
        and it decodes from raw bytes to strings automatically; we could read
        raw bytes and decode manually too, but that can be tricky when reading
        in blocks (we might read an incomplete character), and it isn’t
        necessary:
# Decoding automatically when read
>>> open('latindata', 'r', encoding='latin-1').read()      # Decoded on input
'AÄBèC'
>>> open('utf8data', 'r', encoding='utf-8').read()         # Per encoding type
'AÄBèC'

>>> X = open('latindata', 'rb').read()                     # Manual decoding:
>>> X.decode('latin-1')                                    # Not necessary
'AÄBèC'
>>> X = open('utf8data', 'rb').read()
>>> X.decode()                                             # UTF-8 is default
'AÄBèC'

Decoding mismatches
Finally, keep in mind that this behavior of files in 3.X limits
        the kind of content you can load as text. As suggested in the prior
        section, Python 3.X really must be able to decode the data in text
        files into a str string, according
        to either the default or a passed-in Unicode encoding name. Trying to
        open a truly binary data file in text mode, for example, is unlikely
        to work in 3.X even if you use the correct object types:
>>> file = open(r'C:\Python33\python.exe', 'r')
>>> text = file.read()
UnicodeDecodeError: 'charmap' codec can't decode byte 0x90 in position 2: ...

>>> file = open(r'C:\Python33\python.exe', 'rb')
>>> data = file.read()
>>> data[:20]
b'MZ\x90\x00\x03\x00\x00\x00\x04\x00\x00\x00\xff\xff\x00\x00\xb8\x00\x00\x00'
The first of these examples might not fail in Python 2.X (normal
        files do not decode text), even though it probably should: reading the
        file may return corrupted data in the string, due to automatic
        end-of-line translations in text mode (any embedded \r\n bytes will be translated to \n on Windows when read). To treat file
        content as Unicode text in 2.X, we need to use special tools instead
        of the general open built-in
        function, as we’ll see in a moment. First, though, let’s turn to a
        more explosive topic.


Handling the BOM in 3.X
As described earlier in this chapter, some encoding schemes store a special byte order
      mark (BOM) sequence at the start of files, to specify
      data endianness (which end of a
      string of bits is most significant to its value) or declare the encoding
      type. Python both skips this marker on input and writes it on output if
      the encoding name implies it, but we sometimes must use a specific
      encoding name to force BOM processing explicitly.
For example, in the UTF-16 and UTF-32 encodings, the BOM
      specifies big- or little-endian format. A UTF-8 text file
      may also include a BOM, but this isn’t guaranteed, and serves only to
      declare that it is UTF-8 in general. When reading and writing data using
      these encoding schemes, Python automatically skips or writes the BOM if
      it is either implied by a general encoding name, or if you provide a
      more specific encoding name to force the issue. For instance:
	In UTF-16, the BOM is always processed for “utf-16,” and the
          more specific encoding name “utf-16-le” denotes little-endian
          format.

	In UTF-8, the more specific encoding “utf-8-sig” forces Python
          to both skip and write a BOM on input and output, respectively, but
          the general “utf-8” does not.


Dropping the BOM in Notepad
Let’s make some files with BOMs to see how this works in
        practice. When you save a text file in Windows Notepad, you can
        specify its encoding type in a drop-down list—simple ASCII text,
        UTF-8, or little- or big-endian UTF-16. If a two-line text file named
        spam.txt is saved in Notepad as
        the encoding type ANSI, for instance, it’s
        written as simple ASCII text without a BOM. When this file is read in
        binary mode in Python, we can see the actual bytes stored in the file.
        When it’s read as text, Python performs end-of-line translation by
        default; we can also decode it as explicit UTF-8 text since ASCII is a
        subset of this scheme (or Latin-1’s cp1252 superset, which is Python 3.X’s default open encoding on Windows per locale.getpreferredencoding):
C:\code> C:\python33\python               # File saved in Notepad
>>> import sys, locale
>>> locale.getpreferredencoding(False)
'cp1252'
>>> open('spam.txt', 'rb').read()         # ASCII (UTF-8) text file
b'spam\r\nSPAM\r\n'
>>> open('spam.txt', 'r').read()          # Text mode translates line end
'spam\nSPAM\n'
>>> open('spam.txt', 'r', encoding='utf-8').read()
'spam\nSPAM\n'
If this file is instead saved as UTF-8 in
        Notepad, it is prepended with a 3-byte UTF-8 BOM sequence, and we need
        to give a more specific encoding name (“utf-8-sig”) to force Python to
        skip the marker:
>>> open('spam.txt', 'rb').read()         # UTF-8 with 3-byte BOM
b'\xef\xbb\xbfspam\r\nSPAM\r\n'
>>> open('spam.txt', 'r').read()
'ï»¿spam\nSPAM\n'
>>> open('spam.txt', 'r', encoding='utf-8').read()
'\ufeffspam\nSPAM\n'
>>> open('spam.txt', 'r', encoding='utf-8-sig').read()
'spam\nSPAM\n'
If the file is stored as Unicode big endian
        in Notepad, we get UTF-16-format data in the file, with 2-byte
        (16-bit) characters prepended with a 2-byte BOM sequence—the encoding
        name “utf-16” in Python skips the BOM because it is implied (since all
        UTF-16 files have a BOM), and “utf-16-be” handles the big-endian
        format but does not skip the BOM (the second of the following fails to
        print on older Pythons):
>>> open('spam.txt', 'rb').read()
b'\xfe\xff\x00s\x00p\x00a\x00m\x00\r\x00\n\x00S\x00P\x00A\x00M\x00\r\x00\n'
>>> open('spam.txt', 'r').read()
'\xfeÿ\x00s\x00p\x00a\x00m\x00\n\x00\n\x00S\x00P\x00A\x00M\x00\n\x00\n'
>>> open('spam.txt', 'r', encoding='utf-16').read()
'spam\nSPAM\n'
>>> open('spam.txt', 'r', encoding='utf-16-be').read()
'\ufeffspam\nSPAM\n'
Notepad’s “Unicode,” by the way, is UTF-16 little endian (which,
        of course, is one of very many kinds of Unicode encoding!).

Dropping the BOM in Python
The same patterns generally hold true for
        output. When writing a Unicode file in Python
        code, we need a more explicit encoding name to force the BOM in
        UTF-8—“utf-8” does not write (or skip) the BOM, but “utf-8-sig”
        does:
>>> open('temp.txt', 'w', encoding='utf-8').write('spam\nSPAM\n')
10
>>> open('temp.txt', 'rb').read()                         # No BOM
b'spam\r\nSPAM\r\n'

>>> open('temp.txt', 'w', encoding='utf-8-sig').write('spam\nSPAM\n')
10
>>> open('temp.txt', 'rb').read()                         # Wrote BOM
b'\xef\xbb\xbfspam\r\nSPAM\r\n'

>>> open('temp.txt', 'r').read()
'ï»¿spam\nSPAM\n'
>>> open('temp.txt', 'r', encoding='utf-8').read()        # Keeps BOM
'\ufeffspam\nSPAM\n'
>>> open('temp.txt', 'r', encoding='utf-8-sig').read()    # Skips BOM
'spam\nSPAM\n'
Notice that although “utf-8” does not drop the BOM, data
        without a BOM can be read with both “utf-8” and
        “utf-8-sig”—use the latter for input if you’re not sure whether a BOM
        is present in a file (and don’t read this paragraph out loud in an
        airport security line!):
>>> open('temp.txt', 'w').write('spam\nSPAM\n')
10
>>> open('temp.txt', 'rb').read()                         # Data without BOM
b'spam\r\nSPAM\r\n'

>>> open('temp.txt', 'r').read()                          # Either utf-8 works
'spam\nSPAM\n'
>>> open('temp.txt', 'r', encoding='utf-8').read()
'spam\nSPAM\n'
>>> open('temp.txt', 'r', encoding='utf-8-sig').read()
'spam\nSPAM\n'
Finally, for the encoding name “utf-16,” the BOM is handled
        automatically: on output, data is written in the
        platform’s native endianness, and the BOM is always written; on
        input, data is decoded per the BOM, and the BOM
        is always stripped because it’s standard in this scheme:
>>> sys.byteorder
'little'
>>> open('temp.txt', 'w', encoding='utf-16').write('spam\nSPAM\n')
10
>>> open('temp.txt', 'rb').read()
b'\xff\xfes\x00p\x00a\x00m\x00\r\x00\n\x00S\x00P\x00A\x00M\x00\r\x00\n\x00'
>>> open('temp.txt', 'r', encoding='utf-16').read()
'spam\nSPAM\n'
More specific UTF-16 encoding names can specify different
        endianness, though you may have to manually write and skip the BOM
        yourself in some scenarios if it is required or present—study the
        following examples for more BOM-making instructions:
>>> open('temp.txt', 'w', encoding='utf-16-be').write('\ufeffspam\nSPAM\n')
11
>>> open('spam.txt', 'rb').read()
b'\xfe\xff\x00s\x00p\x00a\x00m\x00\r\x00\n\x00S\x00P\x00A\x00M\x00\r\x00\n'
>>> open('temp.txt', 'r', encoding='utf-16').read()
'spam\nSPAM\n'
>>> open('temp.txt', 'r', encoding='utf-16-be').read()
'\ufeffspam\nSPAM\n'
The more specific UTF-16 encoding names work fine with BOM-less
        files, though “utf-16” requires one on input in order to determine
        byte order:
>>> open('temp.txt', 'w', encoding='utf-16-le').write('SPAM')
4
>>> open('temp.txt', 'rb').read()             # OK if BOM not present or expected
b'S\x00P\x00A\x00M\x00'
>>> open('temp.txt', 'r', encoding='utf-16-le').read()
'SPAM'
>>> open('temp.txt', 'r', encoding='utf-16').read()
UnicodeError: UTF-16 stream does not start with BOM
Experiment with these encodings yourself or see Python’s library
        manuals for more details on the BOM.


Unicode Files in 2.X
The preceding discussion applies to Python 3.X’s string types and files.
      You can achieve similar effects for Unicode files in 2.X, but the
      interface is different. However, if you replace str with
      unicode and open with codecs.open, the result is essentially the
      same in 3.X:
C:\code> C:\python27\python
>>> S = u'A\xc4B\xe8C'                                               # 2.X type
>>> print S
AÄBèC
>>> len(S)
5
>>> S.encode('latin-1')                                              # Manual calls
'A\xc4B\xe8C'
>>> S.encode('utf-8')
'A\xc3\x84B\xc3\xa8C'

>>> import codecs                                                    # 2.X files
>>> codecs.open('latindata', 'w', encoding='latin-1').write(S)       # Writes encode
>>> codecs.open('utfdata', 'w', encoding='utf-8').write(S)

>>> open('latindata', 'rb').read()
'A\xc4B\xe8C'
>>> open('utfdata', 'rb').read()
'A\xc3\x84B\xc3\xa8C'

>>> codecs.open('latindata', 'r', encoding='latin-1').read()         # Reads decode
u'A\xc4B\xe8C'
>>> codecs.open('utfdata', 'r', encoding='utf-8').read()
u'A\xc4B\xe8C'
>>> print codecs.open('utfdata', 'r', encoding='utf-8').read()       # Print to view
AÄBèC
For more 2.X Unicode details, see earlier sections of this chapter
      and Python 2.X manuals.

Unicode Filenames and Streams
In closing, this section has focused on the encoding and decoding
      of Unicode text file content, but Python also
      supports the notion of non-ASCII file names. In
      fact, they are independent settings in sys, which can vary per Python version and
      platform (2.X returns ASCII for the first of the following on
      Windows):
>>> import sys
>>> sys.getdefaultencoding(), sys.getfilesystemencoding()   # File content, names
('utf-8', 'mbcs')
Filenames: Text versus bytes
Filename encoding is often a nonissue. In short, for filenames
        given as Unicode text strings, the open call encodes automatically to and from
        the underlying platform’s filename conventions. Passing arbitrarily
        pre-encoded filenames as byte strings to file tools (including
        open and directory walkers and
        listers) overrides automatic encodings, and forces filename results to
        be returned in encoded byte string form too—useful if filenames are
        undecodable per the underlying platform’s conventions (I’m using
        Windows, but some of the following may fail on other
        platforms):
>>> f = open('xxx\u00A5',  'w')          # Non-ASCII filename
>>> f.write('\xA5999\n')                 # Writes five characters
>>> f.close()
>>> print(open('xxx\u00A5').read())      # Text: auto-encoded
¥999
>>> print(open(b'xxx\xA5').read())       # Bytes: pre-encoded
¥999

>>> import glob                          # Filename expansion tool
>>> glob.glob('*\u00A5*')                # Get decoded text for decoded text
['xxx¥']
>>> glob.glob(b'*\xA5*')                 # Get encoded bytes for encoded bytes
[b'xxx\xa5']

Stream content: PYTHONIOENCODING
In addition, the environment variable PYTHONIOENCODING can be used to set the encoding used for text in the
        standard streams—input, output, and error. This
        setting overrides Python’s default encoding for printed text, which on
        Windows currently uses a Windows format on 3.X and ASCII on 2.X.
        Setting this to a general Unicode format like UTF-8 may sometimes be
        required to print non-ASCII text, and to display such text in shell
        windows (possibly in conjunction with code page changes on some
        Windows machines). A script that prints non-ASCII filenames, for
        example, may fail unless this setting is made.
For more background on this subject, see also “Currency Symbols:
        Unicode in Action” in Chapter 25.
        There, we work through an example that demonstrates the essentials of
        portable Unicode coding, as well as the roles and requirements of
        PYTHONIOENCODING settings, which we
        won’t rehash here.
For more on these topics in general, see Python manuals or books
        such as Programming Python,
        4th Edition (or later, if later may be). The latter of these
        digs deeper into streams and files from an applications-level
        perspective.



Other String Tool Changes in 3.X
Many of the other popular string-processing tools in Python’s standard library
    have also been revamped for the new str/bytes
    type dichotomy. We won’t cover any of these application-focused tools in
    much detail in this core language book, but to wrap up this chapter,
    here’s a quick look at four of the major tools impacted: the re pattern-matching module, the struct binary data module, the pickle object serialization module, and the
    xml package for parsing XML text. As
    noted ahead, other Python tools, such as its json module, differ in ways similar to those
    presented here.
The re Pattern-Matching Module
Python’s re pattern-matching
      module supports text processing that is more general than that
      afforded by simple string method calls such as find, split, and replace. With re, strings that designate searching and
      splitting targets can be described by general patterns, instead of
      absolute text. This module has been generalized to work on objects of
      any string type in 3.X—str, bytes, and bytearray—and returns result substrings of the
      same type as the subject string. In 2.X it supports both unicode
      and str.
Here it is at work in 3.X, extracting substrings from a line of
      text—borrowed, of course, from Monty Python’s The Meaning of
      Life. Within pattern strings, (.*) means any character (the .), zero or more times (the *), saved away as a matched substring (the
      ()). Parts of the string matched by
      the parts of a pattern enclosed in parentheses are available after a
      successful match, via the group or
      groups method:
C:\code> C:\python33\python
>>> import re
>>> S = 'Bugger all down here on earth!'               # Line of text
>>> B = b'Bugger all down here on earth!'              # Usually from a file

>>> re.match('(.*) down (.*) on (.*)', S).groups()     # Match line to pattern
('Bugger all', 'here', 'earth!')                       # Matched substrings

>>> re.match(b'(.*) down (.*) on (.*)', B).groups()    # bytes substrings
(b'Bugger all', b'here', b'earth!')
In Python 2.X results are similar, but the unicode type is used for non-ASCII text, and
      str handles both 8-bit and binary
      text:
C:\code> C:\python27\python
>>> import re
>>> S = 'Bugger all down here on earth!'               # Simple text and binary
>>> U = u'Bugger all down here on earth!'              # Unicode text

>>> re.match('(.*) down (.*) on (.*)', S).groups()
('Bugger all', 'here', 'earth!')

>>> re.match('(.*) down (.*) on (.*)', U).groups()
(u'Bugger all', u'here', u'earth!')
Since bytes and str support essentially the same operation
      sets, this type distinction is largely transparent. But note that, like
      in other APIs, you can’t mix str and
      bytes types in its calls’ arguments
      in 3.X (although if you don’t plan to do pattern matching on binary
      data, you probably don’t need to care):
C:\code> C:\python33\python
>>> import re
>>> S = 'Bugger all down here on earth!'
>>> B = b'Bugger all down here on earth!'

>>> re.match('(.*) down (.*) on (.*)', B).groups()
TypeError: can't use a string pattern on a bytes-like object

>>> re.match(b'(.*) down (.*) on (.*)', S).groups()
TypeError: can't use a bytes pattern on a string-like object

>>> re.match(b'(.*) down (.*) on (.*)', bytearray(B)).groups()
(bytearray(b'Bugger all'), bytearray(b'here'), bytearray(b'earth!'))

>>> re.match('(.*) down (.*) on (.*)', bytearray(B)).groups()
TypeError: can't use a string pattern on a bytes-like object

The struct Binary Data Module
The Python struct module, used
      to create and extract packed binary data from strings, also
      works the same in 3.X as it does in 2.X, but in 3.X packed data is
      represented as bytes and bytearray objects only, not str objects (which makes sense, given that
      it’s intended for processing binary data, not decoded text); and “s”
      data code values must be bytes as of
      3.2 (the former str UTF-8 auto-encode
      is dropped).
Here are both Pythons in action, packing three objects into a
      string according to a binary type specification (they create a 4-byte
      integer, a 4-byte string, and a 2-byte integer):
C:\code> C:\python33\python
>>> from struct import pack
>>> pack('>i4sh', 7, b'spam', 8)        # bytes in 3.X (8-bit strings)
b'\x00\x00\x00\x07spam\x00\x08'

C:\code> C:\python27\python
>>> from struct import pack
>>> pack('>i4sh', 7, 'spam', 8)         # str in 2.X (8-bit strings)
'\x00\x00\x00\x07spam\x00\x08'
Since bytes has an almost
      identical interface to that of str in
      3.X and 2.X, though, most programmers probably won’t need to care—the
      change is irrelevant to most existing code, especially since reading
      from a binary file creates a bytes
      automatically. Although the last test in the following example fails on
      a type mismatch, most scripts will read binary data from a file, not
      create it as a string as we do here:
C:\code> C:\python33\python
>>> import struct
>>> B = struct.pack('>i4sh', 7, b'spam', 8)
>>> B
b'\x00\x00\x00\x07spam\x00\x08'

>>> vals = struct.unpack('>i4sh', B)
>>> vals
(7, b'spam', 8)

>>> vals = struct.unpack('>i4sh', B.decode())
TypeError: 'str' does not support the buffer interface
Apart from the new syntax for bytes, creating and reading binary
      files works almost the same in 3.X as it does in 2.X. Still, code like
      this is one of the main places where programmers will notice the
      bytes object type:
C:\code> C:\python33\python
# Write values to a packed binary file
>>> F = open('data.bin', 'wb')                  # Open binary output file
>>> import struct
>>> data = struct.pack('>i4sh', 7, b'spam', 8)  # Create packed binary data
>>> data                                        # bytes in 3.X, not str
b'\x00\x00\x00\x07spam\x00\x08'
>>> F.write(data)                               # Write to the file
10
>>> F.close()

# Read values from a packed binary file
>>> F = open('data.bin', 'rb')                  # Open binary input file
>>> data = F.read()                             # Read bytes
>>> data
b'\x00\x00\x00\x07spam\x00\x08'
>>> values = struct.unpack('>i4sh', data)       # Extract packed binary data
>>> values                                      # Back to Python objects
(7, b'spam', 8)
Once you’ve extracted packed binary data into Python objects like
      this, you can dig even further into the binary world if you have
      to—strings can be indexed and sliced to get individual bytes’ values,
      individual bits can be extracted from integers with bitwise operators,
      and so on (see earlier in this book for more on the operations applied
      here):
>>> values                                      # Result of struct.unpack
(7, b'spam', 8)

# Accessing bits of parsed integers
>>> bin(values[0])                              # Can get to bits in ints
'0b111'
>>> values[0] & 0x01                            # Test first (lowest) bit in int
1
>>> values[0] | 0b1010                          # Bitwise or: turn bits on
15
>>> bin(values[0] | 0b1010)                     # 15 decimal is 1111 binary
'0b1111'
>>> bin(values[0] ^ 0b1010)                     # Bitwise xor: off if both true
'0b1101'
>>> bool(values[0] & 0b100)                     # Test if bit 3 is on
True
>>> bool(values[0] & 0b1000)                    # Test if bit 4 is set
False
Since parsed bytes strings are
      sequences of small integers, we can do similar processing with their
      individual bytes:
# Accessing bytes of parsed strings and bits within them
>>> values[1]
b'spam'
>>> values[1][0]                          # bytes string: sequence of ints
115
>>> values[1][1:]                         # Prints as ASCII characters
b'pam'
>>> bin(values[1][0])                     # Can get to bits of bytes in strings
'0b1110011'
>>> bin(values[1][0] | 0b1100)            # Turn bits on
'0b1111111'
>>> values[1][0] | 0b1100
127
Of course, most Python programmers don’t deal with binary bits;
      Python has higher-level object types, like lists and dictionaries that
      are generally a better choice for representing information in Python
      scripts. However, if you must use or produce lower-level data used by C
      programs, networking libraries, or other interfaces, Python has tools to
      assist.

The pickle Object Serialization Module
We met the pickle
      module briefly in Chapter 9, Chapter 28, and Chapter 31. In Chapter 28, we also used the shelve module, which uses pickle internally.
      For completeness here, keep in mind that the Python 3.X version of the
      pickle module always creates a
      bytes object, regardless of the
      default or passed-in “protocol” (data format level). You can see this by
      using the module’s dumps call to
      return an object’s pickle string:
C:\code> C:\python33\python
>>> import pickle                          # dumps() returns pickle string

>>> pickle.dumps([1, 2, 3])                # Python 3.X default protocol=3=binary
b'\x80\x03]q\x00(K\x01K\x02K\x03e.'

>>> pickle.dumps([1, 2, 3], protocol=0)    # ASCII protocol 0, but still bytes!
b'(lp0\nL1L\naL2L\naL3L\na.'
This implies that files used to store pickled objects must always
      be opened in binary mode in Python 3.X, since text
      files use str strings to represent
      data, not bytes—the dump call simply attempts to write the pickle
      string to an open output file:
>>> pickle.dump([1, 2, 3], open('temp', 'w'))    # Text files fail on bytes!
TypeError: must be str, not bytes                # Despite protocol value

>>> pickle.dump([1, 2, 3], open('temp', 'w'), protocol=0)
TypeError: must be str, not bytes

>>> pickle.dump([1, 2, 3], open('temp', 'wb'))   # Always use binary in 3.X

>>> open('temp', 'r').read()                     # This works, but just by luck
'\u20ac\x03]q\x00(K\x01K\x02K\x03e.'
Notice the last result here didn’t issue an error in text mode
      only because the stored binary data was compatible with the Windows
      platform’s UTF-8 default decoder; this was really just luck (and in
      fact, this command failed when printing in older Pythons, and may fail
      on other platforms). Because pickle data is not generally decodable
      Unicode text, the same rule holds on input—correct usage in 3.X requires
      always both writing and reading pickle data in binary modes, whether
      unpickling or not:
>>> pickle.dump([1, 2, 3], open('temp', 'wb'))
>>> pickle.load(open('temp', 'rb'))
[1, 2, 3]
>>> open('temp', 'rb').read()
b'\x80\x03]q\x00(K\x01K\x02K\x03e.'
In Python 2.X, we can get by with text-mode files for pickled
      data, as long as the protocol is level 0 (the default in 2.X) and we use
      text mode consistently to convert line ends:
C:\code> C:\python27\python
>>> import pickle
>>> pickle.dumps([1, 2, 3])                      # Python 2.X default=0=ASCII
'(lp0\nI1\naI2\naI3\na.'

>>> pickle.dumps([1, 2, 3], protocol=1)
']q\x00(K\x01K\x02K\x03e.'

>>> pickle.dump([1, 2, 3], open('temp', 'w'))    # Text mode works in 2.X
>>> pickle.load(open('temp'))
[1, 2, 3]
>>> open('temp').read()
'(lp0\nI1\naI2\naI3\na.'
If you care about version neutrality, though, or don’t want to
      care about protocols or their version-specific defaults, always use
      binary-mode files for pickled data—the following works the same in
      Python 3.X and 2.X:
>>> import pickle
>>> pickle.dump([1, 2, 3], open('temp', 'wb'))     # Version neutral
>>> pickle.load(open('temp', 'rb'))                # And required in 3.X
[1, 2, 3]
Because almost all programs let Python pickle and unpickle objects
      automatically and do not deal with the content of pickled data itself,
      the requirement to always use binary file modes is the only significant
      incompatibility in Python 3.X’s newer pickling model. See reference
      books or Python’s manuals for more details on object pickling.

XML Parsing Tools
XML is a tag-based language for defining structured information, commonly used to define
      documents and data shipped over the Web. Although some information can
      be extracted from XML text with basic string methods or the re pattern module, XML’s nesting of constructs
      and arbitrary attribute text tend to make full parsing more
      accurate.
Because XML is such a pervasive format, Python itself comes with
      an entire package of XML parsing tools that support the SAX and DOM
      parsing models, as well as a package known as ElementTree—a
      Python-specific API for parsing and constructing XML. Beyond basic
      parsing, the open source domain provides support for additional XML
      tools, such as XPath, Xquery, XSLT, and more.
XML by definition represents text in Unicode form, to support
      internationalization. Although most of Python’s XML parsing tools have
      always returned Unicode strings, in Python 3.X their results have
      mutated from the 2.X unicode type to
      the 3.X general str string type—which
      makes sense, given that 3.X’s str
      string is Unicode, whether the encoding is ASCII or
      other.
We can’t go into many details here, but to sample the flavor of
      this domain, suppose we have a simple XML text file, mybooks.xml:
<books>
    <date>1995~2013</date>
    <title>Learning Python</title>
    <title>Programming Python</title>
    <title>Python Pocket Reference</title>
    <publisher>O'Reilly Media</publisher>
</books>
and we want to run a script to extract and display the content of
      all the nested title tags, as
      follows:
Learning Python
Programming Python
Python Pocket Reference
There are at least four basic ways to accomplish this (not
      counting more advanced tools like XPath). First, we could run basic
      pattern matching on the file’s text, though this
      tends to be inaccurate if the text is unpredictable. Where applicable,
      the re module we met
      earlier does the job—its match method
      looks for a match at the start of a string, search scans
      ahead for a match, and the findall
      method used here locates all places where the pattern matches in the
      string (the result comes back as a list of matched substrings
      corresponding to parenthesized pattern groups, or tuples of such for
      multiple groups):
# File patternparse.py

import re
text  = open('mybooks.xml').read()
found = re.findall('<title>(.*)</title>', text)
for title in found: print(title)
Second, to be more robust, we could perform complete XML parsing
      with the standard library’s DOM parsing
      support. DOM parses XML text into a tree of objects and provides an
      interface for navigating the tree to extract tag attributes and values;
      the interface is a formal specification, independent of Python:
# File domparse.py

from xml.dom.minidom import parse, Node
xmltree = parse('mybooks.xml')
for node1 in xmltree.getElementsByTagName('title'):
    for node2 in node1.childNodes:
         if node2.nodeType == Node.TEXT_NODE:
             print(node2.data)
As a third option, Python’s standard library supports SAX parsing for XML. Under
      the SAX model, a class’s methods receive callbacks as a parse progresses
      and use state information to keep track of where they are in the
      document and collect its data:
# File saxparse.py

import xml.sax.handler
class BookHandler(xml.sax.handler.ContentHandler):
    def __init__(self):
        self.inTitle = False
    def startElement(self, name, attributes):
        if name == 'title':
            self.inTitle = True
    def characters(self, data):
        if self.inTitle:
            print(data)
    def endElement(self, name):
        if name == 'title':
            self.inTitle = False

import xml.sax
parser = xml.sax.make_parser()
handler = BookHandler()
parser.setContentHandler(handler)
parser.parse('mybooks.xml')
Finally, the ElementTree system available in the etree
      package of the standard library can often achieve the same effects
      as XML DOM parsers, but with remarkably less code. It’s a
      Python-specific way to both parse and generate XML text; after a parse,
      its API gives access to components of the document:
# File etreeparse.py

from xml.etree.ElementTree import parse
tree = parse('mybooks.xml')
for E in tree.findall('title'):
    print(E.text)
When run in either 2.X or 3.X, all four of these scripts display
      the same printed result:
C:\code> C:\python27\python domparse.py
Learning Python
Programming Python
Python Pocket Reference

C:\code> C:\python33\python domparse.py
Learning Python
Programming Python
Python Pocket Reference
Technically, though, in 2.X some of these scripts produce unicode string objects, while in 3.X all
      produce str strings, since that type
      includes Unicode text (whether ASCII or other):
C:\code> C:\python33\python
>>> from xml.dom.minidom import parse, Node
>>> xmltree = parse('mybooks.xml')
>>> for node in xmltree.getElementsByTagName('title'):
        for node2 in node.childNodes:
            if node2.nodeType == Node.TEXT_NODE:
                node2.data

'Learning Python'
'Programming Python'
'Python Pocket Reference'

C:\code> C:\python27\python
>>> ...same code...

u'Learning Python'
u'Programming Python'
u'Python Pocket Reference'
Programs that must deal with XML parsing results in nontrivial
      ways will need to account for the different object type in 3.X. Again,
      though, because all strings have nearly identical interfaces in both 2.X
      and 3.X, most scripts won’t be affected by the change; tools available
      on unicode in 2.X are generally
      available on str in 3.X. The major
      feat, if there is one, is likely in getting the encoding names right
      when transferring the parsed-out data to and from files, network
      connections, GUIs, and so on.
Regrettably, going into further XML parsing details is beyond this
      book’s scope. If you are interested in text or XML parsing, it is
      covered in more detail in the applications-focused follow-up book Programming
      Python. For more details on re, struct,
      pickle, and XML, as well as the
      additional impacts of Unicode on other library tools such as filename
      expansion and directory walkers, consult the Web, the aforementioned
      book and others, and Python’s standard library manual.
For a related topic, see also the JSON
      example in Chapter 9—a
      language-neutral data exchange format, whose structure is very similar
      to Python dictionaries and lists, and whose strings are all Unicode that
      differs in type between Pythons 2.X and 3.X much the same as shown for
      XML here.
Why You Will Care: Inspecting Files, and Much More
As I was updating this chapter, I stumbled onto a use case for some of its tools. After
        saving a formerly ASCII HTML file in Notepad as “UTF8,” I found that
        it had grown a mystery non-ASCII character along the way due to an
        apparent keyboard operator error, and would no longer work as ASCII in
        text tools. To find the bad character, I simply started Python,
        decoded the file’s content from its UTF-8 format via a text
        mode file, and scanned character by character looking for
        the first byte that was not a valid ASCII character too:
>>> f = open('py33-windows-launcher.html', encoding='utf8')
>>> t = f.read()
>>> for (i, c) in enumerate(t):
        try:
            x = c.encode(encoding='ascii')
        except:
            print(i, sys.exc_info()[0])
   9886 <class 'UnicodeEncodeError'>
With the bad character’s index in hand, it’s easy to slice the
        Unicode string for more details:
>>> len(t)
31021
>>> t[9880:9890]
'ugh.  \u206cThi'
>>> t[9870:9890]
'trace through.  \u206cThi'
After fixing, I could also open in binary
        mode to verify and explore actual undecoded file content
        further:
>>> f = open('py33-windows-launcher.html', 'rb')
>>> b = f.read()
>>> b[0]
60
>>> b[:10]
b'<HTML>\r\n<T'
Not rocket science, perhaps, and there are other approaches, but
        Python makes for a convenient tactical tool in such cases, and its
        file objects give you a tangible window on your data when needed, both
        in scripts and interactive mode.
For more realistically scaled examples of Unicode at work, I
        suggest my other book Programming Python,
        4th Edition (or later). That book develops much larger
        programs than we can here, and has numerous up close and personal
        encounters with Unicode along the way, in the context of files,
        directory walkers, network sockets, GUIs, email content and headers,
        web page content, databases, and more. Though clearly an important
        topic in today’s global software world, Unicode is more mandatory than
        you might expect, especially in a language like Python 3.X, which
        elevates it to its core string and file types, thus bringing all its
        users into the Unicode fold—ready or not!



Chapter Summary
This chapter explored in-depth the advanced string types available
    in Python 3.X and 2.X for processing Unicode text and binary data. As we
    saw, many programmers use ASCII text and can get by with the basic string
    type and its operations. For more advanced applications, Python’s string
    models fully support both richer Unicode text (via the normal string type
    in 3.X and a special type in 2.X) and byte-oriented data (represented with
    a bytes type in 3.X and normal strings
    in 2.X).
In addition, we learned how Python’s file object has mutated in 3.X
    to automatically encode and decode Unicode text and deal with byte strings
    for binary-mode files, and saw similar utility for 2.X. Finally, we
    briefly met some text and binary data tools in Python’s library, and
    sampled their behavior in 3.X and 2.X.
In the next chapter, we’ll shift our focus to tool-builder topics,
    with a look at ways to manage access to object attributes by inserting
    automatically run code. Before we move on, though, here’s a set of
    questions to review what we’ve learned here. This has been a substantial
    chapter, so be sure to read the quiz answers eventually for a more
    in-depth summary.

Test Your Knowledge: Quiz
	What are the names and roles of string object types in Python
        3.X?

	What are the names and roles of string object types in Python
        2.X?

	What is the mapping between 2.X and 3.X string types?

	How do Python 3.X’s string types differ in terms of
        operations?

	How can you code non-ASCII Unicode characters in a string in
        3.X?

	What are the main differences between text- and binary-mode
        files in Python 3.X?

	How would you read a Unicode text file that contains text in a
        different encoding than the default for your platform?

	How can you create a Unicode text file in a specific encoding
        format?

	Why is ASCII text considered to be a kind of Unicode
        text?

	How large an impact does Python 3.X’s string types change have
        on your code?



Test Your Knowledge: Answers
	Python 3.X has three string types: str (for Unicode text, including ASCII),
        bytes (for binary data with
        absolute byte values), and bytearray (a mutable flavor of bytes). The str type usually represents content stored
        on a text file, and the other two types generally represent content
        stored on binary files.

	Python 2.X has two main string types: str (for 8-bit text and binary data) and
        unicode (for possibly wider
        character Unicode text). The str
        type is used for both text and binary file content; unicode is used for text file content that
        is generally more complex than 8-bit characters. Python 2.6 (but not
        earlier) also has 3.X’s bytearray
        type, but it’s mostly a back-port and doesn’t exhibit the sharp
        text/binary distinction that it does in 3.X.

	The mapping from 2.X to 3.X string types is not direct, because
        2.X’s str equates to both str and bytes in 3.X, and 3.X’s str equates to both str and unicode in 2.X. The mutability of bytearray in 3.X is also unique. In general,
        though: Unicode text is handled by 3.X str and 2.X unicode, byte-based data is handled by 3.X
        bytes and 2.X str, and 3.X bytes and 2.X str can both handle some simpler types of
        text.

	Python 3.X’s string types share almost all the same operations:
        method calls, sequence operations, and even larger tools like pattern
        matching work the same way. On the other hand, only str supports string formatting operations,
        and bytearray has an additional set
        of operations that perform in-place changes. The str and bytes types also have methods for encoding
        and decoding text, respectively.

	Non-ASCII Unicode characters can be coded in a string with both
        hex (\xNN) and Unicode (\uNNNN, \UNNNNNNNN) escapes. On some machines, some
        non-ASCII characters—certain Latin-1 characters, for example—can also
        be typed or pasted directly into code, and are interpreted per the
        UTF-8 default or a source code encoding directive comment.

	In 3.X, text-mode files assume their file content is Unicode
        text (even if it’s all ASCII) and automatically decode when reading
        and encode when writing. With binary-mode files, bytes are transferred
        to and from the file unchanged. The contents of text-mode files are
        usually represented as str objects
        in your script, and the contents of binary files are represented as
        bytes (or bytearray) objects. Text-mode files also
        handle the BOM for certain encoding types and automatically translate
        end-of-line sequences to and from the single \n character on input and output unless this
        is explicitly disabled; binary-mode files do not perform either of
        these steps. Python 2.X uses codecs.open for Unicode files, which encodes
        and decodes similarly; 2.X’s open
        only translates line ends in text mode.

	To read files encoded in a different encoding than the default
        for your platform, simply pass the name of the file’s encoding to the
        open built-in in 3.X (codecs.open() in 2.X); data will be decoded
        per the specified encoding when it is read from the file. You can also
        read in binary mode and manually decode the bytes to a string by
        giving an encoding name, but this involves extra work and is somewhat
        error-prone for multibyte characters (you may accidentally read a
        partial character sequence).

	To create a Unicode text file in a specific encoding format,
        pass the desired encoding name to open in 3.X (codecs.open() in 2.X); strings will be
        encoded per the desired encoding when they are written to the file.
        You can also manually encode a string to bytes and write it in binary
        mode, but this is usually extra work.

	ASCII text is considered to be a kind of Unicode text, because
        its 7-bit range of values is a subset of most Unicode encodings. For
        example, valid ASCII text is also valid Latin-1 text (Latin-1 simply
        assigns the remaining possible values in an 8-bit byte to additional
        characters) and valid UTF-8 text (UTF-8 defines a variable-byte scheme
        for representing more characters, but ASCII characters are still
        represented with the same codes, in a single byte). This makes Unicode
        backward-compatible with the mass of ASCII text data in the world
        (though it also may have limited its options—self-identifying text,
        for instance, may have been difficult (though BOMs serve much the same
        role).

	The impact of Python 3.X’s string types change depends upon the
        types of strings you use. For scripts that use simple ASCII text on
        platforms with ASCII-compatible default encodings, the impact is
        probably minor: the str string type
        works the same in 2.X and 3.X in this case. Moreover, although
        string-related tools in the standard library such as re, struct, pickle, and xml may technically use different types in
        3.X than in 2.X, the changes are largely irrelevant to most programs
        because 3.X’s str and bytes and 2.X’s str support almost identical interfaces. If
        you process Unicode data, the toolset you need has simply moved from
        2.X’s unicode and codecs.open() to 3.X’s str and open. If you deal with binary data files,
        you’ll need to deal with content as bytes objects; since they have a similar
        interface to 2.X strings, though, the impact should again be minimal.
        That said, the update of the book Programming
        Python for 3.X ran across numerous cases where Unicode’s
        mandatory status in 3.X implied changes in standard library APIs—from
        networking and GUIs, to databases and email. In general, Unicode will
        probably impact most 3.X users eventually.










Chapter 38. Managed Attributes
This chapter expands on the attribute
  interception techniques introduced earlier, introduces another,
  and employs them in a handful of larger examples. Like everything in this
  part of the book, this chapter is classified as an advanced topic and
  optional reading, because most applications programmers don’t need to care
  about the material discussed here—they can fetch and set attributes on
  objects without concern for attribute implementations.
Especially for tools builders, though, managing attribute access can
  be an important part of flexible APIs. Moreover, an understanding of the
  descriptor model covered here can make related tools such as slots and
  properties more tangible, and may even be required reading if it appears in
  code you must use.
Why Manage Attributes?
Object attributes are central to most Python programs—they are where we often
    store information about the entities our scripts process. Normally,
    attributes are simply names for objects; a person’s name attribute, for example, might be a simple
    string, fetched and set with basic attribute syntax:
person.name                 # Fetch attribute value
person.name = value         # Change attribute value
In most cases, the attribute lives in the object itself, or is
    inherited from a class from which it derives. That basic model suffices
    for most programs you will write in your Python career.
Sometimes, though, more flexibility is required. Suppose you’ve
    written a program to use a name
    attribute directly, but then your requirements change—for example, you
    decide that names should be validated with logic when set or mutated in
    some way when fetched. It’s straightforward to code methods to manage
    access to the attribute’s value (valid
    and transform are abstract
    here):
class Person:
    def getName(self):
        if not valid():
            raise TypeError('cannot fetch name')
        else:
            return self.name.transform()

    def setName(self, value):
         if not valid(value):
            raise TypeError('cannot change name')
        else:
            self.name = transform(value)

person = Person()
person.getName()
person.setName('value')
However, this also requires changing all the places where names are
    used in the entire program—a possibly nontrivial task. Moreover, this
    approach requires the program to be aware of how values are exported: as
    simple names or called methods. If you begin with a method-based interface
    to data, clients are immune to changes; if you do not, they can become
    problematic.
This issue can crop up more often than you might expect. The value
    of a cell in a spreadsheet-like program, for instance, might begin its
    life as a simple discrete value, but later mutate into an arbitrary
    calculation. Since an object’s interface should be flexible enough to
    support such future changes without breaking existing code, switching to
    methods later is less than ideal.
Inserting Code to Run on Attribute Access
A better solution would allow you to run code automatically on attribute access, if needed.
      That’s one of the main roles of managed attributes—they provide ways to
      add attribute accessor logic after the fact. More
      generally, they support arbitrary attribute usage modes that go beyond
      simple data storage.
At various points in this book, we’ve met Python tools that allow
      our scripts to dynamically compute attribute values when fetching them
      and validate or change attribute values when storing them. In this
      chapter, we’re going to expand on the tools already introduced, explore
      other available tools, and study some larger use-case examples in this
      domain. Specifically, this chapter presents four
      accessor techniques:
	The __getattr__ and
          __setattr__ methods, for
          routing undefined attribute fetches and all attribute
          assignments to generic handler methods.

	The __getattribute__
          method, for routing all attribute fetches to a generic handler
          method.

	The property built-in, for
          routing specific attribute access to get and set handler functions.

	The descriptor protocol, for routing specific attribute accesses to instances of
          classes with arbitrary get and set handler methods, and the basis
          for other tools such as properties and slots.


The tools in the first of these bullets are available in all
      Pythons. The last three bullets’ tools are available in Python 3.X and
      new-style classes in 2.X—they first appeared in Python 2.2, along with
      many of the other advanced tools of Chapter 32 such as slots and super. We briefly met the first and third of
      these in Chapter 30 and Chapter 32, respectively; the second and fourth
      are largely new topics we’ll explore in full here.
As we’ll see, all four techniques share goals to some degree, and
      it’s usually possible to code a given problem using any one of them.
      They do differ in some important ways, though. For example, the last two
      techniques listed here apply to specific
      attributes, whereas the first two are generic enough to be used by
      delegation-based proxy classes that must route
      arbitrary attributes to wrapped objects. As we’ll
      see, all four schemes also differ in both complexity and aesthetics, in
      ways you must see in action to judge for yourself.
Besides studying the specifics behind the four attribute
      interception techniques listed in this section, this chapter also
      presents an opportunity to explore larger programs than we’ve seen
      elsewhere in this book. The CardHolder case study at the end, for example,
      should serve as a self-study example of larger classes in action. We’ll
      also be using some of the techniques outlined here in the next chapter
      to code decorators, so be sure you have at least a general understanding
      of these topics before you move on.


Properties
The property protocol allows us to route a specific attribute’s get, set,
    and delete operations to functions or methods we provide, enabling us to
    insert code to be run automatically on attribute access, intercept
    attribute deletions, and provide documentation for the attributes if
    desired.
Properties are created with the property built-in and are assigned to class
    attributes, just like method functions. Accordingly, they are inherited by
    subclasses and instances, like any other class attributes. Their
    access-interception functions are provided with the self instance argument, which grants access to
    state information and class attributes available on the subject
    instance.
A property manages a single, specific attribute; although it can’t
    catch all attribute accesses generically, it allows us to control both
    fetch and assignment accesses and enables us to change an attribute from
    simple data to a computation freely, without breaking existing code. As
    we’ll see, properties are strongly related to descriptors; in fact, they
    are essentially a restricted form of them.
The Basics
A property is created by assigning the result of a built-in
      function to a class attribute:
attribute = property(fget, fset, fdel, doc)
None of this built-in’s arguments are required, and all default to
      None if not passed. For the first
      three, this None means that the
      corresponding operation is not supported, and attempting it will
      raise an AttributeError
      exception automatically.
When these arguments are used, we pass fget a function for intercepting attribute
      fetches, fset a function for
      assignments, and fdel a function for
      attribute deletions. Technically, all three of these arguments accept
      any callable, including a class’s method, having a first argument to
      receive the instance being qualified. When later invoked, the fget function returns the computed attribute
      value, fset and fdel return nothing (really, None), and all three may raise exceptions to
      reject access requests.
The doc argument receives a
      documentation string for the attribute, if desired; otherwise, the
      property copies the docstring of the fget function, which as usual defaults to
      None.
This built-in property call
      returns a property object, which we assign to the name of the attribute
      to be managed in the class scope, where it will be inherited by every
      instance.

A First Example
To demonstrate how this translates to working code, the following
      class uses a property to trace access to an attribute named name; the actual stored data is named _name so it does not clash with the property
      (if you’re working along with the book examples package, some filenames
      in this chapter are implied by the command lines that run them following
      their listings):
class Person:                       # Add (object) in 2.X
    def __init__(self, name):
        self._name = name
    def getName(self):
        print('fetch...')
        return self._name
    def setName(self, value):
        print('change...')
        self._name = value
    def delName(self):
        print('remove...')
        del self._name
    name = property(getName, setName, delName, "name property docs")

bob = Person('Bob Smith')           # bob has a managed attribute
print(bob.name)                     # Runs getName
bob.name = 'Robert Smith'           # Runs setName
print(bob.name)
del bob.name                        # Runs delName

print('-'*20)
sue = Person('Sue Jones')           # sue inherits property too
print(sue.name)
print(Person.name.__doc__)          # Or help(Person.name)
Properties are available in both 2.X and 3.X, but they require
      new-style object derivation in 2.X to
      work correctly for assignments—add object as a superclass here to run this in
      2.X. You can list the superclass in 3.X too, but it’s implied and not
      required, and is sometimes omitted in this book to reduce
      clutter.
This particular property doesn’t do much—it simply intercepts and
      traces an attribute—but it serves to demonstrate the protocol. When this
      code is run, two instances inherit the property, just as they would any
      other attribute attached to their class. However, their attribute
      accesses are caught:
c:\code> py −3 prop-person.py
fetch...
Bob Smith
change...
fetch...
Robert Smith
remove...
--------------------
fetch...
Sue Jones
name property docs
Like all class attributes, properties are
      inherited by both instances and lower subclasses.
      If we change our example as follows, for instance:
class Super:
    ...the original Person class code...
    name = property(getName, setName, delName, 'name property docs')

class Person(Super):
    pass                            # Properties are inherited (class attrs)

bob = Person('Bob Smith')
...rest unchanged...
the output is the same—the Person subclass inherits the name property from Super, and the bob instance gets it from Person. In terms of inheritance, properties
      work the same as normal methods; because they have access to the
      self instance argument, they can
      access instance state information and methods irrespective of subclass
      depth, as the next section further demonstrates.

Computed Attributes
The example in the prior section simply traces attribute accesses.
      Usually, though, properties do much more—computing the value of an
      attribute dynamically when fetched, for example. The following example
      illustrates:
class PropSquare:
    def __init__(self, start):
        self.value = start
    def getX(self):                         # On attr fetch
        return self.value ** 2
    def setX(self, value):                  # On attr assign
        self.value = value
    X = property(getX, setX)                # No delete or docs

P = PropSquare(3)       # Two instances of class with property
Q = PropSquare(32)      # Each has different state information

print(P.X)              # 3 ** 2
P.X = 4
print(P.X)              # 4 ** 2
print(Q.X)              # 32 ** 2 (1024)
This class defines an attribute X that is accessed as though it were static
      data, but really runs code to compute its value when fetched. The effect
      is much like an implicit method call. When the code is run, the value is
      stored in the instance as state information, but each time we fetch it
      via the managed attribute, its value is automatically squared:
c:\code> py −3 prop-computed.py
9
16
1024
Notice that we’ve made two different instances—because property
      methods automatically receive a self
      argument, they have access to the state information stored in instances.
      In our case, this means the fetch computes the square of the subject
      instance’s own data.

Coding Properties with Decorators
Although we’re saving additional details until the next chapter, we introduced
      function decorator basics earlier, in Chapter 32. Recall that the function decorator
      syntax:
@decorator
def func(args): ...
is automatically translated to this equivalent by Python, to
      rebind the function name to the result of the decorator callable:
def func(args): ...
func = decorator(func)
Because of this mapping, it turns out that the property built-in can serve as a decorator, to
      define a function that will run automatically when an attribute is
      fetched:
class Person:
    @property
    def name(self): ...             # Rebinds: name = property(name)
When run, the decorated method is automatically passed to the
      first argument of the property
      built-in. This is really just alternative syntax for creating a property
      and rebinding the attribute name manually, but may be seen as more
      explicit in this role:
class Person:
    def name(self): ...
    name = property(name)
Setter and deleter decorators
As of Python 2.6 and 3.0, property objects also have getter, setter, and deleter methods that assign the
        corresponding property accessor methods and return a copy of the
        property itself. We can use these to specify components of properties
        by decorating normal methods too, though the getter component is usually filled in
        automatically by the act of creating the property itself:
class Person:
    def __init__(self, name):
        self._name = name

    @property
    def name(self):                 # name = property(name)
        "name property docs"
        print('fetch...')
        return self._name

    @name.setter
    def name(self, value):          # name = name.setter(name)
        print('change...')
        self._name = value

    @name.deleter
    def name(self):                 # name = name.deleter(name)
        print('remove...')
        del self._name

bob = Person('Bob Smith')           # bob has a managed attribute
print(bob.name)                     # Runs name getter (name 1)
bob.name = 'Robert Smith'           # Runs name setter (name 2)
print(bob.name)
del bob.name                        # Runs name deleter (name 3)

print('-'*20)
sue = Person('Sue Jones')           # sue inherits property too
print(sue.name)
print(Person.name.__doc__)          # Or help(Person.name)
In fact, this code is equivalent to the first example in this
        section—decoration is just an alternative way to code properties in
        this case. When it’s run, the results are the same:
c:\code> py −3 prop-person-deco.py
fetch...
Bob Smith
change...
fetch...
Robert Smith
remove...
--------------------
fetch...
Sue Jones
name property docs
Compared to manual assignment of property results, in this case using
        decorators to code properties requires just three extra lines of
        code—a seemingly negligible difference. As is so often the case with
        alternative tools, though, the choice between the two techniques is
        largely subjective.



Descriptors
Descriptors provide an alternative way to
    intercept attribute access; they are strongly related to the
    properties discussed in the prior section. Really, a property
    is a kind of descriptor—technically speaking, the
    property built-in is just a simplified
    way to create a specific type of descriptor that runs method functions on
    attribute accesses. In fact, descriptors are the underlying implementation
    mechanism for a variety of class tools, including both properties and
    slots.
Functionally speaking, the descriptor protocol allows us to route a
    specific attribute’s get, set, and delete operations to methods of a
    separate class’s instance object that we provide. This allows us to insert
    code to be run automatically on attribute fetches and assignments,
    intercept attribute deletions, and provide documentation for the
    attributes if desired.
Descriptors are created as independent classes,
    and they are assigned to class attributes just like method
    functions. Like any other class attribute, they are inherited by
    subclasses and instances. Their access-interception methods are provided
    with both a self for the descriptor
    instance itself, as well as the instance of the client class whose
    attribute references the descriptor object. Because of this, they can
    retain and use state information of their own, as well as state
    information of the subject instance. For example, a descriptor may call
    methods available in the client class, as well as descriptor-specific
    methods it defines.
Like a property, a descriptor manages a single, specific attribute;
    although it can’t catch all attribute accesses generically, it provides
    control over both fetch and assignment accesses and allows us to change an
    attribute name freely from simple data to a computation without breaking
    existing code. Properties really are just a convenient way to create a
    specific kind of descriptor, and as we shall see, they can be coded as
    descriptors directly.
Unlike properties, descriptors are broader in scope, and provide a
    more general tool. For instance, because they are coded as normal classes,
    descriptors have their own state, may participate in descriptor
    inheritance hierarchies, can use composition to aggregate objects, and
    provide a natural structure for coding internal methods and attribute
    documentation strings.
The Basics
As mentioned previously, descriptors are coded as separate classes
      and provide specially named accessor methods for the attribute access
      operations they wish to intercept—get, set, and deletion methods in the
      descriptor class are automatically run when the attribute assigned to
      the descriptor class instance is accessed in the corresponding
      way:
class Descriptor:
    "docstring goes here"
    def __get__(self, instance, owner): ...        # Return attr value
    def __set__(self, instance, value): ...        # Return nothing (None)
    def __delete__(self, instance): ...            # Return nothing (None)
Classes with any of these methods are considered descriptors, and
      their methods are special when one of their instances is assigned to
      another class’s attribute—when the attribute is accessed, they are
      automatically invoked. If any of these methods are absent, it generally
      means that the corresponding type of access is not supported. Unlike
      properties, however, omitting a __set__
      allows the descriptor attribute’s name to be assigned and thus redefined
      in an instance, thereby hiding the descriptor—to
      make an attribute read-only, you must define
      __set__ to catch assignments and
      raise an exception.
Descriptors with __set__
      methods also have some special-case implications for inheritance that
      we’ll largely defer until Chapter 40’s coverage of
      metaclasses and the complete inheritance specification. In short, a
      descriptor with a __set__ is known
      formally as a data descriptor, and is given
      precedence over other names located by normal inheritance rules. The
      inherited descriptor for name __class__, for example, overrides the same
      name in an instance’s namespace dictionary. This also works to ensure
      that data descriptors you code in your own classes take precedence over
      others.
Descriptor method arguments
Before we code anything realistic, let’s take a brief look at
        some fundamentals. All three descriptor methods outlined in the prior
        section are passed both the descriptor class instance (self), and the instance of the client class
        to which the descriptor instance is attached (instance).
The __get__ access method
        additionally receives an owner
        argument, specifying the class to which the descriptor instance is
        attached. Its instance argument is
        either the instance through which the attribute was accessed (for
        instance.attr), or None when the attribute is accessed through
        the owner class directly (for class.attr). The former of these generally
        computes a value for instance access, and the latter usually returns
        self if descriptor object access is
        supported.
For example, in the following 3.X session, when X.attr is fetched, Python automatically runs
        the __get__ method of
        the Descriptor class instance to
        which the Subject.attr class
        attribute is assigned. In 2.X, use the print statement equivalent, and
        derive both classes here from object, as descriptors are a new-style class
        tool; in 3.X this derivation is implied and can be omitted, but
        doesn’t hurt:
>>> class Descriptor:                        # Add "(object)" in 2.X
        def __get__(self, instance, owner):
            print(self, instance, owner, sep='\n')

>>> class Subject:                           # Add "(object)" in 2.X
        attr = Descriptor()                  # Descriptor instance is class attr

>>> X = Subject()
>>> X.attr
<__main__.Descriptor object at 0x0281E690>
<__main__.Subject object at 0x028289B0>
<class '__main__.Subject'>

>>> Subject.attr
<__main__.Descriptor object at 0x0281E690>
None
<class '__main__.Subject'>
Notice the arguments automatically passed in to the __get__ method in the first attribute
        fetch—when X.attr is fetched, it’s
        as though the following translation occurs (though the Subject.attr here doesn’t invoke __get__ again):
X.attr  ->  Descriptor.__get__(Subject.attr, X, Subject)
The descriptor knows it is being accessed directly when its
        instance argument is None.

Read-only descriptors
As mentioned earlier, unlike properties, simply omitting the __set__ method in a descriptor isn’t enough
        to make an attribute read-only, because the descriptor name can be
        assigned to an instance. In the following, the attribute assignment to
        X.a stores a in the instance object X, thereby hiding the descriptor stored in
        class C:
>>> class D:
        def __get__(*args): print('get')

>>> class C:
        a = D()                         # Attribute a is a descriptor instance

>>> X = C()
>>> X.a                                 # Runs inherited descriptor __get__
get
>>> C.a
get
>>> X.a = 99                            # Stored on X, hiding C.a!
>>> X.a
99
>>> list(X.__dict__.keys())
['a']
>>> Y = C()
>>> Y.a                                 # Y still inherits descriptor
get
>>> C.a
get
This is the way all instance attribute assignments work in
        Python, and it allows classes to selectively override class-level
        defaults in their instances. To make a descriptor-based attribute
        read-only, catch the assignment in the descriptor class and raise an
        exception to prevent attribute assignment—when assigning an attribute
        that is a descriptor, Python effectively bypasses the normal
        instance-level assignment behavior and routes the operation to the
        descriptor object:
>>> class D:
        def __get__(*args): print('get')
        def __set__(*args): raise AttributeError('cannot set')

>>> class C:
        a = D()

>>> X = C()
>>> X.a                                 # Routed to C.a.__get__
get
>>> X.a = 99                            # Routed to C.a.__set__
AttributeError: cannot set
Note
Also be careful not to confuse the descriptor __delete__ method with the general
          __del__ method. The former is
          called on attempts to delete the managed attribute name on an
          instance of the owner class; the latter is the general instance
          destructor method, run when an instance of any kind of class is
          about to be garbage-collected. __delete__ is more closely related to the
          __delattr__ generic attribute
          deletion method we’ll meet later in this chapter. See Chapter 30 for more on operator
          overloading methods.



A First Example
To see how this all comes together in more realistic code, let’s get
      started with the same first example we wrote for properties. The
      following defines a descriptor that intercepts access to an attribute
      named name in its clients. Its
      methods use their instance argument
      to access state information in the subject instance, where the name
      string is actually stored. Like properties, descriptors work properly
      only for new-style classes, so be sure to derive
      both classes in the following from object if you’re using 2.X—it’s not enough to
      derive just the descriptor, or just its client:
class Name:                             # Use (object) in 2.X
    "name descriptor docs"
    def __get__(self, instance, owner):
        print('fetch...')
        return instance._name
    def __set__(self, instance, value):
        print('change...')
        instance._name = value
    def __delete__(self, instance):
        print('remove...')
        del instance._name

class Person:                           # Use (object) in 2.X
    def __init__(self, name):
        self._name = name
    name = Name()                       # Assign descriptor to attr

bob = Person('Bob Smith')               # bob has a managed attribute
print(bob.name)                         # Runs Name.__get__
bob.name = 'Robert Smith'               # Runs Name.__set__
print(bob.name)
del bob.name                            # Runs Name.__delete__

print('-'*20)
sue = Person('Sue Jones')               # sue inherits descriptor too
print(sue.name)
print(Name.__doc__)                     # Or help(Name)
Notice in this code how we assign an instance of our descriptor
      class to a class attribute in the client class;
      because of this, it is inherited by all instances of the class, just
      like a class’s methods. Really, we must assign the
      descriptor to a class attribute like this—it won’t work if assigned to a
      self instance attribute instead. When
      the descriptor’s __get__ method is
      run, it is passed three objects to define its context:
	self is the Name class instance.

	instance is the Person class instance.

	owner is the Person class.


When this code is run the descriptor’s methods intercept accesses
      to the attribute, much like the property version. In fact, the output is
      the same again:
c:\code> py −3 desc-person.py
fetch...
Bob Smith
change...
fetch...
Robert Smith
remove...
--------------------
fetch...
Sue Jones
name descriptor docs
Also like in the property example, our descriptor class instance
      is a class attribute and thus is inherited by all
      instances of the client class and any subclasses. If we change the
      Person class in our example to the
      following, for instance, the output of our script is the same:
...
class Super:
    def __init__(self, name):
        self._name = name
    name = Name()

class Person(Super):                     # Descriptors are inherited (class attrs)
   pass
...
Also note that when a descriptor class is not useful outside the
      client class, it’s perfectly reasonable to embed the descriptor’s
      definition inside its client syntactically. Here’s what our example
      looks like if we use a nested class:
class Person:
    def __init__(self, name):
        self._name = name

    class Name:                                 # Using a nested class
        "name descriptor docs"
        def __get__(self, instance, owner):
            print('fetch...')
            return instance._name
        def __set__(self, instance, value):
            print('change...')
            instance._name = value
        def __delete__(self, instance):
            print('remove...')
            del instance._name
    name = Name()
When coded this way, Name
      becomes a local variable in the scope of the Person class statement, such that it won’t
      clash with any names outside the class. This version works the same as
      the original—we’ve simply moved the descriptor class definition into the
      client class’s scope—but the last line of the testing code must change
      to fetch the docstring from its new location (per the example file
      desc-person-nested.py):
...
print(Person.Name.__doc__)     # Differs: not Name.__doc__ outside class

Computed Attributes
As was the case when using properties, our first descriptor
      example of the prior section didn’t do much—it simply printed trace
      messages for attribute accesses. In practice, descriptors can also be
      used to compute attribute values each time they are fetched. The
      following illustrates—it’s a rehash of the same example we coded for
      properties, which uses a descriptor to automatically square an
      attribute’s value each time it is fetched:
class DescSquare:
    def __init__(self, start):                  # Each desc has own state
        self.value = start
    def __get__(self, instance, owner):         # On attr fetch
        return self.value ** 2
    def __set__(self, instance, value):         # On attr assign
        self.value = value                      # No delete or docs

class Client1:
    X = DescSquare(3)          # Assign descriptor instance to class attr

class Client2:
    X = DescSquare(32)         # Another instance in another client class
                               # Could also code two instances in same class
c1 = Client1()
c2 = Client2()

print(c1.X)                    # 3 ** 2
c1.X = 4
print(c1.X)                    # 4 ** 2
print(c2.X)                    # 32 ** 2 (1024)
When run, the output of this example is the same as that of the
      original property-based version, but here a descriptor class object is
      intercepting the attribute accesses:
c:\code> py −3 desc-computed.py
9
16
1024

Using State Information in Descriptors
If you study the two descriptor examples we’ve written so far, you might notice
      that they get their information from different places—the first (the
      name attribute example) uses data
      stored on the client instance, and the second (the
      attribute squaring example) uses data attached to the
      descriptor object itself (a.k.a. self). In fact, descriptors can use
      both instance state and descriptor state, or any
      combination thereof:
	Descriptor state is used to manage either
          data internal to the workings of the descriptor, or data that spans
          all instances. It can vary per attribute appearance (often, per
          client class).

	Instance state records information
          related to and possibly created by the client class. It can vary per
          client class instance (that is, per application object).


In other words, descriptor state is per-descriptor data and
      instance state is per-client-instance data. As usual in OOP, you must choose state carefully. For instance, you
      would not normally use descriptor state to record
      employee names, since each client instance requires its own value—if
      stored in the descriptor, each client class instance will effectively
      share the same single copy. On the other hand, you would not usually use
      instance state to record data pertaining to
      descriptor implementation internals—if stored in each instance, there
      would be multiple varying copies.
Descriptor methods may use either state form, but descriptor state
      often makes it unnecessary to use special naming conventions to avoid
      name collisions in the instance for data that is not instance-specific.
      For example, the following descriptor attaches information to its own
      instance, so it doesn’t clash with that on the client class’s
      instance—but also shares that information between two client
      instances:
class DescState:                           # Use descriptor state, (object) in 2.X
    def __init__(self, value):
        self.value = value
    def __get__(self, instance, owner):    # On attr fetch
        print('DescState get')
        return self.value * 10
    def __set__(self, instance, value):    # On attr assign
        print('DescState set')
        self.value = value

# Client class
class CalcAttrs:
    X = DescState(2)                       # Descriptor class attr
    Y = 3                                  # Class attr
    def __init__(self):
        self.Z = 4                         # Instance attr

obj = CalcAttrs()
print(obj.X, obj.Y, obj.Z)                 # X is computed, others are not
obj.X = 5                                  # X assignment is intercepted
CalcAttrs.Y = 6                            # Y reassigned in class
obj.Z = 7                                  # Z assigned in instance
print(obj.X, obj.Y, obj.Z)

obj2 = CalcAttrs()                         # But X uses shared data, like Y!
print(obj2.X, obj2.Y, obj2.Z)
This code’s internal value
      information lives only in the descriptor, so there
      won’t be a collision if the same name is used in the client’s instance.
      Notice that only the descriptor attribute is managed here—get and set
      accesses to X are intercepted, but
      accesses to Y and Z are not (Y is attached to the client class and Z to the instance). When this code is run,
      X is computed when fetched, but its
      value is also the same for all client instances because it uses
      descriptor-level state:
c:\code> py −3 desc-state-desc.py
DescState get
20 3 4
DescState set
DescState get
50 6 7
DescState get
50 6 4
It’s also feasible for a descriptor to store or use an attribute
      attached to the client class’s instance, instead of
      itself. Crucially, unlike data stored in the descriptor itself, this
      allows for data that can vary per client class instance. The descriptor
      in the following example assumes the instance has an attribute _X attached by the client class, and uses it
      to compute the value of the attribute it represents:
class InstState:                           # Using instance state, (object) in 2.X
    def __get__(self, instance, owner):
        print('InstState get')             # Assume set by client class
        return instance._X * 10
    def __set__(self, instance, value):
        print('InstState set')
        instance._X = value

# Client class
class CalcAttrs:
    X = InstState()                        # Descriptor class attr
    Y = 3                                  # Class attr
    def __init__(self):
        self._X = 2                        # Instance attr
        self.Z  = 4                        # Instance attr

obj = CalcAttrs()
print(obj.X, obj.Y, obj.Z)                 # X is computed, others are not
obj.X = 5                                  # X assignment is intercepted
CalcAttrs.Y = 6                            # Y reassigned in class
obj.Z = 7                                  # Z assigned in instance
print(obj.X, obj.Y, obj.Z)

obj2 = CalcAttrs()                         # But X differs now, like Z!
print(obj2.X, obj2.Y, obj2.Z)
Here, X is assigned to a
      descriptor as before that manages accesses. The new descriptor here,
      though, has no information itself, but it uses an attribute assumed to
      exist in the instance—that attribute is named _X, to avoid collisions with the name of the
      descriptor itself. When this version is run the results are similar, but
      the value of the descriptor attribute can vary per client instance due
      to the differing state policy:
c:\code> py −3 desc-state-inst.py
InstState get
20 3 4
InstState set
InstState get
50 6 7
InstState get
20 6 4
Both descriptor and instance state have roles. In fact, this is a
      general advantage that descriptors have over properties—because they
      have state of their own, they can easily retain data internally, without
      adding it to the namespace of the client instance object. As a summary,
      the following uses both state sources—its self.data retains per-attribute information,
      while its instance.data can vary per
      client instance:
>>> class DescBoth:
        def __init__(self, data):
            self.data = data
        def __get__(self, instance, owner):
            return '%s, %s' % (self.data, instance.data)
        def __set__(self, instance, value):
            instance.data = value

>>> class Client:
        def __init__(self, data):
            self.data = data
        managed = DescBoth('spam')

>>> I = Client('eggs')
>>> I.managed                      # Show both data sources
'spam, eggs'
>>> I.managed = 'SPAM'             # Change instance data
>>> I.managed
'spam, SPAM'
We’ll revisit the implications of this choice in a larger case
      study later in this chapter. Before we move on, recall from Chapter 32’s coverage of slots that we can
      access “virtual” attributes like properties and descriptors with tools
      like dir and getattr, even though they don’t exist in the
      instance’s namespace dictionary. Whether you should
      access these this way probably varies per program—properties and
      descriptors may run arbitrary computation, and may be less obviously
      instance “data” than slots:
>>> I.__dict__
{'data': 'SPAM'}
>>> [x for x in dir(I) if not x.startswith('__')]
['data', 'managed']

>>> getattr(I, 'data')
'SPAM'
>>> getattr(I, 'managed')
'spam, SPAM'

>>> for attr in (x for x in dir(I) if not x.startswith('__')):
        print('%s => %s' % (attr, getattr(I, attr)))

data => SPAM
managed => spam, SPAM
The more generic __getattr__
      and __getattribute__ tools we’ll meet
      later are not designed to support this functionality—because they have
      no class-level attributes, their “virtual” attribute names do not appear
      in dir results.1 In exchange, they are also not limited to specific
      attribute names coded as properties or descriptors: tools that share
      even more than this behavior, as the next section explains.

How Properties and Descriptors Relate
As mentioned earlier, properties and descriptors are strongly related—the
      property built-in is just a
      convenient way to create a descriptor. Now that you know
      how both work, you should also be able to see that it’s possible to
      simulate the property built-in with a
      descriptor class like the following:
class Property:
    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel                                  # Save unbound methods
        self.__doc__ = doc                                # or other callables

    def __get__(self, instance, instancetype=None):
        if instance is None:
            return self
        if self.fget is None:
            raise AttributeError("can't get attribute")
        return self.fget(instance)                        # Pass instance to self
                                                          # in property accessors
    def __set__(self, instance, value):
        if self.fset is None:
            raise AttributeError("can't set attribute")
        self.fset(instance, value)

    def __delete__(self, instance):
        if self.fdel is None:
            raise AttributeError("can't delete attribute")
        self.fdel(instance)

class Person:
    def getName(self): print('getName...')
    def setName(self, value): print('setName...')
    name = Property(getName, setName)                     # Use like property()

x = Person()
x.name
x.name = 'Bob'
del x.name
This Property class catches
      attribute accesses with the descriptor protocol and routes requests to
      functions or methods passed in and saved in descriptor state when the
      class is created. Attribute fetches, for example, are routed from the
      Person class, to the Property class’s __get__ method, and back to the Person class’s getName. With descriptors, this “just
      works”:
c:\code> py −3 prop-desc-equiv.py
getName...
setName...
AttributeError: can't delete attribute
Note that this descriptor class equivalent only handles basic
      property usage, though; to use @
      decorator syntax to also specify set and delete
      operations, we’d have to extend our Property class with setter and deleter methods, which would save the
      decorated accessor function and return the property object (self should suffice). Since the property built-in already does this, we’ll
      omit a formal coding of this extension here.
Descriptors and slots and more
You can also probably now at least in part imagine how
        descriptors are used to implement Python’s slots
        extension: instance attribute dictionaries are avoided by creating
        class-level descriptors that intercept slot name access, and map those
        names to sequential storage space in the instance. Unlike the explicit
        property call, though, much of the
        magic behind slots is orchestrated at class creation time both
        automatically and implicitly, when a __slots__ attribute is present in a
        class.
See Chapter 32 for more on slots
        (and why they’re not recommended except in pathological use cases).
        Descriptors are also used for other class tools, but we’ll omit
        further internals details here; see Python’s manuals and source code
        for more details.
Note
In Chapter 39, we’ll also make use of
          descriptors to implement function decorators
          that apply to both functions and methods. As you’ll see there,
          because descriptors receive both descriptor and
          subject class instances they work well in this role, though nested
          functions are usually a conceptually much simpler solution. We’ll
          also deploy descriptors as one way to intercept
          built-in operation method fetches in Chapter 39.
Be sure to also see Chapter 40’s coverage
          of data descriptors’ precedence in the full
          inheritance model mentioned earlier: with a __set__, descriptors override other names,
          and are thus fairly binding—they cannot be hidden by names in
          instance dictionaries.




__getattr__ and __getattribute__
So far, we’ve studied properties and descriptors—tools for managing specific attributes. The
    __getattr__ and __getattribute__ operator overloading methods
    provide still other ways to intercept attribute fetches for class
    instances. Like properties and descriptors, they allow us to insert code
    to be run automatically when attributes are accessed. As we’ll see,
    though, these two methods can also be used in more general ways. Because
    they intercept arbitrary names, they apply in broader roles such as
    delegation, but may also incur extra calls in some contexts, and are too
    dynamic to register in dir
    results.
Attribute fetch interception comes in two flavors, coded with two
    different methods:
	__getattr__ is run for
        undefined attributes—because it is run only for
        attributes not stored on an instance or inherited from one of its
        classes, its use is straightforward.

	__getattribute__ is run for
        every attribute—because it is all-inclusive, you
        must be cautious when using this method to avoid recursive loops by
        passing attribute accesses to a superclass.


We met the former of these in Chapter 30; it’s available for all Python
    versions. The latter of these is available for new-style classes in 2.X,
    and for all (implicitly new-style) classes in 3.X. These two methods are
    representatives of a set of attribute interception methods that also
    includes __setattr__ and __delattr__. Because these methods have similar roles, though, we will generally treat
    them all as a single topic here.
Unlike properties and descriptors, these methods are part of
    Python’s general operator overloading
    protocol—specially named methods of a class, inherited by subclasses, and
    run automatically when instances are used in the implied built-in
    operation. Like all normal methods of a class, they each receive a first
    self argument when called, giving
    access to any required instance state information as well as other methods
    of the class in which they appear.
The __getattr__ and __getattribute__ methods are also more
    generic than properties and descriptors—they can be
    used to intercept access to any (or even all) instance attribute fetches,
    not just a single specific name. Because of this, these two methods are
    well suited to general delegation-based coding
    patterns—they can be used to implement wrapper (a.k.a.
    proxy) objects that manage all attribute accesses for
    an embedded object. By contrast, we must define one property or descriptor
    for every attribute we wish to intercept. As we’ll see ahead, this role is
    impaired somewhat in new-style classes for built-in operations, but still
    applies to all named methods in a wrapped object’s interface.
Finally, these two methods are more narrowly
    focused than the alternatives we considered earlier: they
    intercept attribute fetches only, not assignments. To also catch attribute
    changes by assignment, we must code a __setattr__ method—an operator overloading
    method run for every attribute assignment, which must take care to avoid
    recursive loops by routing attribute assignments through the instance
    namespace dictionary or a superclass method. Although less common, we can
    also code a __delattr__ overloading
    method (which must avoid looping in the same way) to intercept attribute
    deletions. By contrast, properties and descriptors catch get, set,
    and delete operations by design.
Most of these operator overloading methods were introduced earlier
    in the book; here, we’ll expand on their usage and study their roles in
    larger contexts.
The Basics
__getattr__ and __setattr__ were introduced in Chapter 30 and Chapter 32, and __getattribute__ was mentioned briefly in
      Chapter 32. In short, if a class defines
      or inherits the following methods, they will be run automatically when
      an instance is used in the context described by the comments to the
      right:
def __getattr__(self, name):        # On undefined attribute fetch [obj.name]
def __getattribute__(self, name):   # On all attribute fetch [obj.name]
def __setattr__(self, name, value): # On all attribute assignment [obj.name=value]
def __delattr__(self, name):        # On all attribute deletion [del obj.name]
In all of these, self is the
      subject instance object as usual, name is the string name of the attribute being
      accessed, and value is the object
      being assigned to the attribute. The two get methods normally return an
      attribute’s value, and the other two return nothing (None). All can raise exceptions to signal
      prohibited access.
For example, to catch every attribute fetch, we can use either of
      the first two previous methods, and to catch every attribute assignment
      we can use the third. The following uses __getattr__ and works
      portably on both Python 2.X and 3.X, not requiring
      new-style object derivation in
      2.X:
class Catcher:
    def __getattr__(self, name):
        print('Get: %s' % name)
    def __setattr__(self, name, value):
        print('Set: %s %s' % (name, value))

X = Catcher()
X.job                               # Prints "Get: job"
X.pay                               # Prints "Get: pay"
X.pay = 99                          # Prints "Set: pay 99"
Using __getattribute__ works
      exactly the same in this specific case, but requires object derivation in 2.X (only), and has
      subtle looping potential, which we’ll take up in the next
      section:
class Catcher(object):                           # Need (object) in 2.X only
    def __getattribute__(self, name):            # Works same as getattr here
        print('Get: %s' % name)                  # But prone to loops on general
    ...rest unchanged...
Such a coding structure can be used to implement the
      delegation design pattern we met earlier, in Chapter 31. Because all attributes are routed
      to our interception methods generically, we can validate and pass them
      along to embedded, managed objects. The following class (borrowed from
      Chapter 31), for example, traces
      every attribute fetch made to another object passed
      to the wrapper (proxy) class:
class Wrapper:
    def __init__(self, object):
        self.wrapped = object                    # Save object
    def __getattr__(self, attrname):
        print('Trace: ' + attrname)              # Trace fetch
        return getattr(self.wrapped, attrname)   # Delegate fetch

X = Wrapper([1, 2, 3])
X.append(4)                         # Prints "Trace: append"
print(X.wrapped)                    # Prints "[1, 2, 3, 4]"
There is no such analog for properties and descriptors, short of
      coding accessors for every possible attribute in
      every possibly wrapped object. On the other hand,
      when such generality is not required, generic accessor methods may incur
      additional calls for assignments in some contexts—a tradeoff described
      in Chapter 30 and mentioned in the
      context of the case study example we’ll explore at the end of this
      chapter.
Avoiding loops in attribute interception methods
These methods are generally straightforward to use; their only
        substantially complex aspect is the potential for
        looping (a.k.a. recursing). Because __getattr__ is called for undefined
        attributes only, it can freely fetch other attributes within its own
        code. However, because __getattribute__ and __setattr__ are run for
        all attributes, their code needs to be careful
        when accessing other attributes to avoid calling themselves again and
        triggering a recursive loop.
For example, another attribute fetch run inside a __getattribute__ method’s code will trigger
        __getattribute__ again, and the
        code will usually loop until memory is exhausted:
    def __getattribute__(self, name):
        x = self.other                                # LOOPS!
Technically, this method is even more loop-prone than this may
        imply—a self attribute reference
        run anywhere in a class that defines this method
        will trigger __getattribute__, and
        also has the potential to loop depending on the class’s logic. This is
        normally desired behavior—intercepting every attribute fetch is this
        method’s purpose, after all—but you should be aware that this method
        catches all attribute fetches wherever they are coded. When coded
        within __getattribute__ itself,
        this almost always causes a loop. To avoid this loop, route the fetch
        through a higher superclass instead to skip this level’s
        version—because the object class is
        always a new-style superclass, it serves well in this role:
    def __getattribute__(self, name):
        x = object.__getattribute__(self, 'other')    # Force higher to avoid me
For __setattr__, the
        situation is similar, as summarized in Chapter 30—assigning
        any attribute inside this method triggers
        __setattr__ again and may create a
        similar loop:
    def __setattr__(self, name, value):
        self.other = value                            # Recurs (and might LOOP!)
Here too, self attribute
        assignments anywhere in a class defining this
        method trigger __setattr__ as well,
        though the potential for looping is much stronger when they show up in
        __setattr__ itself. To work around
        this problem, you can assign the attribute as a key in the instance’s
        __dict__ namespace dictionary
        instead. This avoids direct attribute assignment:
    def __setattr__(self, name, value):
        self.__dict__['other'] = value                # Use attr dict to avoid me
Although it’s a less traditional approach, __setattr__ can also pass its own attribute
        assignments to a higher superclass to avoid looping, just like
        __getattribute__ (and per the
        upcoming note, this scheme is sometimes preferred):
    def __setattr__(self, name, value):
        object.__setattr__(self, 'other', value)      # Force higher to avoid me
By contrast, though, we cannot use the
        __dict__ trick to avoid loops in
        __getattribute__:
    def __getattribute__(self, name):
        x = self.__dict__['other']                    # Loops!
Fetching the __dict__
        attribute itself triggers __getattribute__ again, causing a recursive
        loop. Strange but true!
The __delattr__ method is
        less commonly used in practice, but when it is, it is called for every
        attribute deletion (just as __setattr__ is called for every attribute
        assignment). When using this method, you must take care to avoid loops
        when deleting attributes, by using the same techniques: namespace
        dictionaries operations or superclass method calls.
Note
As noted in Chapter 30,
          attributes implemented with new-style class features such as
          slots and properties are
          not physically stored in the instance’s __dict__ namespace dictionary (and slots
          may even preclude its existence entirely). Because of this, code
          that wishes to support such attributes should code __setattr__ to assign with the object.__setattr__ scheme shown here, not
          by self.__dict__ indexing.
          Namespace __dict__ operations
          suffice for classes known to store data in instances, like this
          chapter’s self-contained examples; general tools, though, should
          prefer object.



A First Example
Generic attribute management is not nearly as complicated as the
      prior section may have implied. To see how to put these ideas to work,
      here is the same first example we used for properties and descriptors in
      action again, this time implemented with attribute operator overloading
      methods. Because these methods are so generic, we test attribute names
      here to know when a managed attribute is being accessed; others are
      allowed to pass normally:
class Person:                               # Portable: 2.X or 3.X
    def __init__(self, name):               # On [Person()]
        self._name = name                   # Triggers __setattr__!

    def __getattr__(self, attr):            # On [obj.undefined]
        print('get: ' + attr)
        if attr == 'name':                  # Intercept name: not stored
            return self._name               # Does not loop: real attr
        else:                               # Others are errors
            raise AttributeError(attr)

    def __setattr__(self, attr, value):     # On [obj.any = value]
        print('set: ' + attr)
        if attr == 'name':
            attr = '_name'                  # Set internal name
        self.__dict__[attr] = value         # Avoid looping here

    def __delattr__(self, attr):            # On [del obj.any]
        print('del: ' + attr)
        if attr == 'name':
            attr = '_name'                  # Avoid looping here too
        del self.__dict__[attr]             # but much less common

bob = Person('Bob Smith')           # bob has a managed attribute
print(bob.name)                     # Runs __getattr__
bob.name = 'Robert Smith'           # Runs __setattr__
print(bob.name)
del bob.name                        # Runs __delattr__

print('-'*20)
sue = Person('Sue Jones')           # sue's attrs work like bob's
print(sue.name)
#print(Person.name.__doc__)         # No equivalent here
Notice that the attribute assignment in the __init__ constructor triggers __setattr__ too—this method catches
      every attribute assignment, even those anywhere
      within the class itself. When this code is run, the same output is
      produced, but this time it’s the result of Python’s normal operator
      overloading mechanism and our attribute interception methods:
c:\code> py −3 getattr-person.py
set: _name
get: name
Bob Smith
set: name
get: name
Robert Smith
del: name
--------------------
set: _name
get: name
Sue Jones
Also note that, unlike with properties and descriptors, there’s no
      direct notion of specifying documentation for our
      attribute here; managed attributes exist within the code of our
      interception methods, not as distinct objects.
Using __getattribute__
To achieve exactly the same results with __getattribute__, replace __getattr__ in the example with the
        following; because it catches all attribute
        fetches, this version must be careful to avoid looping by passing new
        fetches to a superclass, and it can’t generally assume unknown names
        are errors:
# Replace __getattr__ with this

    def __getattribute__(self, attr):                 # On [obj.any]
        print('get: ' + attr)
        if attr == 'name':                            # Intercept all names
            attr = '_name'                            # Map to internal name
        return object.__getattribute__(self, attr)    # Avoid looping here
When run with this change, the output is similar, but we get an
        extra __getattribute__ call for the
        fetch in __setattr__ (the first
        time originating in __init__):
c:\code> py −3 getattribute-person.py
set: _name
get: __dict__
get: name
Bob Smith
set: name
get: __dict__
get: name
Robert Smith
del: name
get: __dict__
--------------------
set: _name
get: __dict__
get: name
Sue Jones
This example is equivalent to that coded for properties and
        descriptors, but it’s a bit artificial, and it doesn’t really
        highlight these tools’ assets. Because they are generic, __getattr__ and __getattribute__ are probably more commonly
        used in delegation-base code (as sketched earlier), where attribute
        access is validated and routed to an embedded object. Where just a
        single attribute must be managed, properties and
        descriptors might do as well or better.


Computed Attributes
As before, our prior example doesn’t really do anything but trace
      attribute fetches; it’s not much more work to compute an attribute’s
      value when fetched. As for properties and descriptors, the following
      creates a virtual attribute X that
      runs a calculation when fetched:
class AttrSquare:
    def __init__(self, start):
        self.value = start                            # Triggers __setattr__!

    def __getattr__(self, attr):                      # On undefined attr fetch
        if attr == 'X':
            return self.value ** 2                    # value is not undefined
        else:
            raise AttributeError(attr)

    def __setattr__(self, attr, value):               # On all attr assignments
        if attr == 'X':
            attr = 'value'
        self.__dict__[attr] = value

A = AttrSquare(3)       # 2 instances of class with overloading
B = AttrSquare(32)      # Each has different state information

print(A.X)              # 3 ** 2
A.X = 4
print(A.X)              # 4 ** 2
print(B.X)              # 32 ** 2 (1024)
Running this code results in the same output that we got earlier
      when using properties and descriptors, but this script’s mechanics are
      based on generic attribute interception methods:
c:\code> py −3 getattr-computed.py
9
16
1024
Using __getattribute__
As before, we can achieve the same effect with __getattribute__ instead of __getattr__; the following replaces the
        fetch method with a __getattribute__ and changes the __setattr__ assignment method to avoid
        looping by using direct superclass method calls instead of __dict__ keys:
class AttrSquare:                           # Add (object) for 2.X
    def __init__(self, start):
        self.value = start                  # Triggers __setattr__!

    def __getattribute__(self, attr):       # On all attr fetches
        if attr == 'X':
            return self.value ** 2          # Triggers __getattribute__ again!
        else:
            return object.__getattribute__(self, attr)

    def __setattr__(self, attr, value):     # On all attr assignments
        if attr == 'X':
            attr = 'value'
        object.__setattr__(self, attr, value)
When this version, getattribute-computed.py, is run, the
        results are the same again. Notice, though, the implicit routing going
        on inside this class’s methods:
	self.value=start inside
            the constructor triggers __setattr__

	self.value inside
            __getattribute__ triggers
            __getattribute__ again


In fact, __getattribute__ is
        run twice each time we fetch attribute X. This doesn’t happen in the __getattr__ version, because the value attribute is not undefined. If you
        care about speed and want to avoid this, change __getattribute__ to use the superclass to
        fetch value as well:
    def __getattribute__(self, attr):
        if attr == 'X':
            return object.__getattribute__(self, 'value') ** 2
Of course, this still incurs a call to the superclass method,
        but not an additional recursive call before we get there. Add print calls to these methods to trace how
        and when they run.


__getattr__ and __getattribute__ Compared
To summarize the coding differences between __getattr__ and __getattribute__, the following example uses
      both to implement three attributes—attr1 is a class attribute, attr2 is an instance attribute, and attr3 is a virtual managed attribute computed
      when fetched:
class GetAttr:
    attr1 = 1
    def __init__(self):
        self.attr2 = 2
    def __getattr__(self, attr):            # On undefined attrs only
        print('get: ' + attr)               # Not on attr1: inherited from class
        if attr == 'attr3':                 # Not on attr2: stored on instance
            return 3
        else:
            raise AttributeError(attr)

X = GetAttr()
print(X.attr1)
print(X.attr2)
print(X.attr3)
print('-'*20)

class GetAttribute(object):                 # (object) needed in 2.X only
    attr1 = 1
    def __init__(self):
        self.attr2 = 2
    def __getattribute__(self, attr):       # On all attr fetches
        print('get: ' + attr)               # Use superclass to avoid looping here
        if attr == 'attr3':
            return 3
        else:
            return object.__getattribute__(self, attr)

X = GetAttribute()
print(X.attr1)
print(X.attr2)
print(X.attr3)
When run, the __getattr__
      version intercepts only attr3
      accesses, because it is undefined. The __getattribute__ version, on the other hand,
      intercepts all attribute fetches and must route those it does not manage
      to the superclass fetcher to avoid loops:
c:\code> py −3 getattr-v-getattr.py
1
2
get: attr3
3
--------------------
get: attr1
1
get: attr2
2
get: attr3
3
Although __getattribute__ can
      catch more attribute fetches than __getattr__, in practice they are often just
      variations on a theme—if attributes are not physically stored, the two
      have the same effect.

Management Techniques Compared
To summarize the coding differences in all four attribute management
      schemes we’ve seen in this chapter, let’s quickly step through a
      somewhat more comprehensive computed-attribute example using each
      technique, coded to run in either Python 3.X or 2.X. The following first
      version uses properties to intercept and calculate
      attributes named square and cube. Notice how their base values are stored
      in names that begin with an underscore, so they don’t clash with the
      names of the properties themselves:
# Two dynamically computed attributes with properties

class Powers(object):                              # Need (object) in 2.X only
    def __init__(self, square, cube):
        self._square = square                      # _square is the base value
        self._cube   = cube                        # square is the property name

    def getSquare(self):
        return self._square ** 2
    def setSquare(self, value):
        self._square = value
    square = property(getSquare, setSquare)

    def getCube(self):
        return self._cube ** 3
    cube = property(getCube)

X = Powers(3, 4)
print(X.square)      # 3 ** 2 = 9
print(X.cube)        # 4 ** 3 = 64
X.square = 5
print(X.square)      # 5 ** 2 = 25
To do the same with descriptors, we define
      the attributes with complete classes. Note that these descriptors store
      base values as instance state, so they must use leading underscores
      again so as not to clash with the names of descriptors; as we’ll see in
      the final example of this chapter, we could avoid this renaming
      requirement by storing base values as descriptor state instead, but that
      doesn’t as directly address data that must vary per client class
      instance:
# Same, but with descriptors (per-instance state)

class DescSquare(object):
    def __get__(self, instance, owner):
        return instance._square ** 2
    def __set__(self, instance, value):
        instance._square = value

class DescCube(object):
    def __get__(self, instance, owner):
        return instance._cube ** 3

class Powers(object):                          # Need all (object) in 2.X only
    square = DescSquare()
    cube   = DescCube()
    def __init__(self, square, cube):
        self._square = square                  # "self.square = square" works too,
        self._cube   = cube                    # because it triggers desc __set__!

X = Powers(3, 4)
print(X.square)      # 3 ** 2 = 9
print(X.cube)        # 4 ** 3 = 64
X.square = 5
print(X.square)      # 5 ** 2 = 25
To achieve the same result with __getattr__ fetch interception, we again store
      base values with underscore-prefixed names so that accesses to managed
      names are undefined and thus invoke our method; we also need to code a
      __setattr__ to intercept assignments,
      and take care to avoid its potential for looping:
# Same, but with generic __getattr__ undefined attribute interception

class Powers:
    def __init__(self, square, cube):
        self._square = square
        self._cube   = cube

    def __getattr__(self, name):
        if name == 'square':
            return self._square ** 2
        elif name == 'cube':
            return self._cube ** 3
        else:
            raise TypeError('unknown attr:' + name)

    def __setattr__(self, name, value):
        if name == 'square':
            self.__dict__['_square'] = value             # Or use object
        else:
            self.__dict__[name] = value

X = Powers(3, 4)
print(X.square)      # 3 ** 2 = 9
print(X.cube)        # 4 ** 3 = 64
X.square = 5
print(X.square)      # 5 ** 2 = 25
The final option, coding this with __getattribute__, is similar to the prior
      version. Because we catch every attribute now, though, we must also
      route base value fetches to a superclass to avoid looping or extra
      calls—fetching self._square directly
      works too, but runs a second __getattribute__ call:
# Same, but with generic __getattribute__ all attribute interception

class Powers(object):                                    # Need (object) in 2.X only
    def __init__(self, square, cube):
        self._square = square
        self._cube   = cube

    def __getattribute__(self, name):
        if name == 'square':
            return object.__getattribute__(self, '_square') ** 2
        elif name == 'cube':
            return object.__getattribute__(self, '_cube') ** 3
        else:
            return object.__getattribute__(self, name)

    def __setattr__(self, name, value):
        if name == 'square':
            object.__setattr__(self, '_square', value)   # Or use __dict__
        else:
            object.__setattr__(self, name , value)

X = Powers(3, 4)
print(X.square)      # 3 ** 2 = 9
print(X.cube)        # 4 ** 3 = 64
X.square = 5
print(X.square)      # 5 ** 2 = 25
As you can see, each technique takes a different form in code, but
      all four produce the same result when run:
9
64
25
For more on how these alternatives compare, and other coding
      options, stay tuned for a more realistic application of them in the
      attribute validation example in the section “Example: Attribute Validations”. First, though, we need
      to take a short side trip to study a new-style-class pitfall associated
      with two of these tools—the generic attribute interceptors presented in
      this section.

Intercepting Built-in Operation Attributes
If you’ve been reading this book linearly, some of this section is review and
      elaboration on material covered earlier, especially in Chapter 32. For others, this topic is presented
      in this chapter’s context here.
When I introduced __getattr__
      and __getattribute__, I stated
      that they intercept undefined and all attribute fetches,
      respectively, which makes them ideal for delegation-based coding
      patterns. While this is true for both normally
      named and explicitly called attributes,
      their behavior needs some additional clarification: for method-name
      attributes implicitly fetched by built-in
      operations, these methods may not be run at all.
      This means that operator overloading method calls cannot be delegated to
      wrapped objects unless wrapper classes somehow redefine these methods
      themselves.
For example, attribute fetches for the __str__, __add__, and __getitem__ methods run implicitly by
      printing, + expressions, and
      indexing, respectively, are not routed to the generic attribute
      interception methods in 3.X. Specifically:
	In Python 3.X, neither __getattr__ nor __getattribute__ is run for such
          attributes.

	In Python 2.X classic classes, __getattr__ is run
          for such attributes if they are undefined in the class.

	In Python 2.X, __getattribute__ is available for
          new-style classes only and works as it does in 3.X.


In other words, in all Python 3.X classes (and 2.X new-style
      classes), there is no direct way to generically intercept built-in
      operations like printing and addition. In Python 2.X’s default classic
      classes, the methods such operations invoke are looked up at runtime in
      instances, like all other attributes; in Python
      3.X’s new-style classes such methods are looked up in
      classes instead. Since 3.X mandates new-style
      classes and 2.X defaults to classic, this is understandably attributed
      to 3.X, but it can happen in 2.X new-style code too. In 2.X, though, you
      at least have a way to avoid this change; in 3.X, you do not.
Per Chapter 32, the official (though
      tersely documented) rationale for this change appears to revolve around
      metaclassses and optimization of built-in operations. Regardless, given
      that all attributes—both normally named and others—still dispatch
      generically through the instance and these methods when accessed
      explicitly by name, this does not seem meant to
      preclude delegation in general; it seems more an optimization step for
      built-in operations’ implicit behavior. This does, however, make
      delegation-based coding patterns more complex in 3.X, because object
      interface proxies cannot generically intercept operator overloading
      method calls and route them to an embedded object.
This is an inconvenience, but is not necessarily a
      showstopper—wrapper classes can work around this constraint by
      redefining all relevant operator overloading methods in the wrapper
      itself, in order to delegate calls. These extra methods can be added
      either manually, with tools, or by definition in and inheritance from
      common superclasses. This does, however, make object wrappers more work
      than they used to be when operator overloading methods are a part of a
      wrapped object’s interface.
Keep in mind that this issue applies only to __getattr__ and __getattribute__. Because properties and
      descriptors are defined for specific attributes only, they don’t really
      apply to delegation-based classes at all—a single property or descriptor
      cannot be used to intercept arbitrary attributes. Moreover, a class that
      defines both operator overloading methods and
      attribute interception will work correctly, regardless of the type of
      attribute interception defined. Our concern here is only with classes
      that do not have operator overloading methods defined, but try to
      intercept them generically.
Consider the following example, the file getattr-bultins.py, which tests various
      attribute types and built-in operations on instances of classes
      containing __getattr__ and __getattribute__ methods:
class GetAttr:
    eggs = 88                    # eggs stored on class, spam on instance
    def __init__(self):
       self.spam = 77
    def __len__(self):           # len here, else __getattr__ called with __len__
        print('__len__: 42')
        return 42
    def __getattr__(self, attr):     # Provide __str__ if asked, else dummy func
        print('getattr: ' + attr)
        if attr == '__str__':
            return lambda *args: '[Getattr str]'
        else:
            return lambda *args: None

class GetAttribute(object):          # object required in 2.X, implied in 3.X
    eggs = 88                        # In 2.X all are isinstance(object) auto
    def __init__(self):              # But must derive to get new-style tools,
        self.spam = 77               # incl __getattribute__, some __X__ defaults
    def __len__(self):
        print('__len__: 42')
        return 42
    def __getattribute__(self, attr):
        print('getattribute: ' + attr)
        if attr == '__str__':
            return lambda *args: '[GetAttribute str]'
        else:
            return lambda *args: None

for Class in GetAttr, GetAttribute:
    print('\n' + Class.__name__.ljust(50, '='))

    X = Class()
    X.eggs                   # Class attr
    X.spam                   # Instance attr
    X.other                  # Missing attr
    len(X)                   # __len__ defined explicitly

# New-styles must support [], +, call directly: redefine

    try:    X[0]             # __getitem__?
    except: print('fail []')

    try:    X + 99           # __add__?
    except: print('fail +')

    try:    X()              # __call__?  (implicit via built-in)
    except: print('fail ()')

    X.__call__()             # __call__?  (explicit, not inherited)
    print(X.__str__())       # __str__?   (explicit, inherited from type)
    print(X)                 # __str__?   (implicit via built-in)
When run under Python 2.X as coded, __getattr__ does receive
      a variety of implicit attribute fetches for built-in operations, because
      Python looks up such attributes in instances normally. Conversely,
      __getattribute__ is
      not run for any of the operator overloading names
      invoked by built-in operations, because such names are looked up in
      classes only in the new-style class model:
c:\code> py −2 getattr-builtins.py

GetAttr===========================================
getattr: other
__len__: 42
getattr: __getitem__
getattr: __coerce__
getattr: __add__
getattr: __call__
getattr: __call__
getattr: __str__
[Getattr str]
getattr: __str__
[Getattr str]

GetAttribute======================================
getattribute: eggs
getattribute: spam
getattribute: other
__len__: 42
fail []
fail +
fail ()
getattribute: __call__
getattribute: __str__
[GetAttribute str]
<__main__.GetAttribute object at 0x02287898>
Note how __getattr__ intercepts
      both implicit and explicit fetches of __call__ and __str__ in 2.X here. By contrast, __getattribute__ fails to catch implicit
      fetches of either attribute name for built-in operations.
Really, the __getattribute__
      case is the same in 2.X as it is in 3.X, because in 2.X classes must be
      made new-style by deriving from object to use this method. This code’s
      object derivation is optional in 3.X
      because all classes are new-style.
When run under Python 3.X, though, results for __getattr__ differ—none
      of the implicitly run operator overloading methods trigger
      either attribute interception method when their
      attributes are fetched by built-in operations. Python 3.X (and new-style
      classes in general) skips the normal instance lookup mechanism when
      resolving such names, though normally named methods are still
      intercepted as before:
 c:\code> py −3 getattr-builtins.py

GetAttr===========================================
getattr: other
__len__: 42
fail []
fail +
fail ()
getattr: __call__
<__main__.GetAttr object at 0x02987CC0>
<__main__.GetAttr object at 0x02987CC0>

GetAttribute======================================
getattribute: eggs
getattribute: spam
getattribute: other
__len__: 42
fail []
fail +
fail ()
getattribute: __call__
getattribute: __str__
[GetAttribute str]
<__main__.GetAttribute object at 0x02987CF8>
Trace these outputs back to prints in the script to see how this works.
      Some highlights:
	__str__ access fails to be
          caught twice by __getattr__ in
          3.X: once for the built-in print, and once for explicit fetches
          because a default is inherited from the class (really, from the
          built-in object, which is an
          automatic superclass to every class in 3.X).

	__str__ fails to be caught
          only once by the __getattribute__
          catchall, during the built-in print operation; explicit fetches
          bypass the inherited version.

	__call__ fails to be caught
          in both schemes in 3.X for built-in call expressions, but it is
          intercepted by both when fetched explicitly; unlike __str__, there is no inherited __call__ default for object instances to defeat __getattr__.

	__len__ is caught by both
          classes, simply because it is an explicitly defined method in the
          classes themselves—though its name it is not routed to either
          __getattr__ or __getattribute__ in 3.X if we delete the
          class’s __len__ methods.

	All other built-in operations fail to be intercepted by both
          schemes in 3.X.


Again, the net effect is that operator overloading methods
      implicitly run by built-in operations are never routed through either
      attribute interception method in 3.X: Python 3.X’s new-style classes
      search for such attributes in classes and skip
      instance lookup entirely. Normally named attributes do not.
This makes delegation-based wrapper classes more difficult to code
      in 3.X’s new-style classes—if wrapped classes may contain operator
      overloading methods, those methods must be redefined redundantly in the
      wrapper class in order to delegate to the wrapped object. In general
      delegation tools, this can add dozens of extra methods.
Of course, the addition of such methods can be partly automated by
      tools that augment classes with new methods (the class decorators and
      metaclasses of the next two chapters might help here). Moreover, a
      superclass might be able to define all these extra methods once, for
      inheritance in delegation-based classes. Still, delegation coding
      patterns require extra work in 3.X’s classes.
For a more realistic illustration of this phenomenon as well as
      its workaround, see the Private
      decorator example in the following chapter. There, we’ll explore
      alternatives for coding the operator methods required of proxies in
      3.X’s classes—including reusable mix-in superclass
      models. We’ll also see there that it’s possible to insert a __getattribute__ in the client class to retain
      its original type, although this method still won’t be called for
      operator overloading methods; printing still runs a __str__ defined in such a class directly, for
      example, instead of routing the request through __getattribute__.
As a more realistic example of this, the next section resurrects
      our class tutorial example. Now that you understand how attribute
      interception works, I’ll be able to explain one of its stranger
      bits.
Delegation-based managers revisited
The object-oriented tutorial of Chapter 28 presented a Manager class that used object embedding and
        method delegation to customize its superclass, rather than
        inheritance. Here is the code again for reference, with some
        irrelevant testing removed:
class Person:
    def __init__(self, name, job=None, pay=0):
        self.name = name
        self.job  = job
        self.pay  = pay
    def lastName(self):
        return self.name.split()[-1]
    def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))
    def __repr__(self):
        return '[Person: %s, %s]' % (self.name, self.pay)

class Manager:
    def __init__(self, name, pay):
        self.person = Person(name, 'mgr', pay)      # Embed a Person object
    def giveRaise(self, percent, bonus=.10):
        self.person.giveRaise(percent + bonus)      # Intercept and delegate
    def __getattr__(self, attr):
        return getattr(self.person, attr)           # Delegate all other attrs
    def __repr__(self):
        return str(self.person)                     # Must overload again (in 3.X)

if __name__ == '__main__':
    sue = Person('Sue Jones', job='dev', pay=100000)
    print(sue.lastName())
    sue.giveRaise(.10)
    print(sue)
    tom = Manager('Tom Jones', 50000)    # Manager.__init__
    print(tom.lastName())                # Manager.__getattr__ -> Person.lastName
    tom.giveRaise(.10)                   # Manager.giveRaise -> Person.giveRaise
    print(tom)                           # Manager.__repr__ -> Person.__repr__
Comments at the end of this file show which methods are invoked
        for a line’s operation. In particular, notice how lastName calls are undefined in Manager, and thus are routed into the
        generic __getattr__ and from there
        on to the embedded Person object.
        Here is the script’s output—Sue receives a 10% raise from Person, but Tom gets 20% because giveRaise is customized in Manager:
c:\code> py −3 getattr-delegate.py
Jones
[Person: Sue Jones, 110000]
Jones
[Person: Tom Jones, 60000]
By contrast, though, notice what occurs when we
        print a Manager at the end of the script: the
        wrapper class’s __repr__ is
        invoked, and it delegates to the embedded Person object’s __repr__. With that in mind, watch what
        happens if we delete the Manager.__repr__ method in this code:
# Delete the Manager __str__ method

class Manager:
    def __init__(self, name, pay):
        self.person = Person(name, 'mgr', pay)      # Embed a Person object
    def giveRaise(self, percent, bonus=.10):
        self.person.giveRaise(percent + bonus)      # Intercept and delegate
    def __getattr__(self, attr):
        return getattr(self.person, attr)           # Delegate all other attrs
Now printing does not route its attribute
        fetch through the generic __getattr__ interceptor under Python 3.X’s
        new-style classes for Manager
        objects. Instead, a default __str__ display method inherited from the
        class’s implicit object superclass
        is looked up and run (sue still
        prints correctly, because Person
        has an explicit __repr__):
c:\code> py −3 getattr-delegate.py
Jones
[Person: Sue Jones, 110000]
Jones
<__main__.Manager object at 0x029E7B70>
As coded, running without a __repr__ like this does
        trigger __getattr__ in Python 2.X’s
        default classic classes, because operator overloading attributes are
        routed through this method, and such classes do not inherit a default
        for __repr__:
c:\code> py −2 getattr-delegate.py
Jones
[Person: Sue Jones, 110000]
Jones
[Person: Tom Jones, 60000]
Switching to __getattribute__
        won’t help 3.X here either—like __getattr__, it is not
        run for operator overloading attributes implied by built-in operations
        in either Python 2.X or 3.X:
# Replace __getattr_ with __getattribute__

class Manager(object):                                   # Use "(object)" in 2.X
    def __init__(self, name, pay):
        self.person = Person(name, 'mgr', pay)           # Embed a Person object
    def giveRaise(self, percent, bonus=.10):
        self.person.giveRaise(percent + bonus)           # Intercept and delegate
    def __getattribute__(self, attr):
        print('**', attr)
        if attr in ['person', 'giveRaise']:
            return object.__getattribute__(self, attr)   # Fetch my attrs
        else:
            return getattr(self.person, attr)            # Delegate all others
Regardless of which attribute interception method is used in
        3.X, we still must include a redefined __repr__ in Manager (as shown previously) in order to
        intercept printing operations and route them to the embedded Person object:
C:\code> py −3 getattr-delegate.py
Jones
[Person: Sue Jones, 110000]
** lastName
** person
Jones
** giveRaise
** person
<__main__.Manager object at 0x028E0590>
Notice that __getattribute__
        gets called twice here for methods—once for the
        method name, and again for the self.person embedded object fetch. We could
        avoid that with a different coding, but we would still have to
        redefine __repr__ to catch
        printing, albeit differently here (self.person would cause this __getattribute__ to fail):
# Code __getattribute__ differently to minimize extra calls

class Manager:
    def __init__(self, name, pay):
        self.person = Person(name, 'mgr', pay)
    def __getattribute__(self, attr):
        print('**', attr)
        person = object.__getattribute__(self, 'person')
        if attr == 'giveRaise':
            return lambda percent: person.giveRaise(percent+.10)
        else:
            return getattr(person, attr)
    def __repr__(self):
        person = object.__getattribute__(self, 'person')
        return str(person)
When this alternative runs, our object prints properly, but only
        because we’ve added an explicit __repr__ in the wrapper—this attribute is
        still not routed to our generic attribute interception method:
Jones
[Person: Sue Jones, 110000]
** lastName
Jones
** giveRaise
[Person: Tom Jones, 60000]
The short story here is that delegation-based classes like
        Manager must redefine some operator
        overloading methods (like __repr__
        and __str__) to route them to
        embedded objects in Python 3.X, but not in Python 2.X unless new-style
        classes are used. Our only direct options seem to be using __getattr__ and Python 2.X, or redefining
        operator overloading methods in wrapper classes redundantly in
        3.X.
Again, this isn’t an impossible task; many wrappers can predict
        the set of operator overloading methods required, and tools and
        superclasses can automate part of this task—in fact, we’ll study
        coding patterns that can fill this need in the next chapter. Moreover,
        not all classes use operator overloading methods (indeed, most
        application classes usually should not). It is, however, something to
        keep in mind for delegation coding models used in Python 3.X; when
        operator overloading methods are part of an object’s interface,
        wrappers must accommodate them portably by redefining them locally.



Example: Attribute Validations
To close out this chapter, let’s turn to a more realistic example, coded in all four of
    our attribute management schemes. The example we will use defines a
    CardHolder object with four attributes,
    three of which are managed. The managed attributes validate or transform
    values when fetched or stored. All four versions produce the same results
    for the same test code, but they implement their attributes in very
    different ways. The examples are included largely for self-study; although
    I won’t go through their code in detail, they all use concepts we’ve
    already explored in this chapter.
Using Properties to Validate
Our first coding in the file that follows uses properties to manage three attributes. As
      usual, we could use simple methods instead of managed attributes, but
      properties help if we have been using attributes in existing code
      already. Properties run code automatically on attribute access, but are
      focused on a specific set of attributes; they cannot be used to
      intercept all attributes generically.
To understand this code, it’s crucial to notice that the attribute
      assignments inside the __init__
      constructor method trigger property setter methods too. When this method
      assigns to self.name, for example, it
      automatically invokes the setName
      method, which transforms the value and assigns it to an instance
      attribute called __name so it won’t
      clash with the property’s name.
This renaming (sometimes called name
      mangling) is necessary because properties use common instance
      state and have none of their own. Data is stored in an attribute called
      __name, and the attribute called
      name is always a property, not data.
      As we saw in Chapter 31, names like
      __name are known as
      pseudoprivate attributes, and are changed by Python
      to include the enclosing class’s name when stored in the instance’s
      namespace; here, this helps keep the implementation-specific attributes
      distinct from others, including that of the property that manages
      them.
In the end, this class manages attributes called name, age,
      and acct; allows the attribute
      addr to be accessed directly; and
      provides a read-only attribute called remain that is entirely virtual and computed
      on demand. For comparison purposes, this property-based coding weighs in
      at 39 lines of code, not counting its two initial lines, and includes
      the object derivation required in 2.X
      but optional in 3.X:
# File validate_properties.py

class CardHolder(object):                      # Need "(object)" for setter in 2.X
    acctlen = 8                                # Class data
    retireage = 59.5

    def __init__(self, acct, name, age, addr):
        self.acct = acct                       # Instance data
        self.name = name                       # These trigger prop setters too!
        self.age  = age                        # __X mangled to have class name
        self.addr = addr                       # addr is not managed
                                               # remain has no data
    def getName(self):
        return self.__name
    def setName(self, value):
        value = value.lower().replace(' ', '_')
        self.__name = value
    name = property(getName, setName)

    def getAge(self):
        return self.__age
    def setAge(self, value):
        if value < 0 or value > 150:
            raise ValueError('invalid age')
        else:
            self.__age = value
    age = property(getAge, setAge)

    def getAcct(self):
        return self.__acct[:-3] + '***'
    def setAcct(self, value):
        value = value.replace('-', '')
        if len(value) != self.acctlen:
            raise TypeError('invald acct number')
        else:
            self.__acct = value
    acct = property(getAcct, setAcct)

    def remainGet(self):                       # Could be a method, not attr
        return self.retireage - self.age       # Unless already using as attr
    remain = property(remainGet)
Testing code
The following code, validate_tester.py, tests our class; run
        this script with the name of the class’s module (sans “.py”) as a
        single command-line argument (you could also add most of its test code
        to the bottom of each file, or interactively import it from a module
        after importing the class). We’ll use this same testing code for all
        four versions of this example. When it runs, it makes two instances of
        our managed-attribute class and fetches and changes their various
        attributes. Operations expected to fail are wrapped in try statements, and identical behavior on
        2.X is supported by enabling the 3.X print function:
# File validate_tester.py
from __future__ import print_function # 2.X

def loadclass():
    import sys, importlib
    modulename = sys.argv[1]                          # Module name in command line
    module = importlib.import_module(modulename)      # Import module by name string
    print('[Using: %s]' % module.CardHolder)          # No need for getattr() here
    return module.CardHolder

def printholder(who):
    print(who.acct, who.name, who.age, who.remain, who.addr, sep=' / ')

if __name__ == '__main__':
    CardHolder = loadclass()
    bob = CardHolder('1234-5678', 'Bob Smith', 40, '123 main st')
    printholder(bob)
    bob.name = 'Bob Q. Smith'
    bob.age  = 50
    bob.acct = '23-45-67-89'
    printholder(bob)

    sue = CardHolder('5678-12-34', 'Sue Jones', 35, '124 main st')
    printholder(sue)
    try:
        sue.age = 200
    except:
        print('Bad age for Sue')

    try:
        sue.remain = 5
    except:
        print("Can't set sue.remain")

    try:
        sue.acct = '1234567'
    except:
        print('Bad acct for Sue')
Here is the output of our self-test code on both Python 3.X and
        2.X; again, this is the same for all versions of this example, except
        for the tested class’s name. Trace through this code to see how the
        class’s methods are invoked; accounts are displayed with some digits
        hidden, names are converted to a standard format, and time remaining
        until retirement is computed when fetched using a class attribute
        cutoff:
c:\code> py −3 validate_tester.py validate_properties
[Using: <class 'validate_properties.CardHolder'>]
12345*** / bob_smith / 40 / 19.5 / 123 main st
23456*** / bob_q._smith / 50 / 9.5 / 123 main st
56781*** / sue_jones / 35 / 24.5 / 124 main st
Bad age for Sue
Can't set sue.remain
Bad acct for Sue


Using Descriptors to Validate
Now, let’s recode our example using descriptors instead
      of properties. As we’ve seen, descriptors are very similar to properties
      in terms of functionality and roles; in fact, properties are basically a
      restricted form of descriptor. Like properties, descriptors are designed
      to handle specific attributes, not generic attribute access. Unlike
      properties, descriptors can also have their own state, and are a more
      general scheme.
Option 1: Validating with shared descriptor instance
        state
To understand the following code, it’s again important to notice that the attribute
        assignments inside the __init__
        constructor method trigger descriptor __set__ methods. When the constructor method
        assigns to self.name, for example,
        it automatically invokes the Name.__set__() method, which transforms the
        value and assigns it to a descriptor attribute called name.
In the end, this class implements the same attributes as the
        prior version: it manages attributes called name, age, and acct; allows the attribute addr to be accessed directly; and provides a
        read-only attribute called remain
        that is entirely virtual and computed on demand. Notice how we must
        catch assignments to the remain
        name in its descriptor and raise an exception; as we learned earlier,
        if we did not do this, assigning to this attribute of an instance
        would silently create an instance attribute that hides the class
        attribute descriptor.
For comparison purposes, this descriptor-based coding takes 45
        lines of code; I’ve added the required object derivation to the main descriptor
        classes for 2.X compatibility (they can be omitted for code to be run
        in 3.X only, but don’t hurt in 3.X, and aid portability if
        present):
# File validate_descriptors1.py: using shared descriptor state

class CardHolder(object):                        # Need all "(object)" in 2.X only
    acctlen = 8                                  # Class data
    retireage = 59.5

    def __init__(self, acct, name, age, addr):
        self.acct = acct                         # Instance data
        self.name = name                         # These trigger __set__ calls too!
        self.age  = age                          # __X not needed: in descriptor
        self.addr = addr                         # addr is not managed
                                                 # remain has no data
    class Name(object):
        def __get__(self, instance, owner):      # Class names: CardHolder locals
            return self.name
        def __set__(self, instance, value):
            value = value.lower().replace(' ', '_')
            self.name = value
    name = Name()

    class Age(object):
        def __get__(self, instance, owner):
            return self.age                             # Use descriptor data
        def __set__(self, instance, value):
            if value < 0 or value > 150:
                raise ValueError('invalid age')
            else:
                self.age = value
    age = Age()

    class Acct(object):
        def __get__(self, instance, owner):
            return self.acct[:-3] + '***'
        def __set__(self, instance, value):
            value = value.replace('-', '')
            if len(value) != instance.acctlen:          # Use instance class data
                raise TypeError('invald acct number')
            else:
                self.acct = value
    acct = Acct()

    class Remain(object):
        def __get__(self, instance, owner):
            return instance.retireage - instance.age    # Triggers Age.__get__
        def __set__(self, instance, value):
            raise TypeError('cannot set remain')        # Else set allowed here
    remain = Remain()
When run with the prior testing script, all examples in this
        section produce the same output as shown for properties earlier,
        except that the name of the class in the first line varies:
C:\code> python validate_tester.py validate_descriptors1
...same output as properties, except class name...

Option 2: Validating with per-client-instance state
Unlike in the prior property-based variant, though, in this case
        the actual name value is attached
        to the descriptor object, not the client class
        instance. Although we could store this value in either instance or
        descriptor state, the latter avoids the need to mangle names with
        underscores to avoid collisions. In the CardHolder client class, the attribute
        called name is always a descriptor
        object, not data.
Importantly, the downside of this scheme is that state stored
        inside a descriptor itself is class-level data that is effectively
        shared by all client class instances, and so
        cannot vary between them. That is, storing state in the
        descriptor instance instead of the
        owner (client) class instance means that the
        state will be the same in all owner class instances. Descriptor state
        can vary only per attribute appearance.
To see this at work, in the preceding descriptor-based CardHolder example, try printing attributes
        of the bob instance after creating
        the second instance, sue. The
        values of sue’s managed attributes
        (name, age, and acct) overwrite those
        of the earlier object bob, because
        both share the same, single descriptor instance attached to their
        class:
# File validate_tester2.py
from __future__ import print_function # 2.X

from validate_tester import loadclass
CardHolder = loadclass()

bob = CardHolder('1234-5678',  'Bob Smith', 40, '123 main st')
print('bob:', bob.name, bob.acct, bob.age, bob.addr)

sue = CardHolder('5678-12-34', 'Sue Jones', 35, '124 main st')
print('sue:', sue.name, sue.acct, sue.age, sue.addr)    # addr differs: client data
print('bob:', bob.name, bob.acct, bob.age, bob.addr)    # name,acct,age overwritten?
The results confirm the suspicion—in terms of managed
        attributes, bob has morphed into
        sue!
c:\code> py −3 validate_tester2.py validate_descriptors1
[Using: <class 'validate_descriptors1.CardHolder'>]
bob: bob_smith 12345*** 40 123 main st
sue: sue_jones 56781*** 35 124 main st
bob: sue_jones 56781*** 35 123 main st
There are valid uses for descriptor state, of course—to manage
        descriptor implementation and data that spans all instance—and this
        code was implemented to illustrate the technique. Moreover, the state
        scope implications of class versus instance attributes should be more
        or less a given at this point in the book.
However, in this particular use case, attributes of CardHolder objects are probably better
        stored as per-instance data instead of descriptor
        instance data, perhaps using the same __X naming
        convention as the property-based equivalent to avoid name clashes in
        the instance—a more important factor this time, as the client is a
        different class with its own state attributes. Here are the required
        coding changes; it doesn’t change line counts (we’re still at
        45):
# File validate_descriptors2.py: using per-client-instance state

class CardHolder(object):                        # Need all "(object)" in 2.X only
    acctlen = 8                                  # Class data
    retireage = 59.5

    def __init__(self, acct, name, age, addr):
        self.acct = acct                         # Client instance data
        self.name = name                         # These trigger __set__ calls too!
        self.age  = age                          # __X needed: in client instance
        self.addr = addr                         # addr is not managed
                                                 # remain managed but has no data
    class Name(object):
        def __get__(self, instance, owner):      # Class names: CardHolder locals
            return instance.__name
        def __set__(self, instance, value):
            value = value.lower().replace(' ', '_')
            instance.__name = value
    name = Name()                                       # class.name vs mangled attr

    class Age(object):
        def __get__(self, instance, owner):
            return instance.__age                       # Use descriptor data
        def __set__(self, instance, value):
            if value < 0 or value > 150:
                raise ValueError('invalid age')
            else:
                instance.__age = value
    age = Age()                                         # class.age vs mangled attr

    class Acct(object):
        def __get__(self, instance, owner):
            return instance.__acct[:-3] + '***'
        def __set__(self, instance, value):
            value = value.replace('-', '')
            if len(value) != instance.acctlen:          # Use instance class data
                raise TypeError('invald acct number')
            else:
                instance.__acct = value
    acct = Acct()                                       # class.acct vs mangled name

    class Remain(object):
        def __get__(self, instance, owner):
            return instance.retireage - instance.age    # Triggers Age.__get__
        def __set__(self, instance, value):
            raise TypeError('cannot set remain')        # Else set allowed here
    remain = Remain()
This supports per-instance data for the name, age, and acct managed fields as expected (bob remains bob), and other tests work as before:
c:\code> py −3 validate_tester2.py validate_descriptors2
[Using: <class 'validate_descriptors2.CardHolder'>]
bob: bob_smith 12345*** 40 123 main st
sue: sue_jones 56781*** 35 124 main st
bob: bob_smith 12345*** 40 123 main st

c:\code> py −3 validate_tester.py validate_descriptors2
...same output as properties, except class name...
One small caveat here: as coded, this version doesn’t support
        through-class descriptor access, because such
        access passes a None to the
        instance argument (also notice the attribute __X name mangling
        to _Name__name in the error message
        when the fetch attempt is made):
>>> from validate_descriptors1 import CardHolder
>>> bob = CardHolder('1234-5678', 'Bob Smith', 40, '123 main st')
>>> bob.name
'bob_smith'
>>> CardHolder.name
'bob_smith'

>>> from validate_descriptors2 import CardHolder
>>> bob = CardHolder('1234-5678', 'Bob Smith', 40, '123 main st')
>>> bob.name
'bob_smith'
>>> CardHolder.name
AttributeError: 'NoneType' object has no attribute '_Name__name'
We could detect this with a minor amount of additional code to
        trigger the error more explicitly, but there’s probably no
        point—because this version stores data in the client
        instance, there’s no meaning to its descriptors unless
        they’re accompanied by a client instance (much like a normal unbound
        instance method). In fact, that’s really the entire point of this
        version’s change!
Because they are classes, descriptors are a useful and powerful
        tool, but they present choices that can deeply impact a program’s
        behavior. As always in OOP, choose your state retention policies
        carefully.


Using __getattr__ to Validate
As we’ve seen, the __getattr__
      method intercepts all undefined attributes, so it can be more
      generic than using properties or descriptors. For our example, we simply
      test the attribute name to know when a managed attribute is being
      fetched; others are stored physically on the instance and so never reach
      __getattr__. Although this approach
      is more general than using properties or descriptors, extra work may be
      required to imitate the specific-attribute focus of other tools. We need
      to check names at runtime, and we must code a __setattr__ in order to intercept and validate
      attribute assignments.
As for the property and descriptor versions of this example, it’s
      critical to notice that the attribute assignments inside the __init__ constructor method trigger the
      class’s __setattr__ method too. When
      this method assigns to self.name, for
      example, it automatically invokes the __setattr__ method, which transforms the value
      and assigns it to an instance attribute called name. By storing name on the instance, it ensures that future
      accesses will not trigger __getattr__. In contrast, acct is stored as _acct, so that later accesses to acct do invoke __getattr__.
In the end, this class, like the prior two, manages attributes
      called name, age, and acct; allows the attribute addr to be accessed directly; and provides a
      read-only attribute called remain
      that is entirely virtual and is computed on demand.
For comparison purposes, this alternative comes in at 32 lines of
      code—7 fewer than the property-based version, and 13 fewer than the
      version using descriptors. Clarity matters more than code size, of
      course, but extra code can sometimes imply extra development and
      maintenance work. Probably more important here are
      roles: generic tools like __getattr__ may be better suited to generic
      delegation, while properties and descriptors are more directly designed
      to manage specific attributes.
Also note that the code here incurs extra
      calls when setting unmanaged attributes (e.g., addr), although no extra calls are incurred
      for fetching unmanaged attributes, since they are defined. Though this
      will likely result in negligible overhead for most programs, the more
      narrowly focused properties and
      descriptors incur an extra call only when managed
      attributes are accessed, and also appear in dir results when needed by generic
      tools.
Here’s the __getattr__ version
      of our validations code:
# File validate_getattr.py

class CardHolder:
    acctlen = 8                                  # Class data
    retireage = 59.5

    def __init__(self, acct, name, age, addr):
        self.acct = acct                         # Instance data
        self.name = name                         # These trigger __setattr__ too
        self.age  = age                          # _acct not mangled: name tested
        self.addr = addr                         # addr is not managed
                                                 # remain has no data
    def __getattr__(self, name):
        if name == 'acct':                           # On undefined attr fetches
            return self._acct[:-3] + '***'           # name, age, addr are defined
        elif name == 'remain':
            return self.retireage - self.age         # Doesn't trigger __getattr__
        else:
            raise AttributeError(name)

    def __setattr__(self, name, value):
        if name == 'name':                           # On all attr assignments
            value = value.lower().replace(' ', '_')  # addr stored directly
        elif name == 'age':                          # acct mangled to _acct
            if value < 0 or value > 150:
                raise ValueError('invalid age')
        elif name == 'acct':
            name  = '_acct'
            value = value.replace('-', '')
            if len(value) != self.acctlen:
                raise TypeError('invald acct number')
        elif name == 'remain':
            raise TypeError('cannot set remain')
        self.__dict__[name] = value                  # Avoid looping (or via object)
When this code is run with either test script, it produces the
      same output (with a different class name):
c:\code> py −3 validate_tester.py validate_getattr
...same output as properties, except class name...

c:\code> py −3 validate_tester2.py validate_getattr
...same output as instance-state descriptors, except class name...

Using __getattribute__ to Validate
Our final variant uses the __getattribute__ catchall to intercept attribute fetches and manage them as needed.
      Every attribute fetch is caught here, so we test the attribute names to
      detect managed attributes and route all others to the superclass for
      normal fetch processing. This version uses the same __setattr__ to catch assignments as the prior
      version.
The code works very much like the __getattr__ version, so I won’t repeat the
      full description here. Note, though, that because
      every attribute fetch is routed to __getattribute__, we don’t need to mangle
      names to intercept them here (acct is
      stored as acct). On the other hand,
      this code must take care to route nonmanaged attribute fetches to a
      superclass to avoid looping or extra calls.
Also notice that this version incurs extra calls for both setting
      and fetching unmanaged attributes (e.g., addr); if speed is paramount, this alternative
      may be the slowest of the bunch. For comparison purposes, this version
      amounts to 32 lines of code, just like the prior version, and includes
      the requisite object derivation for
      2.X compatibility; like properties and descriptors, __getattribute__ is a new-style class
      tool:
# File validate_getattribute.py

class CardHolder(object):                        # Need "(object)" in 2.X only
    acctlen = 8                                  # Class data
    retireage = 59.5

    def __init__(self, acct, name, age, addr):
        self.acct = acct                         # Instance data
        self.name = name                         # These trigger __setattr__ too
        self.age  = age                          # acct not mangled: name tested
        self.addr = addr                         # addr is not managed
                                                 # remain has no data
    def __getattribute__(self, name):
        superget = object.__getattribute__             # Don't loop: one level up
        if name == 'acct':                             # On all attr fetches
            return superget(self, 'acct')[:-3] + '***'
        elif name == 'remain':
            return superget(self, 'retireage') - superget(self, 'age')
        else:
            return superget(self, name)                # name, age, addr: stored

    def __setattr__(self, name, value):
        if name == 'name':                             # On all attr assignments
            value = value.lower().replace(' ', '_')    # addr stored directly
        elif name == 'age':
            if value < 0 or value > 150:
                raise ValueError('invalid age')
        elif name == 'acct':
            value = value.replace('-', '')
            if len(value) != self.acctlen:
                raise TypeError('invald acct number')
        elif name == 'remain':
            raise TypeError('cannot set remain')
        self.__dict__[name] = value                     # Avoid loops, orig names
Both the getattr and getattribute scripts work the same as the
      property and per-client-instance descriptor versions, when run by both
      tester scripts on either 2.X or 3.X.—four ways to achieve the
      same goal in Python, though they vary in structure, and are
      perhaps less redundant in some other roles. Be sure to study and run
      this section’s code on your own for more pointers on managed attribute
      coding techniques.


Chapter Summary
This chapter covered the various techniques for managing access to
    attributes in Python, including the __getattr__ and __getattribute__ operator overloading methods,
    class properties, and class attribute descriptors. Along the way, it
    compared and contrasted these tools and presented a handful of use cases
    to demonstrate their behavior.
Chapter 39 continues our tool-building survey
    with a look at decorators—code run automatically at
    function and class creation time, rather than on attribute access. Before
    we continue, though, let’s work through a set of questions to review what
    we’ve covered here.

Test Your Knowledge: Quiz
	How do __getattr__ and
        __getattribute__ differ?

	How do properties and descriptors differ?

	How are properties and decorators related?

	What are the main functional differences between __getattr__ and __getattribute__ and properties and
        descriptors?

	Isn’t all this feature comparison just a kind of
        argument?


Test Your Knowledge: Answers
	The __getattr__ method is
          run for fetches of undefined attributes only
          (i.e., those not present on an instance and not inherited from any
          of its classes). By contrast, the __getattribute__ method is called for
          every attribute fetch, whether the attribute is
          defined or not. Because of this, code inside a __getattr__ can freely fetch other
          attributes if they are defined, whereas __getattribute__ must use special code for
          all such attribute fetches to avoid looping or extra calls (it must
          route fetches to a superclass to skip itself).

	Properties serve a specific role, while descriptors are more
          general. Properties define get, set, and delete functions for a
          specific attribute; descriptors provide a class with methods for
          these actions, too, but they provide extra flexibility to support
          more arbitrary actions. In fact, properties are really a simple way
          to create a specific kind of descriptor—one that runs functions on
          attribute accesses. Coding differs too: a property is created with a
          built-in function, and a descriptor is coded with a class; thus,
          descriptors can leverage all the usual OOP features of classes, such
          as inheritance. Moreover, in addition to the instance’s state
          information, descriptors have local state of their own, so they can
          sometimes avoid name collisions in the instance.

	Properties can be coded with decorator syntax. Because the
          property built-in accepts a
          single function argument, it can be used directly as a function
          decorator to define a fetch access property. Due to the name
          rebinding behavior of decorators, the name of the decorated function
          is assigned to a property whose get accessor is set to the original
          function decorated (name =
          property(name)). Property setter and deleter attributes allow us to further add
          set and delete accessors with decoration syntax—they set the
          accessor to the decorated function and return the augmented
          property.

	The __getattr__ and
          __getattribute__ methods are more
          generic: they can be used to catch arbitrarily many attributes. In
          contrast, each property or descriptor provides access interception
          for only one specific attribute—we can’t catch
          every attribute fetch with a single property or descriptor. On the
          other hand, properties and descriptors handle both attribute fetch
          and assignment by design: __getattr__ and __getattribute__ handle fetches only; to
          intercept assignments as well, __setattr__ must also be coded. The
          implementation is also different: __getattr__ and __getattribute__ are operator overloading
          methods, whereas properties and descriptors are objects manually
          assigned to class attributes. Unlike the others, properties and
          descriptors can also sometimes avoid extra calls on assignment to
          unmanaged names, and show up in dir results automatically, but are also
          narrower in scope—they can’t address generic dispatch goals. In
          Python evolution, new features tend to offer alternatives, but do
          not fully subsume what came before.

	No it isn’t. To quote from Python namesake Monty Python’s Flying
          Circus:
An argument is a connected series of statements intended to establish a
proposition.
No it isn't.
Yes it is! It's not just contradiction.
Look, if I argue with you, I must take up a contrary position.
Yes, but that's not just saying "No it isn't."
Yes it is!
No it isn't!
Yes it is!
No it isn't. Argument is an intellectual process. Contradiction is just
the automatic gainsaying of any statement the other person makes.
(short pause) No it isn't.
It is.
Not at all.
Now look...




1 As noted in Chapter 31, such
          dynamic classes can also use a __dir__ method to
          provide an attribute result list for dir calls,
          though general tools cannot depend on this optional
          interface.








Chapter 39. Decorators
In the advanced class topics chapter of this book (Chapter 32), we met static and class methods, took a
  quick look at the @ decorator syntax
  Python offers for declaring them, and previewed decorator coding techniques.
  We also met function decorators briefly in Chapter 38, while exploring the property built-in’s ability to serve as one, and
  in Chapter 29 while studying the notion of
  abstract superclasses.
This chapter picks up where this previous decorator coverage left off.
  Here, we’ll dig deeper into the inner workings of decorators and study more
  advanced ways to code new decorators ourselves. As we’ll see, many of the
  concepts we studied earlier—especially state retention—show up regularly in
  decorators.
This is a somewhat advanced topic, and decorator construction tends to
  be of more interest to tool builders than to application programmers. Still,
  given that decorators are becoming increasingly common in popular Python
  frameworks, a basic understanding can help demystify their role, even if
  you’re just a decorator user.
Besides covering decorator construction details, this chapter serves
  as a more realistic case study of Python in action.
  Because its examples grow somewhat larger than most of the others we’ve seen
  in this book, they better illustrate how code comes together into more
  complete systems and tools. As an extra perk, some of the code we’ll write
  here may be used as general-purpose tools in your day-to-day
  programs.
What’s a Decorator?
Decoration is a way to specify management or augmentation code for functions and
    classes. Decorators themselves take the form of callable objects (e.g.,
    functions) that process other callable objects. As we saw earlier in this
    book, Python decorators come in two related flavors, neither of which
    requires 3.X or new-style classes:
	Function decorators, added in Python 2.4,
        do name rebinding at function definition time, providing a layer
        of logic that can manage functions and methods, or later calls to
        them.

	Class decorators, added in Python 2.6 and
        3.0, do name rebinding at class definition time, providing a
        layer of logic that can manage classes, or the instances created by
        later calls to them.


In short, decorators provide a way to insert automatically
    run code at the end of function and class definition
    statements—at the end of a def for
    function decorators, and at the end of a class for class decorators. Such code can play a
    variety of roles, as described in the following sections.
Managing Calls and Instances
In typical use, this automatically run code may be used to augment calls to
      functions and classes. It arranges this by installing wrapper (a.k.a.
      proxy) objects to be invoked later:
	Call proxies
	Function decorators install wrapper objects to intercept
            later function calls and process them as
            needed, usually passing the call on to the original function to
            run the managed action.

	Interface proxies
	Class decorators install wrapper objects to intercept later
            instance creation calls and process them as
            required, usually passing the call on to the original class to
            create a managed instance.


Decorators achieve these effects by automatically rebinding
      function and class names to other callables, at the end of def and class statements. When later invoked, these
      callables can perform tasks such as tracing and timing function calls,
      managing access to class instance attributes, and so on.

Managing Functions and Classes
Although most examples in this chapter deal with using wrappers to intercept later
      calls to functions and classes, this is not the only way decorators can
      be used:
	Function managers
	Function decorators can also be used to manage
            function objects, instead of or in addition
            to later calls to them—to register a function to an API, for
            instance. Our primary focus here, though, will be on their more
            commonly used call wrapper application.

	Class managers
	Class decorators can also be used to manage class
            objects directly, instead of or in addition to instance
            creation calls—to augment a class with new methods, for example.
            Because this role intersects strongly with that of
            metaclasses, we’ll see additional use cases
            in the next chapter. As we’ll find, both tools run at the end of
            the class creation process, but class decorators often offer a
            lighter-weight solution.


In other words, function decorators can be used to manage both
      function calls and function objects, and class decorators can be used to
      manage both class instances and classes themselves. By returning the
      decorated object itself instead of a wrapper, decorators become a simple
      post-creation step for functions and classes.
Regardless of the role they play, decorators provide a convenient
      and explicit way to code tools useful both during program development
      and in live production systems.

Using and Defining Decorators
Depending on your job description, you might encounter decorators as a
      user or a provider (you might also be a maintainer, but that just means
      you straddle the fence). As we’ve seen, Python itself comes with
      built-in decorators that have specialized roles—static and class method
      declaration, property creation, and more. In addition, many popular
      Python toolkits include decorators to perform tasks such as managing
      database or user-interface logic. In such cases, we can get by without
      knowing how the decorators are coded.
For more general tasks, programmers can code arbitrary decorators
      of their own. For example, function decorators may be used to augment
      functions with code that adds call tracing or logging, performs argument
      validity testing during debugging, automatically acquires and releases
      thread locks, times calls made to functions for optimization, and so on.
      Any behavior you can imagine adding to—really, wrapping around—a
      function call is a candidate for custom function decorators.
On the other hand, function decorators are designed to augment
      only a specific function or method call, not an
      entire object interface. Class decorators fill the
      latter role better—because they can intercept instance creation calls,
      they can be used to implement arbitrary object interface augmentation or
      management tasks. For example, custom class decorators can trace,
      validate, or otherwise augment every attribute reference made for an
      object. They can also be used to implement proxy objects, singleton
      classes, and other common coding patterns. In fact, we’ll find that many
      class decorators bear a strong resemblance to—and in fact are a prime
      application of—the delegation coding pattern we met
      in Chapter 31.

Why Decorators?
Like many advanced Python tools, decorators are never strictly
      required from a purely technical perspective: we can often implement
      their functionality instead using simple helper function calls or other
      techniques. And at a base level, we can always manually code the name
      rebinding that decorators perform automatically.
That said, decorators provide an explicit syntax for such tasks,
      which makes intent clearer, can minimize augmentation code redundancy,
      and may help ensure correct API usage:
	Decorators have a very explicit syntax,
          which makes them easier to spot than helper function calls that may
          be arbitrarily far-removed from the subject functions or
          classes.

	Decorators are applied once, when the
          subject function or class is defined; it’s not necessary to add
          extra code at every call to the class or function, which may have to
          be changed in the future.

	Because of both of the prior points, decorators make it less
          likely that a user of an API will forget to
          augment a function or class according to API requirements.


In other words, beyond their technical model, decorators offer
      some advantages in terms of both code maintenance and consistency.
      Moreover, as structuring tools, decorators naturally foster
      encapsulation of code, which reduces redundancy and
      makes future changes easier.
Decorators do have some potential drawbacks,
      too—when they insert wrapper logic, they can alter the types of the
      decorated objects, and they may incur extra calls when used as call or
      interface proxies. On the other hand, the same considerations apply to
      any technique that adds wrapping logic to objects.
We’ll explore these tradeoffs in the context of real code later in
      this chapter. Although the choice to use decorators is still somewhat
      subjective, their advantages are compelling enough that they are quickly
      becoming best practice in the Python world. To help you decide for
      yourself, let’s turn to the details.
Note
Decorators versus macros: Python’s
        decorators bear similarities to what some call
        aspect-oriented programming in other
        languages—code inserted to run automatically before or after a
        function call runs. Their syntax also very closely resembles (and is
        likely borrowed from) Java’s annotations, though
        Python’s model is usually considered more flexible and general.
Some liken decorators to macros too, but
        this isn’t entirely apt, and might even be misleading. Macros (e.g.,
        C’s #define preprocessor directive)
        are typically associated with textual replacement and expansion, and
        designed for generating code. By contrast, Python’s decorators are a
        runtime operation, based upon name rebinding,
        callable objects, and often, proxies. While the two may have use cases
        that sometimes overlap, decorators and macros are fundamentally
        different in scope, implementation, and coding patterns. Comparing the
        two seems akin to comparing Python’s import with a C #include, which similarly confuses a runtime
        object-based operation with text insertion.
Of course, the term macro has been a bit
        diluted over time—to some, it now can also refer to any canned series
        of steps or procedure—and users of other languages might find the
        analogy to descriptors useful anyhow. But they should probably also
        keep in mind that decorators are about callable
        objects managing callable
        objects, not text expansion. Python tends to be
        best understood and used in terms of Python idioms.



The Basics
Let’s get started with a first-pass look at decoration behavior from
    a symbolic perspective. We’ll write real and more substantial code soon,
    but since most of the magic of decorators boils down to an automatic
    rebinding operation, it’s important to understand this mapping
    first.
Function Decorators
Function decorators have been available in Python since version 2.4. As we saw
      earlier in this book, they are largely just syntactic sugar that runs
      one function through another at the end of a def statement, and rebinds the original
      function name to the result.
Usage
A function decorator is a kind of runtime
        declaration about the function whose definition follows.
        The decorator is coded on a line just before the def statement that defines a function or
        method, and it consists of the @
        symbol followed by a reference to a metafunction—a
        function (or other callable object) that manages another
        function.
In terms of code, function decorators automatically map the
        following syntax:
@decorator              # Decorate function
def F(arg):
    ...

F(99)                   # Call function
into this equivalent form, where decorator is a one-argument callable object
        that returns a callable object with the same number of arguments as
        F (if not F itself):
def F(arg):
    ...
F = decorator(F)        # Rebind function name to decorator result

F(99)                   # Essentially calls decorator(F)(99)
This automatic name rebinding works on any def statement,
        whether it’s for a simple function or a method within a class. When
        the function F is later called,
        it’s actually calling the object returned by the
        decorator, which may be either another object that implements required
        wrapping logic, or the original function itself.
In other words, decoration essentially maps the first of the
        following into the second—though the decorator is really run only
        once, at decoration time:
func(6, 7)
decorator(func)(6, 7)
This automatic name rebinding accounts for the static method and
        property decoration syntax we met earlier in the book:
class C:
    @staticmethod
    def meth(...): ...            # meth = staticmethod(meth)

class C:
    @property
    def name(self): ...           # name = property(name)
In both cases, the method name is rebound to the result of a
        built-in function decorator, at the end of the def statement. Calling the original name
        later invokes whatever object the decorator returns. In these specific
        cases, the original names are rebound to a static method router and
        property descriptor, but the process is much more general than this—as
        the next section explains.

Implementation
A decorator itself is a callable that returns a
        callable. That is, it returns the object to be called later
        when the decorated function is invoked through its original
        name—either a wrapper object to intercept later calls, or the original
        function augmented in some way. In fact, decorators can
        be any type of callable and
        return any type of callable: any combination of
        functions and classes may be used, though some are better suited to
        certain contexts.
For example, to tap into the decoration protocol in order to
        manage a function just after it is created, we might code a decorator
        of this form:
def decorator(F):
    # Process function F
    return F

@decorator
def func(): ...                  # func = decorator(func)
Because the original decorated function is assigned back to its
        name, this simply adds a post-creation step to function definition.
        Such a structure might be used to register a function to an API,
        assign function attributes, and so on.
In more typical use, to insert logic that intercepts later calls
        to a function, we might code a decorator to return a different object
        than the original function—a proxy for later calls:
def decorator(F):
    # Save or use function F
    # Return a different callable: nested def, class instance with __call__, etc.

@decorator
def func(): ...                  # func = decorator(func)
This decorator is invoked at decoration time, and the callable
        it returns is invoked when the original function name is later called.
        The decorator itself receives the decorated function; the callable
        returned receives whatever arguments are later passed to the decorated
        function’s name. When coded properly, this works the same for
        class-level methods: the implied instance object
        simply shows up in the first argument of the returned callable.
In skeleton terms, here’s one common coding pattern that
        captures this idea—the decorator returns a wrapper that retains the
        original function in an enclosing scope:
def decorator(F):                     # On @ decoration
    def wrapper(*args):               # On wrapped function call
        # Use F and args
        # F(*args) calls original function
    return wrapper

@decorator                            # func = decorator(func)
def func(x, y):                       # func is passed to decorator's F
    ...

func(6, 7)                            # 6, 7 are passed to wrapper's *args
When the name func is later
        called, it really invokes the wrapper function returned by decorator; the wrapper function can then run the original
        func because it is still available
        in an enclosing scope. When coded this way, each
        decorated function produces a new scope to retain state.
To do the same with classes, we can
        overload the call operation and use instance attributes instead of
        enclosing scopes:
class decorator:
    def __init__(self, func):         # On @ decoration
        self.func = func
    def __call__(self, *args):        # On wrapped function call
        # Use self.func and args
        # self.func(*args) calls original function

@decorator
def func(x, y):                       # func = decorator(func)
    ...                               # func is passed to __init__

func(6, 7)                            # 6, 7 are passed to __call__'s *args
When the name func is later
        called now, it really invokes the __call__
        operator overloading method of the instance created by decorator; the __call__ method can then run the original
        func because it is still available
        in an instance attribute. When coded this way,
        each decorated function produces a new instance to retain
        state.

Supporting method decoration
One subtle point about the prior class-based coding is that while it works to
        intercept simple function calls, it does not
        quite work when applied to class-level method
        functions:
class decorator:
    def __init__(self, func):           # func is method without instance
        self.func = func
    def __call__(self, *args):          # self is decorator instance
        # self.func(*args) fails!       # C instance not in args!

class C:
    @decorator
    def method(self, x, y):             # method = decorator(method)
        ...                             # Rebound to decorator instance
When coded this way, the decorated method is rebound to an
        instance of the decorator class, instead of a simple function.
The problem with this is that the self in the decorator’s __call__ receives the decorator class instance when the method is
        later run, and the instance of class C is never included in *args. This makes it impossible to dispatch
        the call to the original method—the decorator object retains the
        original method function, but it has no instance to pass to it.
To support both functions and methods, the
        nested function alternative works better:
def decorator(F):                       # F is func or method without instance
    def wrapper(*args):                 # class instance in args[0] for method
        # F(*args) runs func or method
    return wrapper

@decorator
def func(x, y):                         # func = decorator(func)
    ...
func(6, 7)                              # Really calls wrapper(6, 7)

class C:
    @decorator
    def method(self, x, y):             # method = decorator(method)
        ...                             # Rebound to simple function

X = C()
X.method(6, 7)                          # Really calls wrapper(X, 6, 7)
When coded this way wrapper
        receives the C class instance in
        its first argument, so it can dispatch to the original method and
        access state information.
Technically, this nested-function version works because Python
        creates a bound method object and thus passes the subject class
        instance to the self argument only
        when a method attribute references a simple function; when it
        references an instance of a callable class instead, the callable
        class’s instance is passed to self
        to give the callable class access to its own state information. We’ll
        see how this subtle difference can matter in more realistic examples
        later in this chapter.
Also note that nested functions are perhaps the most
        straightforward way to support decoration of both functions and
        methods, but not necessarily the only way. The prior chapter’s
        descriptors, for example, receive both the
        descriptor and subject class instance when called. Though more
        complex, later in this chapter we’ll see how this tool can be
        leveraged in this context as well.


Class Decorators
Function decorators proved so useful that the model was extended to allow
      class decoration as of Python 2.6 and 3.0. They were initially resisted
      because of role overlap with metaclasses; in the
      end, though, they were adopted because they provide a simpler way to
      achieve many of the same goals.
Class decorators are strongly related to function decorators; in
      fact, they use the same syntax and very similar coding patterns. Rather
      than wrapping individual functions or methods, though, class decorators
      are a way to manage classes, or wrap up instance construction calls with
      extra logic that manages or augments instances created from a class. In
      the latter role, they may manage full object interfaces.
Usage
Syntactically, class decorators appear just before class statements, in the same way that
        function decorators appear just before def statements. In symbolic terms, for a
        decorator that must be a
        one-argument callable that returns a callable, the class decorator
        syntax:
@decorator                 # Decorate class
class C:
    ...

x = C(99)                  # Make an instance
is equivalent to the following—the class is automatically passed
        to the decorator function, and the decorator’s result is assigned back
        to the class name:
class C:
    ...
C = decorator(C)           # Rebind class name to decorator result

x = C(99)                  # Essentially calls decorator(C)(99)
The net effect is that calling the class name later to create an
        instance winds up triggering the callable returned by the decorator,
        which may or may not call the original class itself.

Implementation
New class decorators are coded with many of the same techniques used for
        function decorators, though some may involve two
        levels of augmentation—to manage both instance construction
        calls, as well as instance interface access. Because a class decorator
        is also a callable that returns a callable, most
        combinations of functions and classes suffice.
However it’s coded, the decorator’s result is what runs when an
        instance is later created. For example, to simply manage a class just
        after it is created, return the original class itself:
def decorator(C):
    # Process class C
    return C

@decorator
class C: ...                                    # C = decorator(C)
To instead insert a wrapper layer that intercepts later instance
        creation calls, return a different callable object:
def decorator(C):
    # Save or use class C
    # Return a different callable: nested def, class instance with __call__, etc.

@decorator
class C: ...                                    # C = decorator(C)
The callable returned by such a class decorator typically
        creates and returns a new instance of the original class, augmented in
        some way to manage its interface. For example, the following inserts
        an object that intercepts undefined attributes of a class
        instance:
def decorator(cls):                             # On @ decoration
    class Wrapper:
        def __init__(self, *args):              # On instance creation
            self.wrapped = cls(*args)
        def __getattr__(self, name):            # On attribute fetch
            return getattr(self.wrapped, name)
    return Wrapper

@decorator
class C:                             # C = decorator(C)
    def __init__(self, x, y):        # Run by Wrapper.__init__
        self.attr = 'spam'

x = C(6, 7)                          # Really calls Wrapper(6, 7)
print(x.attr)                        # Runs Wrapper.__getattr__, prints "spam"
In this example, the decorator rebinds the class name to another
        class, which retains the original class in an enclosing scope and
        creates and embeds an instance of the original class when it’s called.
        When an attribute is later fetched from the instance, it is
        intercepted by the wrapper’s __getattr__
        and delegated to the embedded instance of the original class.
        Moreover, each decorated class creates a new scope, which remembers
        the original class. We’ll flesh out this example into some more useful
        code later in this chapter.
Like function decorators, class decorators are commonly coded as
        either “factory” functions that create and return callables, classes
        that use __init__ or __call__ methods to intercept call operations, or some combination
        thereof. Factory functions typically retain state in enclosing scope
        references, and classes in attributes.

Supporting multiple instances
As for function decorators, some callable type combinations work better for class
        decorators than others. Consider the following invalid alternative to
        the class decorator of the prior example:
class Decorator:
    def __init__(self, C):                    # On @ decoration
        self.C = C
    def __call__(self, *args):                # On instance creation
        self.wrapped = self.C(*args)
        return self
    def __getattr__(self, attrname):          # On atrribute fetch
        return getattr(self.wrapped, attrname)

@Decorator
class C: ...                                  # C = Decorator(C)

x = C()
y = C()                                       # Overwrites x!
This code handles multiple decorated classes (each makes a new
        Decorator instance) and will
        intercept instance creation calls (each runs __call__). Unlike the prior version,
        however, this version fails to handle multiple
        instances of a given class—each instance creation call
        overwrites the prior saved instance. The original version does support
        multiple instances, because each instance creation call makes a new
        independent wrapper object. More generally, either of the following
        patterns supports multiple wrapped instances:
def decorator(C):                             # On @ decoration
    class Wrapper:
        def __init__(self, *args):            # On instance creation: new Wrapper
            self.wrapped = C(*args)           # Embed instance in instance
    return Wrapper

class Wrapper: ...
def decorator(C):                             # On @ decoration
    def onCall(*args):                        # On instance creation: new Wrapper
        return Wrapper(C(*args))              # Embed instance in instance
    return onCall
We’ll study this phenomenon in a more realistic context later in
        the chapter too; in practice, though, we must be careful to combine
        callable types properly to support our intent, and choose state
        policies wisely.


Decorator Nesting
Sometimes one decorator isn’t enough. For instance, suppose you’ve coded
      two function decorators to be used during
      development—one to test argument types before function calls, and
      another to test return value types after function calls. You can use
      either independently, but what to do if you want to employ
      both on a single function? What you really need is
      a way to nest the two, such that the result of one
      decorator is the function decorated by the other. It’s irrelevant which
      is nested, as long as both steps run on later calls.
To support multiple nested steps of augmentation this way,
      decorator syntax allows you to add multiple layers of wrapper logic to a
      decorated function or method. When this feature is used, each decorator
      must appear on a line of its own. Decorator syntax of this form:
@A
@B
@C
def f(...):
    ...
runs the same as the following:
def f(...):
    ...
f = A(B(C(f)))
Here, the original function is passed through three different
      decorators, and the resulting callable object is assigned back to the
      original name. Each decorator processes the result of the prior, which
      may be the original function or an inserted wrapper.
If all the decorators insert wrappers, the net effect is that when
      the original function name is called, three different layers of wrapping
      object logic will be invoked, to augment the original function in three
      different ways. The last decorator listed is the first applied, and is
      the most deeply nested when the original function name is later called
      (insert joke about Python “interior decorators” here).
Just as for functions, multiple class decorators result in
      multiple nested function calls, and possibly multiple levels and steps
      of wrapper logic around instance creation calls. For example, the
      following code:
@spam
@eggs
class C:
    ...

X = C()
is equivalent to the following:
class C:
    ...
C = spam(eggs(C))

X = C()
Again, each decorator is free to return either the original class
      or an inserted wrapper object. With wrappers, when an instance of the
      original C class is finally
      requested, the call is redirected to the wrapping layer objects provided
      by both the spam and eggs decorators, which may have arbitrarily
      different roles—they might trace and validate attribute access, for
      example, and both steps would be run on later requests.
For instance, the following do-nothing decorators simply return
      the decorated function:
def d1(F): return F
def d2(F): return F
def d3(F): return F

@d1
@d2
@d3
def func():               # func = d1(d2(d3(func)))
    print('spam')

func()                    # Prints "spam"
The same syntax works on classes, as do these same do-nothing
      decorators.
When decorators insert wrapper function objects, though, they may
      augment the original function when called—the following concatenates to
      its result in the decorator layers, as it runs the layers from inner to
      outer:
def d1(F): return lambda: 'X' + F()
def d2(F): return lambda: 'Y' + F()
def d3(F): return lambda: 'Z' + F()

@d1
@d2
@d3
def func():               # func = d1(d2(d3(func)))
    return 'spam'

print(func())             # Prints "XYZspam"
We use lambda functions to
      implement wrapper layers here (each retains the wrapped function in an
      enclosing scope); in practice, wrappers can take the form of functions,
      callable classes, and more. When designed well, decorator nesting allows
      us to combine augmentation steps in a wide variety of ways.

Decorator Arguments
Both function and class decorators can also seem to take
      arguments, although really these arguments are
      passed to a callable that in effect returns the
      decorator, which in turn returns a callable. By nature, this usually
      sets up multiple levels of state retention. The following, for
      instance:
@decorator(A, B)
def F(arg):
    ...

F(99)
is automatically mapped into this equivalent form, where decorator is a callable that
      returns the actual decorator. The returned
      decorator in turn returns the callable run later for calls to the
      original function name:
def F(arg):
    ...
F = decorator(A, B)(F)    # Rebind F to result of decorator's return value

F(99)                     # Essentially calls decorator(A, B)(F)(99)
Decorator arguments are resolved before decoration ever occurs,
      and they are usually used to retain state information for use in later
      calls. The decorator function in this example, for instance, might take
      a form like the following:
def decorator(A, B):
    # Save or use A, B
    def actualDecorator(F):
        # Save or use function F
        # Return a callable: nested def, class instance with __call__, etc.
        return callable
    return actualDecorator
The outer function in this structure generally saves the decorator
      arguments away as state information, for use in the actual decorator,
      the callable it returns, or both. This code snippet retains the state
      information argument in enclosing function scope references, but class
      attributes are commonly used as well.
In other words, decorator arguments often imply three
      levels of callables: a callable to accept decorator
      arguments, which returns a callable to serve as decorator, which returns
      a callable to handle calls to the original function or class. Each of
      the three levels may be a function or class and may retain state in the
      form of scopes or class attributes.
Decorator arguments can be used to provide attribute
      initialization values, call trace message labels, attribute names to be
      validated, and much more—any sort of configuration parameter for objects
      or their proxies is a candidate. We’ll see concrete examples of
      decorator arguments employed later in this chapter.

Decorators Manage Functions and Classes, Too
Although much of the rest of this chapter focuses on wrapping later calls to
      functions and classes, it’s important to remember that the decorator
      mechanism is more general than this—it is a protocol for passing
      functions and classes through any callable immediately after they are
      created. As such, it can also be used to invoke arbitrary post-creation
      processing:
def decorator(O):
    # Save or augment function or class O
    return O

@decorator
def F(): ...                 # F = decorator(F)

@decorator
class C: ...                 # C = decorator(C)
As long as we return the original decorated object this way
      instead of a proxy, we can manage functions and classes themselves, not
      just later calls to them. We’ll see more realistic examples later in
      this chapter that use this idea to register callable objects to an API
      with decoration and assign attributes to functions when they are
      created.


Coding Function Decorators
On to the code—in the rest of this chapter, we are going to study working examples
    that demonstrate the decorator concepts we just explored. This section
    presents a handful of function decorators at work, and the next shows
    class decorators in action. Following that, we’ll close out with some
    larger case studies of class and function decorator usage—complete
    implementations of class privacy and argument range tests.
Tracing Calls
To get started, let’s revive the call tracer example we met in
      Chapter 32. The following defines and
      applies a function decorator that counts the number of calls made to the
      decorated function and prints a trace message for each call:
# File decorator1.py

class tracer:
    def __init__(self, func):             # On @ decoration: save original func
        self.calls = 0
        self.func = func
    def __call__(self, *args):            # On later calls: run original func
        self.calls += 1
        print('call %s to %s' % (self.calls, self.func.__name__))
        self.func(*args)

@tracer
def spam(a, b, c):           # spam = tracer(spam)
    print(a + b + c)         # Wraps spam in a decorator object
Notice how each function decorated with this class will create a
      new instance, with its own saved function object and calls counter. Also
      observe how the *args argument syntax
      is used to pack and unpack arbitrarily many passed-in arguments. This
      generality enables this decorator to be used to wrap any function with
      any number of positional arguments; this version doesn’t yet work on
      keyword arguments or class-level methods, and doesn’t return results,
      but we’ll fix these shortcomings later in this section.
Now, if we import this module’s function and test it
      interactively, we get the following sort of behavior—each call generates
      a trace message initially, because the decorator class intercepts it.
      This code runs as is under both Python 2.X and 3.X, as does all code in
      this chapter unless otherwise noted (I’ve made prints version-neutral,
      and decorators do not require new-style classes; some hex addresses have
      also been shortened to protect the sighted):
>>> from decorator1 import spam

>>> spam(1, 2, 3)            # Really calls the tracer wrapper object
call 1 to spam
6

>>> spam('a', 'b', 'c')      # Invokes __call__ in class
call 2 to spam
abc

>>> spam.calls               # Number calls in wrapper state information
2
>>> spam
<decorator1.tracer object at 0x02D9A730>
When run, the tracer class
      saves away the decorated function, and intercepts later calls to it, in
      order to add a layer of logic that counts and prints each call. Notice
      how the total number of calls shows up as an attribute of the decorated
      function—spam is really an instance
      of the tracer class when decorated, a
      finding that may have ramifications for programs that do type checking,
      but is generally benign (decorators might copy the original function’s
      __name__, but such forgery is
      limited, and could lead to confusion).
For function calls, the @
      decoration syntax can be more convenient than modifying each call to
      account for the extra logic level, and it avoids accidentally calling
      the original function directly. Consider a nondecorator equivalent such
      as the following:
calls = 0
def tracer(func, *args):
    global calls
    calls += 1
    print('call %s to %s' % (calls, func.__name__))
    func(*args)

def spam(a, b, c):
    print(a, b, c)

>>> spam(1, 2, 3)            # Normal nontraced call: accidental?
1 2 3

>>> tracer(spam, 1, 2, 3)    # Special traced call without decorators
call 1 to spam
1 2 3
This alternative can be used on any function without the special
      @ syntax, but unlike the decorator
      version, it requires extra syntax at every place where the function is
      called in your code. Furthermore, its intent may not be as obvious, and
      it does not ensure that the extra layer will be invoked for normal
      calls. Although decorators are never required (we
      can always rebind names manually), they are often the most convenient
      and uniform option.

Decorator State Retention Options
The last example of the prior section raises an important issue.
      Function decorators have a variety of options for retaining state
      information provided at decoration time, for use during the actual
      function call. They generally need to support multiple decorated objects
      and multiple calls, but there are a number of ways to implement these
      goals: instance attributes, global variables, nonlocal closure
      variables, and function attributes can all be used for retaining
      state.
Class instance attributes
For example, here is an augmented version of the prior example, which adds
        support for keyword arguments with ** syntax, and returns
        the wrapped function’s result to support more use cases (for nonlinear
        readers, we first studied keyword arguments in Chapter 18, and for readers working with the book examples
        package, some filenames in this chapter are again implied by the
        command lines that follow their listings):
class tracer:                                # State via instance attributes
    def __init__(self, func):                # On @ decorator
        self.calls = 0                       # Save func for later call
        self.func  = func
    def __call__(self, *args, **kwargs):     # On call to original function
        self.calls += 1
        print('call %s to %s' % (self.calls, self.func.__name__))
        return self.func(*args, **kwargs)

@tracer
def spam(a, b, c):          # Same as: spam = tracer(spam)
    print(a + b + c)        # Triggers tracer.__init__

@tracer
def eggs(x, y):             # Same as: eggs = tracer(eggs)
    print(x ** y)           # Wraps eggs in a tracer object

spam(1, 2, 3)               # Really calls tracer instance: runs tracer.__call__
spam(a=4, b=5, c=6)         # spam is an instance attribute

eggs(2, 16)                 # Really calls tracer instance, self.func is eggs
eggs(4, y=4)                # self.calls is per-decoration here
Like the original, this uses class instance
        attributes to save state explicitly. Both the wrapped
        function and the calls counter are per-instance
        information—each decoration gets its own copy. When run as a script
        under either 2.X or 3.X, the output of this version is as follows;
        notice how the spam and eggs functions each have their own calls
        counter, because each decoration creates a new class instance:
c:\code> python decorator2.py
call 1 to spam
6
call 2 to spam
15
call 1 to eggs
65536
call 2 to eggs
256
While useful for decorating functions, this coding scheme still
        has issues when applied to methods—a shortcoming we’ll address in a
        later revision.

Enclosing scopes and globals
Closure functions—with enclosing def scope
        references and nested defs—can
        often achieve the same effect, especially for static data like the
        decorated original function. In this example, though, we would also
        need a counter in the enclosing scope that
        changes on each call, and that’s not possible in
        Python 2.X (recall from Chapter 17 that the nonlocal statement is 3.X-only).
In 2.X, we can still use either classes and attributes per the
        prior section, or other options. Moving state variables out to the
        global scope with declarations is one candidate,
        and works in both 2.X and 3.X:
calls = 0
def tracer(func):                         # State via enclosing scope and global
    def wrapper(*args, **kwargs):         # Instead of class attributes
        global calls                      # calls is global, not per-function
        calls += 1
        print('call %s to %s' % (calls, func.__name__))
        return func(*args, **kwargs)
    return wrapper

@tracer
def spam(a, b, c):        # Same as: spam = tracer(spam)
    print(a + b + c)

@tracer
def eggs(x, y):           # Same as: eggs = tracer(eggs)
    print(x ** y)

spam(1, 2, 3)             # Really calls wrapper, assigned to spam
spam(a=4, b=5, c=6)       # wrapper calls spam

eggs(2, 16)               # Really calls wrapper, assigned to eggs
eggs(4, y=4)              # Global calls is not per-decoration here!
Unfortunately, moving the counter out to the common global scope
        to allow it to be changed like this also means that it will be
        shared by every wrapped function. Unlike class
        instance attributes, global counters are cross-program, not
        per-function—the counter is incremented for any
        traced function call. You can tell the difference if you compare this
        version’s output with the prior version’s—the single, shared global
        call counter is incorrectly updated by calls to every decorated
        function:
c:\code> python decorator3.py
call 1 to spam
6
call 2 to spam
15
call 3 to eggs
65536
call 4 to eggs
256

Enclosing scopes and nonlocals
Shared global state may be what we want in some cases. If we
        really want a per-function counter, though, we
        can either use classes as before, or make use of
        closure (a.k.a. factory)
        functions and the nonlocal
        statement in Python 3.X, described in Chapter 17.
        Because this new statement allows enclosing function scope variables
        to be changed, they can serve as per-decoration and changeable data.
        In 3.X only:
def tracer(func):                        # State via enclosing scope and nonlocal
    calls = 0                            # Instead of class attrs or global
    def wrapper(*args, **kwargs):        # calls is per-function, not global
        nonlocal calls
        calls += 1
        print('call %s to %s' % (calls, func.__name__))
        return func(*args, **kwargs)
    return wrapper

@tracer
def spam(a, b, c):        # Same as: spam = tracer(spam)
    print(a + b + c)

@tracer
def eggs(x, y):           # Same as: eggs = tracer(eggs)
    print(x ** y)

spam(1, 2, 3)             # Really calls wrapper, bound to spam
spam(a=4, b=5, c=6)       # wrapper calls spam

eggs(2, 16)               # Really calls wrapper, bound to eggs
eggs(4, y=4)              # Nonlocal calls _is_ per-decoration here
Now, because enclosing scope variables are not cross-program
        globals, each wrapped function gets its own counter again, just as for
        classes and attributes. Here’s the new output when run under 3.X:
c:\code> py −3 decorator4.py
call 1 to spam
6
call 2 to spam
15
call 1 to eggs
65536
call 2 to eggs
256

Function attributes
Finally, if you are not using Python 3.X and don’t have a nonlocal statement—or you want your code to
        work portably on both 3.X and 2.X—you may still
        be able to avoid globals and classes by making use of
        function attributes for some changeable state
        instead. In all Pythons since 2.1, we can assign arbitrary attributes
        to functions to attach them, with func.attr=value. Because a
        factory function makes a new function on each call, its attributes
        become per-call state. Moreover, you need to use this technique only
        for state variables that must change; enclosing
        scope references are still retained and work normally.
In our example, we can simply use wrapper.calls for state. The following works
        the same as the preceding nonlocal
        version because the counter is again per-decorated-function, but it
        also runs in Python 2.X:
def tracer(func):                        # State via enclosing scope and func attr
    def wrapper(*args, **kwargs):        # calls is per-function, not global
        wrapper.calls += 1
        print('call %s to %s' % (wrapper.calls, func.__name__))
        return func(*args, **kwargs)
    wrapper.calls = 0
    return wrapper

@tracer
def spam(a, b, c):        # Same as: spam = tracer(spam)
    print(a + b + c)

@tracer
def eggs(x, y):           # Same as: eggs = tracer(eggs)
    print(x ** y)

spam(1, 2, 3)             # Really calls wrapper, assigned to spam
spam(a=4, b=5, c=6)       # wrapper calls spam

eggs(2, 16)               # Really calls wrapper, assigned to eggs
eggs(4, y=4)              # wrapper.calls _is_ per-decoration here
As we learned in Chapter 17, this works only
        because the name wrapper is
        retained in the enclosing tracer
        function’s scope. When we later increment wrapper.calls, we are not changing the name
        wrapper itself, so no nonlocal declaration is required. This
        version runs in either Python line:
c:\code> py −2 decorator5.py
...same output as prior version, but works on 2.X too...
This scheme was almost relegated to a footnote, because it may
        be more obscure than nonlocal in
        3.X and might be better saved for cases where other schemes don’t
        help. However, function attributes also have substantial advantages.
        For one, they allow access to the saved state from
        outside the decorator’s code; nonlocals can only
        be seen inside the nested function itself, but function attributes
        have wider visibility. For another, they are far more
        portable; this scheme also works in 2.X, making
        it version-neutral.
We will employ function attributes again in an answer to one of
        the end-of-chapter questions, where their visibility outside callables
        becomes an asset. As changeable state associated with a context of
        use, they are equivalent to enclosing scope nonlocals. As usual,
        choosing from multiple tools is an inherent part of the programming
        task.
Because decorators often imply multiple levels of callables, you
        can combine functions with enclosing scopes, classes with attributes,
        and function attributes to achieve a variety of coding structures. As
        we’ll see later, though, this sometimes may be subtler than you
        expect—each decorated function should have its own state, and each
        decorated class may require state both for itself and for each
        generated instance.
In fact, as the next section will explain in more detail, if we
        want to apply function decorators to class-level methods, too, we also
        have to be careful about the distinction Python makes between
        decorators based on callable class instance objects and decorators based on nested functions.


Class Blunders I: Decorating Methods
When I wrote the first class-based tracer
      function decorator in decorator1.py
      earlier, I naively assumed that it could also be applied to any
      method—decorated methods should work the same, I
      reasoned, but the automatic self
      instance argument would simply be included at the front of *args. The only real downside to this
      assumption is that it is completely wrong! When
      applied to a class’s method, the first version of the tracer fails, because self is the instance of the decorator class
      and the instance of the decorated subject class is not included in
      *args at all. This is true in both
      Python 3.X and 2.X.
I introduced this phenomenon earlier in this chapter, but now we
      can see it in the context of realistic working code. Given the
      class-based tracing decorator:
class tracer:
    def __init__(self, func):                # On @ decorator
        self.calls = 0                       # Save func for later call
        self.func  = func
    def __call__(self, *args, **kwargs):     # On call to original function
        self.calls += 1
        print('call %s to %s' % (self.calls, self.func.__name__))
        return self.func(*args, **kwargs)
decoration of simple functions works as advertised earlier:
@tracer
def spam(a, b, c):                           # spam = tracer(spam)
    print(a + b + c)                         # Triggers tracer.__init__

>>> spam(1, 2, 3)                            # Runs tracer.__call__
call 1 to spam
6
>>> spam(a=4, b=5, c=6)                      # spam saved in an instance attribute
call 2 to spam
15
However, decoration of class-level methods fails (more lucid
      sequential readers might recognize this as an adaptation of our Person class resurrected from the
      object-oriented tutorial in Chapter 28):
class Person:
    def __init__(self, name, pay):
        self.name = name
        self.pay  = pay

    @tracer
    def giveRaise(self, percent):            # giveRaise = tracer(giveRaise)
        self.pay *= (1.0 + percent)

    @tracer
    def lastName(self):                      # lastName = tracer(lastName)
        return self.name.split()[-1]

>>> bob = Person('Bob Smith', 50000)         # tracer remembers method funcs
>>> bob.giveRaise(.25)                       # Runs tracer.__call__(???, .25)
call 1 to giveRaise
TypeError: giveRaise() missing 1 required positional argument: 'percent'

>>> print(bob.lastName())                    # Runs tracer.__call__(???)
call 1 to lastName
TypeError: lastName() missing 1 required positional argument: 'self'
The root of the problem here is in the self argument of the tracer class’s __call__ method—is it a tracer instance or a Person instance? We really need
      both as it’s coded: the tracer for decorator state, and the Person for routing on to the original method.
      Really, self
      must be the tracer object, to provide access to tracer’s state information (its calls and func); this is true whether decorating a
      simple function or a method.
Unfortunately, when our decorated method name is rebound to a
      class instance object with a __call__, Python passes only the tracer instance to
      self; it doesn’t pass along the
      Person subject in the arguments list
      at all. Moreover, because the tracer
      knows nothing about the Person
      instance we are trying to process with method calls, there’s no way to
      create a bound method with an instance, and thus no way to correctly
      dispatch the call. This isn’t a bug, but it’s wildly subtle.
In the end, the prior listing winds up passing too few arguments
      to the decorated method, and results in an error. Add a line to the
      decorator’s __call__ to print all its
      arguments to verify this—as you can see, self is the tracer instance, and the Person instance is entirely absent:
>>> bob.giveRaise(.25)
<__main__.tracer object at 0x02A486D8> (0.25,) {}
call 1 to giveRaise
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 9, in __call__
TypeError: giveRaise() missing 1 required positional argument: 'percent'
As mentioned earlier, this happens because Python passes the
      implied subject instance to self when
      a method name is bound to a simple function only; when it is an instance
      of a callable class, that class’s instance is passed instead.
      Technically, Python makes a bound method object containing the subject
      instance only when the method is a simple function, not when it is a
      callable instance of another class.
Using nested functions to decorate methods
If you want your function decorators to work on both simple
        functions and class-level methods, the most straightforward solution
        lies in using one of the other state retention solutions described
        earlier—code your function decorator as nested defs, so that you don’t depend on a single
        self instance argument to be both
        the wrapper class instance and the subject class instance.
The following alternative applies this fix using Python 3.X
        nonlocals; recode this to use function attributes for the changeable
        calls to use in 2.X. Because
        decorated methods are rebound to simple functions instead of instance
        objects, Python correctly passes the Person object as the first argument, and the
        decorator propagates it on in the first item of *args to the self argument of the real, decorated
        methods:
# A call tracer decorator for both functions and methods

def tracer(func):                        # Use function, not class instance with __call__
    calls = 0                            # Else "self" is decorator instance only!
    def onCall(*args, **kwargs):         # Or in 2.X+3.X: use [onCall.calls += 1]
        nonlocal calls
        calls += 1
        print('call %s to %s' % (calls, func.__name__))
        return func(*args, **kwargs)
    return onCall


if __name__ == '__main__':

    # Applies to simple functions
    @tracer
    def spam(a, b, c):                       # spam = tracer(spam)
        print(a + b + c)                     # onCall remembers spam

    @tracer
    def eggs(N):
        return 2 ** N

    spam(1, 2, 3)                            # Runs onCall(1, 2, 3)
    spam(a=4, b=5, c=6)
    print(eggs(32))

    # Applies to class-level method functions too!
    class Person:
        def __init__(self, name, pay):
            self.name = name
            self.pay  = pay

        @tracer
        def giveRaise(self, percent):        # giveRaise = tracer(giveRaise)
            self.pay *= (1.0 + percent)      # onCall remembers giveRaise

        @tracer
        def lastName(self):                  # lastName = tracer(lastName)
            return self.name.split()[-1]

    print('methods...')
    bob = Person('Bob Smith', 50000)
    sue = Person('Sue Jones', 100000)
    print(bob.name, sue.name)
    sue.giveRaise(.10)                       # Runs onCall(sue, .10)
    print(int(sue.pay))
    print(bob.lastName(), sue.lastName())    # Runs onCall(bob), lastName in scopes
We’ve also indented the file’s self-test code under a __name__ test so the decorator can be
        imported and used elsewhere. This version works the same on both
        functions and methods, but runs in 3.X only due to its nonlocal:
c:\code> py −3 calltracer.py
call 1 to spam
6
call 2 to spam
15
call 1 to eggs
4294967296
methods...
Bob Smith Sue Jones
call 1 to giveRaise
110000
call 1 to lastName
call 2 to lastName
Smith Jones
Trace through these results to make sure you have a handle on
        this model; the next section provides an alternative to it that
        supports classes, but is also substantially more complex.

Using descriptors to decorate methods
Although the nested function solution illustrated in the prior
        section is the most straightforward way to support decorators that
        apply to both functions and class-level methods, other schemes are
        possible. The descriptor feature we explored in
        the prior chapter, for example, can help here as well.
Recall from our discussion in that chapter that a descriptor is
        normally a class attribute assigned to an object with a __get__ method
        run automatically whenever that attribute is referenced and fetched;
        new-style class object derivation
        is required for descriptors in Python 2.X, but not 3.X:
class Descriptor(object):
    def __get__(self, instance, owner): ...

class Subject:
    attr = Descriptor()

X = Subject()
X.attr         # Roughly runs Descriptor.__get__(Subject.attr, X, Subject)
Descriptors may also have __set__ and
        __del__ access methods, but we
        don’t need them here. More relevant to this chapter’s topic, because
        the descriptor’s __get__ method
        receives both the descriptor class instance and
        subject class instance when invoked, it’s well suited to decorating
        methods when we need both the decorator’s state and the original class
        instance for dispatching calls. Consider the following alternative
        tracing decorator, which also happens to be a
        descriptor when used for a class-level method:
class tracer(object):                        # A decorator+descriptor
    def __init__(self, func):                # On @ decorator
        self.calls = 0                       # Save func for later call
        self.func  = func
    def __call__(self, *args, **kwargs):     # On call to original func
        self.calls += 1
        print('call %s to %s' % (self.calls, self.func.__name__))
        return self.func(*args, **kwargs)
    def __get__(self, instance, owner):      # On method attribute fetch
        return wrapper(self, instance)

class wrapper:
    def __init__(self, desc, subj):          # Save both instances
        self.desc = desc                     # Route calls back to deco/desc
        self.subj = subj
    def __call__(self, *args, **kwargs):
        return self.desc(self.subj, *args, **kwargs)  # Runs tracer.__call__

@tracer
def spam(a, b, c):                           # spam = tracer(spam)
    ...same as prior...                      # Uses __call__ only

class Person:
    @tracer
    def giveRaise(self, percent):            # giveRaise = tracer(giveRaise)
        ...same as prior...                  # Makes giveRaise a descriptor
This works the same as the preceding nested function coding. Its
        operation varies by usage context:
	Decorated functions invoke only its
            __call__, and never invoke its __get__.

	Decorated methods invoke its __get__ first to resolve the method name
            fetch (on I.method); the
            object returned by __get__
            retains the subject class instance and is then invoked to complete
            the call expression, thereby triggering the decorator’s __call__ (on ()).


For example, the test code’s call to:
sue.giveRaise(.10)                           # Runs __get__ then __call__
runs tracer.__get__ first,
        because the giveRaise attribute in
        the Person class has been rebound
        to a descriptor by the method function decorator. The call expression
        then triggers the __call__ method
        of the returned wrapper object,
        which in turn invokes tracer.__call__. In other words, decorated
        method calls trigger a four-step process: tracer.__get__, followed by three call
        operations— wrapper.__call__,
        tracer.__call__, and finally the
        original wrapped method.
The wrapper object retains
        both descriptor and subject instances, so it can route control back to
        the original decorator/descriptor class instance. In effect, the
        wrapper object saves the subject
        class instance available during method attribute fetch and adds it to
        the later call’s arguments list, which is passed to the
        decorator__call__. Routing the call
        back to the descriptor class instance this way is required in this
        application so that all calls to a wrapped method use the same
        calls counter state information in
        the descriptor instance object.
Alternatively, we could use a nested function and enclosing
        scope references to achieve the same effect—the following version
        works the same as the preceding one, by swapping a class and object
        attributes for a nested function and scope references. It requires
        noticeably less code, but follows the same four-step process on each
        decorated method call:
class tracer(object):
    def __init__(self, func):                # On @ decorator
        self.calls = 0                       # Save func for later call
        self.func  = func
    def __call__(self, *args, **kwargs):     # On call to original func
        self.calls += 1
        print('call %s to %s' % (self.calls, self.func.__name__))
        return self.func(*args, **kwargs)
    def __get__(self, instance, owner):                # On method fetch
        def wrapper(*args, **kwargs):                  # Retain both inst
            return self(instance, *args, **kwargs)     # Runs __call__
        return wrapper
Add print statements to these
        alternatives’ methods to trace the multistep get/call process on your
        own, and run them with the same test code as in the nested function
        alternative shown earlier (see file calltracer-descr.py for their source). In
        either coding, this descriptor-based scheme is also substantially
        subtler than the nested function option, and so is probably a second
        choice here. To be more blunt, if its complexity doesn’t send you
        screaming into the night, its performance costs probably should!
        Still, this may be a useful coding pattern in other contexts.
It’s also worth noting that we might code this descriptor-based
        decorator more simply as follows, but it would then apply only to
        methods, not to simple functions—an intrinsic limitation of attribute
        descriptors (and just the inverse of the problem we’re trying to
        solve: application to both functions and methods):
class tracer(object):                         # For methods, but not functions!
    def __init__(self, meth):                 # On @ decorator
        self.calls = 0                         
        self.meth  = meth
    def __get__(self, instance, owner):       # On method fetch
        def wrapper(*args, **kwargs):         # On method call: proxy with self+inst
            self.calls += 1
            print('call %s to %s' % (self.calls, self.meth.__name__))
            return self.meth(instance, *args, **kwargs)
        return wrapper

class Person:                            
    @tracer                            # Applies to class methods
    def giveRaise(self, percent):      # giveRaise = tracer(giveRaise)
        ...                            # Makes giveRaise a descriptor

@tracer                                # But fails for simple functions
def spam(a, b, c):                     # spam = tracer(spam)
    ...                                # No attribute fetch occurs here


In the rest of this chapter we’re going to be fairly casual
        about using classes or functions to code our function decorators, as
        long as they are applied only to functions. Some decorators may not
        require the instance of the original class, and will still work on
        both functions and methods if coded as a class—something like Python’s
        own staticmethod decorator, for
        example, wouldn’t require an instance of the subject class (indeed,
        its whole point is to remove the instance from the call).
The moral of this story, though, is that if you want your
        decorators to work on both simple functions and methods, you’re
        probably better off using the nested-function-based coding pattern
        outlined here instead of a class with call interception.


Timing Calls
To sample the fuller flavor of what function decorators are capable of, let’s turn to a
      different use case. Our next decorator times calls made to a decorated
      function—both the time for one call, and the total time among all calls.
      The decorator is applied to two functions, in order to compare the
      relative speed of list comprehensions and the map built-in
      call:
# File timerdeco1.py
# Caveat: range still differs - a list in 2.X, an iterable in 3.X
# Caveat: timer won't work on methods as coded (see quiz solution)

import time, sys
force = list if sys.version_info[0] == 3 else (lambda X: X)

class timer:
    def __init__(self, func):
        self.func    = func
        self.alltime = 0
    def __call__(self, *args, **kargs):
        start   = time.clock()
        result  = self.func(*args, **kargs)
        elapsed = time.clock() - start
        self.alltime += elapsed
        print('%s: %.5f, %.5f' % (self.func.__name__, elapsed, self.alltime))
        return result

@timer
def listcomp(N):
    return [x * 2 for x in range(N)]

@timer
def mapcall(N):
    return force(map((lambda x: x * 2), range(N)))

result = listcomp(5)                # Time for this call, all calls, return value
listcomp(50000)
listcomp(500000)
listcomp(1000000)
print(result)
print('allTime = %s' % listcomp.alltime)      # Total time for all listcomp calls

print('')
result = mapcall(5)
mapcall(50000)
mapcall(500000)
mapcall(1000000)
print(result)
print('allTime = %s' % mapcall.alltime)       # Total time for all mapcall calls

print('\n**map/comp = %s' % round(mapcall.alltime / listcomp.alltime, 3))
When run in either Python 3.X or 2.X, the output of this file’s
      self-test code is as follows—giving for each function call the function
      name, time for this call, and time for all calls so far, along with the
      first call’s return value, cumulative time for each function, and the
      map-to-comprehension time ratio at the end:
c:\code> py −3 timerdeco1.py
listcomp: 0.00001, 0.00001
listcomp: 0.00499, 0.00499
listcomp: 0.05716, 0.06215
listcomp: 0.11565, 0.17781
[0, 2, 4, 6, 8]
allTime = 0.17780527629411225

mapcall: 0.00002, 0.00002
mapcall: 0.00988, 0.00990
mapcall: 0.10601, 0.11591
mapcall: 0.21690, 0.33281
[0, 2, 4, 6, 8]
allTime = 0.3328064956447921

**map/comp = 1.872
Times vary per Python line and test machine, of course, and
      cumulative time is available as a class instance attribute here. As
      usual, map calls are almost twice as
      slow as list comprehensions when the latter can avoid a function call
      (or equivalently, its requirement of function calls can make map slower).
Decorators versus per-call timing
For comparison, see Chapter 21 for a
        nondecorator approach to timing iteration
        alternatives like these. As a review, we saw two per-call timing
        techniques there, homegrown and library—here deployed to time the 1M
        list comprehension case of the decorator’s test code, though incurring
        extra costs for management code including an outer loop and function
        calls:
>>> def listcomp(N): [x * 2 for x in range(N)]

>>> import timer                                             # Chapter 21 techniques
>>> timer.total(1, listcomp, 1000000)
(0.1461295268088542, None)

>>> import timeit
>>> timeit.timeit(number=1, stmt=lambda: listcomp(1000000))
0.14964829430189397
In this specific case, a nondecorator approach would allow the
        subject functions to be used with or without timing, but it would also
        complicate the call signature when timing is desired—we’d need to add
        code at every call instead of once at the def. Moreover, in the nondecorator scheme
        there would be no direct way to guarantee that all list builder calls
        in a program are routed through timer logic, short of finding and
        potentially changing them all. This may make it difficult to collect
        cumulative data for all calls.
In general, decorators may be preferred
        when functions are already deployed as part of a larger system, and
        may not be easily passed to analysis functions at calls. On the other
        hand, because decorators charge each call to a function with
        augmentation logic, a nondecorator approach may
        be better if you wish to augment calls more selectively. As usual, different tools serve different roles.
Note
Timer call portability and new options in
          3.3: Also see Chapter 21’s more complete handling and
          selection of time module
          functions, as well as its sidebar concerning the new and improved
          timer functions in this module available as of Python 3.3 (e.g.,
          perf_counter). We’re taking a
          simplistic approach here for both brevity and version neutrality,
          but time.clock may not be best on
          some platforms even prior to 3.3, and platform or version tests may
          be required outside Windows.


Testing subtleties
Notice how this script uses its force
        setting to make it portable between 2.X and 3.X. As described in Chapter 14, the map built-in returns an
        iterable that generates results on demand in 3.X,
        but an actual list in 2.X. Hence, 3.X’s map by itself doesn’t compare directly to a
        list comprehension’s work. In fact, without wrapping it in a list call to force results production, the
        map test takes virtually no time at
        all in 3.X—it returns an iterable without iterating!
At the same time, adding this list call in 2.X too charges map with an unfair penalty—the map test’s results would include the time
        required to build two lists, not one. To work
        around this, the script selects a map enclosing function per the Python
        version number in sys: in 3.X,
        picking list, and in 2.X using a
        no-op function that simply returns its input argument unchanged. This
        adds a very minor constant time in 2.X, which is probably fully
        overshadowed by the cost of the inner loop iterations in the timed
        function.
While this makes the comparison between list comprehensions and
        map more fair in either 2.X or 3.X,
        because range is also an iterator
        in 3.X, the results for 2.X and 3.X won’t compare directly unless you
        also hoist this call out of the timed code. They’ll be relatively
        comparable—and will reflect best practice code in each line anyhow—but
        a range iteration adds extra time in 3.X only. For more on all such
        things, see Chapter 21’s benchmark
        recreations; producing comparable numbers is often a nontrivial
        task.
Finally, as we did for the tracer decorator earlier, we could
        make this timing decorator reusable in other modules by indenting the
        self-test code at the bottom of the file under a __name__ test so it runs only when the file
        is run, not when it’s imported. We won’t do this here, though, because
        we’re about to add another feature to our code.


Adding Decorator Arguments
The timer decorator of the prior section works, but it would be nice if it were more
      configurable—providing an output label and turning trace messages on and
      off, for instance, might be useful in a general-purpose tool like this.
      Decorator arguments come in handy here: when they’re coded properly, we
      can use them to specify configuration options that can vary for each
      decorated function. A label, for instance, might be added as
      follows:
def timer(label=''):
    def decorator(func):
        def onCall(*args):          # Multilevel state retention:
            ...                     # args passed to function
            func(*args)             # func retained in enclosing scope
            print(label, ...        # label retained in enclosing scope
        return onCall
    return decorator                # Returns the actual decorator

@timer('==>')                       # Like listcomp = timer('==>')(listcomp)
def listcomp(N): ...                # listcomp is rebound to new onCall

listcomp(...)                       # Really calls onCall
This code adds an enclosing scope to retain a decorator argument
      for use on a later actual call. When the listcomp function is defined, Python really
      invokes decorator—the result of
      timer, run before decoration actually
      occurs—with the label value available
      in its enclosing scope. That is, timer returns the
      decorator, which remembers both the decorator argument and the original
      function, and returns the callable onCall, which ultimately invokes the original
      function on later calls. Because this structure creates new decorator and onCall functions, their enclosing scopes are
      per-decoration state retention.
We can put this structure to use in our timer to allow a label and
      a trace control flag to be passed in at decoration time. Here’s an
      example that does just that, coded in a module file named timerdeco2.py so it can be imported as a
      general tool; it uses a class for the second state retention level
      instead of a nested function, but the net result is similar:
import time

def timer(label='', trace=True):                  # On decorator args: retain args
    class Timer:
        def __init__(self, func):                 # On @: retain decorated func
            self.func    = func
            self.alltime = 0
        def __call__(self, *args, **kargs):       # On calls: call original
            start   = time.clock()
            result  = self.func(*args, **kargs)
            elapsed = time.clock() - start
            self.alltime += elapsed
            if trace:
                format = '%s %s: %.5f, %.5f'
                values = (label, self.func.__name__, elapsed, self.alltime)
                print(format % values)
            return result
    return Timer
Mostly all we’ve done here is embed the original Timer class in an enclosing function, in order
      to create a scope that retains the decorator arguments per deployment.
      The outer timer function is called
      before decoration occurs, and it simply returns the Timer class to serve as the actual decorator.
      On decoration, an instance of Timer
      is made that remembers the decorated function itself, but also has
      access to the decorator arguments in the enclosing function
      scope.
Timing with decorator arguments
This time, rather than embedding self-test code in this file,
        we’ll run the decorator in a different file. Here’s a client of our
        timer decorator, the module file testseqs.py, applying it to sequence
        iteration alternatives again:
import sys
from timerdeco2 import timer
force = list if sys.version_info[0] == 3 else (lambda X: X)

@timer(label='[CCC]==>')
def listcomp(N):                             # Like listcomp = timer(...)(listcomp)
    return [x * 2 for x in range(N)]         # listcomp(...) triggers Timer.__call__

@timer(trace=True, label='[MMM]==>')
def mapcall(N):
    return force(map((lambda x: x * 2), range(N)))

for func in (listcomp, mapcall):
    result = func(5)        # Time for this call, all calls, return value
    func(50000)
    func(500000)
    func(1000000)
    print(result)
    print('allTime = %s\n' % func.alltime)   # Total time for all calls

print('**map/comp = %s' % round(mapcall.alltime / listcomp.alltime, 3))
Again, to make this fair, map
        is wrapped in a list call in 3.X
        only. When run as is in 3.X or 2.X, this file prints the
        following—each decorated function now has a label of its own defined
        by decorator arguments, which will be more useful when we need to find
        trace displays mixed in with a larger program’s output:
c:\code> py −3 testseqs.py
[CCC]==> listcomp: 0.00001, 0.00001
[CCC]==> listcomp: 0.00504, 0.00505
[CCC]==> listcomp: 0.05839, 0.06344
[CCC]==> listcomp: 0.12001, 0.18344
[0, 2, 4, 6, 8]
allTime = 0.1834406801777564

[MMM]==> mapcall: 0.00003, 0.00003
[MMM]==> mapcall: 0.00961, 0.00964
[MMM]==> mapcall: 0.10929, 0.11892
[MMM]==> mapcall: 0.22143, 0.34035
[0, 2, 4, 6, 8]
allTime = 0.3403542519173618

**map/comp = 1.855
As usual, we can also test interactively to see how the
        decorator’s configuration arguments come into play:
>>> from timerdeco2 import timer
>>> @timer(trace=False)                      # No tracing, collect total time
... def listcomp(N):
...     return [x * 2 for x in range(N)]
...
>>> x = listcomp(5000)
>>> x = listcomp(5000)
>>> x = listcomp(5000)
>>> listcomp.alltime
0.0037191417530599152
>>> listcomp
<timerdeco2.timer.<locals>.Timer object at 0x02957518>

>>> @timer(trace=True, label='\t=>')         # Turn on tracing, custom label
... def listcomp(N):
...     return [x * 2 for x in range(N)]
...
>>> x = listcomp(5000)
        => listcomp: 0.00106, 0.00106
>>> x = listcomp(5000)
        => listcomp: 0.00108, 0.00214
>>> x = listcomp(5000)
        => listcomp: 0.00107, 0.00321
>>> listcomp.alltime
0.003208920466562404
As is, this timing function decorator can be used for any
        function, both in modules and interactively. In other words, it
        automatically qualifies as a general-purpose tool
        for timing code in our scripts. Watch for another example of decorator
        arguments in the section “Implementing Private Attributes”, and again in “A Basic
        Range-Testing Decorator for Positional Arguments”.
Note
Supporting methods: This section’s timer
          decorator works on any function, but a minor
          rewrite is required to be able to apply it to class-level
          methods too. In short, as our earlier section
          “Class Blunders I: Decorating Methods”
          illustrated, it must avoid using a nested class. Because this
          mutation was deliberately reserved to be a subject of one of our
          end-of-chapter quiz questions, though, I’ll avoid giving away the
          answer completely here.




Coding Class Decorators
So far we’ve been coding function decorators to manage function calls, but as
    we’ve seen, decorators have been extended to work on classes too as of
    Python 2.6 and 3.0. As described earlier, while similar in concept to
    function decorators, class decorators are applied to classes instead—they
    may be used either to manage classes themselves, or
    to intercept instance creation calls in order to manage
    instances. Also like function decorators, class
    decorators are really just optional syntactic sugar, though many believe
    that they make a programmer’s intent more obvious and minimize erroneous
    or missed calls.
Singleton Classes
Because class decorators may intercept instance creation calls, they can
      be used to either manage all the instances of a class, or augment the
      interfaces of those instances. To demonstrate, here’s a first class
      decorator example that does the former—managing all instances of a
      class. This code implements the classic singleton
      coding pattern, where at most one instance of a class ever exists. Its
      singleton function defines and
      returns a function for managing instances, and the @ syntax automatically wraps up a subject
      class in this function:
# 3.X and 2.X: global table

instances = {}

def singleton(aClass):                          # On @ decoration
    def onCall(*args, **kwargs):                # On instance creation
        if aClass not in instances:             # One dict entry per class
            instances[aClass] = aClass(*args, **kwargs)
        return instances[aClass]
    return onCall
To use this, decorate the classes for which you want to enforce a
      single-instance model (for reference, all the code in this section is in
      the file singletons.py):
@singleton                                      # Person = singleton(Person)
class Person:                                   # Rebinds Person to onCall
     def __init__(self, name, hours, rate):     # onCall remembers Person
        self.name = name
        self.hours = hours
        self.rate = rate
     def pay(self):
        return self.hours * self.rate

@singleton                                      # Spam = singleton(Spam)
class Spam:                                     # Rebinds Spam to onCall
    def __init__(self, val):                    # onCall remembers Spam
        self.attr = val

bob = Person('Bob', 40, 10)                     # Really calls onCall
print(bob.name, bob.pay())

sue = Person('Sue', 50, 20)                     # Same, single object
print(sue.name, sue.pay())

X = Spam(val=42)                                # One Person, one Spam
Y = Spam(99)
print(X.attr, Y.attr)
Now, when the Person or
      Spam class is later used to create an
      instance, the wrapping logic layer provided by the decorator routes
      instance construction calls to onCall, which in turn ensures a single
      instance per class, regardless of how many construction calls are made.
      Here’s this code’s output (2.X prints extra tuple parentheses):
c:\code> python singletons.py
Bob 400
Bob 400
42 42
Coding alternatives
Interestingly, you can code a more self-contained solution here
        if you’re able to use the nonlocal
        statement (available in Python 3.X only) to change enclosing scope
        names, as described earlier—the following alternative achieves an
        identical effect, by using one enclosing scope
        per class, instead of one global table entry per class. It works the
        same, but it does not depend on names in the global scope outside the
        decorator (note that the None check
        could use is instead of == here, but it’s a trivial test either
        way):
# 3.X only: nonlocal

def singleton(aClass):                                   # On @ decoration
    instance = None
    def onCall(*args, **kwargs):                         # On instance creation
        nonlocal instance                                # 3.X and later nonlocal
        if instance == None:
            instance = aClass(*args, **kwargs)           # One scope per class
        return instance
    return onCall
In either Python 3.X or 2.X (2.6 and later), you can also code a
        self-contained solution with either function attributes or a class
        instead. The first of the following codes the former, leveraging the
        fact that there will be one onCall
        function per decoration—the object namespace
        serves the same role as an enclosing scope. The second uses one
        instance per decoration, rather than an enclosing
        scope, function object, or global table. In fact, the second relies on
        the same coding pattern that we will later see is a common decorator
        class blunder—here we want just one instance, but
        that’s not usually the case:
# 3.X and 2.X: func attrs, classes (alternative codings)

def singleton(aClass):                                   # On @ decoration
    def onCall(*args, **kwargs):                         # On instance creation
        if onCall.instance == None:
            onCall.instance = aClass(*args, **kwargs)    # One function per class
        return onCall.instance
    onCall.instance = None
    return onCall

class singleton:
    def __init__(self, aClass):                          # On @ decoration
        self.aClass = aClass
        self.instance = None
    def __call__(self, *args, **kwargs):                 # On instance creation
        if self.instance == None:
            self.instance = self.aClass(*args, **kwargs) # One instance per class
        return self.instance
To make this decorator a fully general-purpose tool, choose one,
        store it in an importable module file, and indent the self-test code
        under a __name__ check—steps we’ll
        leave as suggested exercise. The final class-based version offers a
        portability and explicit option, with extra structure that may better
        support later evolution, but OOP might not be warranted in all
        contexts.


Tracing Object Interfaces
The singleton example of the prior section illustrated using class
      decorators to manage all the instances of a class.
      Another common use case for class decorators augments the interface of
      each generated instance. Class decorators can
      essentially install on instances a wrapper or “proxy” logic layer that
      manages access to their interfaces in some way.
For example, in Chapter 31, the
      __getattr__ operator overloading
      method is shown as a way to wrap up entire object
      interfaces of embedded instances, in order to implement the
      delegation coding pattern. We saw similar examples
      in the managed attribute coverage of the prior chapter. Recall that
      __getattr__ is run when an undefined
      attribute name is fetched; we can use this hook to intercept method
      calls in a controller class and propagate them to an embedded
      object.
For reference, here’s the original nondecorator delegation
      example, working on two built-in type objects:
class Wrapper:
    def __init__(self, object):
        self.wrapped = object                    # Save object
    def __getattr__(self, attrname):
        print('Trace:', attrname)                # Trace fetch
        return getattr(self.wrapped, attrname)   # Delegate fetch

>>> x = Wrapper([1,2,3])                         # Wrap a list
>>> x.append(4)                                  # Delegate to list method
Trace: append
>>> x.wrapped                                    # Print my member
[1, 2, 3, 4]

>>> x = Wrapper({"a": 1, "b": 2})                # Wrap a dictionary
>>> list(x.keys())                               # Delegate to dictionary method
Trace: keys                                      # Use list() in 3.X
['a', 'b']
In this code, the Wrapper class
      intercepts access to any of the wrapped object’s named attributes,
      prints a trace message, and uses the getattr built-in to pass off the request to
      the wrapped object. Specifically, it traces attribute accesses made
      outside the wrapped object’s class; accesses inside
      the wrapped object’s methods are not caught and run normally by design.
      This whole-interface model differs from the
      behavior of function decorators, which wrap up just one specific
      method.
Tracing interfaces with class decorators
Class decorators provide an alternative and convenient way to
        code this __getattr__ technique to
        wrap an entire interface. As of both 2.6 and 3.0, for example, the
        prior class example can be coded as a class decorator that triggers
        wrapped instance creation, instead of passing a premade instance into
        the wrapper’s constructor (also augmented here to support keyword
        arguments with **kargs and to count the number of accesses
        made to illustrate changeable state):
def Tracer(aClass):                                   # On @ decorator
    class Wrapper:
        def __init__(self, *args, **kargs):           # On instance creation
            self.fetches = 0
            self.wrapped = aClass(*args, **kargs)     # Use enclosing scope name
        def __getattr__(self, attrname):
            print('Trace: ' + attrname)               # Catches all but own attrs
            self.fetches += 1
            return getattr(self.wrapped, attrname)    # Delegate to wrapped obj
    return Wrapper


if __name__ == '__main__':

    @Tracer
    class Spam:                                  # Spam = Tracer(Spam)
        def display(self):                       # Spam is rebound to Wrapper
            print('Spam!' * 8)

    @Tracer
    class Person:                                # Person = Tracer(Person)
        def __init__(self, name, hours, rate):   # Wrapper remembers Person
            self.name = name
            self.hours = hours
            self.rate = rate
        def pay(self):                           # Accesses outside class traced
            return self.hours * self.rate        # In-method accesses not traced

    food = Spam()                                # Triggers Wrapper()
    food.display()                               # Triggers __getattr__
    print([food.fetches])

    bob = Person('Bob', 40, 50)                  # bob is really a Wrapper
    print(bob.name)                              # Wrapper embeds a Person
    print(bob.pay())

    print('')
    sue = Person('Sue', rate=100, hours=60)      # sue is a different Wrapper
    print(sue.name)                              # with a different Person
    print(sue.pay())

    print(bob.name)                              # bob has different state
    print(bob.pay())
    print([bob.fetches, sue.fetches])            # Wrapper attrs not traced
It’s important to note that this is very different from the
        tracer decorator we met earlier (despite the name!). In “Coding
        Function Decorators”, we looked at decorators that enabled us to trace
        and time calls to a given function or method. In contrast, by
        intercepting instance creation calls, the class decorator here allows
        us to trace an entire object interface—that is, accesses to any of the
        instance’s attributes.
The following is the output produced by this code under both 3.X
        and 2.X (2.6 and later): attribute fetches on instances of both the
        Spam and Person classes invoke the __getattr__ logic in the Wrapper class, because food and bob are really instances of Wrapper, thanks to the decorator’s
        redirection of instance creation calls:
c:\code> python interfacetracer.py
Trace: display
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
[1]
Trace: name
Bob
Trace: pay
2000

Trace: name
Sue
Trace: pay
6000
Trace: name
Bob
Trace: pay
2000
[4, 2]
Notice how there is one Wrapper class with state retention per
        decoration, generated by the nested class statement in the Tracer function, and how each instance gets
        its own fetches counter by virtue of generating a new Wrapper instance. As we’ll see ahead,
        orchestrating this is trickier than you may expect.

Applying class decorators to built-in types
Also notice that the preceding decorates a user-defined class. Just like in
        the original example in Chapter 31, we
        can also use the decorator to wrap up a built-in type such as a list,
        as long as we either subclass to allow decoration syntax or perform
        the decoration manually—decorator syntax requires a class
        statement for the @ line. In the
        following, x is really a Wrapper again due to the indirection of
        decoration:
>>> from interfacetracer import Tracer

>>> @Tracer
... class MyList(list): pass      # MyList = Tracer(MyList)

>>> x = MyList([1, 2, 3])         # Triggers Wrapper()
>>> x.append(4)                   # Triggers __getattr__, append
Trace: append
>>> x.wrapped
[1, 2, 3, 4]

>>> WrapList = Tracer(list)       # Or perform decoration manually
>>> x = WrapList([4, 5, 6])       # Else subclass statement required
>>> x.append(7)
Trace: append
>>> x.wrapped
[4, 5, 6, 7]
The decorator approach allows us to move instance creation into
        the decorator itself, instead of requiring a premade object to be
        passed in. Although this seems like a minor difference, it lets us
        retain normal instance creation syntax and realize all the benefits of
        decorators in general. Rather than requiring all instance creation
        calls to route objects through a wrapper manually, we need only
        augment class definitions with decorator syntax:
@Tracer                                          # Decorator approach
class Person: ...
bob = Person('Bob', 40, 50)
sue = Person('Sue', rate=100, hours=60)

class Person: ...                                # Nondecorator approach
bob = Wrapper(Person('Bob', 40, 50))
sue = Wrapper(Person('Sue', rate=100, hours=60))
Assuming you will make more than one instance of a class, and
        want to apply the augmentation to every instance of a class,
        decorators will generally be a net win in terms of both code size and
        code maintenance.
Note
Attribute version skew note: The
          preceding tracer decorator works for explicitly accessed attribute
          names on all Pythons. As we learned in Chapter 38, Chapter 32, and elsewhere, though, __getattr__ intercepts built-ins’ implicit
          accesses to operator overloading methods like __str__ and __repr__ in Python 2.X’s default classic
          classes, but not in 3.X’s new-style classes.
In Python 3.X’s classes, instances inherit defaults for some,
          but not all of these names from the class (really, from the object superclass). Moreover, in 3.X,
          implicitly invoked attributes for built-in operations like printing
          and + are
          not routed through __getattr__, or its cousin, __getattribute__. In new-style classes,
          built-ins start such searches at classes and
          skip the normal instance lookup entirely.
Here, this means that the __getattr__ based tracing wrapper will
          automatically trace and propagate operator overloading calls for
          built-ins in 2.X as coded, but not in 3.X. To see this, display “x”
          directly at the end of the preceding interactive session—in 2.X the
          attribute __repr__ is traced and
          the list prints as expected, but in 3.X no trace occurs and the list
          prints using a default display for the Wrapper class:
>>> x                                   # 2.X
Trace: __repr__
[4, 5, 6, 7]
>>> x                                   # 3.X
<interfacetracer.Tracer.<locals>.Wrapper object at 0x02946358>
To work the same in 3.X, operator overloading methods
          generally must be redefined redundantly in the wrapper class, either
          by hand, by tools, or by definition in superclasses. We’ll see this
          at work again in a Private
          decorator later in this chapter—where we’ll also study ways to add
          the methods required of such code in 3.X.



Class Blunders II: Retaining Multiple Instances
Curiously, the decorator function in this example can
      almost be coded as a class instead of a function,
      with the proper operator overloading protocol. The following slightly
      simplified alternative works similarly because its __init__ is triggered when the @ decorator is applied to the class,
      and its __call__ is
      triggered when a subject class instance is created. Our objects are
      really instances of Tracer this time,
      and we essentially just trade an enclosing scope reference for an
      instance attribute here:
class Tracer:
    def __init__(self, aClass):               # On @decorator
        self.aClass = aClass                  # Use instance attribute
    def __call__(self, *args):                # On instance creation
        self.wrapped = self.aClass(*args)     # ONE (LAST) INSTANCE PER CLASS!
        return self
    def __getattr__(self, attrname):
        print('Trace: ' + attrname)
        return getattr(self.wrapped, attrname)

@Tracer                                       # Triggers __init__
class Spam:                                   # Like: Spam = Tracer(Spam)
    def display(self):
        print('Spam!' * 8)

...
food = Spam()                                 # Triggers __call__
food.display()                                # Triggers __getattr__
As we saw in the abstract earlier, though, this class-only
      alternative handles multiple classes as before, but
      it won’t quite work for multiple instances of a
      given class: each instance construction call triggers __call__, which overwrites the prior instance.
      The net effect is that Tracer saves
      just one instance—the last one created. Experiment with this yourself to
      see how, but here’s an example of the problem:
@Tracer
class Person:                                 # Person = Tracer(Person)
    def __init__(self, name):                 # Person rebound to a Tracer
        self.name = name

bob = Person('Bob')                           # bob is really a Tracer
print(bob.name)                               # Tracer embeds a Person
Sue = Person('Sue')
print(sue.name)                               # sue overwrites bob
print(bob.name)                               # OOPS: now bob's name is 'Sue'!
This code’s output follows—because this tracer only has a single
      shared instance, the second overwrites the first:
Trace: name
Bob
Trace: name
Sue
Trace: name
Sue
The problem here is bad state retention—we
      make one decorator instance per class, but not per class instance, such
      that only the last instance is retained. The solution, as in our prior
      class blunder for decorating methods, lies in abandoning class-based
      decorators.
The earlier function-based Tracer version does work
      for multiple instances, because each instance construction call makes a
      new Wrapper instance, instead of
      overwriting the state of a single shared Tracer instance; the original nondecorator
      version handles multiple instances correctly for the same reason. The
      moral here: decorators are not only arguably magical, they can also be
      incredibly subtle!

Decorators Versus Manager Functions
Regardless of such subtleties, the Tracer
      class decorator example ultimately still relies on __getattr__ to intercept fetches on a wrapped
      and embedded instance object. As we saw earlier, all we’ve really
      accomplished is moving the instance creation call inside a class,
      instead of passing the instance into a manager function. With the
      original nondecorator tracing example, we would simply code instance
      creation differently:
class Spam:                                   # Nondecorator version
    ...                                       # Any class will do
food = Wrapper(Spam())                        # Special creation syntax

@Tracer
class Spam:                                   # Decorator version
    ...                                       # Requires @ syntax at class
food = Spam()                                 # Normal creation syntax
Essentially, class decorators shift special
      syntax requirements from the instance creation call to the class
      statement itself. This is also true for the singleton example earlier in
      this section—rather than decorating a class and using normal instance
      creation calls, we could simply pass the class and its construction
      arguments into a manager function:
instances = {}
def getInstance(aClass, *args, **kwargs):
    if aClass not in instances:
        instances[aClass] = aClass(*args, **kwargs)
    return instances[aClass]

bob = getInstance(Person, 'Bob', 40, 10)    # Versus: bob = Person('Bob', 40, 10)
Alternatively, we could use Python’s introspection facilities to
      fetch the class from an already created instance (assuming creating an
      initial instance is acceptable):
instances = {}
def getInstance(object):
    aClass = object.__class__
    if aClass not in instances:
        instances[aClass] = object
    return instances[aClass]

bob = getInstance(Person('Bob', 40, 10))    # Versus: bob = Person('Bob', 40, 10)
The same holds true for function decorators like
      the tracer we wrote earlier: rather than decorating a function with
      logic that intercepts later calls, we could simply pass the function and
      its arguments into a manager that dispatches the call:
def func(x, y):                   # Nondecorator version
    ...                           # def tracer(func, args): ... func(*args)
result = tracer(func, (1, 2))     # Special call syntax

@tracer
def func(x, y):                   # Decorator version
    ...                           # Rebinds name: func = tracer(func)
result = func(1, 2)               # Normal call syntax
Manager function approaches like this place the burden of using
      special syntax on calls, instead of expecting
      decoration syntax at function and class definitions, but also allow you
      to selectively apply augmentation on a call-by-call basis.

Why Decorators? (Revisited)
So why did I just show you ways to not use decorators
      to implement singletons? As I mentioned at the start of this chapter,
      decorators present us with tradeoffs. Although syntax matters, we all
      too often forget to ask the “why” questions when confronted with new
      tools. Now that we’ve seen how decorators actually work, let’s step back
      for a minute to glimpse the big picture here before moving on to more
      code.
Like most language features, decorators have both pros and cons.
      For example, in the negatives column, decorators may suffer from three
      potential drawbacks, which can vary per decorator type:
	Type changes
	As we’ve seen, when wrappers are inserted, a decorated
            function or class does not retain its original
            type—it is rebound to a wrapper (proxy) object, which
            might matter in programs that use object names or test object
            types. In the singleton example, both the decorator and manager
            function approaches retain the original class type for instances;
            in the tracer code, neither approach does, because wrappers are
            required. Of course, you should avoid type checks in a polymorphic
            language like Python anyhow, but there are exceptions to most
            rules.

	Extra calls
	A wrapping layer added by decoration incurs the additional
            performance cost of an extra call each time
            the decorated object is invoked—calls are relatively
            time-expensive operations, so decoration wrappers can make a
            program slower. In the tracer code, both approaches require each
            attribute to be routed through a wrapper layer; the singleton
            example avoids extra calls by retaining the original class
            type.

	All or nothing
	Because decorators augment a function or class, they
            generally apply to every later call to the
            decorated object. That ensures uniform deployment, but can also be
            a negative if you’d rather apply an augmentation more selectively
            on a call-by-call basis.


That said, none of these is a very serious issue. For most
      programs, decorations’ uniformity is an asset, the type difference is
      unlikely to matter, and the speed hit of the extra calls will be
      insignificant. Furthermore, the latter of these occurs only when
      wrappers are used, can often be negated if we simply remove the
      decorator when optimal performance is required, and is also incurred by
      nondecorator solutions that add wrapping logic (including
      metaclasses, as we’ll see in Chapter 40).
Conversely, as we saw at the start of this chapter, decorators
      have three main advantages. Compared to the manager (a.k.a. “helper”)
      function solutions of the prior section, decorators offer:
	Explicit syntax
	Decorators make augmentation explicit and obvious. Their
            @ syntax is easier to recognize
            than special code in calls that may appear anywhere in a source
            file—in our singleton and tracer examples, for instance, the
            decorator lines seem more likely to be noticed than extra code at
            calls would be. Moreover, decorators allow function and instance
            creation calls to use normal syntax familiar to all Python
            programmers.

	Code maintenance
	Decorators avoid repeated augmentation code at each function
            or class call. Because they appear just once, at the definition of
            the class or function itself, they obviate redundancy and simplify
            future code maintenance. For our singleton and tracer cases, we
            need to use special code at each call to use a manager function
            approach—extra work is required both initially and for any
            modifications that must be made in the future.

	Consistency
	Decorators make it less likely that a programmer will forget
            to use required wrapping logic. This derives mostly from the two
            prior advantages—because decoration is explicit and appears only
            once, at the decorated objects themselves, decorators promote more
            consistent and uniform API usage than special code that must be
            included at each call. In the singleton example, for instance, it
            would be easy to forget to route all class creation calls through
            special code, which would subvert the singleton management
            altogether.


Decorators also promote code encapsulation to reduce
      redundancy and minimize future maintenance effort; augmentation code
      appears just once in the decorator callable, instead of being copied for
      each deployment. Although manager functions can achieve this too,
      decorators also offer an explicit syntax and seamless call model that
      makes them natural for augmentation tasks.
None of these benefits completely requires decorator syntax to be
      achieved, though, and decorator usage is ultimately a stylistic choice.
      That said, most programmers find them to be a net win, especially as a
      tool for using libraries and APIs correctly.
Note
Historic anecdote: I can recall similar
        arguments being made both for and against
        constructor functions in classes—prior to the
        introduction of __init__ methods,
        programmers achieved the same effect by running an instance through a
        method manually when creating it (e.g., X=Class().init()). Over time, though,
        despite being fundamentally a stylistic choice, the __init__ syntax came to be universally
        preferred because it was more explicit, consistent, and maintainable.
        Although you should be the judge, decorators seem to bring many of the
        same assets to the table.



Managing Functions and Classes Directly
Most of our examples in this chapter have been designed to intercept function and
    instance creation calls. Although this is typical for decorators, they are
    not limited to this role. Because decorators work by running new functions
    and classes through decorator code, they can also be used to manage
    function and class objects themselves, not just later calls made to
    them.
Imagine, for example, that you require methods or classes used by an
    application to be registered to an API for later processing (perhaps that
    API will call the objects later, in response to events). Although you
    could provide a registration function to be called manually after the
    objects are defined, decorators make your intent more explicit.
The following simple implementation of this idea defines a decorator
    that can be applied to both functions and classes, to
    add the object to a dictionary-based registry. Because it returns the
    object itself instead of a wrapper, it does not intercept later
    calls:
# Registering decorated objects to an API
from __future__ import print_function # 2.X

registry = {}
def register(obj):                          # Both class and func decorator
    registry[obj.__name__] = obj            # Add to registry
    return obj                              # Return obj itself, not a wrapper

@register
def spam(x):
    return(x ** 2)                          # spam = register(spam)

@register
def ham(x):
    return(x ** 3)

@register
class Eggs:                                 # Eggs = register(Eggs)
    def __init__(self, x):
        self.data = x ** 4
    def __str__(self):
        return str(self.data)

print('Registry:')
for name in registry:
    print(name, '=>', registry[name], type(registry[name]))

print('\nManual calls:')
print(spam(2))                              # Invoke objects manually
print(ham(2))                               # Later calls not intercepted
X = Eggs(2)
print(X)

print('\nRegistry calls:')
for name in registry:
    print(name, '=>', registry[name](2))    # Invoke from registry
When this code is run the decorated objects are added to the
    registry by name, but they still work as originally coded when they’re
    called later, without being routed through a wrapper layer. In fact, our
    objects can be run both manually and from inside the registry
    table:
c:\code> py −3 registry-deco.py
Registry:
spam => <function spam at 0x02969158> <class 'function'>
ham => <function ham at 0x02969400> <class 'function'>
Eggs => <class '__main__.Eggs'> <class 'type'>

Manual calls:
4
8
16

Registry calls:
spam => 4
ham => 8
Eggs => 16
A user interface might use this technique, for example, to register
    callback handlers for user actions. Handlers might be registered by
    function or class name, as done here, or decorator arguments could be used
    to specify the subject event; an extra def statement enclosing our decorator could be
    used to retain such arguments for use on decoration.
This example is artificial, but its technique is very general. For
    example, function decorators might also be used to process function
    attributes, and class decorators might insert new class attributes, or
    even new methods, dynamically. Consider the following function
    decorators—they assign function attributes to record information for later
    use by an API, but they do not insert a wrapper layer to intercept later
    calls:
# Augmenting decorated objects directly

>>> def decorate(func):
        func.marked = True          # Assign function attribute for later use
        return func

>>> @decorate
    def spam(a, b):
        return a + b

>>> spam.marked
True

>>> def annotate(text):             # Same, but value is decorator argument
        def decorate(func):
            func.label = text
            return func
        return decorate

>>> @annotate('spam data')
    def spam(a, b):                 # spam = annotate(...)(spam)
        return a + b

>>> spam(1, 2), spam.label
(3, 'spam data')
Such decorators augment functions and classes directly, without
    catching later calls to them. We’ll see more examples of class decorations
    managing classes directly in the next chapter, because this turns out to
    encroach on the domain of metaclasses; for the
    remainder of this chapter, let’s turn to two larger case studies of
    decorators at work.

Example: “Private” and “Public” Attributes
The final two sections of this chapter present larger examples of
    decorator use. Both are presented with minimal description, partly because
    this chapter has hit its size limits, but mostly because you should
    already understand decorator basics well enough to study these on your
    own. Being general-purpose tools, these examples give us a chance to see
    how decorator concepts come together in more useful code.
Implementing Private Attributes
The following class decorator implements a
      Private declaration for class instance attributes—that is, attributes stored
      on an instance, or inherited from one of its classes. It disallows fetch
      and change access to such attributes from outside
      the decorated class, but still allows the class itself to access those
      names freely within its own methods. It’s not exactly C++ or Java, but
      it provides similar access control as an option in Python.
We saw an incomplete first-cut implementation of instance
      attribute privacy for changes only in Chapter 30. The version here extends this
      concept to validate attribute fetches too, and it
      uses delegation instead of inheritance to implement the model. In fact,
      in a sense this is just an extension to the attribute tracer class
      decorator we met earlier.
Although this example utilizes the new syntactic sugar of class
      decorators to code attribute privacy, its attribute interception is
      ultimately still based upon the __getattr__ and __setattr__ operator overloading methods we
      met in prior chapters. When a private attribute access is detected, this
      version uses the raise statement to
      raise an exception, along with an error message; the exception may be
      caught in a try or allowed to
      terminate the script.
Here is the code, along with a self test at the bottom of the
      file. It will work under both Python 3.X and 2.X (2.6 and later) because
      it employs version-neutral print and
      raise syntax, though as coded it
      catches built-ins’ dispatch to operator overloading method attributes in
      2.X only (more on this in a moment):
"""
File access1.py (3.X + 2.X)

Privacy for attributes fetched from class instances.
See self-test code at end of file for a usage example.

Decorator same as: Doubler = Private('data', 'size')(Doubler).
Private returns onDecorator, onDecorator returns onInstance,
and each onInstance instance embeds a Doubler instance.
"""

traceMe = False
def trace(*args):
    if traceMe: print('[' + ' '.join(map(str, args)) + ']')

def Private(*privates):                              # privates in enclosing scope
    def onDecorator(aClass):                         # aClass in enclosing scope
        class onInstance:                            # wrapped in instance attribute
            def __init__(self, *args, **kargs):
                self.wrapped = aClass(*args, **kargs)

            def __getattr__(self, attr):             # My attrs don't call getattr
                trace('get:', attr)                  # Others assumed in wrapped
                if attr in privates:
                    raise TypeError('private attribute fetch: ' + attr)
                else:
                    return getattr(self.wrapped, attr)

            def __setattr__(self, attr, value):             # Outside accesses
                trace('set:', attr, value)                  # Others run normally
                if attr == 'wrapped':                       # Allow my attrs
                    self.__dict__[attr] = value             # Avoid looping
                elif attr in privates:
                    raise TypeError('private attribute change: ' + attr)
                else:
                    setattr(self.wrapped, attr, value)      # Wrapped obj attrs
        return onInstance                                   # Or use __dict__
    return onDecorator


if __name__ == '__main__':
    traceMe = True

    @Private('data', 'size')                   # Doubler = Private(...)(Doubler)
    class Doubler:
        def __init__(self, label, start):
            self.label = label                 # Accesses inside the subject class
            self.data  = start                 # Not intercepted: run normally
        def size(self):
            return len(self.data)              # Methods run with no checking
        def double(self):                      # Because privacy not inherited
            for i in range(self.size()):
                self.data[i] = self.data[i] * 2
        def display(self):
            print('%s => %s' % (self.label, self.data))

    X = Doubler('X is', [1, 2, 3])
    Y = Doubler('Y is', [-10, −20, −30])

    # The following all succeed
    print(X.label)                             # Accesses outside subject class
    X.display(); X.double(); X.display()       # Intercepted: validated, delegated
    print(Y.label)
    Y.display(); Y.double()
    Y.label = 'Spam'
    Y.display()

    # The following all fail properly
    """
    print(X.size())          # prints "TypeError: private attribute fetch: size"
    print(X.data)
    X.data = [1, 1, 1]
    X.size = lambda S: 0
    print(Y.data)
    print(Y.size())
    """
When traceMe is True, the module file’s self-test code
      produces the following output. Notice how the decorator catches and
      validates both attribute fetches and assignments run
      outside of the wrapped class, but does not catch
      attribute accesses inside the class itself:
 c:\code> py −3 access1.py
[set: wrapped <__main__.Doubler object at 0x00000000029769B0>]
[set: wrapped <__main__.Doubler object at 0x00000000029769E8>]
[get: label]
X is
[get: display]
X is => [1, 2, 3]
[get: double]
[get: display]
X is => [2, 4, 6]
[get: label]
Y is
[get: display]
Y is => [-10, −20, −30]
[get: double]
[set: label Spam]
[get: display]
Spam => [−20, −40, −60]

Implementation Details I
This code is a bit complex, and you’re probably best off tracing
      through it on your own to see how it works. To help you study, though,
      here are a few highlights worth mentioning.
Inheritance versus delegation
The first-cut privacy example shown in Chapter 30
        used inheritance to mix in a __setattr__ to catch accesses. Inheritance
        makes this difficult, however, because differentiating between
        accesses from inside or outside the class is not straightforward
        (inside access should be allowed to run normally, and outside access
        should be restricted). To work around this, the Chapter 30 example requires inheriting
        classes to use __dict__ assignments
        to set attributes—an incomplete solution at best.
The version here uses delegation (embedding
        one object inside another) instead of inheritance; this pattern is
        better suited to our task, as it makes it much easier to distinguish
        between accesses inside and outside of the subject class. Attribute
        accesses from outside the subject class are intercepted by the wrapper
        layer’s overloading methods and delegated to the class if valid.
        Accesses inside the class itself (i.e., through self within its methods’ code) are not
        intercepted and are allowed to run normally without checks, because
        privacy is not inherited in this version.

Decorator arguments
The class decorator used here accepts any number of arguments,
        to name private attributes. What really happens, though, is that the
        arguments are passed to the Private
        function, and Private returns the
        decorator function to be applied to the subject class. That is, the
        arguments are used before decoration ever occurs; Private returns the decorator, which in turn
        “remembers” the privates list as an enclosing scope reference.

State retention and enclosing scopes
Speaking of enclosing scopes, there are actually three
        levels of state retention at work in this code:
	The arguments to Private
            are used before decoration occurs and are retained as an enclosing
            scope reference for use in both onDecorator and onInstance.

	The class argument to onDecorator is used at decoration time
            and is retained as an enclosing scope reference for use at
            instance construction time.

	The wrapped instance object is retained as an instance
            attribute in the onInstance
            proxy object, for use when attributes are later accessed from
            outside the class.


This all works fairly naturally, given Python’s scope and
        namespace rules.

Using __dict__ and __slots__ (and other virtual names)
The __setattr__ method in
        this code relies on an instance object’s __dict__ attribute namespace dictionary in
        order to set onInstance’s own
        wrapped attribute. As we learned in
        the prior chapter, this method cannot assign an attribute directly
        without looping. However, it uses the setattr built-in instead of __dict__ to set attributes in the
        wrapped object itself. Moreover, getattr is used to fetch attributes in the
        wrapped object, since they may be stored in the object itself or
        inherited by it.
Because of that, this code will work for most classes—including
        those with “virtual” class-level attributes based on
        slots, properties,
        descriptors, and even __getattr__ and its ilk. By assuming a
        namespace dictionary for itself only and using storage-neutral tools
        for the wrapped object, the wrapper class avoids limitations inherent
        in other tools.
For example, you may recall from Chapter 32 that new-style classes with
        __slots__ may not store attributes
        in a __dict__ (and in fact may not
        even have one of these at all). However, because we rely on a __dict__ only at the onInstance level here, and not in the
        wrapped instance, this concern does not apply. In addition, because
        setattr and getattr apply to attributes based on both
        __dict__ and __slots__, our decorator applies to classes
        using either storage scheme. By the same reasoning, the decorator also
        applies to new-style properties and similar tools: delegated names
        will be looked up anew in the wrapped instance, irrespective of
        attributes of the decorator proxy object itself.


Generalizing for Public Declarations, Too
Now that we have a Private
      implementation, it’s straightforward to generalize the code to allow for
      Public declarations too—they are
      essentially the inverse of Private
      declarations, so we need only negate the inner test. The example listed
      in this section allows a class to use decorators to define a set of
      either Private or Public instance attributes—attributes of any
      kind stored on an instance or inherited from its classes—with the
      following semantics:
	Private declares attributes
          of a class’s instances that cannot be fetched
          or assigned, except from within the code of the class’s methods.
          That is, any name declared Private cannot be accessed from outside
          the class, while any name not declared Private can be freely fetched or assigned
          from outside the class.

	Public declares attributes
          of a class’s instances that can be fetched or
          assigned from both outside the class and within the class’s methods.
          That is, any name declared Public
          can be freely accessed anywhere, while any name not declared
          Public cannot be accessed from
          outside the class.


Private and Public declarations are intended to be
      mutually exclusive: when using Private, all undeclared names are considered
      Public, and when using Public, all undeclared names are considered
      Private. They are essentially
      inverses, though undeclared names not created by a class’s methods
      behave slightly differently—new names can be assigned and thus created
      outside the class under Private (all
      undeclared names are accessible), but not under Public (all undeclared names are
      inaccessible).
Again, study this code on your own to get a feel for how this
      works. Notice that this scheme adds an additional fourth level
      of state retention at the top, beyond that described in the
      preceding section: the test functions used by the lambdas are saved in an extra enclosing scope.
      This example is coded to run under either Python 3.X or 2.X (2.6 or
      later), though it comes with a caveat when run under 3.X (explained
      briefly in the file’s docstring and expanded on after the code):
"""
File access2.py (3.X + 2.X)
Class decorator with Private and Public attribute declarations.

Controls external access to attributes stored on an instance, or
Inherited by it from its classes. Private declares attribute names
that cannot be fetched or assigned outside the decorated class,
and Public declares all the names that can.

Caveat: this works in 3.X for explicitly named attributes only: __X__
operator overloading methods implicitly run for built-in operations
do not trigger either __getattr__ or __getattribute__ in new-style
classes.  Add __X__ methods here to intercept and delegate built-ins.
"""

traceMe = False
def trace(*args):
    if traceMe: print('[' + ' '.join(map(str, args)) + ']')

def accessControl(failIf):
    def onDecorator(aClass):
        class onInstance:
            def __init__(self, *args, **kargs):
                self.__wrapped = aClass(*args, **kargs)

            def __getattr__(self, attr):
                trace('get:', attr)
                if failIf(attr):
                    raise TypeError('private attribute fetch: ' + attr)
                else:
                    return getattr(self.__wrapped, attr)

            def __setattr__(self, attr, value):
                trace('set:', attr, value)
                if attr == '_onInstance__wrapped':
                    self.__dict__[attr] = value
                elif failIf(attr):
                    raise TypeError('private attribute change: ' + attr)
                else:
                    setattr(self.__wrapped, attr, value)
        return onInstance
    return onDecorator

def Private(*attributes):
    return accessControl(failIf=(lambda attr: attr in attributes))

def Public(*attributes):
    return accessControl(failIf=(lambda attr: attr not in attributes))
See the prior example’s self-test code for a usage example. Here’s
      a quick look at these class decorators in action at the interactive
      prompt; they work the same in 2.X and 3.X for attributes referenced by
      explicit name like those tested here. As advertised, non-Private or Public names can be fetched and changed from
      outside the subject class, but Private or non-Public names cannot:
>>> from access2 import Private, Public

>>> @Private('age')                             # Person = Private('age')(Person)
    class Person:                               # Person = onInstance with state
        def __init__(self, name, age):
            self.name = name
            self.age  = age                     # Inside accesses run normally

>>> X = Person('Bob', 40)
>>> X.name                                      # Outside accesses validated
'Bob'
>>> X.name = 'Sue'
>>> X.name
'Sue'
>>> X.age
TypeError: private attribute fetch: age
>>> X.age = 'Tom'
TypeError: private attribute change: age

>>> @Public('name')
    class Person:
        def __init__(self, name, age):
            self.name = name
            self.age  = age

>>> X = Person('bob', 40)                       # X is an onInstance
>>> X.name                                      # onInstance embeds Person
'bob'
>>> X.name = 'Sue'
>>> X.name
'Sue'
>>> X.age
TypeError: private attribute fetch: age
>>> X.age = 'Tom'
TypeError: private attribute change: age

Implementation Details II
To help you analyze the code, here are a few final notes on this
      version. Since this is just a generalization of the preceding section’s
      version, the implementation notes there apply here as well.
Using __X pseudoprivate names
Besides generalizing, this version also makes use of Python’s
        __X
        pseudoprivate name mangling feature (which we met in Chapter 31) to localize the wrapped attribute to the proxy control
        class, by automatically prefixing it with this class’s name. This
        avoids the prior version’s risk for collisions with a wrapped attribute that may be used by the
        real, wrapped class, and it’s useful in a general tool like this. It’s
        not quite “privacy,” though, because the mangled version of the name
        can be used freely outside the class. Notice that we also have to use
        the fully expanded name string—'_onInstance__wrapped'— as a test value in
        __setattr__, because that’s what
        Python changes it to.

Breaking privacy
Although this example does implement access controls for
        attributes of an instance and its classes, it is possible to subvert
        these controls in various ways—for instance, by going through the
        expanded version of the wrapped
        attribute explicitly (bob.pay might
        not work, but the fully mangled bob._onInstance__wrapped.pay could!). If you
        have to explicitly try to do so, though, these controls are probably
        sufficient for normal intended use. Of course, privacy controls can
        generally be subverted in other languages if you try hard enough
        (#define private public may work in
        some C++ implementations, too). Although access controls can reduce
        accidental changes, much of this is up to programmers in any language;
        whenever source code may be changed, airtight access control will
        always be a bit of a pipe dream.

Decorator tradeoffs
We could again achieve the same results without decorators, by
        using manager functions or coding the name rebinding of decorators
        manually; the decorator syntax, however, makes this consistent and a
        bit more obvious in the code. The chief potential downsides of this
        and any other wrapper-based approach are that attribute access incurs
        an extra call, and instances of decorated classes are not really
        instances of the original decorated class—if you test their type with
        X.__class__ or isinstance(X, C), for example, you’ll find
        that they are instances of the wrapper class.
        Unless you plan to do introspection on objects’ types, though, the
        type issue is probably irrelevant, and the extra call may apply mostly
        to development time; as we’ll see later, there are ways to remove
        decorations automatically if desired.


Open Issues
As is, this example works as planned under both Python 2.X and 3.X
      for methods called explicitly by name. As with most software, though,
      there is always room for improvement. Most notably, this tool turns in
      mixed performance on operator overloading methods if they are used by
      client classes.
As coded, the proxy class is a classic class when run under 2.X,
      but a new-style class when run by 3.X. As such, the code supports any
      client class in 2.X, but in 3.X fails to validate or delegate operator
      overloading methods dispatched implicitly by built-in operations, unless
      they are redefined in the proxy. Clients that do not use operator
      overloading are fully supported, but others may require additional code
      in 3.X.
Importantly, this is not a new-style class issue here, it’s a
      Python version issue—the same code runs differently
      and fails in 3.X only. Because the nature of the wrapped object’s class
      is irrelevant to the proxy, we are concerned only with the proxy’s own
      code, which works under 2.X but not 3.X.
We’ve met this issue a few times already in this book, but let’s
      take a quick look at its impact on the very realistic code we’ve written
      here, and explore a workaround to it.
Caveat: Implicitly run operator overloading methods fail to
        delegate under 3.X
Like all delegation-based classes that use __getattr__, this decorator works
        cross-version for normally named or explicitly called attributes only.
        When run implicitly by built-in operations, operator overloading
        methods like __str__ and __add__ work differently for new-style
        classes. Because this code is interpreted as a new-style class in 3.X
        only, such operations fail to reach an embedded object that defines
        them when run under this Python line as currently coded.
As we learned in the prior chapter, built-in operations look for
        operator overloading names in instances for
        classic classes, but not for new-style classes—for the latter, they
        skip the instance entirely and begin the search for such methods in
        classes (technically, in the namespace
        dictionaries of all classes in the instance’s tree). Hence, the
        __X__ operator overloading methods implicitly
        run for built-in operations do not trigger either
        __getattr__ or __getattribute__ in new-style classes;
        because such attribute fetches skip our onInstance class’s __getattr__ altogether, they cannot be
        validated or delegated.
Our decorator’s class is not coded as explicitly new-style (by
        deriving from object), so it will
        catch operator overloading methods if run under 2.X as a default
        classic class. In 3.X, though, because all classes are new-style
        automatically (and by mandate), such methods will
        fail if they are implemented by the embedded
        object—because they are not caught by the proxy, they won’t be passed
        on.
The most direct workaround in 3.X is to redefine redundantly in
        onInstance all the operator
        overloading methods that can possibly be used in wrapped objects. Such
        extra methods can be added by hand, by tools that partly automate the
        task (e.g., with class decorators or the metaclasses discussed in the
        next chapter), or by definition in reusable superclasses. Though
        tedious—and code-intensive enough to largely omit here—we’ll explore
        approaches to satisfying this 3.X-only requirement in a moment.
First, though, to see the difference for yourself, try applying
        the decorator to a class that uses operator overloading methods under
        2.X; validations work as before, and both the __str__ method used by printing and the
        __add__ method run for + invoke the decorator’s __getattr__ and hence wind up being
        validated and delegated to the subject Person object correctly:
C:\code> c:\python27\python
>>> from access2 import Private
>>> @Private('age')
    class Person:
        def __init__(self):
            self.age = 42
        def __str__(self):
            return 'Person: ' + str(self.age)
        def __add__(self, yrs):
            self.age += yrs

>>> X = Person()
>>> X.age                                   # Name validations fail correctly
TypeError: private attribute fetch: age
>>> print(X)                                # __getattr__ => runs Person.__str__
Person: 42
>>> X + 10                                  # __getattr__ => runs Person.__add__
>>> print(X)                                # __getattr__ => runs Person.__str__
Person: 52
When the same code is run under Python 3.X, though, the
        implicitly invoked __str__ and
        __add__ skip the decorator’s
        __getattr__ and look for
        definitions in or above the decorator class itself; print winds up finding the default display
        inherited from the class type (technically, from the implied object superclass in 3.X), and + generates an error because no default is
        inherited:
C:\code> c:\python33\python
>>> from access2 import Private
>>> @Private('age')
    class Person:
        def __init__(self):
            self.age = 42
        def __str__(self):
            return 'Person: ' + str(self.age)
        def __add__(self, yrs):
            self.age += yrs

>>> X = Person()                            # Name validations still work
>>> X.age                                   # But 3.X fails to delegate built-ins!
TypeError: private attribute fetch: age
>>> print(X)
<access2.accessControl.<locals>.onDecorator.<locals>.onInstance object at ...etc>
>>> X + 10
TypeError: unsupported operand type(s) for +: 'onInstance' and 'int'
>>> print(X)
<access2.accessControl.<locals>.onDecorator.<locals>.onInstance object at ...etc>
Strangely, this occurs only for dispatch from built-in
        operations; explicit direct calls to overload methods are routed to
        __getattr__, though clients using
        operator overloading can’t be expected to do the same:
>>> X.__add__(10)                           # Though calls by name work normally
>>> X._onInstance__wrapped.age              # Break privacy to view result...
52
In other words, this is a matter of built-in
        operations versus explicit calls; it has little to do with
        the actual names of the methods involved. Just for built-in
        operations, Python skips a step for 3.X’s new-style classes.
Using the alternative __getattribute__ method won’t help
        here—although it is defined to catch every attribute reference (not
        just undefined names), it is also not run by built-in operations.
        Python’s property feature, which we
        met in Chapter 38, won’t help directly here
        either; recall that properties are automatically run code associated
        with specific attributes defined when a class is
        written, and are not designed to handle arbitrary attributes in
        wrapped objects.

Approaches to redefining operator overloading methods for
        3.X
As mentioned earlier, the most straightforward solution under
        3.X is to redundantly redefine operator overloading names that may
        appear in embedded objects in delegation-based classes like our
        decorator. This isn’t ideal because it creates some code redundancy,
        especially compared to 2.X solutions. However, it isn’t an impossibly
        major coding effort; can be automated to some extent with tools or
        superclasses; suffices to make our decorator work in 3.X; and may
        allow operator overloading names to be declared Private or Public too, assuming overloading methods
        trigger the failIf test
        internally.
Inline definition
For instance, the following is an inline
          redefinition approach—add method redefinitions to the proxy for
          every operator overloading method a wrapped object may define
          itself, to catch and delegate. We’re adding just four operation
          interceptors to illustrate, but others are similar (new code is in
          bold font here):
def accessControl(failIf):
    def onDecorator(aClass):
        class onInstance:
            def __init__(self, *args, **kargs):
                self.__wrapped = aClass(*args, **kargs)

            # Intercept and delegate built-in operations specifically
            def __str__(self):
                return str(self.__wrapped)
            def __add__(self, other):
                return self.__wrapped + other          # Or getattr(x, '__add__')(y)
            def __getitem__(self, index):
                return self.__wrapped[index]           # If needed
            def __call__(self, *args, **kargs):
                return self.__wrapped(*args, **kargs)  # If needed
            # plus any others needed

            # Intercept and delegate by-name attribute access generically
            def __getattr__(self, attr): ...
            def __setattr__(self, attr, value): ...
        return onInstance
    return onDecorator

Mix-in superclasses
Alternatively, these methods can be inserted by a common
          superclass—given that there are dozens of such
          methods, an external class may be better suited to the task,
          especially if it is general enough to be used in any such interface
          proxy class. Either of the following mix-in class schemes (among
          likely others) suffice to catch and delegate built-ins
          operations:
	The first catches built-ins and
              forcibly reroutes down to the subclass __getattr__. It requires that operator
              overloading names be public per the decorator’s specifications,
              but built-in operation calls will work the same as both explicit
              name calls and 2.X’s classic classes.

	The second catches built-ins and
              reroutes to the wrapped object directly. It requires access to
              and assumes a proxy attribute named _wrapped giving access to the embedded
              object—which is less than ideal because it precludes wrapped
              objects from using the same name and creates a subclass
              dependency, but better than using the mangled and class-specific
              _onInstance__wrapped, and no
              worse than a similarly named method.


Like the inline approach, both of these mix-ins also require
          one method per built-in operation in general tools that proxy
          arbitrary objects’ interfaces. Notice how these classes catch
          operation calls rather than operation attribute
          fetches, and thus must perform the actual
          operation by delegating a call or expression:
class BuiltinsMixin:
    def __add__(self, other):
        return self.__class__.__getattr__(self, '__add__')(other)
    def __str__(self):
        return self.__class__.__getattr__(self, '__str__')()
    def __getitem__(self, index):
        return self.__class__.__getattr__(self, '__getitem__')(index)
    def __call__(self, *args, **kargs):
        return self.__class__.__getattr__(self, '__call__')(*args, **kargs)
    # plus any others needed

def accessControl(failIf):
    def onDecorator(aClass):
        class onInstance(BuiltinsMixin):
            ...rest unchanged...
            def __getattr__(self, attr): ...
            def __setattr__(self, attr, value): ...


class BuiltinsMixin:
    def __add__(self, other):
        return self._wrapped + other                    # Assume a _wrapped
    def __str__(self):                                  # Bypass __getattr__
        return str(self._wrapped)
    def __getitem__(self, index):
        return self._wrapped[index]
    def __call__(self, *args, **kargs):
        return self._wrapped(*args, **kargs)
    # plus any others needed

def accessControl(failIf):
    def onDecorator(aClass):
        class onInstance(BuiltinsMixin):
            ...and use self._wrapped instead of self.__wrapped...
            def __getattr__(self, attr): ...
            def __setattr__(self, attr, value): ...
Either one of these superclass mix-ins will be extraneous
          code, but must be implemented only once, and seem much more
          straightforward than the various metaclass- or
          decorator-based tool approaches you’ll find
          online that populate each proxy class with the requisite methods
          redundantly (see the class augmentation examples in Chapter 40 for the principles behind such
          tools).

Coding variations: Routers, descriptors, automation
Naturally, both of the prior section’s mix-in superclasses
          might be improved with additional code changes we’ll largely pass on
          here, except for two variations worth noting briefly. First, compare
          the following mutation of the first
          mix-in—which uses a simpler coding structure but will incur an extra
          call per built-in operation, making it slower (though perhaps not significantly so in a proxy
          context):
class BuiltinsMixin:
    def reroute(self, attr, *args, **kargs):
        return self.__class__.__getattr__(self, attr)(*args, **kargs)

    def __add__(self, other):
        return self.reroute('__add__', other)
    def __str__(self):
        return self.reroute('__str__')
    def __getitem__(self, index):
        return self.reroute('__getitem__', index)
    def __call__(self, *args, **kargs):
        return self.reroute('__call__', *args, **kargs)
    # plus any others needed
Second, all the preceding built-in mix-in classes code each
          operator overloading method explicitly, and
          intercept the call issued for the operation.
          With an alternative coding, we could instead
          generate methods from a list of names
          mechanically, and intercept only the attribute
          fetch preceding the call by creating
          class-level descriptors of the prior chapter—as
          in the following, which, like the second mix-in alternative, assumes
          the proxied object is named _wrapped in the proxy instance
          itself:
class BuiltinsMixin:
    class ProxyDesc(object):                                     # object for 2.X
        def __init__(self, attrname):
            self.attrname = attrname
        def __get__(self, instance, owner):
            return getattr(instance._wrapped, self.attrname)     # Assume a _wrapped

    builtins = ['add', 'str', 'getitem', 'call']                 # Plus any others
    for attr in builtins:
        exec('__%s__ = ProxyDesc("__%s__")' % (attr, attr))
This coding may be the most concise, but also the most
          implicit and complex, and is fairly tightly coupled with its
          subclasses by the shared name. The loop at the end of this class is
          equivalent to the following, run in the mix-in class’s local
          scope—it creates descriptors that respond to initial name lookups by
          fetching from the wrapped object in __get__, rather than catching the later
          operation call itself:
    __add__ = ProxyDesc("__add__")
    __str__ = ProxyDesc("__str__")
    ...etc...
With such operator overloading methods added—either inline or
          by mix-in inheritance—the prior Private example client that overloaded
          + and print with __str__ and __add__ works correctly under 2.X and 3.X,
          as do subclasses that overload indexing and calls. If you care to
          experiment further, see files access2_builtins*.py in the book examples
          package for complete codings of these options; we’ll also employ the
          third of the mix-in options in a solution to an end-of-chapter
          quiz.


Should operator methods be validated?
Adding support for operator overloading methods is required of interface
        proxies in general, to delegate calls correctly. In our specific
        privacy application, though, it also raises some additional design
        choices. In particular, privacy of operator overloading methods
        differs per implementation:
	Because they invoke __getattr__, the rerouter mix-ins
            require either that all __X__ names accessed be listed in Public decorations, or that Private be used instead when operator
            overloading is present in clients. In classes that use overloading
            heavily, Public may be
            impractical.

	Because they bypass __getattr__ entirely, as coded here both
            the inline scheme and self._wrapped mix-ins do not have these
            constraints, but they preclude built-in operations from being made
            private, and cause built-in operation dispatch to work
            asymmetrically from both explicit __X__ calls by-name and 2.X’s default
            classic classes.

	Python 2.X classic classes have the first bullet’s
            constraints, simply because all __X__ names are routed through __getattr__ automatically.

	Operator overloading names and protocols differ between 2.X
            and 3.X, making truly cross-version decoration less than trivial
            (e.g., Public decorators may
            need to list names from both lines).


We’ll leave final policy here a TBD, but some interface proxies
        might prefer to allow __X__ operator names to always pass unchecked
        when delegated.
In the general case, though, a substantial amount of extra code
        is required to accommodate 3.X’s new-style classes as delegation
        proxies—in principle, every operator overloading
        method that is no longer dispatched as a normal instance attribute
        automatically will need to be defined redundantly in a general tool
        class like this privacy decorator. This is why this extension is
        omitted in our code: there are potentially more than 50 such methods!
        Because all its classes are new-style, delegation-based code is more
        difficult—though not necessarily impossible—in Python 3.X.

Implementation alternatives: __getattribute__ inserts, call
        stack inspection
Although redundantly defining operator overloading methods in wrappers is probably the most straightforward
        workaround to Python 3.X dilemma outlined in the prior section, it’s
        not necessarily the only one. We don’t have space to explore this
        issue much further here, so deeper investigation will have to be
        relegated to suggested exercise. Because one dead-end alternative
        illustrates class concepts well, though, it merits a brief
        mention.
One downside of the privacy example is that instance objects are
        not truly instances of the original class—they are instances of the
        wrapper instead. In some programs that rely on
        type testing, this might matter. To support such cases, we might try
        to achieve similar effects by inserting a
        __getattribute__ and a __setattr__ method into the original class,
        to catch every attribute reference and assignment
        made on its instances. These inserted methods would pass valid
        requests up to their superclass to avoid loops, using the techniques
        we studied in the prior chapter. Here is the potential change to our
        class decorator’s code:
# Method insertion: rest of access2.py code as before

def accessControl(failIf):
    def onDecorator(aClass):
        def getattributes(self, attr):
            trace('get:', attr)
            if failIf(attr):
                raise TypeError('private attribute fetch: ' + attr)
            else:
                return object.__getattribute__(self, attr)

        def setattributes(self, attr, value):
            trace('set:', attr)
            if failIf(attr):
                raise TypeError('private attribute change: ' + attr)
            else:
                return object.__setattr__(self, attr, value)

        aClass.__getattribute__ = getattributes
        aClass.__setattr__ = setattributes               # Insert accessors
        return aClass                                    # Return original class
    return onDecorator
This alternative addresses the type-testing issue but suffers
        from others. For one thing, this decorator can be used by
        new-style class clients only: because __getattribute__ is a new-style-only tool
        (as is this __setattr__ coding),
        decorated classes in 2.X must use new-style derivation, which may or
        may not be appropriate for their goals. In fact, the set of classes
        supported is even further limited: inserting methods will break
        clients that are already using a __setattr__ or __getattribute__ of their own.
Worse, this scheme does not address the
        built-in operation attributes issue described in
        the prior section, because __getattribute__ is also not run in these
        contexts. In our case, if Person
        had a __str__ it would be run by
        print operations, but only because it was actually present in that
        class. As before, the __str__
        attribute would not be routed to the inserted
        __getattribute__ method
        generically—printing would bypass this method altogether and call the
        class’s __str__ directly.
Although this is probably better than not supporting operator
        overloading methods in a wrapped object at all (barring redefinition,
        at least), this scheme still cannot intercept and validate __X__ methods, making it impossible for any of
        them to be private. Whether operator overloading methods should be
        private is another matter, but this structure precludes the
        possibility.
Much worse, because this nonwrapper
        approach works by adding a __getattribute__ and __setattr__ to the decorated class, it also
        intercepts attribute accesses made by the class
        itself and validates them the same as accesses made from
        outside. In other words, the class’s own method won’t be able to use
        its private names either! This is a showstopper for the insertion
        approach.
In fact, inserting these methods this way is functionally
        equivalent to inheriting them, and implies the
        same constraints as our original Chapter 30 privacy code. To know whether an
        attribute access originated inside or outside the class, our methods
        might need to inspect frame objects on the Python call
        stack. This might ultimately yield a solution—implementing
        private attributes as properties or descriptors that check the stack
        and validate for outside accesses only, for example—but it would slow
        access further, and is far too dark a magic for us to explore here.
        (Descriptors seem to make all things possible, even when they
        shouldn’t!)
While interesting, and possibly relevant for some other use
        cases, this method insertion technique doesn’t meet our goals. We
        won’t explore this option’s coding pattern further here because we
        will study class augmentation techniques in the next chapter, in
        conjunction with metaclasses. As we’ll see there, metaclasses are not
        strictly required for changing classes this way, because class
        decorators can often serve the same role.


Python Isn’t About Control
Now that I’ve gone to such great lengths to implement Private and Public attribute declarations for Python code,
      I must again remind you that it is not entirely
      Pythonic to add access controls to your classes
      like this. In fact, most Python programmers will probably find this
      example to be largely or totally irrelevant, apart from serving as a
      demonstration of decorators in action. Most large Python programs get by
      successfully without any such controls at all.
That said, you might find this tool useful in limited scopes
      during development. If you do wish to regulate attribute access in order
      to eliminate coding mistakes, or happen to be a
      soon-to-be-ex-C++-or-Java programmer, most things are possible with
      Python’s operator overloading and introspection tools.


Example: Validating Function Arguments
As a final example of the utility of decorators, this section develops a
    function decorator that automatically tests whether
    arguments passed to a function or method are within a valid numeric range.
    It’s designed to be used during either development or production, and it
    can be used as a template for similar tasks (e.g., argument type testing,
    if you must). Because this chapter’s size limits have been broached, this
    example’s code is largely self-study material, with limited narrative; as
    usual, browse the code for more details.
The Goal
In the object-oriented tutorial of Chapter 28, we wrote a class that gave a pay
      raise to objects representing people based upon a passed-in
      percentage:
class Person:
     ...
     def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))
There, we noted that if we wanted the code to be robust it would
      be a good idea to check the percentage to make sure it’s not too large
      or too small. We could implement such a check with either if or assert statements in the method itself, using
      inline tests:
class Person:
    def giveRaise(self, percent):                # Validate with inline code
        if percent < 0.0 or percent > 1.0:
            raise TypeError, 'percent invalid'
        self.pay = int(self.pay * (1 + percent))

class Person:                                    # Validate with asserts
    def giveRaise(self, percent):
        assert percent >= 0.0 and percent <= 1.0, 'percent invalid'
        self.pay = int(self.pay * (1 + percent))
However, this approach clutters up the method with inline tests
      that will probably be useful only during development. For more complex
      cases, this can become tedious (imagine trying to inline the code needed
      to implement the attribute privacy provided by the last section’s
      decorator). Perhaps worse, if the validation logic ever needs to change,
      there may be arbitrarily many inline copies to find and update.
A more useful and interesting alternative would be to develop a
      general tool that can perform range tests for us automatically, for the
      arguments of any function or method we might code now or in the future.
      A decorator approach makes this explicit and
      convenient:
class Person:
    @rangetest(percent=(0.0, 1.0))               # Use decorator to validate
    def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))
Isolating validation logic in a decorator simplifies both clients
      and future maintenance.
Notice that our goal here is different than the attribute
      validations coded in the prior chapter’s final example. Here, we mean to
      validate the values of function arguments when
      passed, rather than attribute values when set.
      Python’s decorator and introspection tools allow us to code this new
      task just as easily.

A Basic Range-Testing Decorator for Positional Arguments
Let’s start with a basic range test implementation. To keep things simple, we’ll begin by
      coding a decorator that works only for positional arguments and assumes
      they always appear at the same position in every call; they cannot be
      passed by keyword name, and we don’t support additional **args keywords in calls because this can
      invalidate the positions declared in the decorator. Code the following
      in a file called rangetest1.py:
def rangetest(*argchecks):                  # Validate positional arg ranges
    def onDecorator(func):
        if not __debug__:                   # True if "python -O main.py args..."
            return func                     # No-op: call original directly
        else:                               # Else wrapper while debugging
            def onCall(*args):
                for (ix, low, high) in argchecks:
                    if args[ix] < low or args[ix] > high:
                        errmsg = 'Argument %s not in %s..%s' % (ix, low, high)
                        raise TypeError(errmsg)
                return func(*args)
            return onCall
    return onDecorator
As is, this code is mostly a rehash of the coding patterns we
      explored earlier: we use decorator arguments, nested scopes for state
      retention, and so on.
We also use nested def
      statements to ensure that this works for both simple functions and
      methods, as we learned earlier. When used for a
      class’s method, onCall receives the
      subject class’s instance in the first item in *args and passes this along to self in the original method function; argument
      numbers in range tests start at 1 in this case, not 0.
New here, notice this code’s use of the __debug__ built-in variable—Python sets this to True, unless it’s being run with the –O optimize command-line flag (e.g., python –O main.py). When __debug__ is False, the decorator returns the original
      function unchanged, to avoid extra later calls and their associated
      performance penalty. In other words, the decorator automatically
      removes its augmentation logic when –O is used, without requiring you to
      physically remove the decoration lines in your code.
This first iteration solution is used as follows:
# File rangetest1_test.py
from __future__ import print_function # 2.X
from rangetest1 import rangetest
print(__debug__)                           # False if "python -O main.py"

@rangetest((1, 0, 120))                    # persinfo = rangetest(...)(persinfo)
def persinfo(name, age):                   # age must be in 0..120
    print('%s is %s years old' % (name, age))

@rangetest([0, 1, 12], [1, 1, 31], [2, 0, 2009])
def birthday(M, D, Y):
    print('birthday = {0}/{1}/{2}'.format(M, D, Y))

class Person:
    def __init__(self, name, job, pay):
        self.job  = job
        self.pay  = pay

    @rangetest([1, 0.0, 1.0])              # giveRaise = rangetest(...)(giveRaise)
    def giveRaise(self, percent):          # Arg 0 is the self instance here
        self.pay = int(self.pay * (1 + percent))

# Comment lines raise TypeError unless "python -O" used on shell command line

persinfo('Bob Smith', 45)                  # Really runs onCall(...) with state
#persinfo('Bob Smith', 200)                # Or persinfo if -O cmd line argument

birthday(5, 31, 1963)
#birthday(5, 32, 1963)

sue = Person('Sue Jones', 'dev', 100000)
sue.giveRaise(.10)                         # Really runs onCall(self, .10)
print(sue.pay)                             # Or giveRaise(self, .10) if -O
#sue.giveRaise(1.10)
#print(sue.pay)
When run, valid calls in this code produce the following output
      (all the code in this section works the same under Python 2.X and 3.X,
      because function decorators are supported in both, we’re not using
      attribute delegation, and we use version-neutral exception construction
      and printing techniques):
C:\code> python rangetest1_test.py
True
Bob Smith is 45 years old
birthday = 5/31/1963
110000
Uncommenting any of the invalid calls causes a TypeError to be raised by the decorator.
      Here’s the result when the last two lines are allowed to run (as usual,
      I’ve omitted some of the error message text here to save space):
C:\code> python rangetest1_test.py
True
Bob Smith is 45 years old
birthday = 5/31/1963
110000
TypeError: Argument 1 not in 0.0..1.0
Running Python with its -O flag
      at a system command line will disable range testing, but also avoid the
      performance overhead of the wrapping layer—we wind up calling the
      original undecorated function directly. Assuming this is a debugging
      tool only, you can use this flag to optimize your program for production
      use:
C:\code> python -O rangetest1_test.py
False
Bob Smith is 45 years old
birthday = 5/31/1963
110000
231000

Generalizing for Keywords and Defaults, Too
The prior version illustrates the basics we need to employ, but
      it’s fairly limited—it supports validating arguments passed by position
      only, and it does not validate keyword arguments (in fact, it assumes
      that no keywords are passed in a way that makes argument position
      numbers incorrect). Additionally, it does nothing about arguments with
      defaults that may be omitted in a given call. That’s fine if all your
      arguments are passed by position and never defaulted, but less than
      ideal in a general tool. Python supports much more flexible
      argument-passing modes, which we’re not yet addressing.
The mutation of our example shown next does better. By matching
      the wrapped function’s expected arguments against the actual arguments
      passed in a call, it supports range validations for arguments passed by
      either position or keyword name, and it skips testing for default
      arguments omitted in the call. In short, arguments to be validated are
      specified by keyword arguments to the decorator, which later steps
      through both the *pargs positionals
      tuple and the **kargs keywords
      dictionary to validate.
"""
File rangetest.py: function decorator that performs range-test
validation for arguments passed to any function or method.

Arguments are specified by keyword to the decorator. In the actual
call, arguments may be passed by position or keyword, and defaults
may be omitted.  See rangetest_test.py for example use cases.
"""
trace = True

def rangetest(**argchecks):                 # Validate ranges for both+defaults
    def onDecorator(func):                  # onCall remembers func and argchecks
        if not __debug__:                   # True if "python -O main.py args..."
            return func                     # Wrap if debugging; else use original
        else:
            code     = func.__code__
            allargs  = code.co_varnames[:code.co_argcount]
            funcname = func.__name__

            def onCall(*pargs, **kargs):
                # All pargs match first N expected args by position
                # The rest must be in kargs or be omitted defaults
                expected    = list(allargs)
                positionals = expected[:len(pargs)]

                for (argname, (low, high)) in argchecks.items():
                    # For all args to be checked
                    if argname in kargs:
                        # Was passed by name
                        if kargs[argname] < low or kargs[argname] > high:
                            errmsg = '{0} argument "{1}" not in {2}..{3}'
                            errmsg = errmsg.format(funcname, argname, low, high)
                            raise TypeError(errmsg)

                    elif argname in positionals:
                        # Was passed by position
                        position = positionals.index(argname)
                        if pargs[position] < low or pargs[position] > high:
                            errmsg = '{0} argument "{1}" not in {2}..{3}'
                            errmsg = errmsg.format(funcname, argname, low, high)
                            raise TypeError(errmsg)
                    else:
                        # Assume not passed: default
                        if trace:
                            print('Argument "{0}" defaulted'.format(argname))

                return func(*pargs, **kargs)    # OK: run original call
            return onCall
    return onDecorator
The following test script shows how the decorator is
      used—arguments to be validated are given by keyword decorator arguments,
      and at actual calls we can pass by name or position and omit arguments
      with defaults even if they are to be validated otherwise:
"""
File rangetest_test.py (3.X + 2.X)
Comment lines raise TypeError unless "python -O" used on shell command line
"""
from __future__ import print_function # 2.X
from rangetest import rangetest

# Test functions, positional and keyword

@rangetest(age=(0, 120))                  # persinfo = rangetest(...)(persinfo)
def persinfo(name, age):
    print('%s is %s years old' % (name, age))

@rangetest(M=(1, 12), D=(1, 31), Y=(0, 2013))
def birthday(M, D, Y):
    print('birthday = {0}/{1}/{2}'.format(M, D, Y))

persinfo('Bob', 40)
persinfo(age=40, name='Bob')
birthday(5, D=1, Y=1963)
#persinfo('Bob', 150)
#persinfo(age=150, name='Bob')
#birthday(5, D=40, Y=1963)

# Test methods, positional and keyword

class Person:
    def __init__(self, name, job, pay):
        self.job  = job
        self.pay  = pay
                                          # giveRaise = rangetest(...)(giveRaise)
    @rangetest(percent=(0.0, 1.0))        # percent passed by name or position
    def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))

bob = Person('Bob Smith', 'dev', 100000)
sue = Person('Sue Jones', 'dev', 100000)
bob.giveRaise(.10)
sue.giveRaise(percent=.20)
print(bob.pay, sue.pay)
#bob.giveRaise(1.10)
#bob.giveRaise(percent=1.20)

# Test omitted defaults: skipped

@rangetest(a=(1, 10), b=(1, 10), c=(1, 10), d=(1, 10))
def omitargs(a, b=7, c=8, d=9):
    print(a, b, c, d)

omitargs(1, 2, 3, 4)
omitargs(1, 2, 3)
omitargs(1, 2, 3, d=4)
omitargs(1, d=4)
omitargs(d=4, a=1)
omitargs(1, b=2, d=4)
omitargs(d=8, c=7, a=1)

#omitargs(1, 2, 3, 11)         # Bad d
#omitargs(1, 2, 11)            # Bad c
#omitargs(1, 2, 3, d=11)       # Bad d
#omitargs(11, d=4)             # Bad a
#omitargs(d=4, a=11)           # Bad a
#omitargs(1, b=11, d=4)        # Bad b
#omitargs(d=8, c=7, a=11)      # Bad a
When this script is run, out-of-range arguments raise an exception
      as before, but arguments may be passed by either name or position, and
      omitted defaults are not validated. This code runs on both 2.X and 3.X.
      Trace its output and test this further on your own to experiment; it
      works as before, but its scope has been broadened:
C:\code> python rangetest_test.py
Bob is 40 years old
Bob is 40 years old
birthday = 5/1/1963
110000 120000
1 2 3 4
Argument "d" defaulted
1 2 3 9
1 2 3 4
Argument "c" defaulted
Argument "b" defaulted
1 7 8 4
Argument "c" defaulted
Argument "b" defaulted
1 7 8 4
Argument "c" defaulted
1 2 8 4
Argument "b" defaulted
1 7 7 8
On validation errors, we get an exception as before when one of
      the method test lines is uncommented, unless the -O command-line argument is passed to Python
      to disable the decorator’s logic:
TypeError: giveRaise argument "percent" not in 0.0..1.0

Implementation Details
This decorator’s code relies on both introspection APIs and subtle
      constraints of argument passing. To be fully general we could in
      principle try to mimic Python’s argument matching logic in its entirety
      to see which names have been passed in which modes, but that’s far too
      much complexity for our tool. It would be better if we could somehow
      match the names of testable arguments given to the decorator against the names of actual arguments expected by the function, to determine how the former map to the latter during a given call.
Function introspection
It turns out that the introspection API available on function objects and their associated
        code objects has exactly the tool we need. This API was briefly
        introduced in Chapter 19, but we’ll
        actually put it to use here. The set of expected argument names is
        simply the first N variable names attached to a
        function’s code object:
# In Python 3.X (and 2.6+ for compatibility)
>>> def func(a, b, c, e=True, f=None):       # Args: three required, two defaults
        x = 1                                # Plus two more local variables
        y = 2

>>> code = func.__code__                     # Code object of function object
>>> code.co_nlocals
7
>>> code.co_varnames                         # All local variable names
('a', 'b', 'c', 'e', 'f', 'x', 'y')
>>> code.co_varnames[:code.co_argcount]      # <== First N locals are expected args
('a', 'b', 'c', 'e', 'f')
And as usual, starred-argument names in the
        call proxy allow it to collect arbitrarily many arguments to be
        matched against the expected arguments so obtained from the function’s
        introspection API:
>>> def catcher(*pargs, **kargs): print('%s, %s' % (pargs, kargs))

>>> catcher(1, 2, 3, 4, 5)
(1, 2, 3, 4, 5), {}
>>> catcher(1, 2, c=3, d=4, e=5)             # Arguments at calls
(1, 2), {'d': 4, 'e': 5, 'c': 3}
The function object’s API is available in older Pythons, but the
        func.__code__ attribute is named
        func.func_code in 2.5 and earlier;
        the newer __code__ attribute is
        also redundantly available in 2.6 and later for portability. Run a
        dir call on function and code
        objects for more details. Code like the following would support 2.5
        and earlier, though the sys.version_info result itself is similarly
        nonportable—it’s a named tuple in recent Pythons, but we can use
        offsets on newer and older Pythons alike:
>>> import sys                               # For backward compatibility
>>> tuple(sys.version_info)                  # [0] is major release number
(3, 3, 0, 'final', 0)
>>> code = func.__code__ if sys.version_info[0] == 3 else func.func_code

Argument assumptions
Given the decorated function’s set of expected argument names,
        the solution relies upon two constraints on argument passing
        order imposed by Python (these still hold true in
        both 2.X and 3.X current releases):
	At the call, all positional arguments appear before all
            keyword arguments.

	In the def, all
            nondefault arguments appear before all default arguments.


That is, a nonkeyword argument cannot generally follow a keyword
        argument at a call, and a nondefault argument
        cannot follow a default argument at a definition.
        All “name=value” syntax must appear after any simple “name” in both
        places. As we’ve also learned, Python matches argument values passed
        by position to argument names in function headers from left to right,
        such that these values always match the leftmost
        names in headers. Keywords match by name instead, and a given argument
        can receive only one value.
To simplify our work, we can also make the assumption that a
        call is valid in general—that is, that all
        arguments either will receive values (by name or position), or will be
        omitted intentionally to pick up defaults. This assumption won’t
        necessarily hold, because the function has not yet actually been
        called when the wrapper logic tests validity—the call may still fail
        later when invoked by the wrapper layer, due to incorrect argument
        passing. As long as that doesn’t cause the wrapper to fail any more
        badly, though, we can finesse the validity of the call. This helps,
        because validating calls before they are actually made would require
        us to emulate Python’s argument-matching algorithm in full—again, too
        complex a procedure for our tool.

Matching algorithm
Now, given these constraints and assumptions, we can allow for
        both keywords and omitted default arguments in the call with this
        algorithm. When a call is intercepted, we can make the following
        assumptions and deductions:
	Let N be the number of passed positional arguments, obtained from the
            length of the *pargs
            tuple.

	All N positional arguments in *pargs must match the first
            N expected arguments obtained from the
            function’s code object. This is true per Python’s call ordering
            rules, outlined earlier, since all positionals precede all
            keywords in a call.

	To obtain the names of arguments actually passed by
            position, we can slice the list of all expected arguments up to
            the length N of the *pargs passed positionals tuple.

	Any arguments after the first N
            expected arguments either were passed by keyword or were defaulted
            by omission at the call.

	For each argument name to be validated by the
            decorator:
	If the name is in **kargs, it was passed by
                name—indexing **kargs gives
                its passed value.

	If the name is in the first N
                expected arguments, it was passed by position—its relative
                position in the expected list gives its relative position in
                *pargs.

	Otherwise, we can assume it was omitted in the call and
                defaulted, and need not be checked.




In other words, we can skip tests for arguments that were
        omitted in a call by assuming that the first N
        actually passed positional arguments in *pargs must match the first
        N argument names in the list of all expected
        arguments, and that any others must either have been passed by keyword
        and thus be in **kargs, or
        have been defaulted. Under this scheme, the decorator
        will simply skip any argument to be checked that was omitted between
        the rightmost positional argument and the leftmost keyword argument;
        between keyword arguments; or after the rightmost positional in
        general. Trace through the decorator and its test script to see how
        this is realized in code.


Open Issues
Although our range-testing tool works as planned, three caveats
      remain—it doesn’t detect invalid calls, doesn’t handle some
      arbitrary-argument signatures, and doesn’t fully support nesting.
      Improvements may require extension or altogether different approaches.
      Here’s a quick rundown of the issues.
Invalid calls
First, as mentioned earlier, calls to the original function that
        are not valid still fail in our final decorator.
        The following both trigger exceptions, for example:
omitargs()
omitargs(d=8, c=7, b=6)
These only fail, though, where we try to invoke the original
        function, at the end of the wrapper. While we could try to imitate
        Python’s argument matching to avoid this, there’s not much reason to
        do so—since the call would fail at this point anyhow, we might as well
        let Python’s own argument-matching logic detect the problem for
        us.

Arbitrary arguments
Second, although our final version handles positional arguments, keyword arguments, and
        omitted defaults, it still doesn’t do anything explicit about *pargs and
        **kargs
        starred-argument names that may be used in a decorated function that
        accepts arbitrarily many arguments itself. We
        probably don’t need to care for our purposes, though:
	If an extra keyword argument is passed,
            its name will show up in **kargs and
            can be tested normally if mentioned to the decorator.

	If an extra keyword argument is not
            passed, its name won’t be in either **kargs or
            the sliced expected positionals list, and it will thus not be
            checked—it is treated as though it were defaulted, even though it
            is really an optional extra argument.

	If an extra positional argument is
            passed, there’s no way to reference it in the decorator anyhow—its
            name won’t be in either **kargs or
            the sliced expected arguments list, so it will simply be skipped.
            Because such arguments are not listed in the function’s
            definition, there’s no way to map a name given to the decorator
            back to an expected relative position.


In other words, as it is the code supports testing arbitrary
        keyword arguments by name, but not arbitrary positionals that are
        unnamed and hence have no set position in the function’s argument
        signature. In terms of the function object’s API, here’s the effect of
        these tools in decorated functions:
>>> def func(*kargs, **pargs): pass
>>> code = func.__code__
>>> code.co_nlocals, code.co_varnames
(2, ('kargs', 'pargs'))
>>> code.co_argcount, code.co_varnames[:code.co_argcount]
(0, ())

>>> def func(a, b, *kargs, **pargs): pass
>>> code = func.__code__
>>> code.co_argcount, code.co_varnames[:code.co_argcount]
(2, ('a', 'b'))
Because starred-argument names show up as locals but
        not as expected arguments, they won’t be a factor
        in our matching algorithm—names preceding them in function headers can
        be validated as usual, but not any extra positional arguments passed.
        In principle, we could extend the decorator’s interface to support
        *pargs
        in the decorated function, too, for the rare cases where this might be
        useful (e.g., a special argument name with a test to apply to all
        arguments in the wrapper’s *pargs beyond the
        length of the expected arguments list), but we’ll pass on such an
        extension here.

Decorator nesting
Finally, and perhaps most subtly, this code’s approach does not fully support
        use of decorator nesting to combine steps.
        Because it analyzes arguments using names in function definitions, and
        the names of the call proxy function returned by a nested decoration
        won’t correspond to argument names in either the original function or
        decorator arguments, it does not fully support use in nested
        mode.
Technically, when nested, only the most deeply nested
        appearance’s validations are run in full; all other nesting levels run
        tests on arguments passed by keyword only. Trace the code to see why;
        because the onCall proxy’s call
        signature expects no named positional arguments, any to-be-validated
        arguments passed to it by position are treated as if they were omitted
        and hence defaulted, and are thus skipped.
This may be inherent in this tool’s approach—proxies change the
        argument name signatures at their levels, making it impossible to
        directly map names in decorator arguments to positions in passed
        argument sequences. When proxies are present, argument
        names ultimately apply to keywords only; by
        contrast, the first-cut solution’s argument
        positions may support proxies better, but do not
        fully support keywords.
In lieu of this nesting capability, we’ll generalize this
        decorator to support multiple types of validations in a single
        decoration in an end-of-chapter quiz solution, which also gives
        examples of the nesting limitation in action. Since we’ve already
        neared the space allocation for this example, though, if you care
        about these or any other further improvements, you’ve officially
        crossed over into the realm of suggested exercises.


Decorator Arguments Versus Function Annotations
Interestingly, the function annotation feature introduced in Python 3.X (3.0
      and later) could provide an alternative to the decorator arguments used
      by our example to specify range tests. As we learned in Chapter 19, annotations allow us to associate
      expressions with arguments and return values, by coding them in the
      def header line itself; Python
      collects annotations in a dictionary and attaches it to the annotated
      function.
We could use this in our example to code range limits in the
      header line, instead of in decorator arguments. We would still need a
      function decorator to wrap the function in order to intercept later
      calls, but we would essentially trade decorator argument syntax:
@rangetest(a=(1, 5), c=(0.0, 1.0))
def func(a, b, c):                         # func = rangetest(...)(func)
    print(a + b + c)
for annotation syntax like this:
@rangetest
def func(a:(1, 5), b, c:(0.0, 1.0)):
    print(a + b + c)
That is, the range constraints would be moved into the function
      itself, instead of being coded externally. The following script
      illustrates the structure of the resulting decorators under both
      schemes, in incomplete skeleton code for brevity. The decorator
      arguments code pattern is that of our complete solution shown earlier;
      the annotation alternative requires one less level of nesting, because
      it doesn’t need to retain decorator arguments as state:
# Using decorator arguments (3.X + 2.X)

def rangetest(**argchecks):
    def onDecorator(func):
        def onCall(*pargs, **kargs):
            print(argchecks)
            for check in argchecks:
                pass                         # Add validation code here
            return func(*pargs, **kargs)
        return onCall
    return onDecorator

@rangetest(a=(1, 5), c=(0.0, 1.0))
def func(a, b, c):                           # func = rangetest(...)(func)
    print(a + b + c)

func(1, 2, c=3)                              # Runs onCall, argchecks in scope

# Using function annotations (3.X only)

def rangetest(func):
    def onCall(*pargs, **kargs):
        argchecks = func.__annotations__
        print(argchecks)
        for check in argchecks:
            pass                             # Add validation code here
        return func(*pargs, **kargs)
    return onCall

@rangetest
def func(a:(1, 5), b, c:(0.0, 1.0)):         # func = rangetest(func)
    print(a + b + c)

func(1, 2, c=3)                              # Runs onCall, annotations on func
When run, both schemes have access to the same validation test
      information, but in different forms—the decorator argument version’s
      information is retained in an argument in an enclosing scope, and the
      annotation version’s information is retained in an attribute of the
      function itself. In 3.X only, due to the use of function
      annotations:
C:\code> py −3 decoargs-vs-annotation.py
{'a': (1, 5), 'c': (0.0, 1.0)}
6
{'a': (1, 5), 'c': (0.0, 1.0)}
6
I’ll leave fleshing out the rest of the annotation-based version
      as a suggested exercise; its code would be identical to that of our
      complete solution shown earlier, because range-test information is
      simply on the function instead of in an enclosing scope. Really, all
      this buys us is a different user interface for our tool—it will still
      need to match argument names against expected argument names to obtain
      relative positions as before.
In fact, using annotation instead of decorator arguments in this
      example actually limits its utility. For one thing,
      annotation only works under Python 3.X, so 2.X is no longer supported;
      function decorators with arguments, on the other hand, work in both
      versions.
More importantly, by moving the validation specifications into the
      def header, we essentially commit the
      function to a single role—since annotation allows
      us to code only one expression per argument, it can have only one
      purpose. For instance, we cannot use range-test annotations for any
      other role.
By contrast, because decorator arguments are coded outside the
      function itself, they are both easier to remove and more
      general—the code of the function itself does not imply a
      single decoration purpose. Crucially, by nesting
      decorators with arguments, we can apply multiple augmentation steps to
      the same function; annotation directly supports only one. With decorator
      arguments, the function itself also retains a simpler, normal
      appearance.
Still, if you have a single purpose in mind, and you can commit to
      supporting 3.X only, the choice between annotation and decorator
      arguments is largely stylistic and subjective. As is so often true in
      life, one person’s decoration or annotation may well be another’s
      syntactic clutter!

Other Applications: Type Testing (If You Insist!)
The coding pattern we’ve arrived at for processing arguments in decorators
      could be applied in other contexts. Checking argument data types at
      development time, for example, is a straightforward extension:
def typetest(**argchecks):
    def onDecorator(func):
           ...
           def onCall(*pargs, **kargs):
                positionals = list(allargs)[:len(pargs)]
                for (argname, type) in argchecks.items():
                    if argname in kargs:
                        if not isinstance(kargs[argname], type):
                            ...
                            raise TypeError(errmsg)
                    elif argname in positionals:
                        position = positionals.index(argname)
                        if not isinstance(pargs[position], type):
                            ...
                            raise TypeError(errmsg)
                    else:
                        # Assume not passed: default
                return func(*pargs, **kargs)
            return onCall
    return onDecorator

@typetest(a=int, c=float)
def func(a, b, c, d):                    # func = typetest(...)(func)
    ...

func(1, 2, 3.0, 4)                       # OK
func('spam', 2, 99, 4)                   # Triggers exception correctly
Using function annotations instead of decorator arguments for such
      a decorator, as described in the prior section, would make this look
      even more like type declarations in other languages:
@typetest
def func(a: int, b, c: float, d):        # func = typetest(func)
    ...                                  # Gasp!...
But we’re getting dangerously close to triggering a “flag on the
      play” here. As you should have learned in this book, this particular
      role is generally a bad idea in working code, and, much like private
      declarations, is not at all Pythonic (and is often
      a symptom of an ex-C++ programmer’s first attempts to use
      Python).
Type testing restricts your function to work on specific types
      only, instead of allowing it to operate on any types with compatible
      interfaces. In effect, it limits your code and
      breaks its flexibility. On the other hand, every
      rule has exceptions; type checking may come in handy in isolated cases
      while debugging and when interfacing with code written in more
      restrictive languages, such as C++.
Still, this general pattern of argument processing might also be
      applicable in a variety of less controversial roles. We might even
      generalize further by passing in a test function,
      much as we did to add Public
      decorations earlier; a single copy of this sort of code would then
      suffice for both range and type testing, and perhaps other similar
      goals. In fact, we will generalize this way in the
      end-of-chapter quiz coming up, so we’ll leave this extension as a
      cliffhanger here.


Chapter Summary
In this chapter, we explored decorators—both the function and class
    varieties. As we learned, decorators are a way to insert code to be run
    automatically when a function or class is defined. When a decorator is
    used, Python rebinds a function or class name to the callable object it
    returns. This hook allows us to manage functions and classes themselves,
    or later calls to them—by adding a layer of wrapper logic to catch later
    calls, we can augment both function calls and instance interfaces. As we
    also saw, manager functions and manual name rebinding can achieve the same
    effect, but decorators provide a more explicit and uniform
    solution.
As we also learned, class decorators can be used to manage classes
    themselves, rather than just their instances. Because this functionality
    overlaps with metaclasses—the topic of the next and
    final technical chapter— you’ll have to read ahead for the conclusion to
    this story, and that of this book at large. First, though, let’s work
    through the following quiz. Because this chapter was mostly focused on its
    examples, its quiz will ask you to modify some of its code in order to
    review. You can find the original versions’ code in the book’s examples
    package (see the preface for access pointers). If you’re pressed for time,
    study the modifications listed in the answers instead—programming is as
    much about reading code as writing it.

Test Your Knowledge: Quiz
	Method decorators: As mentioned in one of this chapter’s notes, the timerdeco2.py module’s timer function
        decorator with decorator arguments that we wrote in the section “Adding Decorator Arguments” can be applied only to simple
        functions, because it uses a nested class with a
        __call__ operator overloading
        method to catch calls. This structure does not work for a class’s
        methods because the decorator instance is passed
        to self, not the subject class
        instance.
Rewrite this decorator so that it can be applied to both simple
        functions and methods in classes, and test it on both functions and
        methods. (Hint: see the section “Class Blunders I: Decorating Methods” for pointers.)
        Note that you will probably need to use function object
        attributes to keep track of total time, since you
        won’t have a nested class for state retention and can’t access
        nonlocals from outside the decorator code. As an added bonus, this
        makes your decorator usable on both Python 3.X and 2.X.

	Class decorators: The Public/Private class decorators we wrote in module
        access2.py in this chapter’s
        first case study example will add performance
        costs to every attribute fetch in a decorated class.
        Although we could simply delete the @ decoration line to gain speed, we could
        also augment the decorator itself to check the __debug__ switch and perform no wrapping at
        all when the –O Python flag is
        passed on the command line—just as we did for the argument range-test
        decorators. That way, we can speed our program without changing its
        source, via command-line arguments (python –O
        main.py...). While we’re at it, we could also use one of the
        mix-in superclass techniques we studied to catch a few
        built-in operations in Python 3.X too. Code and
        test these two extensions.

	Generalized argument validations: The
        function and method decorator we wrote in rangetest.py checks that passed arguments
        are in a valid range, but we also saw that the same pattern could
        apply to similar goals such as argument type testing, and possibly
        more. Generalize the range tester so that its single code base can be
        used for multiple argument validations. Passed-in functions may be the
        simplest solution given the coding structure here, though in more
        OOP-based contexts, subclasses that provide expected methods can often
        provide similar generalization routes as well.



Test Your Knowledge: Answers
	Here’s one way to code the first question’s solution, and its
        output (though some methods may run too fast to register reported
        time). The trick lies in replacing nested classes with
        nested functions, so the self argument is not the decorator’s
        instance, and assigning the total time to the decorator function
        itself so it can be fetched later through the original rebound name
        (see the section “State Information Retention Options” of this chapter
        for details—functions support arbitrary attribute attachment, and the
        function name is an enclosing scope reference in this context). If you
        wish to expand this further, it might be useful to also record the
        best (minimum) call time in addition to the total
        time, as we did in Chapter 21’s
        timer examples.
"""
File timerdeco.py (3.X + 2.X)
Call timer decorator for both functions and methods.
"""
import time

def timer(label='', trace=True):             # On decorator args: retain args
    def onDecorator(func):                   # On @: retain decorated func
        def onCall(*args, **kargs):          # On calls: call original
            start   = time.clock()           # State is scopes + func attr
            result  = func(*args, **kargs)
            elapsed = time.clock() - start
            onCall.alltime += elapsed
            if trace:
                format = '%s%s: %.5f, %.5f'
                values = (label, func.__name__, elapsed, onCall.alltime)
                print(format % values)
            return result
        onCall.alltime = 0
        return onCall
    return onDecorator
I’ve coded tests in a separate file here to allow the decorator
        to be easily reused:
"""
File timerdeco-test.py
"""
from __future__ import print_function # 2.X
from timerdeco import timer
import sys
force = list if sys.version_info[0] == 3 else (lambda X: X)

print('---------------------------------------------------')
# Test on functions

@timer(trace=True, label='[CCC]==>')
def listcomp(N):                             # Like listcomp = timer(...)(listcomp)
    return [x * 2 for x in range(N)]         # listcomp(...) triggers onCall

@timer('[MMM]==>')
def mapcall(N):
    return force(map((lambda x: x * 2), range(N)))   # list() for 3.X views

for func in (listcomp, mapcall):
    result = func(5)                  # Time for this call, all calls, return value
    func(5000000)
    print(result)
    print('allTime = %s\n' % func.alltime)   # Total time for all calls

print('---------------------------------------------------')
# Test on methods

class Person:
    def __init__(self, name, pay):
        self.name = name
        self.pay  = pay

    @timer()
    def giveRaise(self, percent):            # giveRaise = timer()(giveRaise)
        self.pay *= (1.0 + percent)          # tracer remembers giveRaise

    @timer(label='**')
    def lastName(self):                      # lastName = timer(...)(lastName)
        return self.name.split()[-1]         # alltime per class, not instance

bob = Person('Bob Smith', 50000)
sue = Person('Sue Jones', 100000)
bob.giveRaise(.10)
sue.giveRaise(.20)                           # runs onCall(sue, .10)
print(int(bob.pay), int(sue.pay))
print(bob.lastName(), sue.lastName())        # runs onCall(bob), remembers lastName
print('%.5f %.5f' % (Person.giveRaise.alltime, Person.lastName.alltime))
If all goes according to plan, you’ll see the following output
        in both Python 3.X and 2.X, albeit with timing results that will vary
        per Python and machine:
c:\code> py −3 timerdeco-test.py
---------------------------------------------------
[CCC]==>listcomp: 0.00001, 0.00001
[CCC]==>listcomp: 0.57930, 0.57930
[0, 2, 4, 6, 8]
allTime = 0.5793010457092784

[MMM]==>mapcall: 0.00002, 0.00002
[MMM]==>mapcall: 1.08609, 1.08611
[0, 2, 4, 6, 8]
allTime = 1.0861149923442373

---------------------------------------------------
giveRaise: 0.00001, 0.00001
giveRaise: 0.00000, 0.00001
55000 120000
**lastName: 0.00001, 0.00001
**lastName: 0.00000, 0.00001
Smith Jones
0.00001 0.00001

	The following three files satisfy the second question. The first
        gives the decorator—it’s been augmented to return
        the original class in optimized mode (–O), so attribute accesses don’t incur a
        speed hit. Mostly, it just adds the debug mode test statements and
        indents the class further to the right:
"""
File access.py (3.X + 2.X)
Class decorator with Private and Public attribute declarations.
Controls external access to attributes stored on an instance, or
inherited by it from its classes in any fashion.

Private declares attribute names that cannot be fetched or assigned
outside the decorated class, and Public declares all the names that can.

Caveats: in 3.X catches built-ins coded in BuiltinMixins only (expand me);
as coded, Public may be less useful than Private for operator overloading.
"""
from access_builtins import BuiltinsMixin    # A partial set!

traceMe = False
def trace(*args):
    if traceMe: print('[' + ' '.join(map(str, args)) + ']')

def accessControl(failIf):
    def onDecorator(aClass):
        if not __debug__:
            return aClass
        else:
            class onInstance(BuiltinsMixin):
                def __init__(self, *args, **kargs):
                    self.__wrapped = aClass(*args, **kargs)

                def __getattr__(self, attr):
                    trace('get:', attr)
                    if failIf(attr):
                        raise TypeError('private attribute fetch: ' + attr)
                    else:
                        return getattr(self.__wrapped, attr)

                def __setattr__(self, attr, value):
                    trace('set:', attr, value)
                    if attr == '_onInstance__wrapped':
                        self.__dict__[attr] = value
                    elif failIf(attr):
                        raise TypeError('private attribute change: ' + attr)
                    else:
                        setattr(self.__wrapped, attr, value)
            return onInstance
    return onDecorator

def Private(*attributes):
    return accessControl(failIf=(lambda attr: attr in attributes))

def Public(*attributes):
    return accessControl(failIf=(lambda attr: attr not in attributes))
I’ve also used one of our mix-in techniques to add some operator
        overloading method redefinitions to the wrapper class, so that in 3.X
        it correctly delegates built-in operations to subject classes that use
        these methods. As coded, the proxy is a default classic class in 2.X
        that routes these through __getattr__ already, but in 3.X is a
        new-style class that does not. The mix-in used here requires listing
        such methods in Public decorators;
        see earlier for alternatives that do not (but that also do not allow
        built-ins to be made private), and expand this class as needed:
"""
File access_builtins.py (from access2_builtins2b.py)
Route some built-in operations back to proxy class __getattr__, so they
work the same in 3.X as direct by-name calls and 2.X's default classic classes.
Expand me as needed to include other __X__ names used by proxied objects.
"""

class BuiltinsMixin:
    def reroute(self, attr, *args, **kargs):
        return self.__class__.__getattr__(self, attr)(*args, **kargs)

    def __add__(self, other):
        return self.reroute('__add__', other)
    def __str__(self):
        return self.reroute('__str__')
    def __getitem__(self, index):
        return self.reroute('__getitem__', index)
    def __call__(self, *args, **kargs):
        return self.reroute('__call__', *args, **kargs)

    # Plus any others used by wrapped objects in 3.X only
Here too I split the self-test code off to a separate file, so
        the decorator could be imported elsewhere without triggering the
        tests, and without requiring a __name__ test and indenting:
"""
File: access-test.py
Test code: separate file to allow decorator reuse.
"""
import sys
from access import Private, Public

print('---------------------------------------------------------')
# Test 1: names are public if not private

@Private('age')                             # Person = Private('age')(Person)
class Person:                               # Person = onInstance with state
    def __init__(self, name, age):
        self.name = name
        self.age  = age                     # Inside accesses run normally
    def __add__(self, N):
        self.age += N                       # Built-ins caught by mix-in in 3.X
    def __str__(self):
        return '%s: %s' % (self.name, self.age)

X = Person('Bob', 40)
print(X.name)                               # Outside accesses validated
X.name = 'Sue'
print(X.name)
X + 10
print(X)

try:    t = X.age                           # FAILS unless "python -O"
except: print(sys.exc_info()[1])
try:    X.age = 999                         # ditto
except: print(sys.exc_info()[1])

print('---------------------------------------------------------')
# Test 2: names are private if not public
# Operators must be non-Private or Public in BuiltinMixin used

@Public('name', '__add__', '__str__', '__coerce__')
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age  = age
    def __add__(self, N):
        self.age += N                       # Built-ins caught by mix-in in 3.X
    def __str__(self):
        return '%s: %s' % (self.name, self.age)

X = Person('bob', 40)                       # X is an onInstance
print(X.name)                               # onInstance embeds Person
X.name = 'sue'
print(X.name)
X + 10
print(X)

try:    t = X.age                           # FAILS unless "python -O"
except: print(sys.exc_info()[1])
try:    X.age = 999                         # ditto
except: print(sys.exc_info()[1])
Finally, if all works as expected, this test’s output is as
        follows in both Python 3.X and 2.X—the same code applied to the same
        class decorated with Private and
        then with Public:
c:\code> py −3 access-test.py
---------------------------------------------------------
Bob
Sue
Sue: 50
private attribute fetch: age
private attribute change: age
---------------------------------------------------------
bob
sue
sue: 50
private attribute fetch: age
private attribute change: age

c:\code> py −3 -O access-test.py       # Suppresses the four access error messages

	Here’s a generalized argument validator for you to study on your
        own. It uses a passed-in validation function, to which it passes the
        test’s criteria value coded for the argument in the decorator. This
        handles ranges, type tests, value testers, and almost anything else
        you can dream up in an expressive language like Python. I’ve also
        refactored the code a bit to remove some redundancy, and automated
        test failure processing. See this module’s self-test for usage
        examples and expected output. Per this example’s caveats described
        earlier, this decorator doesn’t fully work in nested mode as is—only
        the most deeply nested validation is run for positional arguments—but
        its arbitrary valuetest can be used
        to combine differing types of tests in a single decoration (though the
        amount of code needed in this mode may negate much of its benefits
        over a simple assert!).
"""
File argtest.py: (3.X + 2.X) function decorator that performs
arbitrary passed-in validations for arguments passed to any
function method. Range and type tests are two example uses;
valuetest handles more arbitrary tests on an argument's value.

Arguments are specified by keyword to the decorator. In the actual
call, arguments may be passed by position or keyword, and defaults
may be omitted.  See self-test code below for example use cases.

Caveats: doesn't fully support nesting because call proxy args
differ; doesn't validate extra args passed to a decoratee's *args;
and may be no easier than an assert except for canned use cases.
"""
trace = False


def rangetest(**argchecks):
    return argtest(argchecks, lambda arg, vals: arg < vals[0] or arg > vals[1])

def typetest(**argchecks):
    return argtest(argchecks, lambda arg, type: not isinstance(arg, type))

def valuetest(**argchecks):
    return argtest(argchecks, lambda arg, tester: not tester(arg))


def argtest(argchecks, failif):             # Validate args per failif + criteria
    def onDecorator(func):                  # onCall retains func, argchecks, failif
        if not __debug__:                   # No-op if "python -O main.py args..."
            return func
        else:
            code = func.__code__
            expected = list(code.co_varnames[:code.co_argcount])
            def onError(argname, criteria):
                 errfmt = '%s argument "%s" not %s'
                 raise TypeError(errfmt % (func.__name__, argname, criteria))

            def onCall(*pargs, **kargs):
                positionals = expected[:len(pargs)]
                for (argname, criteria) in argchecks.items():      # For all to test
                    if argname in kargs:                           # Passed by name
                        if failif(kargs[argname], criteria):
                            onError(argname, criteria)

                    elif argname in positionals:                   # Passed by posit
                        position = positionals.index(argname)
                        if failif(pargs[position], criteria):
                            onError(argname, criteria)
                    else:                                          # Not passed-dflt
                        if trace:
                            print('Argument "%s" defaulted' % argname)
                return func(*pargs, **kargs)   # OK: run original call
            return onCall
    return onDecorator


if __name__ == '__main__':
    import sys
    def fails(test):
        try:    result = test()
        except: print('[%s]' % sys.exc_info()[1])
        else:   print('?%s?' % result)

    print('--------------------------------------------------------------------')
    # Canned use cases: ranges, types

    @rangetest(m=(1, 12), d=(1, 31), y=(1900, 2013))
    def date(m, d, y):
        print('date = %s/%s/%s' % (m, d, y))

    date(1, 2, 1960)
    fails(lambda: date(1, 2, 3))

    @typetest(a=int, c=float)
    def sum(a, b, c, d):
        print(a + b + c + d)

    sum(1, 2, 3.0, 4)
    sum(1, d=4, b=2, c=3.0)
    fails(lambda: sum('spam', 2, 99, 4))
    fails(lambda: sum(1, d=4, b=2, c=99))

    print('--------------------------------------------------------------------')
    # Arbitrary/mixed tests

    @valuetest(word1=str.islower, word2=(lambda x: x[0].isupper()))
    def msg(word1='mighty', word2='Larch', label='The'):
        print('%s %s %s' % (label, word1, word2))

    msg()  # word1 and word2 defaulted
    msg('majestic', 'Moose')
    fails(lambda: msg('Giant', 'Redwood'))
    fails(lambda: msg('great', word2='elm'))

    print('--------------------------------------------------------------------')
    # Manual type and range tests

    @valuetest(A=lambda x: isinstance(x, int), B=lambda x: x > 0 and x < 10)
    def manual(A, B):
        print(A + B)

    manual(100, 2)
    fails(lambda: manual(1.99, 2))
    fails(lambda: manual(100, 20))

    print('--------------------------------------------------------------------')
    # Nesting: runs both, by nesting proxies on original.
    # Open issue: outer levels do not validate positionals due
    # to call proxy function's differing argument signature;
    # when trace=True, in all but the last of these "X" is
    # classified as defaulted due to the proxy's signature.

    @rangetest(X=(1, 10))
    @typetest(Z=str)                      # Only innermost validates positional args
    def nester(X, Y, Z):
        return('%s-%s-%s' % (X, Y, Z))

    print(nester(1, 2, 'spam'))                # Original function runs properly
    fails(lambda: nester(1, 2, 3))             # Nested typetest is run:  positional
    fails(lambda: nester(1, 2, Z=3))           # Nested typetest is run:  keyword
    fails(lambda: nester(0, 2, 'spam'))        # <==Outer rangetest not run: posit.
    fails(lambda: nester(X=0, Y=2, Z='spam'))  # Outer rangetest is run:  keyword
This module’s self-test output in both 3.X and 2.X follows (some
        2.X object displays vary slightly): as usual, correlate with the
        source for more insights.
c:\code> py −3 argtest.py
--------------------------------------------------------------------
date = 1/2/1960
[date argument "y" not (1900, 2013)]
10.0
10.0
[sum argument "a" not <class 'int'>]
[sum argument "c" not <class 'float'>]
--------------------------------------------------------------------
The mighty Larch
The majestic Moose
[msg argument "word1" not <method 'islower' of 'str' objects>]
[msg argument "word2" not <function <lambda> at 0x0000000002A096A8>]
--------------------------------------------------------------------
102
[manual argument "A" not <function <lambda> at 0x0000000002A09950>]
[manual argument "B" not <function <lambda> at 0x0000000002A09B70>]
--------------------------------------------------------------------
1-2-spam
[nester argument "Z" not <class 'str'>]
[nester argument "Z" not <class 'str'>]
?0-2-spam?
[onCall argument "X" not (1, 10)]
Finally, as we’ve learned, this decorator’s coding structure
        works for both functions and methods:
# File argtest_testmeth.py
from argtest import rangetest, typetest

class C:
    @rangetest(a=(1, 10))
    def meth1(self, a):
        return a * 1000

    @typetest(a=int)
    def meth2(self, a):
        return a * 1000

>>> from argtest_testmeth import C
>>> X = C()
>>> X.meth1(5)
5000
>>> X.meth1(20)
TypeError: meth1 argument "a" not (1, 10)
>>> X.meth2(20)
20000
>>> X.meth2(20.9)
TypeError: meth2 argument "a" not <class 'int'>










Chapter 40. Metaclasses
In the prior chapter, we explored decorators and studied various
  examples of their use. In this final technical chapter of the book, we’re
  going to continue our tool-builders focus and investigate another advanced
  topic: metaclasses.
In a sense, metaclasses simply extend the code-insertion model of decorators. As we
  learned in the prior chapter, function and class decorators allow us to
  intercept and augment function calls and class instance creation calls. In a
  similar spirit, metaclasses allow us to intercept and augment
  class creation—they provide an API for inserting extra
  logic to be run at the conclusion of a class statement, albeit in different ways than
  decorators. Accordingly, they provide a general protocol for managing class
  objects in a program.
Like all the subjects dealt with in this part of the book, this is an
  advanced topic that can be investigated on an as-needed
  basis. In practice, metaclasses allow us to gain a high level of control
  over how a set of classes works. This is a powerful concept, and metaclasses
  are not intended for most application programmers. Nor, frankly, is this a
  topic for the faint of heart—some parts of this chapter may warrant extra
  focus (and others might even owe attribution to Dr. Seuss!).
On the other hand, metaclasses open the door to a variety of coding
  patterns that may be difficult or impossible to achieve otherwise, and they
  are especially of interest to programmers seeking to write flexible
  APIs or programming tools for others to use. Even if
  you don’t fall into that category, though, metaclasses can teach you much
  about Python’s class model in general (as we’ll see, they even impact
  inheritance), and are prerequisite to understanding
  code that employs them. Like other advanced tools, metaclasses have begun
  appearing in Python programs more often than their creators may have
  intended.
As in the prior chapter, part of our goal here is also to show more
  realistic code examples than we did earlier in this book. Although
  metaclasses are a core language topic and not themselves an application
  domain, part of this chapter’s agenda is to spark your interest in exploring
  larger application-programming examples after you finish this book.
Because this is the final technical chapter in this book, it also
  begins to wrap up some threads concerning Python itself that we’ve met often
  along the way and will finalize in the conclusion that follows. Where you go
  after this book is up to you, of course, but in an open source project it’s
  important to keep the big picture in mind while hacking the small
  details.
To Metaclass or Not to Metaclass
Metaclasses are perhaps the most advanced topic in this book, if not the
    Python language as a whole. To borrow a quote from the
    comp.lang.python newsgroup by veteran Python core
    developer Tim Peters (who is also the author of the famous “import this”
    Python motto):
[Metaclasses] are deeper magic than 99% of users should ever worry
      about. If you wonder whether you need them, you don’t (the people who
      actually need them know with certainty that they need them, and don’t
      need an explanation about why).

In other words, metaclasses are primarily intended for a subset of
    programmers building APIs and tools for others to use. In many (if not
    most) cases, they are probably not the best choice in applications work.
    This is especially true if you’re developing code that other people will
    use in the future. Coding something “because it seems cool” is not
    generally a reasonable justification, unless you are experimenting or
    learning.
Still, metaclasses have a wide variety of potential roles, and it’s
    important to know when they can be useful. For example, they can be used
    to enhance classes with features like tracing, object persistence,
    exception logging, and more. They can also be used to construct portions
    of a class at runtime based upon configuration files, apply function
    decorators to every method of a class generically, verify conformance to
    expected interfaces, and so on.
In their more grandiose incarnations, metaclasses can even be used
    to implement alternative coding patterns such as aspect-oriented
    programming, object/relational mappers (ORMs) for databases, and more.
    Although there are often alternative ways to achieve such results—as we’ll
    see, the roles of class decorators and metaclasses
    often intersect—metaclasses provide a formal model tailored to those
    tasks. We don’t have space to explore all such applications first-hand in
    this chapter, of course, but you should feel free to search the Web for
    additional use cases after studying the basics here.
Probably the reason for studying metaclasses most relevant to this
    book is that this topic can help demystify Python’s class mechanics in
    general. For instance, we’ll see that they are an intrinsic part of the
    language’s new-style inheritance model finally formalized in full here.
    Although you may or may not code or reuse them in your work, a cursory
    understanding of metaclasses can impart a deeper understanding of Python at large.1
Increasing Levels of “Magic”
Most of this book has focused on straightforward
      application-coding techniques—the modules, functions, and classes that
      most programmers spend their time writing to achieve real-world goals.
      The majority of Python’s users may use classes and make instances, and
      might even do a bit of operator overloading, but they probably won’t get
      too deep into the details of how their classes actually work.
However, in this book we’ve also seen a variety of tools that
      allow us to control Python’s behavior in generic ways, and that often
      have more to do with Python internals or tool building than with
      application-programming domains. As a review, and to help us place
      metaclasses in the tools spectrum:
	Introspection attributes and tools
	Special attributes like __class__ and __dict__ allow us to inspect internal
            implementation aspects of Python objects, in order to process them
            generically—to list all attributes of an object, display a class’s
            name, and so on. As we’ve also seen, tools such as dir and getattr can serve similar roles when
            “virtual” attributes such as slots must be supported.

	Operator overloading methods
	Specially named methods such as __str__ and __add__ coded in classes intercept and
            provide behavior for built-in operations applied to class
            instances, such as printing, expression operators, and so on. They
            are run automatically in response to built-in operations and allow
            classes to conform to expected interfaces.

	Attribute interception methods
	A special category of operator overloading methods provides
            a way to intercept attribute accesses on instances generically:
            __getattr__, __setattr__, __delattr__, and __getattribute__ allow wrapper (a.k.a.
            proxy) classes to insert automatically run code that may validate
            attribute requests and delegate them to embedded objects. They
            allow any number of attributes of an object to be computed when
            accessed—either selected attributes, or all of them.

	Class properties
	The property built-in
            allows us to associate code with a specific class attribute that
            is automatically run when the attribute is fetched, assigned, or
            deleted. Though not as generic as the prior paragraph’s tools,
            properties allow for automatic code invocation on access to
            specific attributes.

	Class attribute descriptors
	Really, property is a
            succinct way to define an attribute descriptor that runs functions
            on access automatically. Descriptors allow us to code in a
            separate class __get__,
            __set__, and __delete__ handler methods that are run
            automatically when an attribute assigned to an instance of that
            class is accessed. They provide a general way to insert arbitrary
            code that is run implicitly when a specific attribute is accessed
            as part of the normal attribute lookup procedure.

	Function and class decorators
	As we saw in Chapter 39, the special
            @callable syntax for decorators
            allows us to add logic to be automatically run when a function is
            called or a class instance is created. This wrapper logic can
            trace or time calls, validate arguments, manage all instances of a
            class, augment instances with extra behavior such as attribute
            fetch validation, and more. Decorator syntax inserts
            name-rebinding logic to be run at the end of function and class
            definition statements—decorated function and class names may be
            rebound to either augmented original objects, or to object proxies
            that intercept later calls.

	Metaclasses
	The last topic of magic introduced in Chapter 32, which we take up here.


As mentioned in this chapter’s introduction,
      metaclasses are a continuation of this story—they
      allow us to insert logic to be run automatically at the end of a
      class statement, when a class object
      is being created. Though strongly reminiscent of class decorators, the
      metaclass mechanism doesn’t rebind the class name to a decorator
      callable’s result, but rather routes creation of the class
      itself to specialized logic.

A Language of Hooks
In other words, metaclasses are ultimately just another way to
      define automatically run code. With the tools
      listed in the prior section, Python provides ways for us to interject
      logic in a variety of contexts—at operator evaluation, attribute access,
      function calls, class instance creation, and now class object creation.
      It’s a language with hooks galore—a feature open to
      abuse like any other, but one that also offers the flexibility that some
      programmers desire, and that some programs may require.
As we’ve also seen, many of these advanced Python tools have
      intersecting roles. For example, attributes can
      often be managed with properties, descriptors, or attribute interception
      methods. As we’ll see in this chapter, class decorators and metaclasses
      can often be used interchangeably as well. By way of preview:
	Although class decorators are often used
          to manage instances, they can also be used to manage classes
          instead, much like metaclasses.

	Similarly, while metaclasses are designed
          to augment class construction, they can also insert proxies to
          manage instances instead, much like class decorators.


In fact, the main functional difference between these two tools is
      simply their place in the timing of class creation.
      As we saw in the prior chapter, class decorators run
      after the decorated class has already been created.
      Thus, they are often used to add logic to be run at
      instance creation time. When they do provide
      behavior for a class, it is typically through changes or proxies,
      instead of a more direct relationship.
As we’ll see here, metaclasses, by contrast, run
      during class creation to make and return the new
      client class. Therefore, they are often used for managing or augmenting
      classes themselves, and can even provide methods to
      process the classes that are created from them, via a direct instance
      relationship.
For example, metaclasses can be used to add decoration to all
      methods of classes automatically, register all classes in use to an API,
      add user-interface logic to classes automatically, create or extend
      classes from simplified specifications in text files, and so on. Because
      they can control how classes are made—and by proxy the behavior their
      instances acquire—metaclass applicability is potentially very
      wide.
As we’ll also see here, though, these two tools are more similar
      than different in many common roles. Since tool choices are sometimes
      partly subjective, knowledge of the alternatives can help you pick the
      right tool for a given task. To understand the options better, let’s see
      how metaclasses stack up.

The Downside of “Helper” Functions
Also like the decorators of the prior chapter, metaclasses are often optional from a theoretical
      perspective. We can usually achieve the same effect by passing class
      objects through manager functions—sometimes known
      as helper functions—much as we can achieve the
      goals of decorators by passing functions and instances through manager
      code. Just like decorators, though, metaclasses:
	Provide a more formal and explicit structure

	Help ensure that application programmers won’t forget to
          augment their classes according to an API’s requirements

	Avoid code redundancy and its associated maintenance costs by
          factoring class customization logic into a single location, the
          metaclass


To illustrate, suppose we want to automatically insert a method
      into a set of classes. Of course, we could do this with simple
      inheritance, if the subject method is known when we
      code the classes. In that case, we can simply code the method in a
      superclass and have all the classes in question inherit from it:
class Extras:
    def extra(self, args):              # Normal inheritance: too static
        ...

class Client1(Extras): ...              # Clients inherit extra methods
class Client2(Extras): ...
class Client3(Extras): ...

X = Client1()                           # Make an instance
X.extra()                               # Run the extra methods
Sometimes, though, it’s impossible to predict such augmentation
      when classes are coded. Consider the case where classes are augmented in
      response to choices made in a user interface at runtime, or to
      specifications typed in a configuration file. Although we could code
      every class in our imaginary set to manually check
      these, too, it’s a lot to ask of clients (required is abstract here—it’s something to be
      filled in):
def extra(self, arg): ...

class Client1: ...                      # Client augments: too distributed
if required():
    Client1.extra = extra

class Client2: ...
if required():
    Client2.extra = extra

class Client3: ...
if required():
    Client3.extra = extra

X = Client1()
X.extra()
We can add methods to a class after the class statement like this because a
      class-level method is just a function that is associated with a class
      and has a first argument to receive the self instance. Although this works, it might
      become untenable for larger method sets, and puts all the burden of
      augmentation on client classes (and assumes they’ll remember to do this
      at all!).
It would be better from a maintenance perspective to isolate the
      choice logic in a single place. We might encapsulate some of this extra
      work by routing classes through a manager
      function—such a manager function would extend the class as
      required and handle all the work of runtime testing and
      configuration:
def extra(self, arg): ...

def extras(Class):                      # Manager function: too manual
    if required():
        Class.extra = extra

class Client1: ...
extras(Client1)

class Client2: ...
extras(Client2)

class Client3: ...
extras(Client3)

X = Client1()
X.extra()
This code runs the class through a manager function immediately
      after it is created. Although manager functions like this one can
      achieve our goal here, they still put a fairly heavy burden on class
      coders, who must understand the requirements and adhere to them in their
      code. It would be better if there was a simple way to enforce the
      augmentation in the subject classes, so that they don’t need to deal
      with the augmentation so explicitly, and would be less likely to forget
      to use it altogether. In other words, we’d like to be able to insert
      some code to run automatically at the end of a
      class statement, to augment the
      class.
This is exactly what metaclasses do—by
      declaring a metaclass, we tell Python to route the creation of the class
      object to another class we provide:
def extra(self, arg): ...

class Extras(type):
    def __init__(Class, classname, superclasses, attributedict):
        if required():
            Class.extra = extra

class Client1(metaclass=Extras): ...    # Metaclass declaration only (3.X form)
class Client2(metaclass=Extras): ...    # Client class is instance of meta
class Client3(metaclass=Extras): ...

X = Client1()                           # X is instance of Client1
X.extra()
Because Python invokes the metaclass automatically at the end of
      the class statement when the new
      class is created, it can augment, register, or otherwise manage the
      class as needed. Moreover, the only requirement for the client classes
      is that they declare the metaclass; every class that does so will
      automatically acquire whatever augmentation the metaclass provides, both
      now and in the future if the metaclass changes.
Of course, this is the standard rationale, which you’ll need to
      judge for yourself—in truth, clients might forget to list a metaclass
      just as easily as they could forget to call a manager function! Still,
      the explicit nature of metaclasses may make this less likely. Moreover,
      metaclasses have additional potentials we haven’t yet seen. Although it
      may be difficult to glean from this small example, metaclasses generally
      handle such tasks better than more manual approaches.

Metaclasses Versus Class Decorators: Round 1
Having said that, it’s also important to note that the class
      decorators described in the preceding chapter sometimes
      overlap with metaclasses—in terms of both utility and benefit. Although
      they are often used for managing instances, class decorators can also
      augment classes, independent of any created instances. Their syntax
      makes their usage similarly explicit, and arguably more obvious than
      manager function calls.
For example, suppose we coded our manager function to return the
      augmented class, instead of simply modifying it in place. This would
      allow a greater degree of flexibility, because the manager would be free
      to return any type of object that implements the class’s expected
      interface:
def extra(self, arg): ...

def extras(Class):
    if required():
        Class.extra = extra
    return Class

class Client1: ...
Client1 = extras(Client1)

class Client2: ...
Client2 = extras(Client2)

class Client3: ...
Client3 = extras(Client3)

X = Client1()
X.extra()
If you think this is starting to look reminiscent of class
      decorators, you’re right. In the prior chapter we emphasized class
      decorators’ role in augmenting instance creation
      calls. Because they work by automatically rebinding a class name to the
      result of a function, though, there’s no reason that we can’t use them
      to augment the class by changing it before any instances are ever
      created. That is, class decorators can apply extra logic to
      classes, not just instances,
      at class creation time:
def extra(self, arg): ...

def extras(Class):
    if required():
        Class.extra = extra
    return Class

@extras
class Client1: ...             # Client1 = extras(Client1)

@extras
class Client2: ...             # Rebinds class independent of instances

@extras
class Client3: ...

X = Client1()                  # Makes instance of augmented class
X.extra()                      # X is instance of original Client1
Decorators essentially automate the prior example’s manual name
      rebinding here. Just as for metaclasses, because this decorator returns
      the original class, instances are made from it, not from a wrapper
      object. In fact, instance creation is not intercepted at all in this
      example.
In this specific case—adding methods to a class when it’s
      created—the choice between metaclasses and decorators is somewhat
      arbitrary. Decorators can be used to manage both instances and classes,
      and intersect most strongly with metaclasses in the second of these
      roles, but this discrimination is not absolute. In fact, the roles of
      each are determined in part by their mechanics.
As we’ll see ahead, decorators technically correspond to metaclass
      __init__ methods, used to initialize
      newly created classes. Metaclasses have additional customization hooks
      beyond class initialization, though, and may perform arbitrary class
      construction tasks that might be more difficult with decorators. This
      can make them more complex, but also better suited for augmenting
      classes as they are being formed.
For example, metaclasses also have a __new__ method used to create a class, which
      has no analogy in decorators; making a new class in a decorator would
      incur an extra step. Moreover, metaclasses may also provide behavior
      acquired by classes in the form of methods, which
      have no direct counterpart in decorators either; decorators must provide
      class behavior in less direct ways.
Conversely, because metaclasses are designed to manage classes,
      applying them to managing instances alone is less
      optimal. Because they are also responsible for making the class itself,
      metaclasses incur this as an extra step in instance
      management roles.
We’ll explore these differences in code later in this chapter, and
      will flesh out this section’s partial code into a real working example
      later in this chapter. To understand how metaclasses do their work,
      though, we first need to get a clearer picture of their underlying
      model.
There’s Magic, and Then There’s Magic
This chapter’s “Increasing Levels of Magic” list deals with
        types of magic beyond those widely seen as beneficial by programmers.
        Some might add Python’s functional tools like
        closures and generators, and even its basic OOP
        support, to this list—the former relying on scope retention and
        automatic generator object creation, and the latter on inheritance
        attribute search and a special first function argument. Though based
        on magic too, these represent paradigms that ease the task of
        programming by providing abstractions above and beyond the underlying
        hardware architecture.
For example, OOP—Python’s earlier
        paradigm—is broadly accepted in the software world. It provides a
        model for writing programs that is more complete, explicit, and richly
        structured than functional tools. That is, some levels of magic are
        considered more warranted than others; after all, if it were not for
        some magic, programs would still consist of machine code (or physical
        switches).
It’s usually the accumulation of new magic
        that puts systems at risk of breaching a complexity threshold—such as
        adding a functional paradigm to what was always an OO language, or
        adding redundant or advanced ways to achieve goals that are rarely
        pursued in the common practice of most users. Such magic can set the
        entry bar far too high for a large part of your tool’s
        audience.
Moreover, some magic is imposed on its users more than others.
        The translation step of a compiler, for instance, does not generally
        require its users to be compiler developers. By contrast, Python’s
        super assumes full mastery and
        deployment of the arguably obscure and artificial MRO algorithm. The
        new-style inheritance algorithm presented in this
        chapter similarly assumes descriptors, metaclasses, and the MRO as its
        prerequisites—all advanced tools in their own right. Even implicit
        “hooks” like descriptors remain implicit only until their first
        failure or maintenance cycle. Such magic exposed
        escalates a tool’s prerequisites and downgrades its usability.
In open source systems, only time and downloads can determine
        where such thresholds may lie. Finding the proper
        balance of power and complexity depends as much
        on shifting opinion as on technology. Subjective factors aside,
        though, new magic that imposes itself on users inevitably skews a
        system’s learning curve higher—a topic we’ll return to in the next
        chapter’s final words.



The Metaclass Model
To understand metaclasses, you first need to understand a bit more about
    Python’s type model and what happens at the end of a class statement. As we’ll see here, the two are
    intimately related.
Classes Are Instances of type
So far in this book, we’ve done most of our work by making instances of built-in
      types like lists and strings, as well as instances of classes we code
      ourselves. As we’ve seen, instances of classes have
      some state information attributes of their own, but they also inherit
      behavioral attributes from the classes from which they are made. The
      same holds true for built-in types; list instances,
      for example, have values of their own, but they inherit methods from the
      list type.
While we can get a lot done with such instance objects, Python’s
      type model turns out to be a bit richer than I’ve formally described.
      Really, there’s a hole in the model we’ve seen thus far: if instances
      are created from classes, what is it that creates our
      classes? It turns out that classes are instances of
      something, too:
	In Python 3.X, user-defined class objects
          are instances of the object named type, which is itself a class.

	In Python 2.X, new-style classes inherit
          from object, which is a subclass
          of type; classic classes are
          instances of type and are not
          created from a class.


We explored the notion of types in Chapter 9 and the
      relationship of classes to types in Chapter 32, but let’s review the basics here so
      we can see how they apply to metaclasses.
Recall that the type built-in
      returns the type of any object (which is itself an object) when called
      with a single argument. For built-in types like lists, the type of the
      instance is the built-in list type, but the type of the list type is the
      type type itself—the type object at the top of the hierarchy
      creates specific types, and specific types create instances. You can see
      this for yourself at the interactive prompt. In Python 3.X, for example,
      the type of a list instance is the list class, and the type of the list
      class is the type class:
C:\code> py −3                        # In 3.X:
>>> type([]), type(type([]))          # List instance is created from list class
(<class 'list'>, <class 'type'>)      # List class is created from type class
>>> type(list), type(type)            # Same, but with type names
(<class 'type'>, <class 'type'>)      # Type of type is type: top of hierarchy
As we learned when studying new-style class changes in Chapter 32, the same is generally true in Python
      2.X, but types are not quite the same as classes—type is a unique kind of built-in object that
      caps the type hierarchy and is used to construct types:
C:\code> py −2
>>> type([]), type(type([]))          # In 2.X, type is a bit different
(<type 'list'>, <type 'type'>)
>>> type(list), type(type)
(<type 'type'>, <type 'type'>)
As it happens, the type/instance relationship holds true for
      user-defined classes as well: instances are created from classes, and
      classes are created from type. In
      Python 3.X, though, the notion of a “type” is merged with the notion of
      a “class.” In fact, the two are essentially synonyms—classes
      are types, and types are classes. That is:
	Types are defined by classes that derive from type.

	User-defined classes are instances of type classes.

	User-defined classes are types that generate instances of
          their own.


As we saw earlier, this equivalence affects code that tests the
      type of instances: the type of an instance is the class from which it
      was generated. It also has implications for the way that classes are
      created that turn out to be the key to this chapter’s subject. Because
      classes are normally created from a root type class by default, most
      programmers don’t need to think about this type/class equivalence.
      However, it opens up new possibilities for customizing both classes and
      their instances.
For example, all user-defined classes in 3.X (and new-style
      classes in 2.X) are instances of the type class, and instance objects are instances
      of their classes; in fact, classes now have a __class__ that links to type, just as an instance has a __class__ that links to the class from which
      it was made:
C:\code> py −3
>>> class C: pass                   # 3.X class object (new-style)
>>> X = C()                         # Class instance object

>>> type(X)                         # Instance is instance of class
<class '__main__.C'>
>>> X.__class__                     # Instance's class
<class '__main__.C'>

>>> type(C)                         # Class is instance of type
<class 'type'>
>>> C.__class__                     # Class's class is type
<class 'type'>
Notice especially the last two lines here—classes are instances of
      the type class, just as normal
      instances are instances of a user-defined class. This works the same for
      both built-ins and user-defined class types in 3.X. In fact, classes are
      not really a separate concept at all: they are simply user-defined
      types, and type itself is defined by
      a class.
In Python 2.X, things work similarly for new-style classes derived
      from object, because this enables 3.X
      class behavior (as we’ve seen, 3.X adds object to the __bases__ superclass tuple of top-level root
      classes automatically to qualify them as new-style):
C:\code> py −2
>>> class C(object): pass           # In 2.X new-style classes,
>>> X = C()                         # classes have a class too

>>> type(X)
<class '__main__.C'>
>>> X.__class__
<class '__main__.C'>

>>> type(C)
<type 'type'>
>>> C.__class__
<type 'type'>
Classic classes in 2.X are a bit different, though—because they
      reflect the original class model in older Pythons, they do not have a
      __class__ link, and like built-in
      types in 2.X they are instances of type, not a type class (I’ve shortened some of
      the hex addresses in object displays in this chapter for clarity):
C:\code> py −2
>>> class C: pass                   # In 2.X classic classes,
>>> X = C()                         # classes have no class themselves

>>> type(X)
<type 'instance'>
>>> X.__class__
<class __main__.C at 0x005F85A0>

>>> type(C)
<type 'classobj'>
>>> C.__class__
AttributeError: class C has no attribute '__class__'

Metaclasses Are Subclasses of Type
Why would we care that classes are instances of a type class in 3.X? It turns out that this is
      the hook that allows us to code metaclasses. Because the notion of
      type is the same as class
      today, we can subclass type to customize it with
      normal object-oriented techniques and class syntax. And because classes
      are really instances of the type
      class, creating classes from customized subclasses of type allows us to implement custom kinds of
      classes. In full detail, this all works out quite naturally—in 3.X, and
      in 2.X new-style classes:
	type is a class that
          generates user-defined classes.

	Metaclasses are subclasses of the type class.

	Class objects are instances of the type class, or a subclass thereof.

	Instance objects are generated from a class.


In other words, to control the way classes are created and augment
      their behavior, all we need to do is specify that a user-defined class
      be created from a user-defined metaclass instead of the normal type class.
Notice that this type instance relationship
      is not quite the same as normal inheritance.
      User-defined classes may also have superclasses from which they and
      their instances inherit attributes as usual. As we’ve seen, inheritance
      superclasses are listed in parentheses in the class statement and show up in a class’s
      __bases__ tuple. The type from which
      a class is created, though, and of which it is an instance, is a
      different relationship. Inheritance searches instance and class
      namespace dictionaries, but classes may also acquire behavior from their
      type that is not exposed to the normal inheritance search.
To lay the groundwork for understanding this distinction, the next
      section describes the procedure Python follows to implement this
      instance-of type relationship.

Class Statement Protocol
Subclassing the type class to
      customize it is really only half of the magic behind
      metaclasses. We still need to somehow route a class’s creation to the
      metaclass, instead of the default type. To fully understand how this is
      arranged, we also need to know how class statements do their
      business.
We’ve already learned that when Python reaches a class statement, it runs its nested block of
      code to create its attributes—all the names assigned at the top level of
      the nested code block generate attributes in the resulting class object.
      These names are usually method functions created by nested defs, but they can also be arbitrary
      attributes assigned to create class data shared by all instances.
Technically speaking, Python follows a standard protocol to make
      this happen: at the end of a
      class statement, and
      after running all its nested code in a namespace dictionary
      corresponding to the class’s local scope, Python calls the type object to create the class object like this:
class = type(classname, superclasses, attributedict)
The type object in turn defines
      a __call__ operator overloading
      method that runs two other methods when the type object is called:
type.__new__(typeclass, classname, superclasses, attributedict)
type.__init__(class, classname, superclasses, attributedict)
The __new__ method creates and
      returns the new class object, and
      then the __init__ method initializes
      the newly created object. As we’ll see in a moment, these are the hooks
      that metaclass subclasses of type
      generally use to customize classes.
For example, given a class definition like the following for
      Spam:
class Eggs: ...                  # Inherited names here

class Spam(Eggs):                # Inherits from Eggs
    data = 1                     # Class data attribute
    def meth(self, arg):         # Class method attribute
        return self.data + arg
Python will internally run the nested code block to create two
      attributes of the class (data and
      meth), and then call the type object to generate the class object at the end of the class statement:
Spam = type('Spam', (Eggs,), {'data': 1, 'meth': meth, '__module__': '__main__'})
In fact, you can call type this
      way yourself to create a class dynamically—albeit here with a fabricated
      method function and empty superclasses tuple (Python adds object automatically in both 3.X and
      2.X):
>>> x = type('Spam', (), {'data': 1, 'meth': (lambda x, y: x.data + y)})
>>> i = x()
>>> x, i
(<class '__main__.Spam'>, <__main__.Spam object at 0x029E7780>)
>>> i.data, i.meth(2)
(1, 3)
The class produced is exactly like that you’d get from running a
      class statement:
>>> x.__bases__
(<class 'object'>,)
>>> [(a, v) for (a, v) in x.__dict__.items() if not a.startswith('__')]
[('data', 1), ('meth', <function <lambda> at 0x0297A158>)]
Because this type call is made
      automatically at the end of the class
      statement, though, it’s an ideal hook for augmenting or otherwise
      processing a class. The trick lies in replacing the default type with a custom subclass that will
      intercept this call. The next section shows how.


Declaring Metaclasses
As we’ve just seen, classes are created by the type class by default. To tell Python to create
    a class with a custom metaclass instead, you simply need to declare a
    metaclass to intercept the normal instance creation call in a user-defined
    class. How you do so depends on which Python version you are using.
Declaration in 3.X
In Python 3.X, list the desired metaclass as a keyword
      argument in the class header:
class Spam(metaclass=Meta):                   # 3.X version (only)
Inheritance superclasses can be listed in the header as well. In
      the following, for example, the new class Spam inherits from superclass Eggs, but is also an instance of and is
      created by metaclass Meta:
class Spam(Eggs, metaclass=Meta):             # Normal supers OK: must list first
In this form, superclasses must be listed before the metaclass; in
      effect, the ordering rules used for keyword arguments in function calls
      apply here.

Declaration in 2.X
We can get the same effect in Python 2.X, but we must specify the
      metaclass differently—using a class attribute
      instead of a keyword argument:
class Spam(object):                           # 2.X version (only), object optional?
    __metaclass__ = Meta

class Spam(Eggs, object):                     # Normal supers OK: object suggested
    __metaclass__ = Meta
Technically, some classes in 2.X do not have
      to derive from object explicitly to
      make use of metaclasses. The generalized metaclass dispatch mechanism
      was added at the same time as new-style classes, but is not itself bound
      to them. It does, however, produce them—in the
      presence of a __metaclass__
      declaration, 2.X makes the resulting class new-style automatically,
      adding object to its __bases__ sequence. In the absence of this
      declaration, 2.X simply uses the classic class creator as the metaclass
      default. Because of this, some classes in 2.X require only the __metaclass__ attribute.
On the other hand, notice that metaclasses
      imply that your class will be new-style in 2.X even
      without an explicit object. They’ll
      behave somewhat differently as outlined in Chapter 32, and as we’ll see ahead 2.X may
      require that they or their superclasses derive from object explicitly, because a new-style class
      cannot have only classic superclasses in this context. Given this,
      deriving from object doesn’t hurt as
      a sort of warning about the class’s nature, and may be required to avoid
      potential problems.
Also in 2.X, a module level __metaclass__ global variable is available to
      link all classes in the module to a metaclass. This is no longer
      supported in 3.X, as it was intended as a temporary measure to make it
      easier to default to new-style classes without deriving every class from
      object. Python 3.X also ignores the
      2.X class attribute, and the 3.X keyword form is a syntax error in 2.X,
      so there is no simple portability route. Apart from differing syntax,
      though, metaclass declaration in 2.X and 3.X has the same effect, which
      we turn to next.

Metaclass Dispatch in Both 3.X and 2.X
When a specific metaclass is declared per the prior sections’
      syntax, the call to create the class
      object run at the end of the class
      statement is modified to invoke the metaclass
      instead of the type default:
class = Meta(classname, superclasses, attributedict)
And because the metaclass is a subclass of type, the type class’s __call__ delegates the calls to create and
      initialize the new class object to
      the metaclass, if it defines custom versions of these methods:
Meta.__new__(Meta, classname, superclasses, attributedict)
Meta.__init__(class, classname, superclasses, attributedict)
To demonstrate, here’s the prior section’s example again,
      augmented with a 3.X metaclass specification:
class Spam(Eggs, metaclass=Meta):      # Inherits from Eggs, instance of Meta
    data = 1                           # Class data attribute
    def meth(self, arg):               # Class method attribute
        return self.data + arg
At the end of this class
      statement, Python internally runs the following to create the class object—again, a call you could make
      manually too, but automatically run by Python’s class machinery:
Spam = Meta('Spam', (Eggs,), {'data': 1, 'meth': meth, '__module__': '__main__'})
If the metaclass defines its own versions of __new__ or __init__, they will be invoked in turn during
      this call by the inherited type
      class’s __call__ method, to create
      and initialize the new class. The net effect is to automatically run
      methods the metaclass provides, as part of the class construction
      process. The next section shows how we might go about coding this final
      piece of the metaclass puzzle.
Note
This chapter uses Python 3.X metaclass keyword argument syntax,
        not the 2.X class attribute. 2.X readers will need to translate, but
        version neutrality is not straightforward here—3.X doesn’t recognize
        the attribute and 2.X doesn’t allow keyword syntax—and listing
        examples twice doesn’t address portability (or chapter size!).



Coding Metaclasses
So far, we’ve seen how Python routes class creation calls to a metaclass, if
    one is specified and provided. How, though, do we actually code a
    metaclass that customizes type?
It turns out that you already know most of the story—metaclasses are
    coded with normal Python class
    statements and semantics. By definition, they are simply classes that
    inherit from type. Their only
    substantial distinctions are that Python calls them
    automatically at the end of a class statement, and that they must adhere to
    the interface expected by the type superclass.
A Basic Metaclass
Perhaps the simplest metaclass you can code is simply a subclass of type with a
      __new__ method that creates the class
      object by running the default version in type. A metaclass __new__ like this is run by the __call__ method inherited from type; it typically performs whatever
      customization is required and calls the type superclass’s __new__ method to create and return the new
      class object:
class Meta(type):
    def __new__(meta, classname, supers, classdict):
        # Run by inherited type.__call__
        return type.__new__(meta, classname, supers, classdict)
This metaclass doesn’t really do anything (we might as well let
      the default type class create the
      class), but it demonstrates the way a metaclass taps into the metaclass
      hook to customize—because the metaclass is called at the end of a
      class statement, and because the
      type object’s __call__ dispatches to the __new__ and __init__ methods, code we provide in these methods can manage all the
      classes created from the metaclass.
Here’s our example in action again, with prints added to the
      metaclass and the file at large to trace (again, some filenames are
      implied by later command lines in this chapter):
class MetaOne(type):
    def __new__(meta, classname, supers, classdict):
        print('In MetaOne.new:', meta, classname, supers, classdict, sep='\n...')
        return type.__new__(meta, classname, supers, classdict)

class Eggs:
    pass

print('making class')
class Spam(Eggs, metaclass=MetaOne):      # Inherits from Eggs, instance of MetaOne
    data = 1                              # Class data attribute
    def meth(self, arg):                  # Class method attribute
        return self.data + arg

print('making instance')
X = Spam()
print('data:', X.data, X.meth(2))
Here, Spam inherits from
      Eggs and is an instance of MetaOne, but X is an instance of and inherits from Spam. When this code is run with Python 3.X,
      notice how the metaclass is invoked at the end of
      the class statement, before we ever
      make an instance—metaclasses are for processing
      classes, and classes are for processing normal
      instances:
c:\code> py −3 metaclass1.py
making class
In MetaOne.new:
...<class '__main__.MetaOne'>
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x02A191E0>, '__module__': '__main__'}
making instance
data: 1 3
Presentation note: I’m truncating addresses and omitting some
      irrelevant built-in __X__ names in namespace dictionaries in this
      chapter for brevity, and as noted earlier am forgoing 2.X portability
      due to differing declaration syntax. To run in 2.X, use the class
      attribute form, and change print operations as desired. This example
      works in 2.X with the following modifications, in the file metaclass1-2x.py; notice that either Eggs or Spam must be derived from object explicitly, or else 2.X issues a
      warning because new-style class can’t have only classic bases here—when
      in doubt, use object in 2.X
      metaclasses clients:
from __future__ import print_function              # To run the same in 2.X (only)
class Eggs(object):                                # One of the "object" optional
class Spam(Eggs, object):
    __metaclass__ = MetaOne

Customizing Construction and Initialization
Metaclasses can also tap into the __init__
      protocol invoked by the type object’s __call__. In general, __new__ creates and returns the class object,
      and __init__ initializes the already
      created class passed in as an argument. Metaclasses can use either or
      both hooks to manage the class at creation time:
class MetaTwo(type):
    def __new__(meta, classname, supers, classdict):
        print('In MetaTwo.new: ', classname, supers, classdict, sep='\n...')
        return type.__new__(meta, classname, supers, classdict)

    def __init__(Class, classname, supers, classdict):
        print('In MetaTwo.init:', classname, supers, classdict, sep='\n...')
        print('...init class object:', list(Class.__dict__.keys()))

class Eggs:
    pass

print('making class')
class Spam(Eggs, metaclass=MetaTwo):      # Inherits from Eggs, instance of MetaTwo
    data = 1                              # Class data attribute
    def meth(self, arg):                  # Class method attribute
       return self.data + arg

print('making instance')
X = Spam()
print('data:', X.data, X.meth(2))
In this case, the class initialization method is run after the
      class construction method, but both run at the end of the class statement before any instances are made.
      Conversely, an __init__ in Spam would run at
      instance creation time, and is not affected or run
      by the metaclass’s __init__:
c:\code> py −3 metaclass2.py
making class
In MetaTwo.new:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x02967268>, '__module__': '__main__'}
In MetaTwo.init:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x02967268>, '__module__': '__main__'}
...init class object: ['__qualname__', 'data', '__module__', 'meth', '__doc__']
making instance
data: 1 3

Other Metaclass Coding Techniques
Although redefining the type
      superclass’s __new__ and __init__ methods is the most common way to
      insert logic into the class object creation process with the metaclass
      hook, other schemes are possible.
Using simple factory functions
For example, metaclasses need not really be classes at all. As we’ve learned, the
        class statement issues a simple
        call to create a class at the conclusion of its processing. Because of
        this, any callable object can in principle be
        used as a metaclass, provided it accepts the arguments passed and
        returns an object compatible with the intended class. In fact, a
        simple object factory function may serve just as well as a type subclass:
# A simple function can serve as a metaclass too

def MetaFunc(classname, supers, classdict):
    print('In MetaFunc: ', classname, supers, classdict, sep='\n...')
    return type(classname, supers, classdict)

class Eggs:
    pass

print('making class')
class Spam(Eggs, metaclass=MetaFunc):            # Run simple function at end
    data = 1                                     # Function returns class
    def meth(self, arg):
        return self.data + arg

print('making instance')
X = Spam()
print('data:', X.data, X.meth(2))
When run, the function is called at the end of the declaring
        class statement, and it returns the
        expected new class object. The function is simply catching the call
        that the type object’s __call__ normally intercepts by
        default:
c:\code> py −3 metaclass3.py
making class
In MetaFunc:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x029471E0>, '__module__': '__main__'}
making instance
data: 1 3

Overloading class creation calls with normal classes
Because normal class instances can respond to call operations with operator
        overloading, they can serve in some metaclass roles too, much like the
        preceding function. The output of the following is similar to the
        prior class-based versions, but it’s based on a simple class—one that
        doesn’t inherit from type at all,
        and provides a __call__ for its
        instances that catches the metaclass call using normal operator
        overloading. Note that __new__ and
        __init__ must have different names
        here, or else they will run when the Meta instance is
        created, not when it is later called in the role
        of metaclass:
# A normal class instance can serve as a metaclass too

class MetaObj:
    def __call__(self, classname, supers, classdict):
        print('In MetaObj.call: ', classname, supers, classdict, sep='\n...')
        Class = self.__New__(classname, supers, classdict)
        self.__Init__(Class, classname, supers, classdict)
        return Class

    def __New__(self, classname, supers, classdict):
        print('In MetaObj.new: ', classname, supers, classdict, sep='\n...')
        return type(classname, supers, classdict)

    def __Init__(self, Class, classname, supers, classdict):
        print('In MetaObj.init:', classname, supers, classdict, sep='\n...')
        print('...init class object:', list(Class.__dict__.keys()))

class Eggs:
    pass

print('making class')
class Spam(Eggs, metaclass=MetaObj()):          # MetaObj is normal class instance
    data = 1                                    # Called at end of statement
    def meth(self, arg):
        return self.data + arg

print('making instance')
X = Spam()
print('data:', X.data, X.meth(2))
When run, the three methods are dispatched via the normal
        instance’s __call__ inherited from
        its normal class, but without any dependence on type dispatch mechanics or semantics:
c:\code> py −3 metaclass4.py
making class
In MetaObj.call:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x029492F0>, '__module__': '__main__'}
In MetaObj.new:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x029492F0>, '__module__': '__main__'}
In MetaObj.init:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x029492F0>, '__module__': '__main__'}
...init class object: ['__module__', '__doc__', 'data', '__qualname__', 'meth']
making instance
data: 1 3
In fact, we can use normal superclass inheritance to acquire the
        call interceptor in this coding model—the superclass here is serving
        essentially the same role as type,
        at least in terms of metaclass dispatch:
# Instances inherit from classes and their supers normally

class SuperMetaObj:
    def __call__(self, classname, supers, classdict):
        print('In SuperMetaObj.call: ', classname, supers, classdict, sep='\n...')
        Class = self.__New__(classname, supers, classdict)
        self.__Init__(Class, classname, supers, classdict)
        return Class

class SubMetaObj(SuperMetaObj):
    def __New__(self, classname, supers, classdict):
        print('In SubMetaObj.new: ', classname, supers, classdict, sep='\n...')
        return type(classname, supers, classdict)

    def __Init__(self, Class, classname, supers, classdict):
        print('In SubMetaObj.init:', classname, supers, classdict, sep='\n...')
        print('...init class object:', list(Class.__dict__.keys()))

class Spam(Eggs, metaclass=SubMetaObj()):   # Invoke Sub instance via Super.__call__
   ...rest of file unchanged...

c:\code> py −3 metaclass4-super.py
making class
In SuperMetaObj.call:
...as before...
In SubMetaObj.new:
...as before...
In SubMetaObj.init:
...as before...
making instance
data: 1 3
Although such alternative forms work, most metaclasses get their
        work done by redefining the type
        superclass’s __new__ and __init__; in practice, this is usually as
        much control as is required, and it’s often simpler than other
        schemes. Moreover, metaclasses have access to additional tools, such
        as class methods we’ll explore ahead, which can
        influence class behavior more directly than some other schemes.
Still, we’ll see later that a simple callable-based metaclass
        can often work much like a class decorator, which allows the
        metaclasses to manage instances as well as classes. First, though, the
        next section presents an example drawn from the Python “Twilight Zone”
        to introduce metaclass name resolution concepts.

Overloading class creation calls with metaclasses
Since they participate in normal OOP mechanics, it’s also possible for metaclasses to catch the
        creation call at the end of a class
        statement directly, by redefining the type object’s __call__. The redefinitions of both __new__ and __call__ must be careful to call back to
        their defaults in type if they mean
        to make a class in the end, and __call__ must invoke type to kick off the other two here:
# Classes can catch calls too (but built-ins look in metas, not supers!)

class SuperMeta(type):
    def __call__(meta, classname, supers, classdict):
        print('In SuperMeta.call: ', classname, supers, classdict, sep='\n...')
        return type.__call__(meta, classname, supers, classdict)

    def __init__(Class, classname, supers, classdict):
        print('In SuperMeta init:', classname, supers, classdict, sep='\n...')
        print('...init class object:', list(Class.__dict__.keys()))

print('making metaclass')
class SubMeta(type, metaclass=SuperMeta):
    def __new__(meta, classname, supers, classdict):
        print('In SubMeta.new: ', classname, supers, classdict, sep='\n...')
        return type.__new__(meta, classname, supers, classdict)

    def __init__(Class, classname, supers, classdict):
        print('In SubMeta init:', classname, supers, classdict, sep='\n...')
        print('...init class object:', list(Class.__dict__.keys()))

class Eggs:
    pass

print('making class')
class Spam(Eggs, metaclass=SubMeta):        # Invoke SubMeta, via SuperMeta.__call__
    data = 1
    def meth(self, arg):
        return self.data + arg

print('making instance')
X = Spam()
print('data:', X.data, X.meth(2))
This code has some oddities I’ll explain in a moment. When run,
        though, all three redefined methods run in turn for Spam as in the prior section. This is again
        essentially what the type object
        does by default, but there’s an additional metaclass call for the
        metaclass subclass (metasubclass?):
c:\code> py −3 metaclass5.py
making metaclass
In SuperMeta init:
...SubMeta
...(<class 'type'>,)
...{'__init__': <function SubMeta.__init__ at 0x028F92F0>, ...}
...init class object: ['__doc__', '__module__', '__new__', '__init__, ...]
making class
In SuperMeta.call:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x028F9378>, '__module__': '__main__'}
In SubMeta.new:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x028F9378>, '__module__': '__main__'}
In SubMeta init:
...Spam
...(<class '__main__.Eggs'>,)
...{'data': 1, 'meth': <function Spam.meth at 0x028F9378>, '__module__': '__main__'}
...init class object: ['__qualname__', '__module__', '__doc__', 'data', 'meth']
making instance
data: 1 3
This example is complicated by the fact that it overrides a
        method invoked by a built-in operation—in this
        case, the call run automatically to create a class. Metaclasses are
        used to create class objects, but only generate instances of
        themselves when called in a metaclass role. Because of this, name
        lookup with metaclasses may be somewhat different than what we are
        accustomed to. The __call__ method,
        for example, is looked up by built-ins in the class (a.k.a. type) of
        an object; for metaclasses, this means the metaclass of a
        metaclass!
As we’ll see ahead, metaclasses also
        inherit names from other metaclasses normally,
        but as for normal classes, this seems to apply to
        explicit name fetches only, not to the
        implicit lookup of names for built-in operations
        such as calls. The latter appears to look in the metaclass’s
        class, available in its __class__ link—which is either the default
        type or a metaclass. This is the
        same built-ins routing issue we’ve seen so often in this book for
        normal class instances. The metaclass in SubMeta is required to set this link, though
        this also kicks off a metaclass construction step for the metaclass
        itself.
Trace the invocations in the output. SuperMeta’s __call__ method is not
        run for the call to SuperMeta when
        making SubMeta (this goes to
        type instead), but
        is run for the SubMeta call when making Spam. Inheriting normally from SuperMeta does not suffice to catch SubMeta calls, and for reasons we’ll see
        later is actually the wrong thing to do for operator overloading
        methods: SuperMeta’s __call__ is then acquired by Spam, causing Spam instance creation calls to fail before
        any instance is ever created. Subtle but true!
Here’s an illustration of the issue in simpler terms—a normal
        superclass is skipped for built-ins, but not for
        explicit fetches and calls, the latter relying on
        normal attribute name inheritance:
class SuperMeta(type):
    def __call__(meta, classname, supers, classdict):      # By name, not built-in
        print('In SuperMeta.call:', classname)
        return type.__call__(meta, classname, supers, classdict)

class SubMeta(SuperMeta):                                  # Created by type default
    def __init__(Class, classname, supers, classdict):     # Overrides type.__init__
        print('In SubMeta init:', classname)

print(SubMeta.__class__)
print([n.__name__ for n in SubMeta.__mro__])
print()
print(SubMeta.__call__)                   # Not a data descriptor if found by name
print()
SubMeta.__call__(SubMeta, 'xxx', (), {})  # Explicit calls work: class inheritance
print()
SubMeta('yyy', (), {})                    # But implicit built-in calls do not: type

c:\code> py −3 metaclass5b.py
<class 'type'>
['SubMeta', 'SuperMeta', 'type', 'object']

<function SuperMeta.__call__ at 0x029B9158>

In SuperMeta.call: xxx
In SubMeta init: xxx

In SubMeta init: yyy
Of course, this specific example is a special case: catching a
        built-in run on a metaclass, a likely rare usage related to __call__ here. But it underscores a core
        asymmetry and apparent inconsistency: normal attribute
        inheritance is not fully used for built-in dispatch—for
        both instances and classes.
To truly understand this example’s subtleties, though, we need
        to get more formal about what metaclasses mean for Python name
        resolution in general.



Inheritance and Instance
Because metaclasses are specified in similar ways to inheritance superclasses, they
    can be a bit confusing at first glance. A few key points should help
    summarize and clarify the model:
	Metaclasses inherit from the type class (usually)
	Although they have a special role, metaclasses are coded with class statements and follow the usual OOP
          model in Python. For example, as subclasses of type, they can redefine the type object’s
          methods, overriding and customizing them as needed. Metaclasses
          typically redefine the type
          class’s __new__ and __init__ to customize class creation and
          initialization. Although it’s less common, they can also redefine
          __call__ if they wish to catch
          the end-of-class creation call directly (albeit with the
          complexities we saw in the prior section), and can even be simple
          functions or other callables that return arbitrary objects, instead
          of type subclasses.

	Metaclass declarations are inherited by subclasses
	The metaclass=M
          declaration in a user-defined class is
          inherited by the class’s normal subclasses,
          too, so the metaclass will run for the construction of each class
          that inherits this specification in a superclass inheritance
          chain.

	Metaclass attributes are not inherited by class instances
	Metaclass declarations specify an
          instance relationship, which is not the same as
          what we’ve called inheritance thus far. Because classes are
          instances of metaclasses, the behavior defined in a metaclass
          applies to the class, but not the class’s later instances. Instances
          obtain behavior from their classes and superclasses, but not from
          any metaclasses. Technically, attribute inheritance for normal
          instances usually searches only the __dict__ dictionaries of the instance, its
          class, and all its superclasses; metaclasses are
          not included in inheritance lookup for normal
          instances.

	Metaclass attributes are acquired by classes
	By contrast, classes do acquire methods
          of their metaclasses by virtue of the instance relationship. This is
          a source of class behavior that processes classes themselves.
          Technically, classes acquire metaclass attributes through the
          class’s __class__ link just as
          normal instances acquire names from their class, but inheritance via
          __dict__ search is attempted
          first: when the same name is available to a class in
          both a metaclass and a superclass, the
          superclass (inheritance) version is used instead of that on a
          metaclass (instance). The class’s __class__, however, is not followed for
          its own instances: metaclass attributes are made available to their
          instance classes, but not to instances of those instance classes
          (and see the earlier reference to Dr. Seuss...).


This may be easier to understand in code than in prose. To
    illustrate all these points, consider the following example:
# File metainstance.py

class MetaOne(type):
    def __new__(meta, classname, supers, classdict):        # Redefine type method
        print('In MetaOne.new:', classname)
        return type.__new__(meta, classname, supers, classdict)
    def toast(self):
       return 'toast'

class Super(metaclass=MetaOne):        # Metaclass inherited by subs too
    def spam(self):                    # MetaOne run twice for two classes
        return 'spam'

class Sub(Super):                      # Superclass: inheritance versus instance
    def eggs(self):                    # Classes inherit from superclasses
        return 'eggs'                  # But not from metaclasses for instance access
When this code is run (as a script or module), the metaclass handles
    construction of both client classes, and
    instances inherit class attributes but
    not metaclass attributes:
>>> from metainstance import *         # Runs class statements: metaclass run twice
In MetaOne.new: Super
In MetaOne.new: Sub

>>> X = Sub()             # Normal instance of user-defined class
>>> X.eggs()              # Inherited from Sub
'eggs'
>>> X.spam()              # Inherited from Super
'spam'
>>> X.toast()             # Not inherited from metaclass
AttributeError: 'Sub' object has no attribute 'toast'
By contrast, classes both inherit names from
    their superclasses, and acquire names from their metaclass (which in this
    example is itself inherited from a
    superclass):
>>> Sub.eggs(X)           # Own method
'eggs'
>>> Sub.spam(X)           # Inherited from Super
'spam'
>>> Sub.toast()           # Acquired from metaclass
'toast'
>>> Sub.toast(X)          # Not a normal class method
TypeError: toast() takes 1 positional argument but 2 were given
Notice how the last of the preceding calls fails when we pass in an
    instance, because the name resolves to a metaclass method, not a normal
    class method. In fact, both the object you fetch a name from and its
    source become crucial here. Methods acquired from metaclasses are bound to
    the subject class, while methods from normal classes
    are unbound if fetched through the class but
    bound when fetched through the instance:
>>> Sub.toast
<bound method MetaOne.toast of <class 'metainstance.Sub'>>
>>> Sub.spam
<function Super.spam at 0x0298A2F0>
>>> X.spam
<bound method Sub.spam of <metainstance.Sub object at 0x02987438>>
We’ve studied the last two of these rules before in Chapter 31’s bound method coverage; the first is
    new, but reminiscent of class methods. To understand why this works the
    way it does, we need to explore the metaclass instance relationship
    further.
Metaclass Versus Superclass
In even simpler terms, watch what happens in the following: as an
      instance of the A metaclass type, class B acquires A’s attribute, but this attribute is not made
      available for inheritance by B’s own
      instances—the acquisition of names by metaclass instances is
      distinct from the normal inheritance used for class
      instances:
>>> class A(type): attr = 1
>>> class B(metaclass=A): pass          # B is meta instance and acquires meta attr
>>> I = B()                             # I inherits from class but not meta!
>>> B.attr
1
>>> I.attr
AttributeError: 'B' object has no attribute 'attr'
>>> 'attr' in B.__dict__, 'attr' in A.__dict__
(False, True)
By contrast, if A morphs from
      metaclass to superclass, then names inherited from
      an A superclass become available to
      later instances of B, and are located
      by searching namespace dictionaries in classes in the tree—that is, by
      checking the __dict__ of objects in
      the method resolution order (MRO), much like the mapattrs example we coded back in Chapter 32:
>>> class A: attr = 1
>>> class B(A): pass                    # I inherits from class and supers
>>> I = B()
>>> B.attr
1
>>> I.attr
1
>>> 'attr' in B.__dict__, 'attr' in A.__dict__
(False, True)
This is why metaclasses often do their work by manipulating a new
      class’s namespace dictionary, if they wish to influence the behavior of
      later instance objects—instances will see names in a class, but not its
      metaclass. Watch what happens, though, if the same name is available in
      both attribute sources—the
      inheritance name is used instead of instance
      acquisition:
>>> class M(type): attr = 1
>>> class A: attr = 2
>>> class B(A, metaclass=M): pass       # Supers have precedence over metas
>>> I = B()
>>> B.attr, I.attr
(2, 2)
>>> 'attr' in B.__dict__, 'attr' in A.__dict__, 'attr' in M.__dict__
(False, True, True)
This is true regardless of the relative height of the inheritance
      and instance sources—Python checks the __dict__ of each class on the MRO
      (inheritance), before falling back on metaclass
      acquisition (instance):
>>> class M(type): attr = 1
>>> class A: attr = 2
>>> class B(A): pass
>>> class C(B, metaclass=M): pass       # Super two levels above meta: still wins
>>> I = C()
>>> I.attr, C.attr
(2, 2)
>>> [x.__name__ for x in C.__mro__]     # See Chapter 32 for all things MRO
['C', 'B', 'A', 'object']
In fact, classes acquire metaclass attributes through their
      __class__ link, in the same way that
      normal instances inherit from classes through their __class__, which makes sense, given that
      classes are also instances of metaclasses. The chief distinction is that
      instance inheritance does not follow a class’s __class__, but instead restricts its scope to
      the __dict__ of each class in a tree
      per the MRO—following __bases__ at
      each class only, and using only the instance’s __class__ link once:
>>> I.__class__              # Followed by inheritance: instance's class
<class '__main__.C'>
>>> C.__bases__              # Followed by inheritance: class's supers
(<class '__main__.B'>,)
>>> C.__class__              # Followed by instance acquisition: metaclass
<class '__main__.M'>
>>> C.__class__.attr         # Another way to get to metaclass attributes
1
If you study this, you’ll probably notice a nearly glaring
      symmetry here, which leads us to the next section.

Inheritance: The Full Story
As it turns out, instance inheritance works in similar ways, whether the
      “instance” is created from a normal class, or is a class created from a
      metaclass subclass of type—a single
      attribute search rule, which fosters the grander and parallel notion of
      metaclass inheritance hierarchies. To illustrate the basics of this
      conceptual merger, in the following, the instance inherits from all its
      classes; the class inherits from both classes and metaclasses; and
      metaclasses inherit from higher metaclasses
      (supermetaclasses?):
>>> class M1(type): attr1 = 1                 # Metaclass inheritance tree
>>> class M2(M1):   attr2 = 2                 # Gets __bases__, __class__, __mro__

>>> class C1: attr3 = 3                       # Superclass inheritance tree
>>> class C2(C1,metaclass=M2): attr4 = 4      # Gets __bases__, __class__, __mro__

>>> I = C2()                                  # I gets __class__ but not others
>>> I.attr3, I.attr4                          # Instance inherits from super tree
(3, 4)
>>> C2.attr1, C2.attr2, C2.attr3, C2.attr4    # Class gets names from both trees!
(1, 2, 3, 4)
>>> M2.attr1, M2.attr2                        # Metaclass inherits names too!
(1, 2)
Both inheritance paths—class and metaclass—employ the same links,
      though not recursively: instances do not inherit their class’s metaclass
      names, but may request them explicitly:
>>> I.__class__                # Links followed at instance with no __bases__
<class '__main__.C2'>
>>> C2.__bases__
(<class '__main__.C1'>,)

>>> C2.__class__               # Links followed at class after __bases__
<class '__main__.M2'>
>>> M2.__bases__
(<class '__main__.M1'>,)

>>> I.__class__.attr1          # Route inheritance to the class's meta tree
1
>>> I.attr1                    # Though class's __class__ not followed normally
AttributeError: 'C2' object has no attribute 'attr1'

>>> M2.__class__                        # Both trees have MROs and instance links
<class 'type'>
>>> [x.__name__ for x in C2.__mro__]    # __bases__ tree from I.__class__
['C2', 'C1', 'object']
>>> [x.__name__ for x in M2.__mro__]    # __bases__ tree from C2.__class__
['M2', 'M1', 'type', 'object']
If you care about metaclasses, or must use code that does, study
      these examples, and then study them again. In effect, inheritance
      follows __bases__ before following a
      single __class__; normal instances
      have no __bases__; and classes have
      both—whether normal or metaclass. In fact, understanding this example is
      important to Python name resolution in general, as the next section
      explains.
Python’s inheritance algorithm: The simple version
Now that we know about metaclass acquisition, we’re finally able
        to formalize the inheritance rules that they augment. Technically,
        inheritance deploys two distinct but similar lookup routines, and is
        based on MROs. Because __bases__
        are used to construct the __mro__ ordering at class creation time, and
        because a class’s __mro__ includes
        itself, the prior section’s generalization is the same
        as the following—a first-cut definition of Python’s new-style
        inheritance algorithm:
To look up an explicit attribute
        name:
	From an instance I, search the
            instance, then its class, and then all its superclasses,
            using:
	The __dict__ of the
                instance I

	The __dict__ of all
                classes on the __mro__
                found at I’s __class__,
                from left to right



	From a class C, search the class, then
            all its superclasses, and then its metaclasses tree, using:
	The __dict__ of all
                classes on the __mro__
                found at C itself, from left to right

	The __dict__ of all
                metaclasses on the __mro__
                found at C’s __class__,
                from left to right



	In both rule 1 and 2, give precedence to data
            descriptors located in step b
            sources (see ahead).

	In both rule 1 and 2, skip step a and
            begin the search at step b for
            built-in operations (see ahead).


The first two steps are followed for normal, explicit attribute
        fetch only. There are exceptions for both
        built-ins and descriptors,
        both of which we’ll clarify in a moment. In addition, a __getattr__ or __getattribute__ may also be used for
        missing or all names, respectively, per Chapter 38.
Most programmers need only be aware of the first of these rules,
        and perhaps the first step of the second—which taken together
        correspond to 2.X classic class inheritance.
        There’s an extra acquisition step added for metaclasses
        (2b), but it’s essentially the same as others—a
        fairly subtle equivalence to be sure, but metaclass acquisition is not
        as novel as it may seem. In fact, it’s just one component of the
        larger model.

The descriptors special case
At least that’s the normal—and simplistic—case. I listed step
        3 in the prior section specially, because it
        doesn’t apply to most code, and complicates the algorithm
        substantially. It turns out, though, that inheritance also has a
        special case interaction with Chapter 38’s
        attribute descriptors. In short, some descriptors known as
        data descriptors—those that define __set__ methods to intercept assignments—are
        given precedence, such that their names override other inheritance
        sources.
This exception serves some practical roles. For example, it is
        used to ensure that the special __class__ and __dict__ attributes cannot be redefined by
        the same names in an instance’s own __dict__:
>>> class C: pass                          # Inheritance special case #1...
>>> I = C()                                # Class data descriptors have precedence
>>> I.__class__, I.__dict__
(<class '__main__.C'>, {})

>>> I.__dict__['name'] = 'bob'             # Dynamic data in the instance
>>> I.__dict__['__class__'] = 'spam'       # Assign keys, not attributes
>>> I.__dict__['__dict__']  = {}

>>> I.name                                 # I.name comes from I.__dict__ as usual
'bob'                                      # But I.__class__ and I.__dict__ do not!
>>> I.__class__, I.__dict__
(<class '__main__.C'>, {'__class__': 'spam', '__dict__': {}, 'name': 'bob'})
This data descriptor exception is tested before the preceding
        two inheritance rules as a preliminary step, may be more important to
        Python implementers than Python programmers, and can be reasonably
        ignored by most application code in any event—that is, unless
        you code data descriptors of your own, which
        follow the same inheritance special case precedence rule:
>>> class D:
        def __get__(self, instance, owner): print('__get__')
        def __set__(self, instance, value): print('__set__')

>>> class C: d = D()            # Data descriptor attribute
>>> I = C()
>>> I.d                         # Inherited data descriptor access
__get__
>>> I.d = 1
__set__
>>> I.__dict__['d'] = 'spam'    # Define same name in instance namespace dict
>>> I.d                         # But doesn't hide data descriptor in class!
__get__
Conversely, if this descriptor did not
        define a __set__, the name in the
        instance’s dictionary would hide the name in its class instead, per
        normal inheritance:
>>> class D:
        def __get__(self, instance, owner): print('__get__')

>>> class C: d = D()
>>> I = C()
>>> I.d                         # Inherited nondata descriptor access
__get__
>>> I.__dict__['d'] = 'spam'    # Hides class names per normal inheritance rules
>>> I.d
'spam'
In both cases, Python automatically runs the descriptor’s
        __get__ when it’s found by
        inheritance, rather than returning the descriptor object itself—part
        of the attribute magic we met earlier in the book. The special status
        afforded to data descriptors, however, also modifies the meaning of
        attribute inheritance, and thus the meaning of
        names in your code.

Python’s inheritance algorithm: The somewhat-more-complete
        version
With both the data descriptor special case and general
        descriptor invocation factored in with class and metaclass trees,
        Python’s full new-style inheritance algorithm can be stated as
        follows—a complex procedure, which assumes knowledge of descriptors,
        metaclasses, and MROs, but is the final arbiter of attribute names
        nonetheless (in the following, items are attempted in sequence either
        as numbered, or per their left-to-right order in “or”
        conjunctions):
To look up an explicit attribute
        name:
	From an instance I, search the
            instance, its class, and its superclasses, as follows:
	Search the __dict__
                of all classes on the __mro__ found at I’s __class__

	If a data descriptor was found in step
                a, call its __get__
                and exit

	Else, return a value in the __dict__ of the instance I

	Else, call a nondata descriptor or return a value found
                in step a



	From a class C, search the class, its
            superclasses, and its metaclasses tree, as follows:
	Search the __dict__
                of all metaclasses on the __mro__ found at C’s __class__

	If a data descriptor was found in step
                a, call its __get__
                and exit

	Else, call a descriptor or return a value in the
                __dict__ of a class on C’s
                own __mro__

	Else, call a nondata descriptor or return a value found
                in step a



	In both rule 1 and 2, built-in
            operations essentially use just step a
            sources (see ahead)


Note here again that this applies to normal,
        explicit attribute fetch only. The
        implicit lookup of method names for
        built-ins doesn’t follow these rules, and
        essentially uses just step a sources in both
        cases, as the next section will demonstrate.
As always, the implied object superclass
        provides some defaults at the top of every class and metaclass tree
        (that is, at the end of every MRO). And beyond all this, method
        __getattr__ may be run if defined
        when an attribute is not found, and method __getattribute__ may be run for every
        attribute fetch, though they are special-case extensions to the name
        lookup model. See Chapter 38 for more on
        these tools and descriptors, and Chapter 32 for the super
        special-case MRO scan.

Assignment inheritance
Also note that the prior section defines inheritance in terms of
        attribute reference (lookup), but
        parts of it apply to attribute assignment as well. As we’ve learned,
        assignment normally changes attributes in the subject object itself,
        but inheritance is also invoked on assignment to test first for some
        of Chapter 38’s attribute management tools,
        including descriptors and properties. When present, such tools
        intercept attribute assignment, and may route it arbitrarily.
For example, when an attribute assignment is run for new-style
        classes, a data descriptor with a __set__ method is
        acquired from a class by inheritance using the MRO, and has precedence
        over the normal storage model. In terms of the prior section’s
        rules:
	When applied to an instance, such assignments essentially
            follow steps a through
            c of rule 1, searching the
            instance’s class tree, though step b calls __set__
            instead of __get__, and step c stops and stores in the instance
            instead of attempting a fetch.

	When applied to a class,
            such assignments run the same procedure on the class’s metaclass
            tree: roughly the same as rule 2, but step c stops and stores in the class.


Because descriptors are also the basis for other advanced
        attribute tools such as properties and slots, this inheritance
        pre-check on assignment is utilized in multiple contexts. The net
        effect is that descriptors are treated as an inheritance special case
        in new-style classes, for both
        reference and assignment. 

The built-ins special case
At least that’s almost the full story. As
        we’ve seen, built-ins don’t follow these rules.
        Instances and classes may both be skipped for built-in operations
        only, as a special case that differs from normal or explicit name
        inheritance. Because this is a context-specific
        divergence, it’s easier to demonstrate in code than to weave into a
        single algorithm. In the following, str is the built-in, __str__ is its explicit name equivalent, and
        the instance is skipped for the built-in only:
>>> class C:                              # Inheritance special case #2...
        attr = 1                          # Built-ins skip a step
        def __str__(self): return('class')

>>> I = C()
>>> I.__str__(), str(I)                   # Both from class if not in instance
('class', 'class')

>>> I.__str__ = lambda: 'instance'
>>> I.__str__(), str(I)                   # Explicit=>instance, built-in=>class!
('instance', 'class')

>>> I.attr                                # Asymmetric with normal or explicit names
1
>>> I.attr = 2; I.attr
2
As we saw in metaclass5.py
        earlier, the same holds true for classes:
        explicit names start at the class, but built-ins start at the class’s
        class, which is its metaclass, and defaults to type:
>>> class D(type):
        def __str__(self): return('D class')

>>> class C(D):
        pass
>>> C.__str__(C), str(C)                  # Explicit=>super, built-in=>metaclass!
('D class', "<class '__main__.C'>")

>>> class C(D):
        def __str__(self): return('C class')
>>> C.__str__(C), str(C)                  # Explicit=>class, built-in=>metaclass!
('C class', "<class '__main__.C'>")

>>> class C(metaclass=D):
        def __str__(self): return('C class')
>>> C.__str__(C), str(C)                  # Built-in=>user-defined metaclass
('C class', 'D class')
In fact, it can sometimes be nontrivial to know
        where a name comes from in this model, since all
        classes also inherit from object—including the default type metaclass. In the following’s explicit
        call, C appears to get a default
        __str__ from object instead of the metaclass, per the
        first source of class inheritance (the class’s own MRO); by contrast,
        the built-in skips ahead to the metaclass as before:
>>> class C(metaclass=D):
        pass
>>> C.__str__(C), str(C)                  # Explicit=>object, built-in=>metaclass
("<class '__main__.C'>", 'D class')

>>> C.__str__
<slot wrapper '__str__' of 'object' objects>

>>> for k in (C, C.__class__, type): print([x.__name__ for x in k.__mro__])
['C', 'object']
['D', 'type', 'object']
['type', 'object']
All of which leads us to this book’s final import this quote—a tenet that seems to
        conflict with the status given to descriptors and built-ins in the
        attribute inheritance mechanism of new-style classes:
Special cases aren’t special enough to break the rules.

Some practical needs warrant exceptions, of course. We’ll forgo
        rationales here, but you should carefully consider the implications of
        an object-oriented language that applies inheritance—its
        foundational operation—in such an uneven and inconsistent
        fashion. At a minimum, this should underscore the importance of
        keeping your code simple, to avoid making it
        dependent on such convoluted rules. As always, your code’s users and
        maintainers will be glad you did.
For more fidelity on this story, see Python’s internal
        implementation of inheritance—a complete saga chronicled today in its
        object.c and typeobject.c, the former for normal
        instances, and the latter for classes. Delving into internals
        shouldn’t be required to use Python, of course, but it’s the ultimate
        source of truth in a complex and evolving system, and sometimes the
        best you’ll find. This is especially true in boundary cases born of
        accrued exceptions. For our purposes here, let’s move on to the last
        bit of metaclass magic.



Metaclass Methods
Just as important as the inheritance of names,
    methods in metaclasses process their instance
    classes—not the normal instance objects we’ve known
    as “self,” but classes themselves. This makes them similar in spirit and
    form to the class methods we studied in Chapter 32, though they again are available in the
    metaclasses instance realm only, not to normal instance inheritance. The
    failure at the end of the following, for example, stems from the explicit
    name inheritance rules of the prior section:
>>> class A(type):
        def x(cls): print('ax', cls)            # A metaclass (instances=classes)
        def y(cls): print('ay', cls)            # y is overridden by instance B

>>> class B(metaclass=A):
        def y(self): print('by', self)          # A normal class (normal instances)
        def z(self): print('bz', self)          # Namespace dict holds y and z

>>> B.x                                         # x acquired from metaclass
<bound method A.x of <class '__main__.B'>>
>>> B.y                                         # y and z defined in class itself
<function B.y at 0x0295F1E0>
>>> B.z
<function B.z at 0x0295F378>
>>> B.x()                                       # Metaclass method call: gets cls
ax <class '__main__.B'>

>>> I = B()                                     # Instance method calls: get inst
>>> I.y()
by <__main__.B object at 0x02963BE0>
>>> I.z()
bz <__main__.B object at 0x02963BE0>
>>> I.x()                                       # Instance doesn't see meta names
AttributeError: 'B' object has no attribute 'x'
Metaclass Methods Versus Class Methods
Though they differ in inheritance visibility, much like class methods, metaclass methods are
      designed to manage class-level data. In fact, their
      roles can overlap—much as metaclasses do in general with class
      decorators—but metaclass methods are not accessible except through the
      class, and do not require an explicit classmethod class-level data declaration in
      order to be bound with the class. In other words, metaclass methods can
      be thought of as implicit class methods, with limited visibility:
>>> class A(type):
        def a(cls):                        # Metaclass method: gets class
            cls.x = cls.y + cls.z

>>> class B(metaclass=A):
         y, z = 11, 22
         @classmethod                      # Class method: gets class
         def b(cls):
             return cls.x

>>> B.a()            # Call metaclass method; visible to class only
>>> B.x              # Creates class data on B, accessible to normal instances
33

>>> I = B()
>>> I.x, I.y, I.z
(33, 11, 22)

>>> I.b()            # Class method: sends class, not instance; visible to instance
33
>>> I.a()            # Metaclass methods: accessible through class only
AttributeError: 'B' object has no attribute 'a'

Operator Overloading in Metaclass Methods
Just like normal classes, metaclasses may also employ operator overloading to make
      built-in operations applicable to their instance classes. The __getitem__ indexing method in the following
      metaclass, for example, is a metaclass method designed to process
      classes themselves—the classes that are instances
      of the metaclass, not those classes’ own later instances. In fact, per
      the inheritance algorithms sketched earlier, normal class instances
      don’t inherit names acquired via the metaclass instance relationship at
      all, though they can access names present on their own classes:
>>> class A(type):
        def __getitem__(cls, i):         # Meta method for processing classes:
            return cls.data[i]           #  Built-ins skip class, use meta
                                         #  Explicit names search class + meta
>>> class B(metaclass=A):                #  Data descriptors in meta used first
        data = 'spam'

>>> B[0]                  # Metaclass instance names: visible to class only
's'
>>> B.__getitem__
<bound method A.__getitem__ of <class '__main__.B'>>

>>> I = B()
>>> I.data, B.data        # Normal inheritance names: visible to instance and class
('spam', 'spam')
>>> I[0]
TypeError: 'B' object does not support indexing
It’s possible to define a __getattr__ on a metaclass too, but it can be used to process its instance
      classes only, not their normal instances—as usual,
      it’s not even acquired by a class’s instances:
>>> class A(type):
        def __getattr__(cls, name):                # Acquired by class B getitem
            return getattr(cls.data, name)         # But not run same by built-ins

>>> class B(metaclass=A):
        data = 'spam'

>>> B.upper()
'SPAM'
>>> B.upper
<built-in method upper of str object at 0x029E7420>
>>> B.__getattr__
<bound method A.__getattr__ of <class '__main__.B'>>

>>> I = B()
>>> I.upper
AttributeError: 'B' object has no attribute 'upper'
>>> I.__getattr__
AttributeError: 'B' object has no attribute '__getattr__'
Moving the __getattr__ to a
      metaclass doesn’t help with its built-in interception shortcomings,
      though. In the following continuation, explicit attributes are routed to
      the metaclass’s __getattr__, but
      built-ins are not, despite that fact the indexing
      is routed to a metaclass’s __getitem__ in the first example of the
      section—strongly suggesting that new-style __getattr__ is a special case of a
      special case, and further recommending code simplicity that
      avoids dependence on such boundary cases:
>>> B.data = [1, 2, 3]
>>> B.append(4)           # Explicit normal names routed to meta's getattr
>>> B.data
[1, 2, 3, 4]
>>> B.__getitem__(0)      # Explicit special names routed to meta's gettarr
1
>>> B[0]                  # But built-ins skip meta's gettatr too?!
TypeError: 'A' object does not support indexing
As you can probably tell, metaclasses are interesting to explore,
      but it’s easy to lose track of their big picture. In the interest of
      space, we’ll omit additional fine points here. For the purposes of this
      chapter, it’s more important to show why you’d care to use such a tool
      in the first place. Let’s move on to some larger examples to sample the
      roles of metaclasses in action. As we’ll find, like so many tools in
      Python, metaclasses are first and foremost about easing maintenance work
      by eliminating redundancy.


Example: Adding Methods to Classes
In this and the following section, we’re going to study examples of two common use cases for
    metaclasses: adding methods to a class, and decorating all methods
    automatically. These are just two of the many metaclass roles, which
    unfortunately will consume the space we have left for this chapter; again,
    you should consult the Web for more advanced applications. These examples
    are representative of metaclasses in action, though, and they suffice to
    illustrate their application.
Moreover, both give us an opportunity to contrast class decorators
    and metaclasses—our first example compares metaclass- and decorator-based
    implementations of class augmentation and instance wrapping, and the
    second applies a decorator with a metaclass first and then with another
    decorator. As you’ll see, the two tools are often interchangeable, and
    even complementary.
Manual Augmentation
Earlier in this chapter, we looked at skeleton code that augmented classes by adding methods
      to them in various ways. As we saw, simple class-based inheritance
      suffices if the extra methods are statically known when the class is
      coded. Composition via object embedding can often achieve the same
      effect too. For more dynamic scenarios, though, other techniques are
      sometimes required—helper functions can usually suffice, but metaclasses
      provide an explicit structure and minimize the maintenance costs of
      changes in the future.
Let’s put these ideas in action here with working code. Consider
      the following example of manual class augmentation—it adds two methods
      to two classes, after they have been created:
# Extend manually - adding new methods to classes

class Client1:
    def __init__(self, value):
        self.value = value
    def spam(self):
        return self.value * 2

class Client2:
    value = 'ni?'

def eggsfunc(obj):
    return obj.value * 4

def hamfunc(obj, value):
    return value + 'ham'

Client1.eggs = eggsfunc
Client1.ham  = hamfunc

Client2.eggs = eggsfunc
Client2.ham  = hamfunc

X = Client1('Ni!')
print(X.spam())
print(X.eggs())
print(X.ham('bacon'))

Y = Client2()
print(Y.eggs())
print(Y.ham('bacon'))
This works because methods can always be assigned to a class after
      it’s been created, as long as the methods assigned are functions with an
      extra first argument to receive the subject self instance—this argument can be used to
      access state information accessible from the class instance, even though
      the function is defined independently of the class.
When this code runs, we receive the output of a method coded
      inside the first class, as well as the two methods added to the classes
      after the fact:
c:\code> py −3 extend-manual.py
Ni!Ni!
Ni!Ni!Ni!Ni!
baconham
ni?ni?ni?ni?
baconham
This scheme works well in isolated cases and can be used to fill
      out a class arbitrarily at runtime. It suffers from a potentially major
      downside, though: we have to repeat the augmentation code for every
      class that needs these methods. In our case, it wasn’t too onerous to
      add the two methods to both classes, but in more complex scenarios this
      approach can be time-consuming and error-prone. If we ever forget to do
      this consistently, or we ever need to change the augmentation, we can
      run into problems.

Metaclass-Based Augmentation
Although manual augmentation works, in larger programs it would be
      better if we could apply such changes to an entire set of classes
      automatically. That way, we’d avoid the chance of the augmentation being
      botched for any given class. Moreover, coding the augmentation in a
      single location better supports future changes—all classes in the set
      will pick up changes automatically.
One way to meet this goal is to use metaclasses. If we code the
      augmentation in a metaclass, every class that declares that metaclass
      will be augmented uniformly and correctly and will automatically pick up
      any changes made in the future. The following code demonstrates:
# Extend with a metaclass - supports future changes better

def eggsfunc(obj):
    return obj.value * 4

def hamfunc(obj, value):
    return value + 'ham'

class Extender(type):
    def __new__(meta, classname, supers, classdict):
        classdict['eggs'] = eggsfunc
        classdict['ham']  = hamfunc
        return type.__new__(meta, classname, supers, classdict)

class Client1(metaclass=Extender):
    def __init__(self, value):
        self.value = value
    def spam(self):
        return self.value * 2

class Client2(metaclass=Extender):
    value = 'ni?'

X = Client1('Ni!')
print(X.spam())
print(X.eggs())
print(X.ham('bacon'))

Y = Client2()
print(Y.eggs())
print(Y.ham('bacon'))
This time, both of the client classes are extended with the new
      methods because they are instances of a metaclass that performs the
      augmentation. When run, this version’s output is the same as before—we
      haven’t changed what the code does, we’ve just refactored it to
      encapsulate the augmentation more cleanly:
c:\code> py −3 extend-meta.py
Ni!Ni!
Ni!Ni!Ni!Ni!
baconham
ni?ni?ni?ni?
baconham
Notice that the metaclass in this example still performs a fairly
      static task: adding two known methods to every class that declares it.
      In fact, if all we need to do is always add the same two methods to a
      set of classes, we might as well code them in a normal superclass and
      inherit in subclasses. In practice, though, the metaclass structure
      supports much more dynamic behavior. For instance, the subject class
      might also be configured based upon arbitrary logic at runtime:
# Can also configure class based on runtime tests

class MetaExtend(type):
    def __new__(meta, classname, supers, classdict):
        if sometest():
            classdict['eggs'] = eggsfunc1
        else:
            classdict['eggs'] = eggsfunc2
        if someothertest():
            classdict['ham']  = hamfunc
        else:
            classdict['ham']  = lambda *args: 'Not supported'
        return type.__new__(meta, classname, supers, classdict)

Metaclasses Versus Class Decorators: Round 2
Keep in mind again that the prior chapter’s class decorators often overlap with this
      chapter’s metaclasses in terms of functionality. This derives from the
      fact that:
	Class decorators rebind class names to
          the result of a function at the end of a class statement, after the new class has
          been created.

	Metaclasses work by routing class object
          creation through an object at the end of a class statement, in order to create the
          new class.


Although these are slightly different models, in practice they can
      often achieve the same goals, albeit in different ways. As you’ve now
      seen, class decorators correspond directly to metaclass __init__ methods called to initialize newly
      created classes. Decorators have no direct analog to the metaclass
      __new__ (called to make classes in
      the first place) or to metaclass methods (used to process instance
      classes), but many or most use cases for these tools do not require
      these extra steps.
Because of this, both tools in principle can be used to manage
      both instances of a class and the class itself. In practice, though,
      metaclasses incur extra steps to manage instances, and decorators incur
      extra steps to create new classes. Hence, while their roles often
      overlap, metaclasses are probably best used for class object management.
      Let’s translate these ideas to code.
Decorator-based augmentation
In pure augmentation cases, decorators can often stand in for metaclasses. For
        example, the prior section’s metaclass example, which adds methods to
        a class on creation, can also be coded as a class decorator; in this
        mode, decorators roughly correspond to the __init__ method of metaclasses, since the
        class object has already been created by the time the decorator is
        invoked. Also as for metaclasses, the original class type is retained,
        since no wrapper object layer is inserted. The output of the
        following, file extend-deco.py,
        is the same as that of the prior metaclass code:
# Extend with a decorator: same as providing __init__ in a metaclass

def eggsfunc(obj):
    return obj.value * 4

def hamfunc(obj, value):
    return value + 'ham'

def Extender(aClass):
    aClass.eggs = eggsfunc                   # Manages class, not instance
    aClass.ham  = hamfunc                    # Equiv to metaclass __init__
    return aClass

@Extender
class Client1:                               # Client1 = Extender(Client1)
    def __init__(self, value):               # Rebound at end of class stmt
        self.value = value
    def spam(self):
        return self.value * 2

@Extender
class Client2:
    value = 'ni?'

X = Client1('Ni!')                           # X is a Client1 instance
print(X.spam())
print(X.eggs())
print(X.ham('bacon'))

Y = Client2()
print(Y.eggs())
print(Y.ham('bacon'))
In other words, at least in certain cases, decorators can manage
        classes as easily as metaclasses. The converse isn’t quite so
        straightforward, though; metaclasses can be used to manage instances,
        but only with a certain amount of extra magic. The next section
        demonstrates.

Managing instances instead of classes
As we’ve just seen, class decorators can often serve the same
        class-management role as metaclasses. Metaclasses
        can often serve the same instance-management role
        as decorators, too, but this requires extra code and may seem less
        natural. That is:
	Class decorators can manage both
            classes and instances, but don’t create classes normally.

	Metaclasses can manage both classes and
            instances, but instances require extra work.


That said, certain applications may be better coded in one or
        the other. For example, consider the following class decorator example
        from the prior chapter; it’s used to print a trace message whenever
        any normally named attribute of a class instance is fetched:
# Class decorator to trace external instance attribute fetches

def Tracer(aClass):                                   # On @ decorator
    class Wrapper:
        def __init__(self, *args, **kargs):           # On instance creation
            self.wrapped = aClass(*args, **kargs)     # Use enclosing scope name
        def __getattr__(self, attrname):
            print('Trace:', attrname)                 # Catches all but .wrapped
            return getattr(self.wrapped, attrname)    # Delegate to wrapped object
    return Wrapper

@Tracer
class Person:                                         # Person = Tracer(Person)
    def __init__(self, name, hours, rate):            # Wrapper remembers Person
        self.name = name
        self.hours = hours
        self.rate = rate                              # In-method fetch not traced
    def pay(self):
        return self.hours * self.rate

bob = Person('Bob', 40, 50)                           # bob is really a Wrapper
print(bob.name)                                       # Wrapper embeds a Person
print(bob.pay())                                      # Triggers __getattr__
When this code is run, the decorator uses class name rebinding
        to wrap instance objects in an object that produces the trace lines in
        the following output:
c:\code> py −3 manage-inst-deco.py
Trace: name
Bob
Trace: pay
2000
Although it’s possible for a metaclass to achieve the same
        effect, it seems less straightforward conceptually. Metaclasses are
        designed explicitly to manage class object creation, and they have an
        interface tailored for this purpose. To use a metaclass just to manage
        instances, we have to also take on responsibility for creating the
        class too—an extra step if normal class creation would otherwise
        suffice. The following metaclass, in file manage-inst-meta.py, has the same effect as
        the prior decorator:
# Manage instances like the prior example, but with a metaclass

def Tracer(classname, supers, classdict):             # On class creation call
    aClass = type(classname, supers, classdict)       # Make client class
    class Wrapper:
        def __init__(self, *args, **kargs):           # On instance creation
            self.wrapped = aClass(*args, **kargs)
        def __getattr__(self, attrname):
            print('Trace:', attrname)                 # Catches all but .wrapped
            return getattr(self.wrapped, attrname)    # Delegate to wrapped object
    return Wrapper

class Person(metaclass=Tracer):                       # Make Person with Tracer
    def __init__(self, name, hours, rate):            # Wrapper remembers Person
        self.name = name
        self.hours = hours
        self.rate = rate                              # In-method fetch not traced
    def pay(self):
        return self.hours * self.rate

bob = Person('Bob', 40, 50)                           # bob is really a Wrapper
print(bob.name)                                       # Wrapper embeds a Person
print(bob.pay())                                      # Triggers __getattr__
This works, but it relies on two tricks. First, it must use a
        simple function instead of a class, because type subclasses must adhere to object
        creation protocols. Second, it must manually create the subject class
        by calling type manually; it needs
        to return an instance wrapper, but metaclasses are also responsible
        for creating and returning the subject class. Really, we’re using the
        metaclass protocol to imitate decorators in this example, rather than
        vice versa; because both run at the conclusion of a class statement, in many roles they are just
        variations on a theme. This metaclass version produces the same output
        as the decorator when run live:
c:\code> py −3 manage-inst-meta.py
Trace: name
Bob
Trace: pay
2000
You should study both versions of these examples for yourself to
        weigh their tradeoffs. In general, though, metaclasses are probably
        best suited to class management, due to their design; class decorators
        can manage either instances or classes, though they may not be the
        best option for more advanced metaclass roles that we don’t have space
        to cover in this book. See the Web for more metaclass examples, but
        keep in mind that some are more appropriate than others (and some of
        their authors may know less of Python than you do!).

Metaclass and class decorator equivalence?
The preceding section illustrated that metaclasses incur an
        extra step to create the class when used in instance management roles,
        and hence can’t quite subsume decorators in all use cases. But what
        about the inverse—are decorators a replacement for metaclasses?
Just in case this chapter has not yet managed to make your head
        explode, consider the following metaclass coding alternative too—a
        class decorator that returns a metaclass instance:
# A decorator can call a metaclass, though not vice versa without type()

>>> class Metaclass(type):
        def __new__(meta, clsname, supers, attrdict):
            print('In M.__new__:')
            print([clsname, supers, list(attrdict.keys())])
            return type.__new__(meta, clsname, supers, attrdict)

>>> def decorator(cls):
        return Metaclass(cls.__name__, cls.__bases__, dict(cls.__dict__))

>>> class A:
        x = 1

>>> @decorator
    class B(A):
        y = 2
        def m(self): return self.x  + self.y

In M.__new__:
['B', (<class '__main__.A'>,), ['__qualname__', '__doc__', 'm', 'y', '__module__']]
>>> B.x, B.y
(1, 2)
>>> I = B()
>>> I.x, I.y, I.m()
(1, 2, 3)
This nearly proves the equivalence of the two tools, but really
        just in terms of dispatch at class construction
        time. Again, decorators essentially serve the same role as metaclass
        __init__ methods. Because this
        decorator returns a metaclass instance, metaclasses—or at least their
        type superclass—are still assumed
        here. Moreover, this winds up triggering an
        additional metaclass call after the class is
        created, and isn’t an ideal scheme in real code—you might as well move
        this metaclass to the first creation step:
>>> class B(A, metaclass=Metaclass): ...     # Same effect, but makes just one class
Still, there is some tool redundancy here, and decorator and
        metaclass roles often overlap in practice. And although decorators
        don’t directly support the notion of class-level methods in
        metaclasses discussed earlier, methods and state in
        proxy objects created by decorators can achieve
        similar effects, though for space we’ll leave this last observation in
        the suggested explorations column.
The inverse may not seem applicable—a
        metaclass can’t generally defer to a nonmetaclass decorator, because
        the class doesn’t yet exist until the metaclass call
        completes—although a metaclass can take the form
        of a simple callable that invokes type to create the class directly and passes
        it on to the decorator. In other words, the crucial hook in the model
        is the type call issued for class
        construction. Given that, metaclasses and class decorators are often
        functionally equivalent, with varying dispatch
        protocol models:
>>> def Metaclass(clsname, supers, attrdict):
        return decorator(type(clsname, supers, attrdict))

>>> def decorator(cls): ...
>>> class B(A, metaclass=Metaclass): ...     # Metas can call decos and vice versa
In fact, metaclasses need not necessarily return a type instance
        either—any object compatible with the class
        coder’s expectations will do—and this further blurs the
        decorator/metaclass distinction:
>>> def func(name, supers, attrs):
        return 'spam'

>>> class C(metaclass=func):           # A class whose metaclass makes it a string!
        attr = 'huh?'

>>> C, C.upper()
('spam', 'SPAM')

>>> def func(cls):
        return 'spam'

>>> @func
    class C:                           # A class whose decorator makes it a string!
        attr = 'huh?'

>>> C, C.upper()
('spam', 'SPAM')
Odd metaclass and decorator tricks like these aside, timing
        often determines roles in practice, as stated earlier:
	Because decorators run after a class is
            created, they incur an extra runtime step in
            class creation roles.

	Because metaclasses must create
            classes, they incur an extra coding step in
            instance management roles.


In other words, neither completely subsumes the other. Strictly
        speaking, metaclasses might be a functional superset, as they can call
        decorators during class creation; but metaclasses can also be
        substantially heavier to understand and code, and many roles intersect
        completely. In practice, the need to take over class creation entirely
        is probably much less important than tapping into the process in
        general.
Rather than follow this rabbit hole further, though, let’s move
        on to explore metaclass roles that may be a bit more typical and
        practical. The next section concludes this chapter with one more
        common use case—applying operations to a class’s methods automatically
        at class creation time.



Example: Applying Decorators to Methods
As we saw in the prior section, because they are both run at the end of a class statement, metaclasses and decorators can
    often be used interchangeably, albeit with different
    syntax. The choice between the two is arbitrary in many contexts. It’s
    also possible to use them in combination, as
    complementary tools. In this section, we’ll explore an example of just
    such a combination—applying a function decorator to all the methods of a
    class.
Tracing with Decoration Manually
In the prior chapter we coded two function decorators, one that
      traced and counted all calls made to a decorated function and another
      that timed such calls. They took various forms there, some of which were
      applicable to both functions and methods and some of which were not. The
      following collects both decorators’ final forms into a module file for
      reuse and reference here:
# File decotools.py: assorted decorator tools
import time

def tracer(func):                         # Use function, not class instance with __call__
    calls = 0                             # Else self is decorator instance only
    def onCall(*args, **kwargs):
        nonlocal calls
        calls += 1
        print('call %s to %s' % (calls, func.__name__))
        return func(*args, **kwargs)
    return onCall

def timer(label='', trace=True):                # On decorator args: retain args
    def onDecorator(func):                      # On @: retain decorated func
        def onCall(*args, **kargs):             # On calls: call original
            start   = time.clock()              # State is scopes + func attr
            result  = func(*args, **kargs)
            elapsed = time.clock() - start
            onCall.alltime += elapsed
            if trace:
                format = '%s%s: %.5f, %.5f'
                values = (label, func.__name__, elapsed, onCall.alltime)
                print(format % values)
            return result
        onCall.alltime = 0
        return onCall
    return onDecorator
As we learned in the prior chapter, to use these decorators
      manually, we simply import them from the module and code the decoration
      @ syntax before each method we wish
      to trace or time:
from decotools import tracer

class Person:
    @tracer
    def __init__(self, name, pay):
        self.name = name
        self.pay  = pay

    @tracer
    def giveRaise(self, percent):         # giveRaise = tracer(giverRaise)
        self.pay *= (1.0 + percent)       # onCall remembers giveRaise

    @tracer
    def lastName(self):                   # lastName = tracer(lastName)
        return self.name.split()[-1]

bob = Person('Bob Smith', 50000)
sue = Person('Sue Jones', 100000)
print(bob.name, sue.name)
sue.giveRaise(.10)                        # Runs onCall(sue, .10)
print('%.2f' % sue.pay)
print(bob.lastName(), sue.lastName())     # Runs onCall(bob), remembers lastName
When this code is run, we get the following output—calls to
      decorated methods are routed to logic that intercepts and then delegates
      the call, because the original method names have been bound to the
      decorator:
c:\code> py −3 decoall-manual.py
call 1 to __init__
call 2 to __init__
Bob Smith Sue Jones
call 1 to giveRaise
110000.00
call 1 to lastName
call 2 to lastName
Smith Jones

Tracing with Metaclasses and Decorators
The manual decoration scheme of the prior section works, but it
      requires us to add decoration syntax before each
      method we wish to trace and to later remove that syntax when we no
      longer desire tracing. If we want to trace every method of a class, this
      can become tedious in larger programs. In more dynamic contexts where
      augmentations depend upon runtime parameters, it may not be possible at
      all. It would be better if we could somehow apply the tracer decorator
      to all of a class’s methods automatically.
With metaclasses, we can do exactly that—because they are run when
      a class is constructed, they are a natural place to add decoration
      wrappers to a class’s methods. By scanning the class’s attribute
      dictionary and testing for function objects there, we can automatically
      run methods through the decorator and rebind the original names to the
      results. The effect is the same as the automatic method name rebinding
      of decorators, but we can apply it more globally:
# Metaclass that adds tracing decorator to every method of a client class

from types import FunctionType
from decotools import tracer

class MetaTrace(type):
    def __new__(meta, classname, supers, classdict):
        for attr, attrval in classdict.items():
            if type(attrval) is FunctionType:                      # Method?
                classdict[attr] = tracer(attrval)                  # Decorate it
        return type.__new__(meta, classname, supers, classdict)    # Make class

class Person(metaclass=MetaTrace):
    def __init__(self, name, pay):
        self.name = name
        self.pay  = pay
    def giveRaise(self, percent):
        self.pay *= (1.0 + percent)
    def lastName(self):
        return self.name.split()[-1]

bob = Person('Bob Smith', 50000)
sue = Person('Sue Jones', 100000)
print(bob.name, sue.name)
sue.giveRaise(.10)
print('%.2f' % sue.pay)
print(bob.lastName(), sue.lastName())
When this code is run, the results are the same as before—calls to
      methods are routed to the tracing decorator first for tracing, and then
      propagated on to the original method:
c:\code> py −3 decoall-meta.py
call 1 to __init__
call 2 to __init__
Bob Smith Sue Jones
call 1 to giveRaise
110000.00
call 1 to lastName
call 2 to lastName
Smith Jones
The result you see here is a combination of
      decorator and metaclass work—the metaclass automatically applies the
      function decorator to every method at class creation time, and the
      function decorator automatically intercepts method calls in order to
      print the trace messages in this output. The combination “just works,”
      thanks to the generality of both tools.

Applying Any Decorator to Methods
The prior metaclass example works for just one specific function
      decorator—tracing. However, it’s trivial to generalize this to apply
      any decorator to all the methods of a class. All we
      have to do is add an outer scope layer to retain the desired decorator,
      much like we did for decorators in the prior chapter. The following, for
      example, codes such a generalization and then uses it to apply the
      tracer decorator again:
# Metaclass factory: apply any decorator to all methods of a class

from types import FunctionType
from decotools import tracer, timer

def decorateAll(decorator):
    class MetaDecorate(type):
        def __new__(meta, classname, supers, classdict):
            for attr, attrval in classdict.items():
                if type(attrval) is FunctionType:
                    classdict[attr] = decorator(attrval)
            return type.__new__(meta, classname, supers, classdict)
    return MetaDecorate

class Person(metaclass=decorateAll(tracer)):       # Apply a decorator to all
    def __init__(self, name, pay):
        self.name = name
        self.pay  = pay
    def giveRaise(self, percent):
        self.pay *= (1.0 + percent)
    def lastName(self):
        return self.name.split()[-1]

bob = Person('Bob Smith', 50000)
sue = Person('Sue Jones', 100000)
print(bob.name, sue.name)
sue.giveRaise(.10)
print('%.2f' % sue.pay)
print(bob.lastName(), sue.lastName())
When this code is run as it is, the output is again the same as
      that of the previous examples—we’re still ultimately decorating every
      method in a client class with the tracer function decorator, but we’re
      doing so in a more generic fashion:
c:\code> py −3 decoall-meta-any.py
call 1 to __init__
call 2 to __init__
Bob Smith Sue Jones
call 1 to giveRaise
110000.00
call 1 to lastName
call 2 to lastName
Smith Jones
Now, to apply a different decorator to the
      methods, we can simply replace the decorator name in the class header line. To use the timer function
      decorator shown earlier, for example, we could use either of the last
      two header lines in the following when defining our class—the first
      accepts the timer’s default arguments, and the second specifies label
      text:
class Person(metaclass=decorateAll(tracer)):               # Apply tracer

class Person(metaclass=decorateAll(timer())):              # Apply timer, defaults
class Person(metaclass=decorateAll(timer(label='**'))):    # Decorator arguments
Notice that this scheme cannot support nondefault decorator
      arguments differing per method in the client class, but it can pass in
      decorator arguments that apply to all such methods, as done here. To
      test, use the last of these metaclass declarations to apply the timer,
      and add the following lines at the end of the script to see the timer’s
      extra informational attributes:
# If using timer: total time per method

print('-'*40)
print('%.5f' % Person.__init__.alltime)
print('%.5f' % Person.giveRaise.alltime)
print('%.5f' % Person.lastName.alltime)
The new output is as follows—the metaclass wraps methods in timer
      decorators now, so we can tell how long each and every call takes, for
      every method of the class:
c:\code> py −3 decoall-meta-any2.py
**__init__: 0.00001, 0.00001
**__init__: 0.00001, 0.00001
Bob Smith Sue Jones
**giveRaise: 0.00002, 0.00002
110000.00
**lastName: 0.00002, 0.00002
**lastName: 0.00002, 0.00004
Smith Jones
----------------------------------------
0.00001
0.00002
0.00004

Metaclasses Versus Class Decorators: Round 3 (and Last)
As you might expect, class decorators intersect with metaclasses here, too. The
      following version replaces the preceding example’s metaclass with a
      class decorator. That is, it defines and uses a class
      decorator that applies a function decorator to all methods of
      a class. Although the prior sentence may sound more like a Zen statement
      than a technical description, this all works quite naturally—Python’s
      decorators support arbitrary nesting and combinations:
# Class decorator factory: apply any decorator to all methods of a class

from types import FunctionType
from decotools import tracer, timer

def decorateAll(decorator):
    def DecoDecorate(aClass):
        for attr, attrval in aClass.__dict__.items():
            if type(attrval) is FunctionType:
                setattr(aClass, attr, decorator(attrval))        # Not __dict__
        return aClass
    return DecoDecorate

@decorateAll(tracer)                          # Use a class decorator
class Person:                                 # Applies func decorator to methods
    def __init__(self, name, pay):            # Person = decorateAll(..)(Person)
        self.name = name                      # Person = DecoDecorate(Person)
        self.pay  = pay
    def giveRaise(self, percent):
        self.pay *= (1.0 + percent)
    def lastName(self):
        return self.name.split()[-1]

bob = Person('Bob Smith', 50000)
sue = Person('Sue Jones', 100000)
print(bob.name, sue.name)
sue.giveRaise(.10)
print('%.2f' % sue.pay)
print(bob.lastName(), sue.lastName())
When this code is run as it is, the class decorator applies the
      tracer function decorator to every method and produces a trace message
      on calls (the output is the same as that of the preceding metaclass
      version of this example):
c:\code> py −3 decoall-deco-any.py
call 1 to __init__
call 2 to __init__
Bob Smith Sue Jones
call 1 to giveRaise
110000.00
call 1 to lastName
call 2 to lastName
Smith Jones
Notice that the class decorator returns the original, augmented
      class, not a wrapper layer for it (as is common when wrapping instance
      objects instead). As for the metaclass version, we retain the type of
      the original class—an instance of Person is an instance of Person, not of some wrapper class. In fact,
      this class decorator deals with class creation only; instance creation
      calls are not intercepted at all.
This distinction can matter in programs that require type testing
      for instances to yield the original class, not a wrapper. When
      augmenting a class instead of an instance, class decorators can retain
      the original class type. The class’s methods are not their original
      functions because they are rebound to decorators, but this is likely
      less important in practice, and it’s true in the metaclass alternative
      as well.
Also note that, like the metaclass version, this structure cannot
      support function decorator arguments that differ per method in the
      decorated class, but it can handle such arguments if they apply to all
      such methods. To use this scheme to apply the timer decorator, for
      example, either of the last two decoration lines in the following will
      suffice if coded just before our class definition—the first uses
      decorator argument defaults, and the second provides one
      explicitly:
@decorateAll(tracer)                 # Decorate all with tracer

@decorateAll(timer())                # Decorate all with timer, defaults
@decorateAll(timer(label='@@'))      # Same but pass a decorator argument
As before, let’s use the last of these decorator lines and add the
      following at the end of the script to test our example with a different
      decorator (better schemes are possible on both the testing and timing
      fronts here, of course, but we’re at chapter end; improve as
      desired):
# If using timer: total time per method

print('-'*40)
print('%.5f' % Person.__init__.alltime)
print('%.5f' % Person.giveRaise.alltime)
print('%.5f' % Person.lastName.alltime)
The same sort of output appears—for every method we get timing
      data for each and all calls, but we’ve passed a different label argument
      to the timer decorator:
c:\code> py −3 decoall-deco-any2.py
@@__init__: 0.00001, 0.00001
@@__init__: 0.00001, 0.00001
Bob Smith Sue Jones
@@giveRaise: 0.00002, 0.00002
110000.00
@@lastName: 0.00002, 0.00002
@@lastName: 0.00002, 0.00004
Smith Jones
----------------------------------------
0.00001
0.00002
0.00004
Finally, it’s possible to combine decorators
      such that each runs per method call, but it will likely require changes
      to those we’ve coded here. As is, nesting calls to them directly winds
      up tracing or timing the other’s creation-time application, listing the
      two on separate lines results in tracing or timing the other’s wrapper
      before running the original method, and metaclasses seem to fare no
      better on this front:
@decorateAll(tracer(timer(label='@@')))    # Traces applying the timer
class Person:

@decorateAll(tracer)                       # Traces onCall wrapper, times methods
@decorateAll(timer(label='@@'))
class Person:

@decorateAll(timer(label='@@'))
@decorateAll(tracer)                       # Times onCall wrapper, traces methods
class Person:
Pondering this further will have to remain suggested study—both
      because we’re out of space and time, and because this may quite possibly
      be illegal in some states!
As you can see, metaclasses and class decorators are not only
      often interchangeable, but also commonly complementary. Both provide
      advanced but powerful ways to customize and manage both class and
      instance objects, because both ultimately allow you to insert code into
      the class creation process. Although some more advanced applications may
      be better coded with one or the other, the way you choose or combine
      these two tools in many cases is largely up to you.


Chapter Summary
In this chapter, we studied metaclasses and explored examples of
    them in action. Metaclasses allow us
    to tap into the class creation protocol of Python, in order to manage or
    augment user-defined classes. Because they automate this process, they may
    provide better solutions for API writers than manual code or helper
    functions; because they encapsulate such code, they may minimize
    maintenance costs better than some other approaches.
Along the way, we also saw how the roles of class decorators and
    metaclasses often intersect: because both run at the conclusion of a
    class statement, they can sometimes be
    used interchangeably. Class decorators and metaclasses can both be used to
    manage both class and instance objects, though each tool may present
    tradeoffs in some use cases.
Since this chapter covered an advanced topic, we’ll work through
    just a few quiz questions to review the basics (candidly, if you’ve made
    it this far in a chapter on metaclasses, you probably already deserve
    extra credit!). Because this is the last part of the book, we’ll forgo the
    end-of-part exercises. Be sure to see the appendixes that follow for
    Python changes, the solutions to the prior parts’ exercises, and more; the
    last of these includes a sampling of typical application-level programs
    for self-study.
Once you finish the quiz, you’ve officially reached the end of this
    book’s technical material. The next and final chapter offers some brief
    closing thoughts to wrap up the book at large. I’ll see you there in the
    Python benediction after you work through this final quiz.

Test Your Knowledge: Quiz
	What is a metaclass?

	How do you declare the metaclass of a class?

	How do class decorators overlap with metaclasses for managing
        classes?

	How do class decorators overlap with metaclasses for managing
        instances?

	Would you rather count decorators or metaclasses amongst your
        weaponry? (And please phrase your answer in terms of a popular Monty
        Python skit.)



Test Your Knowledge: Answers
	A metaclass is a class used to create a class. Normal new-style
        classes are instances of the type
        class by default. Metaclasses are usually subclasses of the type class, which redefines class creation
        protocol methods in order to customize the class creation call issued
        at the end of a class statement;
        they typically redefine the methods __new__ and __init__ to tap into the class creation
        protocol. Metaclasses can also be coded other ways—as simple
        functions, for example—but they are always responsible for making and
        returning an object for the new class. Metaclasses may have methods
        and data to provide behavior for their classes too—and constitute a
        secondary pathway for inheritance search—but their attributes are
        accessible only to their class instances, not to their instance’s
        instances.

	In Python 3.X, use a keyword argument in the class header line: class C(metaclass=M). In Python 2.X, use a class attribute
        instead: __metaclass__ =
        M. In 3.X, the class header line can also name normal
        superclasses before the metaclass
        keyword argument; in 2.X you generally should derive from object too, though this is sometimes
        optional.

	Because both are automatically triggered at the end of a
        class statement, class decorators
        and metaclasses can both be used to manage classes. Decorators rebind
        a class name to a callable’s result and metaclasses route class
        creation through a callable, but both hooks can be used for similar
        purposes. To manage classes, decorators simply augment and return the
        original class objects. Metaclasses augment a class after they create
        it. Decorators may have a slight disadvantage in this role if a new
        class must be defined, because the original class has already been
        created.

	Because both are automatically triggered at the end of a
        class statement, we can use both
        class decorators and metaclasses to manage class instances, by
        inserting a wrapper (proxy) object to catch instance creation calls.
        Decorators may rebind the class name to a callable run on instance
        creation that retains the original class object. Metaclasses can do
        the same, but may have a slight disadvantage in this role, because
        they must also create the class object.

	Our chief weapon is decorators...decorators and
        metaclasses...metaclasses and decorators... Our two weapons are
        metaclasses and decorators...and ruthless efficiency... Our
        three weapons are metaclasses, decorators, and
        ruthless efficiency...and an almost fanatical devotion to Python...
        Our four...no... Amongst our
        weapons... Amongst our weaponry...are such elements as metaclasses,
        decorators... I’ll come in again...



1 And to quote a Python 3.3 error message I just came across:
        “TypeError: metaclass conflict: the metaclass of a derived class must
        be a (non-strict) subclass of the metaclasses of all its bases” (!).
        This reflects an erroneous use of a module as a superclass, but
        metaclasses may not be as optional as developers imply—a theme we’ll
        revisit in the next chapter’s conclusion to this book.








Chapter 41. All Good Things
Welcome to the end of the book! Now that you’ve made it this far, I
  want to say a few words in closing about Python’s evolution before turning
  you loose on the software field. This topic is subjective by nature, of
  course, but vital to all Python users nonetheless.
You’ve now had a chance to see the entire language yourself—including
  some advanced features that may seem at odds with its scripting paradigm.
  Though many will understandably accept this as status quo, in an open source
  project it’s crucial that some ask the “why” questions too. Ultimately, the
  trajectory of the Python story—and its true conclusion—is at least in part
  up to you.
The Python Paradox
If you’ve read this book, or reasonable subsets of it, you should now be able to weigh
    Python’s tradeoffs fairly. As you’ve seen, Python is a powerful,
    expressive, and even fun programming language, which will serve as an
    enabling technology for wherever you choose to go next. At the same time,
    you’ve also seen that today’s Python is something of a paradox: it has
    expanded to incorporate tools that many consider both needlessly redundant
    and curiously advanced—and at a rate that appears to be only
    accelerating.
For my part, as one of Python’s earliest advocates, I’ve watched it
    morph over the years from simple to sophisticated tool, with a steadily
    shifting scope. By most measures, it seems to have grown at least as
    complex as other languages that drove many of us to Python in the first
    place. And just as in those other languages, this has inevitably fostered
    a growing culture in which obscurity is a badge of honor.
That’s as contrary to Python’s original goals as it could be. Run an
    import this in any Python interactive
    session to see what I mean—the creed I’ve quoted from repeatedly in this
    book in contexts where it was clearly violated. On many levels, its core
    ideals of explicitness, simplicity, and lack of redundancy have been
    either naively forgotten or carelessly abandoned.
The end result is a language and community that could in part be
    described today in some of the same terms I used in the Perl sidebar of
    Chapter 1. While Python still has much to
    offer, this trend threatens to negate much of its perceived advantage, as
    the next section explains.
On “Optional” Language Features
I included a quote near the start of the prior chapter about
      metaclasses not being of interest to 99% of Python programmers, to
      underscore their perceived obscurity. That statement is not quite
      accurate, though, and not just numerically so. The quote’s author is a
      noted Python contributor and friend from the early days of Python, and I
      don’t mean to pick on anyone unfairly. Moreover, I’ve often made such
      statements about language feature obscurity myself—in the various
      editions of this very book, in fact.
The problem, though, is that such statements really apply only to
      people who work alone and only ever use code that they’ve written
      themselves. As soon as an “optional” advanced language feature is used
      by anyone in an organization, it is no longer
      optional—it is effectively imposed on everyone in
      the organization. The same holds true for externally developed software
      you use in your systems—if the software’s author uses an advanced or
      extraneous language feature, it’s no longer entirely optional for you,
      because you have to understand the feature to reuse or change the
      code.
This observation applies to all the advanced
      topics covered in this book, including those listed as “magic” hooks
      near the beginning of the prior chapter, and many others:
Generators, decorators, slots, properties, descriptors,
        metaclasses, context managers, closures, super, namespace packages, Unicode, function
        annotations, relative imports, keyword-only arguments, class and
        static methods, and even obscure applications of comprehensions and
        operator overloading

If any person or program you need to work with uses such tools,
      they automatically become part of your required knowledge
      base too.
To see just how daunting this can be, one need only consider Chapter 40’s new-style inheritance
      procedure—a horrifically convoluted model that can make descriptors and
      metaclasses prerequisite to understanding even basic name resolution.
      Chapter 32’s super similarly ups the intellectual
      ante—imposing an obscenely implicit and artificial MRO algorithm on
      readers of any code that uses this tool.
The net effect of such over-engineering is to either escalate
      learning requirements radically, or foster a user base that only
      partially understands the tools they employ. This is obviously less than
      ideal for those hoping to use Python in simpler ways, and contradictory
      to the scripting motif.

Against Disquieting Improvements
This observation also applies to the many
      redundant features we’ve seen, such as Chapter 7’s str.format method and Chapter 34’s with statement—tools borrowed from other
      languages, and overlapping with others long present in Python. When
      programmers use multiple ways to achieve the same goal, all become
      required knowledge.
Let’s be honest: Python has grown rife with redundancy in recent
      years. As I suggested in the preface—and as you’ve now seen
      first-hand—today’s Python world comes replete with all the functional
      duplications and expansions chronicled in Table 41-1, among others
      we’ve seen in this book.
Table 41-1. A sampling of redundancy and feature explosion in
        Python	Category	Specifics
	3 major
              paradigms
	Procedural, functional,
              object-oriented

	2 incompatible
              lines
	2.X and 3.X, with
              new-style classes in both

	3 string formatting
              tools
	% expression, str.format,
              string.Template

	4 attribute accessor
              tools
	__getattr__,
              __getattribute__, properties, descriptors

	2 finalization
              statements
	try/finally,
              with

	4 varieties of
              comprehension
	List, generator, set,
              dictionary

	3 class augmentation
              tools
	Function calls,
              decorators, metaclasses

	4 kinds of
              methods
	Instance, static, class,
              metaclass

	2 attribute storage
              systems
	Dictionaries,
              slots

	4 flavors of
              imports
	Module, package, package
              relative, namespace package

	2 superclass dispatch
              protocols
	Direct calls, super +
              MRO

	5 assignment statement
              forms
	Basic, multiname,
              augmented, sequence, starred

	2 types of
              functions
	Normal,
              generator

	5 function argument
              forms
	Basic, name=value,
              *pargs, **kargs, keyword-only

	2 class behavior
              sources
	Superclasses,
              metaclasses

	4 state retention
              options
	Classes, closures,
              function attributes, mutables

	2 class
              models
	Classic + new-style in
              2.X, mandated new-style in 3.X

	2 Unicode
              models
	Optional in 2.X, mandated
              in 3.X

	2 PyDoc
              modes
	GUI client, required
              all-browser in recent 3.X

	2 byte code storage
              schemes
	Original, __pycache__
              only in recent 3.X


If you care about Python, you should take a moment to browse this
      table. It reflects a virtual explosion in functionality and toolbox
      size—59 concepts that are all fair game for newcomers. Most of its
      categories began with just one original member in
      Python; many were expanded in part to imitate other languages; and only
      the last few can be simplified by pretending that the latest Python is
      the only Python that matters to its programmers.
I’ve stressed avoiding unwarranted complexity in this book, but in
      practice, both advanced and new tools tend to encourage their own
      adoption—often for no better reason than a programmer’s personal desire
      to demonstrate prowess. The net result is that much Python code today is
      littered with these complex and extraneous tools. That is,
      nothing is truly “optional” if nothing is truly
      optional.

Complexity Versus Power
This is why some Python old-timers (myself included) sometimes
      worry that Python seems to have grown larger and more complex over time.
      New features added by veterans, converts, and even amateurs may have
      raised the intellectual bar for newcomers. Although Python’s core ideas,
      like dynamic typing and built-in types, have remained essentially the
      same, its advanced additions can become required reading for any Python
      programmer. I chose to cover these topics here for this reason, despite
      their omission in early editions. It’s not possible to skip the advanced
      stuff if it’s in code you have to understand.
On the other hand, as mentioned in Chapter 1, to most
        observers Python is still noticeably simpler than most of its
        contemporaries, and perhaps only as complex as its many roles require. Though it’s acquired
        many of the same tools as Java, C#, and C++, they tend
        to be lighter weight in the context of a dynamically typed scripting language. For all its
        growth over the years, Python is still relatively easy to learn and use when compared to the
        alternatives, and new learners can often pick up advanced topics as needed.
And frankly, application programmers tend to spend most of their
      time dealing with libraries and extensions, not
      advanced and sometimes-arcane language features. For instance, the book
      Programming
      Python—a follow-up to this one—deals mostly with the marriage of
      Python to application libraries for tasks such as GUIs, databases, and
      the Web, not with esoteric language tools (though Unicode still forces
      itself onto many stages, and the odd generator expression and yield crop up along the way).
Moreover, the flipside of this growth is that Python has become
      more powerful. When used well, tools like
      decorators and metaclasses are not only arguably “cool,” but allow
      creative programmers to build more flexible and useful APIs for other
      programmers to use. As we’ve seen, they can also provide good solutions
      to problems of encapsulation and maintenance.

Simplicity Versus Elitism
Whether this justifies the potential expansion of required Python
      knowledge is up to you to decide. For better or worse, a person’s skill
      level often decides this issue by default—more advanced programmers like
      more advanced tools and tend to forget about their impact on other
      camps. Fortunately, though, this isn’t an absolute; good programmers
      also understand that simplicity is good
      engineering, and advanced tools should be used only when
      warranted. This is true in any programming language, but especially in
      one like Python that is frequently exposed to new or novice programmers
      as an extension tool.
And if you’re still not buying this, keep in mind that many people using Python are not
        comfortable with even basic OOP. Trust me on this; I’ve met thousands
        of them. Although Python was never a trivial subject, the reports from the software trenches
        are very clear on this point: unwarranted added complexity is never a welcome feature,
        especially when it is driven by the personal preferences of an unrepresentative few. Whether
        intended or not, this is often understandably perceived as elitism—a
        mindset that is both unproductive and rude, and has no place in a tool as widely used as
        Python.
This is also a social issue, of course, and pertains as much to
      individual programmers as to language designers. In the “real world”
      where open source software is measured, though, Python-based systems
      that require their users to master the nuances of metaclasses,
      descriptors, and the like should probably scale their market
      expectations accordingly. Hopefully, if this book has done its job,
      you’ll find the importance of simplicity in programming to be one of its
      most important and lasting takeaways.

Closing Thoughts
So there you have it—some observations from someone who has been
      using, teaching, and advocating Python for two decades, and still wishes
      nothing but the best for its future. None of these concerns are entirely
      new, of course. Indeed, the growth of this very book over the years
      seems testament to the effect of Python’s own growth—if not an
      ironic eulogy to its original conception as a tool
      that would simplify programming and be accessible to both experts and
      nonspecialists alike. Judging by language heft alone, that dream seems
      to have been either neglected or abandoned entirely.
That said, Python’s present rise in
      popularity seems to show no signs of abating—a
      powerful counterargument to complexity concerns. Today’s Python world
      may be understandably less concerned with its original and perhaps
      idealistic goals than with applying its present form in their work.
      Python gets many a job done in the practical world of complex
      programming requirements, and this is still ample cause to recommend it
      for many tasks. Original goals aside, mass appeal does qualify as one
      form of success, though one whose significance will have to await the
      verdict of time.
If you’re interested in musing further over Python’s evolution and
      learning curve, I wrote a more in-depth article in 2012 on such things:
      Answer Me These Questions Three..., available
      online at http://learning-python.com/pyquestions3.html.
      These are important pragmatic questions that are crucial to Python’s
      future, and deserve more attention than I’ve given here. But these are
      highly subjective issues; this is not a philosophy text; and this book
      has already exceeded its page-count targets.
More importantly, in an open source project like Python the
      answers to such questions must be formed anew by each wave of newcomers.
      I hope the wave you ride in will have as much common sense as fun while
      plotting Python’s future.


Where to Go From Here
And that’s a wrap, folks. You’ve officially reached the end of this
    book. Now that you know Python inside and out, your next step, should you
    choose to take it, is to explore the libraries, techniques, and tools
    available in the application domains in which you work.
Because Python is so widely used, you’ll find ample resources for
    using it in almost any application you can think of—from GUIs, the Web,
    and databases to numeric programming, robotics, and system administration.
    See Chapter 1 and your favorite web browser
    for pointers to popular tools and topics.
This is where Python starts to become truly fun, but this is also
    where this book’s story ends, and others’ begin. For pointers on where to
    turn after this book, see the recommended follow-up texts mentioned in the
    preface. I hope to see you in an applications programming domain
    soon.
Good luck with your journey. And of course, “Always look on the
    bright side of Life!”

Encore: Print Your Own Completion Certificate!
And one last thing: in lieu of exercises for this part of the book, I’m going to
    post a bonus script here for you to study and run on your own. I can’t
    provide completion certificates for readers of this book (and the
    certificates would be worthless if I could), but I can include an arguably
    cheesy Python script that does—the following file, certificate.py, is a Python 2.X and 3.X script
    that creates a simple book completion certificate in both text and HTML
    file forms, and pops them up in a web browser on your machine by
    default.
#!/usr/bin/python
"""
File certificate.py: a Python 2.X and 3.X script.
Generate a bare-bones class completion certificate: printed,
and saved in text and html files displayed in a web browser.
"""
from __future__ import print_function             # 2.X compatibility
import time, sys, webbrowser

if sys.version_info[0] == 2:                      # 2.X compatibility
    input = raw_input
    import cgi
    htmlescape = cgi.escape
else:
    import html
    htmlescape = html.escape

maxline  = 60                         # For seperator lines
browser  = True                       # Display in a browser
saveto   = 'Certificate.txt'          # Output filenames
template = """
%s

 ===> Official Certificate <===

Date: %s

This certifies that:

\t%s

has survived the massive tome:

\t%s

and is now entitled to all privileges thereof, including
the right to proceed on to learning how to develop Web
sites, desktop GUIs, scientific models, and assorted apps,
with the possible assistance of follow-up applications
books such as Programming Python (shameless plug intended).

--Mark Lutz, Instructor

(Note: certificate void where obtained by skipping ahead.)

%s
"""

# Interact, setup
for c in 'Congratulations!'.upper():
    print(c, end=' ')
    sys.stdout.flush()    # Else some shells wait for \n
    time.sleep(0.25)
print()

date = time.asctime()
name = input('Enter your name: ').strip() or 'An unknown reader'
sept = '*' * maxline
book = 'Learning Python 5th Edition'

# Make text file version
file = open(saveto, 'w')
text = template % (sept, date, name, book, sept)
print(text, file=file)
file.close()

# Make html file version
htmlto = saveto.replace('.txt', '.html')
file = open(htmlto, 'w')

tags = text.replace(sept,   '<hr>')                   # Insert a few tags
tags = tags.replace('===>', '<h1 align=center>')
tags = tags.replace('<===', '</h1>')

tags = tags.split('\n')                               # Line-by-line mods
tags = ['<p>' if line == ''
            else line for line in tags]
tags = ['<i>%s</i>' % htmlescape(line) if line[:1] == '\t'
            else line for line in tags]
tags = '\n'.join(tags)

link = '<i><a href="http://learning-python.com/books">Book support site</a></i>\n'
foot = '<table>\n<td><img src="ora-lp.jpg" hspace=5>\n<td>%s</table>\n' % link
tags = '<html><body bgcolor=beige>' + tags + foot + '</body></html>'

print(tags, file=file)
file.close()

# Display results
print('[File: %s]' % saveto, end='')
print('\n' * 2, open(saveto).read())

if browser:
    webbrowser.open(saveto, new=True)
    webbrowser.open(htmlto, new=False)

if sys.platform.startswith('win'):
    input('[Press Enter]')  # Keep window open if clicked on Windows
Run this script on your own, and study its code for a summary of
    some of the ideas we’ve covered in this book. Fetch it from this book’s
    website described in the preface if you wish. You won’t find any
    descriptors, decorators, metaclasses, or super calls in this code, but it’s typical
    Python nonetheless.
When run, it generates the web page captured in the fully gratuitous
    Figure 41-1. This could be
    much more grandiose, of course; see the Web for pointers to Python support
    for PDFs and other document tools such as Sphinx surveyed in Chapter 15. But hey: if you’ve made it to
    the end of this book, you deserve another joke or two...
Figure 41-1. Web page created and opened by certificate.py.
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Appendix A. Installation and Configuration
This appendix provides additional installation and configuration
  details as a resource for people new to these topics. It’s located here
  because not all readers will need to deal with these subjects up front.
  Because it covers some peripheral topics such as environment variables and
  command-line arguments, though, this material probably merits at least a
  quick scan for most readers.
Installing the Python Interpreter
Because you need the Python interpreter to run Python scripts, the first step in
    using Python is usually installing Python. Unless one is already available
    on your machine, you’ll need to fetch, install, and possibly configure a
    recent version of Python on your computer. You’ll only need to do this
    once per machine, and if you will be running a frozen binary (described in
    Chapter 2) or self-installing system,
    your setup tasks may be trivial or null.
Is Python Already Present?
Before you do anything else, check whether you already have a
      recent Python on your machine. If you are working on Linux, Mac OS X, or
      some Unix systems, Python is probably already installed on your
      computer, though it may be one or two releases behind the cutting edge.
      Here’s how to check:
	On Windows 7 and earlier, check whether
          there is a Python entry in the Start button’s All Programs menu (at
          the bottom left of the screen). On Windows 8,
          look for Python in a Start screen tile, your Search tool, the “All
          apps” display on your Start screen, or a File Explorer in desktop
          mode (more on Windows 8 in an upcoming sidebar).

	On Mac OS X, open a Terminal window
          (Applications→Utilities→Terminal) and type python at the prompt. Python, IDLE, and
          its tkinter GUI toolkit are standard components of this
          system.

	On Linux and Unix,
          type python at a shell prompt
          (a.k.a. terminal window), and see what happens. Alternatively, try
          searching for “python” in the usual places—/usr/bin, /usr/local/bin, etc. As on Macs, Python
          is a standard part of Linux systems.


If you find a Python, make sure it’s a recent version. Although
      any recent Python will do for most of this text, this edition focuses on
      Python 3.3 and 2.7 specifically, so you may want to install one of these
      to run some of the examples in this book.
Speaking of versions, per the preface, I
      recommend starting out with Python 3.3 or later if you’re learning
      Python anew and don’t need to deal with existing 2.X code; otherwise,
      you should generally use Python 2.7. Some popular Python-based systems
      still use older releases, though (2.6 and even 2.5 are still
      widespread), so if you’re working with existing systems be sure to use a
      version relevant to your needs; the next section describes locations
      where you can fetch a variety of Python versions.

Where to Get Python
If there is no Python on your machine, you will need to install
      one yourself. The good news is that Python is an open source system that
      is freely available on the Web and very easy to install on most
      platforms.
You can always fetch the latest and greatest standard
      Python release from http://www.python.org, Python’s
      official website. Look for the Downloads link on that page, and choose a
      release for the platform on which you will be working. You’ll find
      prebuilt self-installer files for Windows (run to
      install), Installer Disk Images for Mac OS X
      (installed per Mac conventions), the full source code distribution
      (typically compiled on Linux, Unix, or OS X machines to generate an
      interpreter), and more.
Although Python is standard on Linux these
      days, you can also find RPMs for Linux on the Web (unpack them with
      rpm). Python’s website also has links to pages
      where versions for other platforms are maintained, either at Python.org
      (http://www.python.org) itself or offsite. For example,
      you can find third-party Python installers for Google’s
      Android, as well as apps to install Python on
      Apple’s iOS.
A Google web search is another great way to find Python
      installation packages. Among other platforms, you can find Python
      prebuilt for iPods, Palm handhelds, Nokia cell phones, PlayStation and
      PSP, Solaris, AS/400, and Windows Mobile, though some of these are
      typically a few releases behind the curve.
If you find yourself pining for a Unix environment on a Windows
      machine, you might also be interested in installing
      Cygwin and its version of Python (see http://www.cygwin.com).
      Cygwin is a GPL-licensed library and toolset that provides full Unix
      functionality on Windows machines, and it includes a prebuilt Python
      that makes use of all the Unix tools provided.
You can also find Python on CD-ROMs supplied with Linux
      distributions, included with some products and computer systems, and
      enclosed with some other Python books. These tend to lag behind the
      current release somewhat, but usually not seriously so.
In addition, you can find Python in some free and commercial
      development bundles. At this writing, this alternative
      distributions category includes:
	ActiveState ActivePython
	A package that combines Python with extensions for
            scientific, Windows, and other development needs, including
            PyWin32 and the PythonWin IDE

	Enthought Python Distribution
	A combination of Python and a host of additional libraries
            and tools oriented toward scientific computing needs

	Portable Python
	A blend of Python and add-on packages configured to run
            directly from a portable device

	Pythonxy
	A scientific-oriented Python distribution based on Qt and
            Spyder

	Conceptive Python SDK
	A bundle targeted at business, desktop, and database
            applications

	PyIMSL Studio
	A commercial distribution for numerical analysis

	Anaconda Python
	A distribution for analysis and visualization of large data
            sets


This set is prone to change, so search the Web for details on all of the above, and
        others. Some of these are free, some are not, and some have both free and nonfree versions.
        All combine the standard Python freely available at
          http://www.python.org with additional tools, but can simplify
        install tasks for many.
Finally, if you are interested in alternative Python
      implementations, run a web search to check out
      Jython (the Python port to the Java environment)
      and IronPython (Python for the C#/.NET world), both
      of which are described in Chapter 2.
      Installation of these systems is beyond the scope of this book.

Installation Steps
Once you’ve downloaded Python, you need to install it.
      Installation steps are very platform-specific, but here are a few
      pointers for the major Python platforms (biased in volume toward
      Windows, only because that is the platform where most Python newcomers
      are likely to encounter the language first):
	Windows
	For Windows (including XP, Vista, 7, and 8), Python comes as a
            self-installer MSI program file—simply
            double-click on its file icon, and answer Yes or Next at every
            prompt to perform a default install. The default install includes
            Python’s documentation set and support for tkinter (Tkinter in Python 2.X) GUIs, shelve
            databases, and the IDLE development GUI. Python 3.3 and 2.7 are
            normally installed in the directories C:\Python33 and C:\Python27 though this can be changed
            at install time.
For convenience, on Windows 7 and earlier Python shows up
            after the install in the Start button’s All
            Programs menu (see ahead for Windows 8 notes). Python’s menu there
            has five entries that give quick access to common tasks: starting
            the IDLE user interface, reading module documentation, starting an
            interactive session, reading Python’s standard manuals, and
            uninstalling. Most of these options involve concepts explored in
            detail elsewhere in this text.
When installed on Windows, Python also automatically uses
            filename associations to register itself to
            be the program that opens Python files when their icons are
            clicked (a program launch technique described in Chapter 3). It is also possible to build
            Python from its source code on Windows, but this is not commonly
            done so we’ll skip the details here (see python.org).
Three additional install-related notes for Windows users:
            first, be sure to see the next appendix for an introduction to the
            new Windows launcher shipped with 3.3; it
            changes some of the rules for installation, file associations, and
            command lines, but can be an asset if you have multiple Python
            versions on your computer (e.g., both 2.X and 3.X). Per Appendix B, Python 3.3’s MSI
            installer also has an option to set your PATH variable to include
            Python’s directory.
Second, Windows 8 users should see the
            sidebar in this appendix “Using Python on Windows 8”. Standard Python installs
            and works the same on Windows 8, where it runs in desktop mode,
            but you won’t get the Start button menu described earlier, and the
            tablet interface on top is not yet directly supported.
Finally, some Windows Vista users may
            run into install issues related to security features. This seems
            to have been resolved over time (and Vista is relatively rare
            these days), but if running the MSI installer file directly
            doesn’t work as expected, it’s probably because MSI files are not
            true executables and do not correctly inherit administrator
            permissions (they run per the registry). To fix, run the installer
            from a command line with appropriate permissions: Select Command
            Prompt, choose “Run as administrator,” cd to the directory where
            your Python MSI file resides, and run the MSI installer with a
            command line of the form: msiexec /i
            python-2.5.1.msi.

	Linux
	For Linux, if Python or your desired flavor of it is
            not already present, you can probably obtain it as
            one or more RPM files, which you unpack in the usual way (consult
            the RPM manpage for details). Depending on which RPMs you
            download, there may be one for Python itself, and another that
            adds support for tkinter GUIs
            and the IDLE environment. Because Linux is a Unix-like system, the
            next paragraph applies as well.

	Unix
	For Unix systems, Python is usually compiled from its
            full C source code distribution. This usually only
            requires you to unpack the file and run simple configure and make commands; Python configures its own
            build procedure automatically, according to the system on which it
            is being compiled. However, be sure to see the package’s README file for more details on this
            process. Because Python is open source, its source code may be
            used and distributed free of charge.


On other platforms the installation details can differ widely, but
      they generally follow the platform’s normal conventions. For example,
      installing the “Pippy” port of Python for PalmOS required a hotsync
      operation with your PDA, and Python for the Sharp Zaurus Linux-based PDA
      was one or more .ipk files, which
      you simply ran to install (these likely still work, though finding the
      devices today may be a logistical challenge!).
More recently, Python can be installed and used on Android and
      iOS platforms too, but installation and usage
      techniques are too platform-specific to cover here. For additional
      install procedures and the latest on available ports, try both Python’s
      website and a web search.
Using Python on Windows 8
Windows 8 was released as this edition was being written. As mentioned in the
        preface, this book was developed on both Windows 7 and 8, but mostly
        under Windows 7 because the choice is irrelevant to almost everything
        in this book—both Python 2.X and 3.X presently work only in
        desktop mode on Windows 8, but install and run
        there the same as in Windows 7, Vista, XP, and others. Once you
        navigate past the tablet-like layer at the top, usage is almost
        entirely as before.
The only notable exception to this is Windows 8’s lack of a
        Start button menu in desktop mode. You don’t get
        the nice menu of Python options automatically, though you can simulate
        it manually. Although this story is prone to change (and you should
        take this sidebar as an early report), here are a few Windows 8 usage
        notes.
At this writing, the standard Python Windows MSI installer
        program installs Python on Windows 8 correctly, and exactly as in the
        past: you get the same filename associations for icon clicks, access
        from command lines, and so on. The installer also creates a Start
        screen button on Windows 8, but Python itself runs in Windows 8’s
        desktop mode, which is essentially the same as Windows 7 without a
        Start button menu. For example, the Windows 8 Start screen button
        created by the Python install simply switches control to desktop mode
        to open a Python interactive shell.
The upside to this is that all existing Python software works on
        Windows 8’s desktop just as before. One downside is that you’ll need
        to create shortcuts for the user-friendly Start button menu items
        created automatically on former Windows versions. This includes the
        former menu’s links to the IDLE GUI, PyDoc, Python’s command-line
        interface, and Python’s manuals set.
This isn’t a showstopper—you can emulate the former Start button
        menu’s items with either tiles on the Start screen or shortcuts on the
        desktop taskbar. To do so, you might look up these tools in a variety
        of ways:
	By navigating to their corresponding filename in a File
            Explorer, opened by right-clicking the screen’s lower-left
            corner.

	By searching for their name in the Search “charm,” opened by
            pulling down the screen’s top-right corner.

	By finding their entry after right-clicking on the Start
            screen to open the All apps display, which is
            reminiscent of the former Start button menus.

	By locating their tiles on your Start screen, if they have
            any.


For example, you can locate IDLE by
        navigating to the file idle.py in
        C:\Python33\Lib, by searching on
        “idle,” by finding IDLE in “All apps,” or by clicking a Start screen
        tile if one exists. You can find Python itself in the same ways (and
        probably others). This isn’t quite as nice as the original Start
        button menus out of the box, but it suffices.
Probably the bigger potential downside on
        Windows 8 is that while Python runs fine in desktop mode, it doesn’t
        yet have an official port to run as a Start screen style “app.” That
        is, standard Python does not yet run programs in the
        WinRT (formerly known as
        Metro) environment—the tile-based media
        consumption layer that appears first when you start Windows 8, and
        before you can click your way to the desktop. This may be a temporary
        state, though, as a number of options either already exist or are
        being actively explored.
On one front, it’s not impossible that Python’s
        installer may be enhanced for Windows 8’s
        nondesktop mode. There has already been work on porting Python to run
        as a Start screen “app,” though this may appear as a separate
        installer package due to differences in the underlying libraries (in
        short, WinRT runs programs in a classic “sandbox” model, with a
        restricted subset of the libraries available normally).
On other fronts, the C#/.NET-based IronPython system may offer
          additional Windows 8 “app” development options, and some of Python’s major GUI
            toolkits such as tkinter, wxPython, and PyQt could eventually provide
          portability to the Windows 8 “apps” environment as well. The Qt library underlying the
          latter of these seems to have already showed some progress in this department.
For now, existing Python software runs fine
        in Windows 8’s desktop mode unchanged. Developing or running Python
        code in the Start screen “apps” environment will likely require
        special handling and platform-specific APIs not unlike those required
        to run Python on other tablet- and phone-oriented platforms based on
        Google’s Android and Apple’s
        iOS (iPhone and iPad) operating systems.
Also note that much of this sidebar applies to Window 8, but not
        Windows RT. The latter does not run third-party
        desktop mode applications directly, and may need to await a sanctioned
        Python installer that supports the WinRT “app” API in general.
Then again, the Windows 8 story remains to be told. Be sure to
        watch for developments in both Windows and Python’s installer for it.
        For now, a simple tile click or Windows-key press to hop into desktop
        mode will allow most Python programmers on Windows to safely ignore
        the tablet-like interface on top—at least until “apps” trounce
        “programs” altogether.1



Configuring Python
After you’ve installed Python, you may want to configure some system settings that
    impact the way Python runs your code. (If you are just getting started
    with the language, you can probably skip this section completely; there is
    usually no need to specify any system settings for basic programs.)
Generally speaking, parts of the Python interpreter’s behavior can
    be configured with environment variable settings and command-line options.
    In this section, we’ll take a brief look at both, but be sure to see other
    documentation sources for more details on the topics we introduce
    here.
Python Environment Variables
Environment variables—known to some as shell variables, or DOS variables—are
      system-wide settings that live outside Python and thus can be used to
      customize the interpreter’s behavior each time it is run on a given
      computer. Python recognizes a handful of environment variable settings,
      but only a few are used often enough to warrant explanation here. Table A-1 summarizes the main
      Python-related environment variable settings (you’ll find information on
      others in Python reference resources).
Table A-1. Important environment variables	Variable	Role
	PATH (or path)
	System shell search path (for finding “python”)

	PYTHONPATH
	Python module search path (for imports)

	PYTHONSTARTUP
	Path to Python interactive startup file

	TCL_LIBRARY, TK_LIBRARY
	GUI extension variables (tkinter)

	PY_PYTHON, PY_PYTHON3, PY_PYTHON2
	Windows launcher defaults (see Appendix B)


These variables are straightforward to use, but here are a few
      pointers:
	PATH
	The PATH setting lists a
            set of directories that the operating system
            searches for executable programs, when they are invoked without a
            full directory path. It should normally include the directory
            where your Python interpreter lives (the
            python program on Unix, or the python.exe file on Windows).
You don’t need to set this variable at all if you are
            willing to work in the directory where Python resides, or type the
            full path to Python in command lines. On Windows, for instance,
            the PATH is irrelevant if you
            run a cd C:\Python33 before
            running any code (to change to the directory where Python
            lives—though you shouldn’t generally store your own code in this
            directory per Chapter 3), or always
            type C:\Python33\python
            instead of just python
            (giving a full path).
Also note that PATH
            settings are mostly for launching programs from command lines;
            they are usually irrelevant when launching via icon clicks and
            IDEs—the former uses filename associations, and the latter uses
            built-in mechanisms, and doesn’t generally require this
            configuration step. See also Appendix B for details on 3.3’s
            automatic PATH setting option
            at install time.

	PYTHONPATH
	The PYTHONPATH setting
            serves a role similar to PATH: the Python interpreter consults
            the PYTHONPATH variable to
            locate module files when you import them in a
            program. If used, this variable is set to a platform-dependent
            list of directory names, separated by colons on Unix and
            semicolons on Windows. This list normally includes just your own
            source code directories. Its content is merged into the sys.path module import search path,
            along with the script’s container directory, any .pth path file settings, and standard
            library directories.
You don’t need to set this variable unless you will be
            performing cross-directory imports—because
            Python always searches the home directory of the program’s
            top-level file automatically, this setting is required only if a
            module needs to import another module that lives in a different
            directory. See also the discussion of .pth path files later in this appendix
            for an alternative to PYTHONPATH. For more on the module
            search path, refer to Chapter 22.

	PYTHONSTARTUP
	If PYTHONSTARTUP is set
            to the pathname of a file of Python code, Python executes the file’s code
            automatically whenever you start the interactive interpreter, as
            though you had typed it at the interactive command line. This is a
            rarely used but handy way to make sure you always load certain
            utilities when working interactively; it saves an import each time
            you start a Python session.

	tkinter settings
	If you wish to use the tkinter GUI toolkit (named Tkinter in 2.X), you might have to set the two GUI variables in the last line
            of Table A-1 to the names
            of the source library directories of the Tcl and Tk systems (much
            like PYTHONPATH). However,
            these settings are not required on Windows systems (where tkinter support is installed alongside
            Python), and are usually not required on Mac OS X and Linux
            systems, unless the underlying Tcl and Tk libraries are either
            invalid or reside in nonstandard directories (see python.org’s
            Download page for more details).

	PY_PYTHON, PY_PYTHON3, PY_PYTHON2
	These settings are used to specify default Pythons when you are using the new
            (at this writing) Windows launcher that ships with Python 3.3 and
            is available separately for other versions. Since we’ll be
            exploring the launcher in Appendix B, I’ll postpone
            further details here.


Note that because these environment settings are external to
      Python itself, when you set them is usually
      irrelevant: this can be done before or after Python is installed, as
      long as they are set the way you require before Python is actually
      run—be sure to restart your Python IDEs and
      interactive sessions after making such changes if you want them to
      apply.
tkinter and IDLE GUIs on Linux and Macs
The IDLE interface described in Chapter 3 is
        a Python tkinter GUI program. The
        tkinter module (named Tkinter in 2.X) is a GUI toolkit that is
        automatically installed with standard Python on Windows, and is an
        inherent part of Mac OS X and most Linux installations.
On some Linux systems, though, the
        underlying GUI library may not be a standard installed component. To
        add GUI support to your Python on Linux if needed, try running a
        command line of the form yum
        install tkinter to automatically install tkinter’s underlying libraries. This should
        work on Linux distributions (and some other systems) on which the
        yum installation program is available; for
        others, see your platform’s installation documentation.
As also discussed in Chapter 3, on
        Mac OS X IDLE probably lives in the MacPython (or Python N.M) folder of your Applications folder (along with
        PythonLauncher, used for starting programs with clicks in Finder), but
        be sure to see the Download page at python.org if IDLE has problems;
        you may need to install an update on some OS X versions (see Chapter 3).


How to Set Configuration Options
The way to set Python-related environment variables, and what to
      set them to, depends on the type of computer you’re working on. And
      again, remember that you won’t necessarily have to set these at all
      right away; especially if you’re working in IDLE (described in Chapter 3) and save all your files in the same
      directory, configuration is probably not required up front.
But suppose, for illustration, that you have generally useful
      module files in directories called utilities and package1 somewhere on your machine, and you
      want to be able to import these modules from files located in other
      directories. That is, to load a file called spam.py in either the utilities or package1 directories, you want to be able to
      say this in another file in another directory:
import spam
To make this work, you’ll have to configure your module search
      path one way or another to include the directory containing spam.py. Here are a few tips on this process
      using PYTHONPATH as an example; do
      the same for other settings like PATH
      as needed (though 3.3 can set PATH
      automatically: see Appendix B).
Unix/Linux shell variables
On Unix systems, the way to set environment variables depends on the shell
        you use. Under the csh shell, you might add a
        line like the following in your .cshrc or .login file to set the Python module search
        path:
setenv PYTHONPATH /usr/home/pycode/utilities:/usr/lib/pycode/package1
This tells Python to look for imported modules in two
        user-defined directories. Alternatively, if you’re using the
        ksh shell, the setting might instead appear in
        your .kshrc file and look like
        this:
export PYTHONPATH="/usr/home/pycode/utilities:/usr/lib/pycode/package1"
Other shells may use different (but analogous) syntax.

DOS variables (and older Windows)
If you are using MS-DOS or some now fairly old flavors of Windows, you may need to
        add an environment variable configuration command to your C:\autoexec.bat file, and reboot your
        machine for the changes to take effect. The configuration command on
        such machines has a syntax unique to DOS:
set PYTHONPATH=c:\pycode\utilities;d:\pycode\package1
You can type such a command in a DOS console window, too, but
        the setting will then be active only for that one console window.
        Changing your .bat file makes the
        change permanent and global to all programs, though this technique has
        been superseded in recent years by that described in the next
        section.

Windows environment variable GUI
On all recent versions of Windows (including XP, Vista, 7, and
        8), you can instead set PYTHONPATH
        and other variables via the system environment variable GUI
        without having to edit files, type command lines, or reboot. Select
        the Control Panel (in your Start button in Windows 7 and earlier, and
        in the desktop mode’s Settings “charm” on Windows 8), choose the
        System icon, pick the Advanced settings tab or link, and click the
        Environment Variables button at the bottom to edit or add new
        variables (PYTHONPATH is usually a
        new user variable). Use the same variable name and values syntax shown
        in the DOS set command in the
        preceding section. On Vista you may have to verify operations along
        the way.
You do not need to reboot your machine after this, but be sure
        to restart Python if it’s open so that it picks up your changes—it
        configures its import search path at startup time only. If you’re
        working in a Windows Command Prompt window, you’ll probably need to
        restart that to pick up your changes as well.

Windows registry
If you are an experienced Windows user, you may also be able to
        configure the module search path by using the Windows Registry Editor. To open this tool, type
        regedit in the Start→Run...
        interface on some Windows, in the search field at the bottom of the
        Start button display on Windows 7, and in a Command Prompt window on
        Windows 8 and others (among other routes). Assuming the typical
        registry tool is available on your machine, you can then navigate to
        Python’s entries and make your changes. This is a delicate and
        error-prone procedure, though, so unless you’re familiar with the
        registry, I suggest using other options (indeed, this is akin to
        performing brain surgery on your computer, so be careful!).

Path files
Finally, if you choose to extend the module search path with a .pth path file instead of the PYTHONPATH variable, you might instead code
        a text file that looks like the following on Windows (e.g., file
        C:\Python33\mypath.pth):
c:\pycode\utilities
d:\pycode\package1
Its contents will differ per platform, and its container
        directory may differ per both platform and Python release. Python
        locates this file automatically when it starts up.
Directory names in path files may be absolute, or relative to
        the directory containing the path file; multiple .pth files can be used (all their
        directories are added), and .pth
        files may appear in various automatically checked directories that are
        platform- and version-specific. In general, a Python release numbered
        Python N.M typically looks for path files in
        C:\PythonNM and C:\PythonNM\Lib\site-packages on Windows,
        and in /usr/local/lib/pythonN.M/site-packages and
        /usr/local/lib/site-python on
        Unix and Linux. See Chapter 22
        for more on using path files to configure the sys.path import search path.
Because environment settings are often optional, and because
        this isn’t a book on operating system shells, I’ll defer to other
        sources for further details. Consult your system shell’s manpages or
        other documentation for more information, and if you have trouble
        figuring out what your settings should be, ask your system
        administrator or another local expert for help.


Python Command-Line Arguments
When you start Python from a system command line (a.k.a. a shell prompt,
      or Command Prompt window), you can pass in a variety of option flags to
      control how Python runs your code. Unlike the system-wide environment
      variables of the prior section, command-line arguments can be different
      each time you run a script. The complete form of a Python command-line
      invocation in 3.3 looks like this (2.7 is roughly the same, with a few
      differences described ahead):
python [-bBdEhiOqsSuvVWxX] [-c command | -m module-name | script | - ] [args]
The rest of this section briefly demonstrates some of Python’s
      most commonly used arguments. For more details on available command-line
      options not covered here, see the Python manuals or reference texts. Or
      better yet, ask Python itself—run a command-line form like this:
C:\code> python -h
to request Python’s help display, which documents all available
      command-line options. If you deal with complex command lines, be sure to
      also check out the standard library modules in this domain: the original
      getop, the newer argparse, and the now-deprecated (since 3.2)
      optparse, which support more
      sophisticated command-line processing. Also see Python’s library manuals
      and other references for more on the pdb and profile modules the following tour
      deploys.
Running script files with arguments
Most command lines make use of only the
        script and args
        parts of the last section’s Python command-line format, to run a
        program’s source file with arguments to be used by the program itself.
        To illustrate, consider the following script—a text file named
        showargs.py, created in directory
        C:\code or another of your
        choosing—which prints the command-line arguments made available to the
        script as sys.argv, a Python list
        of Python strings (if you don’t yet know how to create or run Python
        script files, see the full coverage in Chapter 2 and Chapter 3; we’re interested only in
        command-line arguments here):
# File showargs.py
import sys
print(sys.argv)
In the following command line, both python and showargs.py can also be complete directory
        paths—the former is assumed to be on your PATH here, and the latter is assumed to be
        in the current directory. The three arguments (a b –c) meant for the script show up in the
        sys.argv list and can be inspected
        by your script’s code there; the first item in sys.argv is always the script file’s name,
        when it is known:
C:\code> python showargs.py a b -c            # Most common: run a script file
['showargs.py', 'a', 'b', '-c']
As covered elsewhere in this book, Python
        lists print in square brackets and
        strings display in quotes.

Running code given in arguments and standard input
Other code format specification options allow you to give Python
        code to be run on the command line itself (-c), and accept code to run from the
        standard input stream (a – means
        read from a pipe or redirected input stream file, terms also defined
        in full elsewhere in this text):
C:\code> python -c "print(2 ** 100)"          # Read code from command argument
1267650600228229401496703205376

C:\code> python -c "import showargs"          # Import a file to run its code
['-c']

C:\code> python - < showargs.py a b -c        # Read code from standard input
['-', 'a', 'b', '-c']

C:\code> python - a b -c < showargs.py        # Same effect as prior line
['-', 'a', 'b', '-c']

Running modules on the search path
The –m code specification
        locates a module on Python’s module search path and then runs it as a top-level script (as module
        __main__). That is, it looks up a
        script the same way import operations do, using the directory list
        normally known as sys.path, which
        includes the current directory, PYTHONPATH settings, and standard libraries.
        Leave off the “.py” suffix here, as the filename is treated as a
        module.
C:\code> python -m showargs a b -c            # Locate/run module as script
['c:\\code\\showargs.py', 'a', 'b', '-c']
The –m option also supports
        running tools, modules in packages with and without relative import
        syntax, and modules located in .zip archives. For instance, this switch is
        commonly used to run the pdb
        debugger and profile profiler
        modules from a command line for a script invocation, rather than
        interactively:
C:\code> python                               # Interactive debugger session
>>> import pdb
>>> pdb.run('import showargs')
...more omitted: see pdb docs

C:\code> python -m pdb showargs.py a b -c     # Debugging a script (c=continue)
> C:\code\showargs.py(2)<module>()
-> import sys
(Pdb) c
['showargs.py', 'a', 'b', '-c']
...more omitted: q to exit
The profiler runs and times your code; its output can vary per
        Python, operating system, and computer:
C:\code> python -m profile showargs.py a b -c     # Profiling a script
['showargs.py', 'a', 'b', '-c']
         9 function calls in 0.016 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        2    0.000    0.000    0.000    0.000 :0(charmap_encode)
        1    0.000    0.000    0.000    0.000 :0(exec)
...more omitted: see profile docs
You might also use the -m
        switch to spawn Chapter 3’s IDLE GUI
        program located in the standard library from any other directory, and
        to start the pydoc and timeit tools modules with command lines as we do in this book in
        Chapter 15 and Chapter 21 (see those chapters for more
        details on the tools launched here):
c:\code> python -m idlelib.idle -n           # Run IDLE in package, no subprocess

c:\code> python -m pydoc -b                  # Run pydoc and timeit tools modules

c:\code> python -m timeit -n 1000 -r 3 -s "L = [1,2,3,4,5]" "M = [x + 1 for x in L]"

Optimized and unbuffered modes
Immediately after the “python” and before the designation of
        code to be run, Python accepts additional arguments that control its
        own behavior. These arguments are consumed by Python itself and are
        not meant for the script being run. For example, -O runs Python in optimized mode and
        -u forces standard streams to be
        unbuffered—with the latter, any printed text will be finalized
        immediately, and won’t be delayed in a buffer:
C:\code> python -O showargs.py a b -c        # Optimized: make/run ".pyo" byte code

C:\code> python -u showargs.py a b -c        # Unbuffered standard output stream

Post-run interactive mode
Finally, the –i flag enters
        interactive mode after running a script—especially useful as a
        debugging tool, because you can print variables’ final values after a
        successful run to get more details:
C:\code> python -i showargs.py a b -c        # Go to interactive mode on script exit
['showargs.py', 'a', 'b', '-c']
>>> sys                                      # Final value of sys: imported module
<module 'sys' (built-in)>
>>> ^Z
You can also print variables this way after an exception shuts
        down your script to see what they looked like when the exception
        occurred, even if not running in debug mode—though you can start the
        debugger’s postmortem tool here as well (type is the Windows file display command;
        try a cat or other
        elsewhere):
C:\code> type divbad.py
X = 0
print(1 / X)

C:\code> python divbad.py                  # Run the buggy script
...error text omitted
ZeroDivisionError: division by zero

C:\code> python -i divbad.py               # Print variable values at error
...error text omitted
ZeroDivisionError: division by zero
>>> X
0
>>> import pdb                             # Start full debugger session now
>>> pdb.pm()
> C:\code\divbad.py(2)<module>()
-> print(1 / X)
(Pdb) quit

Python 2.X command-line arguments
Besides those just mentioned, Python 2.7 supports additional
        options that promote 3.X compatibility (−3 to warn about incompatibilities, and
        –Q to control division operator
        models) and detecting inconsistent tab indentation usage, which is
        always detected and reported in 3.X (-t; see Chapter 12). Again, you can always ask
        Python 2.X itself for more on the subject as needed:
C:\code> c:\python27\python -h


Python 3.3 Windows Launcher Command Lines
Technically, the preceding section described the arguments you can pass to
      the Python interpreter itself—the program usually named python.exe on Windows, and python on Linux (the .exe is normally omitted on Windows). As we’ll
      see in the next appendix, the Windows launcher shipped with Python 3.3
      augments this story for users of 3.3 and later or the standalone
      launcher package. It adds new executables that accept Python version
      numbers as arguments in command lines used to start Python and your
      scripts (file what.py is listed and
      described in the next appendix, and simply prints the Python version
      number):
C:\code> py what.py                    # Windows launcher command lines
3.3.0

C:\code> py −2 what.py                 # Version number switch
2.7.3

C:\code> py −3.3 -i what.py -a -b -c   # Arguments for all 3: py, python, script
3.3.0
>>> ^Z
In fact, as the last run of the preceding example shows, command
      lines using the launcher can give arguments for the launcher itself
      (−3.3), Python itself (-i), and your script (-a, -b, and
      -c). The launcher can also parse
      version numbers out of #! Unix lines
      at the top of script files instead. Because the next appendix is devoted
      to this launcher entirely, though, you’ll have to read on for the rest
      of this story.


For More Help
Python’s standard manual set today includes valuable pointers for usage on
    various platforms. The standard manual set is available in your Start
    button on Windows 7 and earlier after Python is installed (option “Python
    Manuals”), and online at http://www.python.org. Look for the manual set’s top-level
    section titled “Using Python” for more platform-specific pointers and
    hints, as well as up-to-date cross-platform environment and command-line
    details.
As always, the Web is your ally, too, especially in a field that
    often evolves faster than books like this can be updated. Given Python’s
    widespread adoption, chances are good that answers to any high-level usage
    questions you may have can be found with a web search.

1 Lest that seem too sarcastic, I should note that Windows 8.1
            may address some launch screen and Start button (if not menu)
            concerns per late-breaking rumors, and this edition’s new Windows
            8 sidebar replaces one in prior editions that discussed a Windows
            Vista issue. Any similarities you might deduce from that are
            officially coincidental.








Appendix B. The Python 3.3 Windows Launcher
This appendix describes the new Windows launcher for Python, installed
  with Python 3.3 automatically, and available separately on the Web for use
  with older versions. This new launcher provides an extra layer of code that chooses and starts an installed Python.  Though it comes with some pitfalls, the launcher
  provides some much-needed coherence for program execution when multiple
  Pythons coexist on the same computer.
I’ve written this page for programmers using Python on Windows. Though
  it is platform-specific by nature, it’s targeted at both Python beginners
  (most of whom get started on this platform), as well as Python developers
  who write code to work portably between Windows and Unix. As we will see,
  the new launcher changes the rules on Windows radically enough to impact
  everyone who uses Python on Windows, or may in the
  future.
The Unix Legacy
To fully understand the launcher’s protocols, we have to begin with a short history
    lesson. Unix developers long ago devised a protocol for designating a
    program to run a script’s code. On Unix systems (including Linux and Mac
    OS X), the first line in a script’s text file is special if it begins with
    a two-character sequence: #!, sometimes
    called a shebang (an arguably silly phrase I promise
    not to repeat from here on).
Chapter 3 gives a brief overview of
    this topic, but here’s another look. In Unix scripts, such lines designate
    a program to run the rest of the script’s contents, by coding it after the
    #!—using either the directory path to
    the desired program itself, or an invocation of the env Unix utility that looks up the target per
    your PATH setting, the customizable
    system environment variable that lists directories to be searched for
    executables:
#!/usr/local/bin/python
...script's code              # Run under this specific program

#!/usr/bin/env python
...script's code              # Run under "python" found on PATH
By making such a script executable (e.g., via chmod +x script.py), you can run it by giving
    just its filename in a command line; the #! line at the top then directs the Unix shell
    to a program that will run the rest of the file’s code. Depending on the
    platform’s install structure, the python that these #! lines name might be a real executable, or a
    symbolic link to a version-specific executable located elsewhere. These
    lines might also name a more specific executable explicitly, such as
    python3. Either way, by changing
    #! lines, symbolic links, or PATH settings, Unix developers can route a
    script to the appropriate installed Python.
None of this applies to Windows itself, of course, where #! lines have no inherent meaning. Python itself
    has historically ignored such lines as comments if present on Windows (“#”
    starts a comment in the language). Still, the idea of selecting Python
    executables on a per-file basis is a compelling feature in a world where
    Python 2.X and 3.X often coexist on the same machine. Given that many
    programmers coded #! lines for
    portability to Unix anyhow, the idea seemed ripe for emulating.

The Windows Legacy
The install model has been very different on the other side of the fence. In the past
    (well, in every Python until 3.3), the Windows installer updated the
    global Windows registry such that the latest Python version installed on
    your computer was the version that opened Python files when they were
    clicked or run by direct filename in command lines.
Some Windows users may know this registry as filename
    associations, configurable in Control Panel’s Default
    Programs dialog. You do not need to give files executable privileges for
    this to work, as you do for Unix scripts. In fact, there’s no such concept
    on Windows—filename associations and commands suffice to launch files as
    programs.
Under this install model, if you wished to open a file with a
    different version than the latest install, you had to run a command line
    giving the full path to the Python you wanted, or update your filename
    associations manually to use the desired version. You could also point
    generic python command lines to a
    specific Python by setting or changing your PATH setting, but Python didn’t set this for
    you, and this wouldn’t apply to scripts launched by icon clicks and other
    contexts.
This reflects the natural order on Windows (when you click on a
    .doc file, Windows usually opens it
    in the latest Word installed), and has been the state of things ever since
    there was a Python on Windows. It’s less ideal if you have Python scripts
    that require different versions on the same machine, though—a situation
    that has become increasingly common, and perhaps even normal in the dual
    Python 2.X/3.X era. Running multiple Pythons on Windows prior to 3.3 can
    be tedious for developers, and discouraging for newcomers.

Introducing the New Windows Launcher
The new Windows launcher, shipped and installed automatically with Python 3.3 (and
    presumably later), and available as a standalone package for use with
    other versions, addresses these deficits in the former install model by
    providing two new executables:
	py.exe for console
        programs

	pyw.exe for nonconsole
        (typically GUI) programs


These two programs are registered to open .py and .pyw files, respectively, via Windows filename
    associations. Like Python’s original python.exe main program (which they do not
    deprecate but can largely subsume), these new executables are also
    registered to open byte code files launched directly. Amongst their
    weapons, these two new executables:
	Automatically open Python source and byte-code files launched by
        icon clicks or filename commands, via Windows associations

	Are normally installed on your system search path and do not
        require a directory path or PATH
        settings when used as command lines

	Allow Python version numbers to be passed in easily as
        command-line arguments, when starting both scripts and interactive
        sessions

	Attempt to parse Unix-style #! comment lines at the top of scripts to
        determine which Python version should be used to run a file’s
        code


The net effect is that under the new launcher, when multiple Pythons
    are installed on Windows, you are no longer limited to either the latest
    version installed or explicit/full command lines. Instead, you can now
    select versions explicitly on both a per-file and per-command basis, and
    specify versions in either partial or full form in both contexts. Here’s
    how this works:
	To select versions per file, use Unix-style
        top-of-script comments like these:
	#!python2
	#!/usr/bin/python2.7
	#!/usr/bin/env
          python3


	To select versions per command, use command
        lines of the following forms:
	py −2 m.py
	py −2.7 m.py
	py −3 m.py



For example, the first of these techniques can
    serve as a sort of directive to declare which Python version the script
    depends upon, and will be applied by the launcher whenever the script is
    run by command line or icon click (these are variants of a file named
    script.py):
#!python3
...
...a 3.X script              # Runs under latest 3.X installed
...

#!python2
...
...a 2.X script              # Runs under latest 2.X installed
...

#!python2.6
...
...a 2.6 script              # Runs under 2.6 (only)
...
On Windows, command lines are typed in a Command Prompt window,
    designated by its C:\code> prompt in
    this appendix. The first of the following is the same as both the second
    and an icon click, because of filename associations:
C:\code> script.py           # Run per file's #! line if present, else per default
C:\code> py script.py        # Ditto, but py.exe is run explicitly
Alternatively, the second technique just listed
    can select versions with argument switches in command lines
    instead:
C:\code> py −3 script.py     # Runs under latest 3.X
C:\code> py −2 script.py     # Runs under latest 2.X
C:\code> py −2.6 script.py   # Runs under 2.6 (only)
This works when both launching scripts, and starting the interactive
    interpreter (when no script is named):
C:\code> py −3               # Starts latest 3.X, interactive
C:\code> py −2               # Starts latest 2.X, interactive
C:\code> py −3.1             # Starts 3.1 (only), interactive
C:\code> py                  # Starts default Python (initially 2.X: see ahead)
If there are both #! lines in the file and a version number switch
    in the command line used to start it, the command line’s version overrides
    that in the file’s directive:
#! python3.2
...
...a 3.X script
...

C\code> py script.py         # Runs under 3.2, per file directive
C\code> py −3.1 script.py    # Runs under 3.1, even if 3.2 present
The launcher also applies heuristics to select
    a specific Python version when it is missing or only partly described. For
    instance, the latest 2.X is run when only a 2 is specified, and a 2.X is preferred for files
    that do not name a version in a #! line
    when launched by icon click or generic command lines (e.g., py m.py, m.py), unless you configure the default to use
    3.X instead by setting PY_PYTHON or a
    configuration file entry (more on this ahead).
Especially in the current dual 2.X/3.X Python world, explicit
    version selection seems a useful addition for Windows, where many (and
    probably most) newcomers get their first exposure to the language.
    Although it is not without potential pitfalls—including failures on
    unrecognized Unix #! lines and a
    puzzling 2.X default—it does allow for a more graceful coexistence of 2.X
    and 3.X files on the same machine, and provides a rational approach to
    version control in command lines.
For the complete story on the Windows launcher, including more
    advanced features and use cases I’ll either condense or largely omit here,
    see Python’s release notes and try a web search to find the PEP (the
    proposal document). Among other things, the launcher also allows selecting
    between 32- and 64-bit installs, specifying defaults in configuration
    files, and defining custom #! command
    string expansion.

A Windows Launcher Tutorial
Some readers familiar with Unix scripting may find the prior section
    enough to get started. For others, this section provides additional
    context in the form of a tutorial, which gives concrete examples of the
    launcher in action for you to trace through. This section also discloses
    additional launcher details along the way, though, so even well-seasoned
    Unix veterans may benefit from a quick scan here before FTPing all their
    Python scripts to the local Windows box.
To get started, we’ll be using the following simple script,
    what.py, which can be run under both
    2.X and 3.X to echo the version number of the Python that runs its code.
    It uses sys.version—a string whose
    first component after splitting on whitespace is Python’s version
    number:
#!python3
import sys
print(sys.version.split()[0])     # First part of string
If you want to work along, type this script’s code in your favorite
    text file editor, open a Command Prompt window for typing the command
    lines we’ll be running, and cd to the
    directory where you’ve save the script (C:\code is where I’m working, but feel free to
    save this wherever you wish, and see Chapter 3 for more Windows usage pointers).
This script’s first-line comment serves to designate the required
    Python version; it must begin with #! per Unix convention,
    and allows for a space before the python3 or not. On my machine I currently have
    Pythons 2.7, 3.1, 3.2, and 3.3 all installed; let’s watch which version is
    invoked as the script’s first line is modified in the following sections,
    exploring file directives, command lines, and defaults along the
    way.
Step 1: Using Version Directives in Files
As this script is coded, when run by icon click or command line,
      the first line directs the registered py.exe launcher to run using the latest 3.X
      installed:
#! python3
import sys
print(sys.version.split()[0])

C:\code> what.py                  # Run per file directive
3.3.0

C:\code> py what.py               # Ditto: latest 3.X
3.3.0
Again, the space after #! is
      optional; I added a space to demonstrate the point here. Note that the
      first what.py command here is
      equivalent to both an icon click and a full py
      what.py, because the py.exe
      program is registered to open .py
      files automatically in the Windows filename associations registry when
      the launcher is installed.
Also note that when launcher documentation (including this
      appendix) talks about the latest version, it means
      the highest-numbered version. That is, it refers to
      the latest released, not the latest installed on your computer (e.g., if
      you install 3.1 after 3.3, #!python3
      selects the latter). The launcher cycles through the Pythons on your
      computer to find the highest-numbered version that matches your
      specification or defaults; this differs from the former
      last-installed-wins model.
Now, changing the first line name to python2 triggers the latest (really,
      highest-numbered) 2.X installed instead. Here’s this change at work;
      I’ll omit the last two lines of our script from this point on because
      they won’t be altered:
#! python2
...rest of script unchanged

C:\code> what.py                  # Run with latest 2.X per #!
2.7.3
And you can request a more specific version if needed—for example,
      if you don’t want the latest in a Python line:
#! python3.1
...

C:\code> what.py                  # Run with 3.1 per #!
3.1.4
This is true even if the requested version is not
      installed—which is treated as an error case by the
      launcher:
#! python2.6
...

C:\code> what.py
Requested Python version (2.6) is not installed
Unrecognized Unix #! lines are also treated as errors, unless
      you give a version number as a command-line switch to compensate, as the
      next section describes in more detail (and as the section on launcher
      issues will revisit as a pitfall):
#!/bin/python
...

C:\code> what.py
Unable to create process using '/bin/python "C:\code\what.py" '

C:\code> py what.py
Unable to create process using '/bin/python what.py'

C:\code> py −3 what.py
3.3.0
Technically, the launcher recognizes
      Unix-style #! lines at the top of
      script files that follow one of the following four patterns:
#!/usr/bin/env python*
#!/usr/bin/python*
#!/usr/local/bin/python*
#!python*
Any #! line that does not take
      one of these recognized and parseable forms is assumed to be a fully
      specified command line to start a process to run the file, which is
      passed to Windows as is, and generates the error message we saw
      previously if it is not a valid Windows command. (The launcher also
      supports “customized” command expansions via its configuration files,
      which are attempted before passing unrecognized commands on to Windows,
      but we’ll gloss over these here.)
In recognizable #! lines,
      directory paths are coded per Unix convention, for portability to that
      platform. The * part at the end of
      the four preceding recognized patterns denotes an optional Python
      version number, in one of three forms:
	Partial (e.g., python3)
	To run the version installed with the highest minor release
            number among those with the major release number given

	Full (e.g., python3.1)
	To run that specific version only, optionally suffixed by
            −32 to prefer a 32-bit version
            (e.g., python3.1-32)

	Omitted (e.g., python)
	To run the launcher’s default version, which is 2 unless changed (e.g., by setting the
            PY_PYTHON environment variable
            to 3), another pitfall
            described ahead


Files with no #! line at all behave the same as those that
      name just a generic python—the
      aforementioned omitted case—and are influenced by PY_PYTHON default settings. The first case,
      partials, may also be affected by version-specific environment settings
      (e.g., set PY_PYTHON3 to 3.1 to select 3.1 for python3, and set PY_PYTHON2 to 2.6 to pick 2.6 for python2). We’ll revisit defaults later in this
      tutorial.
First, though, note that anything after the * part in a #! line’s format is assumed to be command-line
      arguments to Python itself (i.e., program python.exe), unless you also give arguments in
      a py command line that are deemed to
      supersede #! line arguments by the
      launcher:
#!python3 [any python.exe arguments go here]
...
These include all the Python command-line arguments we met in
      Appendix A. But this leads us to
      launcher command lines in general, and will suffice as a natural segue
      to the next section.

Step 2: Using Command-Line Version Switches
As mentioned, version switches on command lines can be used to
      select a Python version if one isn’t present in the file. You run a
      py or pyw command line to pass them a switch this
      way, instead of relying on filename associations in the registry, and
      instead of (or in addition to) giving versions in #! lines in files. In the following, we modify
      our script so that it has no #!
      directive:
# not a launcher directive
...

C:\code> py −3 what.py           # Run per command-line switch
3.3.0

C:\code> py −2 what.py           # Ditto: latest 2.X installed
2.7.3

C:\code> py −3.2 what.py         # Ditto: 3.2 specifically (and only)
3.2.3

C:\code> py what.py              # Run per launcher's default (ahead)
2.7.3
But command-line switches also take precedence over a version
      designation in a file’s directive:
#! python3.1
...

C:\code> what.py                 # Run per file directive
3.1.4

C:\code> py what.py              # Ditto
3.1.4

C:\code> py −3.2 what.py         # Switches override directives
3.2.3

C:\code> py −2 what.py           # Ditto
2.7.3
Formally, the launcher accepts the following
      command-line argument types (which exactly mirror the * part at the end of a file’s #! line described in the prior
      section):
−2         Launch the latest Python 2.X version
-3         Launch the latest Python 3.X version
-X.Y       Launch the specified Python version (X is 2 or 3)
-X.Y−32    Launch the specified 32-bit Python version
And the launcher’s command lines take the following general
      form:
py [py.exe arg] [python.exe args] script.py [script.py args]
Anything following the launcher’s own argument (if present) is
      treated as though it were passed to the python.exe program—typically, this includes
      any arguments for Python itself, followed by the script filename,
      followed by any arguments meant for the script.
The usual -m mod, -c cmd, and - program specification forms work in a
      py command line too, as do all the
      other Python command-line arguments covered in Appendix A. As mentioned earlier,
      arguments to python.exe can also
      appear at the end of the #! directive
      line in a file, if used, though arguments in py command lines override them.
To see how this works, let’s write a new script that extends the
      prior to display command-line arguments; sys.argv is the script’s own arguments, and
      I’m using the Python (python.exe)
      -i switch, which directs it to the
      interactive prompt (>>>)
      after a script runs:
# args.py, show my arguments too
import sys
print(sys.version.split()[0])
print(sys.argv)

C:\code> py −3 -i args.py -a 1 -b -c     # −3: py, -i: python, rest: script
3.3.0
['args.py', '-a', '1', '-b', '-c']
>>> ^Z

C:\code> py -i args.py -a 1 -b -c        # Args to python, script
2.7.3
['args.py', '-a', '1', '-b', '-c']
>>> ^Z

C:\code> py −3 -c print(99)              # −3 to py, rest to python: "-c cmd"
99

C:\code> py −2 -c "print 99"
99
Notice how the first two launches run the default Python unless a
      version is given in the command line, because no #! line appears in the script itself. Somewhat
      coincidentally, that leads us to the last topic of this tutorial.

Step 3: Using and Changing Defaults
As also mentioned, the launcher defaults to 2.X for a generic
      python in a #! directive with no specific version number.
      This is true whether this generic form appears in a full Unix path
      (e.g., #!/usr/bin/python) or not
      (#!python). Here’s the latter case in
      action, coded in our original what.py script:
#!python
...                           # Same as #!/usr/bin/python

C:\code> what.py              # Run per launcher default
2.7.3
The default is also applied when no directive is present at
      all—perhaps the most common case for code written to be used on Windows
      primarily or exclusively:
# not a launcher directive
...

C:\code> what.py              # Also run per default
2.7.3

C:\code> py what.py           # Ditto
2.7.3
But you can set the launcher’s default to 3.X with initialization
      file or environment variable settings, which will apply to both files
      run from command lines and by icon clicks via their name’s association
      with py.exe or pyw.exe in the Windows registry:
# not a launcher directive
...

C:\code> what.py               # Run per default
2.7.3

C:\code> set PY_PYTHON=3       # Or via Control Panel/System
C:\code> what.py               # Run per changed default
3.3.0
As suggested earlier, for more fine-grained control you can also
      set version-specific environment variables to direct
      partial selections to a specific release, instead
      of falling back on the installed release with the highest minor
      number:
#!python3
...

C:\code> py what.py             # Runs "latest" 3.X
3.3.0

C:\code> set PY_PYTHON3=3.1     # Use PY_PYTHON2 for 2.X
C:\code> py what.py             # Override highest-minor choice
3.1.4
The set used in these
      interactions applies to its Command Prompt window only; making such
      settings in the Control Panel’s System window will make them apply
      globally across your machine (see Appendix A for help with these
      settings). You may or may not want to set defaults this way depending on
      the majority of the Python code you’ll be running. Many Python 2.X users
      can probably rely on defaults unchanged, and override them in #! lines or py command lines as needed.
However, the setting used for directive-less files, PY_PYTHON, seems fairly crucial. Most
      programmers who have used Python on Windows in the past will probably
      expect 3.X to be the default after installing 3.3, especially given that
      the launcher is installed by 3.3 in the first place—a seeming paradox,
      which leads us to the next section.


Pitfalls of the New Windows Launcher
Though the new Windows launcher in 3.3 is a nice addition, like much in 3.X
    it may have been nicer had it appeared years ago. Unfortunately, it comes
    with some backward incompatibilities, which may be an inevitable byproduct
    of today’s multiversion Python world, but which may also break some
    existing programs. This includes examples in books I’ve written, and
    probably many others. While porting code to 3.3, I’ve come across three
    launcher issues worth noting:
	Unrecognized Unix #! lines
        now make scripts fail on Windows.

	The launcher defaults to using 2.X unless
        told otherwise.

	The new PATH extension is off
        by default and seems contradictory.


The rest of this section gives a rundown of each of these three
    issues in turn. In the following, I use the programs in my book Programming Python, 4th
    Edition, as an example to illustrate the impacts of launcher
    incompatibilities, because porting these 3.1/3.2 examples to 3.3 was my
    first exposure to the new launcher. In my specific case, installing 3.3
    broke numerous book examples that worked formerly under 3.2 and 3.1. The
    causes for these failures outlined here may break your code too.
Pitfall 1: Unrecognized Unix #! Lines Fail
The new Windows launcher recognizes Unix #! lines that begin with #!/usr/bin/env python but
      not the other common Unix form #!/bin/env python (which is actually mandated
      on some Unixes). Scripts that use the latter of these, including some of
      my book examples, worked on Windows in the past because their #! lines coded for Unix compatibility have
      been ignored as comments by all Windows Pythons to date. These scripts
      now fail to run in 3.3 because the new launcher doesn’t recognize their
      directive’s format and posts an error message.
More generally, scripts with any #! Unix line not recognized will now fail to
      run on Windows. This includes scripts having any first line that begins
      with a #! that is not followed by one
      of the four recognized patterns described earlier: /usr/bin/env python*, /usr/bin/python*, /usr/local/bin/python*, or python*. Anything else won’t work, and
      requires code changes. For instance, a somewhat common #!/bin/python line also causes a script to now
      fail on Windows, unless a version number is given in command-line
      switches.
Unix-style #! lines probably
      aren’t present in Windows-only programs, but can be common in programs
      meant to be run on Unix too. Treating unrecognized Unix directives as
      errors on Windows seems a bit extreme, especially given that this is new
      behavior in 3.3, and will likely be unexpected. Why not just ignore
      unrecognized #! lines and run the
      file with the default Python—like every Windows Python to date has? It’s
      possible that this might be improved in a future 3.X release (there may
      be some pushback on this), but today you must change any files using a
      #!/bin/env or other unrecognized
      pattern, if you want them to run under the launcher installed with
      Python 3.3 on Windows.
Book examples impact and fix
With respect to the book examples I ported to 3.3, this broke
        roughly a dozen scripts that started with #!/bin/env python. Regrettably, this
        includes some of the book’s user-friendly and top-level demo launcher
        scripts (PyGadgets and
        PyDemos). To fix, I changed these to use the
        accepted #!/usr/bin/env python form
        instead. Altering your Windows file associations to omit the launcher
        altogether may be another option (e.g., associating .py files with python.exe instead of py.exe), but this negates the launcher’s
        benefits, and seems a bit much to ask of users, especially
        newcomers.
One open issue here: strangely, passing any
        command-line switch to the launcher, even a python.exe argument, seems to negate this
        effect and fall back on the default Python—m.py and py
        m.py both issue errors on unrecognized #! lines, but py -i
        m.py runs such a file with the default Python. This seems a
        possible launcher bug, but also relies on the default, the subject of
        the next issue.


Pitfall 2: The Launcher Defaults to 2.X
Oddly, the Windows 3.3 launcher defaults to using an installed
      Python 2.X when running scripts that don’t select 3.X explicitly. That
      is, scripts that either have no #!
      directive or use one that names python generically will be run by a 2.X Python
      by default when launched by icon clicks, direct filename command lines
      (m.py), or launcher command lines
      that give no version switch (py
      m.py). This is true even if 3.3 is installed after a 2.X on
      your machine, and has the potential to make many 3.X scripts fail
      initially.
The implications of this are potentially broad. As one example,
      clicking the icon of a directive-less 3.X file just after installing 3.3
      may now fail, because the associated launcher assumes you mean to use
      2.X by default. This probably won’t be a pleasant first encounter for
      some Python newcomers! This assumes the 3.X file has no #! directive that provides an explicit
      python3 version number, but most
      scripts meant to run on Windows won’t have a #! line at all, and many files coded before
      the launcher came online won’t accommodate its version number
      expectations. Most 3.X users will be basically compelled to set PY_PYTHON after installing 3.3—hardly a
      usability win.
Program launches that don’t give an explicit version number might
      be arguably ambiguous on Unix too, and often rely on symbolic links from
      python to a specific version (which
      is most likely 2.X today—a state the new Windows launcher seems to
      emulate). But as for the prior issue, this probably shouldn’t trigger a
      new error on Windows in 3.3 for scripts that worked
      there formerly. Most programmers wouldn’t expect Unix comment lines to
      matter on Windows, and wouldn’t expect 2.X to be used by default just
      after installing 3.X.
Book examples impact and fix
In terms of my book examples port, this 2.X default caused
        multiple 3.X script failures after installing 3.3, for both scripts
        with no #! line, as well as scripts
        with a Unix-compatible #!/usr/bin/python line. To fix just the
        latter, change all scripts in this category to name python3 explicitly instead of just python. To fix both the former and the
        latter in a single step, set the Windows launcher’s default to be 3.X
        globally with either a py.ini
        configuration file (see the launcher’s documentation for details) or a
        PY_PYTHON environment variable
        setting as shown in the earlier examples (e.g., set PY_PYTHON=3). As mentioned in the prior
        point, manually changing your file associations is another solution,
        but none of these options seem simpler than those imposed by prior
        install schemes.


Pitfall 3: The New PATH Extension Option
Besides installing the new launcher, the Windows Python 3.3
      installer can automatically add the directory containing 3.3’s python.exe executable to your system PATH setting. The reasoning behind this is
      that it might make life easier for some Windows beginners—they can type
      just python instead of the full
      directory path to it. This isn’t a feature of the launcher per se, and
      shouldn’t cause scripts to fail in general. It had no impact on the book
      examples. But it seems to clash with the launcher’s operation and goals,
      and may be best avoided. This is a bit subtle, but I’ll explain
      why.
As described, the new launcher’s py and pyw
      executables are by default installed on your system search path, and
      running them requires neither directory paths nor PATH settings. If you start scripts with
      py instead of python command lines, the new PATH feature is irrelevant. In fact, py completely subsumes
      python in most contexts. Given that
      file associations will launch py or
      pyw instead of python anyhow, you probably should too—using
      python instead of py may prove redundant and inconsistent, and
      might even launch a version different than that used in launcher
      contexts should the two schemes’ settings grow out of sync. In short,
      adding python to PATH seems contradictory
      to the new launcher’s worldview, and potentially error-prone.
Also note that updating your PATH assumes you want a
      python command to run 3.3 normally,
      and this feature is disabled by default; be sure to
      select this in the install screen if you want this to work (but not if
      you don’t!). Due to the second pitfall mentioned earlier, many users may
      still need to set PY_PYTHON to
      3 for programs run by icon clicks
      that invoke the new launcher, which seems no simpler than setting
      PATH, a step that the launcher was
      meant to remove. You may be better served by using just the launcher’s
      executables, and changing just PY_PYTHON as
      needed.


Conclusions: A Net Win for Windows
To be fair, some of the prior section’s pitfalls may be an inevitable consequence of
    trying to simultaneously support a Unix feature on Windows and multiple
    installed versions. In exchange, it provides a coherent way to manage
    mixed-version scripts and installations. You’ll probably find the Windows
    launcher shipped with 3.3 and later to be a major asset once you start
    using it, and get past any initial incompatibilities you may
    encounter.
In fact, you may also want to start getting into the habit of coding
    compatible Unix-style #! lines in your
    Windows scripts, with explicit version numbers (e.g., #!/usr/bin/python3). Not only does this declare
    your code’s requirements and arrange for its proper execution on Windows,
    it will also subvert the launcher’s defaults, and may also make your
    script usable as a Unix executable in the future.
But you should be aware that the launcher may break some formerly
    valid scripts having #! lines, may
    choose a default version that you don’t expect and your scripts can’t use,
    and may require configuration and code changes on the order of those it
    was intended to obviate. The new boss is better than the old boss, but
    seems to have gone to the same school.
For more on Windows usage, see Appendix A for installation and
    configuration, Chapter 3 for general
    concepts, and platform-specific documents in Python’s manuals set.








Appendix C. Python Changes and This Book
This appendix briefly summarizes changes made in recent releases of Python
  organized by the book editions where they first appeared, and gives links to
  their coverage in this book. It is intended as a reference for both readers
  of prior editions, as well as developers migrating from prior Python
  releases.
Here’s how changes in Python relate to this book’s recent
  editions:
	This fifth edition of 2013 covers Python 3.3
      and 2.7.

	The fourth edition of 2009 covered Python 2.6
      and 3.0 (with some 3.1 features).

	The third edition of 2007 covered Python
      2.5.

	The first and second
      editions of 1999 and 2003 covered Pythons 2.0 and 2.2.

	The predecessor of this book, 1996’s Programming
      Python, covered Python 1.3.


Hence, to see changes made in just this fifth
  edition, see the Python 2.7, 3.2, and 3.3 changes listed ahead. For changes
  incorporated into both the fourth and fifth editions
  (that is, since the third), also see Python 2.6, 3.0,
  and 3.1 changes here. Third edition language changes are listed very briefly
  too, though this seems of only historical value today.
Also note that this appendix focuses on major changes and book
  impacts, and is not intended as a complete guide to Python’s evolution. For
  the fuller story on changes applied in each new Python release, consult the
  “What’s New” documents that are part of its standard documentation set, and
  available at the Documentation page of python.org. Chapter 15 covers Python documentation and its
  manuals set.
Major 2.X/3.X Differences
Much of this appendix relates Python changes to book coverage. If
    you’re instead looking for a quick summary of the most prominent 2.X/3.X
    distinctions, the following may suffice. Note that this section primarily
    compares the latest 3.X and 2.X releases—3.3 and 2.7. Many 3.X features
    are not listed here because they were either also added to 2.6 (e.g., the
    with statement and class decorators),
    or back-ported later to 2.7 (e.g., set and dictionary comprehensions), but
    are not available in earlier 2.X releases. See later sections for more
    fine-grained information about changes in earlier versions, and see
    Python’s “What’s New” documents for changes that may appear in future
    releases.
3.X Differences
The following summarizes tools that differ across Python
      lines.
	Unicode string model: In 3.X, normal
          str strings support all Unicode
          text including ASCII, and the separate bytes type represents raw 8-bit byte
          sequences. In 2.X, normal str
          strings support both 8-bit text including ASCII, and a separate
          unicode type represents richer
          Unicode text as an option.

	File model: In 3.X, files created by
          open are specialized by
          content—text files implement Unicode encodings and represent content
          as str strings, and binary files
          represent content as bytes
          strings. In 2.X, files use distinct interfaces—files created by
          open represent content as
          str strings for content that is
          either 8-bit text or bytes-based data, and codecs.open implements Unicode text
          encodings.

	Class model: In 3.X, all classes derive
          from object automatically and
          acquire the numerous changes and extensions of
          new-style classes, including their differing
          inheritance algorithm, built-ins dispatch, and MRO search order for
          diamond-pattern trees. In 2.X, normal classes follow the
          classic model, and explicit inheritance from
          object or other built-in types
          enables the new-style model as an option.

	Built-in iterables: In 3.X, map, zip, range, filter, and dictionary keys, values, and items are all iterable objects that
          generate values on request. In 2.X, these calls create physical
          lists.

	Printing: 3.X provides a built-in
          function with keyword arguments for configuration, while 2.X
          provides a statement with special syntax for configuration.

	Relative imports: Both 2.X and 3.X
          support from . relative import
          statements, but 3.X changes the search rule to skip a package’s own
          directory for normal imports.

	True division: Both 2.X and 3.X support
          the // floor division operator,
          but the / is true division in 3.X
          and retains fractional remainders, while / is type-specific in 2.X.

	Integer types: 3.X has a single integer
          type that supports extended precision. 2.X has both normal int and extended long, and automatic conversion to long.

	Comprehension scopes: In 3.X, all
          comprehension forms—list, set, dictionary, generator—localize
          variables to the expression. In 2.X, list comprehensions do
          not.

	PyDoc: An all-browser pydoc –b interface is supported as of 3.2
          and required as of 3.3. In 2.X, the original pydoc –g GUI client interface may be used
          instead.

	Byte code storage: As of 3.2, 3.X stores
          byte code files in a __pycache__
          subdirectory of the source directory, with version-identifying
          names. In 2.X, byte code is stored in the source file directory with
          generic names.

	Built-in system exceptions: As of 3.3,
          3.X has a reworked exception hierarchy for OS and IO classes that
          includes additional categories and granularity. In 2.X, exception
          attributes must sometimes be inspected on system errors.

	Comparisons and sorts: In 3.X, relative
          magnitude comparisons of both mixed-types and dictionaries are
          errors, and sorts do not support mixed types or general comparison
          functions (use key mappers
          instead). In 2.X all these forms work.

	String exceptions and module functions:
          String-based exceptions are fully removed in 3.X, though they are
          also gone in 2.X as of 2.6 (use classes instead). string module functions redundant with
          string object methods are also removed in 3.X.

	Language removals: Per Table C-2, 3.X removes, renames, or
            relocates many 2.X language items: reload, apply, `x`, <>, 0177, 999L, dict.has_key,
              raw_input, xrange, file, reduce, and file.xreadlines.



3.X-Only Extensions
The following summarizes tools available in 3.X only.
	Extended sequence assignment: 3.X allows
          a * in sequence assignment
          targets to collect remaining unmatched iterable items in a list. 2.X
          can achieve similar effects with slicing.

	Nonlocal: 3.X provides a nonlocal statement, which allows names in
          enclosing function scopes to be changed from within nested
          functions. 2.X can achieve similar effects with function attributes,
          mutable objects, and class state.

	Function annotations: 3.X allows function
          arguments and return types to be annotated with objects that are
          retained in the function but not otherwise used. 2.X may often
          achieve similar effects with extra objects or decorator
          arguments.

	Keyword-only arguments: 3.X allows
          specification of function arguments that must be passed as keywords,
          typically used for extra configuration options. 2.X may often
          achieve similar effects with argument analysis and dictionary
          pops.

	Chained exceptions: 3.X allows exceptions
          to be chained and thus appear in error messages, with a raise from extension; 3.3 allows a
          None to cancel the chain.

	Yield from: As of 3.3, the yield statement may delegate to a nested
          generator with from. 2.X can
          often achieve similar results with a for loop in simpler use cases.

	Namespace packages: As of 3.3, the
          package model is extended to allow packages that span multiple
          directories with no initialization file, as a fallback option. 2.X
          might achieve similar effects with import extensions.

	Windows launcher: As of 3.3, a launcher
          is shipped with Python for Windows, though this is also available
          separately for use on other Pythons, including 2.X.

	Internals: As of 3.2, threading is
          implemented with time slices instead of virtual machine instruction
          counts, and 3.3 stores Unicode text in a variable-length scheme
          instead of fixed-size bytes. 2.X’s string model minimizes Unicode
          use in general.




General Remarks: 3.X Changes
Although the Python 3.X line covered in the two most recent editions
    of this book is largely the same language as its 2.X predecessor, it
    differs in some crucial ways. As discussed in the preface and summarized
    in the preceding section, 3.X’s nonoptional Unicode model, mandatory
    new-style classes, and broader emphasis on generators and other functional
    tools alone can make it a materially different experience.
On the whole, Python 3.X may be a cleaner
    language, but it is also in many ways a more
    sophisticated language, relying upon concepts that
    are substantially more advanced. In fact, some of its changes seem to
    assume you must already know Python in order to learn Python. The preface
    mentioned some of the more prominent circular knowledge dependencies in
    3.X that imply forward topic dependencies.
As a random example, the rationale for wrapping dictionary views in
    a list call in 3.X is incredibly subtle
    and requires substantial foreknowledge—of views, generators, and the
    iteration protocol, at the least. Keyword arguments are similarly required
    in simple tools (e.g., printing, string formatting, dictionary creation,
    and sorting) that crop up long before a newcomer learns enough about
    functions to understand them fully. One of this book’s goals is to help
    bridge this knowledge gap in today’s 2.X/3.X dual-version world.
Changes in Libraries and Tools
There are additional changes in Python 3.X not listed in this
      appendix, simply because they don’t affect this book. For example, some
      standard libraries and development tools are outside this book’s core
      language scope, though some are mentioned along the way (e.g., timeit), and others have always been covered
      here (e.g., PyDoc).
For completeness, the following sections note 3.X developments in
      these categories. Some of the changes in these categories are also
      listed later in this appendix, in conjunction with the book edition and
      Python version in which they were introduced.
Standard library changes
Formally speaking, the Python standard library is not a part of
        this book’s core language subject, even though it’s always available
        with Python, and permeates realistic Python programs. In fact, the
        libraries were not subject to the temporary 3.X language changes
        moratorium enacted during 3.2’s development.
Because of this, changes in the standard library have a larger
        impact on applications-focused books like Programming
        Python than they do here. Although most standard library
        functionality is still present, Python 3.X takes further liberties
        with renaming modules, grouping them into packages, and changing API
        call patterns.
Some library changes are much broader, though. Python 3.X’s
        Unicode model, for example, creates widespread
        differences in 3.X’s standard library—it potentially impacts any
        program that processes file content, filenames, directory walkers,
        pipes, descriptor files, sockets, text in GUIs, Internet protocols
        such as FTP and email, CGI scripts, web content of many kinds, and
        even some persistence tools such as DBM files, shelves, and
        pickles.
For a more comprehensive list of changes in 3.X’s standard
        libraries, see the “What’s New” documents for 3.X releases (especially
        3.0) in Python’s standard manual set. Because it uses Python 3.X
        throughout, the aforementioned Programming
        Python can also serve as a guide to 3.X library
        changes.

Tools changes
Though most development tools are the same between 2.X and 3.X
        (e.g., for debugging, profiling, timing, and testing), a few have
        undergone changes in 3.X along with the language and library. Among
        these, the PyDoc module documentation system has
        moved away from its former GUI client model in 3.2 and earlier,
        replacing it with an all web browser interface.
Other noteworthy changes in this category: the distutils package,
          used to distribute and install third-party software, is to be subsumed by a new
            packaging system in 3.X; the new __pycache__ byte code storage scheme described in this book, though an
          improvement, potentially impacts many Python tools and programs; and the internal
          implementation of threading changed as of 3.2 to reduce contention by
          modifying the global interpreter lock (GIL) to use absolute time slices instead of a
          virtual machine instruction counter.


Migrating to 3.X
If you are migrating from Python 2.X to Python 3.X, be sure to
      also see the 2to3 automatic code conversion script
      that is shipped with Python 3.X. It’s currently available in Python’s
      Tools\Scripts install folder, or via
      a web search. This script cannot translate everything, and attempts to
      translate core language code primarily—3.X standard library APIs may
      differ further. Still, it does a reasonable job of converting much 2.X
      code to run under 3.X.
Conversely, the 3to2 back-conversion program,
      currently available in the third-party domain, can also translate much
      Python 3.X code to run in 2.X environments. Depending on your goals and
      constraints, either 2to3 or
      3to2 may prove useful if you must maintain code for
      both Python lines; see the Web for details, and additional tools and
      techniques.
It’s also possible to write code that runs
      portably on both 2.X and 3.X using techniques
      presented in this book—importing 3.X features from __future__, avoiding version-specific tools,
      and so on. Many of the examples in this book are platform-neutral. For
      examples, see the benchmarking tools in Chapter 21, the module reloaders and comma
      formatter in Chapter 25, the class tree
      listers in Chapter 31, most of the larger
      decorator examples in Chapter 38 and Chapter 39, the joke script at the end of Chapter 41, and more. As long as you understand
      2.X/3.X core language differences, coding around them is often
      straightforward.
If you’re interested in writing code for both 2.X and 3.X, see
      also six—a library of cross-version mapping and
      renaming tools, which currently lives at http://packages.python.org/six.
      Naturally, this package can’t offset every difference in language
      semantics and library APIs, and in many cases you must use its library
      tools instead of straight Python to realize its portability gains. In
      exchange, though, your programs become much more version-neutral when
      using this library’s tools.


Fifth Edition Python Changes: 2.7, 3.2, 3.3
The following specific changes were made in the Python 2.X and 3.X
    lines after the fourth edition was published, and have been incorporated
    into this edition. Specifically, this section documents Python
    book-related changes in Pythons 2.7, 3.2, and 3.3.
Changes in Python 2.7
On the technical front, Python 2.7 mostly incorporates as
      back-ports a handful of 3.X features that were covered in the prior
      edition of this book, but formerly as 3.X-only features. This new fifth
      edition presents these as 2.7 tools as well. Among these:
	Set literals:
{1, 4, 2, 3, 4}

	Set and dictionary comprehensions:
{c * 4 for c in 'spam'}, {c: c * 4 for c in 'spam'}

	Dictionary views, incorporated as optional methods:
dict.viewkeys(), dict.viewvalues(), dict.viewitems()

	Comma separators and field autonumbering in str.format (from 3.1):
'{:,.2f} {}'.format(1234567.891, 'spam')

	Nested with statement context managers (from
            3.1):
with X() as x, Y() as y: ...

	Float object repr display
          improvements (back-ported from 3.1: see ahead)


To see where these topics are covered in the book, look for their
      entries in the 3.0 changes list of Table C-1, or the Python 3.1 changes
      section, both ahead. They were already present for 3.X, but have been
      updated to reflect their availability in 2.7 as well.
On the logistical front, per current plans 2.7 will be the last
      major 2.X series release, but will have a long maintenance period in
      which it will continue to be used in production work. After 2.7, new
      development is to shift to the Python 3.X line.
That said, it’s impossible to foresee how this official posture
      will stand the test of time, given 2.X’s still very wide user base. See
      the preface for more on this; the optimized PyPy implementation, for
      example, is still Python 2.X only. Or, to borrow a Monty Python line,
      “I’m not dead yet...”—stay tuned for developments
      on the Python 2.X story.

Changes in Python 3.3
Python 3.3 includes a surprisingly large number of changes for a point release. Some of
        these are not entirely compatible with code written for prior releases in the 3.X line.
        Among these, the new Windows launcher, installed as a mandatory part of 3.3, has broad
        potential to break existing 3.X scripts run on Windows.
Here’s a brief rundown of noteworthy 3.3 changes, along with their
      location in this book where applicable. Python 3.3 comes with:
	A reduced memory footprint that is more
          in line with 2.X, thanks mainly to its new variable-length string
          storage scheme, and also to its attribute name-sharing dictionaries
          system (see Chapter 37 and Chapter 32)

	A new namespace package model, where
          new-style packages may span multiple directories and require no
          __init__.py file (see Chapter 24)

	New syntax for delegating to subgenerators: yield from ... (see Chapter 20)

	New syntax for suppressing exception context: raise ... from None (see Chapter 34)

	New syntax for accepting 2.X’s Unicode literal form to ease
          migration: 3.3 now treats 2.X’s Unicode literal u'xxxx' the same as its normal string
          'xxxx', similar to the way 2.X
          treats 3.X’s bytes literal b'xxxx' the same as its normal string
          'xxxx' (see Chapter 4, Chapter 7, and Chapter 37)

	Reworked OS and IO exception hierarchies,
          which provide more inclusive general superclasses, as well as new
          subclasses for common errors that can obviate the need to inspect
          exception object attributes (see Chapter 35)

	An all-web-browser-based interface to PyDoc
          documentation started via pydoc
          -b, replacing its former standalone GUI client search
          interface, which was in the Windows 7 and earlier Start button and
          invoked by pydoc –g (see Chapter 15)

	Changes to some longstanding standard library modules,
            including ftplib, time, and email, and potentially
              distutils; impacts in this book: time has new portable calls in 3.X (see Chapter 21 and Chapter 39)

	An implementation of the __import__ function in importlib.__import__, in part to unify and
          more clearly expose its implementation (see Chapter 22 and Chapter 25)

	A new capability in the Windows 3.3 installer that extends the
          system PATH setting to include
          3.3’s directory as an install-time option to simplify some command
          lines (see Appendixes A and B)

	A new Windows launcher, which attempts to
          interpret Unix-style #! lines for
          dispatching Python scripts on Windows, and allows both #! lines and new py command lines to select between Python
          2.X and 3.X versions explicitly on both a per-file and per-command
          basis (see the new Appendix B)



Changes in Python 3.2
Python 3.2 continued the 3.X line’s evolution. It was developed
      during a moratorium on 3.X core language changes, so its relevant
      changes were minor. Here’s a quick review of major 3.2 changes, and
      their location in this fifth edition where relevant:
	Byte-code files storage model change: __pycache__ (see Chapter 2 and Chapter 22)

	The struct module’s
          autoencoding for strings is gone (see Chapter 9 and Chapter 37)

	3.X str/bytes split supported better by Python
          itself (not relevant to this book)

	The cgi.escape call was to
          be moved in 3.2+ (not relevant to this book)

	Threading implementation change: time slices (not relevant to
          this book)




Fourth Edition Python Changes: 2.6, 3.0, 3.1
The fourth edition was updated to cover Python
    3.0 and 2.6, and incorporated a
    small number of major changes made in 3.1. Its 3.0
    and 3.1 changes apply to all future releases in the 3.X line including
    this fifth edition’s Python 3.3, and its 2.6 changes are also part of this
    edition’s 2.7. As noted earlier, some of the changes described here as 3.X
    changes also later found their way into Python 2.7 as back-ports (e.g.,
    set literals, and set and dictionary comprehensions).
Changes in Python 3.1
In addition to the 3.0 and 2.6 changes listed in upcoming
      sections, shortly before going to press the fourth edition was also
      augmented with notes about prominent extensions in the then upcoming
      Python 3.1 release, including:
	Comma separators and automatic field numbering in string
          format method calls (Chapter 7)

	Multiple context manager syntax in with statements (Chapter 34)

	New methods for number objects (Chapter 5)

	(Not added until this fifth edition) Floating-point display
          changes (Chapter 4 and
          Chapter 5)


This fifth edition covers these topics in the chapters just noted.
      Because Python 3.1 was targeted primarily at optimization and was
      released relatively soon after 3.0, the fourth edition also applied
      directly to 3.1. In fact, because Python 3.1 superseded 3.0 entirely,
      and because the latest Python is usually the best Python to fetch and
      use anyhow, whenever that edition used the term “Python 3.0” it
      generally referred to the language variations introduced by Python 3.0
      but that are present in the entire 3.X line, including this edition’s
      Python 3.3.
One notable exception: the fourth edition did
      not incorporate 3.1’s new repr display scheme for
      floating-point numbers. The new display algorithm
      attempts to display floating-point numbers more intelligently when
      possible, usually with fewer (but occasionally with more) decimal
      digits—a change that is reflected in this fifth edition.

Changes in Python 3.0 and 2.6
The fourth edition’s language changes stem from Python 3.0 and
      2.6. All of its 2.6 and many of its 3.0 changes are shared by Python 2.7
      and 3.3 today. Python 2.7 was extended with some 3.0 features not
      present in 2.6 (see earlier in this appendix), and Python 3.3 inherits
      all the features introduced by 3.0.
Because there were so many changes in the initial 3.X release,
      they are noted only briefly in tables here, with links to more details
      in this book. Table C-1
      provides the first set of 3.X changes, listing the most prominent new
      language features covered in the fourth edition, along with the primary
      chapters in the current fifth edition in which they appear.
Table C-1. Extensions in Python 2.6 and 3.0	Extension	Covered in
              chapter(s)
	The print function in 3.0
	11

	The nonlocal x,y statement in
              3.0
	17

	The str.format method in 2.6 and
              3.0
	7

	String types in 3.0:
              str for Unicode text,
              bytes for binary
              data
	7, 37

	Text and binary file
              distinctions in 3.0
	9, 37

	Class decorators in 2.6
              and 3.0: @private('age')
	32, 39

	New iterators in 3.0:
              range, map, zip
	14, 20

	Dictionary views in 3.0:
              D.keys, D.values, D.items
	8, 14

	Division operators in
              3.0: remainders, / and
              //
	5

	Set literals in 3.0:
              {a, b, c}
	5

	Set comprehensions in 3.0: {x**2 for x in seq}
	4, 5, 14, 20

	Dictionary comprehensions
              in 3.0: {x: x**2 for x in seq}
	4, 8, 14, 20

	Binary digit-string
              support in 2.6 and 3.0: 0b0101, bin(I)
	5

	The fraction number type
              in 2.6 and 3.0: Fraction(1, 3)
	5

	Function annotations in
              3.0: def f(a:99, b:str)->int
	19

	Keyword-only arguments in
              3.0: def f(a, *b, c, **d)
	18, 20

	Extended sequence
              unpacking in 3.0: a, *b = seq
	11, 13

	Relative import syntax
              for packages enabled in 3.0: from .
	24

	Context managers enabled
              in 2.6 and 3.0: with/as
	34, 36

	Exception syntax changes
              in 3.0: raise, except/as, superclass
	34, 35

	Exception chaining in
              3.0: raise e2 from e1
	34

	Reserved word changes in
              2.6 and 3.0
	11

	New-style class cutover
              in 3.0
	32

	Property decorators in
              2.6 and 3.0: @property
	38

	Descriptor use in 2.6 and
              3.0
	32, 38

	Metaclass use in 2.6 and
              3.0
	32, 40

	Abstract base classes
              support in 2.6 and 3.0
	29



Specific Language Removals in 3.0
In addition to extensions, a number of 2.X language tools have
      been removed in 3.X in an effort to clean up its design. Table C-2 summarizes the 3.X
      removals that impact this book, covered in various chapters of this
      edition as noted. As also shown in this table, many of the 3.X removals
      have direct replacements, some of which are also available in 2.6 and
      2.7 to support future migration to 3.X.
Table C-2. Removals in Python 3.0 that impact this book	Removed	Replacement	Covered in
              chapter(s)
	reload(M)
	imp.reload(M) (or exec)
	3, 23

	apply(f, ps, ks)
	f(*ps, **ks)
	18

	`X`
	repr(X)
	5

	X <> Y
	X != Y
	5

	long
	int
	5

	9999L
	9999
	5

	D.has_key(K)
	K in D (or D.get(key) != None)
	8

	raw_input
	input
	3, 10

	old input
	eval(input())
	3

	xrange
	range
	13, 14

	file
	open (and io module classes)
	9

	X.next
	X.__next__, called by next(X)
	14, 20, 30

	X.__getslice__
	X.__getitem__ passed a slice object
	7, 30

	X.__setslice__
	X.__setitem__ passed a slice object
	7, 30

	reduce
	functools.reduce (or loop
              code)
	14, 19

	execfile(filename)
	exec(open(filename).read())
	3

	exec open(filename)
	exec(open(filename).read())
	3

	0777
	0o777
	5

	print x, y
	print(x, y)
	11

	print >> F, x, y
	print(x, y, file=F)
	11

	print x, y,
	print(x, y, end=' ')
	11

	u'ccc' (back in 3.3)
	'ccc'
	4, 7, 37

	'bbb' for byte strings
	b'bbb'
	4, 7, 9,
                    37

	raise E, V
	raise E(V)
	33, 34, 35

	except E, X:
	except E as X:
	33, 34, 35

	def f((a, b)):
	def f(x): (a, b) = x
	11, 18, 20

	file.xreadlines
	for line in file: (or X=iter(file))
	13, 14

	D.keys(), etc. as lists
	list(D.keys()) (dictionary
              views)
	8, 14

	map(), range(), etc. as lists
	list(map()), list(range())
              (built-ins)
	14

	map(None, ...)
	zip (or manual code to pad
              results)
	13, 20
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Third Edition Python Changes: 2.3, 2.4, 2.5
The third edition of this book was thoroughly updated to reflect
    Python 2.5 and all changes to the language made after
    the publication of the second edition in late 2003. (The second edition
    was based largely on Python 2.2, with some 2.3
    features grafted on at the end of the project.) In addition, brief
    discussions of anticipated changes in the upcoming Python 3.0 release were
    incorporated where appropriate. Here are some of the major language topics
    for which new or expanded coverage was provided (chapter numbers here have
    been updated to reflect this fifth edition):
	The new B if A else C
        conditional expression (Chapter 12,
        Chapter 19)

	with/as context managers (Chapter 34)

	try/except/finally unification (Chapter 34)

	Relative import syntax (Chapter 24)

	Generator expressions (Chapter 20)

	New generator function features (Chapter 20)

	Function decorators (Chapter 32, Chapter 39)

	The set object type (Chapter 5)

	New built-in functions: sorted, sum, any,
        all, enumerate (Chapter 13 and Chapter 14)

	The decimal fixed-precision object type (Chapter 5)

	Files, list comprehensions, and iterators (Chapter 14 and Chapter 20)

	New development tools: Eclipse, distutils, unittest and doctest, IDLE enhancements, Shed Skin, and
        so on (Chapter 2 and Chapter 36)


Smaller language changes (for instance, the widespread use of
    True and False; the new sys.exc_info for fetching exception details; and
    the demise of string-based exceptions, string methods, and the apply and reduce built-ins) were incorporated throughout
    the book. The third edition also expanded coverage of some of the features
    that were new in the second edition, including three-limit slices and the
    arbitrary arguments call syntax that subsumed apply.

Earlier and Later Python Changes
Each edition before the third also incorporated Python changes
    too—the first two editions from 1999 and 2003 covered Pythons 2.0 and 2.2,
    and their 1996 Programming Python 1st Edition
    predecessor, from which my three later books were all derived, began the
    process with Python 1.3—but I’ve omitted these here because they are now
    ancient history (well, in computer field terms, at least).
See the first and second editions for more details, if you can
    manage to scare one up. While it’s impossible to predict the future, given
    how much has stood the test of time, it’s likely that the core ideas
    stressed in this book will likely apply to future Pythons as well.








Appendix D. Solutions to End-of-Part Exercises
Part I, Getting Started
See “Test Your Knowledge: Part I Exercises” in
    Chapter 3 for the exercises.
	Interaction. Assuming Python is configured properly, the interaction should
        look something like the following (you can run this any way you like
        (in IDLE, from a shell prompt, and so on):
% python
...copyright information lines...
>>> "Hello World!"
'Hello World!'
>>>                 # Use Ctrl-D or Ctrl-Z to exit, or close window

	Programs. Your code (i.e., module) file
        module1.py and the operating
        system shell interactions should look like this:
print('Hello module world!')

% python module1.py
Hello module world!
Again, feel free to run this other ways—by clicking the file’s
        icon, by using IDLE’s Run→Run Module menu option, and so on.

	Modules. The following interaction listing
        illustrates running a module file by importing it:
% python
>>> import module1
Hello module world!
>>>
Remember that you will need to reload the module to run it again
        without stopping and restarting the interpreter. The question about
        moving the file to a different directory and importing it again is a
        trick question: if Python generates a module1.pyc file in the original directory,
        it uses that when you import the module, even if the source code
        (.py) file has been moved to a
        directory not in Python’s search path. The .pyc file is written automatically if
        Python has access to the source file’s directory; it contains the
        compiled byte code version of a module. See Chapter 3 for more on modules.

	Scripts. Assuming your platform supports
        the #! trick, your solution will
        look like the following (although your #! line may need to list another path on
        your machine). Note that these lines are significant under the Windows
        launcher shipped and installed with Python 3.3, where they are parsed
        to select a version of Python to run the script, along with a default
        setting; see Appendix B for
        details and examples.
#!/usr/local/bin/python          (or #!/usr/bin/env python)
print('Hello module world!')
% chmod +x module1.py

% module1.py
Hello module world!

	Errors. The following interaction (run in
        Python 3.X) demonstrates the sorts of error messages you’ll get when
        you complete this exercise. Really, you’re triggering Python
        exceptions; the default exception-handling behavior terminates the
        running Python program and prints an error message and stack trace on
        the screen. The stack trace shows where you were in a program when the
        exception occurred (if function calls are active when the error
        happens, the “Traceback” section displays all active call levels). In
        Chapter 10 and Part VII, you will learn that you can catch
        exceptions using try statements and
        process them arbitrarily; you’ll also see there that Python includes a
        full-blown source code debugger for special error-detection
        requirements. For now, notice that Python gives meaningful messages
        when programming errors occur, instead of crashing silently:
% python
>>> 2 ** 500
32733906078961418700131896968275991522166420460430647894832913680961337964046745
54883270092325904157150886684127560071009217256545885393053328527589376
>>>
>>> 1 / 0
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ZeroDivisionError: int division or modulo by zero
>>>
>>> spam
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'spam' is not defined

	Breaks and cycles. When you type this
        code:
L = [1, 2]
L.append(L)
you create a cyclic data structure in Python. In Python releases
        before 1.5.1, the Python printer wasn’t smart enough to detect cycles
        in objects, and it would print an unending stream of [1, 2, [1, 2, [1, 2, [1, 2, and so on, until
        you hit the break-key combination on your machine (which, technically,
        raises a keyboard-interrupt exception that prints a default message).
        Beginning with Python 1.5.1, the printer is clever enough to detect
        cycles and prints [[...]] instead
        to let you know that it has detected a loop in the object’s structure
        and avoided getting stuck printing forever.
The reason for the cycle is subtle and requires information you
        will glean in Part II, so this is
        something of a preview. But in short, assignments in Python always
        generate references to objects, not copies of
        them. You can think of objects as chunks of memory and of references
        as implicitly followed pointers. When you run the first assignment
        above, the name L becomes a named
        reference to a two-item list object—a pointer to a piece of memory.
        Python lists are really arrays of object references, with an append method that changes the array in
        place by tacking on another object reference at the end. Here, the
        append call adds a reference to the
        front of L at the end of L, which leads to the cycle illustrated in
        Figure D-1: a pointer
        at the end of the list that points back to the front of the
        list.
Besides being printed specially, as you’ll learn in Chapter 6 cyclic objects must also be
        handled specially by Python’s garbage collector, or their space will
        remain unreclaimed even when they are no longer in use. Though rare in
        practice, in some programs that traverse arbitrary objects or
        structures you might have to detect such cycles yourself by keeping
        track of where you’ve been to avoid looping. Believe it or not, cyclic
        data structures can sometimes be useful, despite their special-case
        printing.


Figure D-1. A cyclic object, created by appending a list to itself. By
      default, Python appends a reference to the original list, not a copy of
      the list.


Part II, Types and Operations
See “Test Your Knowledge: Part II Exercises” in
    Chapter 9 for the
    exercises.
	The basics. Here are the sorts of results you should get, along with a few
        comments about their meaning. Again, note that ; is used in a few of these to squeeze more
        than one statement onto a single line (the ; is a statement separator), and commas
        build up tuples displayed in parentheses. Also keep in mind that the
        / division result near the top
        differs in Python 2.X and 3.X (see Chapter 5
        for details), and the list wrapper
        around dictionary method calls is needed to display results in 3.X,
        but not 2.X (see Chapter 8):
# Numbers

>>> 2 ** 16                           # 2 raised to the power 16
65536
>>> 2 / 5, 2 / 5.0                    # Integer / truncates in 2.X, but not 3.X
(0.40000000000000002, 0.40000000000000002)

# Strings

>>> "spam" + "eggs"                   # Concatenation
'spameggs'
>>> S = "ham"
>>> "eggs " + S
'eggs ham'
>>> S * 5                             # Repetition
'hamhamhamhamham'
>>> S[:0]                             # An empty slice at the front -- [0:0]
''                                    # Empty of same type as object sliced

>>> "green %s and %s" % ("eggs", S)   # Formatting
'green eggs and ham'
>>> 'green {0} and {1}'.format('eggs', S)
'green eggs and ham'

# Tuples

>>> ('x',)[0]                         # Indexing a single-item tuple
'x'
>>> ('x', 'y')[1]                     # Indexing a two-item tuple
'y'

# Lists

>>> L = [1,2,3] + [4,5,6]             # List operations
>>> L, L[:], L[:0], L[-2], L[-2:]
([1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [], 5, [5, 6])
>>> ([1,2,3]+[4,5,6])[2:4]
[3, 4]
>>> [L[2], L[3]]                      # Fetch from offsets; store in a list
[3, 4]
>>> L.reverse(); L                    # Method: reverse list in place
[6, 5, 4, 3, 2, 1]
>>> L.sort(); L                       # Method: sort list in place
[1, 2, 3, 4, 5, 6]
>>> L.index(4)                        # Method: offset of first four (search)
3

# Dictionaries

>>> {'a':1, 'b':2}['b']               # Index a dictionary by key
2
>>> D = {'x':1, 'y':2, 'z':3}
>>> D['w'] = 0                        # Create a new entry
>>> D['x'] + D['w']
1
>>> D[(1,2,3)] = 4                    # A tuple used as a key (immutable)

>>> D
{'w': 0, 'z': 3, 'y': 2, (1, 2, 3): 4, 'x': 1}

>>> list(D.keys()), list(D.values()), (1,2,3) in D         # Methods, key test
(['w', 'z', 'y', (1, 2, 3), 'x'], [0, 3, 2, 4, 1], True)

# Empties

>>> [[]], ["",[],(),{},None]          # Lots of nothings: empty objects
([[]], ['', [], (), {}, None])

	Indexing and slicing. Indexing out of
        bounds (e.g., L[4]) raises an
        error; Python always checks to make sure that all offsets are within
        the bounds of a sequence.
On the other hand, slicing out of bounds (e.g., L[-1000:100]) works because Python scales
        out-of-bounds slices so that they always fit (the limits are set to
        zero and the sequence length, if required).
Extracting a sequence in reverse, with the lower bound greater
        than the higher bound (e.g., L[3:1]), doesn’t really work. You get back
        an empty slice ([ ]) because Python
        scales the slice limits to make sure that the lower bound is always
        less than or equal to the upper bound (e.g., L[3:1] is scaled to L[3:3], the empty insertion point at offset
        3). Python slices are always
        extracted from left to right, even if you use negative indexes (they
        are first converted to positive indexes by adding the sequence
        length). Note that Python 2.3’s three-limit slices modify this
        behavior somewhat. For instance, L[3:1:-1] does extract from right to
        left:
>>> L = [1, 2, 3, 4]
>>> L[4]
Traceback (innermost last):
  File "<stdin>", line 1, in ?
IndexError: list index out of range
>>> L[-1000:100]
[1, 2, 3, 4]
>>> L[3:1]
[]
>>> L
[1, 2, 3, 4]
>>> L[3:1] = ['?']
>>> L
[1, 2, 3, '?', 4]

	Indexing, slicing, and del. Your
        interaction with the interpreter should look something like the
        following code. Note that assigning an empty list to an offset stores
        an empty list object there, but assigning an empty list to a slice
        deletes the slice. Slice assignment expects another sequence, or
        you’ll get a type error; it inserts items inside
        the sequence assigned, not the sequence itself:
>>> L = [1,2,3,4]
>>> L[2] = []
>>> L
[1, 2, [], 4]
>>> L[2:3] = []
>>> L
[1, 2, 4]
>>> del L[0]
>>> L
[2, 4]
>>> del L[1:]
>>> L
[2]
>>> L[1:2] = 1
Traceback (innermost last):
  File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation

	Tuple assignment. The values of X and Y
        are swapped. When tuples appear on the left and right of an assignment
        symbol (=), Python assigns objects
        on the right to targets on the left according to their positions. This
        is probably easiest to understand by noting that the targets on the
        left aren’t a real tuple, even though they look like one; they are
        simply a set of independent assignment targets. The items on the right
        are a tuple, which gets unpacked during the assignment (the tuple
        provides the temporary assignment needed to achieve the swap
        effect):
>>> X = 'spam'
>>> Y = 'eggs'
>>> X, Y = Y, X
>>> X
'eggs'
>>> Y
'spam'

	Dictionary keys. Any immutable object can
        be used as a dictionary key, including integers, tuples, strings, and
        so on. This really is a dictionary, even though some of its keys look
        like integer offsets. Mixed-type keys work fine, too:
>>> D = {}
>>> D[1] = 'a'
>>> D[2] = 'b'
>>> D[(1, 2, 3)] = 'c'
>>> D
{1: 'a', 2: 'b', (1, 2, 3): 'c'}

	Dictionary indexing. Indexing a nonexistent
        key (D['d']) raises an error;
        assigning to a nonexistent key (D['d']='spam') creates a new dictionary
        entry. On the other hand, out-of-bounds indexing for lists raises an
        error too, but so do out-of-bounds assignments. Variable names work
        like dictionary keys; they must have already been assigned when
        referenced, but they are created when first assigned. In fact,
        variable names can be processed as dictionary keys if you wish
        (they’re made visible in module namespace or stack-frame
        dictionaries):
>>> D = {'a':1, 'b':2, 'c':3}
>>> D['a']
1
>>> D['d']
Traceback (innermost last):
  File "<stdin>", line 1, in ?
KeyError: d
>>> D['d'] = 4
>>> D
{'b': 2, 'd': 4, 'a': 1, 'c': 3}
>>>
>>> L = [0, 1]
>>> L[2]
Traceback (innermost last):
  File "<stdin>", line 1, in ?
IndexError: list index out of range
>>> L[2] = 3
Traceback (innermost last):
  File "<stdin>", line 1, in ?
IndexError: list assignment index out of range

	Generic operations. Question
        answers:
	The + operator doesn’t
            work on different/mixed types (e.g., string + list, list + tuple).

	+ doesn’t work for
            dictionaries, as they aren’t sequences.

	The append method works
            only for lists, not strings, and keys works only on dictionaries.
            append assumes its target is
            mutable, since it’s an in-place extension; strings are
            immutable.

	Slicing and concatenation always return a new object of the
            same type as the objects processed:
>>> "x" + 1
Traceback (innermost last):
  File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation
>>>
>>> {} + {}
Traceback (innermost last):
  File "<stdin>", line 1, in ?
TypeError: bad operand type(s) for +
>>>
>>> [].append(9)
>>> "".append('s')
Traceback (innermost last):
  File "<stdin>", line 1, in ?
AttributeError: attribute-less object
>>>
>>> list({}.keys())                     # list() needed in 3.X, not 2.X
[]
>>> [].keys()
Traceback (innermost last):
  File "<stdin>", line 1, in ?
AttributeError: keys
>>>
>>> [][:]
[]
>>> ""[:]
''



	String indexing. This is a bit of a trick
        question—because strings are collections of one-character strings,
        every time you index a string, you get back a string that can be
        indexed again. S[0][0][0][0][0]
        just keeps indexing the first character over and over. This generally
        doesn’t work for lists (lists can hold arbitrary objects) unless the
        list contains strings:
>>> S = "spam"
>>> S[0][0][0][0][0]
's'
>>> L = ['s', 'p']
>>> L[0][0][0]
's'

	Immutable types. Either of the following
        solutions works. Index assignment doesn’t, because strings are
        immutable:
>>> S = "spam"
>>> S = S[0] + 'l' + S[2:]
>>> S
'slam'
>>> S = S[0] + 'l' + S[2] + S[3]
>>> S
'slam'
(See also the Python 3.X and 2.6+ bytearray string type in Chapter 37—it’s a mutable sequence of small
        integers that is essentially processed the same as a string.)

	Nesting. Here is a sample:
>>> me = {'name':('John', 'Q', 'Doe'), 'age':'?', 'job':'engineer'}
>>> me['job']
'engineer'
>>> me['name'][2]
'Doe'

	Files. Here’s one way to create and read
        back a text file in Python (ls is a
        Unix command; use dir on
        Windows):
# File: maker.py
file = open('myfile.txt', 'w')
file.write('Hello file world!\n')        # Or: open().write()
file.close()                             # close not always needed

# File: reader.py
file = open('myfile.txt')                # 'r' is default open mode
print(file.read())                       # Or print(open().read())

% python maker.py
% python reader.py
Hello file world!

% ls -l myfile.txt
-rwxrwxrwa   1 0        0             19 Apr 13 16:33 myfile.txt



Part III, Statements and Syntax
See “Test Your Knowledge: Part III Exercises” in
    Chapter 15 for the exercises.
	Coding basic loops. As you work through this exercise, you’ll wind up with code
        that looks like the following:
>>> S = 'spam'
>>> for c in S:
...     print(ord(c))
...
115
112
97
109

>>> x = 0
>>> for c in S: x += ord(c)             # Or: x = x + ord(c)
...
>>> x
433

>>> x = []
>>> for c in S: x.append(ord(c))
...
>>> x
[115, 112, 97, 109]

>>> list(map(ord, S))                   # list() required in 3.X, not 2.X
[115, 112, 97, 109]
>>> [ord(c) for c in S]                 # map and listcomps automate list builders
[115, 112, 97, 109]

	Backslash characters. The example prints
        the bell character (\a) 50 times;
        assuming your machine can handle it, and when it’s run outside of
        IDLE, you may get a series of beeps (or one sustained tone, if your
        machine is fast enough). Hey—I warned you.

	Sorting dictionaries. Here’s one way to
        work through this exercise (see Chapter 8 or Chapter 14 if this doesn’t make
        sense). Remember, you really do have to split up the keys and sort calls like this because sort returns None. In Python 2.2 and later, you can
        iterate through dictionary keys directly without calling keys (e.g., for key
        in D:), but the keys list will not be sorted like it is by
        this code. In more recent Pythons, you can achieve the same effect
        with the sorted built-in,
        too:
>>> D = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5, 'f':6, 'g':7}
>>> D
{'f': 6, 'c': 3, 'a': 1, 'g': 7, 'e': 5, 'd': 4, 'b': 2}
>>>
>>> keys = list(D.keys())              # list() required in 3.X, not in 2.X
>>> keys.sort()
>>> for key in keys:
...     print(key, '=>', D[key])
...
a => 1
b => 2
c => 3
d => 4
e => 5
f => 6
g => 7

>>> for key in sorted(D):              # Better, in more recent Pythons
...     print(key, '=>', D[key])

	Program logic alternatives. Here’s some
        sample code for the solutions. For step e, assign the result of 2 ** X to a variable outside the loops of
        steps a and b, and use it inside the loop. Your results
        may vary a bit; this exercise is mostly designed to get you playing
        with code alternatives, so anything reasonable gets full
        credit:
# a

L = [1, 2, 4, 8, 16, 32, 64]
X = 5

i = 0
while i < len(L):
    if 2 ** X == L[i]:
        print('at index', i)
        break
    i += 1
else:
    print(X, 'not found')

# b

L = [1, 2, 4, 8, 16, 32, 64]
X = 5

for p in L:
    if (2 ** X) == p:
        print((2 ** X), 'was found at', L.index(p))
        break
else:
    print(X, 'not found')

# c

L = [1, 2, 4, 8, 16, 32, 64]
X = 5

if (2 ** X) in L:
    print((2 ** X), 'was found at', L.index(2 ** X))
else:
    print(X, 'not found')

# d

X = 5
L = []
for i in range(7): L.append(2 ** i)
print(L)

if (2 ** X) in L:
    print((2 ** X), 'was found at', L.index(2 ** X))
else:
    print(X, 'not found')


# f

X = 5
L = list(map(lambda x: 2**x, range(7)))      # Or [2**x for x in range(7)]
print(L)                                     # list() to print all in 3.X, not 2.X

if (2 ** X) in L:
    print((2 ** X), 'was found at', L.index(2 ** X))
else:
    print(X, 'not found')

	Code maintenance. There is no fixed
        solution to show here; see mypydoc.py in the book’s examples package
        for my edits on this code as one example.



Part IV, Functions and Generators
See “Test Your Knowledge: Part IV Exercises” in
    Chapter 21 for the exercises.
	The basics. There’s not much to this one, but notice that using print (and hence your function) is
        technically a polymorphic operation, which does
        the right thing for each type of object:
% python
>>> def func(x): print(x)
...
>>> func("spam")
spam
>>> func(42)
42
>>> func([1, 2, 3])
[1, 2, 3]
>>> func({'food': 'spam'})
{'food': 'spam'}

	Arguments. Here’s a sample solution.
        Remember that you have to use print
        to see results in the test calls because a file isn’t the same as code
        typed interactively; Python doesn’t normally echo the results of
        expression statements in files:
def adder(x, y):
    return x + y

print(adder(2, 3))
print(adder('spam', 'eggs'))
print(adder(['a', 'b'], ['c', 'd']))

% python mod.py
5
spameggs
['a', 'b', 'c', 'd']

	varargs. Two alternative adder functions are shown in the following
        file, adders.py. The hard part
        here is figuring out how to initialize an accumulator to an empty
        value of whatever type is passed in. The first solution uses manual
        type testing to look for an integer, and an empty slice of the first
        argument (assumed to be a sequence) if the argument is determined not
        to be an integer. The second solution uses the first argument to
        initialize and scan items 2 and beyond, much like one of the min function variants shown in Chapter 18.
The second solution is better. Both of these assume all
        arguments are of the same type, and neither works on dictionaries (as
        we saw in Part II, + doesn’t work on mixed types or
        dictionaries). You could add a type test and special code to allow
        dictionaries, too, but that’s extra credit.
def adder1(*args):
    print('adder1', end=' ')
    if type(args[0]) == type(0):              # Integer?
         sum = 0                              # Init to zero
    else:                                     # else sequence:
         sum = args[0][:0]                    # Use empty slice of arg1
    for arg in args:
        sum = sum + arg
    return sum

def adder2(*args):
    print('adder2', end=' ')
    sum = args[0]                             # Init to arg1
    for next in args[1:]:
        sum += next                           # Add items 2..N
    return sum

for func in (adder1, adder2):
    print(func(2, 3, 4))
    print(func('spam', 'eggs', 'toast'))
    print(func(['a', 'b'], ['c', 'd'], ['e', 'f']))

% python adders.py
adder1 9
adder1 spameggstoast
adder1 ['a', 'b', 'c', 'd', 'e', 'f']
adder2 9
adder2 spameggstoast
adder2 ['a', 'b', 'c', 'd', 'e', 'f']

	Keywords. Here is my solution to the first
        and second parts of this exercise (coded in the file mod.py). To iterate over keyword arguments,
        use the **args form in the function
        header and use a loop (e.g., for x in
        args.keys(): use args[x]), or use args.values() to make this the same as
        summing *args positionals:
def adder(good=1, bad=2, ugly=3):
    return good + bad + ugly

print(adder())
print(adder(5))
print(adder(5, 6))
print(adder(5, 6, 7))
print(adder(ugly=7, good=6, bad=5))

% python mod.py
6
10
14
18
18

# Second part solutions

def adder1(*args):                  # Sum any number of positional args
    tot = args[0]
    for arg in args[1:]:
        tot += arg
    return tot

def adder2(**args):                 # Sum any number of keyword args
    argskeys = list(args.keys())    # list needed in 3.X!
    tot = args[argskeys[0]]
    for key in argskeys[1:]:
        tot += args[key]
    return tot

def adder3(**args):                 # Same, but convert to list of values
    args = list(args.values())      # list needed to index in 3.X!
    tot = args[0]
    for arg in args[1:]:
        tot += arg
    return tot

def adder4(**args):                 # Same, but reuse positional version
    return adder1(*args.values())

print(adder1(1, 2, 3),       adder1('aa', 'bb', 'cc'))
print(adder2(a=1, b=2, c=3), adder2(a='aa', b='bb', c='cc'))
print(adder3(a=1, b=2, c=3), adder3(a='aa', b='bb', c='cc'))
print(adder4(a=1, b=2, c=3), adder4(a='aa', b='bb', c='cc'))

	(and 6.) Dictionary tools. Here are my
        solutions to exercises 5 and 6 (file dicts.py). These are just coding exercises,
        though, because Python 1.5 added the dictionary methods D.copy() and D1.update(D2) to handle things like copying
        and adding (merging) dictionaries. See Chapter 8 for dict.update examples, and Python’s library
        manual or O’Reilly’s Python Pocket
        Reference for more details. X[:] doesn’t work for dictionaries, as
        they’re not sequences (see Chapter 8
        for details). Also, remember that if you assign (e = d) rather than copying, you generate a
        reference to a shared dictionary object; changing
        d changes e, too:
def copyDict(old):
    new = {}
    for key in old.keys():
        new[key] = old[key]
    return new

def addDict(d1, d2):
    new = {}
    for key in d1.keys():
        new[key] = d1[key]
    for key in d2.keys():
        new[key] = d2[key]
    return new

% python
>>> from dicts import *
>>> d = {1: 1, 2: 2}
>>> e = copyDict(d)
>>> d[2] = '?'
>>> d
{1: 1, 2: '?'}
>>> e
{1: 1, 2: 2}

>>> x = {1: 1}
>>> y = {2: 2}
>>> z = addDict(x, y)
>>> z
{1: 1, 2: 2}

	See #5.

	More argument-matching examples. Here is
        the sort of interaction you should get, along with comments that
        explain the matching that goes on:
def f1(a, b): print(a, b)            # Normal args

def f2(a, *b): print(a, b)           # Positional varargs

def f3(a, **b): print(a, b)          # Keyword varargs

def f4(a, *b, **c): print(a, b, c)   # Mixed modes

def f5(a, b=2, c=3): print(a, b, c)  # Defaults

def f6(a, b=2, *c): print(a, b, c)   # Defaults and positional varargs


% python
>>> f1(1, 2)                         # Matched by position (order matters)
1 2
>>> f1(b=2, a=1)                     # Matched by name (order doesn't matter)
1 2

>>> f2(1, 2, 3)                      # Extra positionals collected in a tuple
1 (2, 3)

>>> f3(1, x=2, y=3)                  # Extra keywords collected in a dictionary
1 {'x': 2, 'y': 3}

>>> f4(1, 2, 3, x=2, y=3)            # Extra of both kinds
1 (2, 3) {'x': 2, 'y': 3}

>>> f5(1)                            # Both defaults kick in
1 2 3
>>> f5(1, 4)                         # Only one default used
1 4 3

>>> f6(1)                            # One argument: matches "a"
1 2 ()
>>> f6(1, 3, 4)                      # Extra positional collected
1 3 (4,)

	Primes revisited. Here is the primes
        example, wrapped up in a function and a module (file primes.py) so it can be run multiple times.
        I added an if test to trap
        negatives, 0, and 1. I also changed / to //
        in this edition to make this solution immune to the Python 3.X
        / true division changes we studied
        in Chapter 5, and to enable it to support
        floating-point numbers (uncomment the from statement and change // to /
        to see the differences in 2.X):
#from __future__ import division

def prime(y):
    if y <= 1:                                       # For some y > 1
        print(y, 'not prime')
    else:
        x = y // 2                                   # 3.X / fails
        while x > 1:
            if y % x == 0:                           # No remainder?
                print(y, 'has factor', x)
                break                                # Skip else
            x -= 1
        else:
            print(y, 'is prime')

prime(13); prime(13.0)
prime(15); prime(15.0)
prime(3);  prime(2)
prime(1);  prime(-3)
Here is the module in action; the // operator allows it to work for
        floating-point numbers too, even though it perhaps should not:
% python primes.py
13 is prime
13.0 is prime
15 has factor 5
15.0 has factor 5.0
3 is prime
2 is prime
1 not prime
-3 not prime
This function still isn’t very reusable—it could return values,
        instead of printing—but it’s enough to run experiments. It’s also not
        a strict mathematical prime (floating points work), and it’s still
        inefficient. Improvements are left as exercises for more
        mathematically minded readers. (Hint: a for loop over range(y, 1, −1) may be a bit quicker than
        the while, but the algorithm is the
        real bottleneck here.) To time alternatives, use the homegrown
        timer or standard library timeit modules and coding patterns like
        those used in Chapter 21’s timing
        sections (and see Solution 10).

	Iterations and comprehensions. Here is the
        sort of code you should write; I may have a preference, but yours may
        vary:
>>> values = [2, 4, 9, 16, 25]
>>> import math

>>> res = []
>>> for x in values: res.append(math.sqrt(x))
...
>>> res
[1.4142135623730951, 2.0, 3.0, 4.0, 5.0]

>>> list(map(math.sqrt, values))
[1.4142135623730951, 2.0, 3.0, 4.0, 5.0]

>>> [math.sqrt(x) for x in values]
[1.4142135623730951, 2.0, 3.0, 4.0, 5.0]

>>> list(math.sqrt(x) for x in values)
[1.4142135623730951, 2.0, 3.0, 4.0, 5.0]

	Timing tools. Here is some code I wrote to
        time the three square root options, along with the results in CPythons
        3.3 and 2.7 and PyPy 1.9 (which implements Python 2.7). Each test
        takes the best of three runs; each run takes the total time required
        to call the test function 1,000 times; and each test function iterates
        1,000 times. The last result of each function is printed to verify
        that all three do the same work:
# File timer2.py (2.X and 3.X)
...same as listed in Chapter 21...

# File timesqrt.py
import sys, timer2
reps = 10000
repslist = range(reps)              # Pull out range list time for 2.X

from math import sqrt               # Not math.sqrt: adds attr fetch time
def mathMod():
    for i in repslist:
        res = sqrt(i)
    return res

def powCall():
    for i in repslist:
        res = pow(i, .5)
    return res

def powExpr():
    for i in repslist:
        res = i ** .5
    return res

print(sys.version)
for test in (mathMod, powCall, powExpr):
    elapsed, result = timer2.bestoftotal(test, _reps1=3, _reps=1000)
    print ('%s: %.5f => %s' % (test.__name__, elapsed, result))
Following are the test results for the three Pythons. The 3.3
        and 2.7 results are roughly twice as fast as 3.0 and 2.6 in the prior
        edition, due largely to a faster test machine. For each Python tested,
        it looks like the math module is
        quicker than the ** expression,
        which is quicker than the pow call;
        however, you should try this with your code and on your own machine
        and version of Python. Also, note that Python 3.3 is essentially twice
        as slow as 2.7 on this test, and PyPy is a rough order of magnitude
        (10X) faster than both CPythons, despite the fact that this is running
        floating-point math and iterations. Later versions of any of these
        Pythons might differ, so time this in the future to see for
        yourself:
c:\code> py −3 timesqrt.py
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) [MSC v.1600 64 bit (AMD64)]
mathMod: 2.04481 => 99.99499987499375
powCall: 3.40973 => 99.99499987499375
powExpr: 2.56458 => 99.99499987499375

c:\code> py −2 timesqrt.py
2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMD64)]
mathMod: 1.04337 => 99.994999875
powCall: 2.57516 => 99.994999875
powExpr: 1.89560 => 99.994999875

c:\code> c:\pypy\pypy-1.9\pypy timesqrt.py
2.7.2 (341e1e3821ff, Jun 07 2012, 15:43:00)
[PyPy 1.9.0 with MSC v.1500 32 bit]
mathMod: 0.07491 => 99.994999875
powCall: 0.85678 => 99.994999875
powExpr: 0.85453 => 99.994999875
To time the relative speeds of Python 3.X and 2.7
        dictionary comprehensions and equivalent for loops interactively, you can run a
        session like the following. It appears that the two are roughly the
        same in this regard under Python 3.3; unlike list comprehensions,
        though, manual loops are slightly faster than dictionary
        comprehensions today (though the difference isn’t exactly
        earth-shattering—at the end we save half a second when making 50
        dictionaries of 1,000,000 items each). Again, rather than taking these
        results as gospel you should investigate further on your own, on your
        computer and with your Python:
C:\code> c:\python33\python
>>>
>>> def dictcomp(I):
        return {i: i for i in range(I)}

>>> def dictloop(I):
        new = {}
        for i in range(I): new[i] = i
        return new

>>> dictcomp(10)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9}
>>> dictloop(10)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9}
>>>
>>> from timer2 import total, bestof
>>> bestof(dictcomp, 10000)[0]               # 10,000-item dict
0.0017095345403959072
>>> bestof(dictloop, 10000)[0]
0.002097576400046819
>>>
>>> bestof(dictcomp, 100000)[0]              # 100,000-items: 10X slower
0.012716923463358398
>>> bestof(dictloop, 100000)[0]
0.014129806355413166
>>>
>>> bestof(dictcomp, 1000000)[0]             # 1 of 1M-items: 10X time
0.11614425187337929
>>> bestof(dictloop, 1000000)[0]
0.1331144855439561
>>>
>>> total(dictcomp, 1000000, _reps=50)[0]    # Total to make 50 1M-item dicts
5.8162020671780965
>>> total(dictloop, 1000000, _reps=50)[0]
6.626680761285343

	Recursive functions. I coded this function
        as follows; a simple range,
        comprehension, or map will do the
        job here as well, but recursion is useful enough to experiment with
        here (print is a function in 3.X
        only, unless you import it from __future__ or code your own
        equivalent):
def countdown(N):
    if N == 0:
        print('stop')                 # 2.X: print 'stop'
    else:
        print(N, end=' ')             # 2.X: print N,
        countdown(N-1)

>>> countdown(5)
5 4 3 2 1 stop
>>> countdown(20)
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 stop

# Nonrecursive options:
>>> list(range(5, 0, −1))
[5, 4, 3, 2, 1]

# On 3.X only:
>>> t = [print(i, end=' ') for i in range(5, 0, −1)]
5 4 3 2 1
>>> t = list(map(lambda x: print(x, end=' '), range(5, 0, −1)))
5 4 3 2 1
I didn’t include a generator-based solution
        in this exercise on the grounds of merit (and humanity!), but one is
        listed below; all the other techniques seem much simpler in this
        case—a good example of cases where generators should probably be
        avoided. Remember that generators produce no results until iterated,
        so we need a for or yield from here (yield from works in 3.3 and later
        only):
def countdown2(N):                          # Generator function, recursive
    if N == 0:
        yield 'stop'
    else:
        yield N
        for x in countdown2(N-1): yield x   # 3.3+: yield from countdown2(N-1)

>>> list(countdown2(5))
[5, 4, 3, 2, 1, 'stop']

# Nonrecursive options:
>>> def countdown3():                       # Generator function, simpler
        yield from range(5, 0, −1)          # Pre 3.3: for x in range(): yield x

>>> list(countdown3())
[5, 4, 3, 2, 1]

>>> list(x for x in range(5, 0, −1))        # Equivalent generator expression
[5, 4, 3, 2, 1]

>>> list(range(5, 0, −1))                   # Equivalent nongenerator form
[5, 4, 3, 2, 1]

	Computing factorials. The following file shows how I coded this exercise; it runs on Python
                    3.X and 2.X, and its output on 3.3 is given in a string literal at the end of
                    the file. Naturally, there are many possible variations on its code; its ranges,
                    for instance, could run from 2..N+1 to skip
                    an iteration, and fact2 could use reduce(operator.mul, range(N, 1, −1)) to avoid a lambda.
#!python
from __future__ import print_function                      # File factorials.py
from functools import reduce
from timeit import repeat
import math

def fact0(N):                                              # Recursive
    if N == 1:                                             # Fails at 999 by default
        return N
    else:
        return N * fact0(N-1)

def fact1(N):
    return N if N == 1 else N * fact1(N-1)                 # Recursive, one-liner

def fact2(N):                                              # Functional
    return reduce(lambda x, y: x * y, range(1, N+1))

def fact3(N):
    res = 1
    for i in range(1, N+1): res *= i                       # Iterative
    return res

def fact4(N):
    return math.factorial(N)                               # Stdlib "batteries"

# Tests
print(fact0(6), fact1(6), fact2(6), fact3(6), fact4(6))    # 6*5*4*3*2*1: all 720
print(fact0(500) == fact1(500) == fact2(500) == fact3(500) == fact4(500))  # True

for test in (fact0, fact1, fact2, fact3, fact4):
    print(test.__name__, min(repeat(stmt=lambda: test(500), number=20, repeat=3)))

r"""
C:\code> py −3 factorials.py
720 720 720 720 720
True
fact0 0.003990868798355564
fact1 0.003901433457907475
fact2 0.002732909419593966
fact3 0.002052614370939676
fact4 0.0003401475243271501
"""
Conclusions: recursion is slowest on my Python and machine, and
        fails once N reaches 999 due to the
        default stack size setting in sys;
        per Chapter 19, this limit can be
        increased, but simple loops or the standard library tool seem the best
        route here in any event.
This general finding holds true often. For instance, ''.join(reversed(S)) may be the preferred
        way to reverse a string, even though recursive solutions are possible.
        Time the following to see how: as for factorials in 3.X, recursion is
        today an order of magnitude slower in CPython, though these results vary in PyPy:
def rev1(S):
    if len(S) == 1:
        return S
    else:
        return S[-1] + rev1(S[:-1])        # Recursive: 10x slower in CPython today

def rev2(S):
    return ''.join(reversed(S))            # Nonrecursive iterable: simpler, faster
        
def rev3(S):
    return S[::-1]                         # Even better?: sequence reversal by slice        
        



Part V, Modules and Packages
See “Test Your Knowledge: Part V Exercises” in
    Chapter 25 for the exercises.
	Import basics. When you’re done, your file (mymod.py) and interaction should look
        similar to the following; remember that Python can read a whole file
        into a list of line strings, and the len built-in returns the lengths of strings
        and lists:
def countLines(name):
    file = open(name)
    return len(file.readlines())

def countChars(name):
    return len(open(name).read())

def test(name):                                  # Or pass file object
    return countLines(name), countChars(name)    # Or return a dictionary

% python
>>> import mymod
>>> mymod.test('mymod.py')
(10, 291)
Your counts may vary, as mine may or may not include comments
        and an extra line at the end. Note that these functions load the
        entire file in memory all at once, so they won’t work for
        pathologically large files too big for your machine’s memory. To be
        more robust, you could read line by line with iterators instead and
        count as you go:
def countLines(name):
    tot = 0
    for line in open(name): tot += 1
    return tot

def countChars(name):
    tot = 0
    for line in open(name): tot += len(line)
    return tot
A generator expression can have the same effect (though the
        instructor might take off points for excessive magic!):
def countlines(name): return sum(+1 for line in open(name))
def countchars(name): return sum(len(line) for line in open(name))
On Unix, you can verify your output with a wc command; on Windows, right-click on your
        file to view its properties. Note that your script may report fewer
        characters than Windows does—for portability, Python converts Windows
        \r\n line-end markers to \n, thereby dropping 1 byte (character) per
        line. To match byte counts with Windows exactly, you must open in
        binary mode ('rb'), or add the
        number of bytes corresponding to the number of lines. See Chapter 9 and Chapter 37 for more on end-of-line
        translations in text files.
The “ambitious” part of this exercise (passing in a file object
        so you only open the file once), will require you to use the seek method of the built-in file object. It
        works like C’s fseek call (and may
        call it behind the scenes): seek
        resets the current position in the file to a passed-in offset. After a
        seek, future input/output
        operations are relative to the new position. To rewind to the start of
        a file without closing and reopening it, call file.seek(0); the file read methods all pick up at the current
        position in the file, so you need to rewind to reread. Here’s what
        this tweak would look like:
def countLines(file):
    file.seek(0)                                 # Rewind to start of file
    return len(file.readlines())

def countChars(file):
    file.seek(0)                                 # Ditto (rewind if needed)
    return len(file.read())

def test(name):
    file = open(name)                            # Pass file object
    return countLines(file), countChars(file)    # Open file only once

>>> import mymod2
>>> mymod2.test("mymod2.py")
(11, 392)

	from/from *. Here’s the from * part; replace * with countChars to do the rest:
% python
>>> from mymod import *
>>> countChars("mymod.py")
291

	__main__. If you code it
        properly, this file works in either mode—program run or module
        import:
def countLines(name):
    file = open(name)
    return len(file.readlines())

def countChars(name):
    return len(open(name).read())

def test(name):                                  # Or pass file object
    return countLines(name), countChars(name)    # Or return a dictionary

if __name__ == '__main__':
    print(test('mymod.py'))

% python mymod.py
(13, 346)
This is where I would probably begin to consider using
        command-line arguments or user input to provide the filename to be
        counted, instead of hardcoding it in the script (see Chapter 25 for more on sys.argv, and Chapter 10 for more on input—and use raw_input instead in 2.X):
if __name__ == '__main__':
    print(test(input('Enter file name:'))        # Console (raw_input in 2.X)

if __name__ == '__main__':
    import sys                                   # Command line
    print(test(sys.argv[1]))

	Nested imports. Here is my solution (file
        myclient.py):
from mymod import countLines, countChars
print(countLines('mymod.py'), countChars('mymod.py'))

% python myclient.py
13 346
As for the rest of this one, mymod’s functions are accessible (that is,
        importable) from the top level of myclient, since from simply assigns to names in the importer
        (it works as if mymod’s defs appeared in myclient). For example, another file can
        say:
import myclient
myclient.countLines(...)

from myclient import countChars
countChars(...)
If myclient used import instead of from, you’d need to use a path to get to the
        functions in mymod through myclient:
import myclient
myclient.mymod.countLines(...)

from myclient import mymod
mymod.countChars(...)
In general, you can define collector
        modules that import all the names from other modules so they’re
        available in a single convenience module. The following partial code,
        for example, creates three different copies of the name somename—mod1.somename, collector.somename, and __main__.somename; all three share the same
        integer object initially, and only the name somename exists at the interactive prompt as
        is:
# File mod1.py
somename = 42

# File collector.py
from mod1 import *                               # Collect lots of names here
from mod2 import *                               # from assigns to my names
from mod3 import *

>>> from collector import somename

	Package imports. For this, I put the
        mymod.py solution file listed for
        exercise 3 into a directory package. The following is what I did in a
        Windows console interface to set up the directory and the __init__.py file that it’s required to have
        until Python 3.3; you’ll need to interpolate for other platforms
        (e.g., use cp and vi instead of copy and notepad). This works in any directory (I’m
        using my own code directory here), and you can do some of this from a
        file explorer GUI, too.
When I was done, I had a mypkg subdirectory that
                    contained the files __init__.py and
                        mymod.py. Until Python 3.3’s namespace
                    package extension, you need an __init__.py
                    in the mypkg directory, but not in its
                    parent; technically, mypkg is located in
                    the home directory component of the module search path. Notice how a print statement coded in the directory’s
                    initialization file fires only the first time it is imported, not the second;
                    raw strings are also used here to avoid escape issues in the file paths:
C:\code> mkdir mypkg
C:\code> copy mymod.py mypkg\mymod.py
C:\code> notepad mypkg\__init__.py
...coded a print statement...

C:\code> python
>>> import mypkg.mymod
initializing mypkg
>>> mypkg.mymod.countLines(r'mypkg\mymod.py')
13
>>> from mypkg.mymod import countChars
>>> countChars(r'mypkg\mymod.py')
346

	Reloads. This exercise just asks you to
        experiment with changing the changer.py example in the book, so there’s
        nothing to show here.

	Circular imports. The short story is that
        importing recur2 first works
        because the recursive import then happens at the import in recur1, not at a from in recur2.
The long story goes like this: importing recur2 first works because the recursive
        import from recur1 to recur2 fetches recur2 as a whole, instead of getting
        specific names. recur2 is
        incomplete when it’s imported from recur1, but because it uses import instead of from, you’re safe: Python finds and returns
        the already created recur2 module
        object and continues to run the rest of recur1 without a glitch. When the recur2 import resumes, the second from finds the name Y in recur1 (it’s been run completely), so no
        error is reported.
Running a file as a script is not the same
        as importing it as a module; these cases are the same as running the
        first import or from in the script interactively. For
        instance, running recur1 as a
        script works, because it is the same as importing recur2 interactively, as recur2 is the first module imported in
        recur1. Running recur2 as a script fails for the same
        reason—it’s the same as running its first import interactively.



Part VI, Classes and OOP
See “Test Your Knowledge: Part VI Exercises” in
    Chapter 32 for the exercises.
	Inheritance. Here’s the solution code for this exercise (file adder.py), along with some interactive
        tests. The __add__ overload has to
        appear only once, in the superclass, as it invokes type-specific
        add methods in subclasses:
class Adder:
    def add(self, x, y):
        print('not implemented!')
    def __init__(self, start=[]):
        self.data = start
    def __add__(self, other):                    # Or in subclasses?
        return self.add(self.data, other)        # Or return type?

class ListAdder(Adder):
    def add(self, x, y):
        return x + y

class DictAdder(Adder):
    def add(self, x, y):
        new = {}
        for k in x.keys(): new[k] = x[k]
        for k in y.keys(): new[k] = y[k]
        return new

% python
>>> from adder import *
>>> x = Adder()
>>> x.add(1, 2)
not implemented!
>>> x = ListAdder()
>>> x.add([1], [2])
[1, 2]
>>> x = DictAdder()
>>> x.add({1:1}, {2:2})
{1: 1, 2: 2}

>>> x = Adder([1])
>>> x + [2]
not implemented!
>>>
>>> x = ListAdder([1])
>>> x + [2]
[1, 2]
>>> [2] + x
In 3.3:  TypeError: can only concatenate list (not "ListAdder") to list
Earlier: TypeError: __add__ nor __radd__ defined for these operands
Notice in the last test that you get an error for expressions
        where a class instance appears on the right of a +; if you want to fix this, use __radd__ methods, as described in “Operator
        Overloading” in Chapter 30.
If you are saving a value in the instance anyhow, you might as
        well rewrite the add method to take
        just one argument, in the spirit of other examples in this part of the
        book (this is adder2.py):
class Adder:
    def __init__(self, start=[]):
        self.data = start
    def __add__(self, other):              # Pass a single argument
        return self.add(other)             # The left side is in self
    def add(self, y):
        print('not implemented!')

class ListAdder(Adder):
    def add(self, y):
        return self.data + y

class DictAdder(Adder):
    def add(self, y):
        d = self.data.copy()               # Change to use self.data instead of x
        d.update(y)                        # Or "cheat" by using quicker built-ins
        return d

x = ListAdder([1, 2, 3])
y = x + [4, 5, 6]
print(y)                                   # Prints [1, 2, 3, 4, 5, 6]

z = DictAdder(dict(name='Bob')) + {'a':1}
print(z)                                   # Prints {'name': 'Bob', 'a': 1}
Because values are attached to objects rather than passed
        around, this version is arguably more object-oriented. And, once
        you’ve gotten to this point, you’ll probably find that you can get rid
        of add altogether and simply define
        type-specific __add__ methods in
        the two subclasses.

	Operator overloading. The solution code
        (file mylist.py) uses a handful
        of operator overloading methods we explored in Chapter 30. Copying the initial value in
        the constructor is important because it may be mutable; you don’t want
        to change or have a reference to an object that’s possibly shared
        somewhere outside the class. The __getattr__ method routes calls to the
        wrapped list. For hints on an easier way to code this in Python 2.2
        and later, see “Extending Types by Subclassing” in
        Chapter 32:
class MyList:
    def __init__(self, start):
        #self.wrapped = start[:]                  # Copy start: no side effects
        self.wrapped = list(start)                # Make sure it's a list here
    def __add__(self, other):
        return MyList(self.wrapped + other)
    def __mul__(self, time):
        return MyList(self.wrapped * time)
    def __getitem__(self, offset):                # Also passed a slice in 3.X
        return self.wrapped[offset]               # For iteration if no __iter__
    def __len__(self):
        return len(self.wrapped)
    def __getslice__(self, low, high):            # Ignored in 3.X: uses __getitem__
        return MyList(self.wrapped[low:high])
    def append(self, node):
        self.wrapped.append(node)
    def __getattr__(self, name):                  # Other methods: sort/reverse/etc
        return getattr(self.wrapped, name)
    def __repr__(self):                           # Catchall display method
        return repr(self.wrapped)

if __name__ == '__main__':
    x = MyList('spam')
    print(x)
    print(x[2])
    print(x[1:])
    print(x + ['eggs'])
    print(x * 3)
    x.append('a')
    x.sort()
    print(' '.join(c for c in x))

c:\code> python mylist.py
['s', 'p', 'a', 'm']
a
['p', 'a', 'm']
['s', 'p', 'a', 'm', 'eggs']
['s', 'p', 'a', 'm', 's', 'p', 'a', 'm', 's', 'p', 'a', 'm']
a a m p s
Note that it’s important to copy the start value by calling
        list instead of slicing here,
        because otherwise the result may not be a true list and so will not
        respond to expected list methods, such as append (e.g., slicing a string returns
        another string, not a list). You would be able to copy a MyList start value by slicing because its
        class overloads the slicing operation and provides the expected list
        interface; however, you need to avoid slice-based copying for objects
        such as strings.

	Subclassing. My solution (mysub.py) appears as follows. Your solution
        should be similar:
from mylist import MyList

class MyListSub(MyList):
    calls = 0                                      # Shared by instances
    def __init__(self, start):
        self.adds = 0                              # Varies in each instance
        MyList.__init__(self, start)

    def __add__(self, other):
        print('add: ' + str(other))
        MyListSub.calls += 1                       # Class-wide counter
        self.adds += 1                             # Per-instance counts
        return MyList.__add__(self, other)

    def stats(self):
        return self.calls, self.adds               # All adds, my adds

if __name__ == '__main__':
    x = MyListSub('spam')
    y = MyListSub('foo')
    print(x[2])
    print(x[1:])
    print(x + ['eggs'])
    print(x + ['toast'])
    print(y + ['bar'])
    print(x.stats())

c:\code> python mysub.py
a
['p', 'a', 'm']
add: ['eggs']
['s', 'p', 'a', 'm', 'eggs']
add: ['toast']
['s', 'p', 'a', 'm', 'toast']
add: ['bar']
['f', 'o', 'o', 'bar']
(3, 2)

	Attribute methods. I worked through this
        exercise as follows. Notice that in Python 2.X’s classic classes,
        operators try to fetch attributes through __getattr__, too; you need to return a value
        to make them work. As noted in Chapter 32 and elsewhere, __getattr__ is not
        called for built-in operations in Python 3.X (and in 2.X if new-style
        classes are used), so the expressions aren’t intercepted at all here;
        in new-style classes, a class like this must redefine __X__ operator overloading methods explicitly.
        More on this in Chapter 28, Chapter 31, Chapter 32, Chapter 38, and Chapter 39: it
        can impact much code!
c:\code> py −2
>>> class Attrs:
        def __getattr__(self, name):
            print('get %s' % name)
        def __setattr__(self, name, value):
            print('set %s %s' % (name, value))

>>> x = Attrs()
>>> x.append
get append
>>> x.spam = 'pork'
set spam pork
>>> x + 2
get __coerce__
TypeError: 'NoneType' object is not callable
>>> x[1]
get __getitem__
TypeError: 'NoneType' object is not callable
>>> x[1:5]
get __getslice__
TypeError: 'NoneType' object is not callable

c:\code> py −3
>>> ...same startup code...
>>> x + 2
TypeError: unsupported operand type(s) for +: 'Attrs' and 'int'
>>> x[1]
TypeError: 'Attrs' object does not support indexing
>>> x[1:5]
TypeError: 'Attrs' object is not subscriptable

	Set objects. Here’s the sort of interaction
        you should get. Comments explain which methods are called. Also, note
        that sets are a built-in type in Python today, so this is largely just
        a coding exercise (see Chapter 5 for more on
        sets).
% python
>>> from setwrapper import Set
>>> x = Set([1, 2, 3, 4])          # Runs __init__
>>> y = Set([3, 4, 5])

>>> x & y                          # __and__, intersect, then __repr__
Set:[3, 4]
>>> x | y                          # __or__, union, then __repr__
Set:[1, 2, 3, 4, 5]

>>> z = Set("hello")               # __init__ removes duplicates
>>> z[0], z[-1], z[2:]             # __getitem__
('h', 'o', ['l', 'o'])

>>> for c in z: print(c, end=' ')  # __iter__ (else __getitem__)   [3.X print]
...
h e l o
>>> ''.join(c.upper() for c in z)  # __iter__ (else __getitem__)
'HELO'
>>> len(z), z                      # __len__, __repr__
(4, Set:['h', 'e', 'l', 'o'])

>>> z & "mello", z | "mello"
(Set:['e', 'l', 'o'], Set:['h', 'e', 'l', 'o', 'm'])
My solution to the multiple-operand extension subclass looks
        like the following class (file multiset.py). It needs to replace only two
        methods in the original set. The class’s documentation string explains
        how it works:
from setwrapper import Set

class MultiSet(Set):
    """
    Inherits all Set names, but extends intersect and union to support
    multiple operands; note that "self" is still the first argument
    (stored in the *args argument now); also note that the inherited
    & and | operators call the new methods here with 2 arguments, but
    processing more than 2 requires a method call, not an expression;
    intersect doesn't remove duplicates here: the Set constructor does;
    """
    def intersect(self, *others):
        res = []
        for x in self:                         # Scan first sequence
            for other in others:               # For all other args
                if x not in other: break       # Item in each one?
            else:                              # No: break out of loop
                res.append(x)                  # Yes: add item to end
        return Set(res)

    def union(*args):                          # self is args[0]
        res = []
        for seq in args:                       # For all args
            for x in seq:                      # For all nodes
                if not x in res:
                    res.append(x)              # Add new items to result
        return Set(res)
Your interaction with the extension will look something like the
        following. Note that you can intersect by using & or calling intersect, but you must call intersect for three or more operands;
        & is a binary (two-sided)
        operator. Also, note that we could have called MultiSet simply Set to make this change more transparent if
        we used setwrapper.Set to refer to
        the original within multiset (the
        as clause in an import could rename
        the class too if desired):
>>> from multiset import *
>>> x = MultiSet([1, 2, 3, 4])
>>> y = MultiSet([3, 4, 5])
>>> z = MultiSet([0, 1, 2])

>>> x & y, x | y                               # Two operands
(Set:[3, 4], Set:[1, 2, 3, 4, 5])

>>> x.intersect(y, z)                          # Three operands
Set:[]
>>> x.union(y, z)
Set:[1, 2, 3, 4, 5, 0]
>>> x.intersect([1,2,3], [2,3,4], [1,2,3])     # Four operands
Set:[2, 3]
>>> x.union(range(10))                         # Non-MultiSets work, too
Set:[1, 2, 3, 4, 0, 5, 6, 7, 8, 9]

>>> w = MultiSet('spam')                       # String sets
>>> w
Set:['s', 'p', 'a', 'm']
>>> ''.join(w | 'super')
'spamuer'
>>> (w | 'super') & MultiSet('slots')
Set:['s']

	Class tree links. Here is the way I changed
        the lister classes, and a rerun of the test to show its format. Do the
        same for the dir-based version, and
        also do this when formatting class objects in the tree climber
        variant:
class ListInstance:
    def __attrnames(self):
        ...unchanged...

    def __str__(self):
        return '<Instance of %s(%s), address %s:\n%s>' % (
                           self.__class__.__name__,       # My class's name
                           self.__supers(),               # My class's own supers
                           id(self),                      # My address
                           self.__attrnames())            # name=value list

    def __supers(self):
        names = []
        for super in self.__class__.__bases__:            # One level up from class
            names.append(super.__name__)                  # name, not str(super)
        return ', '.join(names)

    # Or: ', '.join(super.__name__ for super in self.__class__.__bases__)

c:\code> py listinstance-exercise.py
<Instance of Sub(Super, ListInstance), address 43671000:
        data1=spam
        data2=eggs
        data3=42
>

	Composition. My solution is as follows
        (file lunch.py), with comments
        from the description mixed in with the code. This is one case where
        it’s probably easier to express a problem in Python than it is in
        English:
class Lunch:
    def __init__(self):                          # Make/embed Customer, Employee
        self.cust = Customer()
        self.empl = Employee()
    def order(self, foodName):                   # Start Customer order simulation
        self.cust.placeOrder(foodName, self.empl)
    def result(self):                            # Ask the Customer about its Food
        self.cust.printFood()

class Customer:
    def __init__(self):                          # Initialize my food to None
        self.food = None
    def placeOrder(self, foodName, employee):    # Place order with Employee
        self.food = employee.takeOrder(foodName)
    def printFood(self):                         # Print the name of my food
        print(self.food.name)

class Employee:
    def takeOrder(self, foodName):               # Return Food, with desired name
        return Food(foodName)

class Food:
    def __init__(self, name):                    # Store food name
        self.name = name

if __name__ == '__main__':
    x = Lunch()                                  # Self-test code
    x.order('burritos')                          # If run, not imported
    x.result()
    x.order('pizza')
    x.result()

% python lunch.py
burritos
pizza

	Zoo animal hierarchy. Here is the way I
        coded the taxonomy in Python (file zoo.py); it’s artificial, but the general
        coding pattern applies to many real structures, from GUIs to employee
        databases to spacecraft. Notice that the self.speak reference in Animal triggers an independent inheritance
        search, which finds speak in a
        subclass. Test this interactively per the exercise description. Try
        extending this hierarchy with new classes, and making instances of
        various classes in the tree:
class Animal:
    def reply(self):   self.speak()              # Back to subclass
    def speak(self):   print('spam')             # Custom message

class Mammal(Animal):
    def speak(self):   print('huh?')

class Cat(Mammal):
    def speak(self):   print('meow')

class Dog(Mammal):
    def speak(self):   print('bark')

class Primate(Mammal):
    def speak(self):   print('Hello world!')

class Hacker(Primate): pass                      # Inherit from Primate

	The Dead Parrot Sketch. Here’s how I
        implemented this one (file parrot.py). Notice how the line method in the Actor superclass works: by accessing
        self attributes twice, it sends
        Python back to the instance twice, and hence invokes
        two inheritance searches—self.name and self.says() find information in the specific
        subclasses:
class Actor:
    def line(self): print(self.name + ':', repr(self.says()))

class Customer(Actor):
    name = 'customer'
    def says(self): return "that's one ex-bird!"

class Clerk(Actor):
    name = 'clerk'
    def says(self): return "no it isn't..."

class Parrot(Actor):
    name = 'parrot'
    def says(self): return None

class Scene:
    def __init__(self):
        self.clerk    = Clerk()                  # Embed some instances
        self.customer = Customer()               # Scene is a composite
        self.subject  = Parrot()

    def action(self):
        self.customer.line()                     # Delegate to embedded
        self.clerk.line()
        self.subject.line()



Part VII, Exceptions and Tools
See “Test Your Knowledge: Part VII Exercises” in
    Chapter 36 for the exercises.
	try/except. My version of the oops function
        (file oops.py) follows. As for
        the noncoding questions, changing oops to raise a KeyError instead of an IndexError means that the try handler won’t catch the exception—it
        “percolates” to the top level and triggers Python’s default error
        message. The names KeyError and
        IndexError come from the outermost
        built-in names scope (the B in “LEGB”). Import
        builtins in 3.X (and __builtin__ in Python 2.X) and pass it as an
        argument to the dir function to see
        this for yourself.
def oops():
    raise IndexError()

def doomed():
    try:
        oops()
    except IndexError:
        print('caught an index error!')
    else:
        print('no error caught...')

if __name__ == '__main__': doomed()

% python oops.py
caught an index error!

	Exception objects and lists. Here’s the way
        I extended this module for an exception of my own, file oops2.py:
from __future__ import print_function  # 2.X

class MyError(Exception): pass

def oops():
    raise MyError('Spam!')

def doomed():
    try:
        oops()
    except IndexError:
        print('caught an index error!')
    except MyError as data:
        print('caught error:', MyError, data)
    else:
        print('no error caught...')

if __name__ == '__main__':
    doomed()

% python oops2.py
caught error: <class '__main__.MyError'> Spam!
Like all class exceptions, the instance is accessible via the
        as variable data; the error message shows both the class
        (<...>) and its instance
        (Spam!). The instance must be
        inheriting both an __init__ and a
        __repr__ or __str__ from Python’s Exception class, or it would print much like
        the class does. See Chapter 35 for details
        on how this works in built-in exception classes.

	Error handling. Here’s one way to solve
        this one (file exctools.py). I
        did my tests in a file, rather than interactively, but the results are
        similar enough for full credit. Notice that the empty except and sys.exc_info approach used here will catch
        exit-related exceptions that listing Exception with an as variable won’t; that’s probably not ideal
        in most applications code, but might be useful in a tool like this
        designed to work as a sort of exceptions firewall.
import sys, traceback

def safe(callee, *pargs, **kargs):
    try:
        callee(*pargs, **kargs)            # Catch everything else
    except:                                # Or "except Exception as E:"
        traceback.print_exc()
        print('Got %s %s' % (sys.exc_info()[0], sys.exc_info()[1]))

if __name__ == '__main__':
    import oops2
    safe(oops2.oops)

c:\code> py −3 exctools.py
Traceback (most recent call last):
  File "C:\code\exctools.py", line 5, in safe
    callee(*pargs, **kargs)            # Catch everything else
  File "C:\code\oops2.py", line 6, in oops
    raise MyError('Spam!')
oops2.MyError: Spam!
Got <class 'oops2.MyError'> Spam!
The following sort of code could turn this into a
        function decorator that could wrap and catch
        exceptions raised by any function, using techniques introduced in
        Chapter 32, but covered more fully in
        Chapter 39 in the next part of the book—it augments
        a function, rather than expecting it to be passed in
        explicitly:
import sys, traceback

def safe(callee):
    def callproxy(*pargs, **kargs):
        try:
            return callee(*pargs, **kargs)
        except:
            traceback.print_exc()
            print('Got %s %s' % (sys.exc_info()[0], sys.exc_info()[1]))
            raise
    return callproxy

if __name__ == '__main__':
    import oops2

    @safe
    def test():
        oops2.oops()

    test()

	Self-study examples. Here are a few examples for you to study as
                    time allows; for more, see follow-up books—such as Programming Python, from which these examples were borrowed or
                    derived—and the Web:
# Find the largest Python source file in a single directory

import os, glob
dirname = r'C:\Python33\Lib'

allsizes = []
allpy = glob.glob(dirname + os.sep + '*.py')
for filename in allpy:
    filesize = os.path.getsize(filename)
    allsizes.append((filesize, filename))

allsizes.sort()
print(allsizes[:2])
print(allsizes[-2:])


# Find the largest Python source file in an entire directory tree

import sys, os, pprint
if sys.platform[:3] == 'win':
    dirname = r'C:\Python33\Lib'
else:
    dirname = '/usr/lib/python'

allsizes = []
for (thisDir, subsHere, filesHere) in os.walk(dirname):
    for filename in filesHere:
        if filename.endswith('.py'):
            fullname = os.path.join(thisDir, filename)
            fullsize = os.path.getsize(fullname)
            allsizes.append((fullsize, fullname))

allsizes.sort()
pprint.pprint(allsizes[:2])
pprint.pprint(allsizes[-2:])


# Find the largest Python source file on the module import search path

import sys, os, pprint
visited  = {}
allsizes = []
for srcdir in sys.path:
    for (thisDir, subsHere, filesHere) in os.walk(srcdir):
        thisDir = os.path.normpath(thisDir)
        if thisDir.upper() in visited:
            continue
        else:
            visited[thisDir.upper()] = True
        for filename in filesHere:
            if filename.endswith('.py'):
                pypath  = os.path.join(thisDir, filename)
                try:
                    pysize = os.path.getsize(pypath)
                except:
                    print('skipping', pypath)
                allsizes.append((pysize, pypath))

allsizes.sort()
pprint.pprint(allsizes[:3])
pprint.pprint(allsizes[-3:])


# Sum columns in a text file separated by commas

filename = 'data.txt'
sums = {}

for line in open(filename):
    cols = line.split(',')
    nums = [int(col) for col in cols]
    for (ix, num) in enumerate(nums):
        sums[ix] = sums.get(ix, 0) + num

for key in sorted(sums):
    print(key, '=', sums[key])


# Similar to prior, but using lists instead of dictionaries for sums

import sys
filename = sys.argv[1]
numcols  = int(sys.argv[2])
totals   = [0] * numcols

for line in open(filename):
    cols = line.split(',')
    nums = [int(x) for x in cols]
    totals = [(x + y) for (x, y) in zip(totals, nums)]

print(totals)


# Test for regressions in the output of a set of scripts

import os
testscripts = [dict(script='test1.py', args=''),       # Or glob script/args dir
               dict(script='test2.py', args='spam')]

for testcase in testscripts:
    commandline = '%(script)s %(args)s' % testcase
    output = os.popen(commandline).read()
    result = testcase['script'] + '.result'
    if not os.path.exists(result):
        open(result, 'w').write(output)
        print('Created:', result)
    else:
        priorresult = open(result).read()
        if output != priorresult:
            print('FAILED:', testcase['script'])
            print(output)
        else:
            print('Passed:', testcase['script'])


# Build GUI with tkinter (Tkinter in 2.X) with buttons that change color and grow

from tkinter import *                                  # Use Tkinter in 2.X
import random
fontsize = 25
colors = ['red', 'green', 'blue', 'yellow', 'orange', 'white', 'cyan', 'purple']

def reply(text):
    print(text)
    popup = Toplevel()
    color = random.choice(colors)
    Label(popup, text='Popup', bg='black', fg=color).pack()
    L.config(fg=color)

def timer():
    L.config(fg=random.choice(colors))
    win.after(250, timer)

def grow():
    global fontsize
    fontsize += 5
    L.config(font=('arial', fontsize, 'italic'))
    win.after(100, grow)

win = Tk()
L = Label(win, text='Spam',
          font=('arial', fontsize, 'italic'), fg='yellow', bg='navy',
          relief=RAISED)
L.pack(side=TOP, expand=YES, fill=BOTH)
Button(win, text='press', command=(lambda: reply('red'))).pack(side=BOTTOM, fill=X)
Button(win, text='timer', command=timer).pack(side=BOTTOM, fill=X)
Button(win, text='grow', command=grow).pack(side=BOTTOM, fill=X)
win.mainloop()


# Similar to prior, but use classes so each window has own state information

from tkinter import *
import random

class MyGui:
    """
    A GUI with buttons that change color and make the label grow
    """
    colors = ['blue', 'green', 'orange', 'red', 'brown', 'yellow']

    def __init__(self, parent, title='popup'):
        parent.title(title)
        self.growing = False
        self.fontsize = 10
        self.lab = Label(parent, text='Gui1', fg='white', bg='navy')
        self.lab.pack(expand=YES, fill=BOTH)
        Button(parent, text='Spam', command=self.reply).pack(side=LEFT)
        Button(parent, text='Grow', command=self.grow).pack(side=LEFT)
        Button(parent, text='Stop', command=self.stop).pack(side=LEFT)

    def reply(self):
        "change the button's color at random on Spam presses"
        self.fontsize += 5
        color = random.choice(self.colors)
        self.lab.config(bg=color,
                font=('courier', self.fontsize, 'bold italic'))

    def grow(self):
        "start making the label grow on Grow presses"
        self.growing = True
        self.grower()

    def grower(self):
        if self.growing:
            self.fontsize += 5
            self.lab.config(font=('courier', self.fontsize, 'bold'))
            self.lab.after(500, self.grower)

    def stop(self):
        "stop the button growing on Stop presses"
        self.growing = False

class MySubGui(MyGui):
    colors = ['black', 'purple']           # Customize to change color choices

MyGui(Tk(), 'main')
MyGui(Toplevel())
MySubGui(Toplevel())
mainloop()


# Email inbox scanning and maintenance utility

"""
scan pop email box, fetching just headers, allowing
deletions without downloading the complete message
"""

import poplib, getpass, sys

mailserver = 'your pop email server name here'                 # pop.server.net
mailuser   = 'your pop email user name here'
mailpasswd = getpass.getpass('Password for %s?' % mailserver)

print('Connecting...')
server = poplib.POP3(mailserver)
server.user(mailuser)
server.pass_(mailpasswd)

try:
    print(server.getwelcome())
    msgCount, mboxSize = server.stat()
    print('There are', msgCount, 'mail messages, size ', mboxSize)
    msginfo = server.list()
    print(msginfo)
    for i in range(msgCount):
        msgnum  = i+1
        msgsize = msginfo[1][i].split()[1]
        resp, hdrlines, octets = server.top(msgnum, 0)         # Get hdrs only
        print('-'*80)
        print('[%d: octets=%d, size=%s]' % (msgnum, octets, msgsize))
        for line in hdrlines: print(line)

        if input('Print?') in ['y', 'Y']:
            for line in server.retr(msgnum)[1]: print(line)    # Get whole msg
        if input('Delete?') in ['y', 'Y']:
            print('deleting')
            server.dele(msgnum)                                # Delete on srvr
        else:
            print('skipping')
finally:
    server.quit()                                  # Make sure we unlock mbox
input('Bye.')                                      # Keep window up on Windows


# CGI server-side script to interact with a web browser

#!/usr/bin/python
import cgi
form = cgi.FieldStorage()                          # Parse form data
print("Content-type: text/html\n")                 # hdr plus blank line
print("<HTML>")
print("<title>Reply Page</title>")                 # HTML reply page
print("<BODY>")
if not 'user' in form:
    print("<h1>Who are you?</h1>")
else:
    print("<h1>Hello <i>%s</i>!</h1>" % cgi.escape(form['user'].value))
print("</BODY></HTML>")


# Database script to populate a shelve with Python objects

# see also Chapter 28 shelve and Chapter 31 pickle examples

rec1 = {'name': {'first': 'Bob', 'last': 'Smith'},
        'job':  ['dev', 'mgr'],
        'age':  40.5}

rec2 = {'name': {'first': 'Sue', 'last': 'Jones'},
        'job':  ['mgr'],
        'age':  35.0}

import shelve
db = shelve.open('dbfile')
db['bob'] = rec1
db['sue'] = rec2
db.close()


# Database script to print and update shelve created in prior script

import shelve
db = shelve.open('dbfile')
for key in db:
    print(key, '=>', db[key])

bob = db['bob']
bob['age'] += 1
db['bob'] = bob
db.close()


# Database script to populate and query a MySql database

from MySQLdb import Connect
conn = Connect(host='localhost', user='root', passwd='XXXXXXX')
curs = conn.cursor()
try:
    curs.execute('drop database testpeopledb')
except:
    pass                                           # Did not exist

curs.execute('create database testpeopledb')
curs.execute('use testpeopledb')
curs.execute('create table people (name char(30), job char(10), pay int(4))')

curs.execute('insert people values (%s, %s, %s)', ('Bob', 'dev', 50000))
curs.execute('insert people values (%s, %s, %s)', ('Sue', 'dev', 60000))
curs.execute('insert people values (%s, %s, %s)', ('Ann', 'mgr', 40000))

curs.execute('select * from people')
for row in curs.fetchall():
    print(row)

curs.execute('select * from people where name = %s', ('Bob',))
print(curs.description)
colnames = [desc[0] for desc in curs.description]
while True:
    print('-' * 30)
    row = curs.fetchone()
    if not row: break
    for (name, value) in zip(colnames, row):
        print('%s => %s' % (name, value))

conn.commit()                                      # Save inserted records


# Fetch and open/play a file by FTP

import webbrowser, sys
from ftplib import FTP                       # Socket-based FTP tools
from getpass import getpass                  # Hidden password input
if sys.version[0] == '2': input = raw_input  # 2.X compatibility

nonpassive = False                           # Force active mode FTP for server?
filename   = input('File?')                  # File to be downloaded
dirname    = input('Dir? ') or '.'           # Remote directory to fetch from
sitename   = input('Site?')                  # FTP site to contact
user       = input('User?')                  # Use () for anonymous
if not user:
    userinfo = ()
else:
    from getpass import getpass              # Hidden password input
    userinfo = (user, getpass('Pswd?'))

print('Connecting...')
connection = FTP(sitename)                   # Connect to FTP site
connection.login(*userinfo)                  # Default is anonymous login
connection.cwd(dirname)                      # Xfer 1k at a time to localfile
if nonpassive:                               # Force active FTP if server requires
    connection.set_pasv(False)

print('Downloading...')
localfile = open(filename, 'wb')             # Local file to store download
connection.retrbinary('RETR ' + filename, localfile.write, 1024)
connection.quit()
localfile.close()

print('Playing...')
webbrowser.open(filename)
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